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ABSTRACT

Nash, Austin L. Ph.D., Purdue University, December 2019. Hierarchical Combined
Plant and Control Design for Thermal Management Systems. Major Professor:
Neera Jain, School of Mechanical Engineering.

Over the last few decades, many factors, including increased electrification, have

led to a critical need for fast and efficient transient cooling. Thermal management

systems (TMSs) are typically designed using steady-state assumptions and to accom-

modate the most extreme operating conditions that could be encountered, such as

maximum expected heat loads. Unfortunately, by designing systems in this man-

ner, closed-loop transient performance is neglected and often constrained. If not

constrained, conventional design approaches result in oversized systems that are less

efficient under nominal operation. Therefore, it is imperative that transient compo-

nent modeling and subsystem interactions be considered at the design stage to avoid

costly future redesigns. Simply put, as technological advances create the need for

rapid transient cooling, a new design paradigm is needed to realize next generation

systems to meet these demands.

In this thesis, I develop a new design approach for TMSs called hierarchical con-

trol co-design (HCCD). More specifically, I develop a HCCD algorithm aimed at

optimizing high-fidelity design and control for a TMS across a system hierarchy. This

is accomplished in part by integrating system level (SL) CCD with detailed compo-

nent level (CL) design optimization. The lower-fidelity SL CCD algorithm incorpo-

rates feedback control into the design of a TMS to ensure controllability and robust

transient response to exogenous disturbances, and the higher-fidelity CL design op-

timization algorithms provide a way of designing detailed components to achieve the

desired performance needed at the SL. Key specifications are passed back and forth

between levels of the hierarchy at each iteration to converge on an optimal design
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that is responsive to desired objectives at each level. The resulting HCCD algorithm

permits the design and control of a TMS that is not only optimized for steady-state

efficiency, but that can be designed for robustness to transient disturbances while

achieving said disturbance rejection with minimal compromise to system efficiency.

Several case studies are used to demonstrate the utility of the algorithm in design-

ing systems with different objectives. Additionally, high-fidelity thermal modeling

software is used to validate a solution to the proposed model-based design process.
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1. INTRODUCTION

Thermal management systems (TMSs) have historically been designed to perform at

steady operating conditions. As a result, these systems are typically over-designed to

accommodate the most extreme operating conditions expected. For example, compo-

nents may be designed to accommodate maximum expected heat loads. In systems

which operate at moderately steady loads over long periods of times, this method

of design is generally acceptable. However, as technology progresses, transient heat

loads are increasingly becoming the norm rather than the exception.

As detailed in [1], recent advances in areas such as microelectronics have enabled

the design of microprocessors which can adapt to changes in computing demands on

a time scale of microseconds. Unfortunately, slow response of thermal components

has negatively impacted the thermal management capabilities of the multicore micro-

processors; as a result, device performance is altered to accommodate thermal limita-

tions [2]. By designing systems and components “open-loop” with steady-state oper-

ational load assumptions, thermal systems engineers limit transient thermodynamic

performance. In addition, overdesigning of systems can cause significant increases in

system weight or cost. While the example of thermal limitations in microprocessor

operation is small-scale, similar dynamic problems occur for thermal systems on all

scales.

With both increased system complexity and integration with other dynamic sys-

tems, the design of effective thermal systems now requires theoretically sound analyses

that address the transient nature of dynamics from a material level all the way to

system-level interactions [1]. A critical gap that remains in dynamic thermal manage-

ment concerns using design optimization strategies that exploit new levers of control

in designing these systems. It is imperative that transient closed-loop performance

and subsystem interactions be considered at the design stage to avoid costly future
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redesigns. As the need for high scale cooling increases for many systems [3, 4], the

importance of optimal, efficient thermal management increases. Simply put, as tech-

nological advances create the need for rapid transient cooling, a new design paradigm

is needed to realize next generation systems to meet these demands.

1.1 Background

1.1.1 Introduction to Control Co-design

Combined plant and control design, or control co-design (CCD), provides a path

toward realizing next generation thermal cooling demands by incorporating the notion

of transients early in the system design stage. CCD is a process wherein a system’s

governing control policy, and thus its closed-loop performance, is considered at the

plant design stage. A simple illustration of the difference between conventional (se-

quential) design methods and CCD methods is shown in Fig. 1.1. Typically, a plant

(or system) is designed using an offline optimization that defines the open-loop per-

formance of the system. A control systems engineer is then tasked with designing a

feedback controller for the plant to yield closed-loop performance which meets a set of

desired performance specifications. In CCD, however, both plant design and control

design are considered together at the system design stage. CCD essentially enables

a broader design space to be considered by leveraging additional degrees of freedom

to meet closed-loop performance specifications. The merits of CCD are rooted in the

fact that there are fundamental limitations to what can be achieved with the addition

of feedback control for a given plant design [5]. Given the opportunity to consider

the impact of plant design parameters (e.g., mass) on closed-loop performance, the

plant could be designed differently to yield systems with improved performance char-

acteristics such as robustness and efficiency.

CCD algorithms can be grouped into four categories: sequential, iterative, nested,

and simultaneous [6]. Using sequential algorithms, the plant is optimized first, fol-

lowed by an optimization of the controller. In other words, the optimizations occur
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Offline 
design

Control 
design

Meet desired 
specs

System 
design

Control 
design

Meet desired 
specs

Traditional design process Co-design process

open-loop performance

closed-loop performance

control 
optimization

parameter 
optimization

Figure 1.1. : Schematic illustrating fundamental difference between conventional de-
sign and CCD.

in series. In iterative algorithms, the sequential process is repeated multiple times

until some user-defined convergence is achieved. These algorithms seldom guarantee

optimality. Nested CCD algorithms are similar to iterative algorithms but can offer

guaranteed optimality. Simultaneous CCD algorithms are the most robust of the four;

these algorithms are multidisciplinary and guarantee optimality. However, they are

often difficult to solve and are the most computationally complex of the four types.

Applications of existing simultaneous and nested CCD algorithms in the literature

have largely been geared toward simple control policies with control objectives such

as placing closed-loop poles in the left half plane; furthermore, the use of simplified

plant models and quadratic cost functions is prevalent in the CCD literature [7–10].

Authors acknowledge that investigation is needed to understand the application of

CCD techniques to more sophisticated systems and applications [10]. Within the

literature, the concept of CCD has been largely confined to the aerospace and me-

chanical engineering communities with applications such as structural design and

rotor design [7, 11–15] and has played one of its most critical roles in the design of
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tactical aircraft [16]. CCD has also been used to explore optimal sizing of micro-grid

components [17]. A comprehensive literature review on CCD can be found in [13].

Recently, CCD has been applied to thermodynamic systems such as fuel cell and

battery hybrid vehicles [18], micro-combined heat and power (micro-CHP) systems

[19], and devices used in process control such as evaporators and mixing tanks [20,21].

Kim and Peng used a pseudo-SDP controller with basis functions to determine control

variables that can be leveraged as design variables [18]. Key components of the plant

model, however, were static and therefore did not capture some transient behavior

of the system. In [19], the authors used a multiobjective optimization framework

to design multi-parametric model predictive controllers. They used gray-box LTI

state-space models derived with system identification techniques. In [20], the authors

used parametric programming to derive an explicit control structure, thereby remov-

ing the need for solving an optimization problem online for model predictive control.

While these efforts demonstrated initial work in adapting CCD techniques to ther-

mal systems, modeling simplifications were made that either excluded some dynamics

altogether or transformed them such that the model was no longer based on first prin-

ciples. This poses a challenge for thermal-fluid systems in which static and dynamic

system efficiency, along with other dynamic characteristics such as time delays, are

best described by the first and second laws of thermodynamics. In particular, it is well

known that the second law can be used to quantify the best theoretical performance

attainable for a range of thermodynamic systems. This affects applications ranging

from thermal management to thermal energy storage which are facilitated by various

energy transport processes. These processes are susceptible to dissipative losses, or

irreversibilities, which affect the efficiency of a given system and are quantified in a

term defined as entropy generation.

Although second law analysis has been used to guide efficient design of both

physical systems and control algorithms separately, it has not been considered for use

in control co-design algorithms. Engineers have long considered the second law of

thermodynamics for steady-state design decisions [22, 23]. More recently, researchers
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have leveraged exergy destruction minimization, which is proportional to minimizing

entropy generation, in designing controllers for a class of thermal systems such as

vapor-compression systems [24–28] as well as other thermal-fluid systems [29, 30].

Second law methods have also been used in passivity-based control and chemical

process stabilization [31–36], and for controlling internal combustion engines (ICEs)

[37–40].

Across various sectors, from fossil-fueled power generation to dynamic thermal

management, solving the problem of designing and controlling a system to minimize

these irreversibilities is becoming increasingly critical [1], particularly because im-

proved efficiency typically translates to critical performance metrics such as increased

thermal endurance in the case of aircraft thermal management. However, as pre-

viously described, existing research on CCD of thermal systems does not explicitly

account for the effect that system design has on efficiency. A critical gap concerns

developing CCD algorithms that explicitly account for key performance

measures and dynamics common to TMS operation, namely static and

dynamic system efficiency.

1.1.2 Hierarchical System Design

A general requirement for model-based control design, and thus CCD algorithms,

is that a reduced-order model of the system dynamics must be used. However, this

precludes engineers, to an extent, from considering detailed design features in a CCD

algorithm. This becomes problematic for thermal management systems (TMSs) which

are themselves comprised of several dynamic components which each contribute to

the overall dynamics exhibited by the TMS. For example, the component dynamics of

a heat exchanger greatly affect the heat dissipation that can be achieved by a TMS.

Moreover, the system level dynamics of a TMS affect the capabilities and functionality

of other systems on board the aircraft such as the aircraft electronics. However, CCD

models are not detailed enough to account for component design features such as the
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heat exchanger’s tube bundle geometry. Therefore, the reduced-order models required

for CCD algorithms do not provide a path to selecting detailed component designs.

Ideally, design decisions should be coordinated across a system hierarchy, such as

the one shown in Figure 1.2, to both ensure optimal transient system operation at

a system level and to provide a realizable path toward selecting exact component

designs to fit the system.

System 
Level

Component 
Level

Component 

Top level 
architecture

Integrated 
System

Component 

Component Component 

Component Component 

System System System 

(a) General hierarchy in a complex system.

Fuel thermal 
management 

system

Centrifugal 
pump

Nozzle

System 
Level

Component 
Level

Shell and tube 
heat exchanger

Turbine

Aircraft 
propulsion 

system

case study in this work

Military aircraft
Vehicle 
Level

(b) Example hierarchy in an aircraft fuel thermal management
system.

Figure 1.2. : Schematics illustrating hierarchical structure of complex systems.

Integrated (hierarchical) design optimization, or optimizing system design across

multiple levels, has been researched previously with applications ranging from struc-

tural engine design to electrical circuit design. The authors in [41] leverage a genetic

algorithm-based integrated design environment to design and optimize aeronautical

piston engine components. In [42] the authors study the optimal design of a chassis

integrated system consisting of steering, suspension and brake subsystems with em-
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phasis on ensuring a favorable feel for the driver. In [43], the authors investigate the

use of integrated multilevel design in optimizing material structure of porous metals.

Martins et al. illustrated how hierarchical multi-objective optimization can be used

for design improvements for analog integrated circuit layouts [44].

Recently the notion of integrated design optimization has also been utilized in

the mechatronics community to help engineers across different disciplines accomplish

complex design tasks [45, 46]. Researchers divide integrated system design into two

levels, called macro-level and micro-level [47–50]; the macro-level process represents

the high level procedure for the design of mechatronic systems specified according

to individual design phases at the micro-level. The micro-level represents specific

lower level design phases where individuals can structure design sub-tasks. While

these efforts focus on integrating and coordinating design across multiple levels, they

typically do not consider transient device performance. Rather, the multilevel opti-

mization efforts are design-only and do not consider the implications of integrating

feedback control into the optimization.

Within the controls community, hierarchical control is a methodology that has

been studied in the context of complex systems, or systems comprised of multiple

components (levels) each with distinctive dynamics. Hierarchical control architectures

feature multiple controllers across the operation of a larger system architecture, each

operating independently to accomplish a subtask on separate time scales. Much of the

work seeks to derive analytical guarantees of stability and/or robustness under various

assumptions [51–54]. Researchers recently experimentally validated the concept of

hierarchical control for a fluid flow power system used for thermal management [55].

While their work successfully demonstrates the use of feedback control across a system

level hierarchy, no notions of system (plant) design optimization were considered.

Finally, recent work has investigated combining architectural design optimization

with CCD for a given architecture. In [56], the authors presented an algorithm

to design and control various architectures for a vehicle suspension system. The

higher-level architectural portion of the algorithm was used to determine an overall
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system setup, such as number of dampers to use, while a lower-level CCD algorithm

solved a nested CCD problem for a given architecture. The authors extended a

similar framework to the design of a single-split architecture for fluid-based thermal

management [57]. However, an open loop control signal was used at the lower level

rather than a CCD algorithm by modulating valve operation within the architecture.

In both papers, the plant models used were relatively simple. In fact, the authors

in [56] acknowledge that further work would be needed to investigate higher fidelity

models for architectures deemed favorable by their algorithm. Figure 1.3 illustrates

the available literature on the topics at hand. Absent from the literature is a way

to synthesize high-fidelity design optimization with feedback control design

to create a larger hierarchical CCD algorithm for optimizing transient

closed-loop performance of thermal systems.

Proposed 
Algorithm

+

*

^

Integrated 
high-fidelity 

design 
optimization

Control co-
design

Hierarchical 
control

Figure 1.3. : Illustration of the contribution of this research. The symbols in each
circle of the Venn diagram represent the following citations: + [7,10–15,18–21,56,58,
59], ∗ [41–50], ∧ [51–55].

1.2 Thesis Objectives

My main contribution in this dissertation is a new integrated design approach for

improved transient performance of thermal management systems. More specifically,
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I develop a hierarchical control co-design (HCCD) algorithm aimed at optimizing the

system design and feedback controller for a TMS across a system hierarchy. This is

accomplished in part by integrating system level (SL) CCD with high fidelity compo-

nent level (CL) design optimization. The lower-fidelity SL CCD algorithm incorpo-

rates feedback control into the design of a TMS to ensure controllability and robust

transient response to exogenous disturbances, and the higher-fidelity CL design op-

timization algorithms provide a way of designing detailed components to achieve the

desired performance needed at the SL. Key specifications are passed back and forth

between levels of the hierarchy at each iteration to converge to an optimal design that

is responsive to desired objectives at each level.

My system level (SL) CCD algorithm is specifically structured to capture critical

elements of TMS performance. Namely, the algorithm explicitly leverages system

efficiency, via entropy generation rate, as a design metric for both steady-state and

transient performance. This is accomplished in part by structuring the algorithm to

utilize a parameterized first-principles model that defines entropy generation rate as

a state whose dynamics are coupled to the plant and control variables. This is a

significant departure from existing CCD algorithms which generally use models that

are parameterized only for a small set of variables that are determined a priori to

be of significance [8,10,18,21]. To facilitate optimization across the hierarchy, I then

develop highly-detailed component level (CL) optimization algorithms for multiple

components within a TMS architecture. More specifically, I present a new design

methodology for transient design optimization of a shell and tube heat exchanger and

an optimization algorithm for a set of fluid pumps within the TMS. The component

level algorithms provide a method of optimizing detailed physical variables too com-

plex for inclusion in a CCD algorithm while ensuring the designs adhere to detailed

component level constraints.
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1.3 Outline

The rest of this dissertation is organized as follows. In Chapter 2, I present

a system level CCD algorithm along with a case study comparing it against more

conventional design strategies for TMSs. In Chapter 3, I develop a component level

dynamic optimization algorithm for a shell and tube heat exchanger and present an

associated case study. In Chapter 4, I detail the integration of the system level and

component level algorithms to create the HCCD algorithm and present a case study

to show its advantages. In addition, I present a pump modeling and optimization

framework that is included in the hierarchical algorithm. In Chapter 5, the high-

fidelity thermal modeling software ATTMO (AFRL Transient Thermal Management

Optimization) is used to validate the proposed design approach. Finally, conclusions

are drawn from this work in Chapter 6 and potential future work is discussed.
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2. SYSTEM LEVEL MODELING AND CONTROL CO-DESIGN

The first step in creating the hierarchical control co-design (HCCD) algorithm con-

tributed in this dissertation concerns designing a CCD algorithm explicitly structured

for thermal management systems. As stated in Chapter 1, CCD is a design strat-

egy that incorporates feedback control at the plant design stage, thereby enabling

intelligent design of thermal systems with favorable transient performance character-

istics. In this chapter, a new methodology for CCD of thermal management systems

is developed that explicitly leverages system efficiency, via entropy generation rate,

as a design metric for both steady-state and transient performance. This is accom-

plished in part by structuring the algorithm to utilize a parameterized first-principles

model that defines entropy generation rate as a state whose dynamics are coupled to

the plant and control variables. This is a significant departure from existing CCD

algorithms which generally use simplified models that are parameterized only for a

small set of variables that are determined a priori to be of significance. The result

of the proposed CCD algorithm is a system design that is not only optimized for

steady-state efficiency, but that can be designed for robustness to transient distur-

bances while achieving said disturbance rejection with minimal compromise to system

efficiency.

2.1 System Level Dynamic Model Description

In this section, I use mass and energy conservation laws to derive a first principles

model of the system. I then augment the state vector with an entropy generation

state to facilitate co-design for optimal transient and steady-state efficiency.
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2.1.1 Notional Thermal Management System

Figure 2.1. : Schematic of notional thermal management system.

The thermal management system considered here is given in Figure 2.1. The sys-

tem contains four basic thermodynamic processes: thermal storage, heat addition,

heat rejection, and thermal transport. Nearly all thermal-fluid systems are character-

ized by these thermodynamic processes. Therefore, the governing equations derived

here can be adapted to a wide range of more complex system architectures such as

systems with multiple storage elements. The single-phase cooling system studied here

is representative of a simple aircraft fuel thermal management system.

Working fluid at temperature Tt flows from a storage tank at a mass flow rate

ṁc. The mass of working fluid in the tank is denoted by Mt. A pulsed heat load Q̇a

is applied to the walls of the heat addition component. This component is modeled

similarly to a cold plate with working fluid temperature Ta and capacitance Ca where

I assume tubular channels of working fluid absorb heat applied to the walls of the

component, which have a lumped temperature Tw,a and mass mw,a. Downstream

of the heat addition component, the working fluid can exit the cycle at a flow rate

ṁE; this mimics aircraft thermal management systems wherein the working fluid is
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actually fuel for the engine and exits the system as needed for propulsion and power.

The remaining working fluid flows into the heat rejection component, modeled as a

shell and tube heat exchanger with working fluid temperature Tr, capacitance Cr,

wall temperature Tw,r, and wall mass mw,r. The secondary fluid in the heat rejection

component has a flow rate ṁr and lumped temperature Tc. After the heat rejection

process, the working fluid is routed back into the storage tank to complete the cycle.

Six dynamic states are used to describe the first law dynamics of the system shown

in Figure 2.1: Mt, Tt, Tr, Ta, Tw,r, and Tw,a. The mass flow rate leaving the loop

(ṁE), the pulsed heat load (Q̇a), and the secondary fluid temperature (Tc) are treated

as exogenous disturbances; the mass flow rate exiting the storage tank (ṁc) and the

secondary fluid mass flow rate (ṁr) are treated as control inputs in the system.

Using first principles, I define the state equations

dMt

dt
= −ṁE (2.1a)

Mt
dTt
dt

= (ṁc − ṁE) (T ′r − Tt) (2.1b)

Cr
dTr
dt

= As,rαr (Tw,r − Tr) + (ṁc − ṁE) cp (T ′a − Tr) (2.1c)

Ca
dTa
dt

= As,aαa (Tw,a − Ta) + ṁccp (T ′t − Ta) (2.1d)

mw,rcp,w
dTw,r
dt

= As,rαr (Tr − Tw,r) + Q̇c→w (2.1e)

mw,acp,w
dTw,a
dt

= As,aαa (Ta − Tw,a) + Q̇a , (2.1f)

where As represents heat transfer surface area. The α terms represent convective heat

transfer coefficients and are functions of the respective fluid flow rates, cross-sectional

flow areas, and fluid thermodynamic properties. The term Q̇c→w is the heat transfer

rate from the secondary fluid to the wall of the heat rejection component calculated

with an effectiveness-NTU method given as:
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Q̇c→w = ṁrcp,c

[
Tc −

(
Tw,r + (Tc − Tw,r) e

−αcAs,c
ṁrcp,c

)]
. (2.2)

Finally, I model thermal transport as a function of fluid flow time delays that are

directly proportional to the pipe lengths between adjacent components. The time

delays are inversely proportional to the mass flow rate for a given component. The

term T ′i describes the delayed value Ti (t− τab), and the time delays are defined by

τab = ρAcLab
ṁ

where Lab is the length of pipe between locations a and b.

2.1.2 Dynamic Second Law Model of Entropy Generation Rates

In this section, I use second law principles to derive a dynamic model of the

entropy generation rate within the system in Figure 2.1. I then linearize the system

about a defined operating point and use simulations to illustrate the accuracy of the

linearized model.

Like energy, entropy is an extensive property that can be transferred to and from

a given control volume by heat transfer or mass exchange. However, the entropy

statement of the second law states that “it is impossible for any system to operate

in a way that entropy is destroyed” [60]; in other words, entropy generation can be

zero or positive, but never negative. In all real physical systems, entropy is generated

through irreversible processes such as mixing or viscous dissipation. For a generic

control volume, the entropy rate balance is given by

dScv
dt

=
∑
j

Q̇j

Tj
+
∑
i

ṁisi −
∑
o

ṁoso + Ṡgen,cv , (2.3)

where dScv
dt

represents the time rate of change of entropy in the control volume,
∑

i ṁisi

and
∑

o ṁoso represent the transfer of entropy into and out of the control volume

via mass flow, and
∑

j
Q̇j
Tj

represents the rate of entropy transfer across the system

boundaries due to the time rate of heat transfer Q̇j occurring at boundary temperature

Tj. The term Ṡgen,cv represents the rate of entropy generation due to irreversibilities
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within the control volume. Minimizing the rate of entropy generation within a given

system (Ṡgen,cv) is analogous to maximizing the amount of available work that can be

extracted from the system. In other words, minimizing the rate of entropy generation

maximizes the second law efficiency of the system.

Remark 1. In Eqn. (2.3), the term Ṡgen,cv is not the same as a typical time derivative.

