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ABSTRACT

Heo, Damji Ph.D., Purdue University, December 2019. Learning Transfer in the Differ-
entiation Using the Chain Rule and Its Relationship to Motivation and Performance.
Major Professors: Tim Newby, Muhsin Menekse.

Previous studies indicated that calculus courses are considered ‘weed-out’ courses

as a lot of students in STEM majors struggle to pass. Instructors and researchers

explored various instructional methods to facilitate calculus learning, however, more

tailored instructional strategies are still needed. Inventing Contrasting Case is a strat-

egy that has been proven effective in transfer, yet, its effect when combined with the

motivational factor and across various content areas should be investigated further.

Therefore, this study investigated the relationship between participants’ motivation,

instruction condition, and the performance on the direct application and transfer

problems using Calculus 1 content. The data was collected from undergraduate stu-

dents in STEM majors at a Midwestern university who were required to complete

a Calculus 1 course to attain their degree. Eighty-one students participated for the

study. Participants were assigned to either the iCalCulus (iCC) group or the Tell and

Practice (TP) group. The study consisted of two separate sessions. In Session 1, par-

ticipants were provided with a motivation survey, calculus course experience survey,

pre-requisite knowledge check test, ICC task or TP task, and post-test. Seven days

later, participants took a delayed post-test (Sesson 2). Google Forms was used to

create study materials. The results from Bayesian independent sample t-test analyses

indicated that the iCC group did not outperform the TP group in direct applica-

tion problems. In addition, the iCC group did not outperform the TP group in PFL

problems in either test. However, the ICC group outperformed the TP group in the

further PFL problems from the delayed post-test (BF01 = .096, p = .003). The results

from Bayesian one-way ANCOVA analyses indicated that there was the moderate ev-
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idence that supports the effect of group condition on direct application, Preparation

for Future Learning (PFL) performance from the post-test, while controlling for the

average pre-requisite knowledge check test score and motivational level. The results

also indicated that there was from moderate to strong evidence to support that group

condition had an effect on PFL performance from the delayed post-test (Session 2),

and the further PFL performance from both post-test and delayed post-test while

controlling for the average pre-requisite knowledge check test score. In addition, mo-

tivational level was shown to not be an effective moderator between instructional

condition and performance in PFL problems. The results from GLM repeated mea-

sure analyses showed the ICC strategy had a more significant effect on the participants

regarding PFL performance and further PFL performance over time as there was a

significant cross-over interaction effect between the time and the instruction condition

(p = .012, η2p = .08 for PFL performance and p = .003, η2p = .11 for further PFL

performance). The direction for potential future studies is addressed in the conclusion

section including the importance of developing curriculum to train students’ transfer

ability; and a new type of assessment to measure transfer is offered for consideration.
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1. INTRODUCTION

Calculus is commonly considered a “weed-out” course, and student performance in it

is a significant predictor for attainment of many STEM degrees. High rates of failure in

calculus lead many students to change disciplines (Suresh, 2006; Tyson, 2011). Previ-

ous research studies also pointed out that Community College (CC) transfer students

in four-year institutions for STEM degrees experienced GPA shock and showed that

their GPAs in calculus courses strongly affected CC transfer students' retention rate

in four-year institutions (Laugerman, Rover, Shelley, & Mickelson, 2015; Laugerman,

Shelley, Rover, & Mickelson, 2015).

Although the importance of learning calculus has been emphasized by many re-

searchers, there are still insufficient research studies which suggest tangible instruc-

tional methods that produce strong and reliable effects for learning and teaching

calculus (Ramussen et al., 2014). Specifically, research studies which provide a clear

understanding of how students can learn key concepts for calculus are needed. More-

over, it is important for students to transfer their calculus knowledge to real settings

when they work in a STEM field. Therefore, learning environments where students

can understand the key concepts of calculus and learn how to transfer the knowledge

to other settings should be provided. For instance, only a few studies provide the clear

understanding of how students differentiate composite functions and apply the chain

rule to find the derivative of each function (Clark et al., 1997; Kabael, 2010). Rec-

ognizing the structure of composite functions and differentiating them correctly are

important to find integrals as well. Accordingly, the chain rule is one of the important

concepts in learning and understanding calculus.

Inventing with Contrasting Cases (ICC) is one of the pedagogies that has been

introduced as effective for learning transfer by previous research studies (Schwartz,

Chase, Oppezzo, & Chin, 2011; Schwartz & Martin, 2004). ICC is a combination
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of ‘contrasting cases’ activities and an ‘inventing’ activity (Schwartz et al., 2011).

‘Contrasting cases’ refers to instructional materials which are designed to facilitate

learners in discerning information which might be overlooked otherwise. In other

words, learners can find the difference between two cases and think about how the

difference are related to finding solutions. The contrasting cases is a carefully designed

instructional strategy designed to help students notice key features of a problem and

to avoid overly simplistic solutions. Inventing activities is an instructional strategy

requiring students to invent aids by themselves to help them understand given tasks

more efficiently or effectively.

While research on ICC has gained prominence recently, many questions about how

and when it works remain. For example, Schwartz and Martin (2004) pointed out that

ICC might seem inefficient when measuring learners' performance with standardized

assessments which focus on measuring how much learners understand the task at the

moment. The authors argued that assessments should include how students can pre-

pare themselves to learn in a new context to assess the effect of the ICC strategy. They

introduced an instructional design called ‘Preparation for Future Learning’ (PFL) as

a new type of assessment to measure learning transfer more accurately. Another ex-

ample is that ICC from previous research studies has not incorporated a motivational

factor to explain the mechanism of learning transfer even though learning transfer re-

quires persistence and motivation throughout the process (Perkins & Salomon, 2012).

Belenky and Nokes-Malach (2012) found that ICC in statistics promoted mastery goal

orientations in college students, and mastery goals predicted transfer. This result ad-

dresses the call to consider the intersection of transfer and motivation (Goldstone &

Day, 2012).

ICC also has been shown to have a limited effect on learning transfer when per-

formed individually (Sears & Pai, 2012). While research studies usually combined

ICC with collaborative learning condition to maximize its effectiveness (Schwartz,

Bransford, & Sears, 2005; Schwartz et al., 2011), there are research studies with in-

dividual learners that used strategies such as providing metacognitive feedback to



3

facilitate the effectiveness of ICC (Roll, Aleven, McLaren, & Koedinger, 2011). Roll

et al. (2011) developed an intelligent tutoring system (ITS) that could substitute for

the function of peer feedback during an ICC condition. They designed metacognitive

feedback to help learners gain better help-seeking skills. In their study, they found

the effect of metacognitive feedback in Geometry Cognitive Tutor software program

on help-seeking skills of students when learning Geometry.

Implications from research studies on ICC and its effect and applications offer

some directions to researchers. For instance, the ICC strategy incorporated with mo-

tivational factors should be explored further. In addition, the effect of an ICC strategy

should be tested with different types of content.

The purpose of this research study is to investigate the effect of an ICC strategy

on the performance of near transfer using chain rule content. In this research study,

I investigated the effect of ICC strategy and testing surveys called ICalCulus. Few if

any published studies have addressed the use of ICC with calculus content or with

attention to learning and motivation; ICalCulus offers an important test case which

could provide a basis for future studies. Therefore, in this study, the following research

questions are addressed:

1. Do students in the inventing contrasting cases for iCalCulus (iCC) group out-

perform Tell and Practice (TP) group in direct application?

2. Do students in the inventing contrasting cases for ICalCulus (ICC) group out-

perform Tell and Practice (TP) group in Preparation for Future Learning (PFL)

target problems?

3. Is the students' motivational level a significant moderator between the instruc-

tional condition and their Preparation for Future Learning (PFL) target prob-

lem performance?

Ultimately, this research study will provide valuable information to researchers, in-

structors, and administrators in STEM fields as well as an applicable learning tool to

facilitate the achievement of students on calculus.
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2. LITERATURE REVIEW

In this chapter, the previous literature on calculus concepts and instructional methods

used for calculus subjects, self-efficacy, achievement goal theory, learning transfer,

and the methods used to measure learning transfer are discussed. The first section

discusses crucial calculus related concepts and the chain rule, and the instructional

methods that have been used for calculus subjects. Next, the motivational constructs

focusing on self-efficacy and achievement goals are discussed and how they have been

investigated in relation to the other learning-related constructs. Learning transfer and

its relationship between the motivational constructs are discussed as well. Lastly, how

the researchers have explored and developed the methods to measure the construct

is discussed is discussed.

2.1 Literature in Calculus Learning

Calculus courses are one of the required courses to complete STEM degrees such

as engineering degrees (Felder, Forrest, Baker-Ward, Dietz, & Mohr, 1993; Suresh,

2006; Tyson, 2011; Young et al., 2011). Previous research studies on engineering stu-

dents and attrition rate found that performance in calculus courses strongly predicts

the attrition rate and degree completion (Felder et al., 1993; Suresh, 2006; Tyson,

2011). Although the importance of learning calculus has been emphasized by many

researchers, there are still insufficient research studies which suggest concrete instruc-

tional methods with the strong empirical evidence for learning and teaching calculus

(Rasmussen et al., 2014). For instance, there have not been many studies that pro-

vided the clear understanding of how students understand decomposition of functions

and apply the chain rule to find the derivative of each function (Clark et al., 1997;

Kabael, 2010). One possible assumption for the reason that there is not much liter-



5

ature on teaching/learning calculus, in general, is that the population who need to

learn calculus is quite limited compared to math branches taught in K-12 level. Thus,

it is possible that researchers in math education might focus more on the other math

branches that are taught in k-12 level as there is the much wider target audience.

In addition, as Rasmussen and his colleagues (2014) suggested, the calculus curricu-

lum reform movement in the 1990s was led by mathematicians who do not have an

extensive educational research background. Mathematicians who conducted research

studies on learning calculus might not have been much introduced to researchers in

education due to different disciplines. Therefore, it is important for researchers to

provide strong logic with the audience to understand why more research studies for

calculus learning should be conducted even though it is already expected that the

targeted audience would be limited. Then, finding crucial concepts for better under-

standing calculus should be followed, based on the support while communicating with

mathematicians who have expertise in calculus.

In this literature review, research studies on calculus learning focusing on trigonom-

etry, limits, and the chain rule from differential calculus are discussed. Trigonometry

and limits can be categorized as pre-calculus as they are covered in pre-calculus course

in college and pre-requisite knowledge that students should have before they take cal-

culus courses (Weber, 2005). The chain rule is one of the calculus concepts.

2.1.1 Concepts in Pre-Calculus

Trigonometry

Trigonometry takes a large portion of pre-calculus textbooks (Cohen, Lee, & Sklar,

2006; Sullivan, 2014). Moreover, trigonometric knowledge is used for the entire cal-

culus contents (Stewart, 2012; Weber, 2005). Furthermore, trigonometric knowledge

is used widely in engineering and physics disciplines (Weber, 2005). In other words,

trigonometry is the crucial concept in order to understand calculus more smoothly.

According to calculus standards from Indiana Academic Standards, Department of
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Education for AP calculus, finding the derivative of a trigonometric function is listed

in the table that students who learn calculus should know and be able to do (see

Figure 2.1 C. D. 3.. Full Table is attached as an appendix A).

Figure 2.1.: Calculus standards from Indiana Academic Standards, Department
of Education. Retrieved from https://www.doe.in.gov/sites/default/files/
standards/mathematics/calculus-standards.pdf

Despite the importance of understanding trigonometric functions, students often

go through difficulty with understanding trigonometric functions as they are different

from algebraic functions that involve arithmetical procedures (Breidenbach, Dubin-

sky, Hawks, & Nichols, 1992; Weber, 2005). Also, they would need to mentally draw

a unit circle to calculate the value of a function (Weber, 2005; Weber, Knott, &

Evitts, 2008). Students are not generally familiar to this kind of process and reason-

ing (Weber, 2005; Weber et al., 2008). The current instructional methods that are

used for trigonometry class encourage memorization of formulas and angles which

eventually makes it more difficult for students to think and mentally draw the im-

ages to solve trigonometric functions (Weber, 2005). In the study of Weber (2005),

the author used procept to measure college students' understanding of trigonometric

function. Procept refers to the combination of “concept and process represented by the

same symbol” (Gray & Tall, 1994). Weber (2005) collected the data from college stu-

dents who enrolled in a college-level trigonometry course but in two different sections;

one with a traditional method vs. the other section with an experimental method.

The traditional method was a lecture with contents straight from the textbook. In

the experimental section, the instructor taught trigonometry emphasizing procedure,
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process, and precept. That is, students learned trigonometry through the step-by-step

algorithm, meaningful method, and see the mathematical symbols as procepts. Stu-

dents in both sections had pre and post-test. Students in the experimental method

section performed better. However, the author mentioned that the study was not an

experimental study, and thus, argued that a comparison of the results between two

sections might not accurately represent the true difference. Nevertheless, students in

the experimental section showed better performance in their post-test. Understanding

trigonometric concepts as procepts can be beneficial to understand calculus later as

students would learn trigonometry in calculus for hyperbolic functions which could

be confusing and even more complicated than before (Perrin, 2007). Therefore, more

research studies for trigonometry regarding effective instructional methods with em-

pirical evidence are needed.

