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ABSTRACT 

Operation of typical heating, ventilation, and air conditioning (HVAC) systems has been 

based on general thermal comfort models. However, because of individual differences in thermal 

comfort, typical HVAC systems have not been able to achieve high levels of occupants’ 

satisfaction. Moreover, conservative control settings designed for “widely acceptable” conditions 

have resulted in a high chance of energy waste. 

To resolve these issues, HVAC systems have been proposed that can (i) learn their occupants’ 

thermal preferences; (ii) be self-tuned to provide customized indoor thermal environments. This 

Thesis presents approaches and algorithms for the realization of self-tuned indoor thermal 

environments and demonstrates their experimental and simulation implementations. 

First, this Thesis presents a new data-driven method for learning individual occupants’ 

thermal preferences developed by combining classification and inference problems, without 

developing different models for each occupant. The approach is fully Bayesian, and it is based on 

the premise that the thermal preference is mainly governed by (i) an overall thermal stress, 

represented using physical process equations with relatively few parameters along with prior 

knowledge of the parameters, and (ii) the personal thermal preference characteristic, which is 

modeled as a hidden random variable. The concept of clustering occupants based on this hidden 

variable, i.e., similar thermal preference characteristic, is introduced. The algorithm also 

incorporates hidden parameters and informative priors to account for the uncertainty associated 

with variables that are noisy or difficult to measure (unobserved) in real buildings (for example, 

the metabolic rate, air speed and occupants’ clothing level). Experimental results show that the 

algorithm provides accurate predictions for personalized thermal preference profiles and it is 

efficient as it only requires a relatively small dataset collected from each occupant. 

Second, this Thesis presents a self-tuned HVAC controller that provides customized thermal 

conditions to satisfy occupant preferences (i.e., online learning) while minimizing energy 

consumption. The evolution of personalized thermal preference models and the delivery of thermal 

conditions with model predictive control (MPC) form a closed-loop. To integrate these two parts, 

a new method that always provides a set of lower and upper indoor temperature bounds is proposed. 

Experimental and simulation results show that the self-tuned controller can (i) significantly 
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decrease the level of occupant dissatisfaction compared to a baseline MPC controller; (ii) 

automatically adjust the system based on comfort-energy trade-off tuning. 

 Finally, this Thesis presents a Bayesian modeling approach which allows incorporating 

voluntary feedback data (comfort-related responses), collected via participatory interfaces, along 

with requested feedback data, into the thermal preference learning framework. The incorporation 

is done by explicitly considering occupants’ participation –a type of behavior –in the model. The 

approach is evaluated with data from real occupants and a smart feedback request algorithm is 

developed, which determines whether to request feedback at any given time based on the 

quantified value of the request. Simulation results show that effective -but less-intrusive- user-

interfaces can be developed, utilizing the developed models and algorithms for smart and human-

centered HVAC operation. 
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 INTRODUCTION 

1.1 Background and motivation 

One of the major purposes of heating, ventilation, and air conditioning (HVAC) is to provide 

comfortable thermal conditions to building occupants [3]. Toward this goal, extensive research has 

been conducted on human thermal comfort in addition to the development of various building and 

HVAC systems. To understand and predict human thermal comfort, researchers have focused on 

developing empirical models with data collected from large populations through climate chamber 

experiments and field studies [1,4–6]. The models succeeded in predicting the average comfort-

related responses of large populations, were adopted in international standards, and used to design 

and control typical HVAC systems in office buildings [7–9]. 

However, numerous studies have shown that there are differences between individuals in 

their thermally comfortable conditions and such models cannot accurately predict thermal comfort 

of individual occupants [1,10–12]. As a result, typical HVAC systems operating based on thermal 

comfort standards have not been able to achieve high levels of occupants’ satisfaction. Moreover, 

because of the conservative control settings designed for “widely acceptable” conditions, there is 

a high chance of energy waste [13–16]. 

 

Figure 1.1. Occupants’ contradicting thermal preferences in an office space [17]. 
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Researchers have recognized these issues and suggested solutions that incorporate building 

occupants in sensing and control frameworks (a.k.a., human-in-the-loop) and systems tuning based 

on personal preferences to achieve customized indoor environments. With the rapid development 

of wireless sensor network, mobile devices, data-driven modeling (machine learning), and 

ubiquitous computing over the last decade, initial studies have been conducted to verify the 

feasibility of this concept. The results have shown that HVAC systems tuned based on individuals’ 

preferences have the potential to increase occupants’ satisfaction and reduce energy consumption 

[18–23]. However, despite of the successful demonstration of early studies, major components 

necessary for the robust implementation of self-tuned environments, i.e., learning occupant 

preferences, and incorporating their feedback into HVAC controls, are still quite anecdotal [24]. 

1.2 Objectives 

Realization of self-tuned indoor thermal environments is the final goal of this research. In 

this thesis, the focus is on learning individual occupants’ thermal comfort and developing a control 

algorithm that enables customized thermal environments in modern office buildings. To enable 

this approach, we explicitly encode our main hypothesis: “Different people prefer different thermal 

conditions” in the general model. Figure 1.2 shows the overall process for learning the thermal 

preference of an individual occupant. 

 

Figure 1.2. Overall process for learning the thermal preference of an individual occupant. 

The main objectives of this thesis are: 

1. To develop a data-driven modeling algorithm for learning individual occupants’ 

thermal preferences, which provides reliable predictions (effectiveness) and requires 

less data to be trained (efficiency).  
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2. To develop smart occupant feedback request algorithms and efficient modeling 

approaches for less-intrusive user interfaces towards human-centered HVAC operation.  

3. To develop and demonstrate a self-tuned HVAC a controller that uses personalized 

models to achieve occupants’ satisfaction while minimizing energy consumption. 

The work proposed in this research is based on a Bayesian modeling approach. The rationale 

behind this modeling choice, is related to its inherent advantages: it allows encoding and testing 

our prior knowledge and beliefs about the relationships between the different variables; it can 

easily account for hidden (unobserved) variables; and it can seamlessly combine data from 

heterogeneous sources as they become available [24]. Although this study only focuses on 

occupants’ thermal comfort, the proposed modeling approaches are applicable to other occupant-

related problems, e.g., visual environment preferences, occupancy and behavior. 

1.3 Document overview 

Chapter 2 contains a literature review with focus on conventional models predicting 

occupants’ thermal comfort, individual differences in thermal comfort, personalized thermal 

comfort modeling, and control based on personalized models. 

Chapter 3 presents a Bayesian approach for probabilistic classification and inference of 

occupant thermal preferences in office buildings. A Bayesian mixture model is developed based 

on prior knowledge on the heat balance around the human body to achieve the goal. A subset of 

ASHRAE RP-884 database is used to validate the approach.  

Chapter 4 presents a Bayesian approach for learning personalized comfort models in real 

buildings where clothing level, metabolic rate and air speed cannot be measured. Hidden variables 

are introduced in the models to deal with the unobserved parameters. Data collected from 9 test-

subjects are used to validate the approach. 

Chapter 5 presents a self-tuned HVAC controller in which the evolution of personalized 

thermal preference models (online-learning) and the delivery of thermal conditions with model 

predictive control (MPC-based HVAC operation) form a closed-loop. The controller was 

implemented in an open-plan office. The experimental results with the self-tuned controller 

evaluate the dissatisfaction level and energy consumption during the implementation period by 

comparing those with a baseline controller. 



 
 

19 

Chapter 6 presents a Bayesian modeling approach for smart and less-intrusive user interfaces 

towards human-centered HVAC operation. The modeling approach allows incorporating voluntary 

feedback data (comfort-related responses), collected via participatory interfaces, along with 

requested feedback data, into the thermal preference learning framework. Based on the approach, 

a smart occupant feedback request algorithm, that determines whether to request feedback at each 

moment based on the quantified value of the request, is proposed. 

Chapter 7 includes ideas for future work and potential extensions of this research. 
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 LITERATURE REVIEW 

The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) 

defined thermal comfort as ‘‘the condition of the mind in which satisfaction is expressed with the 

thermal environment’’ [7]. Previous studies have shown that temperature and moisture sensations 

from the skin, deep body temperatures, and the level of physiological efforts required to 

thermoregulation are the major factors resulting in thermal comfort or discomfort besides of 

psychological and other processes [25]. Here, typical physiological efforts are vasodilation, 

vasoconstriction, sweating, and change in muscle tension (shivering). 

Building thermal comfort in indoor spaces has been an active research topic for research 

because of its significant influence on occupants’ overall satisfaction with indoor environments 

[26,27], but also on their productivity [27–32] and energy consumption [15,16,33,34]. Inevitably, 

there have been numerous studies to develop predictive empirical models predicting occupants’ 

thermal comfort [35–37]. There are two main models which are widely accepted and used: the 

predicted mean vote (PMV) model and adaptive models. 

The PMV model was developed based on prior research on heat balance of the human body 

and data collected through extensive laboratory experiments by Fanger [1], which became the basis 

for standards such as ASHRAE 55 [7] and ISO 7730 [8]. The PMV model calculates the thermal 

load on the body in steady-state conditions, defined as the difference between internal heat 

production and heat loss to the actual environment for a person hypothetically kept at comfort 

values of mean skin temperature and sweat rate at the actual activity level. In the PMV model, the 

comfort values of mean skin temperature (𝑇skin, comfort in Kelvin) and sweat rate (ℎsweat, comfort in 

W/mଶ) are estimated by equations developed based on data of Rohles and Nevins [38]:  

𝑇skin, comfort ൌ 308.7 െ 0.0275 ∙ ሺ𝑀 െ 𝑊ሻ (2-1)

ℎsweat, comfort ൌ 0.42 ∙ ሺ𝑀 െ 𝑊 െ 58.15ሻ (2-2)

where 𝑀 is the metabolic rate (W/mଶ) and 𝑊 is the external work (W/mଶ, usually 0 in office 

environments). Then, the heat loss ( ℎloss  in W/mଶ ) is calculated via empirical equations 

representing physical heat transfer mechanisms, which were examined in previous research [39], 

as follows: 

ℎloss ൌ ℎradiation ൅ ℎconvection ൅ ℎevaporation ൅ ℎrespiration ൅ ℎsweat, comfort  (2-3)
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where 

ℎradiation ൌ 3.96 ൈ 10ି଼ ∙ 𝑓௖௟ ∙ ሺ𝑇௖௟
ସ െ 𝑀𝑅𝑇ସሻ (2-4)

ℎconvection ൌ 𝑓௖௟ ∙ ℎ௖ ∙ ሺ𝑇௖௟ െ 𝑇airሻ (2-5)

ℎevaporation ൌ 3.05 ∙ ሺ5.73 െ 0.007 ∙ ሺ𝑀 െ 𝑊ሻ െ 𝑝௔ሻ (2-6)

ℎrespiration ൌ 0.0014 ∙ 𝑀 ∙ ൫34 – ሺ𝑇௔௜௥ െ 273ሻ൯ ൅ 0.0173 ∙ 𝑀 ∙ ሺ5.87 – 𝑝௔ሻ (2-7)

where 𝑇air  is air temperature in Kelvin, 𝑀𝑅𝑇  is mean radiant temperature in Kelvin, ℎ௖  is 

convective heat transfer coefficient (W/mଶK ), 𝑓௖௟  is clothing area factor, 𝑝௔  is water vapor 

pressure in Pascal, and 𝑇௖௟ is clothing temperature in Kelvin. For the values of ℎ௖, 𝑓௖௟, and 𝑝௔, 

Fanger used the following relationships:  

ℎ௖ ൌ max൫2.38 ∙ ሺ𝑇௖௟ െ 𝑇airሻ଴.ଶହ, 12.1 ∙ √𝑉𝑒𝑙൯ (2-8)

𝑓௖௟ ൌ ൜
1.0 ൅ 0.2 ∙ 𝐼௖௟,   𝐼௖௟ ൏ 0.5 clo
1.05 ൅ 0.1 ∙ 𝐼௖௟,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (2-9)

𝑝௔ ൌ 𝑅𝐻 ∙ 10 ∙ 𝑒ିሺሺଵ଺.଺ହଷ଺ିସ଴ଷ଴.ଵ଼ଷሻ ሺ்airିଶ଻ଷାଶଷହሻ⁄ ሻ (2-10)

where 𝑉𝑒𝑙 is air velocity (m/s), 𝐼௖௟ is clothing insulation (clo), and 𝑅𝐻 is relative humidity (%). 

As part of the calculation, clothing temperature 𝑇௖௟ is estimated by solving the following equation: 

𝑇௖௟ ൌ 𝑇skin, comfort െ 0.155 ∙ 𝐼௖௟ ∙ ሺℎradiation ൅ ℎconvectionሻ (2-11)

Finally, the thermal load is calculated by: 

𝐿 ൌ ሺ𝑀 െ 𝑊ሻ െ ℎloss (2-12)

Then, the thermal load is mapped to the thermal sensation vote by: 

𝑃𝑀𝑉 ൌ ሺ0.303 ∙ 𝑒ሺି଴.଴ଷ଺ெሻ ൅ 0.028ሻ ∙ 𝐿 (2-13)

In contrast, adaptive models consider people's inherent ability to adapt to variable 

environment conditions (psychological, behavioral, and physiological adaptation) in nsaturally-

conditioned buildings [5]. Adaptive models are linear regression models developed based on 

global field data, which represent a linear relationship between a comfortable indoor temperature 

and the prevailing outdoor temperature. There are two widely used adaptive models: the ASHRAE 

55 adaptive model developed by de Dear and Brager [5] and the EN 15251 adaptive model 

developed by Nicol and Humphreys [6]. For example, in ASHRAE 55 adaptive model (Figure 2.1), 

the upper and lower acceptable indoor operative temperatures with 80% acceptability limits are 

calculated by: 

𝑡௢,௨௣௣௘௥ ൌ 0.31 ∙ 𝑡௣௠௔ሺ௢௨௧ሻതതതതതതതതതതതത ൅ 21.3, (2-14)
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𝑡௢,௟௢௪௘௥ ൌ 0.31 ∙ 𝑡௣௠௔ሺ௢௨௧ሻതതതതതതതതതതതത ൅ 14.3, (2-15)

where 𝑡௣௠௔ሺ௢௨௧ሻതതതതതതതതതതതത is a simple arithmetic mean of all of the mean daily outdoor air temperature.  

 

Figure 2.1. ASHRAE 55 adaptive model by de Dear and Brager [5] 

 

These models succeeded in predicting the average comfort related responses of large 

populations and were adopted in international standards for HVAC systems control in typical 

office buildings [7–9]. 

2.1 Individual difference in thermal comfort 

Individual differences in thermal comfort have been observed and studied through climate 

chamber experiments and field studies [2,37]. As a result, conventional thermal comfort models, 

i.e., the PMV model and adaptive models, cannot accurately predict thermal comfort of individual 

occupants [1,10–12]. To address this issue, studies have been conducted to identify causal factors 

for these differences: gender, age, etc. However, a literature review by Wang et. al. [2] showed 

that there were no clear and consistent conclusions as to the significance and size of inter-group 

differences over previous studies. For example, among 36 studies on the significance of gender 

difference, 11 studies found that the difference was significant while 14 studies did not. Some 

studies argued that individual differences in thermal comfort are not directly caused by the 
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aforementioned factors but by differences in physiological characteristics which relate to heat gain 

and heat loss of the human body [40–44]. Unfortunately, there have been no thermal comfort 

model which can consider all the physiological characteristics. Moreover, it may be impossible to 

measure the characteristics of each individual in real buildings. 

To deal with thermal comfort differences of individual occupants, a shift from using one 

model predicting the average response of large populations to thermal environment control based 

on personalized thermal comfort models (i.e., self-tuned HVAC systems learning their occupants) 

is required. This concept is supported by today’s advanced technologies [2,24]: wireless sensor 

networks, mobile devices, data-driven modeling (machine-learning) techniques, and ubiquitous 

computing. This new paradigm consists of two major components: 1) learning individual 

occupants’ thermal comfort; 2) control based on the personalized models. 

2.2 Personalized thermal comfort modeling 

The authors in [45], one of the early studies for learning individuals’ thermal comfort, 

proposed training a neural network model to predict one’s thermal sensation. In the study, the 

authors exposed each subject to 20-40 conditions, which are different combinations of air 

temperature and velocity, and asked their thermal sensation. Neural network models having 5 

hidden layers were trained with occupants’ responses and measured air temperature, mean radiant 

temperature, humidity, and air speed. The trained models showed high prediction performance 

(accuracy of 80 %) with 20 training data points. However, unreported data distribution and lack of 

clarity of the validation process degrades the reliability of the results. 

In [19], the authors demonstrated a personalized HVAC control system learning occupants’ 

sensation with their participatory votes. Unlike [45], the controller did not intentionally expose the 

occupants to different conditions for the learning purpose. A linear discriminant algorithm with air 

temperature and humidity as inputs was used. To accommodate the adaptation of the comfort 

algorithm, only nine data points, which took 2~3 weeks to collect, were used in creating the 

decision boundary, with new points replacing the old. However, the predictive performance of the 

models was not evaluated. 

In [46], the authors trained univariate multinomial logistic regression models to predict 

occupants’ thermal sensation using the air temperature as an input variable . The authors collected 

data for the subjects’ thermal sensation up to 4 times a day. 22 synthetic data points were included 
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in the training dataset which formed a starting profile to boost the learning process and to allow 

the control to work from the beginning. Different models were developed for different subjects but 

their prediction performance was not evaluated. A remarkable point was that the models required 

around 90 data points to be converged, which might take more than three months under normal 

office conditions. The authors also suggested removing data points older than 30 days in the 

vicinity of Ta±0.25 °C with new data entry to adapt to long term changes in individuals’ thermal 

comfort. 

In [20], the authors estimated time-varying air temperature correction factors for specific 

groups of occupants by comparing computed PMV values and actual sensation votes from them. 

The correction factors were used to adjust the setpoint temperature. Occupants’ thermal sensation 

responses were collected through a participatory voting interface. It was assumed that no vote from 

occupants during a period implied they were in neutral (comfortable) since occupants would 

seldom participated to the system under comfortable conditions but would be eager to participate 

under uncomfortable conditions. 

In [21,22], the authors proposed to use a linear regression model trained with data from a 

target occupant to correct the discrepancy between computed PMV values and the occupant’s 

actual thermal sensation votes. Although the prediction performance of a developed model was 

promising (RMSE 0.5377 with 12 training data points), since the study was conducted with only 

one subject, further validation is required. 

In [47], the authors collected more than 60 thermal preference votes over 3 weeks from each 

of the 4 test-subjects relying on their participations. To ensure each subject has been exposed to 

different ranges of air temperature, it was a set between 18 and 29°C on different days. In addition, 

to encourage subjects’ participation, the average of responses was considered in adjusting the room 

temperature. With the data, the authors trained personalized models with the Wang-Mendel fuzzy 

rule extraction algorithm. The results showed that the method required about 40 -50 data points to 

train a converged model. 

In [48], the authors proposed a model structure derived based on heat balance of human body. 

The inputs were air temperature, mean radiant temperature, and humidity and the output was 

thermal sensation. A personalized comfort model was developed by estimating four parameters in 

the model structure with data from each occupant with the recursive least-square (RLS) method. 

The forgetting factor in RLS helped adaptation of a model to long-term variation in one’s thermal 
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comfort. The method was evaluated with data collected from 9 test-subjects. The thermal sensation 

was requested by the participants every one hour. Personalized models showed lower mean square 

error and bias over the testing data compare to PMV model.  

In [49], the authors developed personalized models using a Bayesian network in which the 

observed variables are the operative temperature, humidity, outside temperature, the current day 

of the year, and the thermal sensation . A subset of ASHRAE RP-884 database was used to validate 

the method. The trained models showed 17.5-23.5 % higher performance in terms of RMSE 

compared to the PMV model and the adaptive model described in [11]. Also, the RMSE converged 

after 10 observations. 

In [50], unlike other studies, the authors proposed a method for developing personalized 

dynamic thermal comfort models with a state-space Wiener model structure with a logistic output 

function. The authors conducted an experiment in which 13 subjects experienced significant 

temperature changes. During the experiment, the test-subjects’ thermal sensation was recorded. 

Personalized models were developed with the measured air temperature and the subjects’ 

responses. The trained models showed better results in terms of R-square compared to the PMV 

model and a model proposed in [51]. To adapt the model prediction to environmental and/or 

occupant variability, the authors proposed using the Extended Kalman Filter to update the offset 

parameter in models. Since this method is not updating the dynamics of the model but a parallel 

translation of the output, its reliability is questionable. 

In [52], the authors developed a learning method using a Bayesian network with the air 

temperature and  the thermal sensation as variables. Data from each occupant were used to estimate 

the probability threshold as well as model parameters to convert the probability to a prediction. To 

detect long-term comfort variation and to update models accordingly, the Kolmogorov-Smirnov 

test was introduced in the method. To validate the method, the thermal sensation of 33 test-subjects 

was collected through their participatory votes. The validation results showed that the model 

prediction performance was higher than that of alternative methods. The authors claimed that the 

improvement was due to utilization of the Kolmogorov-Smirnov test. 

In [53], the authors proposed a classification algorithm they developed. The algorithm was 

evaluated with synthetic data they generated. Although the algorithm worked as expected, however, 

the authors did not discuss the necessity of using the proposed algorithm compared to other 

approaches. 
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In [54], the authors used a C-support Vector Classification algorithm to develop personalized 

comfort models. Model inputs were the air temperature, mean radiant temperature, humidity, air 

speed, clothing level, and metabolic rate, and the output was the thermal sensation. To collect data 

to evaluate the method, 20 subjects were exposed to different conditions and their thermal 

sensation was collected every 10 minutes. The developed models showed very high prediction 

performances (accuracy of 89.8%). However, the testing conditions and distribution of responses 

were not reported. 

In [55], the authors modeled individuals’ thermal comfort with a Gaussian formulation, i.e., 

estimation of mean and variance of a Gaussian form for each occupant. Although the authors 

implemented the method in their controller, they did not evaluate it analytically. 

In [56], the authors demonstrated the use of Random Forest algorithm. Different variables, 

i.e., clothing level, heart rate, skin temperature, activity level, air temperature, humidity, CO2 level, 

window state, outdoor temperature, and outdoor humidity, were tested as model inputs. The model 

output was the thermal preference. To collect the preference votes, a participatory voting interface 

was developed. To obtain data in the natural ventilation mode, subjects were asked to open the 

window (also set back HVAC system) twice per day when the outdoor temperatures were deemed 

acceptable. Similarly with [20], the authors in [56] assumed that if no reports were received from 

an occupant, he/she was considered as comfortable in that period. The results showed that 

incorporating human physiological and behavioral data was important to increase models’ 

prediction performance (accuracy of 70-80%). 

In [57], to eliminate the necessity of occupants’ actual responses in the learning process, the 

authors used hidden Markov model with face skin temperature as the observed variable. Estimated 

hidden states were expected to reflect occupants’ thermal preferences. To measure the face skin 

temperature, an eyeglasses frame on which four infrared sensors were installed was used. Although 

the results were promising, i.e., overall specificity of 82.8% over 10 subjects, there are two unclear 

points that make the reliability of the results doubtful: 1) hyper-parameters in the algorithm were 

selected arbitrary; 2) the metric specificity was not enough to show the validity. 

The authors of [58] tested six machine-learning algorithms and different variables with data 

collected 3 times daily from 38 occupants. All the personalized models developed showed higher 

prediction performances compared to PMV model and the adaptive model in [7]. The authors 

claimed that 1) the algorithms required over 60 survey responses in order to produce a model with 
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stable predictions; 2) the algorithms required data of all the three classes, i.e., ‘want warmer’, ‘no 

change’, ‘want cooler’; 3) considering occupants’ behaviors as model inputs increases the 

prediction performance significantly. 

2.2.1 Feedback collection 

There has been a lack of discussion regarding methods of collecting the feedback responses 

in real buildings, e.g., how feasible or intrusive a method is, how effective a method is in collecting 

sufficient data, how reliable data can be collected with a method, how reliable a machine learning 

algorithm is in developing a personalized model with data collected with a method, etc. 

Thermal comfort is defined as the condition of mind [7] and thus the only way we can 

measure it is surveying individual occupants [59] assuming that their responses are reliable. In this 

context, in terms of minimizing the risk of sampling bias and subsequently developing unbiased 

personalized comfort models, requesting occupants’ responses randomly or regularly would be 

preferred [45,46,48–50,54,58]. However, frequent response requests are intrusive and thus not 

feasible in real buildings especially if continuous data collection is required for online model 

update. On the contrary, if we decrease the feedback frequency, it would take a long time to collect 

enough data to train personalized comfort models. To resolve the practicality issue, in 

[19,20,47,56], the authors proposed using participatory user-interfaces with which occupants can 

voluntarily report their state of thermal comfort. Although this alternative method seems practical 

for real-world applications, occupants’ participation, a type of behavior, could be affected by 

multiple factors; consequently, there is a high risk of sampling bias. For example, people would 

actively participate and provide their feedback if they are uncomfortable believing that the 

feedback could improve the thermal conditions. On the contrary, if they are satisfied with the 

conditions, they would not be as responsive. If we train a predictive model with the biased data 

without any treatment, because of the lack of satisfaction/comfort/neutral responses, the predictive 

probability (or corresponding score) of satisfaction/comfort/neutral will keep decreasing as we 

feed data, i.e., more data do not guarantee better model. In [20,56], researchers assumed that 

occupants were satisfied/comfortable if there was no participation for a while and added 

hypothetical data points in their training dataset. However, it is possible that occupants may not 

(or forget to) participate even though they are not satisfied because of their workload [56]. Also, 

there are other factors, e.g., the ease of interface use, the level of expectation that the system will 
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adapt to their response, making it difficult to develop generalizable heuristic rules for participatory 

data collection [47]. Moreover, the proposed rules cannot distinguish effects of one’s thermal 

preference and the level of one’s activeness in using the participatory interface on the data 

distribution. Hence, if we operate an HVAC system serving a shared space, e.g., open-plan office, 

with personalized comfort models based on one of the rules, the thermal condition will be biased 

towards the thermal preference of active occupants, which may not be fair. In addition, using a 

participatory interface does not guarantee that we can collect enough data to learn one’s thermal 

preference. 

2.2.2 Selection of input variables (predictors) 

It is well known that the input variables should be selected by their importance in making 

accurate predictions, i.e., prediction power as predictors, and the cost of collecting the data [56,58]. 

In [56–58], occupants’ physiological (e.g., skin temperature, heart rate) and behavioral data (e.g., 

window operation, PCS behaviors) were used to increase the prediction performance. In 

[19,20,46,47,50,55,57], only one or two (i.e., air temperature, humidity) variables were used to 

minimize the data collection cost. However, another important point has not been studied yet: can 

we know (e.g., control or predict) values of a variable for future moments to determine future 

thermal conditions? For example, let’s suppose that fan on/off behavior is one of input variables 

in a model. Since the behavior is directly related with one’s thermal comfort, the prediction 

performance of the model would be very high. However, since it is a cause of one’s thermal 

comfort, we cannot know whether the occupant would act or not at a future moment. Therefore, 

the prediction power gained by having the variable will be lost if the model is used for future 

predictions. 

2.2.3 Prediction performance evaluation 

Different metrics have been used to evaluate the prediction performances of models. Metrics 

designed for classification problems (e.g., accuracy, specificity, precision, recall, and area under 

the Receiving Operating Characteristics (ROC) curve) were used in [45,54,56–58], and metrics 

considering the magnitude of errors (e.g., root-mean-square error, mean absolute error) were used 

in [22,47–49]. In [50], a statistical measure, R2, was used. However, none of the metric is ideal 
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since there are two issues with using general metrics in this problem. First, it is highly probable 

that the test dataset distribution will be imbalanced (e.g., more than half of votes can be “no 

change”), which will negatively affect the reliability of most of metrics. Second, costs for different 

misclassification cases are different (i.e., different costs to different cases in the confusion matrix), 

but general metrics do not consider the differences. Therefore, a new general metric for the 

problem should be developed based on suture studies. 

Another issue is that there is no metric can guarantee whether the model is good or not by 

itself since a value of a metric is affected by not only the goodness of the model but also various 

characteristics of data. Therefore, a comparative evaluation with alternative models or methods 

will be needed to draw correct conclusions as in [49,50,52,58].  

2.2.4 Data efficiency 

Training a reliable model requires data with sufficient quantity and quality. Daum et al. [46] 

showed that their model required around 90 data points converge. Li et al. [56] reported that their 

comfort models achieved an acceptable accuracy with approximately 50 training data points. Kim 

et al. [58] reported that individual subjects needed to supply over 60 responses to train a model 

with stable predictions. The required number of reliable data can vary with conditions that 

occupants experience to some extent; in real buildings, this process could take a few months 

[46,60,61].  

The long-term data collection often translates into long times required for developing 

functionally advanced controls, which is usually the objective of learning occupant preferences. If 

a model needs to be updated continuously to maintain a certain level of accuracy [23,46,48,52], 

but the amount of data collected in a certain period of time is not adequate, the model may not be 

able to make reliable predictions or continuously converge. Therefore, the efficiency of a learning 

method in terms of required quantity and quality of data should be re-examined. 

2.3 Control based on personalized models 

Some of the aforementioned studies actually demonstrated self-tuned HVAC systems and 

achieved the goals: increasing occupants’ satisfaction and reducing energy consumption. 

Feldmeier and Paradiso [19] tested their system based on personalized thermal comfort models 
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and actual occupancy in real offices and reported 24% savings in HVAC energy consumption 

(compared to standard HVAC control) and improved thermal comfort. Erickson and Cerpa [20] 

controlled a space based on thermal comfort models that used occupant feedback and reported that 

occupants were fully satisfied with the thermal conditions while 10.1% energy savings were 

achieved. Gao and Keshav [21,22] developed a controller by integrating the learning method with 

clothing level estimation, occupancy detection and model predictive techniques, and implemented 

the controller in an office room, with resulting energy savings up to 60%. Jazizadeh et al. [23] 

implemented a HVAC system learned their occupants with the method in [47] and showed that 

39% of HVAC energy was reduced while occupant comfort was improved. However, the energy 

saving was achieved by not only considering personalized thermal comfort but also improving a 

limitation of the existing HVAC system. Ghahramani et al. [62] demonstrated an optimal controller 

performing based on personalized comfort models and simple room energy models. The 

personalized comfort models were developed with the method in [47]. The result showed that the 

cooling energy consumption was reduced by 12.08 %. Sarkar et al. [55] showed that a heuristic 

rule-based controller with personalized profiles, which were Normal distribution density functions 

fitted to feedback from occupants, reduced HVAC energy consumption by 39%. Li et al. [56] 

showed that, on average, the total number of uncomfortable reports was reduced by 54% after 

implementing a controller which adjusted the room set point temperature with personalized 

comfort models developed based on Random Forest algorithm. 

2.3.1 Considering a single condition vs. a range of conditions 

Personalized comfort models used in most of previous studies return a “score” (e.g., 

predictive probability with logistic regression) for a person being comfortable/satisfied with a 

given set of inputs. This value usually corresponds to the level of certainty in the prediction. In 

[20,23,47], the authors controlled the HVAC system to provide a single condition (i.e., a certain 

room air temperature) maximizing the score for comfortable class (i.e., maximize the possibility 

of the occupants being comfortable). This strategy is good for ensuring occupants’ thermal comfort, 

however, it could be too conservative and reduce the potential of energy saving [62]. Therefore, 

in other studies [21,22,55,56,62], the authors considered a range of conditions in which occupants 

would be comfortable by setting a threshold for the score. However, this approach does not 

guarantee that this range always exists. For example, the maximum score of a personalized model 
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could be lower than a threshold which a user sets in advance [52]. Although this could be solved 

by re-scaling the score or by simply picking the maximum point, another issue arises: how to 

define a control range for multiple occupants, e.g., in an open-plan office. In [63], the authors 

posed a multi-objective optimization problem, considering occupant comfort and energy use, to 

resolve this issue. However, non-convex optimization algorithms are required when including both 

complex personalized comfort models and building models, which could be computationally 

costly for real-time control. 

2.3.2 Aggregation of different occupants’ different preferences 

In many cases, spaces of multiple occupants are conditioned by a couple of shared HVAC 

systems. In such spaces, aggregation of different occupants’ different preferences is an important 

issue to increase the group’s satisfaction. In [20], the authors proposed simply training a single 

model for a group of occupants by using all the data collected from them. However, there is a 

problem that if occupants’ responses are collected via a participatory vote scheme, the model will 

bias to responses of occupants who actively participate [47]. The authors of [47,55,56] suggested 

learning individuals separately and aggregating them later. Jazizadeh et. al. [47] calculated a single 

point with which the sum of deviations from occupants’ preferred temperatures. Sarkar et. al. [55] 

set a threshold for the score to gain occupants’ comfort ranges and simply used the overlapped 

range. Li et. al. [56] used a heuristic rule to determine the setpoint based on personalized models. 

However, there have been no studies which investigated pros and cons of different aggregation 

methods. 

2.3.3 Integration with advanced building controls 

There have been a few studies which attempted to integrate advanced building controls, such 

as model predictive control (MPC), into the human-in-the-loop framework to maximize the system 

performance. MPC solves a constrained optimization problem that minimizes the HVAC energy 

consumption over a prediction horizon, using a data-driven building model along with weather 

forecast and prediction of other disturbances, such as occupancy schedule, internal heat gains, etc. 