The rate of entropy generation Ṡgen,cv is an instantaneous rate and takes on a constant

value at steady-state, unlike typical time differentials which become zero at steady-

state. In other words, Ṡgen,cv(t) refers to the time rate of entropy generation in a

control volume at time t.

Remark 2. For any real physical system, both the total entropy generation over

time Sgen and the system’s instantaneous rate of entropy generation Ṡgen must be

nonnegative. In other words, Sgen (t) ≥ 0 ∀ t and Ṡgen (t) ≥ 0 ∀ t. For all real

systems, entropy generation can never be regulated to zero; instead it will be some

positive value due to the fact that purely reversible systems exist only theoretically.

To derive an expression for the total rate of entropy generation (Ṡgen) in the

system, I begin by applying second law principles to the storage tank:

dStank
dt

= Mt
dst
dt

+ st
dMt

dt

= (ṁc − ṁE) s′r − ṁcst + Ṡgen,tank .

(2.4)

Using the relationships ds
dt

= cp
T
dT
dt

and s2 − s1 = cp ln
(
T2
T1

)
, along with Eqn. (2.1a)-

(2.1b), I can solve for an expression for Ṡgen,tank as a function of the current system

state and the delayed system state:

Ṡgen,tank =
cp
Tt

(ṁc − ṁE) (T ′r − Tt)

− (ṁc − ṁE) cp ln

(
T ′r
Tt

)
.

(2.5)
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Similar techniques can be used to derive expressions for the entropy generation rates

in the heat addition and heat rejection components. To derive the entropy generated

in each of these components, I apply a control volume entropy balance to each heat

exchanger accounting for entropy transfer due to heat and mass transfer as shown in

Eqns. (2.6) - (2.7).

dSrej
dt

= mr
dsr
dt

+mw,r
dsw,r
dt

=
Cr
cp

dsr
dt

+mw,r
dsw,r
dt

=
Q̇c→w

Tb,r
+ (ṁc − ṁE) (s′a − sr) + Ṡgen,rej ,

(2.6)

dSadd
dt

= ma
dsa
dt

+mw,a
dsw,a
dt

=
Ca
cp

dsa
dt

+mw,a
dsw,a
dt

=
Q̇a

Tb,a
+ ṁc (s′t − sa) + Ṡgen,add .

(2.7)

I assume the boundary temperatures to be the dynamic wall temperatures; in other

words, Tb,r = Tw,r and Tb,a = Tw,a. Again making use of ds
dt

= cp
T
dT
dt

and s2 − s1 =

cp ln
(
T2
T1

)
, I define expressions for the entropy generation rates of the heat addition

and heat rejection components:

Ṡgen,rej =
Cr
Tr

dTr
dt

+
mw,rcp,w
Tw,r

dTw,r
dt

−Q̇c→w

Tb,r
− (ṁc − ṁE) cp ln

(
T ′a
Tr

)
,

(2.8)

Ṡgen,add =
Ca
Ta

dTa
dt

+
mw,acp,w
Tw,a

dTw,a
dt

− Q̇a

Tb,a
− ṁccp ln

(
T ′t
Ta

)
.

(2.9)



17

Using the state equations given in Eqn. (2.1), I can define a dynamic expression for

the entropy generation rate of each component as a function of the current state of

the system.

I also account for entropy generation due to pumping losses for both the working

fluid ṁc and the secondary fluid ṁr. The pump losses are calculated from performance

pump curve equations such that Ṡgen,pump = f (ṁc, ṁr) = c1ṁ
2
c + c2ṁc + c3 + c4ṁ

2
r +

c5ṁr + c6, where each ci term is a constant coefficient for the given pump. I assume

entropy generation in the pipes to be negligible in comparison to the pumping losses.

Therefore, I define the total entropy generation rate in the system at time t as the sum

of the individual rates of entropy generation for each component: Ṡgen = Ṡgen,tank +

Ṡgen,rej + Ṡgen,add + Ṡgen,pump.

To include the entropy generation rate dynamics in the overall system state vector,

I introduce a tracking state ζ whose dynamic state derivative is defined by dζ
dt

=

Ṡgen − r, where r is a desired reference for the entropy generation rate. The tracking

state allows the formulation of a linear state feedback controller which can regulate

the system entropy generation to an optimized nominal value of entropy generation.

Remark 3. Irreversibilities are often exacerbated during transient operation and

can be influenced through real-time decision-making. Although thermodynamic ex-

pressions for entropy generation are not typically amenable to control synthesis and

design, the utility of this formulation allows the design of model-based state feedback

controllers that can impact system efficiency through regulation of entropy generation

rate in real-time.

With the addition of the tracking state, I construct a dynamic model with seven

states: Mt, Tt, Tr, Ta, Tw,r, Tw,a, and ζ. To linearize the model, I append the tracking

state dynamics, dζ
dt

, to the nonlinear equation set in Eqn. (2.1) and rewrite the system

of equations as

Z1

[
dMt

dt
dTt
dt

dTr
dt

dTa
dt

dTw,r
dt

dTw,a
dt

dζ
dt

]T
= Z2 , (2.10)
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where

Z1 = diag ([1, Mt, Cr, Ca, mw,rcp,w mw,acp,w 1]) (2.11a)

Z2 =



−ṁE

(ṁc − ṁE) (T ′r − Tt)

As,rαr (Tw,r − Tr) + (ṁc − ṁE) cp (T ′a − Tr)

As,aαa (Tw,a − Ta) + ṁccp (T ′t − Ta)

As,rαr (Tr − Tw,r) + Q̇c→w

As,aαa (Ta − Tw,a) + Q̇a

Ṡgen − r



. (2.11b)

I define the state vector x, time delayed state vector xd, disturbance input vector d,

and control input vector u as

x =
[
Mt Tt Tr Ta Tw,r Tw,a ζ

]T
, (2.12a)

xd =
[
0 T ′t T ′r T ′a 0 0 0

]T
, (2.12b)

u =
[
ṁc ṁr

]T
, d =

[
ṁE Q̇a Tc r

]T
(2.12c)

and define the linearized model as
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Z1ẋ = Ã0∆x+ Ã1∆xd + B̃∆u+ B̃d∆d ,

Ã0 =


∂(Z2)1
∂(x)1

· · · ∂(Z2)1
∂(x)7

...
. . .

...

∂(Z2)7
∂(x)1

· · · ∂(Z2)7
∂(x)7

 ,

Ã1 =


∂(Z2)1
∂(xd)1

· · · ∂(Z2)1
∂(xd)7

...
. . .

...

∂(Z2)7
∂(xd)1

· · · ∂(Z2)7
∂(xd)7

 ,

B̃ =


∂(Z2)1
∂(u)1

∂(Z2)1
∂(u)2

...
...

∂(Z2)7
∂(u)1

∂(Z2)7
∂(u)2

 , B̃d =


∂(Z2)1
∂(d)1

· · · ∂(Z2)1
∂(d)4

...
. . .

...

∂(Z2)7
∂(d)1

· · · ∂(Z2)7
∂(d)4

 ,

(2.13)

where ∆ terms are perturbations from the nominal (equilibrium) operating point

(xe, ue, de). The linear model is obtained by manipulating Eqn. (2.13) to yield Eqn.

(2.14).

ẋ = A0∆x+ A1∆xd +B∆u+Bd∆d

A0 = Z−1
1 Ã0, A1 = Z−1

1 Ã1

B = Z−1
1 B̃, Bd = Z−1

1 B̃d

(2.14)

It is worth noting that the tank mass (Mt) is an uncontrollable state in the state-

space equation set. For control design, I separate the system into its controllable

and uncontrollable systems, where the uncontrollable system is simply the tank mass

state.
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Figure 2.2. : Nonlinear and linear simulation results: exogenous input profiles.

To validate the linearized model formulation, I simulate the nonlinear (Eqn. (2.1))

and linearized (Eqn. (3.23)) models with the following system parameters: Ca = Cr =

2.6 kJ/K, mw,r = mw,a = 7.1 kg, and As,r = As,a = 0.40 m2. I assume copper walls

for the heat exchanger components, stainless steel pipes connecting each component,

and water as both the working fluid and secondary fluid. The pipes connecting each

component are 0.91 m (3 ft) long with 0.013 m (1/2 in) diameter. The parameter set

was chosen such that the system nominally absorbs 10 kW in the heat addition, or

cold plate, component.

The control input signals, shown in Fig. 2.2a, are step commands away from the

nominal operating point with magnitudes ṁe
c = 0.25 kg/s and ṁe

r = 0.40 kg/s. The

disturbance input profiles are given in Figure 2.2b and the nominal values for each dis-

turbance are ṁe
E = 0 kg/s, Q̇e

a = 10 kW, and T ec = 27 ◦C. I begin the simulation with

each dynamic state at its nominal operating value. Simulation results for the storage

tank working fluid temperature, the heat addition component wall temperature, and

the total system entropy generation rate are shown in Fig. 2.3; results for the heat

addition component working fluid temperature, heat rejection component working

fluid temperature, and heat rejection component wall temperature are shown in Fig.

2.4. The time history of the entropy generation rate is examined by post-processing
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Figure 2.3. : Comparison of nonlinear and linear model states, as well as percent error
between the two. The nonlinear model states are plotted using a solid black line, and
the linearized model states are plotted using a dotted black line.

state temperatures and exogenous inputs to compute Ṡgen = f(x, u, d) in accordance

with Eqns. (2.5)-(2.9). Performing these calculations for both models shows that the

linearized model predicts the trends of the system’s entropy generation rate (Figure

2.3c) quite well. Additionally, the right hand axes in Figure 2.3 show the percent

error of the linear model with respect to the full nonlinear model as a function of

time. Through simulation, I found the linearized model states match the full nonlin-

ear model states to within 10% error in the presence of perturbations to any control

or disturbance input up to 30% about the nominal value.
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Figure 2.4. : Further comparison of nonlinear and linear model states, as well as
percent error between the two. The nonlinear model states are plotted using a solid
black line, and the linearized model states are plotted using a dotted black line.

2.2 Nested CCD Algorithm

While simultaneous CCD algorithms generally guarantee optimal solutions [6],

they require that only a single objective function be used to represent both plant and

control design objectives. This may be suitable for classes of mechanical systems,

where design goals and control objectives might both involve designing a dynamically

stable system [8, 13]. However, when designing thermal management systems, the

performance aspects of interest from a plant design perspective are often unrelated
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to, or different from, the transient performance aspects dictated by control design.

For example, when designing an aircraft fuel thermal management system, less mass

is desirable because of the significant impact weight has on the fuel efficiency of the

aircraft. From a controls perspective, it is crucial that a thermal management system

is robust to exogenous disturbances, such as pulsed heat loads, which occur during

system operation. By designing the algorithm with separate plant and controller

objective functions, one can more easily consider each of these performance aspects.

outer loop

inner loop

      
  

           

              
          

      

  
                     

     

        

where     

Plant optimization

• Steady-state efficiency

• System design aspects, 

i.e. mass

Controller optimization

• Transient efficiency

• Robustness to load 

disturbances

Figure 2.5. : Overview of proposed nested CCD algorithm.

These requirements lend themselves towards a nested CCD architecture in which

the inner optimization problem is solved at each iteration of the outer loop. The

two objective functions are then linked via the optimal decision variable(s) from the

inner loop. I propose the nested CCD algorithm shown in Figure 2.5. One feature

that differentiates the proposed approach from other nested CCD algorithms is that

I solve a nonlinear optimization problem in the outer loop and re-linearize the full

first principles model at each iteration in the inner loop to solve the optimal control

problem. Therefore, the model-based controller is based upon a fully parameterized
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version of the nonlinear dynamic model such that the controller behaves accurately

for perturbations in any input channel.

The outer loop of the nested algorithm, discussed in Sec. 2.2.1, is the plant design

optimization algorithm. The plant objective function, Jp, contains terms for optimiz-

ing system mass and steady-state entropy generation rate. In addition, the solution of

the inner loop (control optimization), γ∗, is appended to the plant objective function

to penalize plant designs with poor potential for transient closed-loop performance.

The specific algorithm used to determine γ∗ will be discussed in Section 2.2.2. I note

that the plant objective function described here is constructed to reflect critical design

decisions typically considered for aircraft; however, the objective function could be

parameterized otherwise to reflect design considerations relevant to other applications

such as economic cost in ground-based applications.

2.2.1 Outer Loop Plant Optimization

As an initial set of plant design variables, I define the outer plant optimization

loop with nine decision variables given by

xp =[Lta, Lar, Lrt, Lref,r, Lref,a, fr, ṁ
e
c, ṁ

e
r, M

e
T ]T ,

where Lta, Lar, and Lrt represent the lengths between each of the components, ṁe
c

is the commanded mass flow rate of primary working fluid at the nominal operating

point, ṁe
r is the commanded mass flow rate of secondary coolant in the heat rejection

component at the nominal operating point, and M e
T is the nominal amount of mass in

the storage tank. The terms Lref,r and Lref,a represent the total length of working fluid

tubing in the heat rejection component and heat addition component, respectively.

Additionally, the term fr represents a scaling factor due to the effect of fins on the

heat transfer surface area over which the secondary coolant flows in the heat rejection



25

component and for the mass of the walls in the heat rejection component. From this

set of decision variables, the necessary geometric parameters and system properties

of the optimal heat exchangers are derived as given in Eqn. (2.15).

As,a = πLref,aDi (2.15a)

As,r = πLref,rDi (2.15b)

Cr = (Ac,rLref,r) ρcp (2.15c)

Ca = (Ac,aLref,a) ρcp (2.15d)

mw,a =
(π

4
Lref,a

(
D2
o −D2

i

))
ρw (2.15e)

mw,r =
(π

4
Lref,r

(
D2
o −D2

i

))
ρwfr (2.15f)

As,c = frπDoLref,r (2.15g)

The inner and outer diameters of the heat exchanger tubes are assumed fixed,

along with the diameter of the pipes connecting each component. In addition, I

assume a fixed set of dimensions for the footprint of the heat rejection heat exchanger.

Given the fixed allowable length Lhx, width whx, and height hhx, the number of tubes

needed in the heat rejection component is calculated as Nr =
Lref,r
Lhx

. The cross-

sectional area for the secondary coolant flow is then computed as Ac,c = hhxwhx −

NrAc,r, where Ac,r is the cross-sectional area of a single tube.

Remark 4. By using a control-oriented modeling approach for the heat exchanger

components, very few restrictions are placed on the physical design of the components

themselves. Rather, the optimization is designed to ensure that the interactions

between the components at a system level enable the targeted control performance to

be achieved. Component level design optimization will be used to optimize individual

heat exchanger geometries in Chapter 3.
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Outer plant optimization loop

min
xp

Jp (xp, xc) = λ1 · [Msys (xp)] + λ2 ·
[
Ṡegen (xp)

]
+ λ3 · [γ∗ (xp, xc)]

s.t. xp,min ≤ xp ≤ xp,max

Tc,low ≤ T ec (xp) ≤ Tc,high

Ṡegen,total (xp) ≥ 0

Ṡegen,tank (xp) , Ṡ
e
gen,rej (xp) , Ṡ

e
gen,add (xp) ≥ 0

rank [ctrb (A0 + A1, B)] = n− 1

(2.16)

Inner control optimization loop

β∗ (xp, xc) = min
xc

β

s.t. LMI1 < 0

Q1 > 0

β > 0

(2.17)

where γ∗ =
√
β∗, K = Y Q−1

1

and

xc = U1−2, Q1−3, R1−2, Y, β

For the outer plant optimization loop, the plant objective function is given in Eqn.

(2.16) and the total system mass is defined as

Msys = M e
T + (ρAc)pipe (Lta + Lar + Lrt)

+mw,a +mw,r + ρAc (Lta + Lar + Lrt) +

1

cp
(Ca + Cr) ,

(2.18)

where M e
T represents the nominal amount of working fluid in the storage tank. Phys-

ical masses for the pipes connecting each component and the wall masses of each

heat exchanger are accounted for, as well as the mass of working fluid in each heat

exchanger component and each connecting pipe. In other words, I assume the entire
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system is filled with working fluid at all times. Note that masses of the physical

pumps are not yet accounted for. This will be taken into consideration in Chapter 4.

The term Ṡegen in Eqn. (2.16) is the nominal (steady-state) entropy generation rate

of a given plant design; recall that Ṡegen takes on a constant positive value at steady-

state. The term γ∗ is supplied to the outer loop from the inner control optimization

loop and is an optimal value for robust transient performance for a given plant design.

Therefore, a plant design with poor transient performance potential is penalized in

the outer optimization loop by the term λ3γ
∗. The weighting terms λ1−3 can be

used to place relative weights on the different components of the objective function,

thereby allowing the user to minimize a weighted combination of various elements of

static and dynamic system performance.

There are several key constraints in Eqn. (2.16) that potential plant designs must

adhere to. Bounds are placed on the nominal value of the secondary fluid temperature

T ec . Additionally, the overall system and each component must not violate the second

law of thermodynamics. Finally, the rank constraint on the linearized model ensures

the plant design permits a fully controllable linearization such that all states of the

system dynamics can be controlled except for the uncontrollable state associated with

the mass of working fluid in the storage tank. I note that controllability for the system

is defined according to the non-delayed system. In other words, I constrain the pair

(A0 + A1, B2) to be fully controllable. The control synthesis presented in Section

2.2.2 then ensures the closed loop time delayed system to be asymptotically stable

for time delays up to a maximum user-defined value.

2.2.2 Inner Control Loop Optimization

Here I describe the inner loop of the nested CCD algorithm which utilizes an H∞-

based control algorithm to synthesize a feedback controller for a given plant design.

Note that other optimal control algorithms can be accommodated in the proposed

algorithm, depending on the primary control objectives for a given problem. For
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the algorithm considered here, the primary decision variable in the inner loop is

β = γ2, where γ connects the inner and outer optimization loops of the nested CCD

algorithm. An H∞ control synthesis typically entails regulating output signals to

desired reference values in the presence of exogenous disturbances, while minimizing

control effort. In the context of thermal management, a general H∞ controller might

maintain the temperature of the walls in the heat addition component (Tw,a) to a

desired threshold in the presence of a pulsed power load (Q̇a) while minimizing other

performance objectives such as the commanded flow rate of primary working fluid

ṁc. The emphasis on robustness, however, tends to overlook system efficiency during

operation. Therefore, I seek to instead derive a control law that will not only regulate

performance outputs such as state temperatures, but do so while ensuring that control

actuation does not exacerbate adverse effects on transient system efficiency. The

following control synthesis is adapted from the work of Fridman, et al. [61].



Q2+QT2 Σ 0 0 0 Q1CT Y TDT 0 QT2 0 QT2 h1Q2AT1 0

∗ −Q3−QT3 Bd h1R1 0 0 0 0 QT3 0 QT3 h1Q3AT1 0

∗ ∗ −γ2I 0 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ −h1R1 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −I 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −I 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −U1 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −U1 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −U2 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −U2 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −h1R1 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −h2R2



≤ 0

(2.19)

To begin, I define a vector z(t) of performance outputs to be regulated and cost

function Jc(d) as
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Jc(d) =

∫ ∞
0

zT z − γ2dTd ds,

z(t) =

Cx(t)

Du(t)

 .

(2.20)

The state feedback control law u(t) = Kx(t) =
[
Y Q−1

1

]
x(t) is synthesized by finding

the smallest value of γ > 0 that satisfies Jc(d) < 0 for all nonzero d ∈ Lq2[0,∞).

This is attainable if there exist matrices Q1 > 0, U1, U2, Q2, Q3, R1, R2, and Y

satisfying the LMI in Eqn. (2.19). Within Eqn. (2.19), the variable h1 represents

the maximum time delay that would be encountered during operation. The control

synthesis here aims to guarantee asymptotic stability for the closed loop time delayed

system for all time delays less than this maximum expected value.

The expression Jc (d) < 0 can be equivalently written as

∫ ∞
0

zT z ds <

∫ ∞
0

γ2dTd ds (2.21)

for all nonzero d ∈ Lq2[0,∞). My primary control objectives are to 1) regulate the

heat addition component wall temperature and 2) regulate the system’s transient

entropy generation rate to its nominal value Ṡegen. Within the inner loop, a plant

design that is inherently less robust to transient disturbances will result in a larger

minimum value of γ in Eqn. (2.21). In other words, for a higher value of γ, the

upper bound on the magnitude of the transient performance objectives zT z increases.

This implies a lower threshold magnitude of disturbances for which I can satisfy my

control objectives.

By introducing a variable change defined as β = γ2 into Eqns. (2.20)-(2.21), I

formulate the optimization problem shown in Eqn. (2.17) to minimize β, and thus

the performance output vector z, in the presence of disturbance vector d. By further

defining the minimum value of β from Eqn. (2.17) to be β∗, I can compute the optimal
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(minimum) achievable value of γ > 0 from the original cost function in Eqn. (2.20)

as γ∗ =
√
β∗.

Remark 5. The control synthesis presented here is valid for all disturbances d in

the L2 space defined by d ∈ Lq2[0,∞), where q is the dimension of the disturbance

vector. The L2 space is the set of square-integrable L2 functions for which the integral∫∞
−∞|f (x)|2 dx has a finite value. This includes, for example, sets of rectangular heat

pulses Q̇a perturbed from a nominal heat load value Q̇e
a such as those in Figure 2.2b.

For other types of disturbance signals, such as sinusoids, the integral would not have a

finite value and an alternative control method would be needed to guarantee stability.

2.3 Merits of CCD for Thermal Management Systems: Comparison to

Conventional Design Methods

In this section I compare the transient performance of two separate system design

strategies: conventional system design and the proposed nested co-design approach.

Most importantly, I highlight the improvement in robustness and transient system

efficiency that is achieved using the proposed approach. For the Conventional Design

case, I minimize two static performance metrics— the mass and steady-state entropy

generation rate of the plant— prior to designing the feedback controller. In other

words, the λ3γ
∗ term from the outer loop cost function in Eqn. (2.16) is omitted and

the weighting penalties on system efficiency (λ2) and mass (λ1) are set equal to one.

Once the plant is optimized, a subsequent H∞ state feedback controller is designed

in accordance with Eqn. (2.17).