Limits

The limits one of the crucial concepts to understand calculus (Williams, 1991). Yet,

students struggle to understand them accurately (Liang, 2016; Tall, 1980; Williams,

1991). Researchers have been tracking down the cognitive processes that students go

through when learning limits and the obstacles that they experience and the instruc-

tional methods that facilitate deeper understanding and application (J. F. Cottrill,

1999; Liang, 2016; Maharaj, 2010; Sofronas et al., 2011; Williams, 1991). One of the

reasons that students have difficulty understanding the limits is due to their miscon-

ception regarding the limits (Liang, 2016). That is, students think that a sequence

never reaches its limit (Liang, 2016; Merenluoto & Lehtinen, 2004). Moreover, when

students learn limits with an example such as ‘x → 3 (p. 37)’, they tend to think x

reaches very close to 3 from one side only. Liang (2016) pointed out that the term

limit used in everyday experience and even in some textbooks strengthen this miscon-

ception. Other researchers have also pointed out that students experience difficulty

understanding the concept of limits because of the definitions of limit (Liang, 2016;



8

Tall, 1992). That is, “any”, and “there exist” (Liang, 2016, p. 39) or “approaches”

(Tall, 1992, p.2) are the examples of the words in the definitions of the limit that

could confuse students to understand the definitions. Liang (2016) argued that the

deficiencies of the definition of the concept of the limit interrupt clear understanding.

Tall (1992) argued that the words used in the formal definitions of the limit have

colloquial meanings that could conflict with the meaning of the definitions, and thus,

students could be misled.

Although many students have difficulty understanding the limits as researchers

suggested, it is crucial to understand the concept fully since limits are related to the

other important calculus concepts (Liang, 2016; Williams, 1991). Continuity, uniform

continuity, convergence, and derivative are the examples of the calculus concepts that

are closely related to the limits (Liang, 2016; Stewart, 2012). For instance, the rate

of change is the fundamental concept to understand the derivative (Stewart, 2012)

which uses the limits. Therefore, the concept of limits is crucial to understand the

differential calculus.

Researchers explored various instructional methods to facilitate a better under-

standing of the limits (Liang, 2016; McGuffey, 2017; Sylvestre, 2016; Craig Swinyard

& Sean Larsen, 2012). McGuffey (2017) investigated the effect of guided reinvention

on students’ understanding of the concept of the limits. The author conducted a 1-

hour session for five weeks. In session 1, participants were asked to describe the change

of the quantities in five given realistic situations. In session 2, the students were asked

to look for similarities and differences among the situations given in session 1. Stu-

dents indicated that they would like to use graphs and formulas to solve the problems.

In session 3, the author gave either the formulas or graphs to solve each problem. In

session 4 and 5, students were asked to predict the value of the quantity that was

not displayed on the graph. The researcher also introduced two new situations which

involve exponential growth and circular motion to contrast their performance on pre-

diction in the previous examples. The author found that the participants showed their

understanding of the formal concept of infinity.
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Researchers also have investigated the theoretical frameworks to understand stu-

dents' cognitive processes and mental model when learning limits (J. Cottrill et al.,

1996; Maharaj, 2010; Williams, 1991). Maharaj (2010) used Action-Process-Object-

Schema (APOS) theoretical framework to investigate undergraduate students' under-

standing of the concept of a limit of a function. In the action stage, learners react

to the external stimuli, such as when learners first receive the limit of a function

limx→a f(x), the learners merely input the values to the x for the function that are

close to a. In the process stage, learners repeat and reflect on an action and inter-

nalize the knowledge into a mental process. Therefore, learners would understand

the transformation of the function without entering any specific values into x for the

function. In the object stage, learners would recognize the process as a totality and

be able to encapsulate the limit of the function concept and make an object (e.g., a

new function) out of it. Last, in the schema stage, learners understand the concept

processed through action – process- object process and link each step into a coherent

framework. Therefore, learners begin to understand the limit of a function fully, the

input values are close from left and right to a, and the output values go through the

transformation following the function.

Researchers have tried to explore the instructional methods to enhance students'

understanding of the concept of limit as it is crucial to understand other calculus

concepts as mentioned above. Nevertheless, there is still room to be improved in terms

of instructional methods for the limit. For instance, as previous research pointed out

(Liang, 2016; Craig Swinyard & Sean Larsen, 2012), how the definitions of the concept

of the limits could be revised and how the instruction to teach the definitions of the

concept could be improved should be studied more. Furthermore, researchers should

explore more effective instructional methods that could facilitate not only students'

understanding of the concept but also applying to the calculus lessons for learning.
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2.1.2 Concepts in Calculus

Chain Rule in Differentiation

Differentiation is finding a derivative of a function (Orton, 1983; Stewart, 2012).

If a function is a simple function of x, then students can differentiate the function

with respect to x. For instance, if there is a function:

y = 5x2

you can differentiate the function 5x2 with respect to x, and the answer is y′ = 10x.

However, if a given function is a composite function, you cannot use the same method

that you use when you differentiate simple functions. Composite function is a function

inside of another function. That is, when there are two functions f : X → Y and

g : Y → Z and they can be denoted in one function h(x) = f(g(x)), h(x) is a

composite function (Clark et al., 1997; Kabael, 2010; Stewart, 2012). Students cannot

solve the composite function with respect to x as there are two functions combined

in one function and one function would remain undifferentiated. In this case, the

chain rule should be used to find a derivative of h(x) (Stewart, 2012). By using

the chain rule, h(x) is differentiable at x and thus h′(x) = f(g(x))g′(x). One more

technique that we can use while differentiating the composite function with the chain

rule is Leibniz's notation. Leibniz's notation is invented by the 17th century German

mathematician Gittfried Wilhelm Leibniz (Stewart, 2012; Tall, 1985) which uses the

dx and dy as infinitely small increments of x and y (infinitesimal). Therefore, we can

use y = f(u) and u = g(x) in order to make the composite function to be the form

that can be denoted as Leibniz's notation. Thus, the notation would be:

dy

dx
=
dy

du
× du

dx

For instance, if a composite function is:

y = 2x5x,
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and if we solve the function as the simple function, then 5x could be remained undif-

ferentiated. Instead, by using Leibniz's notation and the exponent rule, y = 2e5xln(x),

dy
dx

= 2 d
dx
e5xln(x). By using the chain rule, y = f(u) = eu, and u = 5xln(x), df(u)

dx
=

df
du
× du

dx
= 2 d

du
(eu) d

dx
(5xln(x)), and we need to first differentiate eu and 5xln(x) sep-

arately, and (eu)′ = eu and (5xln(x))′ = 5ln(x) + 5. Therefore, 2 d
du

(eu) d
dx

(5xln(x)) =

2eu(5ln(x) + 5) = 2e5xln(x)(5ln(x) + 5), and the answer y′ = 2x5x(5ln(x) + 5).

Despite the usefulness and the importance of understanding the chain rule, differ-

entiating composite functions using the chain rule can be challenging especially for

those students who just learned composite function for differentiation since finding

the inner function and outer function from the composite functions can be intricate.

Indeed, researchers have suggested the differentiating composite functions using the

chain rule as one of the difficult parts in Calculus to understand (Clark et al., 1997;

Dubinsky, 2002). Thus, some researchers investigated effective instructional methods

to teach the chain rule (Clark et al., 1997; Kabael, 2010). Clark et al. (1997) inves-

tigated students' understanding of the chain rule with the Action-Process-Object-

Schema (APOS) framework. The framework was based on the triad mechanism of

Piaget and Garcia (1989) which were intra-, inter- and trans- stage for the analysis.

Students were in the intra- stage would have a collection of rules to find derivatives

including special cases that would require the chain rule but would not recognize the

relationships between the general formula and the special cases. In inter- stage, stu-

dents would begin to recognize the special cases that would require the chain rule are

related to each other. The chain rule schema starts to be formed. In the last stage,

trans- stage, students would understand that composite functions would require the

chain rule to differentiate and the chain rule would be formed as a single rule. Students

can form their schema development through the triad mechanism. In their discourse

analyses, the authors were able to find that students formed the schema of the chain

rule following this stage.

Tall (2008) and Kabael (2010) used “three worlds of mathematics” framework

that Tall (2008) developed to analyze students' understanding of differentiation.
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Tall (2008) suggested three different models which are “conceptual-embodied world”,

“proceptual-symbolic world”, and “axiomatic-formal world” (p. 7). Conceptual em-

bodied world refers to the world formed based on the perception of properties of

objects and reflection on them. The examples would be imagining a triangle and per-

ceiving it as a prototype of the concept of “triangles”. Proceptual-symbolic world is

formed based on the action of using the symbols. Differentiating functions in calculus

would be the example. Axiomatic-formal world is formed based on the formal defini-

tions and proofs. The chain rule would be one of the examples. Figure 2.2 illustrates

these three worlds.

.

Figure 2.2.: Three worlds of Mathematics. Adapted from ”The Transition to For-
mal Thinking in Mathematics,” by D. Tall, 2008, Mathematics Education Research
Journal, 20 (2), p. 8. Copyright 2008 by Mathematics Education Research Group of
Australasia Inc. Reprinted with Permission

Kabael (2010) used the case of chain rule lesson combining Tall's (2007, 2008)

three worlds of mathematics and APOS framework. He reported how students apply

the chain rule, take the second order derivative, embodied route, symbolic route and

the combinations of these routes in the cognitive development of the chain rule in

his study with those frameworks. The author found that students developed their

understanding of the chain rule based on the three worlds of mathematics. The data



13

was collected from twenty-seven students who were taking calculus 1 level course.

After the test, students were divided into five groups based on the level of difficulty

that they indicated regarding composite functions. Students were supposed to find the

solution of the test items with four steps based on the chain rule. Then, one student

from each group was selected for the interview. The results indicated that students

initially were able to differentiate composite functions when they were given separated

single equations. However, they did not realize that they were solving the functions

following the chain rule. They were in the conceptual-embodied world. Students'

difficulties were mostly related to symbolic or structural difficulties stemming from

applying the chain rule. Students began to understand that the chain rule is used for

the composite functions. However, they still have not figured out fully the underlying

schema that goes through the differentiation process of composite functions. As they

realized that the functions that would require the chain rule were related to each other,

they entered into the inter- stage. Finally, they were able to symbolize the notion of

the chain rule, indicating that they were in the symbolic world and the trans- stage.

Figure 2.3 below represents the model of cognitive development for the chain rule

schema that students developed combining triad mechanism and the mathematical

world. The author particularly focused on the embodied world and symbolic world

for the study.
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.

Figure 2.3.: Cognitive development of the chain rule. Adapted from ”Cognitive De-
velopment of Applying the Chain Rule through Three Worlds of Mathematics,” by
T. U. Kabael, 2010, Austrialian Senior Mathematics Journal, 24 (2) p. 25. Copyright
2010 by Australian Association of Mathematics Teachers.
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The chain rule is important as various phenomena in natural science that could

be represented as mathematical models that consist of composite functions, and we

can get the rate of change of models that do not have constant derivatives (Lutzer,

2003). Also, the chain rule is used in many other areas of calculus such as implicit

differentiation and integration by parts (Stewart, 2012). More research studies track-

ing students' learning of the chain rule and instructional methods with empirical

evidence should be followed. Specifically, types of composite functions that students

have trouble applying the chain rule to, or how the students stumble when they apply

the rule to implicit differentiation should be explored.

2.1.3 Instructional Methods in Calculus

Researchers have explored the instructional methods to facilitate students' under-

standing of calculus contents (Rasmussen, Marrongelle, & Borba, 2014). Especially

during the calculus reform movement in the United States back in the 1990s, re-

searchers have explored various instructional methods and promoted new methods,

particularly in the U. S. (Hurley, Koehn, & Ganter, 1999; Rasmussen et al., 2014; Se-

vimli, 2016). Flipping classrooms is one of the instructional methods that have been

the most popular alternative method for traditional lecture method (Jungi, Kaur,

Mulholland, & Xin, 2015; Sahin, Cavlazoglu, & Zeytuncu, 2015; Wasserman, Quint,

Norris, & Carr, 2017). Flipped classrooms are a type of blended learning that flips the

traditional learning environment by adopting online learning environment and deliver

the course materials to the outside of the classroom (Abeysekera & Dawson, 2015).

Pioneers of the reform movement, such as the Harvard Calculus Consortium, empha-

sized the necessity of conceptual understanding (Hurley et al., 1999; Sevimli, 2016). As

a result, they suggested that the instructional context should be represented in multi-

ple formats and be supported by technology (Sevimli, 2016). Naccarato and Karokok

(2015) suggested that the flipped classroom model is based on “distance learning,

Just-In-Time Teaching, Problem-Based Learning, and Inquiry-Based Learning” (p.
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969). Therefore, students watch online lectures, participate in classroom activities,

and/ or participate in the online discussion with peers and ask questions to the in-

structors via online in typical flipped classrooms (Jungi et al., 2015; Sahin et al., 2015;

Wasserman et al., 2017). Some researchers reported a positive effect of flipped class-

rooms on students' academic achievements in calculus (Anderson & Brennan, 2015;

Kadry & Hami, 2014; McGivney-Burelle & Xue, 2013). On the other hand, other

researchers reported there was little difference between students in the traditional

lecture-based classroom and flipped classroom in their performance (Bagley, 2014;

Ziegelmeier & Topaz, 2015). Kadry and Hami (2014) also pointed out that there is

little evidence from experimental research studies that could strongly support that

flipped classroom enhance students' academic performance and achievement. Thus,

more research studies that could support the effect of flipped classrooms, as well as

the other types of instructional methods for calculus on students' academic perfor-

mance, are needed. The incongruent results of flipped classroom on students' perfor-

mance on calculus raises another issue regarding the instructional strategies adapted

in non-traditional lecture-based classrooms such as flipped classrooms. Specifically,

there are few research studies on instructional strategies for calculus and how these

are incorporated in the reformed classrooms such as flipped classrooms in detail.