Previous studies showed significant benefits in terms of minimizing HVAC energy consumption 

while maintaining occupant thermal comfort [64–69]. With regards to personalized thermal 



 
 

32 

environments, Gao and Keshav [21,22] developed a controller by integrating a learning method 

(which adjusted the PMV model with a personalized linear equation) with clothing level estimation, 

occupancy detection and a model predictive control technique for space heating. The controller 

was implemented in an office room with resulting energy savings up to 60% compared to a fixed-

temperature setpoint control. However, the experiment was conducted with only one occupant, so 

results cannot be generalized. Majumdar et al. [70] and Zhao et al. [71] used simulation to show 

that MPC, considering individual differences in thermal comfort, can save energy while improving 

the comfort level. Chen et al. [72] conducted 3-hour long chamber experiments to test their MPC 

controller with a dynamic thermal sensation model using occupant feedback. Although the above 

studies are useful, none of them was conducted with real occupants in their natural office work 

environment. This paper presents the first self-tuned HVAC controller that integrates model 

predictive control and personalized thermal preference models, and its successful implementation 

in a real occupied office space. 
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 A BAYESIAN APPROACH FOR PROBABILISTIC 
CLASSIFICATION AND INFERENCE OF OCCUPANT THERMAL 

PREFERENCES IN OFFICE BUILDINGS 

3.1 Overview 

This chapter presents a novel Bayesian modeling approach for learning individual occupants’ 

thermal preferences, with improved efficiency and accuracy, even if the model structure is 

complex and the amount of data collected from each occupant is relatively limited. The approach 

includes (i) developing a general model structure to explain the thermal preferences for a 

population of occupants (Section 3.2); verification with a synthetic dataset collected in various 

office buildings, finding the optimal number of clusters, and presentation of results based on a 

subset of the large ASHRAE RP-884 database [5] (Section 3.3); (ii) using the general model to 

infer the personalized thermal preference profile of an individual occupant and prediction results 

for personalized thermal preference profiles (Section 3.4). The prediction performance of the 

overall method along with limitations and recommendations for future work is discussed in Section 

3.5.  

3.2 The general model: discovering clusters of occupants with similar thermal preference 
characteristics 

3.2.1 Modeling methodology 

An important starting point for developing a probabilistic model is drawing relationships 

between variables. Figure 3.1 is a simplified version of the graph representing connections between 

thermal preference and related factors (i.e., environmental, human, hidden features, and occupant 

behavior) drawn based on our knowledge and beliefs. Solid and void (white) nodes correspond to 

observed and latent variables, respectively. The arrows in the graph represent conditional 

probabilistic relationships between the nodes. The ‘personal thermal preference characteristic’ is 

included in the graph, which is an unobserved variable, induced by our main hypothesis. In this 

study, it is assumed that thermal preference is mainly governed by the overall thermal stress and 

the personal thermal preference characteristic, while other potential factors are neglected, for 

simplicity. 
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Figure 3.1. A graph representing our knowledge and beliefs regarding occupants’ thermal 
preference 

Based on the above, the joint probability of all the random variables is decomposed as 

follows: 

𝑃ሺ𝑦, 𝐸, 𝑧, 𝐱, 𝛉ሻ ൌ 𝑃ሺ𝐸|𝑧, 𝐱, 𝛉ሻ ∙ 𝑃ሺ𝑦|𝐸, 𝑧, 𝛉ሻ ∙ 𝑃ሺ𝑧ሻ ∙ 𝑃ሺ𝐱ሻ ∙ 𝑃ሺ𝛉ሻ (3-1)

where y is the occupant’s thermal preference, 𝐸  is the overall thermal stress, 𝑧 is the thermal 

preference characteristic of an individual occupant, 𝐱 ൌ ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥଺ሻ are the input variables (i.e., 

air temperature, mean radiant temperature, air velocity, relative humidity, clothing insulation, and 

metabolic rate), and 𝛉 collects all the model parameters. In this study, the thermal preference, 𝑦, 

is discretized to take only three values: “want warmer”, “no change”, and “want cooler”. Also, by 

assuming that there is an unknown number 𝐾 of possible clusters of people who have similar 𝑧, 

i.e., the thermal preference characteristic, 𝑧  is discretized to take 𝐾  values. Based on this 

assumption, developing the general model becomes a clustering problem, i.e., discovering clusters 

of people based on a large dataset and developing sub-models for them. Accordingly, 𝑧 becomes 

a hidden variable indicating a cluster to which an occupant belongs. The model is developed with 

a fully Bayesian approach. Eq. (3-1) represents that the general model requires two subparts, 

𝑃ሺ𝐸|𝑧, 𝐱, 𝛉ሻ and 𝑃ሺ𝑦|𝐸, 𝑧, 𝛉ሻ. 
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The first subpart, 𝑃ሺ𝐸|𝑧, 𝐱, 𝛉ሻ , predicts the overall thermal stress level with the input 

variables and the personal thermal characteristic. If we modeled this subpart with a general 

regression method from scratch, it would require a very large dataset, which is difficult to collect, 

since heat transfer processes are highly non-linear, and consequently we need to estimate many 

parameters on which we don’t have prior knowledge. This problem can be resolved by designing 

a model structure, in which we can introduce our prior knowledge (e.g., physical knowledge, 

results of previous studies), and estimating parameters with the prior knowledge. In this study, we 

introduce equations of the PMV model developed by Fanger [1] for the model structure. The details 

of the PMV model equations are listed in Chapter 2, with important parameters that are re-

estimated in the present study as described below. The equations in Fanger’s model aggregate the 

effect of different factors and turn it into a single value (i.e., the thermal load, 𝐿) using physics-

based equations, assumptions and outcomes of previous studies. These equations are adopted in 

our work based on the assumption that the thermal load represents the overall thermal stress. 

However, related studies have shown that the original PMV model, developed based on a 

laboratory study to predict occupants’ thermal sensation, cannot explain occupants’ thermal 

preference in real buildings [73–76].  

To overcome this limitation, five new parameters are added in the equations. First, to adjust 

the coefficients of the radiative and convective heat transfer in the equations, we add three 

parameters, 𝜉ଵ, 𝜉ଶ, and 𝜉ଷ, in the original equations ((2-4) and (2-8)): 

ℎradiation ൌ ሺ1 ൅ 𝜉ଵሻ ∙ 3.96 ൈ 10ି଼ ∙ 𝑓௖௟ ∙ ሺ𝑇௖௟
ସ െ 𝑀𝑅𝑇ସሻ (3-2)

ℎ௖ ൌ max ቀሺ1 ൅ 𝜉ଶሻ ∙ 2.38 ∙ ሺ𝑇௖௟ െ 𝑇airሻ଴.ଶହ, ሺ1 ൅ 𝜉ଷሻ ∙ 12.1 ∙ √𝑉𝑒𝑙 ቁ (3-3)

Second, to incorporate the evaporation at the clothing surface, a term, ℎadj.௖௟, is added in the 

clothing temperature calculation that was originally developed to consider only radiative and 

convective heat losses. Additionally, since the comfort value of mean skin temperature may be 

different from the original estimation based on laboratory measurements, a term, 𝑇adj.௖௟, is added 

in the same equation. Then, by assuming that ℎadj.௖௟ is inversely proportional to 𝐼௖௟, the two terms 

are aggregated in a parameter, 𝜉ସ as follows: 

𝑇௖௟ ൌ 𝑇skin, comfort ൅ 𝑇adj.௖௟  െ 0.155 ∙ 𝐼௖௟ ∙ ൫ℎradiation ൅ ℎconvection ൅ ℎadj.௖௟൯

ൌ 𝑇skin, comfort െ 0.155 ∙ 𝐼௖௟ ∙ ሺℎradiation ൅ ℎconvectionሻ ൅ 𝜉ସ 
(3-4)

where  
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𝜉ସ ൌ 𝑇adj.௖௟  െ 0.155 ∙ 𝐼௖௟ ∙ ℎadj.௖௟ (3-5)

The parameter 𝜉ସ is also expected to improve assumptions in Fanger’s model related to the 

clothing temperature. 

Finally, the total heat loss is adjusted since the equations for estimating the heat loss 

components may not be sufficiently accurate or important heat loss components may have been 

omitted. A term, ℎadj.loss , which has a linear relationship with the internal heat production is 

designed by adopting the form of Eq. (2-2) since the amount of heat loss caused by evaporation, 

sweating, and respiration tends to be proportional to the internal heat production. Then, the 

adjustment term in Eq. (2-3) is added as follows: 

ℎloss ൌ ℎradiation ൅ ℎconvection ൅ ℎevaporation ൅ ℎrespiration ൅ ℎsweat, comfort ൅ ℎadj.loss (3-6)

where 

ℎadj.loss ൌ 𝜉ହ ∙ ሺ𝑀 െ 𝑊 െ 58.15ሻ (3-7)

The five new parameters (𝜉ଵ, 𝜉ଶ, 𝜉ଷ, 𝜉ସ, and 𝜉ହ) are estimated based on data in the inference 

(model training) stage. Since two of the three parameters (𝜉ସ, and 𝜉ହ) may relate to the personal 

characteristic 𝑧, we design the model to allow each cluster have its own values for these two 

parameters (i.e., 𝜉௭,ସ and 𝜉௭,ହ, where 𝑧 ൌ 1, … , 𝐾). Therefore, 𝑃ሺ𝐸|𝑧, 𝐱, 𝛉ሻ is modeled as: 

𝑃ሺ𝐸|𝑧, 𝐱, 𝛉ሻ ൌ 𝛿ሺ𝐸 െ 𝐿ሺ𝐱; 𝛏௭ሻ 10⁄ ሻ (3-8)

where 𝛿  is the Dirac 𝛿 -function and 𝛏௭ ൌ ൫𝜉ଵ, 𝜉ଶ, 𝜉ଷ, 𝜉௭,ସ, 𝜉௭,ହ൯ . Note that the thermal load is 

divided by 10 to scale the size of the values for numerical stability. Since this subpart is modeled 

with the Dirac 𝛿-function, it may appear that the probability is oversimplified. However, adopting 

the Dirac 𝛿-function here is actually equivalent to adopting a Gaussian distribution in terms of the 

overall model. The reason is that the second modeling subpart of Eq. (3-1), discussed in the next 

paragraph, has Gaussian formulation. In other words, instead of modeling this subpart, i.e. (Eq. (3-

8)), with a Gaussian distribution explicitly, by integrating the variance of the Gaussian into the 

second modeling subpart of Eq. (3-1), we can model this subpart (Eq. (3-8)) with the Dirac delta 

function and reduce the computational load. 

The second subpart of Eq. (3-1), 𝑃ሺ𝑦|𝐸, 𝑧, 𝛉ሻ, is used for mapping the thermal stress to 

thermal preference. Since 𝑦 is a discrete variable, we use linear discriminant analysis (LDA) which 

is equivalent to multinomial logistic regression [77]. The general form of LDA is: 
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𝑃ሺ𝑦 ൌ 𝑐|𝐸, 𝛍, 𝜎ሻ ൌ
exp ቀെ 1

2𝜎ଶ ሺ𝐸 െ 𝜇௖ሻଶቁ

∑ exp ቀെ 1
2𝜎ଶ ሺ𝐸 െ 𝜇௖ᇲሻଶቁ஼

ୡᇲୀଵ

, 𝑐 ൌ 1, … , 𝐶 (3-9)

where E is an input variable of which dimension is 1, 𝑦  is an output variable, and  𝛍 ൌ

ሺ𝜇ଵ, 𝜇ଶ, … , 𝜇஼ሻ and 𝜎 are coefficients in LDA. Note that LDA assumes that 𝑃ሺ𝐸|𝑦 ൌ 𝑐ሻ follows a 

normal distribution, 𝒩ሺ𝜇௖, 𝜎ଶሻ.  

If we define: 

𝛽௖ ൌ
𝜇௖

𝜎ଶ (3-10)

𝛾௖ ൌ െ
𝜇௖

ଶ

𝜎ଶ (3-11)

then the model becomes equivalent to the multinomial logistic regression: 

𝑃ሺ𝑦 ൌ 𝑐|𝐸, 𝛃, 𝛄ሻ ൌ
expሺ𝛽௖𝐸 ൅ 𝛾௖ሻ

∑ expሺ𝛽௖𝐸 ൅ 𝛾௖ᇲሻ஼
௖ᇲୀଵ

, 𝑐 ൌ 1, … , 𝐶 (3-12)

where 𝛃 ൌ ሺ𝛽ଵ, 𝛽ଶ, … , 𝛽஼ሻ and 𝛄 ൌ ሺ𝛾ଵ, 𝛾ଶ, … , 𝛾஼ሻ are vectors of coefficients in the multinomial 

logistic regression. Although LDA is equivalent to multinomial logistic regression, there is a 

remarkable difference between them in terms of training. In the case of multinomial logistic 

regression, its parameters (i.e.,  and ) do not have a clear intuitive meaning, and this makes it 

difficult to introduce prior knowledge in the model. However, parameters in LDA formulation, i.e., 

𝛍 ൌ ൫𝜇prefer warmer, 𝜇no change, 𝜇prefer cooler൯ and , have intuitive meanings. For example, 𝜇௖ can be 

interpreted as the center of values on the domain of input 𝐸 at which a specific class 𝑐 is more 

likely than others. Since we believe that thermal stress for “prefer cooler” class would be greater 

than that for “no change” class, and thermal stress for “no change” would be greater than that for 

“want warmer” class, we impose prior information in the model. By introducing this information, 

less data is required for developing the model: 𝜇prefer warmer ൏ 𝜇no change ൏ 𝜇prefer cooler. 

Since parameters in LDA may relate to the personal characteristic 𝑧, we design the model to 

allow each cluster to have its values for these parameters (i.e., 𝛍௭ ൌ

൫𝜇௭,prefer warmer, 𝜇௭,no change, 𝜇௭,prefer cooler൯  and 𝜎௭ , where 𝑧 ൌ 1, … , 𝐾 ). Thus, 𝑃ሺ𝑦|𝐸, 𝑧, 𝛉ሻ  is 

modeled as: 
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𝑃ሺ𝑦 ൌ 𝑐|𝐸, 𝑧, 𝛉ሻ ൌ
exp ൬െ 1

2𝜎௭
ଶ ൫𝐸 െ 𝜇௭,௖൯

ଶ
൰

∑ exp ൬െ 1
2𝜎௭

ଶ ൫𝐸 െ 𝜇௭,௖ᇲ൯
ଶ

൰஼
ୡᇲୀଵ

, 𝑐 ൌ 1, 2, 3 (3-13)

where 𝑐 ൌ 1,2,3 represents “prefer warmer”, “no change”, and “prefer cooler”, respectively. 

3.2.2 Bayesian inference 

Subsequently, we assemble all model subparts and we estimate parameters and the hidden 

cluster value 𝑧  of each occupant in the dataset. Let 𝐲ଵ:஽ ൌ ሼ𝐲ଵ, 𝐲ଶ, … , 𝐲஽ሽ  and 𝐗ଵ:஽ ൌ

ሼ𝐗ଵ, 𝐗ଶ, … , 𝐗஽ሽ , where 𝐲ௗ ൌ ൫𝑦ௗ,ଵ, 𝑦ௗ,ଶ, … , 𝑦ௗ,௡೏
൯  and 𝐗ௗ ൌ ൛𝐱ௗ,ଵ, 𝐱ௗ,ଶ, … , 𝐱ௗ,௡೏

ൟ  are the 

observed thermal preferences and input variables from occupant 𝑑, respectively. Assuming that 

the sets of measurements from different occupants are conditionally independent given the features, 

the likelihood of the observed data is: 

𝑃ሺ𝐲ଵ:஽|𝐗ଵ:஽, 𝑧ଵ:஽, 𝛍ଵ:௄, 𝜎ଵ:௄, 𝛏ଵ:௄ሻ ൌ ෑ 𝑃൫𝐲ௗห𝐗ௗ, 𝑧ௗ, 𝛍௭೏
, 𝜎௭೏

, 𝛏௭೏
൯

஽

ௗୀଵ

ൌ ෑ ෑ 𝑃൫𝑦ௗ,௜ห𝐱ௗ,௜, 𝑧ௗ, 𝛍௭೏
, 𝜎௭೏

, 𝛏௭೏
൯

௡೏

௜ୀଵ

஽

ௗୀଵ

 

(3-14)

where  

𝑃൫𝑦ௗ,௜ ൌ 𝑐ห𝐱ௗ,௜, 𝑧ௗ, 𝛍௭೏
, 𝜎௭೏

, 𝛏௭೏
൯  

ൌ න 𝑃൫𝑦ௗ,௜ ൌ 𝑐ห𝐱ௗ,௜, 𝐸ௗ,௜, 𝑧ௗ, 𝛍௭೏
, 𝜎௭೏

, 𝛏௭೏
൯𝑃൫𝐸ௗ,௜ห𝐱ௗ,௜, 𝑧ௗ, 𝛍௭೏

, 𝜎௭೏
, 𝛏௭೏

൯ 𝑑𝐸ௗ,௜

ൌ න 𝑃൫𝑦ௗ,௜ ൌ 𝑐ห𝐸ௗ,௜, 𝑧ௗ, 𝛍௭೏
, 𝜎௭೏

൯𝑃൫𝐸ௗ,௜ห𝐱ௗ,௜, 𝑧ௗ, 𝛏௭೏
൯ 𝑑𝐸ௗ,௜

ൌ
exp ቆെ 1

2𝜎௭೏
ଶ ൫𝐿൫𝐱ௗ,௜ ; 𝛏௭೏

൯ 10⁄ െ 𝜇௭೏,௖൯
ଶ

ቇ

∑ exp ቆെ 1
2𝜎௭೏

ଶ ൫𝐿൫𝐱ௗ,௜ ; 𝛏௭೏
൯ 10⁄ െ 𝜇௭೏,௖ᇲ൯

ଶ
ቇ஼

௖ᇲୀଵ

, 𝑐 ൌ 1, … , 𝐶 

(3-15)

where 𝐷 is the total number of people, 𝐾 is the number of clusters in the model, 𝑧 ∈ ሺ1, … , 𝐾ሻ is 

the hidden cluster value, 𝑧ଵ:஽ ൌ ሺ𝑧ଵ, … , 𝑧஽ሻ , 𝛏ଵ:௄ ൌ ሼ𝛏ଵ, … , 𝛏௄ሽ , 𝛍ଵ:௄ ൌ ሼ𝛍ଵ, … , 𝛍௄ሽ , 𝜎ଵ:௄ ൌ

ሺ𝜎ଵ, … , 𝜎௄ሻ  since we assume that  𝑃ሺ𝑦|𝐸, 𝑧, 𝛉ሻ  and 𝑃ሺ𝐸|𝑧, 𝐱, 𝛉ሻ follows Eq. (3-8) and (3-13), 

respectively.  
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To proceed, we specify our prior state of knowledge about the coefficients and the hidden 

cluster value, i.e.,  𝛏, 𝛍, 𝜎, and 𝑧. By assuming that the original heat transfer coefficients may have 

small errors, we assign to 𝜉ଷ, 𝜉ସ, and 𝜉ହ a zero mean Gaussian, 

𝑃ሺ𝜉ଵ, 𝜉ଶ, 𝜉ଷ|𝜆ଵሻ ൌ 𝒩ሺ𝜉ଵ, 𝜉ଶ, 𝜉ଷ|0, 𝜆ଵ𝐈ሻ (3-16)

where 𝒩ሺ∙ |𝛍, 𝚺ሻ  is the PDF of a multivariate Gaussian distribution with mean 𝛍 and covariance 

matrix 𝚺, 𝐈 is the 3-dimensional unit matrix, and 𝜆ଵ is 0.01. To assign a prior to 𝜉ସ, we need to 

consider two components, 𝑇adj.௖௟  and ℎadj.௖௟ , in Eq. (3-4). Since the measured mean skin 

temperatures under comfort conditions are distributed around 32-36 °C [38,78], and the comfort 

value estimated by the original PMV model is 33.9 °C with M ൌ 63.97 (1.1 met), we assume, 

𝑃൫𝑇adj.௖௟ห𝛼்൯ ൌ 𝒩൫𝑇adj.௖௟ห0, 𝛼்
ିଵ൯ (3-17)

In addition to this, since we believe that there are omitted heat loss components in Eq. (3-4) , 

we assume, 

𝑃൫ℎadj.clห𝛼௛ଵ, 𝛼௛ଶ൯ ൌ 𝒩൫ℎadj.clห𝛼௛ଵ, 𝛼௛ଶ
ିଵ൯ (3-18)

By aggregating the two equations, Eq. (3-17) and Eq. (3-18), we assign the following prior 

to 𝜉ସ: 

𝑃൫𝜉௭,ସ|𝛼ଵ, 𝛼ଶ൯ ൌ 𝒩൫𝜉௭,ସห𝛼ଵ, 𝛼ଶ
ିଵ൯ (3-19)

where αଵ and αଶ are the a priori mean and precision, respectively. Although we expect that 𝜉ସ 

would be around 0-6, since we do not have strong prior information about it, we employed a 

hierarchical Bayesian approach and assign the following prior to 𝛼ଵ and 𝛼ଶ: 

𝑃ሺ𝛼ଵ|𝜆ଶሻ ൌ ℰሺ𝛼ଵ|𝜆ଶሻ (3-20)

𝑃ሺ𝛼ଶ|𝜆ଶሻ ൌ ℰሺ𝛼ଶ|𝜆ଶሻ (3-21)

where ℰሺ∙ |𝜆ሻ is the PDF of an exponential distribution with rate parameter 𝜆, and 𝜆ଶ is 1. Since 

we believe that the original equations are reliable overall, we assign to 𝜉ହ a zero mean Gaussian 

prior, 

𝑃൫𝜉௭,ହ|𝛼ଷ൯ ൌ 𝒩൫𝜉௭,ହห0, 𝛼ଷ
ିଵ൯ (3-22)

where  αଷ is an a priori precision. Since we do not have much prior information about how much 

the heat loss should be adjusted by Eq. (3-6), we assign the following prior to 𝛼ଷ: 

𝑃ሺ𝛼ଷ|𝜆ଷሻ ൌ ℰሺ𝛼ଷ|𝜆ଷሻ (3-23)

Here, we set 𝜆ଷ ൌ 1 since we do not expect that 𝜉ହ becomes very high, reflecting the fact 

that we trust the reliability of the original equations.  
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Figure 3.2 shows the relationship between the PMV value and the thermal load calculated 

by the original equations. Note that the PMV value of 0 means “neutral” and ±2 mean “warm/cool”. 

We assign the following priors to 𝛍 and 𝜎: 

𝑃ሺ𝛍௭|𝛌୫ୣୟ୬, 𝚲୴ୟ୰ሻ ൌ ቄ𝒩ሺ𝛍௭|𝛌୫ୣୟ୬, 𝚲୴ୟ୰ሻ
0

,        𝜇௭,1 ൏ 𝜇௭,2 ൏ 𝜇௭,3

,        otherwise
 (3-24)

𝑃ሺ𝜎௭|𝜆ଵ଴, 𝜆ଵଵሻ ൌ Inv-Gammaሺ𝜎௭|𝜆ଵ଴, 𝜆ଵଵሻ (3-25)

where 

𝛌୫ୣୟ୬ ൌ ൥
𝜆ସ
𝜆ହ
𝜆଺

൩ (3-26)

𝚲୴ୟ୰ ൌ ൥
𝜆଻ 0 0
0 𝜆଼ 0
0 0 𝜆ଽ

൩ (3-27)

and Inv-Gammaሺ∙ |𝛼, 𝛽ሻ is a PDF of an inverse gamma distribution with shape parameter 𝛼 and 

scale parameter 𝛽. Since the corresponding thermal loads to the PMV value of -2, 0, and 2 are 

around -35, 0, and 35, respectively, we set 𝜆ସ ൌ െ3.5 , 𝜆ହ ൌ 0 , and 𝜆଺ ൌ 3.5 . Since in our 

definition the thermal load represents the overall thermal stress, the thermal load should be close 

to 0 when an occupant is satisfied with the thermal conditions. Therefore, we set 𝜆଼ ൌ 0.01 so that 

𝜇2 cannot be far from 0. On the contrary, we use wider priors for the others, i.e., 𝜆଻ ൌ 1, 𝜆ଽ ൌ

1, 𝜆ଵ଴ ൌ 1, 𝜆ଵଵ ൌ 0.5, as we do not have more specific knowledge about 𝜇1 and 𝜇3. 

 

Figure 3.2. Relationship between the PMV value and the thermal load calculated by the original 
PMV equations 
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Finally, since we do not have any information about the hidden cluster value 𝑧, we assign to 

𝑧 a discrete uniform prior, 

𝑃ሺ𝑧ௗ|𝐾ሻ ൌ 𝒰ሼ𝑧ௗ|1, 𝐾ሽ (3-28)

where 𝒰 is a PDF of a uniform random variable taking values in the set ሼ1, … , Kሽ.  

Using Bayes rule, our posterior state of knowledge about the parameters and the hidden 

cluster value is given by: 

𝑃ሺ𝑧ଵ:஽, 𝛏ଵ:௄, 𝛍ଵ:௄, 𝜎ଵ:௄, 𝛂|𝐲ଵ:஽, 𝐗ଵ:஽, 𝛌ሻ 

∝ 𝑃ሺ𝐲ଵ:஽|𝐗ଵ:஽, 𝑧ଵ:஽, 𝛏ଵ:௄, 𝛍ଵ:௄, 𝜎ଵ:௄ሻ𝑃ሺ𝑧ଵ:஽|𝐾ሻ𝑃ሺ𝛏ଵ:௄|𝛂, 𝛌ሻ𝑃ሺ𝛍ଵ:௄, 𝜎ଵ:௄|𝛌ሻ𝑃ሺ𝛂|𝛌ሻ 
(3-29)

where 𝛂 ൌ ሺ𝛼ଵ, 𝛼ଶ, 𝛼ଷሻ, 𝛌 ൌ ሺ𝜆ଵ, 𝜆ଶ, 𝜆ଷ, 𝜆ସ, 𝜆ହ, 𝜆଺, 𝜆଻, 𝜆଼, 𝜆ଽሻ. Figure 3.3 shows the overall model 

structure using standard plate notation. 

 

Figure 3.3. Plate notation of overall model structure 

3.2.3 Training and sampling 

In order to develop the model in fully Bayesian approach, the parameters and the hidden 

cluster values should be sampled from the posterior distribution. However, since the posterior 
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distribution is intractable analytically, we use sequential Monte Carlo (SMC) to sample from it, 

which is more efficient and effective than standard Markov chain Monte Carlo (MCMC) [79]. The 

addendum is that it also computes the model evidence (the normalization constant of the posterior) 

which can be used for Bayesian model selection (see Section 3.3.2). Moreover, SMC is 

parallelizable, a fact we exploit to reduce the training time by orders of magnitude. SMC 

approximates the posterior of the model parameters using a finite number of weighted samples 

(particles). This representation can be exploited to quantify the predictive uncertainty of our model 

induced by the limited number of observations. We implemented our model using the Python 

packages PySMC [80] and PyMC [81]. Table 3.1 shows SMC settings used in this study, which 

were selected because they provided consistent results in multiple trainings with reasonable 

computational cost.  

Table 3.1. PySMC settings 

The number of particles 3000 
The number of MCMC steps per SMC step 20 
The threshold of the effective sample size 0.50 
The reduction of the effective sample size per SMC step 0.90 
MCMC step method for continuous parameters Random walk 
MCMC step method for the hidden cluster values Discrete random walk 

3.3 Results using the general model 

3.3.1 Verification with synthetic data  

To verify that our methodology can indeed discover preference clusters, we first tested it on 

a synthetic dataset. We generated the synthetic dataset as follows. First, we assumed that there 

were three different clusters of people preferring cooler, middle, and warmer conditions. Second, 

to develop conditional probability distributions representing their preference patterns, three sets of 

parameter values were arbitrary defined as shown in Table 3.2. Figure 3.4 shows the probability 

distributions with respect to air temperature for the three clusters. To visualize the distributions in 

2-D figures, the other variables were set as follows: MRT = air temperature, air velocity = 0.05 

m/s, relative humidity = 50 %, met = 1.2, and clo = 0.6.  
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Table 3.2. Three different sets of parameters for the synthetic clusters 

Parameter Cooler cluster Middle cluster Warmer cluster

Cluster shared 
parameters 

𝜉ଵ 1 1 1 
𝜉ଶ 1 1 1 
𝜉ଷ 1 1 1 

Cluster 
specific 

parameters 

𝜉ସ 5 2.7 0 
𝜉ହ 0.2 0.3 0 
𝜇ଵ -1.8 -1.5 -2 
𝜇ଶ 0 0 0 
𝜇ଷ 1.8 1.5 2 
𝜎 0.8 0.66 0.9 

 

 

Figure 3.4. Discrete conditional probability distributions for the synthetic clusters (from left, 
clusters of people preferring cooler, middle, warmer conditions) 

Then, 9 synthetic occupants were assigned to the clusters (i.e., three occupants per each 

cluster), and 900 synthetic preference votes were created with the following process: 

 900 data points were generated (sampled) from 

𝑃ሺ𝐱|𝛃ሻ
ൌ 𝑃ሺ𝑥ଵ|𝛃ሻ ∙ 𝑃ሺ𝑥ଶ|𝛃ሻ ∙ 𝑃ሺ𝑥ଷ|𝛃ሻ ∙ 𝑃ሺ𝑥ସ|𝛃ሻ ∙ 𝑃ሺ𝑥ହ|𝛃ሻ ∙ 𝑃ሺ𝑥଺|𝛃ሻ
ൌ 𝒰ሺ𝑥ଵ|16,28ሻ ∙ 𝒰ሺ𝑥ଶ|16,28ሻ ∙ 𝒰ሺ𝑥ଷ|0.02,0.1ሻ ∙ 𝒰ሺ𝑥ସ|20,80ሻ ∙ 𝒰ሺ𝑥ହ|0.5,0.6ሻ ∙ 𝒰ሺ𝑥଺|1,1.2ሻ 

(3-30)

where 𝐱 ൌ ሺ𝑥ଵ, 𝑥ଶ, … , 𝑥଺ሻ are the input variables (i.e., air temperature, mean radiant 

temperature, air velocity, relative humidity, clothing insulation, and metabolic rate). 

 100 data points were randomly assigned to each occupant. 

 For each data point, a preference vote was generated (sampled) from the discrete 

conditional probability distribution of a cluster to which the occupant belonged (Figure 

3.4). 
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In the model development stage, since the number of clusters in the dataset is unknown as 

well as the cluster value of each occupant, models having different numbers of clusters may be 

considered and compared. In this section, we developed and compared models having one, two, 

and three clusters, (i.e., 𝐾 ൌ 1, 2, and 3 , respectively). Figure 3.5 shows the probability 

distribution of an occupant having each preference (i.e., “want warmer”, “no change”, “want 

cooler”) with respect to air temperature. To visualize results in 2-D figures, the other variables 

were set as follows: MRT = air temperature, air velocity = 0.05 m/s, relative humidity = 50 %, met 

= 1.2, and clo = 0.6. The model uncertainty was quantified and visualized in the figure. Solid lines 

represent the median value of the probability (i.e., median model), and shaded areas represent the 

associated 95% credible intervals (i.e., 2.5- and 97.5-quantiles of the predictive distribution). Since 

we created the dataset with the probability distributions shown in Figure 3.4, the probability for 

“no change” class of this single cluster model is maximized around 22 °C. The maximum 

probability for “no change” class is only around 0.6 and the output probability distribution is quite 

flat, which are improper characteristics in terms of making concise preference predictions.  

 

Figure 3.5. The probability distribution of an occupant’s thermal preference with respect to air 
temperature calculated by the single-cluster model  

Figure 3.6 shows the probability distributions calculated by the model having 2 clusters (i.e., 

𝐾=2). Each figure represents a sub-model for each cluster. In order to visualize the results, a label 

switching problem was resolved before drawing figures, which arises when solving a clustering 

problem using mixture models in Bayesian approach caused by non-indefinability [82,83]. Details 

are discussed in Appendix A. Occupants having the first probability distribution in Figure 3.4(a) 

were grouped into one cluster, and the rest were grouped into another cluster, automatically. 
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Therefore, Figure 3.6(a) is similar to Figure 3.4(a), and Figure 3.6(b) looks like a mixture of Figure 

3.4(b) and Figure 3.4(c). Figure 3.7 shows SMC samples for the parameters. The green histogram 

and dots are samples for the first cluster and the blue ones for the second cluster –as shown in the 

figure, they are clearly distinguished. This provides evidence that there is a high probability that 

there are two or more clusters of thermal preference for the people in the dataset.  

   

Figure 3.6. The probability distributions of an occupant’s thermal preference with respect to air 
temperature calculated by the model having two clusters 

    

 

Figure 3.7. SMC samples for parameters in case of the model having two clusters 
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Figure 3.8 shows the probability distributions calculated by the model having 3 clusters (i.e., 

𝐾 ൌ 3). Note that the dotted lines are the original probability distributions shown in Figure 3.4. 

The model discovered all the 3 clusters in the synthetic dataset, and the calculated probability 

distributions are also close to the originals. The samples (Figure 3.9) show that the model found 3 

distinctive clusters of people. The samples are very close to the original parameters (Table 3.2) 

marked as triangles in the figure. If the number of data points goes to infinity, the model 

uncertainty shown in Figure 3.8 will be collapsed and the samples in Figure 3.9 will be 

concentrated at the triangles. 

 

Figure 3.8. The probability distributions of an occupant’s thermal preference with respect to air 
temperature calculated by the model having three clusters 

 

Figure 3.9. SMC samples for parameters in case of the model having three clusters 
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Figure 3.10 shows the probability of each occupant being in cluster 𝑘  (i.e., 

𝑃ሺ𝑧ௗ ൌ 𝑘|𝐲ଵ:஽, 𝐗ଵ:஽, 𝛏ଵ:௄, 𝛍ଵ:௄, 𝜎ଵ:௄ሻ, 𝑘 ൌ 1, 2, 3). The color of each circle corresponds to the 

probability, i.e., dark red denotes high probability and dark blue means low probability. The 

probabilities were close to either 0 or 1, which means that each occupant is clearly classified into 

one of the clusters, in this synthetic case. The model correctly found the cluster values originally 

assigned to the occupants when we generated the dataset. 