I use the proposed nested CCD algorithm to design two separate systems: Co-

design A and Co-design B. In the Co-design A case, I set λ1 = 1, λ2 = 1, and

λ3 = 100; in other words, this case places a high penalty on closed-loop performance

and robustness. For the Co-design B case, I set λ1 = 1, λ2 = 1, and λ3 = 1 to

normalize the relative contributions of system mass, static entropy generation rate,

and transient performance to the overall objective function Jp given the differences in
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magnitude expected between the various contributions. This case is used to achieve a

near-equal balance on static system design and transient performance. In each case,

the controller is designed with performance output matrices, defined in Eqn. (2.20),

given by

C =


0.02 0 0 0 0 0

0 0 0 0 2 0

0 0 0 0 0 5

 , D =
[
0 0

]
, (2.22)

in order to regulate three states to their nominal values: heat addition component

surface (wall) temperature (Tw,a), system entropy generation rate (Ṡgen), and storage

tank temperature (Tt). For both cases, I place a higher penalty on regulating the sys-

tem efficiency than surface temperature and storage tank temperature as evidenced

by the relative weights of the terms in the C matrix in Eqn. (2.22), where the 2 entry

weights the regulation of Tw,a, the 0.02 entry weights the storage tank temperature,

and the 5 entry weights Ṡgen to the respective nominal value. The penalty on regu-

lating the storage tank temperature helps to avoid temperature ‘drift’ in the system,

thus making the system more robust to heat input disturbances.

I leverage a multistart approach in all cases to avoid suboptimal solutions. The

outer loop optimization problems are solved using the NOMAD global nonlinear op-

timization algorithm and the toolbox OPTI [62], and the inner loop optimization

problems are solved using Yalmip [63]. The resulting optimal values for the decision

variables in both the conventionally designed and co-designed cases are shown in Ta-

ble 2.1. To regulate Tw,a to its nominal value, a temperature difference is required

between the working fluid temperature Ta and the wall temperature Tw,a. This tem-

perature difference can be maintained largely by rejecting heat via the heat rejection

component. This heat rejection is facilitated by either adding heat transfer area (more

tubing) in the heat rejection component or by leveraging higher mass flow rates for
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Table 2.1. : Optimal Values of plant and control decision variables, and total system
mass.

Decision Lower Upper Conv. Co-des. Co-des.
Variable Bound Bound Design A B

Lta (m) 0.61 6.1 0.61 0.61 0.61
Lar (m) 0.61 6.1 0.61 0.61 0.61
Lrt (m) 0.61 6.1 0.61 0.61 0.61

Lref,r (m) 5.0 30 9.95 21.3 19.4
Lref,a (m) 5.0 30 5.0 5.0 5.0
fr 1.01 2.0 1.42 1.76 1.01

M e
t (kg) 2.0 15.0 2.0 2.0 2.0

ṁe
c (kg/s) 0.095 0.155 0.150 0.095 0.119

ṁe
r (kg/s) 0.095 0.295 0.295 0.243 0.256

γ∗ 7.64 4.57 6.42

Total Mass (kg) 10.5 19.1 12.7

Se
gen (W/K) 11.9 10.7 11.1

the secondary fluid. The heat rejection in turn helps to regulate the storage tank

temperature to avoid temperature drift in the system.

In the Conventional Design case, the optimization minimizes a combination of

mass and steady-state efficiency with no notion of how it may affect actuation. As

a result, the conventional design opts for a smaller total tube length (9.95 m) in

the heat rejection component than does Co-design A. In turn, it relies more heavily

on using the secondary fluid flow rate to achieve the required heat transfer; in this

case, the nominal secondary fluid flow rate is ṁe
r = 0.295 kg/s. In other words,

the Conventional Design case opts for high mass flow rates for both primary and

secondary working fluid. While the high mass flow rates yield a system design with

a lower total mass, the steady-state entropy generation is adversely affected due to

pumping power. Conversely, Co-design A features a lower nominal mass flow rate for

the primary fluid (ṁe
c = 0.095 kg/s) and the secondary fluid (ṁe

r = 0.243 kg/s) but
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requires a longer length of total tubing (Lref,r = 21.3 m) to help increase the rejection

side heat transfer surface area and ensure the system is more robust to the pulsed

heat load disturbances. As a result, Co-design A features a γ∗ value 40% smaller

than that of the Conventional Design, indicating that the optimal co-design system

is more robust to the disturbance signals. The improved robustness of Co-design A

can be seen in Figs. 2.6a-2.6b.
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65
Conventional
Co-design A
Co-design B

(a) Heat addition wall temperature (b) Entropy generation rate
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0

1

2

3

Conventional
Co-design A
Co-design B

(c) Total entropy generated

Figure 2.6. : Conventional design vs. co-design case study: selected performance
outputs.

The wall temperature of the heat addition component is shown in Fig. 2.6a, while

the system entropy generation rate is shown in Fig. 2.6b. The heat input disturbance

profile for this case study is shown in Fig. 2.7c and is meant to resemble the types
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Figure 2.7. : Conventional design vs. CCD case study: system inputs.

of pulsed heat loads that are encountered in applications such as aircraft thermal

management. The nominal heat pulse represents some steady-state amount of power

to be dissipated due to electronics cooling, and the higher heat pulses are meant to

represent fast transients that may result, for example, from directed weapon firings.

The commanded control signals for each system are shown in Fig. 2.7. Recall that

ṁc is the mass flow rate of primary working fluid through the system and ṁr is the

mass flow rate of secondary fluid through the heat rejection component. For these

simulations, constant values of ṁE = 0 kg/s and Tc = 10 ◦C were used for the exit

flow rate and secondary coolant temperature, respectively.
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As shown in Fig. 2.6a, the wall temperature of the heat addition component

in Co-design A remains within approximately two degrees of the reference in the

presence of the heat pulses. Conversely, the Conventional Design is less successful in

regulating the wall temperature to its 50 ◦C reference as the surface temperature rises

to a maximum of approximately 61 ◦C during the penultimate heat pulse. Moreover,

the Conventional Design is less successful in regulating the entropy generation rate

to its nominal value (represented by a dashed line in Fig. 2.6b). During the transient

heat pulses, the controller in Co-design A is able to tightly regulate the system’s

entropy generation rate to its steady-state (nominal) operating point as evidenced

by the plot enclosed in the bottom left corner of Fig. 2.6b showing the entropy

generation rates from 147-154 seconds. This regulation, along with the lower steady-

state entropy generation rate in the Co-Design A case, results in 10% less total entropy

generated during the process as shown by Fig. 2.6c. This is critical in the context of

dynamic thermal management. The larger spikes in the entropy generation rate of the

Conventional Design case could lead to a lower thermal endurance for an integrated

thermal management system. In mission critical applications, such as aircraft fuel

thermal management, the increased thermal endurance in the co-designed system

directly translates to tangible benefits such as decreased fuel consumption or increased

military capability with respect to weapon firings.

The differences in transient performance between the Conventional Design and Co-

design A can be explained by examining the commanded control inputs for each design

(Fig. 2.7). Because the conventionally designed case relies much more heavily on the

use of mass flow for providing its cooling, it is significantly less robust to the heat

pulses. During each transient heat pulse, the conventionally designed system attempts

to increase the primary working fluid flow rate ṁc further above nominal. This causes

input saturation, and the system is unable to regulate the wall temperature Tw,a and

entropy generation rate Ṡgen as desired. On the other hand, Co-design A requires

lower working fluid flow rates to achieve the necessary heat transfer and is able to

modulate the control inputs to maintain a surface temperature much closer to the
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50 ◦C nominal value. The maximum surface temperature Tw,a in the co-designed

system is almost 10 ◦C lower than in the conventionally designed system. Moreover,

the flow rates during the transients for Co-Design A result in smaller transient spikes

in entropy generation and facilitate better regulation of transient entropy generation.

While Co-design A featured improved transient performance capabilities for both

entropy generation and temperature regulation, the design resulted in a system with

82% more mass than the conventional case. Therefore, I use the nested CCD algo-

rithm for Co-design B to achieve an intermediate design with both desirable transient

performance and lower system mass. Recall that in Co-design B, I used weights of

γ1 = 1, γ2 = 1, and γ3 = 1 in the outer loop optimization problem. The resulting

system features a total system mass of 12.7 kg, which is only a 21% increase from the

Conventional Design. Moreover, Co-design B has γ∗ = 6.42, a value still 16% lower

than the Conventional Design. Figure 2.6a shows the maximum wall temperature in

Co-design B is 57 ◦C, a temperature rise roughly 4 degrees less than the Conventional

Design case. More importantly, Co-design B still regulates the entropy generation rate

of the system closer to nominal than the conventional design and results in 6% less

total entropy generation over the 4 minute mission than the Conventional Design.

2.4 Chapter Summary

In this chapter, I laid the foundation for a new approach to designing thermal

management systems by designing a CCD algorithm for TMSs with an explicit focus

on transient robustness and efficiency. Key takeaways are summarized as follows:

• The algorithm utilizes a first-principles thermal management system model that

incorporates entropy generation rate in the state vector so that system efficiency,

both steady-state and transient, can be accounted for in the design optimization.

• The use of parameterized nonlinear and linearized first principles models, as

opposed to empirical models, enables optimization of meaningful, albeit lumped,

design variables.
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• The results suggest that using the plant design to optimize nominal efficiency

and the feedback controller to maintain operation close to the optimized nominal

value can provide a path toward minimizing the adverse effect of transient

performance on efficiency.

• The optimization case study illustrates the co-designed systems’ improved ro-

bustness to a set of pulsed heat load disturbances which has the potential to

increase aircraft thermal endurance.

The main limitation of the CCD algorithm itself concerns the fidelity of several of

the optimized plant variables, specifically with respect to the heat exchangers. Some

of the decision variables are defined as lumped parameters, such as total lengths of

tubing in the heat exchanger components, which map to high-level characteristics

such as component mass. However, these lumped parameter variables fail to provide

insight on how to design high-fidelity features of a given component. As discussed

in Chapter 1, the specific design decisions made for a given component affect not

only how that component interacts with the rest of the TMS, but also the achievable

dynamics of the system level TMS and other integrated dynamic systems in a larger

vehicle architecture. Therefore, component design optimization algorithms are needed

to enable optimization of high-fidelity physical component geometries to meet desired

system level performance.
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3. COMPONENT LEVEL HEAT EXCHANGER DESIGN OPTIMIZATION

The next step in creating the proposed hierarchical CCD algorithm involves designing

high-fidelity component level design optimization algorithms for components within

a TMS. Here, the concept is illustrated by creating and demonstrating the utility of

a dynamic component optimization algorithm for a shell and tube heat exchanger.

In the literature, design optimization of heat exchangers is often considered only

in a static sense [64–73]. In other words, steady-state assumptions are used and the

transient dynamics of a heat exchanger design, which ultimately dictate the speed of

heat removal and thus the thermal capabilities of a larger integrated system, aren’t

typically included in the context of the optimization algorithm. In most cases, re-

searchers derive an overall heat transfer coefficient for a given heat exchanger and

use steady-state assumptions to impose a desired heat transfer rate as an operational

constraint. Existing works usually consider optimizing one aspect of heat exchanger

design/performance such as total component mass, operational cost [65, 71], and/or

component efficiency [64,67,68]. In [66], the authors examine optimizing the total an-

nual cost of heat exchangers based on different optimization algorithms. Their study

compares the use of three separate optimization algorithms in the design of optimal

economic characteristics of shell and tube mixed material heat exchangers. Tam et

al. [65] derive a new optimization algorithm similar to a genetic algorithm, called the

algorithm of changes, to optimize component sizing and power consumption. Li et

al. [67] use the concept of entropy in their analysis to intelligently design aspects of

heat exchangers for use in aircraft environmental control systems.

While the cited literature considers optimizing heat exchangers in some manner,

it does not consider their transient behavior which dictates system level performance.

Moreover, research that does consider transient modeling of heat exchangers does

so largely in the context of synthesizing feedback controllers to guide the operation
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of already-designed heat exchangers [74–77]; in other words, no “transient” design

optimization is considered.

In this chapter, I present a new design methodology for designing a heat exchanger

that explicitly considers both static and transient performance characteristics. I

specifically consider a shell and tube geometry and propose an optimization algorithm

that utilizes a highly detailed static model, coupled with a reduced-order dynamic

model, to achieve desired performance specifications. This combination of models

with differing fidelity can be used to move beyond the conventional static approach

to component design optimization. I use a static design model from the literature to

embed design requirements and constraints on nominal heat removal rates in a global

nonlinear optimization algorithm. I derive a dynamic model of single-pass shell and

tube heat exchanger specifically to capture key transient characteristics of a given

design. I linearize the dynamic model and leverage the optimization algorithm in part

to push a heat exchanger design’s eigenvalues further into the left half plane, which

in turn helps improve the transient performance of a given design. I demonstrate the

algorithm using a simulated case study.

3.1 Static Heat Exchanger Modeling

In this section I describe the high-fidelity, albeit static, model of a shell and tube

heat exchanger which captures the key relationships between the heat exchanger de-

sign and resulting heat transfer coefficients. Nonetheless, the modeling concepts and

analysis presented here can be generalized to other types of heat exchangers such

as double pipe or plate-frame heat exchangers. Shell and tube heat exchangers are

characterized by two separate paths of fluids, called tubeside fluid (also referred to

as primary fluid) and shellside fluid (also referred to as secondary fluid). Figure 3.1

illustrates the functionality. In operation, the primary fluid enters the heat exchanger

through an inlet plenum and is directed into numerous parallel tubes, and then ulti-

mately exits through an outlet plenum. The secondary fluid enters the heat exchanger
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Figure 3.1. : Schematic of shell and tube heat exchanger.

through its inlet and flows inside the heat exchanger “shell” but external to the tubes

carrying the primary fluid. The secondary fluid exchanges heat with the primary fluid

in the tubes and is routed through the shell by equally-spaced baffles before exiting

through the shellside fluid outlet. Here, I consider the hot fluid to be the tubeside

fluid and the cold fluid to be the shellside fluid.

Several variables are of interest in designing and analyzing shell and tube heat ex-

changers. Figure 3.1 gives an end view of a heat exchanger tube bundle with a square

pitch layout. For this geometry, the tube pitch PT is defined as the distance between

two adjacent tube centers, and the tube clearance C is defined as the distance between

the outer edges of two adjacent tubes. Each individual tube has an inner diameter

Di and an outer diameter Do. For a tube wall thickness wt, tube outer diameter is

related to tube inner diameter by Do = Di + 2 · wt. The inner diameter of the shell,

which houses the entire tube bundle with NT number of tubes, is denoted by Ds.

The baffle spacing, or distance between adjacent baffles (see Figure 3.1 for reference),

is denoted by B. The set of variables defined here fixes the geometry of a shell and
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tube heat exchanger. Using these variables, I can derive heat transfer coefficients for

both the primary and secondary fluids. An overall heat transfer coefficient can then

be calculated and used to approximate a steady-state rate of heat transfer for a given

design. The following section details the process of computing the steady-state rate

of heat transfer and outlet temperatures for each fluid.

The modeling concepts in this section are adapted from the work of Janna [78]

and the American Society of Mechanical Engineers (ASME) design course number

PD673 Design and Selection of Heat Exchangers. At steady-state, the rate of heat

transfer achieved in a shell and tube heat exchanger is given by

Q̇hx = (UA)hx ∆Tlmtd (3.1a)

= (ṁcp)t (Tin − Tout)t (3.1b)

= (ṁcp)s (Tout − Tin)s , (3.1c)

where Uhx is an overall heat transfer coefficient for the heat exchanger, Ahx is the

total heat transfer area, T is temperature, cp is the specific heat capacitance of the

respective fluid, subscripts in and out denote inlet and outlet, and subscripts s and

t denote shellside fluid and tubeside fluid, respectively. The term ∆Tlmtd is a log

mean temperature difference, which can be calculated for various types of flow. Here,

I study parallel flow in which the tubeside and shellside fluids are flowing in the

same direction through the heat exchanger; the log mean temperature difference is

computed as

∆Tlmtd =
(Tin,t − Tin,s)− (Tout,t − Tout,s)

ln
(

Tin,t−Tin,s
Tout,t−Tout,s

) . (3.2)

Given values of mass flow rate and inlet temperature for both fluids, there are three

unknowns in Eqn. (3.1): tubeside outlet temperature (Tt,out), shellside outlet tem-
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perature (Ts,out), and heat transfer rate (Q̇hx). Therefore, by computing the overall

heat transfer coefficient Uhx and heat transfer area Ahx, I can solve for the unknowns.

The parameters defined in Figure 3.1 are used to compute the heat transfer coef-

ficient and heat transfer area for a given design. The overall heat transfer coefficient

is calculated using

1

Uhx
=

Do

htDi

+
1

hs
, (3.3)

where ht is the convective heat transfer coefficient for the primary fluid and hs is the

convective heat transfer coefficient for the secondary fluid. To evaluate hs for the

shell, a characteristic dimension, called an equivalent diameter De, is defined for the

shell as

De =
4P 2

T

πDo

−Do. (3.4)

Physically, this dimension is represented by the gray shaded region in Figure 3.1. The

characteristic cross-sectional area for the shell is defined as

Ac,s =
DsCB

PT
. (3.5)

The shell fluid velocity can then be computed as

Vs =
ṁs

ρsAc,s
, (3.6)

where ρ is the fluid density. From these computations, the shellside fluid Reynolds

and Nusselt numbers are computed using
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Res =
VsDs

ν
(3.7a)

Nus =
hsDe

ks
= 0.36Re0.55

(
νs
αs

)1/3

, (3.7b)

where νs, αs, and ks are the shell fluid properties kinematic viscosity, thermal diffu-

sivity, and thermal conductivity, respectively. Equation (3.7b) can then be solved for

hs.

Similar methods are used to compute a value for the primary fluid convection

coefficient ht. The characteristic diameter of the tube fluid is simply the tube inner

diameter, Di, and the characteristic area is given by

Ac,t = NT ·
π

4
D2
i , (3.8)

where NT represents the number of parallel tubes in the heat exchanger tube bundle.

The tube fluid velocity is calculated according to

Vt = ṁt/ (ρtAc,t) (3.9)

and the Reynolds is computed as

Ret = VtDi/νt. (3.10)

For the tubeside Nusselt number, the modified Sieder-Tate correlation is used:
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Nut =

1.86
(
DiRetνt
αtLt

)
Ret < 2200, 0.48 < νt

αt
< 16, 700

Re
4/5
t (νt/αt)

0.3

43.478
Ret > 104, 0.7 < νt

αt
< 160, Lt

Di
> 60 .

(3.11)

The tubeside convection coefficient is then computed via

ht = Nutkt/Di. (3.12)

The convection coefficients are used to find Uhx and the heat transfer area is taken

as

Ahx = NTπDoLt. (3.13)

Equation (3.1) can then be used to solve for Q̇hx and the heat exchanger outlet

temperatures Tout,t and Tout,s. To solve for these variables, an iterative process is

needed. At the initial iteration, fluid properties ρ, cp, ν, α, and k are computed ac-

cording to the heat exchanger inlet temperatures. The process is repeated iteratively,

with fluid properties evaluated each time at the average of the inlet temperatures and

the previous iteration’s outlet temperatures, until each outlet temperature converges

to within a defined tolerance.

In the next section, I present a generalized dynamic model of a shell and tube heat

exchanger. Heat transfer coefficients are computed via the same methods described

in this subsection; however, the dynamic model accounts for transients ignored in the

static calculations presented here.
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3.2 Dynamic Heat Exchanger Modeling

Here I derive a reduced-order dynamic shell and tube heat exchanger model and

present a case study to illustrate the utility of the formulation in identifying trade

offs between the static design of the component and its transient performance.

3.2.1 Model Derivation

I begin by considering a heat exchanger with n equal-length control volumes and

n− 1 baffles. Each volume is separated by adjacent baffles or by a baffle and a tube

bundle end plate as shown in Figure 3.2a.

To model the heat exchanger dynamically [74, 76], I treat each control volume as a

single tube of length

Lcv =
LtNt

n
, (3.14)

where n = 6 is the number of control volumes. In other words, each control volume has

1/nth of the total length of tubing in the entire heat exchanger. Primary (tubeside)

fluid flows internal to each control volume and secondary (shellside) fluid flow is

routed over the tubes by the baffles as depicted in Figure 3.1.

Each control volume j has two dynamic states: primary fluid enthalpy (hj) and

tube wall temperature (T jw). Writing conservation of energy on the primary fluid

inside the tube yields

d

dt

(
muj

)
= ṁt

(
hjin − h

j
out

)
+ αjtAs,t

(
T jw − T

j
t

)
, (3.15)

where αt is the tubeside heat transfer coefficient between the tube wall and the

primary working fluid, T jw is the wall temperature of control volume j, and As,t is

the heat transfer surface area between the wall and the primary working fluid. The

primary fluid temperature T jt in each control volume is easily computed as a function
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tubeside 
fluid inlet

tubeside 
fluid outlet

shellside 
fluid 
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shellside 
fluid 

outlet

    

                

    

(a) Control volume discretization.

Control volume with , 

(b) Tube control volume.

Figure 3.2. : Shell and tube heat exchanger dynamic modeling schematics.

of the control volume’s primary fluid enthalpy and pressure. I can write the mass as

m = ρV and use the thermodynamic relationship u = h− P/ρ to write

d

dt

(
muj

)
= ρV

dhj

dt
− V dP

j

dt
. (3.16)

Neglecting pressure dynamics and assuming a known value of fluid pressure, a common

assumption for incompressible substances such as water, allows us to write Eqn. (3.15)

as
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ρV
dhj

dt
= ṁt

(
hjin − h

j
out

)
+ αjtAs

(
T jw − T

j
t

)
. (3.17)

The volume of primary fluid in each control volume is calculated as V = π
4
D2
iLcv.

Writing conservation of energy for the tube wall in each control volume gives

(mcp)w
dT jw
dt

= αjtAs
(
T jt − T jw

)
+ Q̇j

s→w , (3.18)

where Q̇j
s→w is the rate of heat transfer between the tube wall of control volume j

and the secondary fluid (shellside) flowing in volume j. This rate of heat transfer is

calculated using an effectiveness-NTU method as

Q̇j
s→w = ṁscp,s

[
T js,in −

(
T jw +

(
T js,in − T jw

)
e
−αjsAs,s
ṁscp,s

)]
. (3.19)

To ensure continuity between adjacent control volumes within the heat exchanger, I

take the secondary fluid inlet temperature for volume j (T js,in) to be equal to the sec-

ondary fluid outlet temperature for volume j−1 (T j−1
s,out). This captures the dynamics

of the shell fluid being routed through the shell by the baffles while absorbing heat

as it flows over the tubes. In Eqn. (3.18), the mass of the tube wall is computed

according to

mw = ρw
π

4

(
D2
o −D2

i

)
Lcv. (3.20)

The heat transfer coefficients αt and αs are computed via the same methods presented

in Section II for the steady-state shell and tube heat exchanger calculations.