Online lectures are still the crucial part for students' learning in flipped classrooms

as students learn the course contents from the lectures for the first time. Moreover,

calculus classrooms include traditional lecture format no matter if it is traditional

lecture-based classrooms or reformed classrooms such as flipped classrooms (Sahin et

al., 2015). Therefore, online lectures in flipped classrooms and face-to-face lectures

in traditional lecture-based classrooms are similar other than they are delivered in

different formats. Naccarato and Karakok (2015) insisted that it is necessary to spec-

ulate the flipped classrooms with explicit learning objectives to evaluate pedagogical

practices. Indeed, there are insufficient research studies that described reformed class-

rooms for calculus with learning objectives for course contents concretely and reported

empirical evidence to prove the effects on students' performance. Last but not least,
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instructional methods for calculus learning is that the traditional lecture method is

still the prevailing instructional method in calculus classrooms, although alternative

instructional methods have been explored and introduced. Thus, the calculus reform

movement is still on-going.

Therefore, it is necessary to explore tailored instructional strategies with empirical

evidence for each core concept of calculus courses to facilitate students' understand-

ing, guiding their cognitive process precisely, regardless of the instructional methods.

Suggestions for Potential Future Research on Calculus

As briefly mentioned at the beginning of the chapter, research on learning calculus

has a lot of room for improvement. For instance, most studies referred in calculus

learning literature are case studies with qualitative research methods. Accordingly,

the findings from their research studies cannot be generalized to other settings. Thus,

there should be more research studies on instructional methods for calculus learning

with reliable empirical evidence.

Another suggestion is conducting research studies to develop instructional strate-

gies for each of the core calculus concepts with empirical evidence.

In this section, previous literature on calculus learning and students' understand-

ing of calculus were discussed, focusing on trigonometry, limits, and the chain rule,

followed by the suggestions. As mentioned above, research studies on calculus learning

have a lot of room to work on. Researchers in math, math education, and learning

sciences, and LDT should conduct collaborative research studies to provide calculus

instructors with effective instructional methods with empirical evidence.
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2.2 Self-Efficacy and Achievement Goals as Motivational Constructs

Self-Efficacy

Self-efficacy has been vigorously explored as a crucial motivational construct in the

educational psychology field (Pajares, 1996; Reeve, 2009). Bandura (1977, 1986, 1993,

1997; Reeve, 2009; Zimmerman, 2000) is one of the key scholars who investigated the

construct in learning settings. Self-efficacy is defined as an individual's judgment of

ability to achieve certain goals while dealing with a given situation (Bandura, 1986;

Reeve, 2009). Self-efficacy consists of the level, generality, and strength of the efficacy

belief (Bandura, 1977, 1997; B. J. Zimmerman, 2000). The level indicates the self-

efficacy beliefs based on the perceived difficulty of a given task. Generality refers to the

transferability of the beliefs across various activities. Strength indicates how strongly

a learner believes that he/she can perform a given task. In addition, self-efficacy

focuses on performance capabilities rather than personal characteristics. Last, self-

efficacy relies on a mastery criterion (Bandura, 1977, 1997; B. J. Zimmerman, 2000).

That is, self-efficacy depends on the criteria that evaluate whether a learner fully

masters a certain task or learning. Therefore, self-efficacy is multidimensional and

can be flexible to given situations.

Self-efficacy has been explored regarding students' learning and academic achieve-

ment in Educational Psychology (Chemers, Hu, & Garcia, 2001; Honicke & Broad-

bent, 2016; Schunk, 1996). Researchers showed that self-efficacy had a strong correla-

tion with other learning-related constructs during the learning process and as a result,

affected student’s academic performance. For instance, Bouchard, Parent, and Larivèe

(1991) found the strong effect of self-efficacy on self-regulation. The authors argued

that self-efficacy had a significant correlation with self-regulation including monitor-

ing working time, persistence during task performance, and performance regardless of

cognitive ability and school grade. Zimmerman (2000) suggested that self-efficacy and

Self-Regulated Learning (SRL) closely interact with each other throughout the entire

learning process. Also, self-efficacy was positively correlated with academic achieve-
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ment (Multon, Brown, & Lent, 1991; B. J. Zimmerman, Bandura, & Martinez-Pons,

1992). Pintrich developed a survey Motivated Strategies for Learning Questionnaire

(Pintrich & De Groot, 1990; Pintrich, Smith, Garćıa, & McKeachie, 1991) which

measures the components that affect academic performance such as intrinsic goal ori-

entation, self-efficacy, critical thinking, and metacognitive self-regulation. The model

that is embedded in the MSLQ survey considers how students involve in SRL by us-

ing different cognitive strategies (Pintrich & De Groot, 1990). Pintrich and De Groot

(1990) reported that self-efficacy, along with intrinsic value, was positively related to

performance.

Achievement Goal Theory

Another extensively studied motivational constructs achievement goals. Achieve-

ment goal theory considers that an individual's motivation is driven by a specific

purpose (Ames, 1992; Covington, 2000), and encompasses various types of beliefs

that are related to goals (Pintrich, 2000). Achievement goal theory incorporates both

affective and cognitive factors of goal-directed behavior (Ames, 1992; Nicholls, 1984).

Accordingly, this theory can be considered as an integrating theory that provides a

profound framework to explain students' goal-directed behavior to enhance learning

outcomes. Mastery and performance goals were first developed in this theory and

had been extensively examined in the prior literature (Ames, 1992; Covington, 2000;

Nicholls, 1984; Pintrich, 2000). The mastery goal focuses on learning and understand-

ing materials, whereas the performance goal focuses on performing well compared to

others, as it involves an individual's ego (Covington, 2000). These different goals influ-

ence students' achievement in different ways based on their self-regulation strategies

and learning processes (Covington, 2000; Pintrich, 2000; Zimmerman, Barry, 1990).

Researchers adapted the ‘approach versus avoidance‘ distinction later on into

achievement goal theory to better explain performance goal-related results (Harackiewicz,

Barron, Carter, Lehto, & Elliot, 1997; Rawsthorne & Elliot, 1999). For instance,
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Wolters (2003) suggested that performance-avoidance goals may be associated with

negative academic outcomes, whereas performance-approach goals are considered ben-

eficial in some cases to enhance learning outcomes (Harackiewicz et al., 1997). Despite

the attempts to distinguish achievement goals in more detail, however, findings from

different research studies on these constructs are rarely congruent to corroborate the

distinction. The researchers included different variables as a measure of response, or

for the evaluation criteria that they used to categorize performance goal or mastery

goal with approach and avoidance distinction (Elliot & Moller, 2003; Wolters, 2003;

Harackiewicz et al., 1997; B. Zimmerman, 2002; B. J. Zimmerman & Schunk, 1989).

Elliot and McGregor found that the performance approach was a significant predic-

tor of students' learning outcomes (Elliot & McGregor, 2001). Other studies found

that mastery approach affected intrinsic motivation (Elliot, A.J. & Harackiewicz,

1994; Elliot & Murayama, 2008). Also, some of the previous studies found a positive

correlation between these elaborated achievement goal orientations and SRL behav-

iors (Elliot, 1999; Elliot & Moller, 2003). On the contrary, Elliot and Moller (2003)

analyzed previous research studies regarding the relationship between SRL and per-

formance approach and found that there was no significant relationship between SRL

and performance approach. However, they also suggested the results might be af-

fected by a difference in perspective about the performance approach. That is, the

performance approach has been considered either positive or negative for students'

learning due to a difference in focus by researchers when evaluating goal orientation

in their studies. In the meta-analyses study of Rawsthorne and Elliot (1999), the au-

thors found that confirming and non-confirming feedback were related differently to

performance and mastery goals. That is, learners' performance goals affected learn-

ers' persistence negatively when confirming feedback was given compared to mastery

goals. In contrast, performance goals and mastery goals affected learners' persistence

similarly when non-confirming feedback or when feedback was absent. The existence

of mastery-avoidance has been investigated to clarify more the existence and role on

learners' academic performance (Baranik, Stanley, Bynum, & Lance, 2010; Bartels
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& Magun-Jackson, 2009; Yperen, Elliot, & Anseel, 2009). Baranik et al. (2010) per-

formed a meta-analysis to measure the construct validity of mastery-avoidance. The

authors found that mastery-avoidance was distinct from the other three achievement

goals. Particularly, the authors found that mastery-avoidance goals were strongly re-

lated to the increase in cognitive and somatic anxiety, such as test anxiety. In short,

”mastery approach focuses on learning and understanding materials, performance ap-

proach focuses on performing well compared to others, mastery avoidance focuses on

avoiding failure of learning or understanding, and performance avoidance focuses on

avoiding performing worse than others” (Heo, Anwar, & Menekse, 2018, p. 1635).

.

Figure 2.4.: The achievement goal framework. Adapted from ”A 2 x 2 Achievement
Goal Framework,” by A. Elliot and H. A. McGregor, 2001, Journal of Personality
and Developmental Psychology, 80 (3), p. 502. Copyright 2001 by the Americal Psy-
chological Association. Reprinted with permission.

Self-efficacy and achievement goals have been discussed by researchers for more

than a few decades. In this section, the previous literature on these constructs is dis-

cussed as one of the key motivational constructs and how they are related to other

crucial learning related constructs, such as self-regulated learning, reflection, and

academic achievement. In addition, research studies in educational psychology that
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explored the relationship between self-efficacy, achievement goals and other crucial

learning related constructs and their relationship with students' academic perfor-

mance are discussed. In the next section, the relationships between learning transfer,

self-efficacy, and achievement goals are discussed. Also, the importance of including

learning transfer and motivational constructs into one conceptual framework to bet-

ter understand students' direct performance as well as their performance on learning

transfer is addressed.

2.3 Learning Transfer

Learning transfer has been investigated by many researchers in the Learning Sci-

ences field; prior studies have developed strategies to enhance students' transfer skills

and found significant effects on learning transfer of certain subjects such as statistics

and physics concepts (Schwartz et al., 2011; Schwartz & Martin, 2004). However, re-

search studies on learning transfer are incongruent and used various terms to refer to

similar cognitive concepts (Schwartz et al., 2011; Schwartz & Martin, 2004). Also, the

definition of learning transfer should be discussed differentiating from other trans-

fer concepts such as analogy transfer or knowledge transfer (Gick & Holyoak, 1983;

Mowery, Oxley, & Silverman, 1996). Research studies on learning transfer and anal-

ogy transfer are overlapped largely as the learning transfer is rooted from the studies

of analogy transfer in cognitive psychology (Schwartz & Martin, 2004). Therefore, the

definitions of analogy transfer and learning transfer share similarities. Analogy trans-

fer refers to transferring information from a prior source that individuals learned to a

new target (Holyoak & Thagard, 1997; Novick, 1988). Analogy transfer was the term

used in cognitive psychology often regarding artificial intelligence (Forbus, Gentner,

Markman, & Ferguson, 1998; Holyoak & Thagard, 1997, 1997). On the other hand,

knowledge transfer refers to transferring knowledge or skills from an experienced part-

ner, or a unit, to a novice (Argote, Ingram, Levine, & Moreland, 2000; Wijk, Jansen,

& Lyles, 2008). The term is commonly used in organizational studies (Wijk et al.,
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2008). Researchers who investigate knowledge transfer are often interested in how

to effectively form the network structure for knowledge transfer or effective methods

of transfer (Argote & Fahrenkopf, 2016; Mowery et al., 1996; Spraggon & Bodolica,

2012; Szulanski, Ringov, & Jensen, 2016). Learning transfer refers to learning when

the prior learning in one context either enhances or undermines a related performance

in another context (Perkins & Salomon, 1992). Learning transfer captures wider phe-

nomena than analogy transfer since learning transfer includes locating resources to

learn a new learning context in addition to the transferring process (Schwartz &

Martin, 2004). In other words, researchers who study learning transfer are ultimately

interested in how learners recognize what to learn first to understand a new learning

context. An example could be realizing that they would need to learn the chain rule

(or recognizing something similar even though they cannot exactly pinpoint the chain

rule) to solve implicit differentiation problems. Furthermore, learning transfer focuses

on educational settings compared to research studies on knowledge transfer (see Table

2.1).
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Table 2.1.: Summary of learning transfer and related concepts

Analogy Transfer Learning Transfer Knowledge Transfer

Field

-Cognitive Psychol-

ogy

-Engineering design

studies

-Educational Psy-

chology

-Organizational man-

agement

Similarity Focus on the transferring process

Difference

-Focus on transfer-

ring skills and ele-

ments of knowledge

-The data were usu-

ally collected in lab

settings

-Focus on transfer-

ring skills and knowl-

edge and locating re-

sources to learn a

new context, often in

educational environ-

ment

-Focus on transfer-

ring skills and knowl-

edge in working envi-

ronments

Examples of

key studies

-Arthur Markman

(1997)

-Dedre Genter (1997)

-Keith J. Holyoak

(1995)

-Kevin Dunbar

(2001)

-Bransford (2004)

-Dan Schwartz

(2004)

-David N. Perkins

(2004)

-Gavriel Salomon

(1989)

-Argote (1993)

There are several sub-concepts to understand learning transfer. One is near trans-

fer vs. far transfer (Perkins & Salomon, 1992). Near transfer refers to transferring

learning to closely related contexts or the same domain. Far transfer, on the contrary,

refers to transferring learning to different contexts or the different domains. The near
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vs. far transfer is similar to within domain vs. between domain analogies (Holyoak &

Koh, 1987; Dixon & Johnson, 2011). Within domain analogies refer to transferring

analogies from the same domain. That is, the source and the target subjects share

surface features for the within domain analogies. On the contrary, between domain

analogies refer to transferring analogies drawn from different domains. The source

and the target subjects rarely share the surface features but share the structural sim-

ilarities for the between domain analogies. Researchers in the transfer domain are

ultimately interested in facilitating the far transfer or between domain analogies for

creative thinking (Barnett & Ceci, 2002).