 

Figure 3.10. The probability of each occupant belonging to cluster k 
(i.e., 𝑃ሺ𝑧ௗ ൌ 𝑘|𝐲ଵ:஽, 𝐗ଵ:஽, 𝛏ଵ:௄, 𝛍ଵ:௄, 𝜎ଵ:௄ሻ, 𝑘 ൌ 1,2,3)) 

3.3.2 The optimal number of clusters 

The optimal number of clusters (K) is not known a priori. To identify it, we follow two 

different approaches. The first one is based on Bayesian model selection [77], which includes 

training all possible k-cluster models and subsequently comparing their model evidence to each 

other. The second one involves augmenting the model by assigning a Dirichlet process (DP) prior 

[84,85] over the prior probability measures on the parameter space. The DP induces a posterior 

probability on each cluster being active (theoretically allowing for an infinite number of possible 

clusters) and low probability clusters are neglected. Bayesian model selection is easy to implement 

when the posterior is sampled by SMC, but it is computationally expensive because of the need to 

train all k-cluster models. Even though the DP-based method is harder to understand, it is easy to 

implement as a natural extension of our methodology and it runs at a fraction of the time. See 

Appendix B for the details of the methods. 

To test that the two methods do discover the right number of clusters, we applied them to 

the synthetic case. Figure 3.11(a) shows the logarithm of the model evidence with respect to the 

number of clusters in a model. The figure represents that the optimal number of clusters is 3 since 

the Bayes factor between the models having 2 and 3 clusters is greater than 100, which can be 
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interpreted as the 3-cluster model is decisively better than the 2-cluster model. The figure also 

shows that models having more than 3 clusters are not better than the 3-cluster model since the 

models have unnecessary parameters. Figure 3.11(b) shows that the optimal number of clusters 

based on the Dirichlet process is also 3. Only three clusters have significantly high 𝜋௞’s (which 

can be interpreted as the probability of cluster 𝑘  being active) compared to others. Since the 

synthetic data was generated from the three different probability distributions, it can be concluded 

that both methods accurately predict the optimal number of clusters. 

 

Figure 3.11. Results showing the optimal number of clusters. (a) The logarithm of the model 
evidence with respect to the number of clusters in a model; (b) 𝜋௞’s inferred by Dirichlet 

process. 

3.3.3 Modeling results with a large dataset 

In order to develop the general model based on real world data, we used a subset of the 

ASHRAE RP-884 database [5], which was collected from HVAC conditioned office buildings in 

North America. Only people who voted more than 3 times were included in our training dataset. 

The number of observations in the training dataset is 1712, and the number of people is 259. Figure 

3.12 shows distributions of input variables, and Figure 3.13 shows the distribution of the output 

variable with respect to air temperature in the training dataset. Since the data was collected from 

conditioned office buildings, variations in the data are limited, complicating the process of 

developing models which cover a wide range of conditions or having complex model structures –

this is discussed later in Section 3.5.  
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Figure 3.12. Distribution of input variables in the training dataset 

     

Figure 3.13. Distribution of output variable in the training dataset with respect to air temperature 
(left: normalized stacked histogram; right: 100% stacked bar chart) 

Figure 3.14 shows the optimal number of clusters in the training dataset with the general 

model structure. According to the model evidence comparison (Figure 3.14(a)), the model having 

5 clusters is decisively better than the model having 4 clusters. Again, according to the 𝜋௞’s 

inferred by Dirichlet process, since only five clusters have meaningful 𝜋௞’s, it could be concluded 

that the optimal number of clusters is five. 
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Figure 3.14. Results showing the optimal number of clusters. (a) The logarithm of the model 
evidence with respect to the number of clusters in a model. (b) 𝜋௞’s inferred by Dirichlet process. 

Figure 3.15(a) shows the probability distributions with respect to air temperature, calculated 

with sub-models for the 5 clusters. Note that we used the model structure explained in section 3.2.1. 

In order to visualize results in 2-D figures, the other variables were set as follows: MRT = air 

temperature, air velocity = 0.05 m/s, relative humidity = 50 %, met = 1.2, and clo = 0.6.  

Clusters 1 and 3 can be interpreted as groups of people who preferred cooler and warmer 

conditions, respectively. Cluster 5 would be a group of people who were satisfied with a wider 

range of thermal conditions and less sensitive to thermal variations. Cluster 2 can be interpreted as 

a group of people with two characteristics: (i) preferred cooler conditions and (ii) answered both 

“want cooler” and “no change” votes (i.e., contradicting votes) under similar conditions. The small 

differences between the green and blue lines over the whole range represent the second 

characteristic. The contradicting votes might be caused by occupants’ variability. However, it is 

plausible that conditions perceived as similar were actually quite different. There would be two 

possible reasons regarding this issue. First, because of inaccurate measurement of input values, 

actually different conditions might be recorded as similar conditions. For example, the metabolic 

rate in the training dataset has only three values (Figure 3.12) determined by a table in ASHRAE 

Standard 55 [7]. In other words, many different metabolic rates were recorded as the same value, 

and consequently, it looks as if occupants made contradicting votes with similar conditions. 

Another reason could be that unmeasured factors (e.g., time of the day, occupancy dynamics) 

might have significantly affected the occupants, resulting in contradicting votes. At this point, our 
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model cannot take into account the parameters discussed in these two cases -this is further 

elaborated in Section 3.5. Cluster 4 is the opposite case of cluster 2. 

Figure 3.15 (b) shows the probability of each occupant belonging to each cluster. As 

mentioned earlier, each circle represents the probability for each occupant, i.e., there are 259 

circles in each figure. Therefore, if the probabilities for one occupant in each figure are summed 

up, the total should be 1. Although some occupants were clearly classified into one cluster, i.e., 

significantly high probability in one figure and low probabilities in other figures, unlike the 

synthetic data case, some occupants were not clearly classified. The reasons could be that: (i) an 

occupant may be in between multiple clusters and (ii) data from an occupant may not be adequate 

for the classification. Their thermal preference can be explained by mixture of multiple sub-models. 

The figure shows that every cluster includes a portion of the population with non-negligible 

probability, meaning that all the sub-models are important to explain the thermal preferences of 

the whole population. 

High model uncertainty, represented as the shaded areas around solid lines in Figure 3.15 

(a), is usually caused by limited data in the training dataset. For every cluster, less data in both 

lower and higher temperature ranges was available than respective data in middle temperature 

range (see Figure 3.12); therefore, the width of the shaded areas in these ranges (i.e., uncertainty) 

is broader. Figure 3.15 (a) also shows that the sub-model for cluster 5 has higher model uncertainty 

than the rest. The reason is that the number of people belonging to cluster 5 is relatively small 

(Figure 3.15 (b)), which means that less data was used to develop the sub-model. The model 

uncertainty would decrease if more data is added in the training dataset. 
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Figure 3.15. (a) The probability distributions calculated with sub-models for the 5 clusters, and 
(b) the probability of each occupant belongs to cluster 𝑘. The displayed probability distributions 

were calculated with the following settings: MRT = air temperature, air velocity = 0.05 m/s, 
relative humidity = 50 %, met = 1.2, and clo = 0.6.  
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3.4 The personal preference profiles: learning the thermal preference of individual 
occupants 

3.4.1 Learning methodology 

By using the general model for the whole population which has multiple sub-models, the 

thermal preference of individual occupants can be learned accurately and efficiently. Note that 

learning includes inferring an occupant’s cluster value (i.e., personal thermal preference 

characteristic, 𝑧୬ୣ୵) and predicting the occupant’s thermal preference under certain conditions. 

First, the ideal way to infer a new occupant’s cluster value is re-estimating all parameters and 

hidden variables (i.e., 𝑧୬ୣ୵, 𝑧ଵ:஽, 𝛍ଵ:௄, 𝜎ଵ:௄, 𝛏ଵ:௄) with both the old data (i.e., 𝐲ଵ:஽, 𝐗ଵ:஽) and new 

data collected from the specific occupant (i.e., 𝐲୬ୣ୵, 𝐗୬ୣ୵) as:  

𝑃ሺ𝑧୬ୣ୵|𝐲୬ୣ୵, 𝐗୬ୣ୵, 𝐲ଵ:஽, 𝐗ଵ:஽ሻ ൌ න ෍ 𝑃ሺ𝑧୬ୣ୵, 𝑧ଵ:஽, 𝛉|𝐲୬ୣ୵, 𝐗୬ୣ୵, 𝐲ଵ:஽, 𝐗ଵ:஽ሻ
௭భ:ವ

𝑑𝛉 (3-31)

where 𝛉 ൌ ሺ𝛍ଵ:௄, 𝜎ଵ:௄, 𝛏ଵ:௄ሻ. However, since this re-estimation requires heavy computational cost, 

this method is impractical for implementation in real buildings. Therefore, we introduce an 

assumption: the parameters and hidden variables for people in the old data (i.e., 𝑧ଵ:஽, 𝛉) are 

independent of new data (i.e., 𝐲୬ୣ୵, 𝐗୬ୣ୵ ), to make the inference process feasible. This is a 

reasonable assumption since the size of newly added data (i.e., 𝐲୬ୣ୵, 𝐗୬ୣ୵) is much smaller than 

the old data (i.e., 𝐲ଵ:஽, 𝐗ଵ:஽) and therefore, even if the parameters were re-estimated, they would 

not change significantly. Based on this assumption, Eq. (3-31) can be factorized as follows: 

න ෍ 𝑃ሺ𝑧୬ୣ୵, 𝑧ଵ:஽, 𝛉|𝐲୬ୣ୵, 𝐗୬ୣ୵, 𝐲ଵ:஽, 𝐗ଵ:஽ሻ
௭భ:ವ

𝑑𝛉

ൌ
1
𝐶ଵ

න ෍ 𝑃ሺ𝐲୬ୣ୵|𝐗୬ୣ୵, 𝛉, 𝑧୬ୣ୵ሻ𝑃ሺ𝑧୬ୣ୵ሻ𝑃ሺ𝑧ଵ:஽, 𝛉|𝐲ଵ:஽, 𝐗ଵ:஽ሻ
௭భ:ವ

𝑑𝛉 

(3-32)

The first term, 𝑃ሺ𝐲୬ୣ୵|𝐱୬ୣ୵, 𝛉, 𝑧୬ୣ୵ሻ, in the right hand side is the data likelihood; the 

second term, 𝑃ሺ𝑧୬ୣ୵ሻ, is the prior over the occupant’s cluster value 𝑧୬ୣ୵; and the last term is the 

parameters and hidden variables for people in the old data estimated with Eq. (3-29). Note that 

𝑃ሺ𝑧ଵ:஽, 𝛉|𝐲ଵ:஽, 𝐗ଵ:஽ሻ was computed with SMC using particle approximation when developing the 

general model, and the particles themselves represent the probability. Therefore, with the particles, 

Eq. (3-32) can be efficiently computed. 
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Similarly, with the aforementioned assumption, predicting the thermal preference of a new 

occupant (i.e., 𝑦୮) under certain conditions (i.e., 𝐱୮) can be computed as: 

𝑃൫𝑦୮ ൌ 𝑗ห𝐱୮, 𝐲୬ୣ୵, 𝐗୬ୣ୵, 𝐲ଵ:஽, 𝐗ଵ:஽൯, 𝑗 ൌ 0,1,2

ൌ න ෍ ෍ 𝑃൫𝑦୮ ൌ 𝑗ห𝐱୮, 𝐲୬ୣ୵, 𝐗୬ୣ୵, 𝐲ଵ:஽, 𝐗ଵ:஽, 𝑧ଵ:஽, 𝑧୬ୣ୵, 𝛉൯𝑃ሺ𝑧ଵ:஽, 𝑧୬ୣ୵, 𝛉|𝐲୬ୣ୵, 𝐗୬ୣ୵, 𝐲ଵ:஽, 𝐗ଵ:஽ሻ
௭భ:ವ௭౤౛౭

𝑑𝛉

ൎ
1
𝐶ଶ

න ෍ ෍ 𝑃൫𝑦୮ ൌ 𝑗ห𝐱୮, 𝑧୬ୣ୵, 𝛉൯𝑃ሺ𝐲୬ୣ୵|𝐗୬ୣ୵, 𝛉, 𝑧୬ୣ୵ሻ𝑃ሺ𝑧୬ୣ୵ሻ𝑃ሺ𝑧ଵ:஽, 𝛉|𝐲ଵ:஽, 𝐗ଵ:஽ሻ
௭భ:ವ௭౤౛౭

𝑑𝛉 

(3-33)

See Appendix C for the derivation of the factorization in Eq. (3-32) and the computation of 

Eq. (3-32) and Eq. (3-33). In this work, we use discrete uniform prior for 𝑃ሺ𝑧୬ୣ୵ሻ to ensure 

consistency with Eq. (3-28). However, the Dirichlet process prior model discussed in Appendix B 

gave us the information, 𝑃ሺ𝑧୬ୣ୵ሻ, since we estimated 𝑃ሺ𝑧|𝛎ሻ according to Eq. (B-9). In other 

words, we could use the inference result from Dirichlet process prior model to assign a reasonable 

prior to 𝑃ሺ𝑧୬ୣ୵ሻ. Since this needs further investigation, the Dirichlet process prior model is 

exploited only for discovering the optimal number of clusters. 

3.4.2 Implementation and evaluation 

11 new occupants in the ASHRAE dataset, who voted more than 10 times but were not 

included in the training dataset, were selected to validate our method. 8 samples of each occupant 

were used as new data (i.e., 𝐲୬ୣ୵, 𝐗୬ୣ୵) for learning each occupant (i.e., training dataset), and the 

other samples were used for validation (i.e., validation dataset) discussed consequently. Figure 

3.16 shows the probability of each occupant belonging to each cluster (i.e., 

𝑃ሺ𝑧୬ୣ୵|𝐲୬ୣ୵, 𝐗୬ୣ୵, 𝐲ଵ:஽, 𝐗ଵ:஽ሻ) and the probability of their predicted preferences under various 

conditions (called profile in Daum [46]), inferred using the equations presented in Section 3.4.1 

and the general model with 5 clusters (results for 9 occupants are shown). To visualize results in 

2-D figures, the other variables were set as follows: MRT = air temperature, air velocity = 0.05 

m/s, relative humidity = 50 %, met = 1.2, and clo = 0.6. Since the profiles were developed with 

only 8 observations, they may not represent final estimations but they are all different from each 

other in accordance with our hypothesis. 
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Figure 3.16. The probability of each new occupant belonging to each cluster, 
𝑃ሺ𝑧୬ୣ୵|𝐲୬ୣ୵, 𝐗୬ୣ୵, 𝐲ଵ:஽, 𝐗ଵ:஽ሻ and the corresponding thermal preference profiles 
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Figure 3.17. The logistic loss over the validation dataset with respect to the profiling method 

Although unique personal profiles were developed, this does not guarantee the effectiveness 

of the overall method in this study. Thus, the prediction performance of the personal preference 

profiles over the validation dataset was calculated. Since profile outputs are not deterministic but 

probabilistic, the logistic loss (𝑙𝑜𝑔𝑙𝑜𝑠𝑠) was used as a measure for the prediction performance: 

𝑙𝑜𝑔𝑙𝑜𝑠𝑠 ൌ ෍ ෍ log𝑃൫𝑦୮,ௗ,௜ ൌ 𝑦୴ୟ୪,ௗ,௜ห𝐱୴ୟ୪,ௗ,௜, 𝐲୬ୣ୵,ௗ, 𝐗୬ୣ୵,ௗ, 𝐲ଵ:஽, 𝐗ଵ:஽൯

௡೏ 

௜ୀଵ

ଵଵ

ௗୀଵ

 (3-34)

where 𝐲୬ୣ୵,ௗ ൌ ൫𝑦୬ୣ୵,ௗ,ଵ, 𝑦୬ୣ୵,ௗ,ଶ, … , 𝑦୬ୣ୵,ௗ,଼൯  and 𝐗୬ୣ୵,ௗ ൌ ൛𝐱୬ୣ୵,ௗ,ଵ, 𝐱୬ୣ୵,ௗ,ଶ, … , 𝐱୬ୣ୵,ௗ,଼ൟ 

are the observed thermal preferences and input variables in the training dataset from new occupant 

𝑑 , respectively, and ൫𝑦୴ୟ୪,ௗ,ଵ, 𝑦୴ୟ୪,ௗ,ଶ, … , 𝑦୴ୟ୪,ௗ,௡೏
൯  and ൛𝐱୴ୟ୪,ௗ,ଵ, 𝐱୴ୟ୪,ௗ,ଶ, … , 𝐱୴ୟ୪,ௗ,௡೏

ൟ  are the 

observed thermal preferences and input variables in the validation dataset from new occupant 𝑑. 

However, since the logistic loss does not show whether the prediction performance is good or not 

by itself, the logistic loss of one model should be compared to that of another model. In this study, 

another set of personal profiles, based on the method presented in Daum et al. [46], i.e. with data 

from each individual occupant, was also developed and used for comparison. Figure 3.17 shows 

the logistic loss over the validation dataset with respect to each profiling method. Blue circles are 

the logistic losses of profiles developed with the general models having 2, 3, 4, 5, and 6 clusters, 

respectively. As expected, the logistic loss is maximized with the general model having the optimal 

number of clusters. The red triangle represents the logistic loss of profiles developed with Daum’s 
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method [46]. Even though the general model takes into account more input variables, this result 

shows that the method developed in this study provides reliable preference profiles with a 

relatively small dataset collected from each occupant. This is a notable benefit since collecting 

preference feedback from occupants in real buildings is challenging. 

3.5 Discussion 

3.5.1 Limitations and extension of method to other data sets and dynamic conditions 

In order to ensure the reliability of model predictions, it is suggested that data used for 

developing the model is representative of conditions for which the model would be used later. In 

this study, the final goal is delivering thermal comfort to occupants in real building offices. 

Therefore, the possible indoor conditions and HVAC control strategies which will be used with 

the preference profiles should be considered in this inference (model training) stage. Delivering 

thermal comfort to occupants who prefer different conditions only by controlling air temperature 

may be difficult since air temperature at one location cannot be independent from air temperature 

next to the location, especially in open-plan offices. A possible solution is to control other factors 

(e.g., local air velocity or local radiant conditions) so that every occupant can be satisfied with the 

thermal conditions even if air temperature cannot be controlled independently [16]. However, the 

current general model was developed with a subset of the ASHRAE RP-884 database collected 

from HVAC conditioned buildings with standard HVAC systems, and therefore, the data 

distributions are quite narrow as discussed in Section 3.3.3. For example, the MRT is highly 

correlated with the air temperature, and the air velocity is always low. Therefore, the reliability of 

predictions made by the model for non-standard conditions (e.g., high air velocity, big difference 

between air temperature and MRT) is doubtful. Experiments specifically designed to collect data 

for overcoming the limitations of ASHRAE database should be conducted and the general model 

would be updated with such data in the future.  

Some output probability distributions over preference classes of both the general model and 

personal profiles are relatively flat under typical environmental conditions. This is not an 

appropriate characteristic for making reliable predictions or for optimizing the system control 

based on the predictions. Human nature perhaps includes high aleatoric uncertainty with respect 

to thermal preferences, hard to predict with distinctive probability. In that case, flat profiles are 
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not wrong since they properly reflect the aleatoric uncertainty [86], however, this requires further 

investigation. In other words, there are many factors increasing the epistemic uncertainty of models 

and resulting in flat probability distributions, which can be remedied. Epistemic uncertainty 

increases when a model does not take into account important factors affecting the system. In this 

study, it was assumed that occupants’ thermal preference was affected by the overall thermal stress 

and the personal thermal preference characteristic (Figure 3.1). However, previous studies have 

shown that local discomfort caused by a vertical air temperature difference between the feet and 

the head,  an asymmetric radiant field, or by local convective cooling (draft), may significantly 

affect thermal comfort [39]. Therefore, local discomfort may be included in the general modeling 

framework to decrease the epistemic uncertainty. In addition, since the developed model calculates 

the thermal stress based on steady-state assumptions, it does not consider the dynamic nature of 

human thermal comfort [4,48,50] or adaptive thermal comfort concepts under transient and 

variable outside conditions [46–49]. Therefore, in future work, the model structure may be 

modified to account for such conditions.  

3.5.2 Considering inaccurate/missing data in future predictions using the developed 
method 

The epistemic uncertainty also increases when the data used to develop a model is not 

sufficiently accurate. As mentioned before, it is highly probable that measured values in the 

ASHRAE database, especially air velocity, clo and met, were not accurate enough. This problem 

could be resolved by incorporating this measurement process in the model. In other words, instead 

of assuming that the measured values are the real values, it may be assumed that the measured 

values were contaminated by some disturbance or noise in the model. The aforementioned 

solutions may increase the model complexity, and developing a complex model from scratch 

requires a large dataset which is almost impossible to collect as discussed in Section 3.2.1. 

However, thanks to the inherent advantages of Bayesian approach and recent research activities 

focused on thermal comfort, developing a model based on practical data collection in buildings 

becomes realistic. In future work conducted by the authors, data collected from heterogeneous 

sources (e.g., ASHRAE database, experiments specifically designed to overcome the limitations 

of the ASHRAE dataset, etc.) could be combined, different model structures could be compared, 

and hidden variables would be embedded to deal with missing data or for unobserved features. 
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Finally, another important question may be raised: Can we use such a complex model which 

requires multiple inputs even though some of these inputs may not be easily measured in real 

buildings? Actually, it may be difficult to measure clo, met, and air velocity in the real world. 

However, this does not mean that the model cannot make reliable predictions. For example, if clo 

value is not measured, it can be predicted by integrating the model out over clo values as shown 

in Eq. (3-35). If there is no information about clo values, then a flat prior would be used for 𝑃ሺcloሻ. 

𝑃ሺ𝑦|Tୟ୧୰, MRT, RH, Vel, met, 𝛉ሻ ൌ න 𝑃ሺ𝑦|Tୟ୧୰, MRT, RH, Vel, clo, met, 𝛉ሻ𝑃ሺcloሻ 𝑑clo (3-35)

This calculation is nothing but the Bayes’ sum rule, so it is a simple probability calculation 

and it does not require any further assumptions. Uncertainty in the prediction increases just as 

much as the unknown information. On the other hand, if we have any information about the 

unmeasured variable, the prediction would be less uncertain than a prediction made by a model 

which does not take into account the variable from the beginning. In the same example, if a model 

predicting clo value based on outdoor air temperature is introduced, the flat prior for 𝑃ሺcloሻ would 

be replaced with a probability distribution made with the model predicting clo value, and the 

prediction would be less uncertain than that made with flat prior. Therefore, the high complexity 

would not be a barrier in terms of implementation in real buildings, but actually provides a high 

degree of freedom to the user to modify the model. Moreover, the evolution of sensing and 

information technologies enables availability of more information, and the complex model is 

capable of using this information to make more reliable predictions [21,22,59,87]. In future work, 

prediction performance without direct measure of such variables would be evaluated and possible 

techniques to account for the missing information would be tested. 

3.6 Chapter conclusions 

In this Chapter, a new method for learning personalized thermal preferences was introduced. 

The approach starts from developing a general model that explains the thermal preference of 

occupants in a large dataset collected in actual office buildings. Different from existing approaches, 

we developed a generalized thermal preference model using a fully Bayesian approach that also 

considers a thermal preference characteristic as a hidden variable. The results show that there is a 

high probability of classifying multiple clusters of people with respect to their thermal preference 

characteristic. The optimal number of clusters was determined based on two methods: comparing 
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different models with the Bayesian model selection process or assigning a Dirichlet process prior. 

Both approaches were tested with a synthetic dataset and showed consistent results. Our algorithm 

was also evaluated with a subset of 259 office building occupants from the ASHRAE RP-884 

database and it successfully discovered clusters of thermal preference with physical interpretation. 

Modeling results indicate that the five-cluster model is more promising than the single cluster 

model for explaining the thermal preference of the occupants, therefore, it is more suitable for 

learning and predicting thermal preferences of individual occupants. Note that the optimal number 

of clusters could be different with different model structures. 

Personalized thermal preference profiles were subsequently inferred by a mixture of sub-

models for each cluster with a set of probabilities and particle approximation. The method was 

validated with a subset of 11 new occupants from the subset of the ASHRAE RP-884 database for 

which personalized models were developed with improved accuracy and efficiency compared to 

methods for training individual occupant models. The method provided reliable predictions, with 

a relatively small dataset collected from each occupant, which constitutes a significant benefit for 

implementation of personalized thermal environments in actual buildings based on occupant 

feedback. 

The methodology presented in this chapter demonstrates the advantages of the Bayesian 

formalism for developing personalized thermal preference profiles based on limited data. These 

include the way of taking into account a hidden variable, clustering occupants based on the hidden 

variable, selecting the optimal number of clusters, encoding of prior knowledge in a model, and 

the discussion of epistemic and aleatoric uncertainty in the performance analysis.  
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 INFERENCE OF THERMAL PREFERENCE PROFILES FOR 
PERSONALIZED THERMAL ENVIRONMENTS 

4.1 Overview 

This chapter presents a Bayesian modeling approach for learning personalized comfort 

models in real buildings where clothing level, metabolic rate and air speed cannot be measured. 

To achieve this goal, the generalized model presented in Chapter 3 was revised (Section 4.2); 

hidden variables were introduced in personalized models (Section 4.3). Limitations and 

recommendations for future work are discussed in Section 4.4. 

4.2 A new generalized thermal preferences model 

4.2.1 Model structure 

The new thermal preference model considers two important issues: (1) inaccurately 

measured or estimated values for some variables in the training data (i.e., subset of ASHRAE RP-

884 database used to train the model); (2) limited variation of thermal conditions in the training 

data. 

In the training data, there are three measured/estimated variables of questionable accuracy: 

air speed, metabolic rate, and clothing insulation level. Air speed (Spd) can vary locally inside 

office spaces –even if measured with accurate sensors near the occupant, measured values could 

be quite different from the actual values very close to the occupant skin (that actually affect thermal 

sensation). Metabolic rate (Met) and clothing insulation level (Clo) are quite difficult to measure, 

therefore researchers estimated these values based on results from previous studies (e.g., tables in 

ASHRAE Handbook Fundamentals [7]). However, the studies showed that the estimation included 

non-negligible error [88–91]. Adopting potentially inaccurate values for the above parameters and 

training a model based on these assumptions will result in problems: the model will interpret that 

the target system has high aleatoric uncertainty (i.e., randomness), although the uncertainty is 

epistemic (i.e., is due to inaccurate values). In other words, the model will misinterpret frequent 

contradicting preferences under similar thermal conditions as true, although the conditions 

assumed as similar were actually different. The importance of proper treatment of the measurement 



 
 

62 

error (a.k.a. error-in-variables) in statistical analyses and modelling have been recognized [92–94]. 

Carroll et.al. [92] explained that there are “Triple Whammy of Measurement Error”: 1) 

measurement error makes the parameter estimates biased; 2) it leads to a loss of power for detecting 

signals; 3) it masks important features of the data, making graphical model inspection difficult. 

Muff [94] showed how measurement error can be handled naturally with Bayesian approach. 

To resolve this problem, the new model structure encodes that: “the true values for these 

three variables (Met, Clo and Spd) are uncertain” in the model. The revised structure is shown in 

Figure 4.1, where, for each occupant (d) and observation (i), the three colored nodes 

(𝑆𝑝𝑑௢௕௦, 𝑀𝑒𝑡௢௕௦, 𝐶𝑙𝑜௢௕௦) indicate recorded values for the air speed, metabolic rate and clothing 

insulation level in the training data, and the three white nodes, (𝑆𝑝𝑑, 𝑀𝑒𝑡, 𝐶𝑙𝑜) represent the 

corresponding true values of which we are uncertain.  

 

Figure 4.1. Graphical representation of the joint probability for the new generalized thermal 
preference model. 

Following this logic, we need a prior and a likelihood function for each of these three 

variables. We assume that the data distributions of 𝑆𝑝𝑑௢௕௦, 𝑀𝑒𝑡௢௕௦, 𝐶𝑙𝑜௢௕௦ in the training data 

follow the distribution of 𝑆𝑝𝑑, 𝑀𝑒𝑡, 𝐶𝑙𝑜 to some extent. Based on the data distributions of Figure 

3.12, three lognormal distributions are applied to 𝑆𝑝𝑑, 𝑀𝑒𝑡, 𝐶𝑙𝑜 as a prior, plotted in Figure 4.2: 

𝑝 ቀ𝑆𝑝𝑑ௗ,௜ቚ𝜇ௌ௣ௗ೛
, 𝜎ௌ௣ௗ೛

ଶ ቁ ൌ Lognormal ቀ𝑆𝑝𝑑ௗ,௜ቚ𝜇ௌ௣ௗ೛
, 𝜎ௌ௣ௗ೛

ଶ ቁ (4-1)

𝑝 ቀ𝐶𝑙𝑜ௗ,௜ቚ𝜇஼௟௢೛
, 𝜎஼௟௢೛

ଶ ቁ ൌ Lognormal ቀ𝐶𝑙𝑜ௗ,௜ቚ𝜇஼௟௢೛
, 𝜎஼௟௢೛

ଶ ቁ (4-2)
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𝑝 ቀ𝑀𝑒𝑡ௗ,௜ቚ𝜇ெ௘௧೛
, 𝜎ெ௘௧೛

ଶ , 𝜔ெ௘௧೛
ቁ ൌ Lognormal ቀ𝑀𝑒𝑡ௗ,௜ െ 𝜔ெ௘௧೛

ቚ𝜇ெ௘௧೛
, 𝜎ெ௘௧೛

ଶ ቁ (4-3)

where Lognormalሺ∙ |𝜇, 𝜎ଶሻ is the probability density function (PDF) of a lognormal distribution 

with parameters 𝜇  and 𝜎  that are the mean and standard deviation of the variable’s natural 

logarithm, respectively: 𝜇ௌ௣ௗ೛
ൌ െ2.690, 𝜎ௌ௣ௗ೛

ଶ ൌ 0.451, 𝜇ெ௘௧೛
ൌ െ0.871, 𝜎ெ௘௧೛

ଶ ൌ 0.111, 

𝜔ெ௘௧೛
ൌ 0.7, 𝜇஼௟௢೛

ൌ െ0.431, 𝜎஼௟௢೛
ଶ ൌ 0.102. 

 

Figure 4.2. Data distributions of three variables (histograms) and probability density functions 
used to represent the data distributions (blue curves) for clothing insulation, metabolic rate and 

air speed. 

 

For the air speed and the clothing insulation level, we assume that there were Gaussian noises 

in measurement and use the following likelihood: 

𝑝൫𝑆𝑝𝑑ௗ,௜
௢௕௦ห𝑆𝑝𝑑ௗ,௜, 𝜎ௌ௣ௗ೗

ଶ ൯ ൌ 𝒩൫𝑆𝑝𝑑ௗ,௜
௢௕௦ห𝑆𝑝𝑑ௗ,௜, 𝜎ௌ௣ௗ೗

ଶ ൯ (4-4)

𝑝൫𝐶𝑙𝑜ௗ,௜
௢௕௦ห𝐶𝑙𝑜ௗ,௜, 𝜎஼௟௢೗

ଶ ൯ ൌ 𝒩൫𝐶𝑙𝑜ௗ,௜
௢௕௦ห𝐶𝑙𝑜ௗ,௜, 𝜎஼௟௢೗

ଶ ൯ (4-5)

where 𝒩ሺ∙ |𝜇, 𝜎ଶሻ is the PDF of a normal distribution with mean 𝜇 and variance 𝜎ଶ. Although we 

expect that 𝜎ௌ௣ௗ೗
 and 𝜎஼௟௢೗

 would be around 0.1, since we do not have strong prior information 

about it, we employed a hierarchical Bayesian approach and assign the following priors to 𝜎ௌ௣ௗ೗
ଶ  

and 𝜎஼௟௢೗
ଶ : 

𝑝൫𝜎ௌ௣ௗ೗
ଶ ห𝜆ଵ൯ ൌ ℰ൫𝜎ௌ௣ௗ೗

ଶ ห𝜆ଵ൯ (4-6)

𝑝൫𝜎஼௟௢೗
ଶ ห𝜆ଵ൯ ൌ ℰ൫𝜎஼௟௢೗

ଶ ห𝜆ଵ൯ (4-7)

where ℰሺ∙ |𝜆ሻ is the PDF of an exponential distribution with rate parameter 𝜆, and 𝜆ଵ is equal to 

100.  
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For the metabolic rate, since the observed values are only equal to 1.0, 1.2, and 1.4 met in 

the training data, we use linear discriminant analysis (LDA) formulation, which is equivalent to 

multinomial logistic regression for the likelihood function as follows: 

𝑝൫𝑀𝑒𝑡ௗ,௜
௢௕௦ ൌ 𝑐ห𝑀𝑒𝑡ௗ,௜, 𝛍ெ௘௧೗

, 𝜎ெ௘௧೗
൯ ൌ

exp ቆെ
1

2𝜎ெ௘௧೗
ଶ ൫𝑀𝑒𝑡ௗ,௜ െ 𝜇ெ௘௧೗,௖൯

ଶ
ቇ

∑ exp ቆെ 1
2𝜎ெ௘௧೗

ଶ ൫𝑀𝑒𝑡ௗ,௜ െ 𝜇ெ௘௧೗,௖ᇲ൯
ଶ

ቇଷ
ୡᇲୀଵ

,

𝑐 ൌ 1,2,3 

(4-8)

where 𝛍ெ௘௧೗
ൌ ൫𝜇ெ௘௧೗,ଵ, 𝜇ெ௘௧೗,ଶ, 𝜇ெ௘௧೗,ଷ൯  and 𝑐 ൌ 1,2,3  represents 1.0, 1.2, and 1.4 met, 

respectively. This LDA form is more suitable to introduce prior knowledge in the model. For 

example, 𝜇௖ can be interpreted as the center of values on the domain of input at which a specific 

class 𝑐 is more likely than others. We expect that 𝜇ெ௘௧೗,ଵ, 𝜇ெ௘௧೗,ଶ, 𝜇ெ௘௧೗,ଷ would be around 1.0, 1.2, 

and 1.4 met, respectively, and assign the following prior: 

𝑝൫𝛍ெ௘௧೗
ห𝛌௠௘௔௡, 𝜆ଶ൯ ൌ 𝒩൫𝛍ெ௘௧೗

ห𝛌௠௘௔௡, 𝜆ଶ
ିଵ𝐈൯ (4-9)

𝑝൫𝜎ெ௘௧೗
ଶ ห𝜆ଵ൯ ൌ ℰ൫𝜎ெ௘௧೗

ଶ ห𝜆ଵ൯ (4-10)

where 𝐈 is the 3-dimensional unit matrix, 𝝀௠௘௔௡ ൌ ሺ1.0, 1.2, 1.4ሻ୘, and 𝜆ଶ ൌ 400. 