Finally, I can write Eqn. (3.17) and Eqn. (3.18) for each of the n volumes, yielding

n state equations and a dynamic state vector
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x = [h1, h2, . . . hn, Tw,1, Tw,2, . . . Tw,n]. (3.21)

The input vector for the model is u = [ṁt, hin, Ts,in, ṁs]
T . The nonlinear model

derived here allows us to capture the relevant dynamics of a shell and tube heat

exchanger in a computationally-inexpensive manner.

In order to use this model to impose constraints on the speed of heat rejection

in an optimization algorithm, I can linearize the model and apply constraints to the

eigenvalues of the linearized model. To linearize, I first write the state equations in

matrix-vector form as Z1
dx
dt

= Z2. With the model’s state and input vectors defined

above, I can express the linearized model as

Z1ẋ = Ã∆x+ B̃∆u ,

Ã =


∂(Z2)1
∂(x)1

· · · ∂(Z2)1
∂(x)12

...
. . .

...

∂(Z2)12
∂(x)1

· · · ∂(Z2)12
∂(x)12

 , B̃ =


∂(Z2)1
∂(u)1

· · · ∂(Z2)1
∂(u)4

...
. . .

...

∂(Z2)12
∂(u)1

· · · ∂(Z2)12
∂(u)4

 ,

(3.22)

where ∆ terms are perturbations from the nominal (equilibrium) operating point

(xe, ue). The final linear model is obtained by manipulating Eqn. (3.22) to yield Eqn.

(3.23):

ẋ = Ā∆x+ B̄∆u, Ā = Z−1
1 Ã, B̄ = Z−1

1 B̃ . (3.23)

3.2.2 Model Simulations

In this section, I present simulation results and an eigenvalue analysis to show how

different design parameters, such as number of tubes or tube wall thickness, affect the
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transient characteristics of a given system design. First, however, I wish to illustrate

that the linearized model dynamics closely match those of the full nonlinear model.

To test the accuracy of the linear model, I apply step pulses to each input channel

10% above the nominal input values. Figure 3.3 gives a comparison of the linear

and nonlinear model dynamics for control volumes 2, 4, and 6 of each model and

Figure 3.4 gives the input signals applied for both cases. The results indicate that,

while there are slight offsets in the steady-state values between the nonlinear and

linear models after a given step input, the linear model captures the transients of the

full nonlinear model quite well. Most notably, the time constants of each state are

captured accurately by the linear model. This implies the linear model can be used

to improve notions of transient performance within a heat exchanger optimization

algorithm.

Figure 3.3. : A comparison of nonlinear and linear simulation results for the states of
the dynamic model: responses for control volumes 2, 4, and 6.
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Figure 3.4. : A comparison of nonlinear and linear simulation results for the states of
the dynamic model: step inputs to each input channel.

To illustrate how different design parameters affect the transient characteristics

of a given system design, I compare the dynamics of a baseline plant design with

the dynamics of an augmented plant design. As the baseline case, I simulate the

dynamics of a shell and tube heat exchanger with NT = 24 tubes, each of length

Ltube = 1.2192 m, and a wall thickness wt,tube = 0.0008 m. As a comparison case,

I hold all other design parameters constant, but use NT = 12 tubes, Ltube = 0.6096

m, and wt,tube = 0.0016 m. The parameters for each case are summarized in Table

3.1. For each case, I apply a step input in the primary fluid flow rate ṁt = 0.12 kg/s

(increased from the steady-state value of 0.10 kg/s), while using the steady-state

values of the other input variables: ṁs = 0.2 kg/s, Ts,in = 10◦C, and hin = 188.5

kJ/kg.
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Table 3.1. : Parameters for dynamic model simulation.

Case NT Ltube (m) wt (m)

Baseline 24 1.2192 0.0008

Augmented 12 0.6096 0.0016

Figure 3.5 shows a comparison of the step responses of six of the dynamic states

for each design simulated with the nonlinear dynamic model - the states shown are

enthalpy and wall temperature for control volumes two, four, and six. In the figure,

δ on the vertical axis labels signifies that each response is a change from its nominal,

or steady-state, value. Additionally, dashed vertical lines represent the equivalent

first-order time constant associated with each dynamic mode. Figure 3.6 shows a

comparison of the pole plots for the linearization of each respective heat exchanger

design.
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Figure 3.5. : Step responses for 6 of 12 dynamic states of each heat exchanger design.



52

Clusters of  poles

Figure 3.6. : Pole plots for each heat exchanger design.

From Figure 3.5 one can see that decreasing the length and number of tubes

while increasing the wall thickness of the tubes speeds up the dynamics of each state.

Intuitively, this makes sense, given that both the overall mass of the tubes and the

volume of primary fluid decrease. These dynamic trends are also evident from the

pole plot shown in Figure 3.6 in which there are two distinct pole clusters for each

heat exchanger design. The faster cluster of poles moves further into the left half

plane in the case of the augmented plant due to the decrease in tube length and the

number of tubes; moreover, the slower cluster of poles also moves further into the

left half plane due the overall decrease in tube bundle mass. The simulation results

verify that the proposed dynamic model does capture the effect that changes in the

design parameters have on the eigenvalues of the linearized model.

Remark 6. While the practice of evaluating pole locations for a linear dynamic

model is not difficult, it does have important meaning in the context of heat exchanger

design. By incorporating the dynamic model into an optimization algorithm for a shell

and tube heat exchanger, I can effectively design the heat exchanger to move slower

poles to the left in the complex plane, thereby improving the transient performance of

the component and permitting greater thermal capabilities for an integrated thermal

management system.
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Until this point, I have presented both a static shell and tube heat exchanger model

(used as an industry-standard for component sizing) and a reduced-order dynamic

model for predicting the heat exchanger’s transient behavior. The characteristics

of both models are summarized in Figure 3.7. The static model presented earlier

facilitates the design of a heat exchanger with desired static performance specifications

such as a target steady-state rate of heat removal. It is not, however, useful for

designing a system to meet transient performance specifications. In the next section

I demonstrate how I integrate these models in a single optimization problem for

achieving dynamic design optimization.

3.3 Dynamic Shell and Tube Heat Exchanger Optimization

3.3.1 Algorithm Design

In this section, I present an optimization algorithm designed to leverage heat

exchanger design parameters to minimize a combination of heat exchanger footprint,

mass, and system speed while guaranteeing a desired rate of steady-state heat removal.

The footprint and mass of a component are common design metrics for a range of

applications, including aerospace thermal management wherein mass, in particular,

has a significant effect on fuel consumption.

The proposed shell and tube heat exchanger optimization algorithm is defined

in Eqn. (3.25). In the objective function, γ1, γ2, and γ3 are slack variables that

enable minimization of a weighted combination of footprint, mass, and transient

performance. These values can be chosen to prioritize design goals as needed. I take

the term λmax to be the maximum, or slowest, eigenvalue of the linearized model

given a set of design parameters. Therefore the algorithm can be leveraged to place a

penalty on pushing the slowest eigenvalue further left in the complex plane, thereby

improving the transient performance of the heat exchanger. Here, I take the footprint

of the heat exchanger to be FP = Ltube · Ds. I define the total mass of the heat

exchanger as a summation of the tube bundle mass and the shell mass, computed as
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Static model

• Log mean temperature difference method used to calculate Δ𝑇
• Leveraged to compute and constrain steady-state heat transfer rate
• Industry-standard method for sizing shell and tube heat exchangers
• Captures design tradeoffs but cannot account for transient performance characteristics

Dynamic model
• Tube bundle discretized into six separate control volumes

• Each control volume 𝑗 has two dynamic states:  ℎ𝑗 , 𝑇𝑤
𝑗

• Specifically designed to capture key transient design trade offs
• Nonlinear equations linearized; eigenvalues of linear system map to “speed” of  dynamics

Figure 3.7. : Summary of static versus dynamic model.

mtot = mtubes +mshell =
π

4
Ltubeρ

[
NT

(
D2
o −D2

i

)
+
(
D2
o,s −D2

s

)]
, (3.24)
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where the shell outer diameter is computed as Do,s = Ds + 2ws and the shell wall

thickness ws is assumed to be twice the tube wall thickness.

minimize
xd

J (xd) = γ1 · FP + γ2mtot + γ3 ·
(

1

λmax

)2

subject to xd,min ≤ xd ≤ xd,max,

Q̇hx ≥ Q̇des,

B ≤ Ds ≤ 5B,

Ttube,out ≥ Tshell,out,

Ac,tubes ≤ Ac,shell,

C,De ≥ ε

(3.25)

The decision variable vector for the algorithm is

xd = [PT , Do, Ltube, NT , Ds, ṁt, ṁs]
T , (3.26)

where PT , Do, Ltube, NT , and Ds are previously defined design parameters and the

mass flow rates ṁt and ṁs are operational input variables. Note that when integrating

the system level CCD algorithm and the component level algorithms (as in Chapter

4), the mass flow rates will be inputs to the component level optimization. In this

section, however, they will be treated as decision variables to illustrate the utility of

this formulation.

I define several constraints related to the geometry of the heat exchanger de-

sign. First, each design variable is both lower bounded (xd,min) and upper bounded

(xd,max). At steady-state, the heat removal rate Q̇hx, as calculated with the steady-

state methods described in Section 2.2, is required to be greater than a desired rate

Q̇des. In accordance with typical design practices, the shell diameter (Ds) should be
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larger than the baffle spacing but no larger than five times the baffle spacing. The

shell diameter is further constrained to ensure it is large enough to accommodate

all NT tubes. Additionally, the tube clearance C and shell equivalent diameter De,

both functions of various decision variables, are required to be positive values. I also

constrain the tubeside fluid outlet temperature to be greater than the shellside fluid

outlet temperature to prevent crossover during system operation.

In the following subsection, I demonstrate the optimization algorithm with a sim-

ulated case study.

3.3.2 Case Study: Static Optimization vs. Proposed Dynamic Optimiza-

tion

Here I present a case study illustrating the utility of the optimization algorithm

detailed above. As a baseline case, hereon referred to as the Static Case, I optimize

the design of a shell and tube heat exchanger considering only static design metrics.

In other words, I set γ3 in Eqn. (3.25) to zero and use values of γ1 = 100 and γ2 = 0.1

to weight footprint and mass, respectively. The full constraint list is applied and the

decision variable vector is the same as in Eqn. (3.26). Fundamentally, the Static

Case represents a conventional method of optimizing heat exchanger performance in

the literature. The device is optimized with respect to sizing metrics using static

design principles while being constrained to achieve a desired steady-state rate of

heat removal.

For my proposed algorithm, referred to as the Dynamic Case, I solve the optimiza-

tion problem presented in Eqn. (3.25) with an added penalty on dynamic (transient)

performance. In the Dynamic Case, I use the same slack variable weightings γ1 = 100

and γ2 = 0.1 for footprint and mass in the objective function. Additionally, I use

a penalty γ3 = 100 to weight the transient performance contribution to the overall

objective function. In both cases, I employ a multistart global nonlinear optimization
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algorithm using the OPTI toolbox [62]; the optimal designs for each case, along with

upper and lower bounds on the decision variables, are summarized in Table 3.2.

Table 3.2. : Results for optimization case study.

Optimal Design

Variable Low Bound High Bound Static Case Dynamic Case

PT (m) 0.0127 0.0381 0.013 0.016

Do (m) 0.0063 0.0254 0.010 0.016

Ltube (m) 0.1524 3.658 0.155 0.746

NT (–) 1 100 75 1

Ds (m) 0.0257 3.018 0.107 0.124

ṁt (kg/s) 0.1125 0.188 0.188 0.188

ṁs (kg/s) 0.225 0.375 0.375 0.318

Footprint 0.017 m2 0.093 m2

Total mass 4.10 kg 9.01 kg

τt,out 1.03 s 0.276 s

The results in Table 3.2 highlight a few important trade offs. In the static case, it

can be seen that the optimal design features tubes with a tube length of Ltube = 0.155

meters, compared to a much longer tube length of 0.746 meters in the dynamic

case. Moreover, the static case features 75 tubes as opposed to a single tube in the

dynamic case. Physically, the length dimension dominates the 2D footprint of the

heat exchanger. Therefore, the static case seeks to use a higher number of short-length

tubes to get the requisite heat transfer area to meet the 5kW heat load requirement.

Additionally, because the tubes are short in the Static Case, the shell diameter is

permitted to be smaller and the mass of the shell is much lighter than in the Dynamic

Case.

On the other hand, using the higher number of tubes decreases the mass flux

(flow rate divided by cross-sectional area) for the primary fluid in the Static Case;
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Static Case Dynamic Case

Figure 3.8. : Step responses of states for control volumes 2, 4, and 6.

this, in turn, decreases the speed of heat exchanger’s heat transfer dynamics. In the

Dynamic Case, the optimal tubeside mass flow rate is the same as in the static case,

but because the optimal number of tubes is only 1, this results in a much higher mass

flux and ultimately a faster dynamic response. In the dynamic case, the time constant

for the primary (tubeside) outlet fluid is just τt,out = 0.276 seconds compared to a

value of τt,out = 1.03 seconds in the Static Case.

To further illustrate the difference in transient performance between the two cases,

I simulate the step responses of each optimal component design. For each case, I apply

a step input at t = 10 seconds of 30% from the steady-state value in the primary fluid

flow rate ṁt while using the steady-state values of the other input variables. Figure

3.8 shows a comparison of the step responses for six of the dynamic states for each

design (states for control volumes two, four, and six in Figure 3.2a). Figure 3.9a shows

the step response of the rate of heat transferred from the tube walls to the secondary

fluid. Figure 3.9b shows a comparison of the pole plots for the linearized dynamic
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Energy is removed at a much 
faster rate in the Dynamic Case

(a) Heat transfer rate

Clusters of  poles

(b) Pole plot.

Figure 3.9. : Dynamic comparison of optimal designs: (a) shows the heat transfer rate,
with respect to nominal, out of the primary fluid and (b) gives the corresponding pole
plots.

model corresponding to each optimal design. In Figure 3.8-3.9a, δ on the vertical

axis labels signifies that each response is a change from its nominal, or steady-state,

value. Additionally, dashed vertical lines in Figure 3.8 represent the time constant of

each response.
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The results in Table 3.2 and Figure 3.9 illustrate the utility of including dynamic

performance considerations into the design of thermal management components. Fig-

ure 3.9b illustrates the algorithm’s ability to move the poles of the system further left

in the complex plane, which maps to faster dynamics (Figure 3.8). In the Dynamic

Case, the primary fluid absorbs the requisite amount of heat in 0.276 seconds, almost

four times as fast as in the Static Case; Figure 3.9a illustrates the superior speed

of the heat removal dynamics in the Dynamic Case. Fundamentally, this indicates

energy is being pulled from the primary fluid much faster. This has important impli-

cations in dynamic thermal management, where increased electrification now requires

dissipation of highly transient heat loads. Component mass and footprint were higher

in the Dynamic Case, however, because of the weights used in the objective function.

By further tuning the weights γ1, γ2, and γ3 in the objective function, an intermediate

balance could be achieved between static design goals and dynamic performance.

Remark 7. The proposed approach further demonstrates how a combination of mod-

els with differing fidelity can be used to move beyond the conventional static approach

to component design optimization. The static model was effective in capturing the

complex nonlinear relationship between heat exchanger geometry and heat transfer

coefficient, whereas the dynamic model used simplifying assumptions to predict tran-

sient performance in a computationally-tractable manner.

3.4 Chapter Summary

In this chapter, I presented a new methodology for designing a heat exchanger

that explicitly considers both static and transient performance characteristics. I

specifically considered a shell and tube heat exchanger geometry and proposed an

optimization algorithm that utilizes both a highly detailed and nonlinear static model,

coupled with a reduced-order dynamic model, to optimize both static and dynamic

performance metrics. The proposed optimization problem relied on pole location as

a proxy for dynamic response of the component, and the proposed cost function was
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structured to penalize poles closer to the origin of the complex plane. Through a

simulated case study, I demonstrated how the proposed algorithm exploits the trade

off between static design metrics, including mass and footprint, against the rate at

which heat is removed from the system.

In the next chapter, I combine the CCD algorithm at the system level with com-

ponent level algorithms such as the one presented here to create the first hierarchical

control co-design (HCCD) architecture for fully optimizing the design and control of

a transient TMS.
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4. HIERCHICAL CCD (HCCD) ALGORITHM

In this chapter, I present the main contribution of this dissertation. Namely, I in-

tegrate the system level CCD algorithm from Chapter 2 and the heat exchanger

component optimization from Chapter 3 to create a novel hierarchical control co-

design (HCCD) optimization algorithm aimed at optimizing the design and control

of a transient TMS. The decision variable vectors for each algorithm are amended to

facilitate integration of the two levels. Therefore, the slightly modified optimization

algorithms used at both the system and component levels in the HCCD architecture

are presented in this chapter. Additionally, a static pump model and optimization

algorithm are integrated at the component level to capture tradeoffs between pump

mass and characteristics such as mass flow rate range and pump entropy generation

rate.

4.1 Hierarchical CCD Algorithm Architecture

Here I describe the operational framework and architecture of the proposed hier-

archical control co-design (HCCD) optimization algorithm. I note that while I am

specifically optimizing TMSs in this dissertation, the proposed algorithm could be

adapted to any complex integrated system. Therefore, the discussion in this sec-

tion will cover the general functionality of the algorithm before the following sections

discuss its application to dynamic thermal management.

My proposed algorithm consists of a system level (SL) and component level (CL)

and runs as depicted in Fig. 4.1. First, various SL setpoints and parameters must be

declared in order to execute initial component optimizations. Once an initial set of

optimal component designs has been generated, the optimal component designs and

target variables are passed back up to the SL optimization algorithm where a CCD
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algorithm is used to (1) optimize a full system design to connect the optimal compo-

nents and (2) design an optimal feedback controller to guide the system’s transient

performance in a robust manner. The resulting set of optimal SL setpoints is then

passed back down to the CL where a new set of optimal components is designed in

parallel. The process repeats iteratively until all objective functions in the hierarchy

converge to within a user-defined sensitivity tolerance ∆Jk ≤ ε where ∆Jk is defined

as in Eqn. (4.1)

∆Jk(xk) =

∣∣∣∣∂Jk∂xk1

∣∣∣∣ · |∆xk1|+∣∣∣∣∂Jk∂xk2

∣∣∣∣ · |∆xk2|+ . . .+

∣∣∣∣∂Jk∂xkn

∣∣∣∣ · |∆xkn| , (4.1)

and ∆Jk represents a sensitivity in the kth objective function due to the latest changes

in the optimal design represented by the kth set of decision variables. This criterion is

used to (1) ensure convergence for variables which dominate changes in the objective

function of a given algorithm and (2) avoid unnecessary iteration due to changes in

design variables which do not largely affect a given objective function.

Figure 4.2 provides a more detailed graphic of the structure of each individual al-

gorithm. The system level (SL) algorithm represents the top level of my hierarchical

CCD algorithm. Here the system model is intentionally low-fidelity, or reduced-order,

to promote computationally efficient modeling for use in synthesizing feedback con-

trollers in the CCD algorithm. The SL CCD algorithm is itself a nested optimization

algorithm as described in Chapter 2 in which the outer loop optimization is used to

optimize a set of plant (system) design variables to minimize a weighted combination

of system design properties, such as weight or mass, and steady-state performance

objectives. Within each iteration of the outer loop plant optimization, an inner loop

control optimization is solved to generate an optimal controller for the given plant

design. Generally speaking, the inner loop can be structured to synthesize various

types of state feedback controllers; here I specifically consider the H∞ robust controller

discussed in Chapter 2.
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The SL outer plant loop is linked to the inner control loop via the inner loop’s

optimal cost. In Fig. 4.2, the term λn+1g
∗ (xp, xu) is the contribution of the inner

loop’s optimal solution to the outer loop cost. Any plant design with poor potential

for robust transient performance is then penalized at the plant design stage. The

SL outer loop is similarly linked to each individual component level optimization

by the term h
(
f ∗ci
)

for the ith component being optimized. Therefore, components

with poor designs are also captured at each iteration of the SL optimization. The

optimized plant design variables are generally variables that are passed to the CL as

setpoints or variables that are involved in connecting components with one another.

For the thermal management system, these will include plant design variables such as

mass flow rates of fluid pumped through the various components or lengths of pipe

connecting each component.

At the component level (CL), the models are of higher fidelity to enable optimiza-

tion of a detailed set of design variables that together will result in a component set

capable of meeting specific setpoints optimized at the SL. For example, CL models

in mechanical system design may take into account complex nonlinear effects such

as Coulomb friction and viscous damping whereas the SL model might ignore these

phenomena or lump them into a single term. The component level optimizations are

independent of one another and can be run in parallel. Each has its own specific cost

function and set of design variables. Once optimal components are determined, the

component designs and relevant parameters are passed back up to the SL for the next

iteration of the hierarchical optimization.

Model tuning is a key step in linking the two levels of the hierarchy. In other

words, I must ensure that the reduced-order model at the SL accurately represents

the characteristics of the higher-fidelity models at the CL. This is done by perform-

ing a model tuning analysis between an iteration of the CL optimizations and the

subsequent iteration of the SL CCD optimization. Tuning parameters within the SL

model are updated to ensure that improvements in component designs are accurately

reflected by the reduced-order model at the SL. This process will be described in more
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detail in subsequent sections. By utilizing the model tuning within the hierarchical

optimization, the CL provides a means of selecting high-fidelity physical component

designs to meet system design and control objectives and the SL ensures that the

optimal components can be connected and controlled in an optimal manner.

In the following sections, I describe the models used at each level of the hierarchy

and introduce a model for the pumps at the component level.

Figure 4.1. : Flowchart depicting operation of hierarchical co-design algorithm.

4.2 HCCD: System and Component Models

4.2.1 System Level TMS and Shell and Tube HX Models

The models used for the system level TMS and the component level shell and

tube heat exchanger are taken from Chapters 2-3. At the system level, I use the

low-fidelity model derived for the TMS in Chapter 2. For reference, a schematic
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Figure 4.2. : Schematic of the optimization structure of each level in hierarchical
control co-design.

of the model is given in Figure 4.3. Recall that this model captures the dominant

behavior and transients of the system in a computationally-efficient manner. More

specifically, the model contains six dynamic states corresponding to the first law

dynamics of the TMS: Mt, Tt, Tr, Ta, Tw,r, and Tw,a. Additionally, I use the second

law of thermodynamics to develop an expression for the entropy generation rate of

the system and then append the tracking state ζ to the state vector for use in the

CCD algorithm.