Other crucial sub-concepts for learning transfer are positive transfer vs. nega-

tive transfer (Novick, 1988; Perkins & Salomon, 1992; Schwartz, Chase, & Bransford,

2012). Positive transfer occurs when learning was successfully transferred to a new

context and enhanced the following performance. Negative transfer, on the other

hand, occurs when learning transferred to the new context impaired the following

performance. Negative transfer, thus, occurs when learners overgeneralize the prior

learning and apply it to a new context inappropriately (Schwartz et al., 2012). Es-

pecially, the overzealous transfer is an example of a negative transfer that Schwartz

and his colleagues (2012) suggested that interrupts students from learning something

new. That is, students are occupied with applying prior knowledge, solutions or skills

that worked in their previous experience to a new learning context and miss the

opportunity to learn the new information. Researchers in transfer have investigated

the mechanism of positive vs. negative transfer to understand how to facilitate the

positive transfer and prevent or reduce negative transfer (Novick, 1988; Schwartz et

al., 2012). The research studies are especially beneficial to train novice as novices

are more prone to produce negative transfer when they observe the source and the

target subjects that share surface features but do not share any structural similari-

ties (Novick, 1988). Researchers were interested in comparing experts versus novices

regarding usage of analogies, such as in engineering design domain (Ball, Ormerod, &

Morley, 2004; Christensen & Schunn, 2007; Dixon & Johnson, 2011). Other prominent
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and productive authors in learning transfer, Perkins, and Salomon (2012) suggested

the detect-elect-connect model that represents the process of learning transfer. Detect

refers to recognizing the possibility of whether the prior learning could be connected

to a given new context. Elect refers to determining to pursue the possible connection.

Connecting is the most challenging step among these three steps since it is still diffi-

cult to find how the prior knowledge and the new learning context can be connected

to each other.

Indeed, researchers on learning transfer were interested in how to facilitate learning

transfer effectively, especially for novices (Kapur, 2008). Kapur(2008) experimented

with ill vs. well-structured problems in a computer-supported collaborative learning

setting. The 11th-grade science students were divided into two groups to solve ei-

ther ill-structured or well-structured problems. Then, they were instructed to solve

well-structured problems individually. The author reported that students who were

in the ill-structured problem group produced a poor quality of solutions compared to

well-structured problem group. However, when they solved well-structured problems

individually, they outperformed students who were in the well-structured problem

group regarding the near and far transfer. The author suggested that the initial fail-

ure that the students experienced helped students transferring their problem-solving

skills in the new well-structured problem setting. Similarly, Schwartz, Bransford, and

Sears (2005) have also investigated how to facilitate learning transfer while balancing

innovation and efficiency in their performance. The authors suggested the figure be-

low to locate the optimal area of learning in instruction and assessment to facilitate

both innovation and efficiency. If an instruction only facilitates high efficiency, the

transfer can be restricted to near transfer. On the other hand, if the instruction only

facilitates innovation or creative thinking, the structure of transfer would be too loose

and would not be efficient to solve various problems in many real-world situations ei-

ther. Therefore, the authors suggested the area in the efficiency x innovation graph

where instructions should be designed and assessments should evaluate the optimal

balance between these two constructs.



27

Preparation for Future Learning (PFL) includes a unique approach to learning

transfer (Bransford & Schwartz, 1999; Schwartz & Martin, 2004). Bransford and

Schwartz (1999) pointed out that previous studies on transfer considered transfer

as the direct application of prior knowledge to a new task, which the authors named

it as “sequestered problem solving” (p. 68). The authors suggested broadening this

view by including learners' PFL. PFL facilitates “knowing with” (p. 69). “Know-

ing with” refers to the solution process generated by a person as he/she thinks and

judges the new learning context with the prior knowledge or skills even though he/she

does not recall specific prior context that he/she was in. PFL, therefore, is associa-

tive and interpretive compared to other conventional transfer concepts. Schwartz and

Martin (2004) suggested a new direction to assess transfer by introducing PFL. In

other words, the authors suggested the new direction to measure how learners pre-

pare themselves for a new learning context for transfer instead of using standardized

assessment methods that had been used for academic performance.

In general, research studies on learning transfer still have a lot of room to im-

prove. As mentioned above, defining the construct more concretely should be contin-

ued. Also, the instructions that facilitate efficiency yet create transfer, and methods

to measure learning transfer accurately with high validity and reliability should be

further investigated.

2.4 The Relationship between Learning Transfer, Self-Efficacy, and Achieve-

ment Goals

Although there is substantial literature on self-efficacy, achievement goals, and

how they are related to the other crucial learning related constructs, there is insuf-

ficient literature that attempted to understand learning transfer regarding either of

these constructs (Belenky & Nokes-Malach, 2012). In fact, learning transfer itself has

not been investigated as much in educational psychology compared to self-efficacy and

achievement goal theory. One conjecture of insufficient attention to learning transfer
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by researchers, even though the previous literature infers that there could be a large

overlap between each construct, is that learning transfer is not a direct learning out-

come. As Schwartz and Martin (2004) pointed out in their study, learning transfer

cannot be measured with the same approach as assessing academic achievement. In

this sense, it is not surprising that there are even some views that deny the existence

of transfer (Van Oers, 1998). Therefore, researchers might doubt the justification of

investigating learning transfer in the first place. Accordingly, much less attention has

been drawn to the relationship between achievement goals and transfer, or between

achievement goals, transfer and academic achievement (Belenky & Nokes-Malach,

2012; Ford, Smith, Weissbein, Gully, & Salas, 1998). Another possible assumption

for the lack of literature on the relationship between learning transfer, self-efficacy,

and achievement goals is that learning transfer and achievement goals have been

perceived that they belong to two distinct categories. In other words, learning trans-

fer has been conventionally perceived as a cognitive factor whereas self-efficacy and

achievement goals are motivational factors. Also, both learning transfer and moti-

vational constructs such as self-efficacy and achievement goals have various aspects

by themselves that researchers should consider to design their research. Thus, it is

possible that researchers limit their scope for their research to either learning transfer

or motivation.

Ford and his colleagues (1998) used mastery orientation and metacognitive activ-

ity and their relation to knowledge acquisition, skilled performance and self-efficacy.

The authors found that mastery orientation was significantly related to metacognitive

activity and metacognitive activity to those three training outcomes. Lastly, they also

found the positive relationship between these three training outcomes with transfer

task (see Figure 2.5). Figure 2.5 indicates that mastery orientation is positively re-

lated with metacognition, activity level, and these two were positively related with

knowledge, final training performance, and self-efficacy, and these three were posi-

tively related with transfer performance.
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Figure 2.5.: The impact of goal orientation factors and learning strategies on learning
and transfer outcomes. Adapted from ”Relationships of Goal Orientation, Metacog-
nitive Activity, and Practice Strategies With Learning Outcomes and Transfer,” by J.
K. Ford, E. M. Smith, D. A. Weissbein, & S. M. Gully, 1998, Journal of Applied Psy-
chology, 83 (2), p. 219. Copyright 1998 by the American Psychological Association.
Reprinted with permission.

The research study of Belenky and Nokes-Malach (2012) also helped to inform

other researchers to understand the relationship between mastery approach and learn-

ing transfer. Belenky and Nokes-Malach (2012) have investigated how mastery ap-

proach was related to training strategies on the learning transfer and learning out-

come. The authors found the significant relationship between mastery approach and

transfer. In addition, previous research studies that investigated learning transfer and

achievement goal (Belenky & Nokes-Malach, 2012; Ford et al., 1998) and metacog-

nition and achievement goal (Pintrich & De Groot, 1990; Vrugt & Oort, 2008) infer

that there could be significant overlaps among these three constructs. Therefore, more

research studies should be conducted to enlighten the relationship between these con-

structs.
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2.5 Methods Used in Previous Studies on Learning Transfer

Learning transfer occurs when learners apply what they learned in the past to a

different and potentially new context, whether it is very similar from the previous con-

text or not (Martin & Schwartz, 2013; Schwartz & Bransford, 1998). Inventing with

Contrasting Cases (ICC) is one of the pedagogies that have been proven effective

for learning transfer from previous research studies (Schwartz et al., 2011; Schwartz

& Martin, 2004). ICC is a combination of ‘contrasting cases’ activities and ‘invent-

ing’ activity (Schwartz et al., 2011). First, ‘contrasting cases’ indicates instructional

materials which are designed to facilitate learners to discern the information which

could be overlooked otherwise. In other words, learners can find the difference be-

tween those two cases and think about how the difference is related to find solutions.

Second, ‘inventing activities’ indicate that students invent aids by themselves to un-

derstand given tasks more efficiently or effectively. In the study of Schwartz and his

colleagues (2011), students were asked to invent a quantitative index to understand

density. Students in ICC group were not given a lecture about density. However, they

were asked to come up with their index to represent crowdedness. The authors found

that the ICC group showed better transfer compared to a Tell and Practice (TP)

group in which participants received conventional instructions.

Although research studies demonstrated the effect of ICC for learning transfer,

there have been controversies about whether learners actually perform better by learn-

ing with ICC strategy (Bransford & Schwartz, 1999; Schwartz et al., 2005; Schwartz

& Martin, 2004). Schwartz and Martin (2004) pointed out that ICC might seem in-

efficient when measuring learners' performance with standardized assessments which

focus on measuring how much learners understand the task at the moment. The au-

thors argued that assessments should include how students can prepare themselves

to learn in a new context to assess the effect of ICC strategy. The authors introduced

PFL as a new type of assessment to measure learning transfer more accurately. As

mentioned in the previous section, PFL is an instructional design which measures how
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learners prepare to learn from a given direct instruction/resources. In other words,

PFL measures learners' ability to think about ‘what do I need to learn to solve this

task?’. The authors used a special type of assessment which was called “dynamic as-

sessments” to measure the specific ability. By this assessment, teachers can evaluate

learners whether they can improve their ability to detect what they need to learn and

prepare for the future task.

ICC has proven that it has prominent features for effective learning transfer. How-

ever, there are limitations and has aspects that need to be more explored as well. For

instance, ICC from previous research studies hasn't been incorporated into a moti-

vational factor to explain the mechanism of learning transfer even though learning

transfer requires persistence and motivation throughout the process. Belenky and

Nokes-Malach (2012) pointed out the importance of motivation in their experimental

study. The authors argued that mastery goals could be a mediator of ICC and learn-

ing transfer. In their study, the researchers adapted the ‘double transfer paradigm’

by Schwartz and Martin (2004) to compare students in four conditions (ICC vs.

TP, resources vs. no resources) to find the effectiveness of ICC and measure PFL

more accurately. Belenky and Nokes-Malach also adapted mastery approach items

from Achievement Goal Questionnaire (Elliot and McGregor, 2001) to measure the

level of motivation regarding the content that participants received during the ex-

periment. They compared the mastery approach score from the initial phase and the

final phase. The researchers found that ICC facilitated participants' motivation. In-

terestingly, they also found that students who had high mastery approach transferred

what they learned regardless of condition.

2.6 The Study of Belenky and Nokes-Malach (2012)

The study of Belenky and Nokes-Malach (2012) on transfer and mastery approach

is mainly based on the study of Ford et al. (1998) and Schwartz and Martin (2004).

Belenky and Nokes-Malach (2012) pointed out a lack of literature on the relationship
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between motivation and learning transfer. Ford and his colleagues (1998) first adapted

goal orientation regarding students' performance and learning transfer. Schwartz and

Martin (2004) introduced “preparation for future learning approach” to assess learn-

ing transfer accurately. Based on these two studies, Belenky and Nokes-Malach (2012)

included mastery approach and investigated its relationship with learning transfer

and ICC activities. The authors measured the ability to use the standard deviation

formula, the ability to represent the data visualization, and reasoning ability with

the raw dataset. The purpose of measuring these concepts was measuring students'

preparation for future learning ultimately, the same as Schwartz and Martin's (2004)

study. Also, mastery approach orientation was measured using the AGQ survey after

modification (Elliot and McGregor, 2001).

They mainly used Schwartz and Martin (2004)'s work with some modification.

That is, 2(learning activity: invention vs. TP) x 2 (learning resource: present vs. not),

between-subjects, pre/post- test design. Students initially received an AGQ survey,

took the pre-test, the variability activity, the activity questionnaire, watched a video,

the standardization activity, a post-test, an AGQ survey, and a demographics survey.

Figure 10 represents the flow of the experiment.

2.6.1 Analytical Procedures

Two raters coded 40% of the data from the problems, and they had 100% agree-

ment. Thus, the remaining data was coded by the one rater. They tested three hy-

potheses. For H1, “existing mastery-approach orientation will lead to better transfer”

(p. 406), the authors used binary logistic regression to examine the relationship be-

tween students' initial mastery-approach orientation and their likelihood of solving the

transfer problem successfully. For H2, “invention activities will lead to more mastery-

related goal adoption than tell-and-practice activities as well as more attention to

important conceptual features of the learning problems” (p. 607), t-tests were used

to compare invention activities vs. TP on learning transfer (learning performance)
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and mastery-related goal adoption (activity questionnaire). For H3, “there will be a

moderation effect of invention activities on the beneficial effect of mastery-approach

orientation for transfer, such that the effect of mastery approach orientation will be

a stronger predictor of the likelihood of transfer for the tell-and-practice activities

than for invention” (p. 407), the authors used a binary logistic regression as well.

The authors found that students’ existing mastery approach orientation led to better

transfer and ICC activities led to more mastery related goal adoption. Also, there

was a moderation effect of invention activities on the mastery approach and transfer.