Given the air temperature data of Figure 3.12, there are no observations for colder or warmer 

conditions (although in that case occupants would probably respond that they prefer warmer/cooler 

conditions respectively). So, the previous preference model did not include any prior knowledge 

for such conditions; it was focused on explaining well the training data collected from the middle 

temperature range. As a result, model predictions for higher and lower temperatures might be 

inaccurate. While this is fine for predicting occupants’ thermal preference in spaces conditioned 

only within a “regular” temperature range, controlling space temperature based on this model 

might be problematic.  

Therefore, in this study, we feed two sets of 1,000 synthetic observations to each cluster 

(Table 4.1) which represent occupants’ expected feedback under cold and warm conditions 

respectively. We selected low and high ends of Ta and MRT values (i.e., 17.5 °C and 28.0 °C) 

considering that the maximum/minimum operative temperature of observations in the training data 

for which the thermal preference (y) is “no change” are 19.0 °C / 26.3 °C, respectively. 
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Table 4.1. Synthetic data points used to introduce our prior belief in the revised generalized 
thermal preference model. 

Conditions Air Temp. MRT RH Air speed 
Metabolic 

rate
Clothing 

level 
Thermal 

preference

Cold condition 17.5 °C 17.5 °C 50 % 0.1 m/s 1.2 met 0.61 clo want warmer 

Warm condition 28.0 °C 28.0 °C 50 % 0.1 m/s 1.2 met 0.61 clo want cooler 

4.2.2 Model training and sampling for efficient Bayesian inference  

Training the generalized model means inferring the posterior probability of the latent 

variables (model parameters and hidden variables) in the model. However, since the posterior 

distribution is intractable analytically, an approximation method is needed. Sampling methods, 

such as Markov Chain Monte Carlo (MCMC), are widely used since they are flexible; however, 

they are computationally expensive, especially for high-dimensional problems. Note that training 

our model is a high-dimensional problem since there are 5,454 latent variables including 59 model 

parameters, 259 hidden variables (preference characteristics of 259 occupants), and 5,136 hidden 

variables for the true air speed, metabolic rate, and clothing insulation level. In addition, a label 

switching problem [82] arises when solving a clustering problem using mixture models with 

sampling methods.  

To overcome these issues, variational Bayesian methods (a.k.a., variational inference) have 

been being developed, which fit a variational distribution to the posterior by solving an 

optimization problem [83]. Unlike sampling methods, there always exists an approximation error 

between the fitted distribution and the true posterior. However, since they solve an optimization 

problem rather than drawing samples, they are computationally simpler. The major difficulty is 

deriving a maximization algorithm for each model structure, but there are algorithms which 

automate this process and consequently support the Bayesian approach in large-scale machine-

learning problems. In this study, we use Automatic Differentiation Variational Inference (ADVI) 

[95]. ADVI transforms the support of all the parameters and hidden variables to the real coordinate 

space and deals with the transformed variables 𝛇. Thereafter, ADVI fits a mean-field Gaussian 

distribution to the posterior of 𝛇 as: 

𝑞ሺ𝛇|𝛟ሻ ൌ 𝒩൫𝛇ห𝛍, diagሺ𝛔ଶሻ൯ ൌ ෑ 𝒩ሺ

ே

௡ୀଵ

𝜁௡|𝜇௡, 𝜎௡
ଶሻ (4-11)
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where 𝛟 ൌ ሺ𝜇ଵ, … , 𝜇ே, 𝜎ଵ
ଶ, … , 𝜎ே

ଶሻ. The PyMC3 Python package [96] was used for ADVI and 

details on how it is used are described in [97]. Since the default stochastic gradient descent 

algorithm, Adagrad, showed relatively slow convergence, we used Adam [98] instead. We have 

also implemented random initialization with 100 initial points in the model training to get closer 

to the global solution of the variational inference problem. 

4.2.3 Probability distributions of clustered occupant thermal preference profiles 

Figure 4.3 shows the probability of an occupant belonging to each cluster before analyzing 

any data from the occupant, inferred by the revised generalized model. The uncertainty for the 

probabilities is visualized with box plots based on 1,000 samples from the variational distribution 

(approximate posterior distribution). Orange bars are the median value of the probabilities, and the 

upper and lower whiskers are the associated 95% credible intervals. This graph essentially shows 

the probability of each cluster being active. Since four clusters have meaningful probabilities, we 

concluded that the generalized model discovered four clusters (two with high probabilities and the 

other two with low probabilities) of people having similar thermal preference characteristics.  

 

Figure 4.3. The probability of each cluster being active 

The resulting predictive probability distributions (calculated with sub-models for the four 

clusters) of occupant thermal preferences (i.e., “want warmer”, “no change”, “want cooler”) are 

plotted on the left column of Figure 4.4. In order to visualize results in 2-D figures as a function 

of Ta, the other variables were set as follows: MRT = Ta, Spd = 0.05 m/s, RH = 50 %, Met = 1.2 

met, and Clo = 0.6 clo. Solid lines represent the median values of the probabilities (i.e., median 

model), and shaded areas represent the associated 95% credible intervals (i.e., 2.5- and 97.5-
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quantiles of the predictive probability). Note that the variational distribution we used ignores the 

correlation between model parameters and it can underestimate the model uncertainty.  

The right column of Figure 4.4 shows the probability of each occupant belonging to each 

cluster. Each circle represents the probability for each occupant, and the color of each circle 

corresponds to the probability (i.e., dark red denotes high probability and dark blue means low 

probability). Most of the occupants belong to the first two clusters with high probabilities, thus the 

thermal preference of the majority of people can be explained with these two clusters, in 

accordance with Figure 4.3. 

The differences in probability for “no change” preference (green curves) are clear between 

the four clusters. For the first and second cluster these preferences are maximized around 23 °C 

and 21 °C (when other factors are as mentioned above). Consequently, these two clusters describe 

occupants who prefer “relatively warmer” and “relatively cooler” conditions, respectively.  

The third cluster represents occupants whose almost all of the responses were “prefer no 

change”. In fact, there were 3 occupants whose data were all “no change” in our training data. Kim 

et al. [58] reported that they also observed such occupants in their study. Although the generalized 

model discovered this cluster from the data, it is arguable whether this cluster really represents a 

separate group of people in terms of thermal preference characteristics or not. The reasons are: (i) 

the number of data collected from each of such occupants is small; and (ii) most of them were not 

exposed to various thermal conditions. Indeed, the generalized model also shows this 

ambiguousness. The right figure shows that no occupants belong to this cluster with a probability 

close to 1. Therefore, the results imply that data collected from each of these occupants were not 

qualitatively and/or quantitatively adequate to classify these occupants into this cluster with high 

probability; their thermal preferences could be explained with other clusters.  

The fourth cluster represents occupants preferring very warm conditions. Only a few (approx. 

7 - 10) occupants are in this cluster with high probability, a relatively small number assuming that 

our training data are representative of the entire population. Thus, the uncertainty of the sub-model 

for this cluster is higher than the other sub-models. We expect that this high uncertainty decreases 

as we update the generalized model with new data. 

  



 
 

68 

 

Figure 4.4. Predictive probability distributions calculated with sub-models for the four clusters 
(left column), and probability of each occupant belonging to each cluster (right column). The 

displayed probability distributions were calculated with the following settings: MRT = air 
temperature, air velocity = 0.05 m/s, relative humidity = 50 %, metabolic rate = 1.2 met, and 

clothing level = 0.6 clo.  
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4.3 Learning new occupants in the real world  

4.3.1 Methodology for learning new occupants 

If we could collect data for all the input variables (Ta, MRT, RH, Spd, Met and Clo) and 

output (thermal preference) from new individual occupants, we could learn their thermal 

preference profile without any additional treatment. Learning a new occupant would mean 

augmenting the generalized model by including data from the new occupant in the joint probability 

and inducing the updated posterior probability: 

𝑝൫𝑧௢, 𝛉ห𝐲௢, 𝐗௢, 𝐃𝐚𝐭𝐚௢௥௚൯ ∝ 𝑝ሺ𝐲௢|𝐗௢, 𝑧௢, 𝛉ሻ𝑝ሺ𝑧௢|𝛉ሻ𝑝൫𝐃𝐚𝐭𝐚௢௥௚ห𝛉൯𝑝ሺ𝛉ሻ (4-12)

where ሼ𝐲௢, 𝐗௢ሽ is the data from the new occupant, 𝑧௢ is the thermal preference characteristic of the 

new occupant, and 𝐃𝐚𝐭𝐚௢௥௚ is the original training data (i.e., the subset of ASHRAE RP-884 DB). 

With this posterior probability, we can predict thermal preference of the new occupant ሺ𝑦௣ሻ under 

certain conditions ሺ𝐱௣ሻ as: 

𝑝൫𝑦௣ห𝐱௣, 𝐲௢, 𝐗௢, 𝐃𝐚𝐭𝐚௢௥௚൯

ൌ න ෍ 𝑝൫𝑦௣ห𝐱௣, 𝐲௢, 𝐗௢, 𝐃𝐚𝐭𝐚௢௥௚, 𝑧௢, 𝛉൯𝑝൫𝑧௢, 𝛉ห𝐲௢, 𝐗௢, 𝐃𝐚𝐭𝐚௢௥௚൯
௭೚

𝑑𝛉 
(4-13)

However, it is well-known that in real buildings, local air speed, metabolic rate, and clothing 

insulation level are very difficult to measure in practice. For Met and Clo, intrusive measurements 

and occupant monitoring are definitely required, and that is why these are usually estimated based 

on reference tables and guidelines [7].  So, one advantage of the generalized thermal preference 

model is that it can be used to learn new occupants in practice, by considering these three variables 

as hidden and assigning a probability distribution for them. Since the assigned probability 

distribution affects the inference of latent variables and predictions, it should be carefully chosen 

based on knowledge for the variables. 

Figure 4.5 shows the joint probability of learning a new occupant ሺ𝑜ሻ. The simplest way to 

deal with the hidden variables (𝑆𝑝𝑑௢,௜, 𝑀𝑒𝑡௢,௜, 𝐶𝑙𝑜௢,௜ ) is assigning a Dirac-𝛿  function with a 

predefined fixed position for the PDF, which is equivalent to assuming constant values for these 

variables. However, this is an arbitrary guess and most importantly, these variables vary over time; 

therefore, other approaches are recommended as follows.   



 
 

70 

Metabolic rate probability distribution 

The metabolic rate is a variable governed by body characteristics and activity pattern of each 

individual. We assume that these effects in an office space can be explained as a truncated Normal 

distribution: 

𝑝൫𝑀𝑒𝑡௢,௜ห𝜇ெ௘௧,௢, 𝜎ெ௘௧,௢
ଶ ൯ ൌ Truncated Normal൫𝑀𝑒𝑡௢,௜ห𝜇ெ௘௧,௢, 𝜎ெ௘௧,௢

ଶ , 𝑎ெ௘௧൯ (4-14)

where Truncated Normalሺ∙ |𝜇, 𝜎ଶ, 𝑎ሻ is the probability density function (PDF) of a truncated 

normal distribution with parameters 𝜇 , 𝜎 , and 𝑎  (mean and standard deviation of the original 

normal distribution, and lower bound of the distribution, respectively). We set 𝑎ெ௘௧ ൌ 0.7. Since 

we do not have strong prior information about 𝜇ெ௘௧,௢ , we assign the respective probability 

distribution of Figure 4.2 to 𝜇ெ௘௧,௢, which represents the population distribution for the metabolic 

rate: 

𝑝 ቀ𝜇ெ௘௧,௢ቚ𝜇ெ௘௧೛
, 𝜎ெ௘௧೛

ଶ , 𝜔ெ௘௧೛
ቁ ൌ Lognormal ቀ𝜇ெ௘௧,௢ െ 𝜔ெ௘௧೛

ቚ𝜇ெ௘௧೛
, 𝜎ெ௘௧೛

ଶ ቁ (4-15)

For 𝜎ெ௘௧,௢
ଶ , since we believe that the metabolic rate of an individual would vary about ± 0.1 

met in an office space, we assign the following probability: 𝑝൫𝜎ெ௘௧,௢
ଶ ห𝜆ெ௘௧൯ ൌ ℰ൫𝜎ெ௘௧,௢

ଶ ห𝜆ெ௘௧൯, 

where 𝜆ெ௘௧ ൌ 400. 

 

Figure 4.5. Graphical representation of the joint probability for the personalized thermal 
preference models. 
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Clothing level probability distribution 

We make a similar assumption for the clothing insulation level: 

𝑝൫𝐶𝑙𝑜௢,௜ห𝜇஼௟௢,௢, 𝜎஼௟௢,௢
ଶ ൯ ൌ Truncated Normal൫𝐶𝑙𝑜௢,௜ห𝜇஼௟௢,௢,௜, 𝜎஼௟௢,௢

ଶ , 𝑎஼௟௢൯ (4-16)

with 𝑎஼௟௢ ൌ 0 and 𝑝൫𝜎஼௟௢,௢
ଶ ห𝜆஼௟௢൯ ൌ ℰ൫𝜎஼௟௢,௢

ଶ ห𝜆஼௟௢൯. Since we believe that the clothing level at a 

certain temperature could vary about ± 0.3 clo, we set 𝜆஼௟௢ ൌ 20. However, people might change 

their clothing to adapt to thermal conditions. To consider this adaptive behavior in the model, we 

can use a relationship between the clothing level and the air temperature. Here we use a linear 

relationship, expressed in the mean distribution value, 𝜇஼௟௢,௢,௜: 

𝜇஼௟௢,௢,௜ ൌ ቆെ𝛽ଵ,௢ ൈ
𝑇௔௜௥௢,௜ െ 22.5

1.5
ቇ ൈ 0.2 ൅ 𝛽ଶ,௢ (4-17)

Other models can also be used, e.g., a logistic regression model between clothing and mean 

outdoor temperature [99]. In Eq. (4-17), the constants (22.5, 1.5, and 0.2) are introduced to just 

scale the variables. Since we know that 𝑇𝑎𝑖𝑟௢,௜ and 𝐶𝑙𝑜௢,௜ are negatively correlated, we assign the 

following prior to 𝛽ଵ,௢ : 𝑝൫𝛽ଵ,௢ห𝜆ఉభ
൯ ൌ ℰ൫𝛽ଵ,௢ห𝜆ఉభ

൯ , and set 𝜆ఉభ
ൌ 1 . For 𝛽ଶ,௢ , we set the 

distribution of Figure 4.2 for clothing to the prior as: 

𝑝 ቀ𝛽ଶ,௢ቚ𝜇஼௟௢೛
, 𝜎஼௟௢೛

ଶ ቁ ൌ Lognormal ቀ𝜇஼௟௢,௢ቚ𝜇஼௟௢೛
, 𝜎஼௟௢೛

ଶ ቁ (4-18)

Air speed probability distribution 

Air velocity can vary significantly in office spaces. However, following thermal comfort and 

draft prevention recommendations [7], for low air speed ranges (<0.2m/s), the effect of change in 

air speed on heat transfer near human body is relatively small. So, the measured air speed 

probability distribution of Figure 4.2 is to 𝑆𝑝𝑑௢,௜ as: 

𝑝 ቀ𝑆𝑝𝑑௢,௜ቚ𝜇ௌ௣ௗ೛
, 𝜎ௌ௣ௗ೛

ଶ ቁ ൌ Lognormal ቀ𝑆𝑝𝑑௢,௜ቚ𝜇ௌ௣ௗ೛
, 𝜎ௌ௣ௗ೛

ଶ ቁ (4-19)

In cases where increased air speeds are used for cooling purposes, different probability 

distributions can be assigned, e.g.: 𝑝൫𝑆𝑝𝑑௢,௜ห𝑆௦௬௦௧௘௠൯,  where 𝑆௦௬௦௧௘௠  denotes the operational 

status of the HVAC system. 

The mean radiant temperature is estimated based on air temperature, globe temperature, and 

air speed with the following deterministic equation: 
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𝑀𝑅𝑇௢,௜ ൌ ൭𝑇𝑔𝑙𝑜𝑏𝑒௢,௜
ସ ൅

1.10 ൈ 10଼𝑆𝑝𝑑௢,௜

0.95 ൈ 0.15଴.ସ ൫𝑇𝑔𝑙𝑜𝑏𝑒௢,௜ െ 𝑇𝑎𝑖𝑟௢,௜൯൱

଴.ଶହ

 (4-20)

Once these probabilities are incorporated in the augmented model following Figure 4.1, we 

can learn and predict thermal preference of occupants without any data for Spd, Met, Clo and any 

occupant personal characteristics. Learning becomes inferring the joint posterior probability of the 

occupants’ cluster value 𝑧௢ , personal parameters 𝛃௢ ൌ ൫𝜇ெ௘௧,௢, 𝜎ெ௘௧,௢
ଶ , 𝛽ଵ,௢, 𝛽ଶ,௢, 𝜎஼௟௢,௢

ଶ ൯  for 

metabolic rate and clothing insulation level, and updated model parameters 𝛉 as: 

𝑝൫𝑧௢, 𝛃௢, 𝛉ห𝐲௢, 𝐗௢
ᇱ , 𝐃𝐚𝐭𝐚௢௥௚൯ ∝ 𝑝ሺ𝐲௢|𝐗௢

ᇱ , 𝑧௢, 𝛃௢, 𝛉ሻ𝑝ሺ𝑧௢|𝛉ሻ𝑝ሺ𝛃௢ሻ𝑝൫𝐃𝐚𝐭𝐚௢௥௚ห𝛉൯𝑝ሺ𝛉ሻ (4-21)

where 𝐗௢
ᇱ ൌ ൛𝐱௢,ଵ

ᇱ , … , 𝐱௢,௡೚
ᇱ ൟ and 𝐱௢,௜

ᇱ ൌ ൫𝑇𝑎𝑖𝑟௢,௜, 𝑇𝑔𝑙𝑜𝑏𝑒௢,௜, 𝑅𝐻௢,௜൯. With this posterior probability, 

we can predict the thermal preference 𝑦௣of the new occupant under certain conditions 𝐱௣
ᇱ  as: 

𝑝൫𝑦௣ห𝐱௣
ᇱ , 𝐲௢, 𝐗௢

ᇱ , 𝐃𝐚𝐭𝐚௢௥௚൯

ൌ ඵ ෍ 𝑝൫𝑦௣ห𝐱௣
ᇱ , 𝐲௢, 𝐗௢

ᇱ , 𝐃𝐚𝐭𝐚௢௥௚, 𝑧௢, 𝛃௢, 𝛉൯𝑝൫𝑧௢, 𝛃௢, 𝛉ห𝐲௢, 𝐗௢
ᇱ , 𝐃𝐚𝐭𝐚௢௥௚൯

௭೚

𝑑𝛃௢𝑑𝛉 
(4-22)

Even with using ADVI for Bayesian inference, updating the augmented model could be 

computationally heavy in real applications, since the inference problem includes the large dataset, 

𝐃𝐚𝐭𝐚௢௥௚, and the large number of hidden variables for them. So instead of updating the whole 

augmented model, we construct a personalized model for a new occupant separately and feed the 

approximate posterior probability from the generalized model to the personalized model as a prior 

for the model parameters. In this way, computational time and memory consumption are 

significantly reduced.  

4.3.2 Experimental data collection for model validation 

To show the validity of our learning method, we designed and conducted an experimental 

study using three identical perimeter south-facing private offices (3.3m × 3.7m × 3.2m high) in 

October and November 2017. The offices (Figure 4.6) have one exterior curtain wall façade with 

54% window-to-wall ratio, and a high-performance glazing unit with a selective low-emissivity 

coating (visible transmittance: 70%, solar transmittance: 33%). They are equipped with VAV 

systems, motorized shades and dimmable electric lights. A commercial BMS allows us to monitor, 

control and automate all building systems. In this study, we fixed the dimming level of the electric 

lights at 100 % and the shade position at 25 % to eliminate the potential impact of changing the 
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visual environment on the thermal preference of test-subjects. The study was approved by the 

Institutional Review Board (IRB Protocol #: 1503015873). 

 

Figure 4.6. Exterior and interior view of the offices. 

Nine test-subjects (20 - 40 years old), not familiar with this research, were recruited for the 

experiment. Three subjects participated in the experiment during each day (one in each office). 

They were asked to perform their usual workload (computer-related work, reading, writing, etc.) 

between 9:00 AM 4:00 PM. Each occupant participated for eight days and experienced all the 

temperature setpoint schedules listed in Table 4.2 (one for each day), while their thermal 

preference votes were collected. Very warm or cold conditions were not possible, however our 

goal was not to expose people to certain extreme conditions, but collect their preference under 

given conditions. All the subjects reported their thermal preference at 09:55 AM, 10:55 AM, 11:55 

PM, 1:55 PM, 2:55 PM, and 3:55 PM each day. To ensure thermal adaptation with each condition, 

they were not allowed to leave the rooms for 30 minutes before each survey. They could leave the 

room shortly except this time and they had a 1-hour lunch break at 12:00 - 1:00 PM.  

Table 4.2. Air temperature setpoint schedules (unit: °C) 

Schedule # 9-10 AM 10-11 AM 11 AM-12 PM 1-2 PM 2-3 PM 3-4 PM
1 25 23.5 22 22 23.5 25
2 22 23.5 25 25 23.5 22
3 21 22 23 24 25 26
4 26 25 24 23 22 21
5 23 21.5 20 20 21.5 23
6 20 21.5 23 23 21.5 20
7 19 20 21 22 23 24
8 24 23 22 21 20 19

Air temperature, globe temperature and relative humidity were measured each minute. The 

air temperature was measured with two shielded T-type thermocouples on the left and right side 
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of the sitting location and the average value was used. The globe temperature and the relative 

humidity were measured with a black globe temperature sensor (μSMART TB1) and a relative 

humidity sensor (BA/H205-B4X-Z-CG-WMW) respectively using 5-minute average values. 

Local air speed and clothing were also recorded but were not used in this study according to our 

methodology. Figure 4.7 shows the distribution of collected data for air temperature, MRT, relative 

humidity and preference votes.  

 

Figure 4.7. Distribution of data collected from the experiment 

4.3.3 The inferred personalized profiles 

Personalized models of the nine test-subjects were trained using the experimental data. We 

drew 1,000 samples from the approximate posterior for each test-subject and used them to illustrate 

results. Table 4.3 shows the induced cluster value and personal parameters of each test-subject, 

based on 48 data points (collected over the eight days of experiments for each subject). Subjects 2 

and 9 were classified into the second cluster, and all the others were classified into the first cluster. 

The uncertainty for the cluster values was negligible. For the uncertainty of the personal 

parameters, 95% credible intervals along with median values were specified. 

  



 
 

75 

Table 4.3. Inferred cluster value (𝑧௢) and personal parameters of the nine test-subjects 

 Sub. 1 Sub. 2 Sub. 3 Sub. 4 Sub. 5 Sub. 6 Sub. 7 Sub. 8 Sub. 9 

𝒛𝒐 1 2 1 1 1 1 1 1 2 

𝝁𝑴𝒆𝒕,𝒐 1.12 
(1.10, 1.14) 

1.07 
(1.06, 1.09) 

1.10 
(1.09, 1.12) 

1.10 
(1.08, 1.12)

1.01 
(1.00, 1.03)

1.05 
(1.04, 1.07)

1.14 
(1.12, 1.15) 

1.11 
(1.09, 1.13) 

1.07 
(1.05, 1.08)

𝝈𝑴𝒆𝒕,𝒐
𝟐  0.0049 

(0.0032, 0.0069) 
0.0025 

(0.0016, 0.0035) 
0.0037 

(0.0025, 0.0055)
0.0040 

(0.0026, 0.0057)
0.0033 

(0.0022, 0.0047)
0.0028 

(0.0019, 0.0041)
0.0038 

(0.0026, 0.0056) 
0.0042 

(0.0029, 0.0063) 
0.0026 

(0.0017, 0.0038)

𝜷𝟏,𝒐 0.05 
(0.01, 0.21) 

0.04 
(0.01, 0.16) 

0.11 
(0.04, 0.29) 

0.29 
(0.15, 0.58)

0.50 
(0.37, 0.67)

0.21 
(0.12, 0.40)

0.10 
(0.04, 0.29) 

0.66 
(0.47, 0.92) 

0.13 
(0.06, 0.34)

𝜷𝟐,𝒐 0.58 
(0.54, 0.62) 

0.46 
(0.44, 0.48) 

0.73 
(0.69, 0.76) 

0.68 
(0.63, 0.72)

0.55 
(0.51, 0.58)

0.70 
(0.67, 0.73)

0.70 
(0.66, 0.74) 

0.85 
(0.80, 0.90) 

0.68 
(0.65, 0.71)

𝝈𝑪𝒍𝒐,𝒐
𝟐  0.0178 

(0.0124, 0.0270) 
0.0067 

(0.0047, 0.0103) 
0.0153 

(0.0104, 0.0225)
0.0265 

(0.0186, 0.0402)
0.0140 

(0.0097, 0.0214)
0.0118 

(0.0082, 0.0181)
0.0168 

(0.0113, 0.0252) 
0.0294 

(0.0201, 0.0444) 
0.0107 

(0.0074, 0.0163)

Median (95% credible interval)

Figure 4.8 shows the inferred personalized profiles of the nine test-subjects corresponding 

to the personal parameters in Table 4.3. To plot the profiles with respect to air temperature, we set 

globe temperature = air temperature and relative humidity = 50 %. The personalized models show 

different profiles by having different sets of cluster values and personal parameters. In Figure 4.8, 

solid lines are the average values of the probabilities; darkly shaded areas represent the uncertainty 

caused by the uncertain parameters; and lightly shaded areas represent the uncertainty caused by 

the uncertain input variables (i.e., metabolic rate, clothing insulation level, and air speed). 

Therefore, the size of credible intervals in Table 4.3 correspond to the darkly shaded areas, and 

values of 𝜎ெ௘௧,௢
ଶ  and 𝜎஼௟௢,௢

ଶ  are related to the lightly shaded areas.  

 

Figure 4.8. Personalized thermal preference profiles of the nine test-subjects 
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To further elaborate on the results, Figure 4.9 shows the profiles of subject 3 based on 6, 12, 

18, 24, 30, 36, 42 and 48 data points (i.e., data for 1 to 8 days). The corresponding induced cluster 

value and personal parameters are also shown in Figure 4.10. Using just the first 6 data points, the 

model classified the subject into the first cluster with a low uncertainty. However, the uncertainty 

for personal parameters was high (wider darkly shaded areas in Figure 4.9 and wider box plots in 

Figure 4.10). As more data are fed into the model, the uncertainty for personal parameters 

decreases. The estimated 𝜎ெ௘௧,௢
ଶ  and 𝜎஼௟௢,௢

ଶ  do not change significantly –but this uncertainty can 

only be reduced by accurately observing uncertain variables (e.g. clothing level).   

 

Figure 4.9. Thermal preference profile of subject 3 as a function of used data points (6-48). 

 

Figure 4.10. Induced cluster value and personal parameters of subject 3 as a function of used data 
points (6-48, or days 1-8). 
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4.3.4 Prediction performance of the personalized thermal preference models 

The personalized profiles allow an understanding of thermal preferences of individuals with 

quantified uncertainty. To evaluate the prediction performance of the personalized models, a cross-

validation was conducted. For each subject, we defined a set of data from each day (6 data points) 

as a unit dataset (i.e., 8 datasets total), and used one of these datasets for validation. To investigate 

the improvement of the prediction performance with respect to the training data size, personalized 

models were trained with 1~7 datasets; then, we computed a prediction performance metric over 

the validation set (not used to train the model). The number of possible combinations for setting 

training and validation sets are: 8 ൈ ሺ ଻C ଵ ൅  ଻C ଶ ൅  ଻C ଷ ൅  ଻C ସ ൅  ଻C ହ ൅  ଻C ଺ ൅  ଻C ଻ሻ ൌ 1016 , 

where  ௡C ௥ is the number of possible ways to choose 𝑟 elements among 𝑛 elements. 

In this study, we use the area under the receiver operating characteristic curve (AUC) as the 

prediction performance metric. It represents the probability that a classifier will rank a randomly 

selected positive instance higher than a randomly selected negative one. Hence, AUC = 0.5 is 

equivalent to a random guesses and AUC = 1.0 indicates perfect predictions. Since AUC is a metric 

originally designed for binary classifiers, we compute the averaged AUC over the three classes 

using the micro-averaging scheme [100]. However, the absolute value of a metric may not always 

be sufficient, i.e., to conclude whether the value is high enough or not –comparison with 

competitive models (relative performance) provides additional useful information. Therefore, in 

this study, we compared 5 different methods to train the personalized models: 

1. (Current method): Based on the generalized model assuming that the unmeasured 

metabolic rate, clothing level and air speed follow the distributions of Section 4.3.1. 

2. Based on the generalized model assuming the following constant values for the 

unmeasured variables: metabolic rate = 1.1 met, clothing level = 0.5 clo, and air speed 

= 0.1 m/s. 

3. Based on the generalized model assuming the following constant values for the 

unmeasured variables: metabolic rate = 1.1 met, clothing level = 1.0 clo, and air speed 

= 0.1 m/s. 

4. Training a univariate multinomial logistic regression model which has the air 

temperature as the input variable from scratch with maximum likelihood estimation 

(MLE) method [100]. 
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5. Training a multivariate multinomial logistic regression model having the three standard 

model input variables (Ta, Tg and RH) as inputs from scratch [100]. 

Figure 4.11 shows the learning curves (computed AUC with respect to the training data size) 

for each of the models. Comparing the current model with models 2 and 3 (constant unobserved 

variables), we can see that sometimes these simpler models might work reasonably well. Note that 

the generalized model retains some degree of freedom, allowing the personalized models to fit 

data (and also updating the model parameters to fit data). However, noticing the differences 

between models 2 and 3, we can tell that this might simply happen due to a random good guess 

for metabolic rate and clothing value (or air velocity). These differences are much larger for some 

of the occupants, indicating that selecting proper constant values for these variables is indeed a 

matter of luck, and therefore could result in wrong predictions. In addition, the generalized model 

should be continuously updated and revised as more data become available. Assuming incorrect 

constant values for these variables when updating the model will create further problems. So, the 

current model, which automates the learning process without assuming constant values for variable 

parameters, improves the reliability of the overall thermal preference learning process.   

Comparing with model 4, one can note that the current method requires less data to converge 

(converges faster with training data size). With adequate training data (>30), the two models have 

similar overall prediction performance (although there are differences in the results for individual 

subjects). This is somewhat expected, since (i) Ta, MRT and RH during the experiments did not 

significantly vary independently from each other and (ii) in both of these models, no additional 

information was introduced for the other important variables (metabolic rate, clothing insulation 

level, and air velocity). This result supports that a pre-developed cluster model can be used to learn 

a new occupant even though we cannot measure some input variables of the cluster model for the 

occupant. Lastly, model 5 shows poor prediction performance; even 42 data points were not 

sufficient to train it. Training a model having such a high degree of freedom from scratch would 

not be practical to implement in real buildings. 
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Figure 4.11. Comparison of learning curves for the different models. 

 

Figure 4.12. Comparison of AUC for Model 2 and 3 trained with 42 data points 

4.3.5 Prediction performance with limited data 

It is useful to understand the differences in prediction performance between the proposed 

model and model 4 when available data is limited. In such cases, the performance metrics value 

does not provide the required information. For that purpose, we take as an example the preference 

profile of Figure 4.9, which is now plotted using 6 data points from 4 different days in Figure 4.13, 

with the air temperature logistic regression model (model 4, top row) and with the current model 

(bottom row). Actual data points collected are shown with dots, while red, green and blue colors 



 
 

80 

represent “prefer warmer”, “no change”, and “prefer cooler”, respectively. Green dots are 

displayed on the top of each plot (and the rest on the bottom) to clearly identify this data.   

The profiles of model 4 are totally different from each other if only 6 data points are used 

each time. In the first plot, only “no change” and “prefer cooler” votes were collected from that 

day. Therefore, the model trained with the data cannot predict that this occupant would prefer 

warmer conditions. In addition, the probability of “no change” increases as the air temperature 

decreases and is maximized at a very low temperature, which is unreasonable. The second plot 

shows the opposite result. In the third case, although there are votes of all the three classes, the 

model failed to create a reasonable profile because the number of votes is small and votes of “no 

change” and “prefer cooler” were collected from similar air temperatures. In the fourth case, since 

there were only “no change” votes, the model cannot be trained properly. Also note that these 

profiles are quite different from the profile developed with 48 data points in Figure 4.9.  

These results show that the air temperature logistic regression MLE model cannot train 

reliable models with limited number of data, as the current model does. It is also evident that 

common performance metrics cannot always provide important information about the model 

accuracy, especially if limited data points are available.  

 

Figure 4.13. Personalized profiles developed based on model 4 (top row) and current model 
(bottom row) using four different sets of 6 data points. 

A further analysis of the results using the current model is shown in Figure 4.14. The 

probability that the subject belongs to each cluster and the estimated personal parameters are 

displayed for the same four cases (four sets of 6 data points) discussed above. In the first three 

cases, the model classified the subject into the first cluster with high probability (however, the 
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profiles are not the same since the estimated personal parameters are different). For example, in 

the first case, the model did not classify the subject into the second cluster since the probability of 

a person voting “no change” when the air temperature is higher than 25 °C is very low. However, 

that probability is not zero since the metabolic rate and the clothing level might be very low at that 

moment. In the fourth case, only “no change” votes were collected in the day and the model uses 

a mixture of two sub-models to explain the subject.  

Overall, the current model, described in Section 4.3.1, is able to estimate reasonable and 

reliable preference profiles and cluster values using limited data points. Comparing with the results 

of Figure 4.9 with 48 data points, there are significant similarities, thanks to information from the 

generalized model and our prior for the personal parameters: (i) the air temperature that maximizes 

the probability of “no change” is around 23-24 °C; and (ii) the probability of “prefer cooler” 

increases as air temperature increases and vice versa.  