The SL model, albeit physics-based, was intentionally designed with lumped-

parameter techniques. For example, I intentionally treated the heat rejection com-

ponent (shell and tube heat exchanger) in Fig. 4.3 as a single long tube with two

lumped states to describe its dynamics. By doing so, the SL model can more easily

be used in the HCCD algorithm for designing feedback controllers in the inner loop

of the SL CCD algorithm. In practice, however, as discussed in Chapter 3, shell and

tube heat exchanger dynamics are extremely complex. Therefore, at the component
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Figure 4.3. : System diagram for the notional thermal management system. Note
that the shell and tube heat exchanger is equivalent to the heat rejection component.

level, I can use the shell and tube heat exchanger models from Chapter 3 to optimize

the detailed physical design of the shell and tube heat exchanger. More specifically,

I use the highly-detailed static model of the heat exchanger, based on industry stan-

dard modeling concepts, to capture the key relationships between the heat exchanger

geometry and resulting heat transfer coefficients. I then have my dynamic model

of the heat exchanger’s tubeside dynamics to capture the tradeoffs between various

design decisions and the transient performance of the heat exchanger.

4.2.2 Component Level Pump Modeling

I now also integrate component models for both pumps in the TMS into the

hierarchy. To model the pumps in the TMS, I use a static model that maps a key

design variable, impeller diameter, to relevant specifications such as overall pump

mass, achievable mass flow rate, and pump entropy generation rate.

Given a baseline, or reference, pump design with an impeller diameter Dref and

maximum mass flow rate ¯̇mref , I can compute a maximum achievable mass flow rate

associated with any candidate pump ( ¯̇mcand) from the pump affinity law [79] in Eqn.
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Figure 4.4. : Illustration of pump characteristics with varying impeller diameters. A
larger pump can achieve higher mass flow rates with better efficiency, but comes with
a higher physical mass.

(4.2a) where Dcand is the impeller diameter required to generate ¯̇mcand. Assuming

a disc-shaped impeller, the mass of the candidate pump can then be computed as

shown in Eqn. (4.2b) where wimp is the width of the impeller and ρ is the density of

the material from which the impeller is constructed. Finally, I also model efficiency

and entropy generation curves for each candidate pump. Figure 4.4 illustrates the

effect of mass flow rate on the efficiency curve for two separate size pumps.

¯̇mcand

¯̇mref

=

(
Dcand

Dref

)3

, (4.2a)

mcand = ρ
π

4
wimpD

2
cand . (4.2b)
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In Fig. 4.4, the larger pump (Pump 1) can command a higher mass flow rate ( ¯̇m1)

than the smaller pump (Pump 2). Pump 1 also has a higher efficiency, η1, throughout

its operating range. However, Pump 1 requires a larger impeller diameter to achieve

the higher flow rates and thus comes with additional mass when compared to Pump

2. I note that the entropy generation curves for each pump are inversely proportional

to the efficiency curves. In general, as efficiency nears unity, entropy generation

approaches zero. Figure 4.4 also illustrates the effect of mass flow rate on a pump’s

efficiency. The mass flow rate corresponding to the highest efficiency of a given pump

is referred to as the “best efficiency point,” or BEP. The shaded regions around each

BEP are preferred operating zones. Operating a pump at flow rates far from its BEP

can cause wear and fatigue over time, thereby shortening the life span of the pump.

Therefore when selecting a pump, it is preferable to choose a design for which the

BEP is near the expected nominal operating point for a given application.

In the following section, I present the augmented SL CCD and CL design opti-

mization algorithms for leveraging the HCCD algorithm to optimize the design and

control of a thermal management system. I note that each algorithm is a specific form

of the generalized structure for a hierarchical CCD algorithm presented in Section 4.1.

4.3 Hierarchical CCD: Optimization Problem at Each Level

The complete structure of the hierarchical CCD optimization algorithm for ther-

mal management systems is shown in Fig. 4.5. To initialize the algorithm, I first

declare initial setpoint mass flow rates of primary fluid (ṁc) and secondary fluid

(ṁr), as well as initial values for the inlet temperatures and desired rate of heat re-

jection for the shell and tube heat exchanger (HX). Parallel component level (CL)

algorithms then optimize the pumps and a shell and tube heat exchanger. These

optimal component designs are passed up to the SL where the CCD algorithm op-

timizes the system for static and transient performance elements such as mass and

robustness by selecting optimal mass flow rates along with other variables such as
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Figure 4.5. : Flowchart depicting operation of hierarchical co-design algorithm.

lumped parameters in the cold plate. The hierarchical optimization scheme iterates

between the SL and CL until all levels achieve convergence to ∆J ≤ ε (Eqn. (4.1)).

The rest of this section details the structure of each individual algorithm and

describes the manner in which the levels of the hierarchy are linked together. Note

that the decision variables for the SL CCD algorithm and the CL heat exchanger

algorithm are augmented from the algorithms outlined in Chapters 2-3 to facilitate

integration of the two levels. Therefore, the slightly updated optimization problems

for each level are restated here for clarity.
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SL CCD outer loop plant optimization

min
xp

Jp
(
xp, xu, x

∗
hx, x

∗
cp

)
= λ1 ·M

(
xp, x

∗
hx, x

∗
cp

)
+ λ2 · Ṡegen

(
xp, x

∗
hx, x

∗
cp

)
+ λ3 · γ∗

(
xp, xu, x

∗
hx, x

∗
cp

)
s.t. xp,min ≤ xp ≤ xp,max

Tc,low ≤ T ec
(
xp, x

∗
hx, x

∗
cp

)
≤ Tc,high

Ṡegen
(
xp, x

∗
hx, x

∗
cp

)
≥ 0

ṁec ≤ ε · ¯̇mp,1

ṁer ≤ ε · ¯̇mp,2

γ∗
(
xp, xu, x

∗
hx, x

∗
cp

)
∈ (0,∞)

(4.3)SL CCD inner loop control optimization

β∗
(
xp, xu, x

∗
hx, x

∗
cp

)
= arg min

xu
β

s.t. LMI1 < 0

Q1 > 0

β > 0

where γ∗ =
√
β∗

(4.4)

CL Shell and Tube HX Dynamic Optimization

x∗hx = arg min
xhx

Jhx
(
xhx, x

∗
p

)
= γ1 · FP

(
xhx, x

∗
p

)
+ γ2 ·mtot

(
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∗
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)
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(
1
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))2
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CL Pump Optimization

x∗cp = arg min
xcp

Jcp
(
xcp, x

∗
p

)
= τ1 ·mpumps

(
xcp, x

∗
p

)
+ τ2 · Ṡgen,pumps

(
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∗
p

)
ηep,1

(
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∗
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(
xcp, x

∗
p
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ηep,2
(
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∗
p

)
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(4.6)

4.3.1 CL Heat Exchanger Optimization

As detailed in Chapter 3, the CL shell and tube heat exchanger optimization

is itself a dynamic optimization algorithm. Its objective is to use both the static

and dynamics models derived in Chapter 3 to minimize a weighted combination of

static and transient design characteristics. The full statement of the optimization

problem is given in Eqn. (3.25). Recall that γ1, γ2, and γ3 are user-defined weighting

parameters that penalize footprint (FP ), mass (mtot), and transient performance (λ̄),

respectively. Also recall that λ̄ = λmax is the maximum, or slowest, eigenvalue of the

linearized dynamic heat exchanger model for a given set of design parameters. As the

slowest eigenvalue becomes faster, the magnitude of λ̄ increases and the corresponding

term in the objective function decreases.
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Table 4.1. : Decision variables for S&T HX optimization in HCCD algorithm.

COMPONENT LEVEL SHELL AND TUBE HX

Variable Description

PT Tube pitch

Do Tube outer diameter

LT Length of tubes in tube bundle

NT Number of tubes in tube bundle

Ds Shell inner diameter

B Spacing between adjacent baffles

The decision variables for the heat exchanger algorithm are geometric quantities

that dictate the heat transfer characteristics of the component; more specifically,

the decision variable vector xhx consists of tube pitch, tube outer diameter, length

of a single tube, number of tubes, inner shell diameter, and baffle spacing. Table

4.1 provides a description of each quantity. I note that each heat exchanger design

is also a function of optimal SL setpoint variables such as primary (tubeside) and

secondary (shellside) mass flow rates. For a given CL iteration, the inlet mass flow

rates and temperatures for both the primary (tubeside) and secondary (shellside)

fluids are passed down from the previous iteration of the SL CCD algorithm. Each

HX design must adhere to several constraints. First, each design variable is both

lower bounded (xhx,min) and upper bounded (xhx,max). Second, I constrain the heat

exchanger design to reject a minimum rate of heat transfer Q̇des. This ensures the

CL HX design provides a physical component capable of achieving the heat removal

rate, and thus the temperature characteristics, desired by the optimal TMS at the

SL. Additionally, in accordance with typical design practices, the shell diameter (Ds)

is constrained to be larger than the baffle spacing but no larger than five times the

baffle spacing. The shell diameter is further constrained to ensure it is large enough

to accommodate all NT tubes. The tube clearance C and shell equivalent diameter
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De, both functions of various decision variables, are required to be positive values.

I constrain the tubeside fluid outlet temperature to be greater than the shellside

fluid outlet temperature to prevent heat transfer crossover during system operation.

Finally, I constrain each design such that the pressure drops for the tubeside and

shellside fluids are below an allowable tolerance.

4.3.2 CL Pump Optimization

The CL pump optimization, stated formally in Eqn. (4.6), is a static algorithm

designed to minimize a weighted combination of pump mass and pump entropy gener-

ation rate. In Eqn. (4.6), τ1 and τ2 are user-defined weights that penalize pump mass

(mpumps) and pump entropy generation rate (Ṡgen,pumps), respectively. The decision

variable vector for the pump algorithm (Table 4.2), xcp, consists of two variables: the

impeller diameter of the primary fluid pump (Dp,1) and the impeller diameter of the

secondary fluid pump (Dp,2). Each pump design is likewise a function of the optimal

SL design; the optimal flow rates passed down from the SL place restrictions on the

impeller diameters that will meet the relevant pump design constraints. In addition to

being both upper and lower bounded, the pump decision variables are constrained to

ensure the pumps meet constraints related to achievable mass flow rate and efficiency.

In Eqn. (4.6), each pump’s efficiency at its nominal operating point (ηp,1, ηp,2) must

be greater than a user-defined efficiency threshold ηmin. In addition, each pump must

nominally operate within a user-defined range of its best efficiency point (Fig. 4.4)

to avoid unnecessary wear on the component.

Table 4.2. : Decision variables for pump optimization in HCCD algorithm.

COMPONENT LEVEL PUMPS

Variable Description

Dp,1 Impeller diameter of Pump 1 in TMS

Dp,2 Impeller diameter of Pump 2 in TMS
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4.3.3 SL CCD Algorithm

Recall that the SL CCD algorithm is a nested optimization wherein an outer plant

loop optimizes a set of plant (system) design properties, including steady-state per-

formance, and an inner control loop synthesizes a controller to optimize transient

performance and robustness for the given plant. Here I use the outer loop to mini-

mize a combination of system mass (M), steady-state entropy generation rate (Ṡegen),

and the inner loop’s optimal cost (γ∗) while maintaining a heat addition component

surface temperature of Tw,a = 40 ◦C in the presence of a nominal heat load Q̇e
a = 5

kW. Within the inner loop, I design a time-delayed H∞ controller to optimize the

fuel TMS’s transient performance; more specifically, I place a penalty on regulating

the system’s entropy generation rate and the heat addition component’s (cold plate

heat sink) surface temperature (Tw,a). The full statement of the SL CCD algorithm

is given in Eqns. (4.3)-(4.4).

Table 4.3. : Decision variables for SL CCD optimization in HCCD algorithm.

System Level TMS

Variable Description

Lta Length of pipe between tank and heat sink

Lar Length of pipe between cold plate and S&T HX

Lrt Length of pipe between S&T HX and tank

Ltot,a Length of tube channeling in cold plate

MT Nominal amount of working fluid in tank

ṁc Primary fluid mass flow rate

ṁr Secondary fluid mass flow rate in S&T HX

The outer loop decision variables, described briefly in Table 4.3, are variables that

connect the components of the integrated TMS, such as lengths of connecting pipe,

as well as operational variables that dictate how the components operate together in

an integrated system, such as mass flow rates. I also treat the total length of channel
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tubing in the cold plate, Ltot,a, and the initial (nominal) amount of fluid in the

storage tank, MT , as plant loop decision variables. The inner loop controller decision

variables, described in detail in [59], are non-physical variables used to synthesize

a state-feedback H∞ controller to meet the control objectives for the given plant.

The SL plant design must adhere to a number of constraints. First, each design

variable is both upper and lower bounded. More specifically, the mass flow rates are

bounded to be within safe operating ranges with respect to each pump’s efficiency

curve (see Fig. 4.4). Additionally, the entropy generation rates of each component

must be non-negative. Bounds are placed on the nominal (steady-state) value of the

secondary fluid temperature T ec of the shell and tube heat exchanger. In aircraft

fuel thermal management, the secondary fluid in the heat rejection component is

often ambient air; therefore, this temperature cannot be controlled and is typically

within a known expected range. I also constrain each plant to ensure that a realizable

controller exists for that plant. In other words, all feasible plant designs must have

γ ∈ (0,∞). Finally, I constrain the optimal mass flow rates ṁc and ṁr to be less

than the maximum achievable flow rates by a factor of safety to ensure the controller

can increase each mass flow rate as needed during transients.

Equations (4.3)-(4.4) also illustrate that the SL objective function is not only

a function of the outer loop decision variables (xp) and inner loop decision variables

(xu), but also of the optimal solutions from the previous iteration of the shell and tube

heat exchanger (x∗hx) and pump (x∗cp) algorithms. For example, the total mass of the

optimal heat exchanger from Eqn. (3.25), m∗tot, and the masses of each optimal pump

from Eqn. (4.6), m∗pumps, are included in the SL outer loop mass calculation (M) in

Eqn. (4.3). Therefore component designs with poor performance characteristics are

identified and penalized in the SL algorithm. Once an optimal plant and controller

are designed at the SL, the mass flow rates and HX inlet temperatures for that

system design are passed down to the CL which updates the component designs to

accommodate the required setpoints from the SL CCD.
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Recall that the SL model is intentionally low-fidelity whereas the CL models are

of higher fidelity. The shell and tube heat exchanger from the CL maps to the heat

rejection component at the SL, where the heat exchanger is treated as a single tube

with lumped fluid temperature Tr and lumped wall temperature Tw,r. The difference

in model fidelity can cause discrepancy in the predicted dynamics. To avoid this issue,

I run a model tuning analysis preceding each iteration of the SL CCD algorithm.

The nominal heat transfer coefficients in the SL model (αa, αr, αc in Eqn. (2.1)) are

tuned to ensure that the nominal temperatures in the SL model accurately reflect the

temperature differences across the optimal HX resulting from the CL HX optimization

for the given mass flow rates. The SL CCD algorithm can then be used to select new

optimal flow rates based on the updated component geometry. The model matching

allows the hierarchy to (1) select physically tractable component designs at the CL

and (2) ensure the component(s) can be integrated at the SL to accomplish the

desired tasks in an optimal manner. Therefore at each iteration of the hierarchy, the

optimal heat exchanger geometry and pump characteristics are reflected by the SL

design model; the subsequent iteration of the SL CCD algorithm then selects updated

optimal variables to connect and control the optimal components.

4.4 Hierarchical Co-design Case Study: Results

In this section I present a case study to demonstrate the hierarchical CCD algo-

rithm. I consider two cases: Case M and Case S. In Case M, the primary goal at each

level in the hierarchy is to minimize system mass. In Case S, the goal at the system

level is to minimize a weighted combination of system mass and entropy generation

rate. The goal for the CL HX optimization in Case S is to minimize a combination

of mass and footprint, and the goal for the CL pump optimization is to minimize a

combination of the pump masses and their nominal rates of entropy generation. In

both cases, an additional penalty is placed on the inner loop contribution γ∗ in the
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SL CCD algorithm to ensure the resulting system is robust to transient disturbances.

The weightings for each case are summarized in Table 4.4.

Table 4.4. : Objective function weightings for CCD case study on thermal manage-
ment.

Jp = λ1M + λ2Ṡgen + λ3γ
∗, Jhx = γ1FP + γ2mhx + γ3

(
1/λ̄
)2

, Jcp = τ1mp + τ2Ṡgen

Case λ1 λ2 λ3 γ1 γ2 γ3 τ1 τ2

M 1 0 1 0 1 0 1 0

S 1 5 1 500 1 0 1 3

In both cases, the SL inner loop is structured to place a penalty on regulating

(1) the surface temperature of the heat addition component and (2) the system’s

transient entropy generation rate. I assume water to be both the primary fluid for

the entire TMS loop and the secondary fluid in the heat rejection component and

the heat exchangers are made of copper. For the initial component optimizations,

I declare initial primary and secondary fluid mass flow rates to be ṁc = 0.20 kg/s

and ṁr = 0.20 kg/s, respectively. Additionally, I declare the initial tubeside inlet

temperature to be Tt,in = 36 ◦C and the initial shellside inlet temperature to be

Ts,in = 15 ◦C along with the desired 5 kW rate of heat rejection.

Each individual algorithm uses the NOMAD nonlinear optimization algorithm

which interfaces with MATLAB through the program OPTI [62]. In addition, the SL

inner loop uses the software package Yalmip [63] to solve the linear matrix inequal-

ity (LMI) H∞ control problem. Both component level algorithms use a multistart

technique to avoid convergence to local optima. In both cases, the hierarchical CCD

algorithm iterates back and forth between the SL and CL until all decision vari-

ables converge to within δJk ≤ εk. Case M required 3 iterations across each level to

converge, whereas Case S required 5 iterations. The final optimal system and com-
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ponents for each case are shown in Table 4.5. Several key differences in the design of

the systems and components are discussed below.

Table 4.5. : Final optimal designs for hierarchical CCD case study.

SYSTEM LEVEL TMS

Case Lta Lar Lrt Ltot,a MT ṁc ṁr γ∗ Ṡgen Mass

(m) (m) (m) (m) (kg) (kg/s) (kg/s) (–) (W/K) (kg)

M 0.61 0.61 0.61 1.00 2.0 0.150 0.235 0.536 19.5 21.6
S 0.61 0.61 0.61 1.30 2.0 0.243 0.204 0.382 9.62 28.9

COMPONENT LEVEL

Shell and tube HX

Case PT Do LT NT Ds B FPhx mhx

(m) (m) (m) (–) (m) (m) (m2) (kg)
M 0.00559 0.00480 0.226 85 0.100 0.02 0.023 4.84
S 0.00603 0.00509 0.152 179 0.100 0.032 0.015 5.66

Pumps

Case Dp,1 Dp,2 mp,1 mp,2
¯̇mp,1

¯̇mp,2 Ṡgen,p,1 Ṡgen,p,2
(m) (m) (kg) (kg) (kg/s) (kg/s) (W/K) (W/K)

M 0.273 0.310 5.71 7.36 0.179 0.262 9.22 8.25
S 0.363 0.348 10.1 9.3 0.424 0.373 4.21 4.62

In Case M, the primary goal was to minimize the overall mass of the system,

including the mass of the shell and tube HX and each pump. Because the masses of

the pumps are the largest contributor to the overall mass of the system, the SL CCD

algorithm opts for mass flow rates (ṁc = 0.150 kg/s, ṁr = 0.235 kg/s) that minimize

the overall contribution of pump mass. In fact, the total mass contributed by the

pumps in Case M is 13.07 kg, compared to a larger contribution of 19.4 kg in Case

S. The CL pump algorithm then designed a set of pumps to ensure the system can

be nominally operated within a safe range on each pump’s efficiency curve (see Fig.
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4.4) for the optimal flow rates determined at the SL. The optimal HX in Case M was

designed to minimize mass for the desired optimal mass flow rates at the SL while

meeting the inlet temperature setpoints determined at the SL for both the tubeside

and shellside fluids. Recall from Eqn. (3.1) that the nominal rate of heat rejection

for the shell and tube HX is proportional to UAhx, the HX’s overall heat transfer

coefficient (HTC). Because the optimal flow rates in Case M were chosen to be small

to minimize pump mass, the optimal HX is designed to enable a higher overall HTC.

The optimal number of tubes (NT ) in Case M is 85 compared to 179 in Case S and

the tubeside fluid is split amongst a lesser number of tubes in Case M; this leads to a

higher mass flux and a higher overall HTC. Therefore, the optimal HX design in Case

M is chosen such that it overcomes the smaller pump flow rates. By combining the

SL CCD and CL optimizations, the total mass of the thermal management system in

Case M is 21.6 kg, or 7.3 kg less than in Case S, a reduction of 34%.

In Case S, the goal for the SL CCD algorithm was to minimize a weighted com-

bination of total system mass and nominal entropy generation rate (Ṡgen). The CCD

algorithm ultimately selects flow rates (ṁc = 0.243 kg/s, ṁr = 0.204 kg/s) to operate

within an allowable range of each pump’s efficiency curve which are in turn chosen

to be larger in Case S to lower entropy generation due to pumping. Specifically, the

pump algorithm chooses pump designs with impeller diameters Dp,1 = 0.363 m and

Dp,2 = 0.348 m; in this case, the optimal pumps each have a nominal rate of entropy

generation less than 5 W/K, whereas each pump in Case M had a nominal entropy

generation rate greater than 8 W/K. The optimal HX in Case S was designed to

minimize a combination of mass and footprint given optimal mass flow rates and in-

let temperature setpoints determined through the previous iteration of the SL CCD

algorithm. In this case, because there are higher nominal mass flow rates, the overall

HTC (and tubeside mass flux) of the HX is not required to be as high as in Case M.

Therefore, a higher number of short length tubes (NT = 179, LT = 0.152) is used in

the optimal design. This allows a HX design with a much smaller footprint of 0.015

m2, or a 30% reduction compared to Case M. In total, the nominal rate of entropy
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generation in Case S is Ṡgen = 9.62 W/K, less than half of the Ṡgen = 19.5 W/K

in Case M. However, this increase in nominal efficiency does come at the expense of

system mass; the total system mass in Case S is 28.9 kg compared to 21.6 kg in Case

M.