Figure 2.6.: Chart representing the student activities during the experiment. Adapted
from ”Motivation and Transfer: The Role of Mastery-Approach Goals in Preparation
for Future Learning,” by D. M. Belenky and T. J. Nokes-Malach, 2012, The Journal
of Learning Sciences, 21, p. 409. Copyright 2012 by Taylor & Francis. Reprinted with
permission
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2.6.2 Suggestion based on Belenky and Nokes-Malach’s (2012) Study

One of the limitations of this study is that they used the same testing material as

the Schwartz and Martin (2004) so that the generalizability of the results from this

study can be limited. Therefore, different contents area can be tested with the same

experimental format to find if the effect is also observed in other contents area.

2.7 Summary

In this chapter, an extensive literature review on pre-calculus concepts, chain rule,

and the instructional methods, mainly flipped classroom, for calculus learning, learn-

ing transfer, self-efficacy, achievement goal theory, and calculus learning was included.

The constructs were included to cover two themes: (1) more tailored instructional

strategy is needed with empirical evidence to facilitate the chain rule which is one

of the hurdles to understand calculus 1, and (2) ICC strategy with motivation and

various contents should be tested.

Based on the literature review and the implications from the previous research

studies, the following research study was suggested. In the next chapter, the proposed

research study and the findings are discussed. The study is to inform other researchers

and stakeholders about a new instructional method for calculus learning with the

empirical evidence, more research based-information about the relationship between

learning transfer and the motivation factor, and testing ICC strategy with the different

contents.
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3. METHODOLOGY

In the previous chapters, the literature on learning transfer, achievement goal the-

ory, self-efficacy, calculus concepts, and instructional methods were reviewed. Based

on the literature review and the lack of research studies on the relationship between

learning transfer, motivation and instructional methods with empirical evidence for

calculus learning, the current study was conducted. In this study, Preparation for Fu-

ture Learning (PFL) was adopted to measure students' performance on near transfer

using calculus content, particularly the chain rule. In addition, students' motivation

scores were measured to investigate the relationship of motivation to their perfor-

mance on PFL target problems. iCalCulus (iCC) is the testing survey system that

facilitates participants recognizing the difference between simple differentiation ver-

sus composite differentiation. The purpose of iCC is to help students figure out what

knowledge that they should know in order to solve the composite differentiation prob-

lems. iCalCulus (iCC) is an adapted ICC strategy which provides participants with

the contrasting cases and an inventing case with a hint. Therefore, the iCC group

refers to the group that received the ICC strategy in this study. In addition, the

post-test included PFL problems which measures how students locate the resource to

solve the transfer problem that they cannot solve with the current knowledge level to

measure the learning transfer. This study also includes a theoretical framework that

integrates motivational constructs and learning transfer to understand the transfer

process more profoundly. The implication of this study might be useful in the design

of instructional methods for other calculus contents as well.
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3.1 Research Hypotheses

This study is focused on iCC and TP conditions. Therefore, there were two groups:

individuals in iCC group and TP group. The response variables were the direct per-

formance and PFL target problem performance. The motivation was the moderator

variable. The hypotheses which were tested in the study are:

1. Do students in the inventing contrasting cases for iCalCulus (iCC) group out-

perform Tell and Practice (TP) group in direct application?

2. Do students in the inventing contrasting cases for ICalCulus (iCC) group out-

perform Tell and Practice (TP) group in Preparation for Future Learning (PFL)

target problems?

3. Is the students' motivational level a significant moderator between the instruc-

tional condition and their Preparation for Future Learning (PFL) target prob-

lem performance?

3.2 Methods

3.2.1 Participants

The data was collected from 81 undergraduate students at a Midwestern uni-

versity (iCC group: 40, TP group: 41) who are in STEM majors requiring calculus

courses for degree attainment. To define the sampling frame for the data collection,

the criteria of STEM majors were examined. Previous literature included either nat-

ural science or engineering majors as STEM majors (Chen, 2009). The characteristics

of STEM majors can be further defined based on the characteristics of the jobs that

students would find after they graduate. In other words, students learn skills and

gain knowledge from the higher education institutions to work in STEM job settings.

Thus, in order to define STEM majors more clearly, the list of STEM majors was

obtained from the website of the U.S. Immigration and Customs Enforcement (ICE)
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office (Department of Homeland Security, 2016). ICE office assigned the Classifica-

tion Instructional Programs (CIP) codes to STEM designated degrees for foreigners

who apply for H-1B visa for employment in the United States. In addition, STEM

majors that require calculus courses to earn the degrees were then extracted from the

comprehensive list of majors in the university. Therefore, in this study, STEM majors

refer to the majors that are listed in the CIP code list by ICE and require calculus

courses. In particular, the Calculus 1 course was chosen as a the determinant degree

requirement because the study focuses on content found in a Calculus 1 course. The

full list of STEM majors included in this study can be found in appendix B. Thus,

the sampling frame is the list of the STEM majors at the Midwest university that

require taking Calculus 1s for Engineering and Science majors, and Applied Calculus

1, which is more application focused. Most first-year students in STEM majors were

already exposed to calculus material when they were in high school, including the

chain rule and implicit differentiation. For this reason, I also included undergraduate

students who either passed or waived a Calculus 1 course for this study. The data

was collected during one academic year.

3.2.2 Instruments

Google Forms was chosen to form to create study materials including a post-test

and a delayed post-test since Google Forms is one of the Google online applications

commonly used in educational settings. It allows teachers/ instructors to administer

a questionnaire online and assess students’ performance promptly (Ballew, 2017; Lin

& Jou, 2013). Each student was provided with pieces of blank paper and a pen so

that they could use it for calculation.

Motivation Survey

The motivation survey includes two constructs: self-efficacy and mastery approach.

To measure participants' self-efficacy, I included self-efficacy for learning and perfor-
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mance items from MSLQ (Pintrich et al., 1991). Among eight self-efficacy items, the

item “I believe I will receive an excellent grade in this class” was excluded as partic-

ipants did not receive grades from this study. The other seven items were modified

based on the current study, such as from “. . . in this class.” to “. . . in this study.”

(please see table 3.1). The seven items had high Cronbach’s α, ranging from .63-

.89 based on the study of Pintrich, Smith, Garcia, and McKeachie (1993). For the

mastery approach, the mastery approach subcategory items of AGR-Q by Elliot and

Murayama (2008) were included. Participants’ motivation was measured at the be-

ginning of the task as the items are included in the pre-requisite knowledge check

survey. In order to keep the reliability and validity of the items, the items was used

without any modification. There are 10 items total in the survey.

Calculus Questionnaires

The full list of the test items are attached as appendix (see appendix ??). The

questions to test the ability of direct application (post-test item 1, 2, 4) asked to

differentiate composite functions that were not trigonometric. In the post-test, the

learning resource was provided which showed how to differentiate trigonometric com-

posite function using the chain rule. The questions to test the ability of PFL (post-test

item 3, 5, 6) were trigonometric composite functions. The question to test the abil-

ity of further PFL (post-test item 6) asked to differentiate an expression that have

implicit functions that have x and y variables which are also trigonometric and com-

posite function. The delayed post-test included only PFL questions (one PFL and

one further PFL). The chart of the study flow and the components can be seen in

figure 3.1.
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Figure 3.1.: The chart of the study flow and the components
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3.2.3 Procedure

Participants were engaged in the study voluntarily. They received the monetary

compensation ($16 in cash) at the end of the second session of the study. The adver-

tisement was posted on the school website where any student has access. Students

who also registered in calculus 1 courses received advertisement emails as well. In

addition, physical advertisement flyers were posted on bulletin boards in engineering

buildings, math buildings, science buildings, and the College of Technology building.

Participants were randomly assigned to either of the groups. The demographic

survey, and motivation survey data were collected at the beginning of Session 1. The

participants in each group performed the tasks individually. A post-test was provided

at the end of Session 1. Seven days after Session 1, they came to the computer lab

again and took the delayed post- test (Session 2). Two participants in the TP group

did not come to the second session for the delayed post-test.

After the data collection, the data was coded based on the code book that I

developed (see appendix D). Since there is no previous research study that contains

scoring rubric to grade participants’ answers to calculus questions regarding learning

transfer, the scoring rubric was fully developed after completing data collection. I

used hypothesis coding and provisional coding methods as the codes was revised,

and expanded further based on the data from the pilot study and the data which

was collected for the current study to assess the given hypotheses (Saldana, 2009).

Pre-requisite knowledge check test items were coded ranging from 0 to 2 (complete

miss, near miss, and correct). iCC tasks were coded in two ways: for ICC task Q1

and 2, it was coded from 0 to 1; and, for tasks Q3 and Q3-b, coding ranged from

0 to 2. The TP task was coded ranging from 0 to 3. For the post-test (Session 1),

Q1, 4, 5, and 6, responses were coded ranging from 0 to 3 (complete miss, not there

yet, near miss, and correct). For items 2 and 3, responses were coded ranging from 0

to 2. For the delayed post-test (Session 2), the chain rule questions (definition, how

to use it) were coded ranging from 0 to 2. The other two items were coded ranging
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from 0 to 3. The second coder who was not involved in this research study as a key

personnel coded approximately 17% of the entire data set of pre-requisite knowledge

check test items, iCC task items, TP task item, post-test items, and delayed post-test

items to calculate the inter-rater agreement. The inter-rater agreement for each item

was significant with κ ranging from .52 to 1.00. Below is the table that denotes the

kappa values for each items.
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Table 3.2.: Inter-rater agreement for the tasks and the tests

Item κ

Pretest

Chain rule definition .68

Chain rule usage .56

Q1 1.00

Q2 .58

Q3 .63

Q4 .59

Q5 .61

Q6 1.00

Tasks

iCC task Q1 cannot be computed since all iCC participants completed

and coded as the same.

iCC task Q2 cannot be computed since all iCC participants completed

and coded as the same.

iCC task Q3 .72

iCC task Q3-b .78

TP task .52

Post-test

Q1 .90

Q2 .75

Q3 1.00

Q4 .77

Q5 .78

Q6 .80

Delayed post-test

Chain rule definition .64

Chain rule usage .74

Q1 .79

Q2 1.00
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3.2.4 Analyses

Five steps of statistical analyses were performed in this study. First, descriptive

statistics were performed to find the demographics of participants in each group, such

as majors, year, and the level of calculus completion. The distribution of motivation

survey score (a.k.a. motivation level), pre-requisite knowledge check test scores, task

accuracy, post-test score, and delayed-post-test score of each group were also derived.

The IRT model was used to test the item discrimination value and difficulty value of

the pre-requisite knowledge check test items, post-test items, and delayed post-test

items prior to including the scores in any statistical analyses. Specifically, Bayes 2PL

and Graded Response (GR) models using MCMC technique were chosen based on

the distribution of the data per coding category. IRTPro version 4.2.1. was used for

the procedure.

The mathematical function of (DeMars, 2010) 2PL is denoted below:

P (θ) =
e1.7ai(θ−bi)

1 + e1.7ai(θ−bi)
,

where P (θ) is the probability of scoring of item i. The model includes item difficulty

and discrimination parameters.

The mathematical function of GR model (DeMars, 2010)is denoted below:

P*ik(θ) =
e1.7ai(θ−bik)

1 + e1.7ai(θ−bik)
,

where P*ik(θ) is the probability of scoring in or above category k of item i (given θ

and the item parameters). ai is the item slope, and bik is the category boundary for

category k of item i.

Neither model includes guessing parameters and these two models were chosen

because the test items in this study were open-ended questions which were coded

into two to four categories of answers. For the pre-requisite knowledge check test,

6 items (excluding the questions about the definition and the usage of the chain

rule) were included for the analyses. For the post-test, all 6 items were included for

the analyses. For the delayed post-test, 2 items (excluding the questions about the
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definition and the usage of the chain rule) were included for the analyses. For the

GR and 2PL model, the MCMC technique was used by setting prior distributions

for the parameter estimates (Hsieh, Proctor, Hou, & Teo, 2010; Zhu & Stone, 2011).

Based on the study of Zhu and Stone (2011), the prior was set for the discrimination

parameter which is aj˜Lognormal (0, 1) for GR model. For 2PL model, the prior

was set for the discrimination parameter which is a6˜Lognormal (0, 0.001) (Hsieh

et al., 2010). For the pre-requisite knowledge check test, 2PL model was used for

item 6 since most of the participants' answers were coded as either 0 or 2. The GR

model was used for the remaining five items. The post-test item 3, 5, and 6 and

delayed post-test item 1, and 2 were combined in the GR model as these items were

developed to measure the ability on learning transfer. The post-test item 1, 2, and 4

were combined in the GR model because they were used to measure the ability on

the direct application. For the MCMC technique, seed = 1,971, maximum number of

cycles = 4,000, Monte Carlo size for final log-likelihood approximation = 10,000 were

set. For tuning parameters, the default setting of IRT pro program which were 2,000

for burn-in and 3 for thinning was kept for the analyses.

Second, Bayesian independent sample t-tests were performed to compare the dif-

ference in motivation level, pre-requisite knowledge check test score between groups,

the task accuracy of composite function problem (iCC task Q3 and Q3b after hint was

given and TP group practice problem) for each group, direct application, PFL per-

formance, and further PFL performance. Based on the power analysis using G*Power

version 3.1.9.4, the sample size should be at least 102 with effect size d = .5, power

.8 and assuming that the group sizes are the same for the independent mean compar-

ison. Therefore, Bayesian approach was used for the t-test to gain more information

from the model (McNeish, 2016).