 

Figure 4.14. Induced cluster probability and personal parameters corresponding to profiles of the 
second row of  Figure 4.13 (using four different sets of 6 data points). 

4.4 Discussion 

4.4.1 Importance of data efficiency and model complexity 

Data-driven models, properly trained for each individual with adequate data, can predict 

occupant thermal preference, comfort, satisfaction or actions. However, collecting enough data 

can be a challenging task itself. Sanguinetti [61] reported that 77% of participants, who were asked 
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to use their participatory thermal sensing interface, submitted only 1-2 votes for six months; over 

the whole period, the mean number of votes per user was 2.23. This is an example of difficulties 

associated with collecting quantitatively enough data from each individual, and numbers will vary 

depending on conditions, interface type, etc. Data quality is also an important issue. Data-driven 

models require that data cover the entire space of interest (conditions). Models trained with data 

concentrated in specific areas of the space will probably lead to wrong predictions for other 

conditions. But if occupants are intentionally exposed to undesirable conditions to cover a larger 

space, we defeat the original purpose of preference learning: providing satisfactory conditions to 

each individual. The only exception is comparative preference learning [101], which is quite 

challenging for thermal preferences due to time required for thermal adaptation.   

Therefore, the efficiency of a learning method in terms of required quantity and quality of 

data should be re-examined. One might argue that enough data can be collected over a long period 

of time. However, the final objective of learning is implementing the models into human 

preference-based control frameworks, and long learning periods are not practical for this purpose. 

In this regard, it is notable that the thermal preference learning method presented in this chapter, 

trained with limited but properly collected data, is more efficient than training a univariate 

multinomial logistic regression model, which is much simpler and theoretically requires less data. 

Data efficiency is related with the model complexity, which is often explained with the 

number of free parameters (or the effective number of parameters) in the model. For a given 

training data set, a high-complexity model might over-fit the data and then it will not be able to 

predict future observations reliably (i.e., high variance). Conversely, to properly train a high-

complexity model, a large dataset is needed (i.e., low data efficiency). This was the reason why 

the prediction performance of model 5 was lower than that of the others. One way to restrict model 

complexity is by reducing the number of parameters. However, an over-simplified model (e.g., 

using a linear model for a highly non-linear problem or using a univariate model for a multi-

dimensional problem) may not be adequate to mimic the system (i.e., underfitting, high bias). 

Another way to control the model complexity is regularization, which means introducing 

additional information in the model to avoid overfitting. 

In this regard, the Bayesian approach is powerful since we can introduce the additional 

information naturally by assigning informative priors. In our case, we encoded a lot of information 

over the whole learning process thanks to the benefit of Bayesian approach. More specifically, we 
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constructed the generalized model based on physical equations and introduced our prior 

knowledge of human thermal comfort and related variables in the model. In terms of learning new 

occupants, we use the generalized model as a prior for personalized models. In addition, we set 

informative priors to deal with unmeasured variables. These were ingredients that make our 

learning method efficient, although it is complex and considers multiple inputs, and it can be an 

example for future studies in this field.  

4.4.2 Model updating for learning long-term variation effects 

Previous studies [46,48,52] report that learning models should be continuously re-trained 

with updated datasets to capture long-term comfort/preference variation. Here, updating the 

training dataset means adding new data into it and removing old data from it. But is this always 

the best option? 

If we could consider all the important variables in a model properly and measure or observe 

them, there would be no need to update the model. However, since that is not practically possible, 

we can simply ignore the unobserved variables (e.g., model 4) or assign a simple probability 

distribution for them (e.g., model 1). If these distributions do not change significantly, the 

predictions based on such methods would be satisfactory. Unfortunately, this is not the case. For 

example, suppose that a model was developed with the univariate multinomial logistic regression 

model (model 4) and trained with data collected during winter (i.e., “winter model”). In the 

summer, the occupant would change clothing and would prefer warmer conditions than those 

predicted by the “winter model”. In this example, updating the model essentially means discarding 

the winter data and re-training the model with summer data (i.e., “summer model”), so removing 

and adding training data is meaningful.  

However, this updating method has drawbacks: it requires collecting enough data with 

conditions causing dissatisfaction; plus, the model would need another updating after each “cycle” 

and so on. A promising alternative would be learning the variation of the distribution instead of 

discarding old data. If we know that this variation is highly correlated with a variable, e.g., 

correlation between clothing level and outdoor temperature, we can introduce that in the model as 

an input. Otherwise, we could set a hidden variable representing the state of the distribution in a 

model. Then, the model should be able infer the current state with limited data and make reliable 

predictions. Although learning the whole variation of distributions would take time, once it is done 
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properly, it does not need to be repeated. Finally, to avoid problems with high model complexity, 

it is possible to develop models with multilevel complexity, automatically unlocking the limited 

complexity of the current level as we gain more data. 

4.4.3 An “ideal” model evaluation metric 

As discussed in Section 4.3, evaluating models based on general performance metrics (e.g., 

AUC) is not always the best option. For the case of preference learning, there are two issues with 

using general metrics. First, it is highly probable that the test dataset distribution will be 

imbalanced (e.g., more than half of votes can be “no change”), which will negatively affect the 

reliability of the metric. Even in our experiment, which was designed to collect data under various 

conditions, data from some of the subjects were imbalanced. Second, costs for different 

misclassification cases are different (i.e., different costs to different cases in the confusion matrix), 

but general metrics do not consider the differences. For example, the cost for misclassifying an 

instance of “prefer warmer” as “prefer cooler” will be higher than the cost for misclassifying the 

same instance as “no change”. In addition, different factors cause unequaled costs, e.g., occupant 

satisfaction cost and energy consumption cost and simply merging these costs into one measure is 

arguable.  

A meaningful way to assess the prediction performance of a model is to quantify the 

anticipated benefit or cost of using the model within the context of the model application (i.e., the 

operating condition). This can be defined with a misclassification cost function and a class 

distribution Hern´andez-Orallo et. al. [102]. One way of estimating the cost is: 

𝑐𝑜𝑠𝑡 ൌ ෍ 𝑄൫𝑦௜, 𝑦௣,௜൯

ே

௜ୀଵ

 (4-23)

𝑄൫𝑦௜ ൌ 𝑘, 𝑦௣,௜൯ ൌ
𝜋௞

𝑁௞
ൈ 𝐶൫𝑦௜ ൌ 𝑘, 𝑦௣,௜൯, 𝑘 ൌ 1,2,3 (4-24)

where 𝑦௣,௜  is the model prediction at instance 𝑖 , 𝑘 ൌ 1,2,3 represents the classes (i.e., “prefer 

warmer”, “no change”, and “prefer cooler”, respectively), 𝜋௞  is a portion of each class in the 

operating condition, 𝑁 is the number of test data, 𝑁௞ is the number of test data for each class, and 

𝐶 is a misclassification cost function. The equation infers that model evaluation can be highly 

affected by the operating condition. To demonstrate how the anticipated cost can differ according 

to how we set the cost function, we use the following example. We compute the costs for two 
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personalized models of subject 2 from our dataset, developed based on methods 1 and 4 of Section 

4.3.3 respectively, with three different cost matrixes. In this example, we define that the predicted 

class from a model at instance 𝑖 is: 

𝑦௣,௜ ൌ argmax
௞

𝑝൫𝑦௣,௜ ൌ 𝑘|𝐱௣,௜, 𝐃𝐚𝐭𝐚൯ (4-25)

To simplify this example, we assume that the class distribution of the operating condition is 

equivalent to that of the test dataset. The cost at instance 𝐶 can be determined based on the actual 

class 𝑦௜ , the predicted class 𝑦௣,௜ , and a cost matrix. Figure 4.15 shows the three different cost 

matrixes we used for this example. Although we could not determine the exact cost (e.g., $ cost) 

for each case, if we determine the cost ratio between cases (i.e., relative importance), we can 

compute a normalized cost to compare models. In the first cost matrix, an equal cost (1) is assigned 

for misclassifying an instance of satisfied (“no change”) to dissatisfied (“want warmer” or “want 

cooler”) and vice versa. This implies that predicting one’s satisfaction and dissatisfaction are 

equally important. A higher cost (4) is assigned for misclassifying an instance of “want warmer” 

or “want cooler” to each other considering the clear order between classes. In the second cost 

matrix, a cost of 1.9 is assigned for misclassifying a dissatisfied instance to satisfied, but a cost of 

0.1 is used for the opposite case, i.e., correctly detecting dissatisfaction is much more important 

than detecting satisfaction. This approach can be used to design a controller that maximizes one’s 

satisfaction (a satisfaction oriented cost matrix). The third cost matrix is the transpose of the second 

one (an energy-saving oriented cost matrix).  

 

 

Figure 4.15. Three different cost matrixes. 
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Table 4.4. Computed cost with three different cost matrixes for personalized models of subject 2, 
developed based on models 1 and 4 as defined in Section 4.3.3. 

Method 
Cost

Equal Satisfaction Oriented Energy-saving Oriented
1 1.25 (0.66) 2.15 (1.47) 0.35 (0.59)
4 1.75 (1.20) 1.75 (1.51) 1.75 (1.18)

 

Table 4.4 shows the computed cost based on the three matrices. With the equal cost matrix, 

the anticipated cost of model 1 is lower than that of the model 4. The same result is obtained with 

the energy-oriented cost matrix, while model 4 is better when the satisfaction-oriented cost matrix 

is used. These results show that selecting the “best” model depends on the actual intend of 

application (operating condition), and that should be considered when the overall performance of 

models is evaluated.  

If the operating condition is not known accurately, how can we select the “best” model? In 

such cases, we can calculate the expected cost over possible operating conditions 𝛙 

as: ׬ 𝑐𝑜𝑠𝑡ሺ𝛙ሻ𝑝ሺ𝛙ሻ 𝑑𝛙,  where 𝑝ሺ𝛙ሻ  is the probability distribution of the possible operating 

conditions Hern´andez-Orallo et. al. [102]. We can extend this concept to develop a new general 

metric, provided that we will define: (i) possible operating conditions and their distribution; and 

(ii) how to select the predicted class based on predictive probabilities (scores) from the model 

(Hern´andez-Orallo et. al. [102] used the term decision rule). We expect that a general metric will 

be developed based on future discussions and consensus about these issues so that researchers can 

evaluate and compare preference learning methods in a unified way. 

4.5 Chapter conclusions 

In this Chapter, a method for learning personalized comfort models in real buildings was 

introduced, where clothing level, metabolic rate and air speed cannot be measured. 

The generalized model was revised considering two important issues: (1) inaccurately 

measured or estimated values for some variables in the training data (i.e., subset of ASHRAE RP-

884 database used to train the model); (2) limited variation of thermal conditions in the training 

data. The revised model discovered 4 clusters of thermal preferences in the subset of ASHRAE 

RP-884 database. To develop personalized models without measured air speed, clothing level, and 

metabolic rate, hidden variables were introduced in the model structure.  
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A field study was conducted in private offices to validate the method and demonstrate a 

(human and physical) data collection process to properly train personalized preference models in 

the real world. The proposed method showed better prediction performance compared to previous 

methods (e.g., training a simple univariate multinomial logistic regression model, or using constant 

values for unobserved variables). In addition, our method provides better results when limited data 

are available, which is important for real world applications. Our Bayesian approach is powerful 

since we can introduce additional information by assigning informative priors –we can encode a 

lot of information over the whole learning process. This makes our learning method efficient, 

although it is complex and considers multiple inputs. It is notable that the thermal preference 

learning method presented in this paper, trained with limited but properly collected data, is more 

efficient than training a univariate multinomial logistic regression model, which is much simpler.  
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 IMPLEMENTATION OF A SELF-TUNED HVAC CONTROLLER TO 
SATISFY OCCUPANT THERMAL PREFERENCES AND OPTIMIZE 

ENERGY USE  

5.1 Overview 

In this chapter, the objective is to develop a novel self-tuned HVAC controller that provides 

customized thermal conditions to satisfy occupant preferences while minimizing energy 

consumption, and to demonstrate its implementation in a real occupied open-plan office space 

(Section 5.2.1). In the self-tuned controller, the evolution of personalized thermal preference 

models (online-learning) (Section 5.2.2) and the delivery of thermal conditions with model 

predictive control (MPC-based HVAC operation) (Section 5.2.3) form a closed-loop. For the 

online-learning, we use a Bayesian clustering and online classification algorithm that has been 

extensively validated in our previous research by considering thermal comfort delivery conditions 

that are representative of typical office buildings [103,104]. To integrate these two parts into the 

self-tuned control loop, we propose a new algorithm that always provides a set of lower and upper 

operative temperature bounds for spaces (of both single and multiple occupancy) without tweaking 

the output of personalized comfort models nor solving computationally burdening multi-objective 

optimization (Section 5.2.4). We recruited nine occupants and implemented the self-tuned 

controller for 19 weekdays (Section 5.2.5). We present results with the self-tuned controller and 

evaluate the dissatisfaction level and energy consumption during the implementation period by 

comparing those with a baseline controller (Section 5.3). In addition to the experimental evaluation, 

we conduct a simulation study to demonstrate that users (e.g., occupants or building managers) 

can easily adjust the balance between the level of occupant satisfaction and energy consumption 

by changing a single parameter in the controller. In this way, decisions resulting in energy waste 

or dissatisfaction can be avoided and the energy is deployed where it is actually needed (Section 

5.4). 

5.2 Methodology 

In this section, we present the development and implementation of a self-tuned controller in 

an actual open-plan office space conditioned with a radiant floor cooling system to evaluate its 
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performance in terms of occupant satisfaction and energy efficiency. The operation of the proposed 

self-tuned HVAC controller includes four processes (Figure 5.1) with two key modules that form 

a closed-loop: (i) collecting occupant feedback on the thermal conditions, (ii) developing/updating 

personalized thermal preference models based on daily feedback (learning module), (iii) updating 

the control bounds for the next day, and (iv) controlling the HVAC system with MPC given the 

updated operative temperature control bounds (MPC module). In the following sub-sections, we 

present the experimental details and the four processes of the controller operation. 

 

 

Figure 5.1. Sequence of processes in the self-tuned HVAC controller. 

5.2.1 Office environment and sensor network 

An open-plan office space (9.9 m by 10.5 m) was used as test-bed for this study. The building 

has a Building Management System (BMS) with Niagara/AX software framework and JACE 

controllers for the HVAC operation and data acquisition system. The space has a hydronic radiant 

floor system (Figure 5.2) and three wall diffusers for ventilation that are served from an Air 

Handling Unit (AHU). The radiant floor is separated into eight independently controlled loops so 

that localized thermal control can be provided to each sub-zone. RTD sensors (Digi-Key, 10K ohm, 

1%) and thermocouples (Omega, T-type, ± 0.5℃) were installed in eight sections (0.6 m from the 

floor and on floor) to measure the air and slab surface temperatures (Figure 5.3, left). Ultrasonic 

flow meters (TUF-2000M, ± 1%) and thermocouples (Omega, T-type, ± 0.5℃) were attached and 

inserted at each pipe loop to monitor the cooling rate for each section (Figure 5.3, right). The 

incident solar radiation on windows was measured with a pyranometer (LI-COR 200-SL, 

resolution of 0.1 W/m2 and accuracy of 3%). A wireless data acquisition system (National 

Instruments) was deployed for the data collection. 
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Figure 5.2. Open-plan office space with radiant floor system and local control capabilities. 

       

 

Figure 5.3. Local sensor network (left); pipe loops of the radiant floor system with temperature 
sensors and flow meters installed (right). 

5.2.2 Learning module: personalized thermal preference modeling 

The learning module, which learns thermal preferences of individual occupants by 

developing personalized preference models with their feedback, is the first key component of the 

self-tuned controller. To learn individuals efficiently, we use a Bayesian clustering and online 
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classification algorithm that combines two sub-problems: (i) discovery of thermal preference 

clusters using an existing dataset; (ii) online classification of new occupants’, i.e., inferring their 

thermal preference cluster. The latter can be accomplished with much fewer observations than the 

development of different individual occupant models from scratch [104]. 

 In this approach, first, we develop a generalized thermal preference model which classifies 

occupants into different clusters based on their thermal preference responses under different 

conditions, i.e., group of people having similar thermal preference characteristics. This generalized 

model includes sub-models, which explain the thermal preferences of people in each cluster. We 

constructed the model with the equations in Fanger’s PMV model [1] and five additional 

parameters, and developed a probabilistic thermal preference model that is based on six well-

known factors (air temperature, mean radiant temperature, air speed, humidity, clothing insulation 

level, and metabolic rate) and can be trained with limited data. The model was trained with a subset 

of ASHRAE RP-884 database [5] collected from air-conditioned office buildings in North 

America. Figure 5.4 shows the four sub-models in our generalized model [103]. Each of the plots 

is the predictive probability distribution of occupant thermal preference (i.e., “want warmer,” “no 

change,” “want cooler”). Solid lines represent the median values of the probabilities (i.e., median 

models), and shaded areas represent the associated 95% credible intervals (i.e., 2.5- and 97.5-

quantiles of the predictive probability).  

Second, we infer personalized models for new occupants using a mixture of sub-models in 

the generalized model based on their feedback. However, measuring air speed, clothing level and 

metabolic rate is difficult in real buildings. Hence, we introduced hidden personal parameters with 

informative priors to handle the uncertainty related to the unmeasured variables [103]. More 

specifically, we made the following assumptions: (i) the metabolic rate follows a truncated 

Gaussian distribution of which the mean and variance are hidden (ii) there is a linear relationship 

between air temperature and clothing level reflecting occupants’ behavioral adaptation, and (iii) 

distribution of air speed follows the distribution in the subset of ASHRAE RP-884 database. We 

evaluated the performance of the proposed method with data collected from nine subjects (different 

from the occupants in this study) in a dedicated experiment. The proposed method showed better 

prediction performance compared to training a logistic regression model from scratch especially 

when the training data size is small, i.e., it is more efficient [103].  
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Figure 5.4. Predictive probability distributions calculated with sub-models for the four clusters. 
The displayed probability distributions were calculated with the following settings: MRT=air 

temperature, air speed=0.05 m/s, relative humidity=50 %, metabolic rate=1.2 met, and clothing 
level=0.6 clo. 

Figure 5.5 shows the joint probability of learning a new occupant, 𝑜. Colored and white 

nodes in the figure correspond to observed and latent variables, respectively. 𝑦 is the occupant 

thermal preference (i.e., “want warmer,” “no change,” and “want cooler”), 𝐸 is the overall thermal 

stress level, and 𝑧 is the thermal preference characteristic of the new occupant. 𝑇ୟ୧୰, MRT, RH, 

Spd , Met , and Clo  represent air temperature, mean radiant temperature, air speed, humidity, 

clothing insulation level, and metabolic rate, respectively. 𝛉 collects all the model parameters. 𝐸 

is predicted by the equations in PMV model with the five additional parameters, and 𝑦 is predicted 

by a linear discriminant analysis (LDA) formulation. The index 𝑖 labels each observation from the 

occupant. The variable 𝐃𝐚𝐭𝐚 is the training data used to develop the generalized model (i.e., the 

subset of ASHRAE RP-884 DB). In this study, we assume 𝑇ୟ୧୰௢
ሺ௜ሻ ൌ MRT௢

ሺ௜ሻ ൌ 𝑇୭୮௢
ሺ௜ሻ where 𝑇୭୮ is 

the estimated operative temperature with measured air and floor surface temperatures. Since we 

do not measure Spd, Met, and Clo in the field experiment, we assign the probability distributions 

mentioned above with personal parameters 𝛃௢. The posterior probability is all the parameters is: 



 
 

93 

𝑝ሺ𝑧௢, 𝛃௢, 𝛉|𝐲௢, 𝐗௢, 𝐃𝐚𝐭𝐚ሻ ∝ 𝑝ሺ𝐲௢|𝐗௢, 𝑧௢, 𝛃௢, 𝛉ሻ𝑝ሺ𝑧௢|𝛉ሻ𝑝ሺ𝛃௢ሻ𝑝ሺ𝐃𝐚𝐭𝐚|𝛉ሻ𝑝ሺ𝛉ሻ (5-1)

where 𝐲௢ ൌ ቀ𝑦௢
ሺଵሻ, … , 𝑦௢

ሺேሻቁ , 𝐗௢ ൌ ቄ𝐱௢
ሺଵሻ, … , 𝐱௢

ሺேሻቅ , 𝐱 ൌ ൫𝑇୭୮, RH൯ , and 𝑝ሺ𝐃𝐚𝐭𝐚|𝛉ሻ  is the data 

likelihood we defined to develop the generalized model. We can predict the thermal preference of 

the new occupant ൫𝑦௣൯ under certain conditions ൫𝐱௣൯ by employing the sum rule of probability 

theory: 

𝑝൫𝑦௣ห𝐱௣, 𝐲௢, 𝐗௢, 𝐃𝐚𝐭𝐚൯

ൌ ඵ ෍ 𝑝൫𝑦௣ห𝐱௣, 𝐲௢, 𝐗௢, 𝐃𝐚𝐭𝐚, 𝑧௢, 𝛃௢, 𝛉൯𝑝ሺ𝑧௢, 𝛃௢, 𝛉|𝐲௢, 𝐗௢, 𝐃𝐚𝐭𝐚ሻ
௭೚

𝑑𝛃௢𝑑𝛉 
(5-2)

 

The details of Eq. (5-1) and (5-2) are presented in our previous papers regarding the learning 

module [103,104]. 

We update the personalized thermal preference profiles every day after 6 p.m. with sensor 

data for indoor environment variables, and occupant feedback expressed through their preference 

votes, such as “want warmer,” “want cooler,” “no change.” 

 

 

Figure 5.5. Graphical representation of the joint probability for the personalized thermal 
preference models. 
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5.2.3 Model predictive control module 

In this section, we present the model predictive control module used in the self-tuned HVAC 

controller. First, we discuss the HVAC system, the control-oriented building model, and the 

optimization formulation. Subsequently, we explain the data communication and implementation 

settings.  

Building model  

A data-driven grey-box building model is constructed based on the state-space formulation 

as: 

       , ,1 d d w d ux n A x n B w n B u n   
 (5-3)

Once this state-space formulation is stacked in time series, the control input (𝐮 ) and 

temperature trajectories (𝐗) are in an explicit linear relation as: 
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(5-4)

which is suitable for implementation in the optimization algorithm. The state and input matrix (𝐴ௗ 

and 𝐵ௗ) consist of estimate parameters including the thermal capacity and resistance, as well as 

the coefficient multiplied to the heat flux input for the transmitted solar radiation and internal heat 

gain. The model includes five states: 𝑇ୡୟ୴ and 𝑇ୟ୧୰ represent the cavity and air temperature, 𝑇ୱ୳୰, 

𝑇ୱ୭, and 𝑇ୱ୧ represent the temperature of the slab surface, slab core where the pipe is located, and 

slab sink including the insulation layer, respectively. The cooling rates from the AHU (𝑄୅ୌ୙) and 

radiant floor system (𝑄୰ୟୢ ), are controlled inputs to 𝑇ୟ୧୰ and 𝑇ୱ୭ respectively. The exogenous 

disturbances from the internal heat gains (equipment, lighting, and people), 𝑄୧୬୲, are multiplied 

with coefficients 𝛽ୟ୧୰  and 𝛽ୱ୳୰  and are inputs to 𝑇ୟ୧୰  and 𝑇ୱ୳୰ . The incident solar radiation 

measured on the exterior of the south façade (𝑄ୱ୭୪) multiplied with coefficients 𝛼ୡୟ୴, 𝛼ୟ୧୰, 𝛼ୱ୳୰, is 

used as an input to 𝑇ୡୟ୴, 𝑇ୟ୧୰, and 𝑇ୱ୳୰.  

The parameter estimation was carried out with a distributed system identification approach 

[105]. In this method, the zone is disassembled into sub-systems. To ensure sufficient excitation, 

cooling was provided to alternate floor sections for about six to twelve hours and the minimum 
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surface temperature for the floor was 18~19 °C. The sub-system models were initially estimated 

in parallel, reducing the scale of the estimation problem, and then integrated using the dual 

decomposition method [105]. The structure of the integrated model consists of 33 capacitances 

and 64 resistances (33C64R) with one boundary temperature which is the outdoor air temperature. 

Figure 5.6 shows only a portion of the model by excluding the repeated structure for simplicity. 

We used data collected for 17 days to estimate (with data of 5 days) and validate (with the rest of 

the data) the building model. The Root Mean Square Error (RMSE) during the estimation period 

for the air and slab surface temperature in each section ranges from 0.43 to 0.58 °C, and from 0.45 

to 0.68 °C, respectively. This accuracy is considered to be reasonably good considering the 

complexity of the model. The details of the building model are presented in [105]. 

 

Figure 5.6. Grey-box model structure. 

HVAC system and objective function 

The cooling source in the actual test-bed is provided from the campus plant. However, 

because this type of configuration is not usual for typical office buildings, we assume that the 

chilled water is supplied by an air-cooled chiller to further generalize results. For this study, an 

air-cooled chiller model (Trane CGAM20) from EnergyPlus engineering reference is used. Its 

nominal capacity (𝑄୰ୣ୤,େୟ୮) is 68.9 kW and it is scaled down to 8 %. The coefficient of performance 

(𝐶୰ୣ୤,େ୓୔) is 2.67.  

The objective function is the electricity consumption of the chiller, 𝑓ୡ୦୧୪୪ୣ୰, as: 
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 chillermin f u  (5-5)
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𝑓େୟ୮, 𝑓େ୓୔, and 𝑓୔୐ୖ represent the capacity, coefficient of performance (COP), and part load 

ratio (PLR), respectively. The fan and pump electricity use is neglected. The decision variable 𝐮 

is the Part Load Ratio (PLR) of the chiller. The dimension of the controlled input vector is 48 for 

a 24hr prediction horizon with 30 min time-step. The capacity and COP curves are biquadratic and 

require two control inputs. The leaving water temperature (𝑇୪ୣୟ୴୧୬୥) is fixed at 13 °C which yields 

a quadratic polynomial with the outdoor air temperature known based on weather forecast. The 

resulting optimization problem has a convex form with linear inequality constraints. The first 

constraint represents the temperature bounds of the conditioned zone; 𝐓ୠ୭୳୬ୢ is the upper or lower 

temperature bounds, and 𝐂𝐓 is the matrix multiplied to all states to extract the target temperature 

states. For  𝐓ୠ୭୳୬ୢ, we apply eight sets of upper and lower bounds computed with personalized 

preference models to occupied hours (8 a.m. – 6 p.m.) and use 27 °C and 15 °C respectively to 

non-occupied hours. Additional bounds are used for certain states of the system, for example, the 

slab temperatures in the radiant system. The last constraint is set for the capacity of the HVAC 

source. 𝛀 represents the predefined matrices as shown in Eq. (5-4). This constraint quadratic 

programming is solved with quadprog in MATLAB environment. If the solver cannot find the 

optimal solution with 𝐓ୠ୭୳୬ୢ, we decrease the highest lower bound (among eight lower bounds for 

the eight sections) or increase the lowest upper bound (among eight upper bounds) for occupied 

hours by 0.5 °C, alternately, until it finds the solution. 
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Data communication  

A schematic for the MPC implementation is shown in Figure 5.7. MPC calculations are 

performed in a server computer with MATLAB that has access to weather forecast data for 24 

hours prediction. The optimal cooling rates are calculated and sent to Niagara server through 

Modbus communication. Then the valves in the radiant floor system are activated to satisfy the 

signal in each loop for a given time-step, 30 min. After each time-step, using sensor data for the 

zone and slab temperatures, the control and exogenous input are sent to the server computer, for 

the state estimation by the Kalman filter.  

 

Figure 5.7. Data communication for MPC. 

Implementation settings 

In this section, we present information on disturbances and constraints used for the MPC 

implementation. For the disturbance prediction, the occupant and equipment heat gains are set to 

65 and 50 W based on ASHRAE Standard 55 [7] and history data from the test-bed. The occupancy 

schedule is from 8 a.m. to 6 p.m. The air system provides ventilation by regulating the supply air 
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temperature to the average value of the lower and upper operative temperature bounds. The relative 

humidity of the zone is set to 55 % via the cooling coil control in AHU to eliminate the potential 

risk for condensation on the floor due to the low surface temperature. This requires additional 

conditioning, which is not considered in the MPC algorithm.  

The operative temperature is a convex combination of the air and Mean Radiant Temperature 

(MRT). In this study, it is calculated using the measured air and slab surface temperatures as the 

air flow rate is less than 0.2 m/s [7]. A dedicated experiment was carried out to determine the 

weighting coefficients of the air and slab surface temperature which were found to be 0.77 and 

0.23 [106].  

The limit of the maximum difference between the air and slab surface temperature is set to 

be 7 °C [107,108], and the low-bound of the slab surface temperature is set to be 15 °C [109] to 

eliminate potential thermal discomfort of the occupants. The maximum available cooling capacity 

was set to be 5 kW based on maximum water flow rate of 12 gallon per minute and 15 °C minimum 

slab surface temperature.  

5.2.4 Integrating preference learning and MPC: Operative temperature control bounds 

To bridge the learning and MPC modules, we need to determine a set of lower and upper 

operative temperature control bounds using the personalized thermal preference models. The best 

set of lower and upper control bounds (𝑇lb
∗ , 𝑇ub

∗ ) minimizes the operational cost during the control 

period. Here, the cost includes both energy consumption and occupant satisfaction. Since we do 

not know the actual operational cost before applying the control bounds, we choose a set of control 

bounds (𝑇lb, 𝑇ub) minimizing the expected cost as:  

ሺ𝑇lb
∗ , 𝑇ub

∗ ሻ ൌ argmin
்lb,்ub

𝔼ሾ𝑓ሺ𝑇lb, 𝑇ubሻሿ (5-8)

where 𝑓ሺ𝑇lb, 𝑇ubሻ is the cost with a set of control bounds 𝑇lb and 𝑇ub. We simplify this function by 

(i) defining the meaning of choosing a set of control bounds, and (ii) introducing a cost matrix 𝐶 

(Figure 5.8) to make the optimization feasible. Choosing a set of control bounds represents our 

expectation, 𝑦ො, that the target occupant(s) would be satisfied within the bounds as: 

𝑦ො൫𝑇୭୮, 𝑇lb, 𝑇ub൯ ൌ ቐ

1, 𝑇ub ൑ 𝑇୭୮

2, 𝑇lb ൏ 𝑇୭୮ ൏ 𝑇ub

3, 𝑇୭୮ ൑ 𝑇௟௕

 (5-9)

where 𝑦ො ൌ 1, 2, 3 represent “want cooler,” “no change,” and “want warmer,” respectively. 
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The cost matrix 𝐶 defines costs for different misclassification cases. For example, if a person 

wants cooler conditions (yൌ 1), and the controller expects the person would want no change (𝑦ො ൌ

2), then the misclassification cost for the instance is 𝑎 (element 𝐶ଵ,ଶ). We assign a higher cost (4) 

for misclassifying an instance of “want warmer” or “want cooler” to each other considering the 

clear order between classes. 

  

Figure 5.8. Cost matrix for the calculation of operative temperature control bounds. 

Eq.(5-7) can then be simplified to: 

ሺ𝑇lb
∗ , 𝑇ub

∗ ሻ ൌ argmin
்lb,்ub

න ෍ 𝐶௬,௬ො൫ ౥்౦,்lb,்ub൯𝑝൫𝑦ห𝑇୭୮, RH, 𝐲௢, 𝐗௢, 𝐃𝐚𝐭𝐚൯𝑝൫𝑇୭୮൯

ଷ

௬ୀଵ

𝑑𝑇୭୮ (5-10)

where 𝑝൫𝑦ห𝑇୭୮, RH, 𝐲௢, 𝐗௢, 𝐃𝐚𝐭𝐚൯ is the predictive distribution (Eq. (5-2)) of the target occupant 

personalized model, given 𝑇୭୮  and RH, and 𝑝൫𝑇୭୮൯ is the probability distribution of operative 

temperature. Here, we assume: (i) a uniform distribution for 𝑝൫𝑇୭୮൯ for 𝑇୭୮ between 15 – 29 ℃, 

and (ii) RH is 55 % (the relative humidity setpoint of AHU). This approach always gives the 

optimal control bounds regardless of the personalized model’s shape. 

In Figure 5.8, the parameter 𝑎 controls the balance between the importance level of occupant 

satisfaction vs. energy consumption, i.e., the personalized comfort-energy tradeoff. Here, 𝑎 should 

be greater than 0 and less than 2 to make the cost of misclassification always positive. If we use 

higher 𝑎, i.e., higher cost for misclassifying a dissatisfied instance as satisfied, but lower cost for 

the opposite case, it means that correctly detecting dissatisfaction is more important than detecting 

satisfaction. This will provide conservative control in terms of occupant satisfaction. Conversely, 

lower 𝑎 will result in higher energy savings. Figure 5.9 shows how 𝑎 modulates the control bounds 
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with a personalized model: lower/higher 𝑎 results in wider/narrower control range, respectively. 

In our experimental implementation, we set 𝑎 ൌ 1. 

 

Figure 5.9. Three different control bounds with different 𝑎’s. 

We can easily extend this approach to calculate the optimal control bounds for a space shared 

by multiple occupants but conditioned by one radiant floor loop as: 

ሺ𝑇lb
∗ , 𝑇ub

∗ ሻ ൌ argmin
்lb,்ub

න ෍ ෍ 𝐶௬,௬ො൫ ౥்౦,்ౢౘ,்౫ౘ൯𝑝൫𝑦ห𝑇୭୮, RH, 𝐲௢, 𝐗௢, 𝐃𝐚𝐭𝐚൯

ଷ

௬ୀଵ

𝑝൫𝑇୭୮൯

ை

௢ୀଵ

𝑑𝑇୭୮ (5-11)

where 𝑜 means each occupant in the space. 