The results of these two cases illustrate how the HCCD algorithm can be used

to design TMSs to meet different design objectives, namely mass and nominal effi-

ciency. However, another key element of the algorithm concerns designing the system

for robustness to transient disturbances. As described in Section 4.3, this is accom-

plished through the SL CCD’s inner loop. In both Case S and Case M, I placed a

penalty of 0.01 on regulating the cold plate surface temperature and a penalty of

10−5 on regulating the system’s transient entropy generation rate. In each Case, the

CCD algorithm generates an optimal H∞ controller to ensure the regulation can be

accomplished. Figures 4.6-4.7 help to illustrate the robustness of each design.

Figure 4.6b shows that, in each case, the optimal controllers are able to regulate

the cold plate surface temperature to within two degrees in the presence of heat

pulses 20% above nominal (Fig. 4.6a). Figure 4.7a illustrates how each controller

modulates the mass flow rates, ṁc and ṁr, during heat load pulses to achieve the

desired temperature regulation. To regulate the system entropy generation rate (Fig.

4.6c), each controller modulates the secondary fluid mass flow rates (ṁr) in concert

with ṁc to limit the adverse affect of the disturbances on system efficiency during

transients. While the entropy generation rate regulation is less effective than the

surface temperature regulation, this is due to the heavier penalty placed on regulating

the surface temperatures. In practice, the controller(s) can be tuned to achieve a

desired balance between competing regulation objectives.

Iterating between the two levels is a key aspect of the proposed CCD hierarchy.

By continually iterating between each level until the convergence criterion in Eqn.

(4.1) is satisfied, the algorithm selects system and component designs otherwise un-

achievable by using a conventional approach. Without leveraging the hierarchy, a

controls engineer might first use a set of general system specifications to optimize a
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Figure 4.6. : CCD case study: disturbance rejection for cold plate surface temperature
and system entropy generation rate.

set of components, followed by a CCD optimization to set the full plant design and

controller for the given plant. This would correspond to selecting the components

represented by COMPONENT LEVEL Iteration 1 and the plant/controller design

from SYSTEM LEVEL TMS Iteration 1 in Table 4.6. By using this method of de-

signing the TMS and its components, the total mass would be 24.1 kg. However, by

iterating until Eqn. (4.1) is satisfied for all levels, the total system mass is reduced

by over 10% to 21.6 kg at Iteration 3. This is done largely by (1) choosing a lower

secondary (shellside) fluid inlet temperature and (2) lowering the mass flow rate of
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Figure 4.7. : CCD case study: modulated control inputs.

primary fluid in the TMS (ṁc). I note that the TMS primary fluid is the tubeside

fluid in the shell and tube HX. Designing the system to operate nominally at a lower

Tc value helps increase the natural temperature difference across the shell and tube

heat exchanger which in turn means lower flow rates can meet the heat rejection

requirements. Therefore, the SL CCD algorithm selects a lower ṁc at the second

iteration to lower the pump mass. Figures 4.8-4.9 illustrate the performance of the

optimal TMS in Case M at both Iteration 1 and Iteration 3. By iterating between

levels of the hierarchy, I am able to achieve equal levels of disturbance rejection for

the cold plate surface temperature (Fig. 4.8b) while reducing the mass of the system

by 10%. In both cases, the primary fluid mass flow rates are modulated to absorb the

extra heat during the transient pulses as shown in Fig. 4.9a. Additionally, the sec-

ondary fluid mass flow rate is modulated as shown in Fig. 4.9b to balance out losses

due to pumping such that the entropy generation rate can be regulated as desired.
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Table 4.6. : CCD Case M: Optimal solutions at each iteration of the hierarchy.

SYSTEM LEVEL TMS

Iteration Lta Lar Lrt Ltot,a MT ṁc ṁr γ∗ Ṡgen Mass

(m) (m) (m) (m) (kg) (kg/s) (kg/s) (–) (W/K) (kg)

1 0.610 0.610 0.610 1.0 2.0 0.156 0.211 0.415 17.0 24.1
2 0.610 0.610 0.610 1.0 2.0 0.153 0.223 0.533 19.6 21.3
3 0.610 0.610 0.61 1.0 2.0 0.150 0.235 0.536 19.5 21.6

COMPONENT LEVEL

Shell and tube HX

Iteration PT Do LT NT Ds B FPhx mhx
(m) (m) (m) (–) (m) (m) (m2) (kg)

1 0.00585 0.00505 0.280 96 0.100 0.020 0.028 6.75
2 0.00559 0.00479 0.220 87 0.100 0.020 0.022 4.78
3 0.00559 0.00480 0.226 85 0.100 0.020 0.023 4.84

Pumps

Iteration Dp,1 Dp,2 mp,1 mp,2 ¯̇mp,1 ¯̇mp,2 Ṡgen,p,1 Ṡgen,p,2
(m) (m) (kg) (kg) (kg/s) (kg/s) (W/K) (W/K)

1 0.298 0.298 6.84 6.84 0.235 0.235 8.54 8.54
2 0.275 0.304 5.79 7.10 0.183 0.248 9.17 8.39
3 0.273 0.310 5.71 7.36 0.179 0.262 9.22 8.25

The case study presented in this section illustrates how the proposed HCCD al-

gorithm can be used to design robust systems with different design objectives. In the

following section, I summarize the main takeaways and contributions of the algorithm.

4.5 Chapter Summary

In this chapter, I presented a new hierarchical CCD methodology that combines

CCD with high-fidelity component design optimization. The algorithm is designed to

optimize the transient performance and robustness of TMSs in addition to optimizing

a combination of component level design properties. Key takeaways are summarized

as follows:

1. The algorithm integrates system level (SL) co-design with high-fidelity compo-

nent level (CL) design optimization.
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Figure 4.8. : Case M: Comparison of robustness performance for initial and final
iterations.

2. The lower-fidelity SL co-design algorithm incorporates feedback control into

the design of a complex system to ensure controllability and robust transient

response to exogenous disturbances.

3. Multiple higher-fidelity CL design optimization algorithms solved in parallel

provide a way of designing detailed components to achieve the desired perfor-

mance needed at the SL.
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Figure 4.9. : Case M: modulated control inputs.

4. A model tuning analysis preceding the SL CCD optimization ensures the re-

duced order SL model dynamics closely match those of the optimal components

designed at the CL.

5. Key specifications are passed back and forth between levels of the hierarchy at

each iteration to converge on an optimal design that is responsive to desired

objectives at each level.
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5. HCCD SOLUTION VALIDATION

The HCCD algorithm presented in Chapter 4 is ultimately a model-based design

process. Therefore, the work in this chapter seeks to validate that one can build the

system that was modeled and see the behavior which was predicted by the HCCD

algorithm. For the validation, I use the thermal modeling software ATTMO (AFRL

Transient Thermal Management Optimization). ATTMO is an expansive toolset,

initially designed by P.C. Krause and Associates (PCKA [80]) in collaboration with

Air Force Research Laboratory (AFRL) and the University of Illinois, for transient

modeling of thermal systems. The toolset supports the rapid development of dynamic

thermal system models and investigation of advanced control algorithms necessary

to support the dynamic cooling and power requirements associated with advanced

aircraft architectures. In recent years, ATTMO has been used extensively in testing

and developing transient models [81,82] and model-based controllers [55] for thermal

management systems.

5.1 ATTMO Toolset and System Construction

Creating a high-fidelity TMS model in ATTMO is the first step in validating the

solution to the hierarchical CCD algorithm. ATTMO interfaces with the Simulink

environment in MATLAB to enable quick connection of drag and drop components.

Figure 5.1 shows an ATTMO construction of the TMS architecture optimized in

Chapter 4.

Similar to the TMS architecture in this thesis, the primary fluid (water) is held

in the storage tank and used to cool the surface of the cold plate, or heat addition

component. The coolant is then routed through a shell and tube heat exchanger, or

heat rejection component, where the absorbed heat is rejected to ambient through the
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Figure 5.1. : Model of TMS architecture in ATTMO environment.

secondary fluid. The primary fluid is then returned to the storage tank to complete

the cycle.

For the intents of the model and control validation in this chapter, the pumps

are removed from consideration, and the primary and secondary fluid mass flow rates

are instead modulated as commanded by the H∞ controller. In practice, a map

between pump speed and mass flow rate might be used to modulate the pump speed

to achieve the desired flow rates to control the system. This would also dictate

pressure differentials across the pump. However, due to the single-phase working

fluid in this system, tracking and maintaining pressure is not considered.

The ATTMO cold plate block has many user-selected inputs as shown in Figure

5.2. Users can set quantities such as the physical dimensions of the plate, along with

tube diameter for the channels of fluid used to cool the plate. For comparison to the

TMS system model used in the hierarchical CCD algorithm, the cold plate length

and number of flow passes are mapped to the decision variable Ltot,a, and the initial

(nominal) temperature at steady-state is the temperature Ta in Figure 2.1.
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Figure 5.2. : ATTMO heat addition component inputs.

Similarly, the storage (receiver) tank has five user-selected inputs as shown in

Figure 5.3: overall heat transfer to ambient, initial (nominal) fluid volume, ambient

temperature, initial (nominal) fluid temperature, and initial pressure. The initial

fluid volume is proportional to the optimal decision variable MT in the hierarchical

CCD algorithm and the initial temperature is equal to Tt in Figure 2.1. Similar to

the HCCD SL model, the model here assumes constant pressure within the receiver,

constant ambient temperature, and neglect heat transfer between the tank and am-

bient.

Finally, the shell and tube heat exchanger has many user-defined inputs that

corresponds to specific design variables optimized in the hierarchical CCD case study

in Chapter 4. Shown in Figure 5.4, a variety of characteristics and properties can

be chosen for the heat exchanger. The simulations executed here consider parallel

flow, copper walls, and water as both the primary and secondary fluid. Additionally,

the tubeside fluid is chosen to be the hot fluid. The red box in Fig. 5.4 highlights

the user-defined geometric quantities related to the physical structure of the heat

exchanger. Specifically, user-defined parameters include the tube type (square pitch),

tube pitch, shell diameter and thickness, tube inner and outer diameter, a baffle cut

percentage, tube length, and baffle spacing. Most of these quantities are analogous
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Figure 5.3. : ATTMO storage (receiver) tank inputs.

to quantities in the decision variable vector of the dynamic HX optimization used

in the hierarchical CCD algorithm. Additionally, initial values for the tubeside and

shellside inlet temperatures, given by Ta and Tc, respectively, in Figure 2.1, must be

declared.

The system is first parameterized to closely resemble the optimal solution for Case

M of the hierarchical CCD case study in Chapter 4. Table 5.1 gives a value for each

user-defined quantity.

5.2 ATTMO Component Model Validation

A first step in model validation is to examine the nominal operating points of

each heat exchanger. Here, I consider the nominal point of the ATTMO system and

components to be ground truth. To ensure the heat exchanger models used in the
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Figure 5.4. : ATTMO shell and tube heat exchanger inputs.

CCD algorithm are accurate physical representations of the detailed heat exchanger

models available in ATTMO, model validation tests are run with the ATTMO cold

plate and shell and tube heat exchanger components. For the set of nominal inputs

from Case M of Chapter 4 (ṁc = 0.1498 kg/s ṁr = 0.2354 kg/s, Tc = 10 ◦C, Q̇a = 5

kW) both heat exchanger components are simulated with step signals in each input,

and I compare the true nominal states of the ATTMO model to those from the HCCD

system model.

5.2.1 Cold Plate Model Validation

For the cold plate model validation, the setup in ATTMO is shown in Figure

5.5 and the nominal fluid outlet temperature and nominal surface temperature are

compared in Table 5.2. At steady-state, the fluid outlet temperature and surface
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Table 5.1. : Parameter set for ATTMO validation of hierarchical CCD solution.

Heat Addition Component

Quanity Value Quantity Value

Cold plate length (m) 0.1 Number of flow passes 10
Tube diameter (m) 0.0063 Initial temperature (C) 36.8

Storage Tank

Quanity Value Quantity Value

Fluid volume (m3) 0.002 Overall HT value (kW/K) 0
Ambient temperature (C) 20 Initial temperature (C) 28.8

Shell and tube heat exchanger

Quanity Value Quantity Value

Tube pitch (m) 0.0056 Shell outer diameter (m) 0.1064
Shell thickness (m) 0.0064 Tube diameter (m) 0.0048
Inner tube diameter (m) 0.0016 Baffle cut percentage 10
Tube length (m) 0.2265 Baffle spacing (m) 0.02
Initial tubeside temp (C) 28.8 Initial shellside temp (C) 10

temperature for the ATTMO model converge to within 1% of the values of the optimal

HCCD model in Case M of Chapter 4.

Outlet fluid temp (𝑇𝑎)
Surface temp (𝑇𝑤,𝑎)

5 kW nominal 
heat load

Nominal 
primary mass 
flow rate

Nominal inlet 
temp from tank

Figure 5.5. : ATTMO setup for cold plate component model validation.
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Table 5.2. : Comparison of cold plate nominal conditions for HCCD prediction and
ATTMO model.

Nominal Value (C)
Quantity Description HCCD ATTMO

Ta CP fluid outlet temp 36.83 36.82

Tw,a CP surface temperature 40.0 40.1

5.2.2 Shell and Tube Heat Exchanger Model Validation

For the shell and tube heat exchanger validation, the setup in ATTMO is shown

in Figure 5.6 and the nominal tubeside and shellside outlet temperatures are listed

in Table 5.3. Here some discrepancy is observed between the ATTMO model’s outlet

temperatures at steady-state and the HCCD optimal system’s outlet temperatures.

Given the nominal flow rates and inlet temperatures from the HCDD model as inputs,

the ATTMO shell and tube heat exchanger has a tubeside outlet temperature roughly

three degrees lower than the HCCD model and a shellside outlet temperature roughly

two degrees higher. This means that, at steady-state, the ATTMO heat exchanger

rejects more heat than the required 5 kW load.

Outlet fluid temps (𝑇𝑐,𝑜, 𝑇𝑟)

Heat rejected ( ሶ𝑄𝑟)

Nominal flow rate ( ሶ𝑚𝑐) and inlet 
temp (𝑇𝑎) for primary fluid

Nominal flow rate ( ሶ𝑚𝑟) and inlet 
temp (𝑇𝑐) for secondary fluid

Figure 5.6. : ATTMO setup for cold plate component model validation.
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Table 5.3. : Comparison of shell and tube HX nominal conditions for HCCD prediction
and ATTMO model.

Nominal Value (C)
Quanity Description HCCD ATTMO

Tt,o Tubeside outlet temp 28.9 25.8

Ts,o Shellside outlet temp 15.07 17.02

The discrepancy is likely due to differences between the shell and tube HX model

used in the HCCD algorithm and the detailed modeling equations used in ATTMO.

For example, the detailed HCCD HX model in Chapter 3 uses a number of parallel

tubes (NT ) as an input whereas the ATTMO model calculates a value for the num-

ber of tubes based on other tube bundle and shell characteristics. Therefore, the

analogous system in ATTMO will have a slightly different nominal operating point

compared to what was predicted by the HCCD algorithm. In practice, a level of

discrepancy between model-predicted performance and actual physical performance

is tolerable. Once a physical system is constructed, the true nominal operating point

can then be determined and the controller can be redesigned for the given physical

system.

As such, the next step is to implement the optimal H∞ feedback controller from

Case M in the HCCD case study on the ATTMO system. With the controller in

place, the HCCD design and control method can be validated.

5.3 Model-Based Tracking State Estimation

In order to implement the optimal controller designed using the HCCD algorithm,

an estimator is required for the tracking state ζ. While this state is undetectable,

all other states, inputs, and disturbances are measurable, or at least observable, in

practice. Therefore it is straightforward to construct an open loop estimator to be
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used by the H∞ controller derived in Section 2.2.2. Figure 5.7 gives an overview of

the process.

Figure 5.7. : Open loop estimation of the tracking state ζ in ATTMO/Simulink
environment.

The open loop estimator takes the state (x), input (u), and disturbance (d) signals

at the last sample instant, along with model-based constant parameters and the

nominal operating point, to generate a model-based estimate of the system’s entropy

generation rate. An estimate of the tracking state ζ is computed by numerically

integrating the estimated quantity dζ/dt = Ṡgen − r. The control inputs at the

current sample are then computed using the available measurements and tracking

state estimate, along with the static gain matrix K as shown in Figure 5.8. Note that

saturation limits are also applied to each control input.
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Figure 5.8. : Computation of control inputs in ATTMO/Simulink environment.

5.4 Optimal Controller Design in ATTMO

To test the optimal controller from Case M in Chapter 4, the H∞ control problem

in Eqn. (2.17) must be solved for an optimal set of controller gains for the ATTMO

system. Because the H∞ controller is a linear regulator, it requires a nominal (equi-

librium) point to linearize about. However, as mentioned previously, the ATTMO

system has a different nominal point than the one predicted by the HCCD system

model. Therefore, the nominal point used by the linear controller in the inner loop of

the HCCD algorithm should be updated based on the dynamics of the true ATTMO

model. To determine the new nominal point, an open loop simulation is conducted

where all nominal input values are applied as step inputs at time t = 0 in ATTMO.

The final values of all state temperatures from the model can then be used as the true

system nominal point for the linear controller model. Note that in practice, open loop

experimental data would be collected, and the model-based controller could then be

tuned to match physical data before updating the feedback controller gains.
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Once a true nominal point is extracted from the high fidelity ATTMO model, a

model tuning analysis, similar to the analysis performed between CL and SL iterations

in the HCCD algorithm, is used to update the parameters of the physics-based system

model in Eqn. (2.1). More specifically, MATLAB’s fmincon is used to run the

following unconstrained optimization problem:

min
PAFs

J =
6∑
i=1

|TATTMO
i − TCCDi |. (5.1)

The decision variables are parameter adjustment factors (PAFs) which scale the heat

transfer coefficients (αc, αr, αa) in the SL model of the CCD algorithm. Within each

iteration of Eqn. (5.1), the nominal point of the SL model is determined analytically

given the set of scaled heat transfer coefficients. The cost at that iteration is then

given by a summation of the differences between the updated HCCD model nominal

temperatures and the ATTMO model nominal temperatures. Using this tuning anal-

ysis, the HCCD model’s nominal condition matches ATTMO to within one degree

Celsius.

With a tuned physics-based model of the ATTMO dynamics, the optimal con-

troller gains are updated by solving the H∞ control optimization given in Eqn. (2.17).

Note that the updated model parameters are also used for the online tracking state

estimation described previously. Now, the controller can be tested on the optimal

CCD system built in ATTMO. The full process to update the controller gains is

shown in Figure 5.9.

5.5 ATTMO Simulation: Validation of Optimal System Design

With the updated optimal controller designed for the ATTMO system, along

with the estimator for the tracking state, I can validate the optimal system design

in ATTMO. To do so, the ATTMO system is simulated for a series of heat pulses

applied to the surface of the cold plate (see Figure 5.1). The controller is designed
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Figure 5.9. : Process used to solve for H∞ controller gains for regulating ATTMO
system model.

to regulate the cold plate surface temperature to its nominal value. The heat load

impinged on the cold plate is given in Figure 5.10a and the regulated cold plate

surface temperature is shown in Figure 5.10b-5.10c. The controlled inputs are shown

in Figure 5.11. In each figure, the predicted performance from Case M of the HCCD

optimization case study in Chapter 4 is overlaid for comparison. Recall that the actual

nominal point for the ATTMO model is different than that predicted by the HCCD

algorithm. Therefore, the vertical axes in Figure 5.10b-5.10c represent perturbations

from the equilibrium point of both the ATTMO system and the HCCD system.

The surface temperature of the cold plate in ATTMO is regulated to within a half

degree Celsius in the presence of heat pulses 10% above the nominal heat load using

the optimal controller implemented in ATTMO. Figure 5.11 illustrates the similarity

in behavior of the ATTMO system controller and the HCCD controller. In either

case, the primary fluid mass flow rate is modulated during the heat pulses to absorb

the requisite amount of transient heat necessary to maintain the cold plate surface

temperature. Figure 5.10 shows that the HCCD system overestimates the robust-
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Figure 5.11. : Comparison of ATTMO system performance with HCCD predicted
performance: modulated control inputs.

ness of the ATTMO system by roughly 0.15 degrees Celsius. This is due to fidelity

differences between the ATTMO cold plate model and the HCCD cold plate model;

the HCCD model treats the surface of the cold plate as a lumped mass, whereas the

ATTMO model discretizes the cold plate into a number of individual control volumes,

both along the cold plate’s length and width axes. The surface temperature Tw,a be-

ing plotted for the ATTMO simulation results is the maximum surface temperature

of all nodes of the cold plate. Because nodes closer to the application of the heat pulse
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along the width axis exhibit a higher temperature increase, it makes physical sense

that the cold plate surface temperature will deviate farther away from the nominal

in the ATTMO model than in the HCCD model where the lumped cold plate has a

higher thermal capacitance.

The cold plate temperature transients for each heat pulse are shown in Figure

5.10c. Toward the end of the final transient pulse, or around time t = 200 seconds,

there is a spike in the ATTMO model’s cold plate surface temperature. When looking

at the primary fluid mass flow rate commanded by the ATTMO system’s controller

(Fig. 5.11a), it is apparent that this spike corresponds to the initial onset of input

saturation. In other words, the primary fluid mass flow rate reaches its actuation

limit during this heat pulse. While not applied in the simulations in this dissertation,

I have developed a method for embedding notions of input saturation into the H∞

control formulation studied here. Initial results indicate the proposed formulation

results in controllers that are often less reactive during transients. Therefore, this

type of formulation could be used in the SL CCD algorithm’s inner loop to incorporate

notions of input saturation into the HCCD algorithm. Details for the formulation can

be found in the Appendix.

Several important observations can be made from the results presented in this

chapter. These observations, which are summarized below, provide important insights

for future research direction.

Remark 8. In practice, a design engineer can use the proposed HCCD algorithm

to select components and an overall design for a physical system. Without custom-

ordered components, however, which can be expensive and come with increased lead

time, it is difficult to select components with the exact desired designs. Therefore,

some type of model tuning will typically be required to ensure the model used to

program a model-based controller accurately depicts the dynamics of the physical

system. The work in this chapter provides a systematic method of model tuning

which can be used in this type of potential experimental work.
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Remark 9. Due to the nature of entropy generation, a state describing these dynam-

ics will typically be undetectable. Therefore, in practice, a model-based estimation of

the system’s entropy generation rate will be required. The work in this chapter also

provides a method of designing an open-loop estimator for use with any state-feedback

control method. This technique can easily be leveraged for future experimental work.