Third, one way ANCOVA was performed with direct application performance

variable, PFL variables, and further PFL variables as dependent variables separately

and motivational level, pre-requisite knowledge check test score as covariates. In order

to prevent any confounding effect of time, PFL was divided into PFL 1 and PFL 2
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from post-test and delayed post-test respectively for analyses. Further PFL variable

was also divided into further PFL 1 and further PFL 2 as well. Based on the power

analysis, the sample size should be at least 128 with effect size f = .25, power = .8,

numerator df = 1, and two groups, and 1 or 2 covariates. However, the sample size

for this study is only 81, so the power would be .6 with the same other conditions.

Thus, Bayesian approach was used for the ANCOVA to gain more information from

the model (McNeish, 2016). JASP 0.11.1 was used for Bayesian ANCOVA analyses.

Fourth, mediation analyses were performed to measure the moderating effect of

motivation between group condition and direct application performance and group

condition and PFL performance.

Fifth, generalized linear model (GLM) of repeated measure analysis was used to

find if there is any difference between groups on the amount of change in PFL perfor-

mance and in further PFL performance from the post-test to the delayed post-test.

For the analyses, PFL performance variable included the post-test item 3, 5, 6 and

the delayed post-test item 1, 2 and further PFL performance variable included the

post-test item 6 and the delayed post-test item 2, which asked the implicit differen-

tiation for composite functions with trigonometric component in them. Motivational

level and the pre-requisite knowledge check test score were included as covariates for

PFL performance. Pre-requisite knowledge check test score was included as a covari-

ate for further PFL performance for the GLM repeated measure analysis. Based on

the power analysis, the sample size should be at least 82 in order to gain 80% power

with effect size f = .25, with two groups and 2 dependent variables, assuming that

correlation between repeated measures is .5 for frequentist GLM repeated measure.

As the sample size for this study is 81, which is close to 82, Bayesian approach was

not employed. SPSS 26 was used for the statistical analyses.
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4. RESULTS

4.1 Results from Descriptive Statistics

4.1.1 Majors, Year, and Calculus Completion Level

Participants in iCC group were from five different colleges and nineteen majors.

Participants who were from the college of engineering (n = 26) were in First-Year

Engineering, Chemical Engineering, Cellular and Bio molecular Engineering, Civil

Engineering, Computer engineering, and Industrial Engineering majors. Participants

who were in the college of science (n = 7) were in Computer Science, Actuarial Sci-

ence, Atmospheric Science, Physics, and Mathematics. One participant was in double

major. Participants from the college of technology (n = 3) were in Animation, Cyber-

security, Mechanical Engineering Technology, and Visual Effects Compositing majors.

One participant was in double major. Participants from the college of agriculture (n =

2) were in Biochemistry and Cellular and Bio molecular Engineering majors. Partici-

pants from the college of business (n = 2) were in Supply Chain Information Analytics

and Industrial Management majors. Finally, there was one participant who were in

Pre-Pharmacy major from the college of pharmacy.

Participants in TP group were also from five different colleges but with seven-

teen majors. Participants who were from the college of engineering (n = 27) were in

First-Year Engineering, Chemical Engineering, Industrial Engineering, and Mechan-

ical Engineering majors. Participants who were in the college of science (n = 5) were

in Actuarial Science, Applied Statistics, Computer Science, Statistics, and Mathe-

matics majors. One participant was in double major. Participants from the college

of technology (n = 4) were in Aeronautical Engineering Technology, Cybersecurity,

Mechanical Engineering Technology, and Robotics Engineering Technology majors.

Participants from the college of agriculture (n = 2) were from Animal Science and



48

Biochemistry majors. The participant from the college of business (n = 1) was from

Supply Chain Information Analytics major. Lastly, there were two participants who

were in Pharmaceutical Sciences major from the college of pharmacy. Below are the

figures (see 4.1 and 4.2) that represent participants’ demographics per group.

.

Figure 4.1.: Participants per college by group
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.

Figure 4.2.: Participants per year by group

Descriptive statistics indicated that although a lot of participants in both groups

were either taking Calculus 1 or Applied Calculus 1 courses at the moment. However,

none of the participants was completely new to the chain rule and the simple differ-

entiation as they already learned pre-calculus and at least the basic level of calculus

in high school.
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.

Figure 4.3.: Level of calculus completion by group

4.1.2 Motivational Level and Pre-Requisite Knowledge Check Test Score

The motivational level was negatively skewed for both groups, indicating that the

distribution is concentrated on the higher score. In addition, the kurtosis were all

positive for both groups, meaning that the distribution is concentrated to the mean.

Table 4.1.: Motivational level

N M SD Min Max Skewness Kurtosis

iCC 40 5.46 .92 2.70 7.00 -1.00 1.49

TP 41 5.31 .95 2.30 7.00 -.60 1.29

Total 81 5.39 .93 2.30 7.00 -.77 1.16

The pre-requisite knowledge check test score was rescaled to fall between 0 to 1

so that the interpretation could be easier. The results indicated that iCC group was

slightly skewed to the higher score, on the other hand, the TP group was skewed to
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Table 4.2.: Pre-requisite knowledge check test score

N M SD Min Max Skewness Kurtosis

iCC 40 .43 .23 .00 .88 -.08 -.53

TP 41 .35 .23 .00 .94 .52 -.41

Total 81 .39 .23 .00 .94 .21 -.69

the lower score. Both group showed negative kurtosis, meaning that the scores were

slightly more dispersed than the normal curve.

4.1.3 Task Accuracy Score

Task accuracy score was also rescaled to fall between 0 to 1 for easier interpre-

tation. Participants in TP group showed higher accuracy in their task compared to

the participants in iCC group. It is possible participants in ICC group went through

more cognitive load than participants in TP group since ICC group participants were

provided more questions without any lecture beforehand.

Table 4.3.: Task accuracy score

N M SD Min Max Skewness Kurtosis

iCC Q. 3 40 .33 .43 .00 1.00 .77 -1.23

iCC Q. 3-b 40 .41 .44 .00 1.00 .36 -1.62

TP Practice problem 41 .79 .35 .00 1.00 -1.36 .38

4.1.4 Post-Test Score and Delayed Post-Test Score

The results showed that the participants in both groups had post-test scores

skewed to higher score. The scores were dispersed as similar as the normal distri-
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bution, however, iCC group participants had more dispersed distribution whereas TP

group participants had more concentrated distribution than the normal distribution.

Table 4.4.: Post test score

N M SD Min Max Skewness Kurtosis

iCC 40 .47 .21 .06 .89 -1.25 -.28

TP 41 .52 .22 .06 .89 -.63 .03

Total 81 .50 .21 .06 .89 -.37 -.29

The delayed post-test score of iCC group was more skewed to higher score and

more dispersed than the normal distribution. TP group was slightly skewed to higher

score and slightly more dispersed than the normal distribution.

Table 4.5.: Delayed post-test score

N M SD Min Max Skewness Kurtosis

iCC 40 .47 .30 .00 1.00 -.11 -1.25

TP 41 .45 .25 .00 .92 -.08 -.89

Total 81 .46 .28 .00 1.00 -.08 -1.07

4.2 Results from Bayesian IRT and Bayesian Independent Sample T-Test

Analyses

4.2.1 Results from Bayesian IRT Analyses

Results from Pre-Requisite Knowledge Check Test Item Analyses

The results of the analyses indicated that all pre-requisite knowledge check test

items had good discrimination values, ranging from .54 to 2.70. In other words, the

items discriminated test-takers who differed on the pre-calculus constructs. The diffi-
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culty values of the items were also from good overall. The characteristic curve plot for

the six items overall (see figure E.3) indicated that the test had a fairly informative

items.

Table 4.6.: Graded model and 2PL model item parameter estimates

Item a b1 b2

1 .54 -.64 1.02

2 .56 -1.17 .49

3 1.03 .61 4.82

4 1.19 .31 .63

5 2.70 .27 .31

6 1.00 .82 -

Results from Post-Test Item 1, 2, 4 Analyses

The results (see table 4.7) indicated that the post-test item 1, 2, and 4 had good

discrimination values. For post-test item 4, all three difficulty values were negative

ranging from -3.79 to -1.20, indicating it was poorly designed as it was too easy. The

plots (see figure E.4) indicated that the post-test item 4 did not have much good

information. The test characteristic curve plot (see figure E.5) indicates the items are

overall very informative.

Table 4.7.: Graded model item parameter estimates

Item a b1 b2 b3

post 1 .41 1.23 6.24 8.75

post 2 .92 -2.66 -.26 -

post 4 .71 -3.79 -2.05 -1.20
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Results from Post-Test item 3, 5, 6 and Delayed Post-Test Item 1, 2 anal-

yses

Post-test item 3, 5, and 6 had good discrimination values ranging from .98 to 1.36.

The delayed post-test item 1 and 2 had also good discrimination values ranging from

0.99 to 1.50. The difficulty values indicated that post-test item 3, 5, and 6 had a

fairly good difficulty values. Delayed post-test item 2 also had a fairly good difficulty

values as well. Delayed post-test item 1 had very good difficulty values. Overall, the

post-items and the delayed post-test items had the good test information. The plots

(see figures E.6 and E.7) indicated that post-test item 3, 5, 6 and both of the delayed

post-test items had fairly good information. The characteristic curve plot (see figure

E.8) indicates that the overall items have the fairly good information.

Table 4.8.: Graded model item parameter estimates

Item a b1 b2 b3

post 3 1.32 -1.38 .09 -

post 5 .98 .08 1.06 1.26

post 6 1.36 .01 .96 1.20

delayed 1 .99 -.58 1.27 3.11

delayed 2 1.05 -0.06 1.05 1.58

4.2.2 Results from Bayesian Independent Sample T-Test

The Bayesian independent sample t-test analyses were conducted to compare ICC

group and TP group on the motivational level and pre-requisite knowledge check test

score to gain the preliminary data of the participants in each group. In addition,

task accuracy on composite function question (Q. 3 and Q. 3-b for iCC group and

practice problem for TP group), direct application, PFL performance, and further

PFL performance from the post-test and delayed post-test were also compared by
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t-test analyses. Diffuse prior was used which is uninformative prior (Hoff, 2009), as

it gives general information about chosen variables when informative prior is not

available. According to the previous literature on BF01 (Jarosz & Wiley, 2014), there

were from anecdotal to moderate evidences for H0 when reporting the results, thus,

in this study, the terminology from Jarosz and Wiley (2014) are used for reporting.

The plots of log likelihood function, prior distribution, and posterior distribution for

each item are attached as appendix (see Appendix F).

Motivational Level

The result indicated that there was no difference on the motivational level between

groups as BF01 = 4.74.

Table 4.9.: Results from Bayesian independent samples t-test analyses

Item Mean Difference Pooled SE Difference BF01 t df p

Motivational level -.14 .21 4.74 .69 79 .495

* Mean Difference = iCC-TP

Pre-Requisite Knowledge Check Test Score

The items were included in an individual t-test model for the analyses. The BF01s

were ranging from 1.48 to 5.78 for entire test items, meaning that there is no evidence

to support H1. In other words, iCC group participants and TP group participants

had similar level of pre-requisite knowledge check test score. Below is the table (table

4.10) that reported the results from the analyses in detail. The plots of log likelihood

function, prior distribution, and posterior distribution for each item are attached as

appendix (see Appendix F).
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Table 4.10.: Results from Bayesian independent samples t-test analyses

Item Mean Difference Pooled SE Difference BF01 t df p

Pre-chain rule definition .05 .180 5.65 .31 79 .762

Pre-chain rule usage -.04 .21 5.78 -.21 79 .835

Pre Q. 1 -.15 .20 4.58 -7.38 79 .463

Pre Q. 2 -.30 .20 2.02 -1.53 79 .131

Pre Q. 3 -.08 .12 4.61 -.73 79 .468

Pre Q. 4 -.17 .21 4.39 -.80 79 .428

Pre Q. 5 -.24 .22 3.32 -1.11 79 .269

Pre Q. 6 -.36 .21 1.48 -1.74 79 .086

* Mean Difference = iCC-TP

Task Accuracy

Task accuracy of iCC task (Q. 3) and TP task (practice problem) and iCC task

after a hint was given (Q. 3-b) and the TP task (practice problem) were compared.

The results indicated that there is a substantial evidence to support H1, indicating

that the task accuracy of participants in TP group was significantly higher than

participants in iCC group did.

Table 4.11.: Results from Bayesian independent samples t-test analyses

Item Mean Difference Pooled SE Difference BF01 t df p

iCC task Q. 3 vs. TP task practice problem -.4636 .09 .000 -5.33 79 .000

* Mean Difference = iCC-TP
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Table 4.12.: Results from Bayesian independent samples t-test analyses

Item Mean Difference Pooled SE Difference BF01 t df p

iCC task Q. 3-b vs. TP task practice problem -.3761 .09 .002 -4.29 79 .000

* Mean Difference = iCC-TP

Direct Application

The result indicated that there was a weak evidence to support that a significant

difference in the direct application between groups as BF01 = .805.

Table 4.13.: Results from Bayesian independent samples t-test analyses

Item Mean Difference Pooled SE Difference BF01 t df p

Direct application -.10 .05 .805 -2.09 79 .040

* Mean Difference = iCC-TP

PFL Performance from the Post-Test

The result indicated that there was no evidence to support a significant difference

in PFL performance from post-test between groups as BF01 = 4.599.

Table 4.14.: Results from Bayesian independent samples t-test analyses

Item Mean Difference Pooled SE Difference BF01 t df p

PFL performance -.05 .06 4.599 -.73 79 .467

* Mean Difference = iCC-TP
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PFL Performance from the Delayed Post-Test

The result indicated that there was no evidence to support a significant difference

in PFL performance from delayed post-test between groups as BF01 = 1.966.