5.2.5 Experimental implementation of self-tuned controller  

We implemented a “baseline” and the self-tuned controller in the open plan office during 

August-October 2018. Here, the “baseline” controller is the MPC module with a set of default 

control bounds, i.e., no self-tuning with the learning module. We calculated the default control 

bounds, (21.1 ℃ and 25.5 ℃), based on the generalized preference model with Eq. (5-9) and it 

was applied to all the eight sections. Note that the default control bounds were not set ad hoc, but 

they were the best option available before observing any data from the occupants, i.e., best option 

based on our prior knowledge. 

Nine occupants, 22-33 years old, not familiar with this research, were recruited for the study. 

The feedback collection took place during weekdays between 9:00 a.m. and 6:00 p.m. Based on 

their meeting and work schedule, the occupants could enter and leave the office without restriction 

and performed their usual workload (computer-related work, reading, writing, etc.). Each occupant 
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participated in the experiment for a minimum of 16 days to a maximum of 25 days depending on 

his/her availability. The study was approved by the Institutional Review Board (IRB Protocol #: 

1503015873). 

The occupants reported their thermal preference every hour they were present in the office 

with the following survey question provided via a webpage: “How satisfied are you with current 

thermal conditions?” They could select one of the three answers: “I prefer warmer” / “I prefer 

cooler” / “I am satisfied with current conditions.” To ensure thermal adaptation, the occupants 

were asked to take the first survey one hour after their first (and intermediate) arrivals in the office. 

The desk location of each participant is shown in Figure 5.10, where the subject number and 

corresponding radiant floor loop section are marked. The subject numbers were used to record and 

track the individual thermal preference. The local air and floor surface temperature near the 

occupants were measured as described in Section 5.2.1.  

For the first five days in August, the baseline controller was used. After this period, we 

implemented the self-tuned controller for 19 weekdays. Personalized preference models of the 

occupants were updated based on their daily feedback. Subsequently, the local control bounds in 

each thermal zone were updated with personalized preference models of occupants in that zone. 

Finally, we applied the baseline controller again for three days, for further data collection and 

validation checks.  

 

 

Figure 5.10. Space floor plan with occupant location and radiant floor control section. 
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5.3 Experimental results 

Figure 5.11 shows the evolution of the upper and lower control bounds of operative 

temperature over the period with the self-tuned control, for each radiant floor section. Day 0 means 

the last day of the first baseline period. Subject 9 was not in the office for the first four days. The 

control bounds evolve fast during the first three days and converge after 7 to 13 days. The 

converged control ranges of sections 1, 2, and 5 are significantly lower than the default range, 

while that of section 3 is only wider for the low temperature side. The control range of section 4 

is similar to the default. 

 

  

Figure 5.11. Evolution of the control bounds during the period with the self-tuned controller. 

Figure 5.12 shows the personalized preference profiles of the nine subjects at the last day of 

the control implementation. The profiles developed with feedback from subjects 1, 2, 3, and 4 

indicate that they preferred cooler conditions, i.e., green curves peak at lower temperatures 

compared to other subjects (and lower control range in sections 1 and 2 of Figure 5.11, 

corresponding to these subjects). Note that we computed the control bounds for shared spaces 

using Eq. (5-10). An interesting case, indicating the effect of individual preferences, is presented 

for subjects 7 and 9. Figure 5.12 shows very similar preference profiles for these two subjects, 
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however Figure 5.11 shows that the control range for subject 7 (seated in section 4) is higher than 

that of subject 9 (seated in section 5). The reason is that subject 7 shared section 4 with subject 8 

who preferred relatively warmer conditions, as seen from Figure 5.12.  

 

 

Figure 5.12. Personalized thermal preference profiles of the nine subjects. 

The upper and lower control bounds and operative temperature of the five sections during a 

day after the bounds converged are presented in Figure 5.13. We can observe that the operative 

temperatures were low in the morning and gradually increased over time. This is because, the MPC 

controller pre-cooled the space in the morning when outdoor temperature is low, and the COP of 

the chiller is high to minimize cooling energy consumption. Theoretically, if cooling is required 

during the entire day, we expect that the temperature trajectory controlled by an optimal controller 

reaches the upper bound, if there are no other constraints. Nevertheless, in section 3, 4, and 5, the 

temperature did not reach the upper bounds. The reason was that the thermal dynamics of the five 

sections are interconnected (adjacent zones) and sections 1 and 2 had lower upper bounds.  
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Figure 5.13. Operative temperature trajectory of the five sections in the office with the self-tuned 
controller. Red and Blue dashed lines represent operative temperature upper and lower bounds 

respectively. 

 
Figure 5.14 shows the upper/lower control bounds and the operative temperature trajectory 

of section 1 in two different days with the default control bounds and self-tuned (converged) 

control bounds, respectively. Blue triangles and green circles represent “want cooler” and “no 

change” votes from subject 1, whose desk is in section 1. With the default control bounds, the 

subject mostly answered “want cooler,” while the subject was satisfied with the converged control 

bounds and lowered operative temperature.  

 

Figure 5.14. Thermal preference votes from subject 1 in two different days with the default 
control bounds and self-tuned control bounds. Blue triangles and green circles represent “want 

cooler” and “no change” votes, respectively. Dashed lines represent operative temperature upper 
and lower bounds. 

To objectively evaluate the controller’s performance in terms of occupant satisfaction, we 

compute a quantity which represents the level of dissatisfaction based on subjects’ preference votes 

as: 

Dissatisfaction Level ൌ
 number of dissatisfaction votes of all the subjects

 number of votes of all the subjects
 (5-12)
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where dissatisfaction votes include both “want warmer” and “want cooler.”  

Blue dots in Figure 5.15 indicate the daily dissatisfaction level over the entire period. Due 

to the high noise from the randomness in preference votes and the differences in the subjects’ 

occupancy, the decreasing trend in dissatisfaction levels during the period with the self-tuned 

controller is not as visible. Therefore, a Bayesian Beta regression was conducted to investigate this 

further. The reason of using a Beta regression instead of a linear regression is that the dependent 

variable, dissatisfaction level, is within the unit interval. Details of the beta regression are 

presented in Appendix D. In Figure 5.15, the blue solid line and the orange shaded area 

respectively represent the median and 95% credible interval of mean of beta distributions (𝜇 in Eq. 

(D-2)) over the self-tuned control period. The wider green shaded area represents the full 

uncertainty of the dissatisfaction level, and the blue dots indicate the dissatisfaction level 

calculated with the actual votes. This analysis helps to clearly realize the decreasing trend in 

dissatisfaction when the self-tuned controller is employed, compared to the baseline MPC control. 

Figure 5.16 shows the posterior distribution of the slope parameter of the Beta regression (𝛽ଵ in 

Eq. (D-2)). The posterior probability of the slope parameter being positive is nearly zero, which 

means that there is a high probability that there is a decreasing trend, i.e., the proposed controller 

improved the level of occupant satisfaction over time. 

 

Figure 5.15. Daily dissatisfaction level during the entire period (blue dots) and a Beta regression 
model for the period with the self-tuned controller (blue line and shaded areas). 
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Figure 5.16. Posterior probability distribution of the slope parameter in the Beta regression 
model. 

The distributions of the daily dissatisfaction level during the baseline MPC controller period 

and the proposed self-tuned controller period is shown in Figure 5.17. We used data from only the 

last eight days of the proposed controller implementation, to evaluate the dissatisfaction level with 

the converged control bounds. As shown in the figure, there is a notable difference in the 

dissatisfaction level between the two periods. This comparison also supports that the proposed 

controller improved the level of occupant satisfaction with the thermal environment. 

 

Figure 5.17. Distributions of the daily dissatisfaction level during two periods. Baseline refers 
the period with the baseline controller; Proposed refers to the last eight days of the period with 

the self-tuned controller. 
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In terms of cooling energy consumption, the results of Figure 5.11 indicate that the proposed 

controller would consume more cooling energy, since in general the self-tuned controls operative 

temperature bounds are lower than the default bounds. However, since cooling energy 

consumption is affected by outdoor temperature, a direct comparison between the two periods is 

not accurate –the impact of outdoor temperature should be considered. To overcome this problem, 

we quantified the effect of using one of the two controllers on energy consumption during the 

summer period by: (i) developing linear models for the relationship between the energy 

consumption and the mean outdoor temperature during the two control periods, and (ii) integrating 

out the mean outdoor temperature from the models. Details of this analysis are presented in 

Appendix E while Figure 5.18 shows the predictive probability distribution of the daily energy 

consumption with each controller induced by this analysis. We can observe that the proposed 

controller could increase the energy consumption by 23.13 % in mean and 30.47 % in median 

values. Note that the baseline controller in this study is the MPC module (described in Section 

5.2.3) but not a traditional setpoint tracking controller with fixed setpoint schedule. 

 

Figure 5.18. Predictive probability distributions of daily energy consumption with the baseline 
and self-tuned controllers. 

From the experimental results, we conclude that the default control range, (21.1-25.5 ℃), 

was high for five out of nine subjects. Also, the proposed self-tuned controller adjusted the bounds 

based on subjects’ preference votes, and reduced the level of occupant dissatisfaction while using 

more cooling energy as expected. The comparative satisfaction and energy results depends on how 

the default control bounds are set. For example, if the default bounds were low, e.g., (18-22 ℃), 

the energy consumption with the baseline case would increase, while the dissatisfaction level 
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would decrease. Finally, if we used a different 𝛼 in the cost matrix of Figure 5.8, the results would 

differ. To further investigate this, a supplementary simulation study was conducted. 

5.4 Simulation study 

5.4.1 Simulation platform 

A simulation framework consisting of multiple components was developed (Figure 5.19), 

which mimics the closed-loop processes of Figure 5.1. A building model, which is controlled by 

the MPC module (described in Section 5.2.3), returns the indoor operative temperature (𝑇୭୮) with 

a timestep of 30 minutes. Here, we use the same RC model (Figure 5.6) and input data for both 

MPC and building simulation to eliminate other effects (e.g., accuracy of predictive model, error 

in disturbance forecast, etc.). We used nine synthetic occupants with the personalized preference 

models of Figure 5.12. They generate synthetic preference votes (𝑦) every hour from 9:00 am to 

5:00 pm (i.e., nine votes per person per day) using the resulting operative temperature at each time. 

The preference learning module trains/updates personalized preference models, while the control 

bounds (𝑇୪ୠ
∗ , 𝑇୳ୠ

∗ ) are updated at 6:00 pm every day. Here, the preference learning module does not 

have any information about synthetic occupants a priori. We run the simulation with measured 

weather data for the period of August 31st - September 20th, 2018. The simulation environment is 

developed in MATLAB and Python, including the MATLAB Engine API for Python. 

 

 

Figure 5.19. Simulation platform. 



 
 

109 

5.4.2 Simulation results 

Figure 5.20 shows the evolution of control bounds with the self-tuned controller where 𝑎 ൌ

1. The results are in agreement with Figure 5.11 (evolution of control bounds in the experiment), 

indicating the individual differences between control sections.  

 

Figure 5.20. Evolution of the control bounds with the self-tuned controller in simulation. 

The effect of two different sets of control bounds for the baseline controller (red box plots) 

and seven different 𝑎 ’s for the proposed self-tuned controller (black box plots), on both 

dissatisfaction level and the mean daily energy consumption, are shown in Figure 5.21. We used 

results of days 5-20, i.e., after the control bounds converged with the self-tuned controller. 

Comparing the results with Figure 5.17 (baseline controller with control bounds of (21.1-25.5 ℃) 

and the proposed controller with 𝑎 ൌ 1), we can observe that: (i) dissatisfaction levels in both 

cases increased, and (ii) the difference between the two cases increased. The reason is that the 

synthetic occupants were assumed to be in the office from 9:00 am to 5:00 pm, while real 

occupancy was higher in the middle of the day.  

Since the indoor temperature is low in the morning and gradually increases over time with 

the MPC, synthetic occupants experienced lower and higher temperatures more frequently 

compared to the real occupants. Note that a dissatisfaction level of 0.5 can be interpreted as 

occupants are being dissatisfied with the thermal conditions during the half of their workhours on 
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average. Therefore, the default control bounds (21.1-25.5 ℃) would not be suitable in real office 

buildings for people with similar thermal preference responses with the test-subjects of this study, 

even if they may result in energy savings, as shown in Figure 5.21. Comparing the baseline 

controller with control bounds of (18-22 ℃) and the proposed controller with 𝑎 ൌ 1, we can see 

that an ad hoc decision on control bounds can result in both higher dissatisfaction level and energy 

consumption. 

To evaluate the effects of 𝑎 on occupant satisfaction and energy consumption, we tested 

seven cases, 𝑎 ൌ 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75. The results in Figure 5.21 show that 𝑎  can 

effectively control the comfort-energy trade-off. For example, if there are complaints from 

occupants, the system will be able to self-tune and adjust automatically to satisfy more occupants, 

while consuming more energy. This process can be automated using the self-tuned controller 

developed in this study, instead of using uncertain decisions by building managers, resulting in 

energy waste or occupant dissatisfaction, can be minimized. 

 

 

Figure 5.21. Daily dissatisfaction level (y-axis) and mean daily energy consumption (x-axis) of 
different baseline and self-tuned controllers. 
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5.5 Conclusions and Discussion 

In this chapter, a novel self-tuned HVAC controller is presented, which improves occupant 

thermal satisfaction and energy efficiency. The controller learns the preferences of real occupants 

from their feedback, is automatically updated, and controls the system operation to optimize 

energy consumption. The evolution of personalized thermal preference models (online-learning) 

and the delivery of thermal conditions with model predictive control (MPC-based HVAC 

operation) form a closed-loop. To integrate these two parts into the loop, we propose a new method 

that always provides a set of lower and upper indoor temperature bounds for both private and 

shared spaces without tweaking the output of personalized comfort models nor solving 

computationally burdening multi-objective optimization. The control bounds are based on a 

decision-making algorithm which minimizes the expected cost, different from ad hoc rules 

proposed in previous research. 

This study presents the first successful implementation of a controller that integrates model 

predictive control and personalized thermal preference models, in a real occupied office space. We 

implemented our self-tuned controller in an open-plan office space conditioned with a radiant floor 

cooling system, to facilitate local thermal environment control. Localized operative temperature 

bounds in each of the eight radiant floor loops are determined based on personalized thermal 

preference models, developed using a Bayesian clustering and online classification algorithm. The 

results showed that the self-tuned controller can decrease occupant thermal dissatisfaction votes 

compared to a baseline MPC controller. The relative comparison of satisfaction and energy results 

depends on how the default bounds are selected, as well as on the parameters used in the cost 

matrix for the proposed self-tuned controller.  

To further evaluate the performance of the controller and generalize results, the self-tuned 

controller with local MPC and synthetic occupant preference profiles were incorporated into a 

building simulation platform. The learning module trains personalized preference models, while 

the control bounds are updated every day. The results show that an ad hoc decision on control 

bounds can result in both higher dissatisfaction level and energy consumption. In addition, the cost 

matrix tunable parameter can effectively control the comfort-energy trade-off; the system is able 

to adjust automatically to satisfy more occupants as required. In this way, uncertain decisions 

resulting in energy waste or occupant dissatisfaction can be minimized. 
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In long-term implementation scenarios, we think that personalized thermal preference 

models should be continuously or periodically updated to capture long-term comfort/preference 

variations due to the changes in clothing and activity pattern [103]. However, updating models 

requires feedback from occupants, and continuously asking their preference votes is not practical 

in the real world since it cannot avoid disturbing occupants. Hence, non-/less-intrusive ways of 

collecting/monitoring occupants’ thermal preference would be required in the future. 
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 BAYESIAN MODELING APPROACH FOR SMART AND LESS-
INTRUSIVE USER-INTERFACE TOWARDS HUMAN-CENTERED 

HVAC OPERATION 

6.1 Overview 

In this chapter, we present a Bayesian modeling approach which allows incorporating 

voluntary feedback data (comfort-related responses), collected via participatory interfaces, along 

with requested feedback data, into the thermal preference learning framework. The incorporation 

is done by explicitly considering occupants’ participation –a type of behavior –in the model. We 

evaluate the approach with two different datasets we collected from an experiment including two 

experimental setups with human test-subjects. Since the approach allows using both requested and 

participatory responses, we can (i) mainly rely on participatory responses and (ii) additionally 

request responses only when they are truly needed to learn one’s thermal preference effectively 

and less-intrusively. To realize this, we propose a smart occupant feedback request algorithm, that 

determines whether to request feedback at each moment based on the quantified value of the 

request. To evaluate the algorithm, we conduct a simulation study with various scenarios.  

6.2 Methodology 

6.2.1 Experimental study 

To collect data for the study, an experiment was conducted with five human test-subjects 

using three identical perimeter south-facing private offices (3.3m × 3.7m × 3.2m high) in West 

Lafayette, Indiana (Figure 6.1) in March and April 2019. The offices have one exterior curtain 

wall façade with 54% window-to-wall ratio, and a high-performance glazing unit with a selective 

low-emissivity coating (visible transmittance: 70%, solar transmittance: 33%). They are equipped 

with VAV systems, motorized shades, and dimmable electric lights. A commercial building 

management system (BMS) allows us to monitor, control and automate all building systems. In 

this study, we fixed the dimming level of the electric lights at 100 % and the shade position at 25 % 

to eliminate the potential impact of changing the visual environment on the thermal preference of 

test-subjects. The subjects performed their usual workload (computer-related work, reading, 

writing, etc.) during the experiment and wore similar clothes every time they participated. In each 
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room, one monitor was designated for a user-interface (Figure 6.2) that the subjects used to report 

their thermal preference by selecting one of the following three answers: “I prefer warmer” / “I 

prefer cooler” / “I am satisfied with current thermal conditions.” The study was approved by the 

Institutional Review Board (IRB Protocol #: 1503015873). The air temperature was measured each 

minute with two shielded T-type thermocouples on the left and right side of the sitting location, 

and the average value was used in this study. For the data acquisition, A wireless data acquisition 

system (National Instrument system consists of NIcRio-3024, NI9795, and WSN-3212) was 

deployed for the data collection. The globe temperature, relative humidity, and local air speed were 

also recorded but were not used in this study. 

  

Figure 6.1. Exterior and interior view of the offices. Figure 6.2. Interface. 

In the experiment, two different experimental setups were used to collect two datasets from 

each person, which are “requested” and “participatory,” respectively. In the requested setup, the 

interface was activated if the subject stayed in the room for 30 minutes and the subjects were 

requested to report their thermal preference. Once they submitted a response, the 30-minute timer 

was reset, the interface became deactivated, and the room air temperature setpoint was changed to 

the next value in one of the pre-determined schedules listed in Table 6.1. If the subject left for a 

short break, the timer was reset when they came back, but the setpoint was maintained. The 

subjects were asked to report their thermal preference six times before and after lunch. Each subject 

participated in this setup for four days and experienced all the schedules. For each occupant, data 

collected in this setup is called a requested dataset. 

Table 6.1. Setpoint schedules (°C) applied in the requested setup. 

Sch. 1st 2nd 3rd 4th 5th 6th Break 7th 8th 9th 10th 11th 12th

1 25 24.5 24 23.5 23 22.5 - 22 21.5 21 20.5 20 19.5
2 19.5 20 20.5 21 21.5 22 - 22.5 23 23.5 24 24.5 25
3 27 26.5 26 25.5 25 24.5 - 24 23.5 23 22.5 22 21.5
4 21.5 22 22.5 23 23.5 24 - 24.5 25 25.5 26 26.5 27
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In the participatory setup, the interface was always activated (without any survey request), 

and the subjects could report their thermal preference, voluntarily, if and whenever they wanted. 

In this setup, the air temperature setpoint was changed based on the subject’s thermal preference 

responses with the following rule (the subjects were informed that the room air temperature would 

be adjusted based on their responses without explaining the details):  

 “prefer cooler” → decrease by 0.5 °C 

 “satisfied”  → no setpoint change 

 “prefer warmer” → increase by 0.5 °C 

To avoid frequent temperature changes, responses submitted within 20 minutes after 

entering the room or after the previous response were ignored. The subjects were asked to stay in 

the room for three hours before and after their lunch. Different initial temperature setpoints (i.e., 

25, 22.5, 20 °C) were applied at the beginning of each session to avoid bias as much as possible. 

Each subject participated for three days (six sessions) in this setup and experienced each initial 

temperature setpoint twice. For each occupant, data collected in this setup is called a participatory 

dataset. 

6.2.2 Personalized thermal preference models using requested and participatory data 

Two different model structures are considered for developing personalized thermal 

preference models with the requested and participatory datasets (Figure 6.3). For the first one, we 

use the linear ordered probit model [110] considering the obvious order between the thermal 

preference responses (Model 1 in Figure 6.3). In other words, we assume that there is a latent 

quantity representing the thermal state of one’s body and mind, 𝑙. If this quantity is below a certain 

threshold, 𝜏ଵ, one will answer “prefer warmer”; if it is above a certain threshold, 𝜏ଶ, one will 

answer “prefer cooler”; and in between, one will answer “satisfied.” This quantity is affected by 

multiple factors, e.g., air temperature, mean radiant temperature, air speed, metabolic rate. In this 

study, a linear relationship between air temperature, 𝑡௔, and the latent quantity, 𝑙, is assumed, and 

the aggregated effect of all the unconsidered factors on the latent quantity, ℎ௟, is assumed to follow 

the standard normal distribution, i.e., 𝑝ሺ𝑙|𝑡, 𝛃ሻ ൌ 𝒩ሺ𝑙|𝑓ሺ𝑡ሻ, 1ሻ, where 𝑡 ൌ ሺ𝑡௔ െ 23.25ሻ 1.875⁄  is 

the scaled air temperature, 𝑓ሺ𝑡ሻ ൌ 𝛽଴ ൅ 𝛽ଵ𝑡, 𝒩ሺ∙ |𝜇, 𝜎ଶሻ is the PDF of a normal distribution with 
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mean 𝜇 and variance 𝜎ଶ, and 𝛃 ൌ ሺ𝛽଴, 𝛽ଵሻ. We set 𝜏ଵ ൌ െ𝜏ଶ to make the probability of the person 

being satisfied is maximized at 𝑙 ൌ 0, i.e., neutral state. Subsequently, the probability of 𝑦 is 

modeled as 

𝑝ሺ𝑦 ൌ 1|𝑡, 𝛃, 𝜏ሻ ൌ 𝑝ሺ𝑙 ൏ െ𝜏|𝑡, 𝛃, 𝜏ሻ ൌ Φ൫െ𝜏 െ 𝑓ሺ𝑡ሻ൯ (6-1)

𝑝ሺ𝑦 ൌ 0|𝑡, 𝛃, 𝜏ሻ ൌ 𝑝ሺെ𝜏 ൏ 𝑙 ൏ 𝜏|𝑡, 𝛃, 𝜏ሻ ൌ Φ൫𝜏 െ 𝑓ሺ𝑡ሻ൯ െ Φ൫െ𝜏 െ 𝑓ሺ𝑡ሻ൯ (6-2)

𝑝ሺ𝑦 ൌ െ1|𝑡, 𝛃, 𝜏ሻ ൌ 𝑝ሺ𝜏 ൏ 𝑙|𝑡, 𝛃, 𝜏ሻ ൌ 1 െ Φ൫𝜏 െ 𝑓ሺ𝑡ሻ൯ (6-3)

where 𝜏 ൌ 𝜏ଶ , Φሺ∙ሻ is the CDF of the standard normal distribution and 𝑦 ൌ െ1,0,1 represent 

“prefer cooler,” “satisfied,” and “prefer warmer,” respectively (Figure 6.4). The key point in this 

model is that we consider the latent quantity, 𝑙, which is assumed to determine the occupant’s 

response. This quantity plays a key role also in the second model structure. 

  

Figure 6.3. Model structures. Figure 6.4. Application of the linear ordered probit model. 

The second model structure in this study is designed to develop one’s personalized 

preference model with participatory preference data (Model 2 in Figure 6.3). Relationships 

between 𝑡, 𝑙, and ℎ௟ are the same as described above. 𝑦 has one more class, 𝑦 ൌ 2, representing an 

instance of no response in the participatory scenario. To model 𝑦, which is now one’s participatory 

preference responses and instances of no response, we explicitly consider one’s participations (i) 

triggered by one’s thermal dissatisfaction/discomfort, 𝑣ଵ; (ii) due to other reasons, 𝑣ଶ. Regarding 

𝑣ଵ, if the occupant is not satisfied with the current thermal condition, |𝑙| ൐ 𝜏, the chance of one’s 

participation will increase as 𝑙 goes far from zero. Here, even if we can observe the latent quantity 

𝑙 , we cannot perfectly predict 𝑣ଵ  since there are unconsidered factors, e.g., level of 

distraction/work load, affecting the process. ℎ௩భ
is the aggregated effect of such unconsidered 

factors, which we assume to follow a zero-mean normal distribution, 𝒩൫ℎ௩భ
ห0, 𝜎௩

ଶ൯. We assume 

that if 𝑢 is smaller than െ𝜏 and 𝑢 ൅ ℎ௩భ
 is smaller than a threshold, 𝛿, where 𝑢 ൌ െ|𝑙|, then the 

person will participate, 𝑣ଵ ൌ 1; otherwise, the person will not. i.e., the probability of 𝑣ଵ is modeled 

as:  
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𝑝ሺ𝑣ଵ ൌ 1|𝑢, 𝛿, 𝜎௩ሻ ൌ ቐ
0, 𝑢 ൒ െ𝜏

Φ ൬
𝛿 െ 𝑢

𝜎௩
൰ , 𝑢 ൏ െ𝜏 (6-4)

𝑝ሺ𝑣ଵ ൌ 0|𝑢, 𝛿, 𝜎௩ሻ ൌ 1 െ 𝑝ሺ𝑣ଵ ൌ 1|𝑢, 𝛿, 𝜎௩ሻ (6-5)

Regarding 𝑣ଶ, we model the probability of 𝑣ଶ as a Bernoulli distribution: 

𝑝ሺ𝑣ଶ ൌ 0|𝑞ሻ ൌ 𝑞 (6-6)

𝑝ሺ𝑣ଶ ൌ 1|𝑞ሻ ൌ 1 െ 𝑞 (6-7)

where 0 ൏ 𝑞 ൏ 1. 𝛿, 𝜎௩, and 𝑞 represent how active the person is in using the interface and how 

much aleatoric uncertain is in the prediction of the participation. Consequently, 𝑦 is modeled as 

𝑝ሺ𝑦 ൌ 1|𝑡, 𝛉ሻ ൌ ൫1 െ 𝑝ሺ𝑣ଵ ൌ 0|𝑙 ൏ െ𝜏, 𝛉ሻ𝑝ሺ𝑣ଶ ൌ 0|𝛉ሻ൯𝑝ሺ𝑙 ൏ െ𝜏|𝑡, 𝛉ሻ (6-8)

𝑝ሺ𝑦 ൌ 0|𝑡, 𝛉ሻ ൌ 𝑝ሺ𝑣ଶ ൌ 1|𝛉ሻ𝑝ሺെ𝜏 ൏ 𝑙 ൏ 𝜏|𝑡, 𝛉ሻ (6-9)

𝑝ሺ𝑦 ൌ െ1|𝑡, 𝛉ሻ ൌ ൫1 െ 𝑝ሺ𝑣ଵ ൌ 0|𝜏 ൏ 𝑙, 𝛉ሻ𝑝ሺ𝑣ଶ ൌ 0|𝛉ሻ൯𝑝ሺ𝜏 ൏ 𝑙|𝑡, 𝛉ሻ (6-10)

𝑝ሺ𝑦 ൌ 2|𝑡, 𝛉ሻ ൌ 𝑝ሺ𝑣ଵ ൌ 0|𝑡, 𝛉ሻ𝑝ሺ𝑣ଶ ൌ 0|𝛉ሻ (6-11)

where 𝛉 ൌ ሺ𝛽଴, 𝛽ଵ, 𝜏, 𝛿, 𝜎௩ሻ. In Appendix F, we describe how to compute 𝑝ሺ𝑣ଵ ൌ 0|𝑙 ൏ െ𝜏, 𝛉ሻ, 

𝑝ሺ𝑣ଵ ൌ 0|𝜏 ൏ 𝑙, 𝛉ሻ, and 𝑝ሺ𝑣ଵ ൌ 0|𝑡, 𝛉ሻ. 

The posterior parameter distribution of the two models can be written as 

𝑝ሺ𝛉|𝐲, 𝐭ሻ ∝ 𝑝ሺ𝐲|𝐭, 𝛉ሻ𝑝ሺ𝛉ሻ (6-12)

where 𝐲 ൌ ൫𝑦ሺଵሻ, … , 𝑦ሺேሻ൯ , 𝐭 ൌ ൫𝑡ሺଵሻ, … , 𝑡ሺேሻ൯ , i.e., training dataset of 𝑁  observations. The 

likelihood can be decomposed as: 

𝑝ሺ𝐲|𝐭, 𝛉ሻ ൌ ෑ 𝑝൫𝑦ሺ௜ሻห𝑡ሺ௜ሻ, 𝛉൯

ே

௜ୀଵ

 (6-13)

and we have discussed 𝑝൫𝑦ሺ௜ሻห𝑡ሺ௜ሻ, 𝛉൯ in the two model structures above (Eq. (6-1)-(6-3), Eq. (6-8)-

(6-11)). To estimate the posterior, we need to set the prior distribution, 𝑝ሺ𝛉ሻ. For 𝑝ሺ𝛽଴ሻ, 𝑝ሺ𝛽ଵሻ, 

and 𝑝ሺ𝜏ሻ, we first consider our prior knowledge: (i) 𝛽଴ would be around zero since the probability 

of satisfaction would be maximized between 20-26 °C; (ii) 𝛽ଵ should be positive considering the 

obvious order between the thermal preferences. Then, to choose a specific distribution reflecting 

our prior knowledge, we test different distributions visually by plotting the predictive probability 

distributions with some samples from them (Figure 6.5). Finally, we set 𝑝ሺ𝛽଴ሻ ൌ 𝒩ሺ𝛽଴|0,2.5ଶሻ, 

𝑝ሺ𝛽ଵሻ ൌ Gammaሺ𝛽ଵ|2,1.5ሻ, and 𝑝ሺ𝜏ሻ ൌ Gammaሺ𝜏|4,4ሻ, where Gammaሺ∙ |𝛼, 𝛽ሻ represents the 

PDF of a gamma distribution with a shape 𝛼 and a rate 𝛽 parameters. For 𝑝ሺ𝑞ሻ, we use 𝑝ሺ𝑞ሻ ൌ 
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𝒰ሺ∙ |0,1ሻ, where 𝒰ሺ∙ |𝑎, 𝑏ሻ is the PDF of a continuous uniform distribution with upper and lower 

bounds, 𝑎, 𝑏, i.e., no informative prior knowledge. For 𝑝ሺ𝛿ሻ, we expect that 𝛿 would be close to 

െ𝜏. However, since we do not have strong prior knowledge, we employ a hierarchical Bayesian 

approach and assign 𝑝ሺ𝛿|𝜏, 𝜎ఋሻ ൌ  𝒩൫𝛿หെ𝜏, 𝜎ఋ
ଶ൯  and 𝑝ሺ𝜎ఋሻ ൌ ℰሺ𝜎ఋ|10ିଵሻ , where ℰሺ∙ |𝜆ሻ 

represents the PDF of an exponential distribution with a rate 𝜆 parameter, considering the scale of 

𝑙. Similarly, for 𝑝ሺ𝜎௩ሻ, we assign 𝑝ሺ𝜎௩|𝜂ሻ ൌ ℰሺ𝜎௩|𝜂ିଵሻ and 𝑝ሺ𝜂ሻ ൌ ℰሺ𝜂|10ିଵሻ.  

 

Figure 6.5. Predictive probability distributions with 50 prior samples. 

To estimate the posterior distribution of the model parameters, which is intractable 

analytically, we use sequential Monte Carlo (SMC) [79], which is more efficient and effective than 

standard Markov chain Monte Carlo (MCMC). In Appendix G, we describe the algorithm. Table 

6.2 shows SMC settings used in this study, which provided consistent results in multiple trainings 

with a reasonable computational cost. 

Table 6.2. Settings for sequential Monte Carlo. 

The number of particles 5000 
The number of MCMC steps per SMC step 25 
The threshold of the effective sample size 0.5 
The reduction of the effective sample size per 
SMC step 

0.95 

MCMC step method 

Metropolis-Hasting with a multivariate 
normal distribution as the proposal density 
(Scale of the proposal density were adjusted 
after each iteration to retain the acceptance 
rate between 0.2 and 0.5) 

 



 
 

119 

In real buildings, a target occupant’s personalized model should be updated continuously as 

feedback responses are collected. In this regard, the standard way of updating is re-training the 

model with all the data we have repeatedly. However, even though SMC is efficient, the re-training 

computational cost will increase rapidly as the dataset size increases and might become intractable 

for local computers in real buildings. Hence, to resolve this problem, we develop a method for an 

efficient Bayesian model update.  

Suppose that we already had samples approximating the posterior parameter distribution, 

𝑝ሺ𝛉|𝐲, 𝐭ሻ. We receive an additional data point, ሺ𝑦୬ୣ୵, 𝑡୬ୣ୵ሻ, and want to update the posterior with 

the data point, i.e., estimating 𝑝ሺ𝛉|𝐲, 𝐭, 𝑦୬ୣ୵, 𝑡୬ୣ୵ሻ. If we write down the equation and rearrange 

it as: 

𝑝ሺ𝛉|𝐲, 𝐭, 𝑦୬ୣ୵, 𝑡୬ୣ୵ሻ ∝ 𝑝ሺ𝑦୬ୣ୵|𝑡୬ୣ୵, 𝛉ሻ𝑝ሺ𝛉|𝐲, 𝐭ሻ  (6-14)

then we can estimate the posterior with the likelihood of the new datapoint using the previous 

posterior, 𝑝ሺ𝛉|𝐲, 𝐭ሻ, as the prior. In other words, if we use the previous posterior directly in the 

estimation, we can update the model very efficiently. To this end, we use the samples 

approximating 𝑝ሺ𝛉|𝐲, 𝐭ሻ at the first SMC step and modify the likelihood part correspondingly. We 

describe the mathematical details in Appendix H. It is worth noting that this method can be used 

in other Bayesian model estimation problems where an efficient model update is needed.  