To summarize, the value of the work in this chapter is twofold. First, it is a nec-

essary initial step in validation of the proposed HCCD algorithm and its utility. The

efforts here provide initial validation that the proposed HCCD algorithm’s solution

can translate to higher fidelity modeling software, thereby moving HCCD a step closer

to the experimental realm. Second, the steps taken to validate the HCCD solution in

ATTMO provided important insight into challenges that would be encountered when

building a physical system and programming the feedback controller. Therefore, this

work can be utilized in future research aimed at experimentally validating the pro-

posed approach. Future research directions will be discussed in more detail in the

following chapter.
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6. CONCLUSIONS

6.1 Summary of Research Contributions

In this dissertation, I developed a new design approach for thermal management

systems (TMSs) based on the concept of combined plant and control design, or con-

trol co-design (CCD), to enable improved transient performance and efficiency for

TMSs. More specifically, I developed a hierarchical CCD (HCCD) algorithm aimed

at optimizing a full system design of a TMS for transient performance and robustness.

The algorithm integrates system level (SL) CCD with detailed component level (CL)

design optimization. The lower-fidelity SL CCD algorithm incorporates feedback con-

trol into the design of a TMS to ensure controllability and robust transient response

to exogenous disturbances and the higher-fidelity CL design optimization algorithms

provide a way of designing detailed components to achieve the desired performance

needed at the SL.

My SL CCD algorithm for dynamic thermal management explicitly leverages sys-

tem efficiency, via entropy generation rate, as a design metric for both steady-state

and transient performance. This was accomplished in part by structuring the algo-

rithm to utilize a parameterized first-principles model that defines entropy generation

rate as a state whose dynamics are coupled to the plant and control variables. The

result of the proposed CCD algorithm is a system design that is not only optimized

for steady-state efficiency, but that can be designed for robustness to transient distur-

bances while achieving said disturbance rejection with minimal compromise to system

efficiency. My component level design optimization algorithms allow optimization of

specific physical variables too complex for inclusion in a CCD algorithm. For exam-

ple, my design methodology for a shell and tube heat exchanger allows optimization
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of a detailed set of design variables to meet various static and transient objectives in

the presence of specific component design constraints.

I presented a case study to illustrate the use of the HCCD architecture in design-

ing robust TMSs with different design objectives at both the system and component

levels. The software package ATTMO was used to test a solution to the proposed

HCCD algorithm on high-fidelity thermal modeling software. I showed that the re-

sulting specifications from the HCCD algorithm could be used to select components

and design the controller in ATTMO while achieving temperature regulation close

to that achieved by the system level HCCD model. Future work is described in the

following section.

6.2 Future Research Direction

This thesis focused on developing a general framework for HCCD of transient

systems. However, the proposed algorithm also lays the groundwork for multiple

impactful future research directions. Important future research should include (1)

extended validation of the proposed HCCD approach, (2) investigation of more com-

plex hierarchical architectures, and (3) examination of hierarchical control synthesis

and alternative feedback control methods for given systems. Each of these directions

would not only expand the applicability of the HCCD approach, but also demonstrate

its physical efficacy in designing and controlling integrated transient systems.

Further validation efforts for the HCCD approach should be twofold. First, the

validation should involve building the optimal components, and/or modifying existing

components to fit an optimal solution to a HCCD case study. This would also enable

quantification of the performance benefits of the HCCD process over conventional

design processes, particularly in terms of achieving real-time performance specifica-

tions and disturbance rejection. Second, future validation work should consider the

study of more realistic and complex case studies, particularly those with well-defined

mission profiles and/or design constraints. For example, it is typical for design spec-
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ifications to include upper bounds on footprint or mass for individual components

or an entire system; the proposed HCCD algorithm could be modified with a cost

function that solely penalizes transient performance and treats mass and footprint

as constraints rather than as additional costs to be weighted in the overall objective

function. Similarly, while this thesis focused on what would be analogous to cruise

operation, further study is needed to consider how the algorithm can scale to han-

dle design of systems across highly-transient operating conditions such as take-off or

landing in an aircraft context.

The proposed HCCD algorithm also lays the groundwork to begin investigating

more complex hierarchies. While this thesis focused on integration of the system

level and component level, future work should look at extending the hierarchy to

incorporate more complexity. For example, within an aircraft, the fuel TMS is one

system that makes up the larger architecture of the aircraft. The TMS must also

interface with other systems such as the aircraft’s propulsion system. The hierarchy

could be extended to optimize design and control of multiple systems in the overall

aircraft architecture. This would help illustrate how efficiency savings in the TMS

would propagate to other systems on board. For example, a reduction in entropy

generation within the fuel TMS would ultimately correlate to less required fuel for

the propulsion system and thus less required mass on board the aircraft. Additional

complexity could also be added to the TMS itself. As an example, a second heat

sink could be added as part of an additional vapor compression system (VCS) on

board the aircraft. The extra heat sink would provide options of either dumping

heat to the original sink or to the additional aircraft VCS. In practice, this type of

architecture is often utilized to accommodate different flight conditions [27] such as

the lower altitudes encountered during take-off.

Extending the hierarchy to incorporate more complex architectures also facilitates

the need for research on incorporating hierarchical control into the HCCD framework.

For example, the aircraft propulsion system would require its own feedback controller

which may have its own control objectives and need to operate on a different time scale
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than the controller for the fuel TMS. Therefore, the HCCD framework would lend

itself well to implementing hierarchical feedback control. Similarly, future research

could involve examining the use of different control algorithms within the SL CCD

algorithm for the fuel TMS. While this thesis used a time delay H∞ control method

to incorporate a robustness metric into the CCD plant objective function, the CCD

formulation itself is algorithm-agnostic; in other words, many control algorithms could

be used in the CCD inner loop as long as there is a connection to link the inner

loop objective to the outer plant loop optimization. Therefore, future work could

compare system performance for different inner loop control algorithms to determine

approaches that enable the most favorable transient performance.



APPENDICES
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A. CONTROL INPUT SATURATION

One problem with current design and control strategies for thermal management

concerns the notion of input saturation. Control methods are often blind to, or

cannot adapt to, input-related constraints such as actuator saturation limits. This

is a problem in the context of CCD. When designing a TMS and its controller, it is

desirable to guarantee that robust performance can be achieved within the actuator

limits. Without some notion of actuator limits within either the model or control

formulation, it is difficult to program a controller to be intelligent enough to respond

within saturation limits.

Recall the two control inputs for the nonlinear dynamic TMS model in Eqn. (2.1)

are the primary fluid mass flow rate ṁc and the secondary fluid mass flow rate ṁr.

Equation (A.1) can be used to incorporate notions of input saturation into the control

strategy studied in this work:

ṁc =
1

2
·
(
ṁc + ¯̇mc +

[
(ṁc,des − ṁc)

2 + ε2
]1/2 − [(ṁc,des − ¯̇mc)

2 + ε2
]1/2)

(A.1a)

ṁr =
1

2
·
(
ṁr + ¯̇mr +

[
(ṁr,des − ṁr)

2 + ε2
]1/2 − [(ṁr,des − ¯̇mr)

2 + ε2
]1/2)

. (A.1b)

In Eqn. (A.1), the term ṁdes represents the desired, or commanded, flow rate and

ṁ represents the actual flow rate that would result based on actuator limits. The

terms ¯̇m and ṁ are upper and lower saturation limits on flow rate, respectively. The

variable ε is a user-defined scalar that helps mimic saturation effects with a single

continuous curve.

As an example, Figure A.1 compares a continuous curve represented by Eqn. (A.1)

with a nonlinear, discontinuous, saturation function.
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Figure A.1. : Comparison of saturation curve and continuous, linearizable approxi-
mation.

The horizontal axis in Fig. A.1 represents a desired, or commanded, flow rate such as

that from a controller. The vertical axis represents the actual flow rate that would be

produced based on actuation limits. The continuous curve in Eqn. (A.1) accurately

approximates the discontinuous behavior of the saturation limits. In fact, as ε → 0,

the continuous curve approaches a perfect match with the discontinuous saturation

behavior. While the approximation is very nonlinear near the saturation limits, it does

provide a continuous, and therefore easily linearizable, curve for embedding saturation

effects into the linear controller.

It is then trivial to rewrite the state equations for the dynamic TMS model as
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dMt

dt
= −ṁE (A.2a)

Mt
dTt
dt

= (ṁc − ṁE) (T ′r − Tt) (A.2b)

Cr
dTr
dt

= As,rαr (Tw,r − Tr) + (ṁc − ṁE) cp (T ′a − Tr) (A.2c)

Ca
dTa
dt

= As,aαa (Tw,a − Ta) + ṁccp (T ′t − Ta) (A.2d)

mw,rcp,w
dTw,r
dt

= As,rαr (Tr − Tw,r) + Q̇c→w (A.2e)

mw,acp,w
dTw,a
dt

= As,aαa (Ta − Tw,a) + Q̇a , (A.2f)

Q̇c→w = ṁrcp,c

[
Tc −

(
Tw,r + (Tc − Tw,r) e

−αcAs,c
ṁrcp,c

)]
. (A.3)

where the continuous expressions to approximate saturation behavior are inserted into

the dynamic equations. I can then re-linearize the set of state equations as described

in Eqn. (2.14). I then have a linear system with A0, A1, B1, and B2 parameterized

as functions of the saturation limits ṁ and ¯̇m.

While this method of incorporating saturation limits was not included in the

HCCD results presented in this dissertation, initial investigation into its utility has

been promising. Figure A.2 illustrates the performance of two separate controllers:

”No Saturation” and ”Saturation.” In the No Saturation case, the controller model

is linearized without notion of the actuator limits. Conversely, in the Saturation case,

the controller model is linearized using the continuous approximations presented here.

In Figure A.2cA.2d, one can see that by incorporating the actuator limits into the

linearization, the controller is less aggressive and seems to respond to the notion of

the limits while achieving the same level of temperature regulation (Fig. A.2b).
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B. HCCD MATLAB CODE

The following code is is an example of how to set up the HCCD algorithm.

clc

clear all

close all

% THIS IS THE TOP LEVEL FUNCTION TO RUN THE HCCD ALGORITHM. NOTE ...

THAT

% ALL QUANTITIES ARE IN BASE UNITS (i.e. K, kg, Pa, etc...)

final str = 'optimal system';

% Define weighting parameters for the SL and CL level algorithms

lam m1 = 1*10ˆ(0); lam v1 = 0*10ˆ(0); gam wt1 = 1*10ˆ(0); Sgen wt1 = ...

0*10ˆ(0); % s.s. level

m wt = 1; eval wt1 = 0*10ˆ(-1); ftp wt = 0; % hex level

mpump wt = 1; Sgenpump wt = 0; satpump wt = 0;

% initialize various setpoints needed for the algorithm(s) to run

spec Twa = 40 + 273.15; spec Q = 5*1000; Tclow = 10 + 273.15; delT = ...

2; eta min = 0;

mce ini = 0.2; mrame ini = 0.2; eta range = 0.75; run multistart = 1;...

maxfevals = 2500;

gam flag = 1; const linear coeffs = 0; Tchigh = 20 + 273.15; ...

pump flow FOS = 0.9;

% weighting matrices for the controller at s.s. level

num ss constr = 10;



111

wt Twa = 0.01; C = [0,0,0,0,0,wt Twa,0;0,0,0,0,0,0,wt Twa/1000]; D12 ...

= [0.5,0;0,0.5];

% run initial component optimizations first; initialize variables ...

needed

% later with dummy values

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% initialize optimal component algorithms

iter = 1;

opt vars pump = [8;8]*0.0254; % initial cond for impeller diams

map ss to pump.mce = mce ini; map ss to pump.mrame = mrame ini;

Do tube = 1/4*0.0254; Pt = 1.01*Do tube; wt tube = 1/16*0.0254; Nt = ...

100;

L tube = 2*12*0.0254;B = L tube/(15+1); Ds shell = 2.5*B;

opt vars hex = [Pt;Do tube;L tube;Nt;Ds shell;B];

% run the initial pump optimization

[PumpData,opt vars pump,fval pump] = run entire pump opt(iter,...

mpump wt,Sgenpump wt,map ss to pump,eta range,opt vars pump,...

run multistart,maxfevals);

% package various quantities needed to run the initial HX ...

optimization

% (map SL variables to HX optimization)

PAF finder inputs.dummy var = 1; last PAFs = [1;1];

map ss to hex.mce = mce ini; map ss to hex.mrame = mrame ini;

map ss to hex.absU1min = PumpData.absU1min; map ss to hex.absU1max = ...

PumpData.absU1max;

map ss to hex.absram max = PumpData.absram max;

map ss to hex.Tce = 1/2*(Tclow+Tchigh); map ss to hex.Tre = 30 + 273...

.15;



112

Cpavg = refpropm('C','T',1/2*(spec Twa+map ss to hex.Tre),'P',101,'...

water');

map ss to hex.Tae = spec Q/(Cpavg*mce ini) + map ss to hex.Tre;

% setup the HX optimization - i.e. package up inputs needed and find ...

a

% feasible starting point

absU1max = PumpData.absU1max;

hex inputs = setup hex opt(spec Q,m wt,eval wt1,ftp wt,map ss to hex,...

opt vars hex);

%%% Unpack what is needed from the setup function to actually run the...

hx

%%% optimization

feas vars = hex inputs.feas vars; P tube = hex inputs.P tube; P cool ...

= hex inputs.P cool;

Tshell in = hex inputs.Tshell in; mdot shell = hex inputs.mdot shell;...

mdot tube = hex inputs.mdot tube;

Ref tube = hex inputs.Ref tube; Ref shell = hex inputs.Ref shell; Np ...

= hex inputs.Np; N = hex inputs.N;

epsilon tube = hex inputs.epsilon tube; Method = hex inputs.Method; ...

static flag = hex inputs.static flag;

Nb = hex inputs.Nb; spec Q = hex inputs.spec Q; dynamic flag = ...

hex inputs.dynamic flag;

num constraints = hex inputs.num constraints; eps Q = ...

hex inputs.eps Q; Pt = hex inputs.Pt;

Do tube = hex inputs.Do tube; Ttube in = hex inputs.Ttube in; wt tube...

= hex inputs.wt tube;

nlrhs = hex inputs.nlrhs; nle = hex inputs.nle; LB = hex inputs.LB; ...

UB = hex inputs.UB;

% run the initial HX optimization

des pars = feas vars;
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nlcon = @(des pars) constr hex(des pars,Tshell in,mdot shell,...

mdot tube,...

Ref tube,Ref shell,Np,N,epsilon tube,spec Q,num constraints,...

Ttube in,wt tube,absU1max,map ss to hex);

fobj = @(des pars) obj hex(des pars,Tshell in,mdot shell,...

mdot tube,...

Ref tube,Np,N,m wt,...

eval wt1,ftp wt,0,Ttube in,wt tube);

opts = optiset('display','iter','maxiter',1000,'maxfeval',maxfevals,'...

maxtime',3600);

Opt = opti('obj',fobj,'nlmix',nlcon,nlrhs,nle,'x0',...

des pars,'solver','nomad','bounds',LB,UB,'options',opts);

if run multistart == 1

[opt vars hex(1:6,iter),fval hex(iter),exitflag,info] = ...

multisolve(Opt,des pars,[2 2]);

else

[opt vars hex(1:6,iter),fval hex,exitflag,info] = solve(Opt,...

des pars); exitflag hex = exitflag;

end

% initial optimal variables for the HX

Pt = opt vars hex(1,iter); Do tube = opt vars hex(2,iter);

L tube = opt vars hex(3,iter); Nt = opt vars hex(4,iter);

Ds shell = opt vars hex(5,iter); B = opt vars hex(6,iter);

% post process the HX to save some relevant outputs

hex outputs = post process hex(wt tube,opt vars hex(:,iter),Tshell in...

,Ttube in,...

N,spec Q,map ss to hex.mce,map ss to hex.mrame,m wt,eval wt1,...

ftp wt,absU1max,map ss to hex);

rhow = hex outputs.rhow; Chex = hex outputs.Chex;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% while loop starts the HCCD algorithm; take initial optimal ...

components and

% run SL CCD... iterate back and forth until convergence

% initialize the convergence criterion and iteration counter

iter = 1; delJ ss = 20; delJ hex = 20; delJ pump = 20;

stop tol ss = 0.5; stop tol hex = 0.5; stop tol pump = 0.5;

ss conv = 100; hex conv = 100; pump conv = 100;

opt vars ss = 1; convergence = 0;

while convergence == 0 && iter < 100

% first, map relevant quantities from CL algorithms to SL

imp diams = opt vars pump(:,end);

pump to ss = map pump to ss(imp diams,map ss to pump.mce,...

map ss to pump.mrame,eta range);

[hex to ss,last PAFs] = map hex to ss(Do tube,wt tube,Pt,Ds shell...

,Chex,B,rhow,Ttube in,L tube,Nt,...

mdot tube,iter,hex outputs,PAF finder inputs,Tclow,spec Q,...

spec Twa,delT,pump to ss,mce ini,mrame ini);

% RUN THE SL ALGORITHM

% first, find a feasible starting point and output quantities ...

needed to

% run the SL CCD

ss inputs = setup ss opt(spec Twa,spec Q,Tclow,C,D12,hex to ss,...

iter,opt vars ss,...

num ss constr,pump to ss,mce ini,mrame ini,pump flow FOS,...

const linear coeffs,Tchigh);

feas vars = ss inputs.feas vars; absU1min = ss inputs.absU1min;
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absram max = ss inputs.absram max; absU1max = ss inputs.absU1max;...

params = ss inputs.params;

LB = ss inputs.LB; UB = ss inputs.UB; nlrhs = ss inputs.nlrhs; ...

nle = ss inputs.nle;

% run SL CCD optimization

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

des pars = feas vars; opt flag = 1; feas flag = 0;

opts = optiset('display','iter','maxiter',2500,'maxfeval',...

maxfevals,'maxtime',3600);

nlcon = @(des pars) constr ss(des pars,params,C,D12,absU1min,...

Tclow,spec Twa,spec Q,1,absram max,absU1max,hex to ss,...

num ss constr,...

pump flow FOS,const linear coeffs,Tchigh);

fobj = @(des pars) obj ss(des pars,params,C,D12,lam m1,lam v1,...

gam wt1,absU1min,...

spec Twa,spec Q,1,Sgen wt1,feas flag,gam flag,absram max,absU1max...

,hex to ss,pump to ss,const linear coeffs);

Opt = opti('obj',fobj,'nlmix',nlcon,nlrhs,nle,'x0',...

des pars,'solver','nomad','bounds',LB,UB,'options',opts);

[opt vars ss(1:7,iter),fval ss(iter),exitflag,info] = solve(Opt,...

des pars); exitflag ss = exitflag;

% evaluate convergence criterion for SL objectives

if iter > 1

delJ ss(iter) = sensitivity ss(opt vars ss,params,C,D12,...

lam m1,lam v1,gam wt1,absU1min,...

spec Twa,spec Q,Sgen wt1,0,gam flag,absram max,absU1max,...

hex to ss,...

pump to ss,const linear coeffs);

end

% define quantities that will be used for model tuning after CL
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% optimization

PAF finder inputs.last opt vars ss = opt vars ss(1:7,iter);

PAF finder inputs.params = params;

PAF finder inputs.Tclow = Tclow;

PAF finder inputs.spec Twa = spec Twa;

PAF finder inputs.spec Qa = spec Q;

PAF finder inputs.delT = delT;

% save optimal SL plant variables

Lta = opt vars ss(1,iter); Lar = opt vars ss(2,iter); Lrt = ...

opt vars ss(3,iter);

Ltot a = opt vars ss(4,iter);

Mte = opt vars ss(5,iter);

mce = opt vars ss(6,iter); mrame = opt vars ss(7,iter);

% output some SL properties to save

ss outputs = post process ss(opt vars ss(:,iter),params,ss inputs...

,spec Q,spec Twa,C,D12,hex to ss,const linear coeffs);

K = ss outputs.K; gam = ss outputs.gam; nom x = ss outputs.nom x;

nom u = ss outputs.nom u; Sgene = ss outputs.Sgene;

% re-optimize components if we haven't converged yet

if delJ ss(end) ≤ stop tol ss && delJ hex(end) ≤ stop tol hex && ...

delJ pump(end) ≤ stop tol pump

convergence = 1;

elseif iter == 10

convergence = 1;

end

% print info to command window; run new iteration if not ...

converged

clc

ss data = fval ss

hex data = fval hex

pump data = fval pump
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if iter > 1

delJ ss

delJ hex

delJ pump

end

iter str = sprintf('system iter%d',iter);

save(iter str);

iter = iter + 1;

% COMPONENT LEVEL OPTIMIZATIONS

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if convergence == 0

% now, we must pass relevant constraints/vars from sl to cl

map ss to hex.mce = mce; map ss to hex.mrame = mrame;

map ss to hex.Tce = nom u(3);

if map ss to hex.Tce ≤ Tclow

map ss to hex.Tce = Tclow;

end

map ss to hex.Tae = nom x(4);

map ss to hex.Tre = nom x(3);

map ss to hex.absU1min = ss inputs.absU1min; ...

map ss to hex.absU1max = ss inputs.absU1max;

map ss to hex.absram max = ss inputs.absram max;

map ss to pump.mce = mce; map ss to pump.mrame = mrame;

% run the pump optimization

[PumpData,opt vars pump,fval pump(iter)] = ...

run entire pump opt(...
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iter,mpump wt,Sgenpump wt,map ss to pump,eta range,...

opt vars pump,run multistart,maxfevals);

% evaluate pump convergence

if iter > 1

delJ pump(iter) = sensitivity pump(opt vars pump,mce,...

mrame,mpump wt,Sgenpump wt,eta range);

else

delJ pump(iter) = sensitivity pump([opt vars pump ini,...

opt vars pump],mce,mrame,mpump wt,Sgenpump wt,...

eta range);

end

% setup new HX optimization

absU1max = PumpData.absU1max;

hex inputs = setup hex opt(spec Q,m wt,eval wt1,ftp wt,...

map ss to hex,opt vars hex);

%%% Unpack what is needed from the setup function to actually...

run the hx

%%% optimization

feas vars = hex inputs.feas vars; P tube = hex inputs.P tube;...