Table 4.15.: Results from Bayesian independent samples t-test analyses

Item Mean Difference Pooled SE Difference BF01 t df p

PFL performance .09 .06 1.966 1.54 77 .128

* Mean Difference = iCC-TP

Further PFL Performance from Post-Test

The result indicated that there was no evidence to support a significant difference

in further PFL performance from post-test between groups as BF01 = 5.872.

Table 4.16.: Results from Bayesian independent samples t-test analyses

Item Mean Difference Pooled SE Difference BF01 t df p

Further PFL performance -.03 .27 5.872 -.09 79 .927

* Mean Difference = iCC-TP

Further PFL Performance from the Delayed Post-Test

The result indicates that there was strong evidence to support a significant differ-

ence in further PFL performance from delayed post-test between groups as BF01 =

.096.
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Table 4.17.: Results from Bayesian independent samples t-test analyses

Item Mean Difference Pooled SE Difference BF01 t df p

Further PFL performance .76 .25 .096 3.05 77 .003

* Mean Difference = iCC-TP

4.3 Results from Bayesian One-Way ANCOVA Analyses

Bayesian ANCOVA analysis chose the model with both the average pre-requisite

knowledge check test score and motivational level as the covariates and the group

condition as the random factor as the best model. Based on Wagenmakers et al.

(2018), BFM and BF01 (or BF10) would be critical indexes for interpretation to

report the results of the analysis. The result indicates that BFM shows the change

from prior to posterior model odds. On the other hand, BF01 lists the BF01 for null

model against each model. Based on Andraszewicz and her colleagues (2015), BFM

from 3 to 10 shows that there is moderate evidence for the model, and from 10 to

30 shows that there is strong evidence, and from 20 to 100 shows that there is very

strong evidence to support the model. On the other hand, BF01 from .33 to .10 shows

that there is a substantial (or moderate) evidence for the alternative model against

the null model, from .10 to .03 shows that there is strong evidence, from .03 to .01

shows that there is a very strong evidence, and from .01 and smaller shows that there

is decisive evidence for the alternative model.

The BFM is denoted as follows:

BFM = P (θ|x), (4.1)

where x indicates a data point from the dataset, and θ indicates is a parameter. BF01,

can be computed as follows:

BF01 =
P (x|H0)

P (x|H1)
, (4.2)

where H1 is an alternative hypothesis and H0 is a null hypothesis.
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4.3.1 Direct Application

Bayesian ANCOVA analysis chose the model with both the average pre-requisite

knowledge check test score and motivational level as the covariates and the group

condition as the random factor as the best model. BFM = 4.972 indicates that there

is moderate evidence for the model. BF01 = .085, shows that there is strong evidence

that supports the model against the null model.

Table 4.18.: Model comparison

Models P(M) P(M—data) BFM BF01 error %

Null model (incl. group) 0.250 0.053 0.166 1.000

ave pre req + motiva 0.250 0.616 4.807 0.085 0.999

ave pre req 0.250 0.174 0.634 0.301 0.841

motiva 0.250 0.157 0.560 0.334 0.859

4.3.2 PFL Performance from the Post-Test

Bayesian ANCOVA analysis chose the model with both the average pre-requisite

knowledge check test score and motivational level as the covariates and the group

condition as the random factor as the best model. BFM = 3.228, which indicates

there is moderate evidence that supports the model. H0 = .014 (≈ 2.933e−4), shows

that there is very strong evidence that supports the model against the null model.
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Table 4.19.: Model comparison

Models P(M) P(M—data) BFM BF01 error %

Null model (incl. group) 0.250 1.525e-4 4.575e-4 1.000

ave pre req + motiva 0.250 0.520 3.248 2.933e-4 1.004

ave pre req 0.250 0.480 2.767 3.178e-4 0.892

motiva 0.250 1.471e-4 4.414e-4 1.037 0.985

4.3.3 PFL Performance from the Delayed Post-Test

Bayesian ANCOVA analysis chose the model with the average pre-requisite knowl-

edge check test score as the covariate and the group condition as the random factor as

the best model. BFM = 3.403, which indicates there is moderate evidence that sup-

ports the model. H01 = .103, shows that there is substantial (or moderate) evidence

that supports the model against the null model.

Table 4.20.: Model comparison

Models P(M) P(M—data) BFM BF01 error %

Null model (incl. group) 0.250 0.055 0.173 1.000

ave pre req 0.250 0.531 3.398 0.103 0.875

ave pre req + motiva 0.250 0.380 1.839 0.143 1.110

motiva 0.250 0.034 0.107 1.585 0.985

4.3.4 Further PFL Performance from the Post-Test

Bayesian ANCOVA analysis chose the model with the pre-requisite knowledge

check test score as the covariate and the group condition as the random factor as the

best model. BFM = 10.955, which indicates there is strong evidence that supports
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the model. H01 = .003, shows that there is decisive evidence that supports the model

against the null model.

Table 4.21.: Model comparison

Models P(M) P(M—data) BFM BF01 error %

Null model (incl. group) 0.250 0.003 0.008 1.000

ave pre req 0.250 0.790 11.309 0.003 0.910

ave pre req + motiva 0.250 0.206 0.780 0.013 1.050

motiva 0.250 7.027e-4 0.002 3.819 2.538

4.3.5 Further PFL Performance from the Delayed Post-Test

Bayesian ANCOVA analysis chose the model with the average pre-requisite knowl-

edge check test score as the covariate and the group condition as the random factor as

the best model. BFM = 5.570, which indicates there is moderate evidence that sup-

ports the model. H01 = .199, shows that there is substantial (or moderate) evidence

that supports the model against the null model.

Table 4.22.: Model comparison

Models P(M) P(M—data) BFM BF01 error %

Null model (incl. group) 0.250 0.129 0.445 1.000

ave pre req 0.250 0.648 5.522 0.199 0.807

ave pre req + motiva 0.250 0.192 0.712 0.673 1.108

motiva 0.250 0.031 0.096 4.157 0.995
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4.4 Mediation Analyses

4.4.1 Group Condition, Motivational Level, and Direct Application Per-

formance

The result indicates that motivational level was not a significant moderator be-

tween the group condition and the direct application performance at all, with b =

-.01, t(77) = -.19, p = .846.

4.4.2 Group Condition, Motivational Level, and PFL Problem Perfor-

mance from the Post-Test

The result indicates that motivational level was not a significant moderator be-

tween the group condition and the PFL problem performance from the post-test at

all, with b = .05, t(77) = .72, p = .475.

4.4.3 Group Condition, Motivational Level, and PFL Problem Perfor-

mance from the Delayed Post-Test

The result indicates that motivational level was not a significant moderator be-

tween the group condition and the PFL problem performance at all, with b = .01,

t(75) = .08, p = .933.

4.4.4 Group Condition, Motivational Level, and Further PFL Problem

Performance from the Post-Test

The result indicates that motivational level was not a significant moderator be-

tween the group condition and the further PFL problem performance at all, with b

= .08, t(77) = .41, p = .686.
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4.4.5 Group Condition, Motivational Level, and Further PFL Problem

Performance from the Delayed Post-Test

The result indicates that motivational level was not a significant moderator be-

tween the group condition and the further PFL problem performance at all, with b

= .08, t(75) = .42, p = .675.

4.5 Results from GLM Repeated Measure Analyses

For GLM repeated measure analysis, time was included as a within-subject factor

(two points in time total), group condition as a between-subject factor (iCC vs. TP),

and the motivational level and pre-requisite knowledge check test score as covariates

for PFL problem performance. For further PFL problem performance, only the pre-

requisite knowledge check test score was chosen as a covariate based on the results

from ANCOVA analyses. Prior to the analyses, normality of residual, equality of

covariance matrices and homogeneity of variances for each combination of the groups

of two factors were checked for each GLM Repeated Measure Model. Sphericity was

not checked as there were only two levels of the time point.

4.5.1 PFL Performance

Assumption of Normality, Equality, Homogeneity

The Q-Q plot (see Appendix G) with the studentized residual to check the nor-

mality of residual with PFL 1 and 2 indicates that the assumption of normality was

violated, indicating that the data has more extreme values than the data with normal

distribution as the points curve off in the extremeties. The Box’s M test indicates that

the equality assumption was not violated (p = .754). Finally, Levene’s test showed

that the assumption of homogeneity was not violated for either of the combinations,

with F(1, 77) = .23, p = .637 for the PFL performance 1 combination and with F(1,

77) = .00, p = .985 for the PFL performance 2 combination.
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GLM Repeated Measure Analysis

The results indicate that there was no significant decrease over time for partic-

ipants in both groups regarding PFL problem performance, with Wilk’s lambda =

.10, F(1, 75) = .05, p = .830, η2p = .00. In addition, there was a significant interac-

tion effect between group condition and time, with Wilk’s lambda = .92, F(1, 75) =

6.62, p = .012, η2p = .08. Test of between- subject effect indicates that there was no

significant group effect, with F(1, 75) = .17, p = .682, η2p = .00. In short, the results

indicate a cross-over interaction effect. In figure 4.4, the plot of marginal mean of PFL

performance from post-test to delayed post-test after being adjusted for the covariates

(motivational level, pre-requisite knowledge check test score) shows the change over

time.

.

Figure 4.4.: Plot of group comparison on the marginal mean of PFL performance from
the post-test
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4.5.2 Further PFL Performance

Assumption of Normality and Homogeneity, and Sphericity

The Q-Q plots (see Appendix G) with the studentized residual to check the nor-

mality of residual with further PFL from the post-test and the delayed post-test

indicate that the assumption of normality was violated, indicating that the the data

has more extreme values than the data with normal distribution as the points curve

off in the extremeties. The Box’s M test indicates that the equality assumption was

not violated (p = .370). Lastly, Levene’s test showed that the assumption of homo-

geneity was not violated for further PFL problem performance 1 combination, with

F(1, 77) = .20, p = .654. However, the homogeneity assumption was violated for

further PFL problem performance 2 combination and with F(1, 77) = 5.15, p = .026.

GLM Repeated Measure Analysis

The results indicate that there was no significant decrease over time for par-

ticipants in either group regarding further PFL problem performance, with Wilk’s

lambda = .99, F(1, 76) = 1.15, p = .287, η2p = .02. On the other hand, there was a

significant interaction effect between group condition and time, with Wilk’s lambda =

.89, F(1, 76) = 9.22, p = .003, η2p = .11. The test of between- subject effect indicates

that there was no significant group effect, with F(1, 76) = 1.06, p = .305, η2p = .01.

In summary, the results indicate a significant cross-over interaction effect. Below is

the plot of the marginal mean of further PFL performance from post-test to delayed

post-test after being adjusted for the covariate (pre-requisite knowledge check test

score) which shows the change over time.
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Figure 4.5.: Plot of group comparison on the marginal mean of PFL performance from
the delayed post-test
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5. DISCUSSION AND CONCLUSION

5.1 Discussion

In the current study, the relationship between the types of instructional strategy,

motivational level, and performance on the direct application, PFL target problems

and further PFL target problems was investigated. The participants were assigned

to either the iCC or TP group and solved the assigned tasks individually. Their

motivation score was also collected at the beginning of the study. The delayed post-

test was conducted seven days after Session 1 to determine if there was any remaining

effect of the instruction on the participants.

Bayesian one-way ANCOVA analyses were conducted to determine if there was

a statistically significant difference between the iCC group and TP group on di-

rect application performance, PFL performance and further PFL performance from

the post-test and delayed post-test respectively, while controlling for the average pre-

requisite knowledge check test score and/or motivational level variable(s). The results

indicated that there was the moderate evidence to support that the group condition

had a significant effect on direct application, PFL performance from the post-test

while controlling for the average pre-requisite knowledge check test score and mo-

tivational level. The results also indicated that there was from moderate to strong

evidence that supports that group condition had the significant effect on the PFL

performance from the delayed post-test, further PFL performance from the post-test,

and the further PFL performance from the delayed post-test, while controlling for the

average pre-requisite knowledge check test score only. In other words, motivational

level was a significant covariate only for the direct application performance and the

PFL performance from the post-test.
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In order to investigate the amount of the change in participants performance on

PFL and further PFL problems, the GLM repeated measure analyses were conducted.

The results showed two findings. First, there was a cross-over interaction effect re-

garding PFL performance. That is, there was a significant interaction effect between

time and group condition. As the plot indicates, the mean across the time for each

group might not be significantly different. However, the amount of change in PFL

performance per group was significantly different. The analysis of further PFL per-

formance also indicated the cross-over interaction effect over time, although neither

time nor group condition alone had a significant effect. The results indicate that the

iCC instructional strategy was more effective in maintaining the ability of near trans-

fer than the TP strategy. It is possible that the questions provided to the iCC group

facilitated preparing to learn to solve problems that required more than directly apply

the prior knowledge. The effect remained even after the time passed.

In conclusion, the findings indicate that the iCC group did not outperform TP

group in direct application performance and the PFL performance from the post-

test. In addition, the motivational level was not an effective moderator between the

instructional condition and the PFL performance. Lastly, the iCC group did not

outperform the TP group in PFL performance or further PFL performance except

in case of the further PFL performance from the delayed post-test (see Table 4.17).

There was, however, a significant cross-over interaction effect between time and group

condition for the PFL performance and further PFL performance, which indicates the

remaining effect of the iCC instructional strategy over time.

There are a few limitations in this study. First, the external validity of the par-

ticipants might not be high due to the sampling method. That is, the participants

were chosen from only one university based on participants’ volunteering using conve-

nience sampling, the external validity might be low, thus, the external validity of the

findings of this study could be low as well. In addition, it is possible that the reason

that the motivational level alone was not an effective moderator is that participants

might not have engaged as deeply with the experimental sessions because they were
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a short-term event. Previous studies regarding motivation address this phenomenon

(Jang, 2008; Vansteenkiste et al., 2018). Another possible reason for the limited effect

of motivational level to PFL variable might be due to the lab study setting because

students do not expect to receive an academic grade or any negative consequences,

other than receiving monetary compensation for their performance. Finally, the small

sample size of this study might have also affected the results of the Bayesian analyses

for the t-test and ANCOVA models especially the prior was not informative.