6.2.3 Smart feedback request algorithm: quantifying the value of information gain 

As shown in Figure 6.3, Model 1 is nested in Model 2, and they share three parameters: 𝛽଴, 

𝛽ଵ , 𝜏 , which are used to predict the probability of one’s preference. In other words, we can 

construct an augmented model structure to learn one’s thermal preference with both requested and 

participatory preference responses. The likelihood of the augmented model is: 

𝑝ሺ𝐲|𝐭, 𝛉, 𝐫ሻ ൌ ෑ 𝑝൫𝑦ሺ௜ሻห𝑡ሺ௜ሻ, 𝑟ሺ௜ሻ, 𝛉൯

ே

௜ୀଵ

 (6-15)

where 𝐫 ൌ ൫𝑟ሺଵሻ, … , 𝑟ሺேሻ൯, and 𝑟ሺ௜ሻ ൌ 0 or 1 indicate whether 𝑦ሺ௜ሻ  is participatory or requested, 

respectively. Therefore, if 𝑟ሺ௜ሻ ൌ 0 , 𝑝൫𝑦ሺ௜ሻห𝑡ሺ௜ሻ, 𝑟ሺ௜ሻ, 𝛉൯  is calculated with Eq. (6-8)-(6-11); if 

𝑟ሺ௜ሻ ൌ 1, 𝑝൫𝑦ሺ௜ሻห𝑡ሺ௜ሻ, 𝑟ሺ௜ሻ, 𝛉൯ is calculated with Eq. (6-1)-(6-3). 

Since frequent response requests are intrusive, requesting regularly or randomly is not 

efficient nor effective. The ideal way would be (i) mainly relying on participatory responses and 
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(ii) additionally requesting responses only when they are truly needed. Here, the question is how 

to quantify the value (importance) of requesting a response at a given moment (under specific 

conditions). The value of information gain at any given condition also varies with our current state 

of knowledge regarding the person’s thermal preference. For example, if the current temperature 

is 30 °C, and if we are already quite certain that the person will prefer a cooler temperature, an 

additional requested response at that moment will not improve our state of knowledge –therefore, 

the value of a request would be low, and we do not need to disturb the person. 

The theory of Bayesian experimental design provides a general probability-theoretical 

framework for such a problem [111], which is based on the theory for decision-making under 

uncertainty. The objective of Bayesian experimental design is to maximize the expected 

utility/value when designing the experiment. In our case, we want to decide whether to request or 

not, i.e., designing an experiment, to maximize the information gain, i.e., utility. The utility can 

involve the cost of performing the experiment. More specifically, assume that we have a 

personalized model trained with a dataset, 𝐃 ൌ ሼ𝐲, 𝐭, 𝐫ሽ, collected from a person, i.e., the posterior 

parameter distribution, 𝑝ሺ𝛉|𝐃ሻ. In the next instance, we want to quantify the expected information 

gain with/without a feedback request. We use the Kullback–Leibler divergence (𝐷௄௅) between 

𝑝ሺ𝛉|𝐃ሻ and 𝑝ሺ𝛉|𝐃, 𝑦୬ୣ୵, 𝑡୬ୣ୵, 𝑟୬ୣ୵ሻ as the measure for the information gain: 

𝐷௄௅൫𝑝ሺ𝛉|𝐃, 𝐝୬ୣ୵ሻ ∥ 𝑝ሺ𝛉|𝐃ሻ൯ ൌ න 𝑝ሺ𝛉|𝐃, 𝐝୬ୣ୵ሻ log
𝑝ሺ𝛉|𝐃, 𝐝୬ୣ୵ሻ

𝑝ሺ𝛉|𝐃ሻ
𝑑𝛉 (6-16)

where 𝐝୬ୣ୵ ൌ ሺ𝑦୬ୣ୵, 𝑡୬ୣ୵, 𝑟୬ୣ୵ሻ are the datapoint of the next instance. In statistics, the Kullback–

Leibler divergence (also called relative entropy) shows how one distribution is different from 

another [112]. In other words, the quantity shows how different the updated and the original 

posterior distributions are. Since we cannot know 𝑦୬ୣ୵ before we observe it, we use the expected 

𝐷௄௅, 

𝑈ሺ𝑡୬ୣ୵, 𝑟୬ୣ୵ሻ ൌ 𝔼௬ൣ𝐷௄௅൫𝑝ሺ𝛉|𝐃, 𝐝୬ୣ୵ሻ ∥ 𝑝ሺ𝛉|𝐃ሻ൯൧

ൌ න ෍ 𝑝ሺ𝛉|𝐃, 𝐝୬ୣ୵ሻ𝑝ሺ𝑦୬ୣ୵|𝐃, 𝑡୬ୣ୵, 𝑟୬ୣ୵ሻ log
𝑝ሺ𝛉|𝐃, 𝐝୬ୣ୵ሻ

𝑝ሺ𝛉|𝐃ሻ
௬౤౛౭

𝑑𝛉 
(6-17)

The computation of this quantity is described in Appendix I. 

Based on 𝑈ሺ𝑡୬ୣ୵, 𝑟୬ୣ୵ ൌ 0ሻ and 𝑈ሺ𝑡୬ୣ୵, 𝑟୬ୣ୵ ൌ 1ሻ, we can decide whether to request a 

response or not, i.e., a smart request algorithm. In this study, we make decisions by simply 

comparing the magnitude of the two quantities: if 𝑈ሺ𝑡୬ୣ୵, 𝑟୬ୣ୵ ൌ 1ሻ ൐ 𝑈ሺ𝑡୬ୣ୵, 𝑟୬ୣ୵ ൌ 0ሻ , 
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request a response, otherwise, do not request. Note that other quantities, e.g., 𝐷௄௅ between the 

updated and original predictive probability distributions, could also be used to quantify the value 

of a data point. In addition, the cost of requesting a response, e.g., how intrusive/disturbing it is, 

can be considered to make decisions. 

To evaluate the effectiveness of the smart request algorithm, we conducted a simulation 

study with a synthetic occupant which provides thermal preference responses. The synthetic 

occupant is the augmented model (Eq. (6-15)) with parameters, 𝛉୲୰୳ୣ, pre-determined by us. In the 

simulation, the parameters are assumed to be unknown. Figure 6.6 shows the flowchart of the 

simulation study. For the second process, i.e., computing the temperature control range with a 

personalized preference model, we use the method proposed in Chapter 5. With a control range, 

there are multiple different ways to actually operate an HVAC system. In the third process, to 

make the simulation results more conservative, instead of assuming a specific control scheme, we 

randomly draw a temperature sample from the control range. Here, we test two different 

probability distributions. Distribution 1 is 𝑝൫𝑡௔,୬ୣ୵ห𝑡୪ୠ, 𝑡୳ୠ൯ ൌ 𝒰൫𝑡௔,୬ୣ୵ห𝑡୪ୠ, 𝑡୳ୠ൯. Distribution 2 

is 𝑝ሺ𝜉|𝛼, 𝛽ሻ ൌ ℬሺ𝜉|5,1ሻ, where 𝑡௔,୬ୣ୵ ൌ 𝜉 ൈ ሺ𝑡୳ୠ െ 𝑡୪ୠሻ ൅ 𝑡୪ୠ, ℬሺ∙ |𝛼, 𝛽ሻ is the PDF of a Beta 

distribution with two positive shape parameters, 𝛼, 𝛽 . Figure 6.7 shows the PDF of the two 

distributions where 𝑡୪ୠ ൌ 22.5 and 𝑡୳ୠ ൌ 25.0 as an example. The uniform distribution would 

represent a case where indoor temperature varies frequently within the control range; the beta 

distribution would represent a case where indoor temperature is maintained near the upper bound 

to save energy. For the fourth process, we test four different scenarios: (i) Request Only, i.e., 

requesting occupant’s feedback at every instance; (ii) Participatory Only, i.e., relying only on 

participatory responses (no request); (iii) Random request, i.e., requesting randomly with the 

probability of 0.5; (iv) Proposed, i.e., request occupant’s feedback based on the proposed algorithm. 

Considering the two distributions and four scenarios, we tested eight cases, with 200 simulations 

for each case. 

In each simulation, as the loop in Figure 6.6 is iterated, the personalized preference model 

becomes similar to the augmented model of the synthetic occupant, i.e., the true model. The 

difference between the two models can be used to quantify the learning progress. As a measure for 

the difference, we use the following quantity: 

ඵ 𝐷௄௅ ቀ𝑝൫𝑦௣ห𝑥௣, 𝛉൯ ∥ 𝑝൫𝑦௣ห𝑥௣, 𝛉୲୰୳ୣ൯ቁ 𝑝൫𝑥௣൯𝑝ሺ𝛉|𝐃ሻ 𝑑𝑥௣𝑑𝛉 (6-18)
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where 𝑝൫𝑦௣ห𝑥௣, 𝛉൯  is the predictive probability of 𝑦௣  given 𝑥௣  and 𝛉 , i.e., how different the 

predictive probability of the personalized model and that of the true model is. We set 𝑝൫𝑥௣൯ ൌ

𝒰൫𝑥௣ห15,30൯. By comparing the quantity of the eight cases, we evaluate the effectiveness of the 

smart request algorithm. 

 

Figure 6.6. Flow chart of a simulation study. 

 

   

Figure 6.7. Probability distributions used to draw a temperature sample with the control range of 
ሺ22.5,25ሻ. 



 
 

123 

6.3 Results 

6.3.1 Personalized Thermal Preference Models 

Figure 6.8 shows data collected from the five test-subjects in the “requested” and 

“participatory” setups.  The portion of “satisfied” responses is significantly lower in the 

participatory preference data. This observation corresponds to one of our hypotheses: “occupants 

would rarely report their thermal preference using a participatory interface under comfortable 

conditions.” The data also show the differences in thermal preferences between individuals for 

both setups.  

 

Figure 6.8. Thermal preference responses from five subjects (request and participatory setups). 

To realize the difference between the requested and participatory datasets and their impact 

on personalized preference models, three personalized models were developed and compared for 

each subject: (i) Model 1 trained with the requested dataset; (ii) Model 1 trained with the 

participatory dataset; (iii) Model 2 trained with the participatory dataset. Each graph in Figure 6.9 

shows the predictive probability distribution with respect to air temperature computed from the 

personalized preference models. Solid lines represent the median values of the probabilities, and 

shaded areas represent the associated 95% credible intervals (i.e., 2.5- and 97.5-quantiles of the 

predictive probability). 

Comparing graphs in the first and second rows (Model 1 trained with one’s requested and 

participatory datasets, respectively), we can see that the predictive probability of models developed 

with Model 1 and participatory data, can be highly distorted. More specifically, the probability of 

the person being satisfied decreases significantly due to the lack of “satisfied” responses, i.e., the 

green curves are shrunk for Subjects 1-4. Even in the case of Subject 5, who submitted quite a few 

“satisfied” responses, we can see that the temperature range in which red and green areas cross 

moved to the right. Although we may be able to infer the temperature that each occupant most 
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likely prefers with such models, we cannot compute the satisfaction probability; therefore 

determining the proper range of controlled thermal conditions becomes difficult. 

 

Figure 6.9. Predictive probabilities from different personalized preference models trained with 
requested and participatory data (5 subjects). 

The graphs in the third rows of Figure 6.9 show the predictive probability of models trained 

with Model 2 and the participatory datasets. The uncertainty areas cover the graphs of the first row. 

In other words, Model 2 properly keeps the uncertainty due to the unobserved thermal preferences 

with the participatory interface as is, instead of returning distorted predictive probabilities. This is 

important not only for avoiding wrong predictions but also for estimating the value (importance) 

of information gain (a new data point) with and without a response request at a moment. 

To evaluate the models more quantitatively, we compute the expected squared error with the 

models over the requested datasets as 

෍ ෍ ቀ𝑦୭ୠୱ
ሺ௜ሻ െ 𝑦ቁ

ଶ
𝑝ቀ𝑦ቚ𝑡୭ୠୱ

ሺ௜ሻ , 𝛉௝ቁ

ଵ

௬ୀିଵ

ே

௜ୀଵ

 (6-19)

where 𝛉௝  is a sample from the posterior distribution, 𝑝ሺ𝛉|𝐲, 𝐭ሻ , of a model, 𝑝൫𝑦ห𝑡, 𝛉௝൯  is the 

predictive probability with the parameter values in 𝛉௝, ቀ𝑦୭ୠୱ
ሺ௜ሻ , … , 𝑦୭ୠୱ

ሺேሻቁ and ቀ𝑡୭ୠୱ
ሺ௜ሻ , … , 𝑡୭ୠୱ

ሺேሻቁ are data 

in one’s requested dataset. We choose this quantity as the metric for the comparison due to the 

obvious order between classes. Note that each 𝛉௝ is a plausible set of model parameter values from 

the Bayesian model estimation.  
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Figure 6.10 shows the expected squared error of the three cases (three rows of Figure 6.9). 

Each boxplot shows the distribution of the quantity with 5,000 sets of model parameters values, 

𝛉ଵ:ହ଴଴଴. In this evaluation, the expected squared error values of models developed with Model 1 

and the requested datasets (the first row of Figure 6.9) provide ideas regarding the maximum 

prediction performance of the linear ordered probit model for the datasets. The error values of 

models developed with Model 2 and participatory datasets are always lower than those of models 

developed with Model 1 and participatory datasets. This result also supports that Model 2 is more 

preferable to learn one’s thermal preference from participatory feedback data. 

  

Figure 6.10. Prediction performance of different personalized thermal preference models. 

6.3.2 Value of Information Gain With/Without a Request 

With the augmented model structure (Eq. (6-15)), we can quantify the value of a feedback 

request at an instance. The upper left plot in Fig 6.11 shows the predictive probability distribution 

of Subject 1’s personalized model trained with the participatory dataset. Assuming that the model 

is our current state of knowledge, the lower left plot shows the corresponding expected Kullback–

Leibler divergence (Eq. (6-16)) with and without a request under different temperature conditions 

for the next instance. Bigger difference, 𝑈ሺ𝑡୬ୣ୵, 𝑟୬ୣ୵ ൌ 1ሻ െ 𝑈ሺ𝑡୬ୣ୵, 𝑟୬ୣ୵ ൌ 0ሻ , represents 

higher value of the request (e.g., for 22 °C or 25 °C). We observe that 𝑈ሺ𝑡୬ୣ୵, 𝑟୬ୣ୵ ൌ 0ሻ is similar 
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or higher than 𝑈ሺ𝑡୬ୣ୵, 𝑟୬ୣ୵ ൌ 1ሻ if the temperature is lower than 19 °C or higher than 28 °C. This 

is because the model is already certain of the occupant’s preferences with “extreme” temperature 

conditions. Under such conditions, not requesting is better to estimate 𝛿, 𝜎௩, and 𝑞, i.e., learning 

how active the person is in using the interface. To present how the quantity changes as the model 

is updated, we update the model with seven preference data points collected between 21.5-22.5 °C 

in the request setup. The upper right plot of Figure 6.11 is the predictive probability distribution 

of the updated model, and the lower right plot shows the corresponding expected Kullback–Leibler 

divergence. Like the model uncertainty in the predictive probability, the expected Kullback–

Leibler divergence for 22 °C decreased significantly, i.e., the value of a request under 22 °C was 

reduced as data points were added. The expected Kullback–Leibler divergence for higher 

temperatures also decreased to some extent. This is because we use a model structure of low 

flexibility, and consequently, the update in the posterior parameter distribution with the data points 

also decreases the uncertainty in high-temperature ranges. Model structures of higher flexibility 

would result in higher differences. 

 

Figure 6.11. Expected entropy difference of the updated model with/without response request. 
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6.3.3 Simulation Results 

Figure 6.12 shows the progress of learning in the different cases described in Section 6.2.3. 

For the synthetic occupant in the simulation, we use the following values for the model parameters, 

𝛉୲୰୳ୣ: 𝛽଴ ൌ െ0.496, 𝛽ଵ ൌ 3.104, 𝜏 ൌ 1.477, 𝑞 ൌ 0.018, 𝜎ఋ ൌ 2.920, 𝛿 ൌ െ4.911, which is a 

sampled set of parameter values from the posterior parameter distribution of Subject 1’s 

personalized preference model, trained with both requested and participatory datasets. In Figure 

6.12, the x-axis is the number of iterations, i.e., the number of data points used to train the 

personalized model. The y-axis is the model divergence computed with Eq. (6-18). The left plot 

shows the results with Distribution 1, and the right plot shows those with Distribution 2. Each 

boxplot shows the distribution of the model divergence over 200 simulations. Table 6.3 shows the 

mean, median, and standard deviation of the number of requests in the simulations. Requesting the 

occupant’s feedback at every instance, i.e., the Request Only scenario, is the fastest way to learn 

the occupant’s thermal preference while it is most disturbing, i.e., highest number of requests. On 

the other hand, relying only on the occupant’s participatory feedback, i.e., Participatory Only 

scenario, is the slowest but least disturbing way. 

From Figure 6.12, we can see that the learning progress in the Proposed scenario, i.e., 

deciding whether to request or not with the proposed algorithm, is competitive with that in the 

Request Only scenario with both distributions. A notable point is that these results were achieved 

with 33.33 and 37.50 % less (in median) numbers of requests, i.e., less-intrusive but still effective. 

Another observation is that, with Distribution 2, the difference in the learning progress between 

Proposed, Random, and Participatory Only scenarios is bigger. The reason is that a model requires 

responses under low-temperature conditions to learn the occupant’s preference properly, while 

most of sampled temperatures are near the upper bound with Distribution 2. In Proposed scenario, 

the proposed algorithm actively requests responses when the sampled temperatures are low, which 

are rare but important moments. We can also see that the number of requests in Proposed scenario 

with Distribution 2 is lower than that with Distribution 1. The reason is that the algorithm reduced 

the frequency since responses under high-temperature conditions are sufficient due to the biased 

sampled temperatures. 
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Figure 6.12. Progress of learning in the different simulation scenarios. 

Table 6.3. The number of feedback requests in different scenarios. 

 Distribution 1 Distribution 2
Request Only 24 / 24 / 0 24 / 24 / 0 

Participatory Only 0 / 0 / 0 0 / 0 / 0 
Random 12.29 / 12 / 2.55 11.87 / 12 / 2.46
Proposed 16.27 / 16 / 1.36 14.69 / 15 / 1.55

Mean / Median / Standard deviation

6.4 Conclusion and Discussion 

In this chapter, a Bayesian modeling approach was presented, which allows using both 

participatory preference data (collected via participatory interfaces) and requested preference data 

for learning individual occupants’ thermal preference. This is achieved by explicitly considering 

occupant participation, a type of behavior, in the model structure. An experiment was conducted 

with two different setups to collect occupants’ thermal preference responses (with both ways), 

which were used to develop personalized thermal preference models. The modeling results showed 

that the proposed modeling approach allows maintaining the uncertainty in a model, which 

corresponds to the lack of satisfaction responses with a participatory interface, i.e., sampling bias, 

instead of returning distorted predictive probabilities.  

In addition, we proposed a smart occupant feedback request algorithm to determine whether 

to request feedback at each moment based on the quantified value, i.e., information gain, of the 

request. The value was computed using the expected Kullback-Leibler divergence between the 
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current and updated posterior parameter distributions. A simulation study was conducted to 

evaluate the performance of the algorithm. The simulation results showed that the algorithm allows 

us to collect sufficient data to learn one’s thermal preference with reduced number of feedback 

requests, i.e., effective but less-intrusive.  

This is an initial study regarding feedback collection from occupants, and there is room for 

improvement. The assumptions we set in the model structures can be released. Model 1, which 

predicts one’s thermal preference response, could have other input variables explicitly instead of 

including them in ℎ௟; the relationship between the inputs and the latent quantity does not need to 

be linear; moreover, it does not need to be based on the probit structure as many studies mentioned 

in Section 2.2 showed. 

Model 2, which predicts one’s participation, can be also improved and expanded. Occupants’ 

participation behavior could be affected by other factors, such as elapsed time from the previous 

response, time of the day, and level of work load or distraction. Such factors, which were not 

explicitly considered in this study, could be used as separate input variables for 𝑣ଶ  and 𝑣ଶ . 

However, if one agrees that a portion of occupants’ participations are triggered by their 

dissatisfaction, having a latent quantity that affects both preference response and participation in 

a model will be beneficial with any improvement. We believe that this treatment, i.e., having the 

latent quantity, would allow us to learn an occupant’s thermal preference with his/her thermal 

comfort-related behaviors, e.g., thermostat adjustment, use of local fan/heater, etc., alongside with 

requested/participatory responses. 

Regarding the request algorithm, one may design a smarter algorithm by simply considering 

the cost of feedback request, e.g., comparing 𝑈ሺ𝑡୬ୣ୵, 𝑟୬ୣ୵ ൌ 0ሻ with 𝑈ሺ𝑡୬ୣ୵, 𝑟୬ୣ୵ ൌ 1ሻ ൅ 𝛼 or 

𝛼𝑈ሺ𝑡୬ୣ୵, 𝑟୬ୣ୵ ൌ 1ሻ to control the number of requests with the algorithm, i.e., number of requests 

decreases as bigger 𝛼  is used. However, even smarter algorithms could be developed. The 

proposed algorithm makes a decision which simply maximizes the expected information gain at 

each moment, i.e., greedy algorithm. Although a greedy algorithm is simple and intuitive, it does 

not guarantee the optimality of its solution for the entire problem. In other words, there are cases 

where such a greedy algorithm underperforms. For example, if we want to request a response once 

per day, the proposed algorithm cannot answer when would be the best time to request during the 

day even if we know how the HVAC system would be operated. If the HVAC system adjusts its 

operation in real time based on occupants’ responses at the current moment and this adjustment 
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influences the temperature in the subsequent moments significantly, the solution from the greedy 

algorithm would be far from the optimal. A Bayesian sequential experimental design approach can 

be applied to solve this decision-making problem [113], which will allow to make a decision that 

maximizes the expected information gain over a period of time via approximate dynamic 

programming.  
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 FUTURE WORK 

Future work for subtopics in this Thesis has been discussed in chapter discussion sections 

extensively and deeply. Hence, this chapter includes more general ideas for future work towards 

human-in-the-loop, human-centered, smart and user-interactive HVAC systems.  

7.1 Holistic Human-Building Interaction Research Framework 

Compared to the level of our knowledge regarding physical systems, e.g., heat/mass transfer 

and thermodynamics in buildings, we have limited knowledge on human needs and behaviors in 

buildings. Hence, towards smart and user-interactive HVAC systems, we need to increase the 

depth and breadth of this knowledge. Various and changing human needs are what the buildings 

need to recognize and satisfy; human behaviors are closely related to these needs. In previous 

research, each of the needs or behaviors has been studied “separately” focusing merely on its 

“prediction” based on the correlation with related variables. The outcomes, i.e., predictive models, 

have provided bases for fundamental design/operational guidelines or have been used to mimic 

occupants in simulation studies. However, the studies are quite limited in helping to satisfy human 

needs effectively and efficiently by controlling, adjusting, or intervening upon their causal factors, 

since they do not examine/explain causal relationships between variables explicitly. In fact, 

investigating the causal relationships around human needs and behaviors in buildings is quite 

challenging because of two significant hurdles. 

First, the processes of human perception and consequent effects are interrelated and 

involve/share multiple variables. Thus, holistic investigations on the causality between the human 

factors are required; necessarily, an enormous amount of data is needed. Second, even if we have 

enough data, it is tricky to untangle the causal from the merely correlative with traditional 

statistical or machine learning techniques unless the data comes from a controlled experiment. In 

reality, conducting a controlled experiment which covers all of our interests for the holistic 

investigations is impossible; hence, we cannot but conduct smaller but more specific experimental 

studies sequentially, and at the same time, rely heavily on observational data which are collected 

from the real world. 
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To overcome this limitation in the future, I plan to develop a research framework for 

understanding human-building interactions with two emerging statistical methodologies: Bayesian 

data analysis and statistical causal inference. Bayesian approaches will allow (i) encoding prior 

knowledge from previous studies in formal probabilistic ways; (ii) combining available data from 

different sources with hidden variables for the heterogeneity. Variables that are important but not 

investigated yet at the current stage will be modeled as epistemic uncertainty to evaluate the 

necessity and direction of the subsequent investigations. Statistical causal inference methods will 

be used to test hypotheses in the Bayesian models so that it can be used to explain the causalities, 

and eventually, help us satisfy human needs, i.e., optimal building design and operation. 

7.2 Incorporation of Advanced Sensing Technologies in Human-Building Interaction 
Research  

Previous human-building interaction research relies only on data of representative 

environmental conditions (e.g., air temperature, illuminance), monitored behaviors, and subjective 

responses from surveys, i.e., limited information. The uncertainty in our understanding of human-

building interactions has been regarded as randomness (aleatoric uncertainty), even though a 

considerable portion of the uncertainty comes from the missing information (epistemic 

uncertainty). 

Following the development of smart devices, IoT, and computing technologies, collecting 

and processing physiological data (e.g., blood volume pulse, skin temperature, electrodermal 

activity, body movement) and high-dimensional data (e.g., electroencephalography, digital images, 

videos) becomes possible. The biggest challenge is improving our knowledge by mapping the data 

and human factors. To this end, I plan to adopt Bayesian nonparametric methods (e.g., Gaussian 

process regression) due to their flexibility regarding both fitting data and encoding prior 

knowledge. However, they may not be sufficient to deal with high-dimensional data such as 

electroencephalography and digital images. Hence, I will also consider using Bayesian 

convolutional neural networks (Bayesian deep learning). 

7.3 Interactive Interfaces and Information Design 

User interfaces in buildings enable human-building interaction, i.e., occupants can control 

the systems and request their needs; and the systems can provide information to the occupants to 
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assist in their decision-making. Hence, the interfaces and information should be carefully designed 

to promote efficient and human-centered building operation. Within this context, I plan to 

investigate two important concepts: i) instructive feedback; ii) trust in human-building interactions, 

which have not been studied systematically. Instructive feedback from building systems can 

inform occupants of beneficial behaviors; and contribute to energy-savings and higher levels of 

occupant satisfaction for given contextual factors (e.g., layout, system capacity). This will be an 

extension of the building’s role from a responsive system to a cooperative system. Occupants’ trust 

in building systems prevents them from making unnecessary overrides which degrade the 

optimality in operation. Future  research will include a set of experiments with human subjects, 

interfaces with different level and types of information and advanced sensing technologies. 

7.4 Optimal Operation of Buildings Considering Human-Building Interactions 

Optimal operation of buildings is not trivial because of the uncertainty occupant preferences 

and behaviors. As a result, traditional control techniques (i.e., heuristic rule-based and 

deterministic optimal controls) cannot maximize the energy efficiency of the systems. Moreover, 

in scenarios where the demand response and resilience of integrated energy systems are important, 

control can easily fail because of the uncertainty. 

To resolve this issue, I plan to apply stochastic optimal control techniques with outcomes of 

topics above. Both model-predictive control (MPC, receding horizon control) and approximate 

dynamic programming (ADP, reinforcement learning) will be evaluated in terms of the 

computational cost and capability of dealing with the uncertain variables. The models or agents 

will be fine-tuned as the controller explores various mechanisms in its target building. This 

exploration process will be constrained with the domain knowledge encoded in the models, i.e., 

fast and efficient, but less-intrusive learning. 
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APPENDIX A. RE-LABELING SMC SAMPLES 

Figure A-1 shows the SMC samples for the parameters before re-labeled which is equivalent 

to Figure 3.7. As shown in the figure, although the estimation process found 2 distinctive sets of 

parameters, however, some samples have opposite labels (i.e., label-switching), and consequently, 

blue and green dots are mixed in the figure. Although predictions made by a model are independent 

from the label-switching problem, since a sub-model for each cluster cannot be identified with the 

mixed labels, the samples should be re-labeled. 

 

Figure A-1. SMC samples for parameters in case of the model having two clusters before re-
labeled 

In this study, SMC samples were re-labeled by following procedures. 

 Find a sample which has the highest posterior among the samples, and set its 𝑧ଵ:஽ as a 

reference, 𝑧ଵ:஽,୰ୣ୤. 

 Define a permutation 𝜓  of the labels 1, … , 𝐾 , where 𝜓 ∈ 𝛹௄ , the set of all the 

permutations of the labels. 
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 For each sample, find 𝜓୰ୣ୪ୟୠୣ୪ which maximizes the following: 

𝜓୰ୣ୪ୟୠୣ୪ ൌ arg max
ట∈అ಼

ෑ 𝑃 ቀ𝐲ௗቚ𝐗ௗ, 𝑧ௗ,୰ୣ୤, 𝛍ట೥೏,౨౛౜
, 𝜎ట೥೏,౨౛౜

, 𝛏ట೥೏,౨౛౜
ቁ

஽

ௗୀଵ

 (A-1)

 Re-label the sample based on 𝜓୰ୣ୪ୟୠୣ୪. 

 For example, if 𝐾 ൌ 3, 𝜓୰ୣ୪ୟୠୣ୪ ൌ ሺ2,1,3ሻ , then 𝛉୰ୣ୪ୟୠୣ୪ୣୢ,ଵ ൌ 𝛉ଶ, 𝛉୰ୣ୪ୟୠୣ୪ୣୢ,ଶ ൌ

𝛉ଵ, 𝛉୰ୣ୪ୟୠୣ୪ୣୢ,ଷ ൌ 𝛉ଷ, where 𝛉௞ ൌ ሺ𝛍௞, 𝜎௞, 𝛏௞ሻ.
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APPENDIX B. METHOD FOR DISCOVERING THE OPTIMAL NUMBER 
OF CLUSTERS 

Bayesian model selection 

In Bayesian model selection Bayes rule is applied to quantify the posterior probability of a 

model being right. Let ℳ ൌ ሼ𝑀ଵ, … , 𝑀ோሽ be the set of all models that we would like to compare, 

𝜃௜ be the 𝑀௜ model parameters with prior 𝑃ሺ𝜃௜|𝑀௜ሻ, 𝒟 be the experimental data, 𝑃ሺ𝒟|𝜃௜, 𝑀௜ሻ the 

likelihood of model 𝑀௜, and 𝑃ሺ𝑀௜ሻ the prior probability we assign to 𝑀௜ being the right model, 

e.g., 𝑃ሺ𝑀௜ሻ ൌ ଵ

ோ
 if we are indifferent. Each model is trained using Bayes inference to compute the 

posterior of the parameters: 

𝑃ሺ𝜃௜|𝒟, 𝑀௜ሻ ൌ
𝑃ሺ𝒟|𝜃௜, 𝑀௜ሻ𝑃ሺ𝜃௜|𝑀௜ሻ

𝑃ሺ𝒟|𝑀௜ሻ
 (B-1)

where the normalization constant,  

𝑃ሺ𝒟|𝑀௜ሻ ൌ ׬ 𝑃ሺ𝒟|𝜃௜, 𝑀௜ሻ𝑃ሺ𝜃௜|𝑀௜ሻ𝑑𝜃௜ (B-2)

is known as the model evidence. The model evidence is notoriously difficult to evaluate using 

MCMC [94]. However, the SMC sampling approach we adopted in Section 3.2.3 provides a robust 

estimator [95]. The evidence 𝑃ሺ𝒟|𝑀௜ሻ  gives the probability that the dataset is observed 

conditioned on model 𝑀௜ being the best one. Using Bayes rule, the probability that model 𝑀௜ is 

the best conditioned on the observed data 𝒟 is: 

𝑃ሺ𝑀௜|𝒟ሻ ∝ 𝑃ሺ𝒟|𝑀௜ሻ𝑃ሺ𝑀௜ሻ (B-3)

This distribution over models quantifies our state of knowledge about which model is best after 

we have seen the data. If we had to select one of them, we would pick the maximum a posteriori 

estimate (MAE): 

𝑖∗ ൌ arg max
௜ୀଵ,…,ோ

𝑃ሺ𝑀௜|𝒟ሻ (B-4)

If we are a priori indifferent, this MAE is the model with the maximum evidence: 

𝑖∗ ൌ arg max
௜ୀଵ,…,ோ

𝑃ሺ𝒟|𝑀௜ሻ (B-5)

This process automatically avoids overfitting by choosing the simplest model that adequately 

explains the data, see [74]. Note that the absolute value of the model evidence does not provide 

information about the validity of a model. The model evidence can only be used to compare the 

validity of two or more models. As shown above, it can be used to quantify the probability that 
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any given model in a set of candidate models is valid, albeit conditioned on the belief that at least 

one of them is valid.  To compare two models to each other, we can use the ratio of the evidence 

which is known as the Bayes factor (BF). When we are a priori indifferent, the BF is nothing more 

than the ratio of the probabilities of each model being the right one. 

𝐵𝐹ଵ,଴ ≜
𝑃ሺ𝐷|𝑀ଵሻ

𝑃ሺ𝐷|𝑀଴ሻ
 (B-6)

In practice, we use the Jeffrey’s scale of evidence [96] to interpreting BF (Table B-1). 

Table B-1. Jeffrey’s scale of evidence for interpreting Bayes factors 

Bayes factor 𝐵𝐹ଵ,଴ Interpretation 

𝐵𝐹ଵ,଴  <  
ଵ

ଵ଴଴
 Decisive evidence for 𝑀଴ 

ଵ

ଵ଴଴
 <  𝐵𝐹ଵ,଴  <  

ଵ

ଵ଴
 Strong evidence for 𝑀଴ 

ଵ

ଵ଴
  <  𝐵𝐹ଵ,଴  <  

ଵ

ଷ
 Moderate evidence for 𝑀଴ 

ଵ

ଷ
 <  𝐵𝐹ଵ,଴  <  1 Weak evidence for 𝑀଴ 

1  <  𝐵𝐹ଵ,଴  <  3 Weak evidence for 𝑀ଵ 

3  <  𝐵𝐹ଵ,଴  <  10 Moderate evidence for 𝑀ଵ 

10  <  𝐵𝐹ଵ,଴  <  100 Strong evidence for 𝑀ଵ 

100  <  𝐵𝐹ଵ,଴ Decisive evidence for 𝑀ଵ 

 

Dirichlet process prior 

A DP defines a probability measure over a space of probability measures. To narrow down 

the discussion, let us consider the space of probability measures over the space of model 

parameters: 

𝒫 ൌ ሼ𝐺: 𝛩 → 𝐑ା: G is a probability measureሽ (B-7)

This is the space where the prior probability distribution we assign to all model parameters, 

𝜃, lives. A DP assigns a probability measure on 𝒫. Mathematically, a DP is characterized by a 

base probability measure 𝐺଴ ∈ 𝒫 and a concentration parameter 𝛼଴ ൐ 0. We write DPሺG଴, 𝛼଴ሻ and 

we read “the DP with base measure 𝐺଴ and scale parameter 𝛼଴”. For the formal definition see [97]. 