P cool = hex inputs.P cool;

Tshell in = hex inputs.Tshell in; mdot shell = ...

hex inputs.mdot shell; mdot tube = hex inputs.mdot tube;

Ref tube = hex inputs.Ref tube; Ref shell = ...

hex inputs.Ref shell; Np = hex inputs.Np; N = ...

hex inputs.N;

epsilon tube = hex inputs.epsilon tube; Method = ...

hex inputs.Method; static flag = hex inputs.static flag;

Nb = hex inputs.Nb; spec Q = hex inputs.spec Q; dynamic flag ...

= hex inputs.dynamic flag;

num constraints = hex inputs.num constraints; eps Q = ...

hex inputs.eps Q; Pt = hex inputs.Pt;
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Do tube = hex inputs.Do tube; Ttube in = hex inputs.Ttube in;...

wt tube = hex inputs.wt tube;

nlrhs = hex inputs.nlrhs; nle = hex inputs.nle; LB = ...

hex inputs.LB; UB = hex inputs.UB;

%%% run new iteration of HX optimization

des pars = feas vars;

nlcon = @(des pars) constr hex(des pars,Tshell in,mdot shell,...

mdot tube,...

Ref tube,Ref shell,Np,N,epsilon tube,spec Q,num constraints,...

Ttube in,wt tube,absU1max,map ss to hex);

fobj = @(des pars) obj hex(des pars,Tshell in,mdot shell,...

mdot tube,...

Ref tube,Np,N,m wt,...

eval wt1,ftp wt,0,Ttube in,wt tube);

opts = optiset('display','iter','maxiter',1000,'maxfeval',...

maxfevals,'maxtime',3600);

Opt = opti('obj',fobj,'nlmix',nlcon,nlrhs,nle,'x0',...

des pars,'solver','nomad','bounds',LB,UB,'options',opts);

if run multistart == 1

[opt vars hex(1:6,iter),fval hex(iter),exitflag,info] = ...

multisolve(Opt,des pars,[2 2]);

else

[opt vars hex(1:6,iter),fval hex(iter),exitflag,info] = ...

solve(Opt,des pars); exitflag hex = exitflag;

end

% save new optimal hex variables

Pt = opt vars hex(1,iter); Do tube = opt vars hex(2,iter);

L tube = opt vars hex(3,iter); Nt = opt vars hex(4,iter);

Ds shell = opt vars hex(5,iter); B = opt vars hex(6,iter);

% evaluate HX convergence

if iter > 1
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delJ hex(iter) = sensitivity hex(opt vars hex,Tshell in,...

mdot shell,mdot tube,...

Ref tube,Np,N,m wt,...

eval wt1,ftp wt,Ttube in,wt tube);

else

delJ hex(iter) = sensitivity hex([opt vars hex ini,...

opt vars hex],Tshell in,mdot shell,mdot tube,...

Ref tube,Np,N,m wt,...

eval wt1,ftp wt,Ttube in,wt tube);

end

% output some HX info based on new optimal component

hex outputs = post process hex(wt tube,opt vars hex(:,iter),...

Tshell in,Ttube in,...

N,spec Q,map ss to hex.mce,map ss to hex.mrame,m wt,eval wt1,...

ftp wt,absU1max,map ss to hex);

rhow = hex outputs.rhow; Chex = hex outputs.Chex;

end

end

save(final str); % save the final optimal components and system/...

controller

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

The following function illustrates how to set up the obective function and constraint

function evaluations for the heat exchanger optimization. Note that similar functions

are designed for both the system level CCD algorithm and the component level pump

algorithm.

function J = obj hex(des pars,Tshell in,mdot shell,mdot tube,...

Ref tube,Np,N,m wt,eval wt1,ftp wt,feas flag,...
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Ttube in,wt tube)

% This function computes the HX algorithm objective function value (J...

) for

% a given set of HX decision variables (des pars).

% current decision variables

Pt = des pars(1); Do tube = des pars(2);

L tube = des pars(3); Nt = des pars(4);

Ds shell = des pars(5); B = des pars(6);

% get HX geometric quantities needed

Cond = get hex params(Np,1,N,Pt,Do tube,wt tube,L tube,Nt,B,Ds shell)...

;

PAF COOL = Cond.PAF.PAF COOL; PAF SH = Cond.PAF.PAF SH;

PAF TP = Cond.PAF.PAF TP; PAF SC = Cond.PAF.PAF SC;

P cool = Cond.Par.P cool; Pt = Cond.Par.Pt; Di tube = ...

Cond.Par.Di tube;

wt tube = Cond.Par.wt tube; L tube = Cond.Par.L tube; B = Cond.Par.B;

Nb = Cond.Par.Nb; Nt = Cond.Par.Nt; Np = Cond.Par.Np; Ds shell = ...

Cond.Par.Ds shell;

Cp wall = Cond.Par.Cp wall; Do tube = Cond.Par.Do tube; Chex = ...

Cond.Par.Chex;

Ac cool = Cond.Par.Ac cool; As c = Cond.Par.As cool; As = ...

Cond.Par.As ref;

Ac ref = Cond.Par.Ac ref; m wall = Cond.Par.M wall; Vol ref = ...

Cond.Par.Vol ref;

Do tube = Cond.Par.Do tube; De shell = Cond.Par.De shell;

% here, evaluate eigenvalues if we're placing penalty on transient

% performance

if feas flag 6= 1

if eval wt1 > 0
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Cond = get hex params(Np,0,N,Pt,Do tube,wt tube,L tube,Nt,B,...

Ds shell);

PAF COOL = Cond.PAF.PAF COOL; PAF SH = Cond.PAF.PAF SH;

PAF TP = Cond.PAF.PAF TP; PAF SC = Cond.PAF.PAF SC;

P cool = Cond.Par.P cool; Pt = Cond.Par.Pt; Di tube = ...

Cond.Par.Di tube;

wt tube = Cond.Par.wt tube; L tube = Cond.Par.L tube; B = ...

Cond.Par.B;

Nb = Cond.Par.Nb; Nt = Cond.Par.Nt; Np = Cond.Par.Np; ...

Ds shell = Cond.Par.Ds shell;

Cp wall = Cond.Par.Cp wall; Do tube = Cond.Par.Do tube; Chex...

= Cond.Par.Chex;

Ac cool = Cond.Par.Ac cool; As c = Cond.Par.As cool; As = ...

Cond.Par.As ref;

Ac ref = Cond.Par.Ac ref; m wall = Cond.Par.M wall; Vol ref =...

Cond.Par.Vol ref;

Do tube = Cond.Par.Do tube; De shell = Cond.Par.De shell;

Ref = Ref tube;

n = 1; num passes = Np;

% desired nominal inputs

mdot t = mdot tube;

P ref in = 101*1000; Tsat = refpropm('T','P',P ref in/1000,'Q...

',0,Ref);

T ref in = Ttube in;

h in = refpropm('H','T',T ref in,'P',P ref in/1000,Ref); % kJ...

/kg

T c in = Tshell in;

mdot s = mdot shell;

nom u = [mdot t;h in;T c in;mdot s];

% desired nominal states

P ref0 = P ref in;
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H ref0 = h in*ones(N,1);

T wall0 = (1/2*(T ref in + T c in))*ones(N,1);

nom x0 = [H ref0;T wall0];

% form the desired nominal vector

Aeq = []; Beq = [];

options = optimoptions('fmincon','Algorithm','interior-point'...

,...

'Display','off','MaxFunEvals',1,'MaxIter',1,'TolFun',1e...

-6,'TolX',1e-6);

[solved nomX,fval,exitflag,output] = fmincon(...

@get hex nominal,nom x0,[],[],Aeq,Beq,0.85*nom x0,1.15*...

nom x0,[],options,nom u,Cond,Ref,N,P ref0);

nom x = solved nomX;

[Amat,Bmat] = linearize hex(nom x,nom u,Cond,Ref,N,P ref0);

evals = eig(Amat);

max eval1 = max(real(evals));

nan flag = 0;

for o = 1:numel(Amat)

if isnan(Amat(o)) == 1

nan flag = nan flag + 1;

end

end

if nan flag > 0

max eval1 = 10ˆ(-4);

end

if isnan(max eval1) == 1 | | max eval1 == 0

max eval1 = .0001;

end

else

max eval1 = 1;
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end

end

% evaluate the objective function value

static L = L tube;

static Ds = Ds shell;

footprint = static L*static Ds;

wt shell = 2*wt tube;

Do shell = static Ds + 2*wt shell; rhow = 8940;

m shell = rhow*pi/4*static L*(Do shellˆ2-static Dsˆ2);

m wall = rhow*static L*(Do tubeˆ2 - (Do tube-2*wt tube)ˆ2)*pi/4*Nt;

m tot = (m wall + m shell);

if feas flag == 1

J = 0;

else

J = m wt*m tot + eval wt1*((1/max eval1)ˆ2) + ftp wt*footprint;

end

end

function [c] = constr hex(des pars,Tshell in,mdot shell,mdot tube,...

Ref tube,Ref shell,Np,N,epsilon tube,spec Q,...

num constraints,Ttube in,wt tube,absU1max,map ss to hex)

% This function is used to evaluate feasibility (constraints) for the...

CL HX

% algorithm

%%% The output is "c" which is the constraint evaluation vector; note...

that
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%%% constraints ≤ 0 are feasible

c = zeros(num constraints,1);

% current decision variables values

Pt = des pars(1); Do tube = des pars(2);

L tube = des pars(3); Nt = des pars(4);

B = des pars(6);

Ds shell = des pars(5);

% get HX geometry for current decision variables

Cond = get hex params(Np,1,N,Pt,Do tube,wt tube,L tube,Nt,B,Ds shell)...

;

PAF COOL = Cond.PAF.PAF COOL; PAF SH = Cond.PAF.PAF SH;

PAF TP = Cond.PAF.PAF TP; PAF SC = Cond.PAF.PAF SC;

P cool = Cond.Par.P cool; Pt = Cond.Par.Pt; Di tube = ...

Cond.Par.Di tube;

wt tube = Cond.Par.wt tube; L tube = Cond.Par.L tube; B = Cond.Par.B;

Nb = Cond.Par.Nb; Nt = Cond.Par.Nt; Np = Cond.Par.Np; Ds shell = ...

Cond.Par.Ds shell;

Cp wall = Cond.Par.Cp wall; Do tube = Cond.Par.Do tube; Chex = ...

Cond.Par.Chex;

Ac cool = Cond.Par.Ac cool; As c = Cond.Par.As cool; As = ...

Cond.Par.As ref;

Ac ref = Cond.Par.Ac ref; m wall = Cond.Par.M wall; Vol ref = ...

Cond.Par.Vol ref;

Do tube = Cond.Par.Do tube; De shell = Cond.Par.De shell;

% call hex design calcs function which will evaluate constraints for

% current decision vars

[Qhot,Qcold,Qhx,c] = hex design calcs(des pars,Tshell in,mdot shell,...

mdot tube,...

Ref tube,Ref shell,Np,N,epsilon tube,spec Q,Ttube in,wt tube,...

absU1max,map ss to hex,num constraints);
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c = c';

end

The following function solves the SL CCD inner loop optimization problem for the

H∞ control problem.

function [K,successes,gam] = solve inner loop(A0,A1,A2,B1,B2,C,D12,h1...

,h2)

% This function solves the SL CCD inner loop for optimal Hinf ...

controller

% gains (K) and linking variable (gam)

% dimensions of system

n = size(A0,1); l = size(B2,2); p = size(C,1); r = size(D12,1); q = ...

size(B1,2);

dummy = h2;

% define the decision variables

Q1 = sdpvar(n,n);

U1 = sdpvar(n,n);

U2 = sdpvar(n,n);

Q2 = sdpvar(n,n,'full');

Q3 = sdpvar(n,n,'full');

R1 = sdpvar(n,n,'full');

R2 = zeros(size(R1));

Y = sdpvar(l,n,'full');

Beta = sdpvar(1,1,'full');

F1 = zeros(size(R2,1),size(U1,1));

F2 = zeros(size(R2,1),size(U2,1));
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% create the lmi constraint

sig = Q3 - Q2' + Q1*(A0' + A1' + A2') + Y'*B2';

lmi = blkdiag(Q2+Q2',-Q3-Q3',-Beta*eye(size(B1,2)),-h1*R1,...

-eye(size(Q1*C',2)),-eye(size(Y'*D12',2)),-U1,-U1,-U2,-U2,-h1*R1)...

;

lmi(1:size(Q2,1),:) = [Q2+Q2',sig,zeros(size(sig,1),size(B1,2)+size(...

R1,2)),...

Q1*C',Y'*D12',zeros(size(sig,1),size(F1*U1,2)),Q2',zeros(size(sig...

,1),size(F2*U2,2)),...

Q2',h1*Q2'*A1'];

lmi(size(Q2,1)+1:size(Q2,1)+size(Q3,1),:) = [sig',-Q3-Q3',B1,h1*R1,...

...

zeros(size(R2,1),size(Y'*D12',2)+size(Q1*C',2)),...

F1*U1,Q3',F2*U2,Q3',h1*Q3'*A1'];

for j = 1:size(lmi,1)

lmi(j:size(lmi,1),j) = lmi(j,j:size(lmi,2))';

end

constr = [lmi ≤ -eps*eye(size(lmi)); Q1 ≥ eps*eye(size(Q1)); Beta ≥ ...

eps];

cost = [Beta];

ops = sdpsettings('solver','bmibnb','verbose',0);

solved sys = optimize(constr,cost,ops);

Y = value(Y);

Q1 = value(Q1);

Beta = value(Beta);

gam = sqrt(Beta);

K = Y*inv(Q1);

if solved sys.problem == 0
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successes = 1;

Y = value(Y);

Q1 = value(Q1);

Beta = value(Beta);

gam = sqrt(Beta);

K = Y*inv(Q1);

else

successes = 0;

gam = 10ˆ5;

K = zeros(size(B2,2),size(A0,1));

end

dummy = 1;

end

The following function illustrates the process for linearizing the system level model.

A similar process is used to linear the HX dynamic model.

function [A0,A1,B,Bd,nc] = linearize ss(nom x,nom u,params,dparam)

% This function computes the LTI state-space matrices for a given ...

nominal

% condition.

% Outputs are the matrices and the ctrb.

% matrix rank.

Cp = params.Cp; D = params.D; Ac = params.Ac; rho = params.rho; Cpw =...

params.Cpw;

mu = params.mu; T0 = params.T0; beta = params.beta; k = params.k;

Cp c = params.Cp c; k c = params.k c; mu c = params.mu c;

Di = params.Di; wt = params.wt; Do = params.Do;
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Aca = params.Aca; a1 = params.a1;

a2 = params.a2; a3 = params.a3; a4 = params.a4; a5 = params.a5;

a6 = params.a6; rhow = params.rhow;

cpf p = params.cpf p; cpf c = params.cpf c;

Lta = dparam.Lta; Lar = dparam.Lar; Lrt = dparam.Lrt;

Ltot r = dparam.Ltot r; Ltot a = dparam.Ltot a;

Cr = dparam.Cr;

Ca = dparam.Ca; Vwr = dparam.Vwr; Vwa = dparam.Vwa; Mwa = dparam.Mwa;

Mwr = dparam.Mwr; Ac c = dparam.Ac c;

As c = dparam.As c;

Asa = dparam.Asa; Asr = dparam.Asr;

hma1 = dparam.hma1; hma2 = dparam.hma2;

hm c1 = dparam.hm c1; hm c2 = dparam.hm c2;

hmr1 = dparam.hmr1; hmr2 = dparam.hmr2;

% x = [Mt, Tt, Tr, Ta, Twr, Twa, Zeta];

% xd = [0, Ttd, Trd, Tad, 0, 0, 0];

% u = [mc, mram]; d = [me, Qa, Tc, r];

Mt = nom x(1);

Tt = nom x(2); Tt delay = Tt;

Tr = nom x(3); Tr delay = Tr;

Ta = nom x(4); Ta delay = Ta;

Twr = nom x(5);

Twa = nom x(6);

Zeta = nom x(7);

mc = nom u(1);

me = nom u(2);

Tc = nom u(3); % Tbr = Twr;

Qa = nom u(4); % Tba = Twa;

mram = nom u(5);

r = nom u(6);
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Z1 = eye(7);

Z1(3,3) = Cr;

Z1(4,4) = Ca;

Z1(5,5) = Mwr*Cpw;

Z1(6,6) = Mwa*Cpw;

A0mat = zeros(7,7);

A0mat(2,1) = (mc - me) * (-Tr delay + Tt) / Mt ˆ 2;

A0mat(2,2) = (-mc + me) / Mt;

A0mat(2,3) = 0; % Tr delay

A0mat(3,3) = ((-mc + me) * hmr1 - hmr2) * Asr - (mc - me) * Cp;

A0mat(3,4) = 0; % Ta delay

A0mat(3,5) = Asr * (hmr1 * (mc - me) + hmr2);

A0mat(4,2) = 0; % Tt delay

A0mat(4,4) = (-hma1 * mc - hma2) * Asa - mc * Cp;

A0mat(4,6) = Asa * (hma1 * mc + hma2);

A0mat(5,3) = Asr * (hmr1 * (mc - me) + hmr2);

A0mat(5,5) = mram * Cp c * exp(-(hm c1 * mram + hm c2) * As c / mram ...

/ Cp c) + ((-mc + me) * hmr1 - hmr2) * Asr - mram * Cp c;

A0mat(6,4) = Asa * (hma1 * mc + hma2);

A0mat(6,6) = - Asa * (hma1 * mc + hma2);

A0mat(7,2) = Cp * (mc - me) * (-Tr delay + Tt) / Tt ˆ 2;

A0mat(7,3) = (-(hmr1 * (mc - me) + hmr2) * Asr * Twr ˆ 2 + Cp * (mc -...

me) * (Tr - Ta delay) * Twr + (hmr1 * (mc - me) + hmr2) * Tr ˆ 2...

* Asr) / Tr ˆ 2 / Twr;

A0mat(7,4) = (-Asa * (hma1 * mc + hma2) * Twa ˆ 2 + Cp * mc * (Ta - ...

Tt delay) * Twa + Asa * (hma1 * mc + hma2) * Ta ˆ 2) / Ta ˆ 2 / ...

Twa;

A0mat(7,5) = -Asr * (hmr1 * (mc - me) + hmr2) * (Tr - Twr) * (Tr + ...

Twr) / Tr / Twr ˆ 2;

A0mat(7,6) = -Asa * (Ta - Twa) * (Ta + Twa) * (hma1 * mc + hma2) / Ta...

/ Twa ˆ 2;

A0 = Z1\A0mat;

A1mat = zeros(7,7);
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A1mat(2,3) = (mc - me) / Mt;

A1mat(3,4) = (mc - me) * Cp;

A1mat(4,2) = mc * Cp;

A1mat(7,2) = -Cp * mc * (Ta - Tt delay) / Ta / Tt delay;

A1mat(7,3) = -Cp * (mc - me) * (-Tr delay + Tt) / Tt / Tr delay;

A1mat(7,4) = -Cp * (mc - me) * (-Ta delay + Tr) / Tr / Ta delay;

A1 = Z1\A1mat;

% u = [mc,mram]

Bmat = zeros(7,2);

Bmat(2,1) = (Tr delay - Tt) / Mt;

Bmat(3,1) = -Asr * (Tr - Twr) * hmr1 - Cp * (Tr - Ta delay);

Bmat(4,1) = -Asa * (Ta - Twa) * hma1 - Cp * (Ta - Tt delay);

Bmat(5,1) = Asr * hmr1 * (Tr - Twr);

Bmat(5,2) = -((As c * hm c2 + mram * Cp c) * exp(-(hm c1 * mram + ...

hm c2) * As c / mram / Cp c) - mram * Cp c) * (Tc - Twr) / mram;

Bmat(6,1) = Asa * hma1 * (Ta - Twa);

Bmat(7,1) = (-Cp * Tr * Twr * Tt * Ta * Twa * log(Ta delay) - Cp * Tr...

* Twr * Tt * Ta * Twa * log(Tr delay) - Cp * Tr * Twr * Tt * Ta ...

* Twa * log(Tt delay) + Cp * Tr * Twr * Tt * Ta * Twa * log(Ta) +...

Cp * Tr * Twr * Tt * Ta * Twa * log(Tr) + Cp * Tr * Twr * Tt * ...

Ta * Twa * log(Tt) + Asa * Tr * Tt * Twa ˆ 2 * Twr * hma1 + (Twr ...

ˆ 2 * hmr1 * Ta * Tt * Asr + ((((-0.2e1 * Asa * hma1 - 0.2e1 * ...

Asr * hmr1 + (2 * a1 * mc) - 0.3e1 * Cp + a2) * Tr + Cp * ...

Ta delay) * Ta + Cp * Tt delay * Tr) * Tt + Cp * Tr delay * Ta * ...

Tr) * Twr + hmr1 * Ta * Tr ˆ 2 * Tt * Asr) * Twa + Asa * hma1 * ...

Tr * Twr * Tt * Ta ˆ 2) / Tr / Twr / Tt / Ta / Twa;

Bmat(7,2) = 2 * a4 * mram + a5;

B = Z1\Bmat;

% d = [me,Qa,Tc,r]

Bdmat = zeros(7,4);

Bdmat(1,1) = -1;

Bdmat(2,1) = (-Tr delay + Tt) / Mt;

Bdmat(3,1) = Asr * (Tr - Twr) * hmr1 + Cp * (Tr - Ta delay);
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Bdmat(5,1) = -Asr * hmr1 * (Tr - Twr);

Bdmat(5,3) = -mram * Cp c * (-0.1e1 + exp(-(hm c1 * mram + hm c2) * ...

As c / mram / Cp c));

Bdmat(6,2) = 1;

Bdmat(7,1) = (Cp * Tr * Twr * Tt * log(Ta delay) + Cp * Tr * Twr * Tt...

* log(Tr delay) - Cp * Tr * Twr * Tt * log(Tr) - Cp * Tr * Twr *...

Tt * log(Tt) - Asr * Tt * Twr ˆ 2 * hmr1 + (((0.2e1 * Asr * hmr1...

+ 0.2e1 * Cp) * Tr - Cp * Ta delay) * Tt - Cp * Tr * Tr delay) *...

Twr - Asr * hmr1 * Tr ˆ 2 * Tt) / Tr / Twr / Tt;

Bdmat(7,2) = 0;

Bdmat(7,3) = 0;

Bdmat(7,4) = -1;

Bd = Z1\Bdmat;

nc = rank(ctrb(A0+A1,B));

end
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