The implications of the results lead the potential future studies toward a couple

of directions. First, the types of content that cause negative transfer when associated

with the chain rule could be more thoroughly investigated. The author found numer-

ous cases of potential negative transfer in participants’ answers on test items (see

Appendix H). For example, there was a participant who was confused with partial

derivatives and implicit differentiation. Thus, it might be meaningful to investigate

the types of content that trigger negative transfer regarding the chain rule. Second,

follow-up studies that are associated with the iCC instructional strategy with types

of feedback, frequency of feedback, and the timing of each feedback could be inves-

tigated. The participants who were in the iCC group only received one hint during

Session 1, and it might have not been helpful. As the accuracy rate shows, the partic-

ipants in the iCC group showed only 62% out of 100%. Thus, it is possible that the

effect of varying types and frequency of feedback associated with the ICC strategy

on the performance of transfer could be explored to better help participants learn

with the ICC strategy. Finally, this current study only included students who need

to take Calculus 1 to attain their degree from STEM majors. There are students in

non-STEM majors, such as Economics or Accounting, who also need to take calculus

courses. Thus, a follow-up study could include students in non-STEM majors who

need to take calculus courses as well to improve the diversity of the sample.

A recent Washington Post article pointed out that nearly 50 accredited colleges

and universities dropped SAT/ACT admissions requirement between 2018 and 2019

due to the lack of information that the standardized tests could provide about the
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students’ academic performance (Strauss, 2019). The standardized test scores failed

to students’ performance in college. This trend is not surprising, as researchers also

recognized the limitations of standardized tests, as well as the importance of develop-

ing curriculum to better train students transfer ability. As discussed in the literature

review of this study, it is necessary to develop a new type of assessment that can

measure students’ transfer ability, which might better predict students’ performance

in the future. Therefore, developing a new type of assessment (a.k.a. Preparation

for Future Learning assessment) to measure the transfer ability effectively should be

more researchers’ major area of focus in the domain of learning transfer.

5.2 Conclusion

The goal of this study was to find if ICC strategy was more effective regarding

transfer performance than TP strategy; and, if motivation would be shown to be

a moderator between the instruction condition and the PFL target problem perfor-

mance. A total of 81 (ICC: 40, TP: 41) students in STEM majors who need to take

a Calculus 1 course to attain their degree were recruited to participate in the study.

There were two sessions total to find if there would be any difference in their perfor-

mance on the immediate post-test and delayed post-test. The results from Bayesian

ANCOVA analyses indicated there was moderate evidence that supports that the

group condition had a significant effect on the direct application performance and

the PFL performance during the first session while controlling for the motivational

level and the average pre-requisite knowledge check test score. Participants’ motiva-

tion was not an effective moderator between the instructional condition and the PFL

problem performance. The GLM repeated measure analyses indicated that the effect

of iCC instructional strategy remained longer than that of the TP strategy. Therefore,

there was a cross-over interaction effect between the instructional condition and time

in answering the chain rule definition and the usage, and performance on PFL, and

further PFL problems. The implication of this study is that repeating tests might
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be more effective to improve performance on transfer tasks. In addition, the effect of

iCC instructional strategy remained longer than that of the TP strategy even after

the learning ended. Finally, the findings of the study might give the evidence that

supports the importance of a new type of assessment to measure students’ transfer

ability.
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A. CALCULUS CURRICULUM IN THE STATE OF

INDIANA

.
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.

Figure A.1.: Calculus standards by Indiana Academic Standards, the
Department of Education, 2014, updated in 2017. Retrieved from
https://www.doe.in.gov/sites/default/files/standards/mathematics/calculus-
standards.pdf

(Indiana Academic Standards , 2014)
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B. LIST OF UNDERGRADUATE STEM MAJORS AT

THE CHOSEN UNIVERSITY THAT REQUIRES

CALCULUS 1 COURSE TO ATTAIN THE DEGREE

*majors that belong to both or multiple colleges are counted as one major, majors

that only first-year students can be in temporarily were also listed.

<College of Agriculture>

1. Agricultural Economics

2. Agricultural Systems Management

3. Agronomy

4. Animal Sciences

5. Applied Meteorology and Climatology

6. Aquatic Sciences

7. Biochemistry

8. Biological Engineering

9. Crop Sciences

10. Environmental Studies (only for the First-year students)

11. Farm Management

12. Food Science

13. Forestry

14. Natural Resources and Environmental Science

15. Plant Genetics, Breedings, and Biotechnology

16. Plant Science
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17. Plant Studies (only for the First-year students)

18. Pre-Agricultural & Biological Engineering

19. Pre-Veterinary Medicine (only for Doctor of Veterinary Medicine program prepa-

ration for undergraduate students)

20. Soil and Water Sciences

21. Sustainable Biomaterials-Process and Product Design

22. Wildlife

<College of Engineering>

1. Aeronautical & Astronautical Engineering

2. Agricultural Engineering

3. Biomedical Engineering

4. Chemical Engineering

5. Civil Engineering

6. Computer Engineering

7. Construction Engineering

8. Electrical Engineering

9. First-Year Engineering

10. Environmental and Ecological Engineering

11. Environmental and Natural Resources Engineering

12. Industrial Engineering

13. Interdisciplinary Engineering Studies

14. Materials Engineering

15. Mechanical Engineering

16. Multidisciplinary Engineering



86

17. Nuclear Engineering

<College of Management>

1. Industrial Management

2. Strategy and Organizational Management

3. General Management

4. Supply Chain, Information and Analytics

<College of Science>

1. Actuarial Science

2. Atmospheric Science/ Meteorology

3. Biology

4. Cell, Molecular, and Developmental Biology

5. Chemistry

6. Computer Science

7. Data Science

8. Ecology, Evolution, and Environmental Sciences

9. Environmental Geoscience

10. Genetics

11. Geology and Geophysics

12. Health and Disease

13. Interdisciplinary Science

14. Mathematics

15. Microbiology

16. Neurobiology and Physiology

17. Physics
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18. Planetary Sciences

19. Pre-environmental Studies

20. Science

21. Statistics

<College of Technology>

1. Aeronautical Engineering Technology

2. Aerospace Financial Analysis

3. Airline Management and Operations

4. Airport Management and Operations

5. Animation

6. Audio Engineering Technology

7. Automation and Systems Integration Engineering Technology

8. Aviation Management

9. Building Information Modeling

10. Computer and Information Technology

11. Construction Management Technology

12. Cybersecurity

13. Data Visualization

14. Electrical Engineering Technology

15. Flight (Professional Flight Technology)

16. Game Development and Design

17. Industrial Engineering Technology

18. Mechanical Engineering Technology

19. Robotics Engineering Technology
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20. Supply Chain Management Technology

21. Systems Analysis and Design

22. Unmanned Aerial Systems

23. Virtual Product Integration

24. Visual Effects Compositing

25. Web Programming and Design
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C. MATH ITEMS

*Items are all open-ended.

<Pre-Requisite Check Test Items>

1. What is the chain rule? Please explain.

2. How do you use the chain rule? Please explain.

.

3. (Q1) Please differentiate:

y =
x+ 2

x− 6

4. (Q2) Please differentiate:

y = x2(6 + 11x3)
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.

5. (Q3) Please solve x when x ∈ [0, 2π):

sin4x =

√
3

2

6. (Q4) What is the value of

cos−1

(√
3

2

)
=

7. (Q5) Please differentiate y.

y = x3sin(x)

.
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8. (Q6) Evaluate the limit if it exists.

y = lim
x→∞

−25

x2 + 3x− 6

.

<iCC and TP Task Items>

iCC Task Items

1. Find the derivative of given expression.

ex

2. Find the derivative of given expression.

2x5x

.
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3. Could you find a way to show how the given expression is different from the

given expressions 1 and 2 above? Or is there any similarity between any of the

three? Please describe.

2x5x

.

4. (3-b) Now use hint 1. Could you find a way to show how the given expression

is different from the given expressions 1 and 2 above? Or is there any similarity

between any of the three? Please describe.

.

TP Task Item

Find a derivative of y.

y = 4x6x
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.

<Chain Rule Lesson Content>

What is the chain rule?

.

<Post-Test Items>

1. Find a derivative of y.

y = x2x+1 + 1
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2. Find a derivative of y.

y = (7x3 − 1)2

.

3. Find a derivative of y.

y = x3sin(x2)

4. Find a derivative of y.

y =
1

4
e7x

5. Differentiate f(x).

f(x) =
1

(2 + sec(x))2
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.

6. Find a way to get the derivative of y when sin(x + y) = ycos(2x) with respect

to x. Please describe how you would solve it.

.

<Delayed Post-Test Items>

1. What is the chain rule? Please explain.

2. How do you use the chain rule? Please explain.

3. (Q1) Differentiate f(x).

f(x) =
1

(1 + cot(x))3
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4. (Q2) Find a way to get the derivative of y when cos(x + y) = ysin(6x) with

respect to x. Please describe how you would solve it.

.
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D. CODEBOOK

.
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.

Figure D.1.: Codes for the pre-requisite knowledge check test items

• Rough paper usage: For TP 01, he put the the answer for Q1 in the rough paper

only. Some participants did not use EquatI0 to type the answer, and in that

case, check the rough paper in case the participant wrote the answer it down

just to understand the answer form more accurately.

• For pre-requisite knowledge check test Q1-6, the mastery level of the pre-calc is

the key information that I am looking for, so the grading would be stricter.

• For the first chain rule open-ended questions, please see the guide.
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Figure D.2.: Codes for iCC task items

.

Figure D.3.: Codes for TP task item
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Figure D.4.: Codes for the post-test items
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Figure D.5.: Codes for the delayed post-test items

Figure D.6.: Guide for “What is the chain rule?”
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Figure D.7.: Guide for “How do you use the chain rule?”
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Figure D.8.: Guide for Post-Test Q6 and the Delayed Post-Test Q2
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E. PLOTS FROM ITEM RESPONSE MODELS FOR THE

ITEMS

*Dashed lines are the information curves and the colored lines are the trace lines of

each category.

.

Figure E.1.: Plots of items with trace lines and information curves of the pre-requisite
knowledge check test item 1, 2, 3

.

Figure E.2.: Plots of items with trace lines and information curves of the pre-requisite
knowledge check test item 4, 5, 6
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.

Figure E.3.: Test characteristic curve for pre-requisite knowledge check test items

.

Figure E.4.: Plots of items with trace lines and information curves of the post-test
item 1, 2, 4
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.

Figure E.5.: Test characteristic curve for post-test item 1, 2, 4

.

Figure E.6.: Plots of items with trace lines and information curves of the post-test
item 3, 5, 6

.

Figure E.7.: Plots of items with trace lines and information curves of the delayed
post-test item 1, 2
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.

Figure E.8.: Test characteristic curve for post-test 3,5,6 and delayed post-test 1, 2
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F. PLOTS OF LOG LIKELIHOOD, PRIOR

DISTRIBUTION, AND POSTERIOR DISTRIBUTION OF

MEAN DIFFERENCE FROM BAYESIAN

INDEPENDENT SAMPLE T-TEST ANALYSES

*1: iCC group, 0: TP group

.

Figure F.1.: Motivation survey score
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.

Figure F.2.: Pre-Requisite Knowledge Check Test Score for “What is the chain rule?”

.

Figure F.3.: Pre-Requisite Knowledge Check Test Score for “How do you use the chain
rule?”
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.

Figure F.4.: Pre-Requisite Knowledge Check Test Score for Q. 1

.

Figure F.5.: Pre-Requisite Knowledge Check Test Score for Q. 2
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.

Figure F.6.: Pre-Requisite Knowledge Check Test Score for Q. 3

.

Figure F.7.: Pre-Requisite Knowledge Check Test Score for Q. 4



113

.

Figure F.8.: Pre-Requisite Knowledge Check Test Score for Q. 5

.

Figure F.9.: Pre-Requisite Knowledge Check Test Score for Q. 6
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.

Figure F.10.: Task accuracy for iCC task Q. 3 vs. TP task

.

Figure F.11.: Task accuracy for iCC task Q. 3-b vs. TP task
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.

Figure F.12.: Direct application

.

Figure F.13.: PFL Performance from the post-test
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.

Figure F.14.: PFL performance from the delayed post-test

.

Figure F.15.: Further PFL performance from the post-test



117

.

Figure F.16.: Further PFL performance from the delayed post-test
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G. Q-Q PLOTS For Assumption of Normality Check for

GLM Repeated Analyses

.

Figure G.1.: Scatter plot for normality check for the residual with PFL performance
from the post-test
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.

Figure G.2.: Scatter plot for normality check for the residual with PFL performance
from the delayed post-test
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.

Figure G.3.: Scatter plot for normality check for the residual with further PFL per-
formance from the post-test
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.

Figure G.4.: Scatter plot for normality check for the residual with further PFL per-
formance from the delayed post-test
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H. Examples of Negative Transfer

Post-Test Item 6

Find a way to get the derivative of y when sin(x + y) = ycos(2x) with respect to x.

Please describe how you would solve it.

Negative Transfer of Partial Derivative

*iCC group

.

*TP group

.

Negative Transfer of Trigonometry Identity

*iCC group

.

Negative Transfer of Substitution Technique from Integration by Parts

*TP group

Participant A

.

Participant B
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