The DP has a special property that makes it extremely useful in clustering applications. Namely, 

it can be shown [98] that all sampled measures 𝐺 from DPሺG଴, 𝛼଴ሻ are discrete distributions, i.e., 

they can be written as: 
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𝐺ሺ𝜃ሻ ൌ ෍ 𝜋௞𝛿ሺ𝜃 െ 𝜃௞ሻ
ஶ

௞ୀଵ

 (B-8)

where 𝛿 is the Dirac 𝛿-function, with point masses distributed according to the base measure, i.e.,  

𝜃௜ ∼ 𝐺଴, weights 𝜋௞ decaying at a rate specified by 𝛼଴. So, the idea is that, if we assign this prior 

probability measure on the prior distribution of the model parameters, 𝜃, then we automatically 

get a model with an arbitrarily large number of clusters. To be consistent with our existing model, 

the base measure must be the prior probability distribution we assigned to 𝜃 is Section 3.2.2, 

𝐺଴ሺ𝜃ሻ ≡ 𝑃ሺ𝜃ሻ. The choice of 𝛼଴ controls how many clusters we believe there are a priori. At the 

extreme, a choice of 𝛼଴ ൌ 0 corresponds to the belief that there is a single cluster. Small 𝛼଴ 

corresponds to the a priori belief that the number of clusters is small, and large 𝛼଴ to the a priori 

belief that the number of clusters is large. Once this connection of the DP to the prior of the model 

of Section 3.2.2 has been established, we may proceed with Bayesian inference and let the data 

decide how many clusters are needed. 

Bayesian inference in the DP-based model is not trivial. Fortunately, one may exploit the 

“stick-breaking” construction [99] of the DP to proceed. This “stick-breaking” construction is 

equivalent to assigning the following prior over the cluster value z [97], 

𝑃ሺ𝑧ଵ:஽|𝛎ሻ ൌ ෑ 𝜋௭೏
ሺ𝛎ሻ

஽

ௗୀଵ

 (B-9)

where 

𝜋௞ሺ𝛎ሻ ൌ 𝜈௞ ෑሺ1 െ 𝜈௜ሻ
௞ିଵ

௜ୀଵ

 (B-10)

and 

𝑃ሺ𝛎|𝛼଴ሻ ൌ ෑ ℬetaሺ𝜈௞|1, 𝛼଴ሻ
ஶ

௞ୀଵ

 (B-11) 

In other words, the 𝜋௞’s can be interpreted as the probability of cluster 𝑘 being active. To close 

the model, we need to pick a value for the concentration parameter α0. For lack of better 

alternatives, we employ a hierarchical Bayesian approach and assign an exponential distribution 

to it, i.e., Pሺ𝛼଴ሻ ൌ ℰሺ𝛼଴|1ሻ. In practice, the products of Eq. (B-11) are truncated at a large, but 

finite, 𝐾୫ୟ୶. To be safe, this value must be picked to be much bigger than the maximum number 

of cluster we anticipate to find. In our work, we find that the choice 𝐾୫ୟ୶ ൌ 7 is adequate. Once 
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these connections have been established, inference proceeds with SMC with just one additional 

parameter: the fractional “stick” 𝛎 . Although DP-based model is useful and gives additional 

information, 𝑃ሺ𝑧ଵ:஽|𝛎ሻ, since it needs further investigation, it is exploited only for discovering the 

optimal number of clusters in this work. 
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APPENDIX C. MATHEMATICAL DETAILS FOR LEARNING THE 
PERSONAL PREFERENCE PROFILES 

The following is the derivation of factorization in Eq. (3-32): 

න ෍ 𝑃ሺ𝑧୬ୣ୵, 𝑧ଵ:஽, 𝛉|𝐲୬ୣ୵, 𝐗୬ୣ୵, 𝐲ଵ:஽, 𝐗ଵ:஽ሻ
௭భ:ವ

𝑑𝛉

ൌ න ෍ 𝑃ሺ𝑧୬ୣ୵|𝐲୬ୣ୵, 𝐗୬ୣ୵, 𝐲ଵ:஽, 𝐗ଵ:஽, 𝑧ଵ:஽, 𝛉ሻ𝑃ሺ𝑧ଵ:஽, 𝛉|𝐲୬ୣ୵, 𝐗୬ୣ୵, 𝐲ଵ:஽, 𝐗ଵ:஽ሻ
௭భ:ವ

𝑑𝛉

ൎ න ෍ 𝑃ሺ𝑧୬ୣ୵|𝐲୬ୣ୵, 𝐗୬ୣ୵, 𝐲ଵ:஽, 𝐗ଵ:஽, 𝑧ଵ:஽, 𝛉ሻ𝑃ሺ𝑧ଵ:஽, 𝛉|𝐲ଵ:஽, 𝐗ଵ:஽ሻ
௭భ:ವ

𝑑𝛉      ሺby the assumptionሻ

ൌ න ෍
𝑃ሺ𝐲୬ୣ୵|𝐗୬ୣ୵, 𝐲ଵ:஽, 𝐗ଵ:஽, 𝑧ଵ:஽, 𝛉, 𝑧୬ୣ୵ሻ𝑃ሺ𝑧௡௘௪ሻ

𝑃ሺ𝐲୬ୣ୵|𝐗୬ୣ୵, 𝐲ଵ:஽, 𝐗ଵ:஽, 𝑧ଵ:஽, 𝛉ሻ
𝑃ሺ𝑧ଵ:஽, 𝛉|𝐲ଵ:஽, 𝐗ଵ:஽ሻ

௭భ:ವ

𝑑𝛉

ൌ න ෍
𝑃ሺ𝐲୬ୣ୵|𝐗୬ୣ୵, 𝛉, 𝑧୬ୣ୵ሻ𝑃ሺ𝑧௡௘௪ሻ

𝑃ሺ𝐲୬ୣ୵|𝐗୬ୣ୵, 𝛉ሻ
𝑃ሺ𝑧ଵ:஽, 𝛉|𝐲ଵ:஽, 𝐗ଵ:஽ሻ

௭భ:ವ

𝑑𝛉

ൌ න ෍ 𝑃ሺ𝑧୬ୣ୵|𝐲୬ୣ୵, 𝐗୬ୣ୵, 𝛉ሻ𝑃ሺ𝑧ଵ:஽, 𝛉|𝐲ଵ:஽, 𝐗ଵ:஽ሻ
௭భ:ವ

𝑑𝛉

ൌ
1
𝐶ଵ

න ෍ 𝑃ሺ𝐲୬ୣ୵|𝐗୬ୣ୵, 𝛉, 𝑧୬ୣ୵ሻ𝑃ሺ𝑧୬ୣ୵ሻ𝑃ሺ𝑧ଵ:஽, 𝛉|𝐲ଵ:஽, 𝐗ଵ:஽ሻ
௭భ:ವ

𝑑𝛉 

(C-1)

The following equation shows how the right-hand side of Eq. (3-32) can be computed 

efficiently with the SMC particles: 

න ෍ 𝑃ሺ𝐲୬ୣ୵|𝐗୬ୣ୵, 𝛉, 𝑧୬ୣ୵ሻ𝑃ሺ𝑧୬ୣ୵ሻ𝑃ሺ𝑧ଵ:஽, 𝛉|𝐲ଵ:஽, 𝐗ଵ:஽ሻ
௭భ:ವ

𝑑𝛉

ൎ ෍ 𝑤ሺ௜ሻ𝑃൫𝐲୬ୣ୵ห𝐗୬ୣ୵, 𝛉ሺ௜ሻ, 𝑧୬ୣ୵൯𝑃ሺ𝑧୬ୣ୵ሻ
# ௉௔௥௧௜௖௟௘௦

௜ୀଵ

ሺby the particle approximationሻ 

(C-2)

where 𝑤 is the weight of each particle (in this study, every particle has the same weight since they 

were scaled, i.e., 𝑤 = 1/3000). The following equation shows how Eq. (3-33) can be computed 

efficiently with the SMC particles: 

න ෍ ෍ 𝑃൫𝑦୮ ൌ 𝑗ห𝐱୮, 𝑧୬ୣ୵, 𝛉൯𝑃ሺ𝐲୬ୣ୵|𝐗୬ୣ୵, 𝛉, 𝑧୬ୣ୵ሻ𝑃ሺ𝑧୬ୣ୵ሻ𝑃ሺ𝑧ଵ:஽, 𝛉|𝐲ଵ:஽, 𝐗ଵ:஽ሻ
௭భ:ವ௭౤౛౭

𝑑𝛉

ൎ ෍ ෍ 𝑤ሺ௜ሻ𝑃൫𝑦୮ ൌ 𝑗ห𝐱୮, 𝑧୬ୣ୵ ൌ 𝑘, 𝛉ሺ௜ሻ൯𝑃൫𝐲୬ୣ୵ห𝐗୬ୣ୵, 𝛉ሺ௜ሻ, 𝑧୬ୣ୵ ൌ 𝑘൯𝑃ሺ𝑧୬ୣ୵ ൌ 𝑘ሻ

#௉௔௥௧௜௖௟௘௦

௜ୀଵ

௄

௞ୀଵ

 

(C-3)
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APPENDIX D. BETA REGRESSION 

We assume that the likelihood of observing the dissatisfaction level, 𝑦, in a day follows a 

Beta distribution. The probability density function of the beta distribution is parametrized as:  

𝐵ሺ𝑦|𝜇, 𝜙ሻ ൌ
Γሺ𝜙ሻ

Γሺ𝜇𝜙ሻΓ൫ሺ1 െ 𝜇ሻ𝜙൯
𝑦ఓథିଵሺ1 െ 𝑦ሻሺଵିఓሻథିଵ, 0 ൏ 𝑦 ൏ 1 (D-1)

where 0 ൏ 𝜇 ൏ 1, 𝜙 ൐ 0, and Γሺ⋅ሻ is the gamma function [61]. Here, the mean and variance of 𝑦 

are 𝜇 and 𝜇ሺ1 െ 𝜇ሻ/ሺ1 ൅ 𝜙ሻ, respectively.  

Subsequently, to link the number of elapsed days, 𝑥, and shape of Beta distributions over 

the period, we construct the following linear relationships: 

𝑔ଵ൫𝜇ሺ௜ሻ൯ ൌ 𝛽଴ ൅ 𝛽ଵ𝑥ሺ௜ሻ (D-2)

𝑔ଶ൫𝜙ሺ௜ሻ൯ ൌ 𝛽ଶ ൅ 𝛽ଷ𝑥ሺ௜ሻ (D-3)

Here, 𝑔ଵሺ⋅ሻ  and 𝑔ଶሺ⋅ሻ  are link functions which are used to transform values and ensure the 

constraints, 0 ൏ 𝜇 ൏ 1 , 𝜙 ൐ 0 . We use the logit function (𝑔ଵሺ𝜇ሻ ൌ log ሺ𝜇/ሺ1 െ 𝜇ሻ ) and log 

function (𝑔ଶሺ𝜙ሻ ൌ log ሺ𝜙ሻ) for 𝑔ଵሺ⋅ሻ and 𝑔ଶሺ⋅ሻ, respectively [62]. 

The likelihood of the Beta regression is: 

𝑝ሺ𝐲|𝛍, 𝛟ሻ ൌ ෑ 𝛣൫𝑦ሺ௜ሻห𝜇ሺ௜ሻ, 𝜙ሺ௜ሻ൯

ே

௜ୀଵ

 (D-4)

where 𝐲 ൌ ൫𝑦ሺଵሻ, … 𝑦ሺேሻ൯, 𝛍 ൌ ሺ𝜇ሺଵሻ, … , 𝜇ሺேሻሻ, 𝛟 ൌ ሺ𝜙ሺଵሻ, … , 𝜙ሺேሻሻ, 𝛣ሺ⋅ |𝜇, 𝜙ሻ is the probability 

density function of a Beta distribution in Eq. (D-1). 

To carry out the regression in a fully Bayesian way, we assign priors to the coefficients 𝛃 ൌ

ሺ𝛽ଵ, 𝛽ଶ, 𝛽ଷ, 𝛽ସሻ. We assign a zero mean Gaussian prior as 𝑝ሺ𝛃|𝛼ሻ ൌ 𝒩ሺ𝛃|0, 𝜆𝐈ሻ, where 𝒩ሺ⋅ |𝛍, 𝚺ሻ 

is the probability density function of a multivariate Gaussian distribution with mean 𝛍  and 

covariance matrix 𝚺, 𝐈 is the 4-dimensional unit matrix. We set 𝜆 ൌ 10,000 since we do not have 

specific prior knowledge. 

We use Python PyMC3 [63] package to code the model as well as sample from the posterior 

of 𝛃 using Markov chain Monte Carlo (MCMC). After analyzing the traces, we decide to burn the 

first 100,000 samples and gather 5,000 samples by keeping one MCMC sample out of every 100. 

Figure D-1 shows the posterior probability distribution of 𝛃. The posterior probability of 𝛽ଵ (the 

slope parameter) being positive is nearly zero, which means that there is a high probability of a 
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negative correlation existing between 𝑥 and 𝑔ଵሺ𝜇ሻ in Eq. (D-2). From the posterior, we conclude 

that the proposed controller reduced the dissatisfaction level over time. 

 

 
Figure D-1. Posterior distribution of the parameters. 
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APPENDIX E. ENERGY CONSUMPTION WITH DIFFERENT 
CONTROLLERS 

We can quantify the effect of using different controllers on cooling energy consumption by 

coding causal relationships in a Bayesian model. In this study, we consider two input variables: (i) 

use of different controllers; (ii) mean outdoor air temperature, which directly affect the energy 

consumption, and train linear models. Before proceeding, we confirm our belief that there will be 

a positive correlation between the energy consumption and the mean outdoor temperature by 

plotting the two variables (Figure E-1). Then, we preprocess the data for the modeling: (i) we work 

with the logarithm of the energy consumption since it is a positive variable; (ii) we standardize the 

energy values by subtracting their mean and dividing by their standard deviation. 

 

 
Figure E-1. Daily energy consumption and mean outdoor temperature during the entire period. 

 

Instead of training two linear regression models for the baseline and proposed controllers 

separately, we train one model including both cases to encode the order between the two cases in 

the energy consumption. 

The likelihood of the model is: 

𝑝൫𝐲௝ห𝛍௝, 𝜎௝
ଶ൯ ൌ ෑ ෑ 𝒩ቀ𝑦௝

ሺ௜ሻቚ𝜇௝
ሺ௜ሻ, 𝜎௝

ଶቁ

ேೕ

௜ୀଵ

ଶ

௝ୀଵ

 (E-1)

𝜇௝
ሺ௜ሻ ൌ 𝛽௝,଴ ൅ 𝛽௝,ଵ𝑥௝

ሺ௜ሻ
 (E-2)
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where 𝑗 ൌ 1,2 represents the baseline and proposed controller, respectively, 𝐲௝ ൌ ቀ𝑦௝
ሺଵሻ, … , 𝑦௝

൫ேೕ൯
ቁ, 

𝛍௝ ൌ ቀ𝜇௝
ሺଵሻ, … , 𝜇௝

ሺேೕሻ
ቁ , 𝑦  and 𝑥  are the preprocessed energy consumption and mean outdoor 

temperature, respectively. Here, we strictly encode the order by forcing 𝜇ଵ ൑ 𝜇ଶ whenever the 

mean outdoor temperature is higher than 18 °C, i.e., when a positive cooling load could exist. We 

set the following priors: 𝑝൫𝛽௝,଴ห𝜆൯ ൌ 𝒩൫𝛽௝,଴ห0, 𝜆൯, 𝑝൫𝛽௝,ଵห𝜆൯ ൌ ℰ൫𝛽௝,ଵห𝜆൯, and 𝑝ሺ𝜎|𝜆ሻ ൌ ℰሺ𝜎|𝜆ሻ, 

which mean 𝛽௝,଴ are real numbers while 𝛽௝,ଵand 𝜎 are positive real numbers. We set 𝜆 ൌ 10000 

since we do not have specific prior knowledge. 

We sample from the posterior of the model parameters using Markov chain Monte Carlo 

(MCMC). We burn the first 100,000 samples and gather 2,000 samples by keeping one MCMC 

sample out of every 250. 

Figure E-2 shows the two sub-models for the two cases, respectively. In each plot, blue dots 

are actual data points, blue line and shaded area with orange color respectively represent the 

median and 95% credible interval of mean of normal distributions (𝜇௝ in Eq. (E-2)). Shaded area 

with green color represents the full uncertainty of the daily energy consumption. 

 

 
Figure E-2. Bayesian linear regression models for the relationship between daily energy consumption and mean 

outdoor temperature with the baseline (left) and the self-tuned controller (right) 

 
Then, we can calculate the predictive probability distribution of the daily energy 

consumption during summer period by integrating the mean outdoor temperature out from the sub-

models as: 

𝑝ሺ𝑦|𝑗, 𝐃𝐚𝐭𝐚ሻ ൌ ඵ 𝑝ሺ𝑦|𝑗, 𝑥, 𝛉ሻ𝑝ሺ𝑥ሻ𝑝ሺ𝛉|𝐃𝐚𝐭𝐚ሻ 𝑑𝛉 𝑑𝑥 (E-3)
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where 𝛉 ൌ ሺ𝛽଴,଴, 𝛽଴,ଵ, 𝛽ଵ,଴, 𝛽ଵ,ଵ, 𝜎ሻ  are the model parameters, 𝐃𝐚𝐭𝐚  are the training data, 

𝑝ሺ𝛉|𝐃𝐚𝐭𝐚ሻ is the posterior probability distribution, and 𝑝ሺ𝑥ሻ is the probability distribution of the 

mean outdoor temperature. For the latter, we fit a skewed normal distribution [64] to the mean 

outdoor temperature measured between July 1st to September 30th, 2018 (Figure E-3) and use it 

for 𝑝ሺ𝑥ሻ. For the fitting, we use stats function in Python SciPy [65] package. Figure 5.18 shows 

the predictive probability distribution of the daily energy consumption (Eq. (E-3)). 

 

 
Figure E-3. Distribution of mean outdoor temperature measured between July 1st to September 30th, 2018 

(normalized histogram) and probability density of a skewed normal distribution fitted with the measured data (blue 
line). 
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APPENDIX F. PROBABILITY CALCULATION 

Let 𝐴 and 𝐵 represent |𝑙| and ℎ௩భ
, respectively. Since the PDF of the sum of two random 

variables equals the convolution of PDFs of the two variables, we can compute 𝑝ሺ𝑣ଵ ൌ 0|𝑡, 𝛉ሻ as 

𝑝ሺ𝑣ଵ ൌ 0|𝑡, 𝜽ሻ 

ൌ 𝑝ሺെ𝐴 ൅ 𝐵 ൐ 𝛿|𝑡, 𝜽ሻ

ൌ 1 െ 𝑝ሺെ𝐴 ൅ 𝐵 ൏ 𝛿|𝑡, 𝜽ሻ 

ൌ 1 െ න 𝑝ሺ𝐵 ൏ 𝛿 ൅ 𝐴|𝐴, 𝑡, 𝜽ሻ𝑝ሺ𝐴|𝑡, 𝜽ሻ 𝑑𝐴 

(F-1)

where  

𝑝ሺ𝐴|𝑡, 𝛉ሻ ൌ ℱ𝒩ሺ𝐴|𝑓ሺ𝑡ሻ, 1ሻ (F-2)

𝑝ሺ𝐵|𝛉ሻ ൌ 𝒩ሺ𝐵|0, 𝜎௩
ଶሻ (F-3)

ℱ𝒩ሺ∙ |𝜇, 𝜎ଶሻ is the PDF of a folded normal distribution with mean 𝜇 and variance 𝜎ଶ.  

Now, let 𝐴  and 𝐵  represent 𝑙  and ℎ௩భ
, respectively. Then, we can compute 

𝑝ሺ𝑣ଵ ൌ 0|𝑙 ൏ െ𝜏, 𝛉ሻ as 

𝑝ሺ𝑣ଵ ൌ 0|𝑙 ൏ െ𝜏, 𝜽ሻ 

ൌ 𝑝ሺ𝐴 ൅ 𝐵 ൐ 𝛿|𝑡, 𝜽ሻ 

ൌ 1 െ  𝑝ሺ𝐴 ൅ 𝐵 ൏ 𝛿|𝑡, 𝜽ሻ 

ൌ 1 െ න 𝑝ሺ𝐴 ൏ 𝛿 െ 𝐵|𝐵, 𝑡, 𝜽ሻ𝑝ሺ𝐵|𝜽ሻ 𝑑𝐵 

(F-4)

where 

𝑝ሺ𝐴|𝑡, 𝜽ሻ ൌ 𝒯𝒩ሺ𝐴|𝑓ሺ𝑡ሻ, 1, െ∞, െ𝜏ሻ (F-5)

𝑝ሺ𝐵|𝜽ሻ ൌ 𝒩ሺ𝐵|0, 𝜎௩
ଶሻ (F-6)

𝒯𝒩ሺ∙ |𝜇, 𝜎ଶ, lb, ubሻ is the PDF of a truncated normal distribution with mean 𝜇, variance 𝜎ଶ, lower 

bound lb, and upper bound ub. 

Similarly, we can compute 𝑝ሺ𝑣ଵ ൌ 0|𝑙 ൐ 𝜏, 𝛉ሻ as 

𝑝ሺ𝑣ଵ ൌ 0|𝑙 ൐ 𝜏, 𝜽ሻ 

ൌ 𝑝ሺെ𝐴 ൅ 𝐵 ൐ 𝛿|𝑡, 𝜽ሻ

ൌ 1 െ  𝑝ሺെ𝐴 ൅ 𝐵 ൏ 𝛿|𝑡, 𝜽ሻ 

ൌ 1 െ න 𝑝ሺെ𝐴 ൏ 𝛿 െ 𝐵|𝐵, 𝑡, 𝜽ሻ𝑝ሺ𝐵|𝜽ሻ 𝑑𝐵 

(F-7)
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where 

𝑝ሺ𝐴|𝑡, 𝜽ሻ ൌ 𝒯𝒩ሺ𝐴|𝑓ሺ𝑡ሻ, 1, 𝜏, ∞ሻ (F-8)

𝑝ሺ𝐵|𝜽ሻ ൌ 𝒩ሺ𝐵|0, 𝜎௩
ଶሻ (F-9)

Since, Eq. (F-1), (F-4), (F-7) cannot be computed analytically, we use Gauss-Hermite 

quadrature [114] with 100 points to compute it numerically. 
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APPENDIX G. SEQUENTIAL MONTE CARLO 

Let us suppose that our joint probability is: 

𝑝ሺ𝛉|𝐃ሻ ൌ
𝑝ሺ𝐃|𝛉ሻ𝑝ሺ𝛉ሻ

𝑝ሺ𝐃ሻ
 (G-1)

where 𝐃  is a dataset of 𝑁  observations and 𝛉  is model parameters. We define a family of 

distributions that will take us from the prior to the posterior with increasing complexity: 

𝑝ሺ𝛉|𝐃, 𝛾ሻ ∝ 𝜋ఊሺ𝛉ሻ ≔ 𝑝ሺ𝐃|𝛉ሻఊ𝑝ሺ𝛉ሻ (G-2)

subject to 0 ൑ 𝛾 ൑ 1. Here, 𝛾 ൌ 0 corresponds to the prior: 

𝑝ሺ𝛉|𝐃, 𝛾 ൌ 0ሻ ∝ 𝜋଴ሺ𝛉ሻ ൌ 𝑝ሺ𝛉ሻ (G-3)

𝛾 ൌ 1 means the posterior: 

𝑝ሺ𝛉|𝐃, 𝛾 ൌ 1ሻ ∝ 𝜋ଵሺ𝛉ሻ ൌ 𝑝ሺ𝐃|𝛉ሻ𝑝ሺ𝛉ሻ (G-4)

The particle approximation to the distribution is: 

𝑝ሺ𝛉|𝐃, 𝛾ሻ ൌ ෍ 𝑤௥,௜𝛿൫𝛉ఊ,௜ െ 𝛉൯

ூ

௜ୀଵ

 (G-5)

where 𝛉ఊ,௜ is a sample (particle) from 𝜋ఊሺ𝛉ሻ: 

𝛉ఊ,௜~𝜋ఊሺ𝛉ሻ ൌ 𝑝ሺ𝐃|𝛉ሻఊ𝑝ሺ𝛉ሻ (G-6)

෍ 𝑤௥,௜

ூ

௜ୀଵ

ൌ 1 (G-7)

For two consecutive gammas, 0 ൑ 𝛾௧ ൏ 𝛾௧ାଵ ൑ 1, we update the weights as: 

𝑤ఊ೟శభ,௜ ൌ
𝑊ఊ೟శభ,௜

∑ 𝑊ఊ೟శభ,௝
ூ
௝ୀଵ

 (G-8)

where 

𝑊ఊ೟శభ,௜ ൌ 𝑤ఊ೟,௜
𝜋ఊ೟శభ

൫𝛉ఊ೟,௜൯

𝜋ఊ೟
൫𝛉ఊ೟,௜൯

 (G-9)

and sample particles, 𝛉ఊ೟శభ,ଵ:ூ, from 

𝛉ఊ೟శభ,௜~𝜋ఊ೟శభ
ሺ𝛉ሻ ൌ  𝑝ሺ𝐃|𝛉ሻఊ೟శభ𝑝ሺ𝛉ሻ (G-10)

by doing a few steps of MCMC. 

To select intermediate gammas, we introduce the Effective Sample Size (EES, [115]), 
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ESSሺ𝛾ሻ ൌ
1

∑ 𝑤௥,௜
ଶூ

௜ୀଵ
 (G-11)

and define an acceptable reduction in the ESS between two consecutive gammas as 

ESSሺ𝛾௧ାଵሻ ൒ 0.95ESSሺ𝛾௧ሻ (G-12)

If ESSሺ𝛾௧ሻ ൑ 0.5𝐼, we resample particles. 

A benefit of using SMC is that we can compute the normalization constant of the posterior, 

𝑝ሺ𝐃ሻ, a.k.a., model evidence, as 

𝑍 ൌ ෑ ෍ 𝑊௥೟,௜

ூ

௜ୀଵ

்

௧

 (G-13)

which is normally used for Bayesian model selection. In this study, this quantity is used in 

Appendix H. 

For further details regarding SMC, please refer to [79]. 

 

  



 
 

150 

APPENDIX H. BAYESIAN MODEL UPDATE WITH SEQUENTIAL 
MONTE CARLO 

Let us suppose that we already estimated the posterior parameter distribution given some 

data, 𝐃. We get new data points 𝐃୬ୣ୵, and we want to update the posterior with it. Then, our joint 

probability is: 

𝑝ሺ𝛉|𝐃, 𝐃୬ୣ୵ሻ ൌ
𝑝ሺ𝐃, 𝐃୬ୣ୵|𝛉ሻ𝑝ሺ𝛉ሻ

𝑝ሺ𝐃, 𝐃୬ୣ୵ሻ
 (H-1)

If 𝐃 and 𝐃୬ୣ୵ are conditionally independent, 

𝑝ሺ𝛉|𝐃, 𝐃୬ୣ୵ሻ ൌ  
𝑝ሺ𝐃୬ୣ୵|𝛉ሻ𝑝ሺ𝐃|𝛉ሻ𝑝ሺ𝛉ሻ

𝑝ሺ𝐃, 𝐃୬ୣ୵ሻ
ൌ

𝑝ሺ𝐃୬ୣ୵|𝛉ሻ𝑝ሺ𝛉|𝐃ሻ
𝑝ሺ𝐃, 𝐃୬ୣ୵ሻ

𝑝ሺ𝐃ሻ

 
(H-2)

Then, we can apply the same technique in Appendix G, introducing a family of distribution, to 

update the model efficiently as: 

𝑝ሺ𝛉|𝐃, 𝐃୬ୣ୵, 𝛾ሻ ∝ 𝜋ఊሺ𝛉ሻ ≔ 𝑝ሺ𝐃୬ୣ୵|𝛉ሻఊ𝑝ሺ𝛉|𝐃ሻ ൌ 𝑝ሺ𝐃୬ୣ୵|𝛉ሻఊ 𝑝ሺ𝐃|𝛉ሻ𝑝ሺ𝛉ሻ
𝑝ሺ𝐃ሻ

 (H-3)

subject to 0 ൑ 𝛾 ൑ 1. Here, 𝑝ሺ𝐃ሻ is the normalization constant which was calculated when we 

estimated 𝑝ሺ𝛉|𝐃ሻ with SMC. The particle approximation to the distribution is: 

𝑝ሺ𝛉|𝐃, 𝐃୬ୣ୵, 𝛾ሻ ൌ ෍ 𝑤௥,௜𝛿൫𝛉ఊ,௜ െ 𝛉൯

ூ

௜ୀଵ

 (H-4)

where 𝛉ఊ,௜ is a sample (particle) from 𝜋ఊሺ𝛉ሻ: 

𝛉ఊ,௜~𝜋ఊሺ𝛉ሻ ൌ 𝑝ሺ𝐃୬ୣ୵|𝛉ሻఊ𝑝ሺ𝛉|𝐃ሻ (H-5)

෍ 𝑤௥,௜

ூ

௜ୀଵ

ൌ 1 (H-6)

Then, the particle approximation to the distribution of 𝛾 ൌ 0 is: 

𝑝ሺ𝛉|𝐃, 𝐃୬ୣ୵, 𝛾 ൌ 0ሻ ൌ ෍ 𝑤଴,௜𝛿൫𝛉଴,௜ െ 𝛉൯

ூ

௜ୀଵ

 (H-7)

where  

𝛉଴,௜~𝜋଴ሺ𝛉ሻ ൌ 𝑝ሺ𝛉|𝐃ሻ (H-8)
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In other words, we start this sequential process with the posterior samples of 𝑝ሺ𝛉|𝐃ሻ, and finally, 

get the posterior samples representing 𝑝ሺ𝛉|𝐃, 𝐃୬ୣ୵ሻ. In addition, we can get the 𝑝ሺ𝐃୬ୣ୵|𝐃ሻ, 

which is used in Appendix I, and subsequently 𝑝ሺ𝐃, 𝐃୬ୣ୵ሻ through the process.  
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APPENDIX I. COMPUTATION OF THE EXPECTED KULLBACK–
LEIBLER DIVERGENCE 

 We want to compute  

𝑈ሺ𝑡୬ୣ୵, 𝑟୬ୣ୵ሻ ൌ 𝔼௬ൣ𝐷௄௅൫𝑝ሺ𝛉|𝐃, 𝐝୬ୣ୵ሻ ∥ 𝑝ሺ𝛉|𝐃ሻ൯൧

ൌ න ෍ 𝑝ሺ𝛉|𝐃, 𝐝୬ୣ୵ሻ𝑝ሺ𝑦୬ୣ୵|𝐃, 𝑡୬ୣ୵, 𝑟୬ୣ୵ሻ log
𝑝ሺ𝛉|𝐃, 𝐝୬ୣ୵ሻ

𝑝ሺ𝛉|𝐃ሻ

ଶ

௬౤౛౭ୀିଵ

𝑑𝛉 
(I-1)

We can rewrite the above equation as 

𝑈ሺ𝑡୬ୣ୵, 𝑟୬ୣ୵ሻ ൌ න ෍ 𝑝ሺ𝑦୬ୣ୵|𝛉, 𝑡୬ୣ୵, 𝑟୬ୣ୵ሻ𝑝ሺ𝛉|𝐃ሻ log
𝑝ሺ𝑦୬ୣ୵|𝛉, 𝑡୬ୣ୵, 𝑟୬ୣ୵ሻ
𝑝ሺ𝑦୬ୣ୵|𝐃, 𝑡୬ୣ୵, 𝑟୬ୣ୵ሻ

ଶ

௬౤౛౭ୀିଵ

𝑑𝛉 (I-2)

as 

𝑝ሺ𝛉|𝐃, 𝐝୬ୣ୵ሻ ൌ
𝑝ሺ𝑦୬ୣ୵|𝛉, 𝑡୬ୣ୵, 𝑟୬ୣ୵ሻ𝑝ሺ𝛉|𝐃ሻ

𝑝ሺ𝑦୬ୣ୵|𝐃, 𝑡୬ୣ୵, 𝑟୬ୣ୵ሻ
 (I-3)

Since we have the samples representing 𝑝ሺ𝛉|𝐃ሻ, we can calculate the quantity using Monte Carlo 

integration as, 

1
𝑁

෍ ෍ 𝑝ሺ𝑦୬ୣ୵|𝛉௜, 𝑡୬ୣ୵, 𝑟୬ୣ୵ሻ log
𝑝ሺ𝑦୬ୣ୵|𝛉௜, 𝑡୬ୣ୵, 𝑟୬ୣ୵ሻ
𝑝ሺ𝑦୬ୣ୵|𝐃, 𝑡୬ୣ୵, 𝑟୬ୣ୵ሻ

ଶ

௬౤౛౭ୀିଵ

ே

௜ୀଵ

 (I-4)

We can compute 𝑝ሺ𝑦୬ୣ୵|𝐃, 𝑡୬ୣ୵, 𝑟୬ୣ୵ሻ, which corresponds to 𝑝ሺ𝐃୬ୣ୵|𝐃ሻ in Appendix H, easily 

through the process of the Bayesian model update with sequential Monte Carlo. 
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