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ABSTRACT 

The biological underpinnings that control iris pigmentation and facial morphology are two areas 

of research that over the last decade are becoming more thoroughly investigated due to the 

increased affordability of genotyping and advances in technology allowing for more advanced 

analysis techniques. Despite the ease of access to the data and the tools required to perform iris 

pigmentation and facial morphological studies, there are still numerous challenges researchers 

must overcome when exploring the genetics of these complex phenotypes. Some of these 

challenges include difficulty in working with the bioinformatic programs designed to analyze 

genetic associations, the inability to define a phenotype that captures the true nature of these traits, 

and analysis techniques that fail to model complex gene-gene interactions and their effect on a 

phenotype or phenotypes of interest. 

 

In this body of work, I attempted to address these challenges by designing a bioinformatic pipeline, 

Odyssey, that bridges the communication gaps between various data preparation programs and the 

programs that analyze genomic data. With this program, genome-wide association studies (GWAS) 

could be conducted in a quicker, more efficient, and easier manner. I also redefined iris color as a 

quantitative measurement of pre-defined color classes. In this way it is possible to define and 

quantify the unique and intricate mixtures of color, which allows for the identification of known 

and novel variants that affect individual iris color. I also improved upon current prediction models 

by developing a neural network model capable of predicting a quantitative output to four pre-

defined classes; blue/grey, light brown (hazel), perceived green, and dark brown. I examined the 

effects of defining a simple facial morphology phenotype that more accurately captures the lower 

face and jaw shape. I then analyzed this phenotype via a GWAS and found several novel variants 

that may be associated with a square and diamond shaped face. Lastly, I demonstrated that 

structural equation modeling can be used in combination with traditional GWAS to examine 

interactions amongst associated variants, which unearths potential biological relationships that 

impact the multifaceted phenotype of facial morphology. 
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 INTRODUCTION 

An individual’s unique physical appearance comprised of body morphology and pigmentation is 

one of the many aspects that defines one’s identity. It is therefore no surprise that much research 

has been dedicated to studying why humans have such an appearance. Pigmentation, specifically 

iris pigmentation, is one phenotype that has drawn a lot of attention due to its forensic1 and 

anthropologic2 applications. Numerous iris color studies thus far have focused on understanding 

categorical iris color3–6, and they have largely succeeded in identifying genes such as HERC2, 

OCA2, and TYR that are highly influential in determining blue vs brown eye color. However, while 

these color extremes have been studied extensively, and are capable of being predicted with a high 

degree of accuracy7–10, there is a notable gap in our genetic understanding of the intermediary 

colors such as green and hazel11–13. Thus, a better comprehension of what genetically causes 

intermediate iris color will not only fill the genetic gaps, but it will also lead to more complete 

prediction models. 

 

Human facial morphology is another phenotypic area of study that has been researched extensively 

in disease-based phenotypes of the face such as cleft lip and palate14–18 and Down syndrome19–23, 

but notably less in non-diseased facial variation. Over the past several years, more interest and 

research has been focused toward understanding these minor variations of the face. However, 

unlike the simple categorical phenotyping that accompanied early iris phenotyping, the majority 

of facial research has been based on Euclidean distances between landmarks24–27. More recently, 

as technology allows us to better reconstruct a 3D face from hand-held cameras, 3D modeling has 

helped improve facial phenotyping allowing for more advanced analyses to capture holistic views 

of facial phenotypes instead of simple distance measurements. One of the more successful 

adaptations of using 3D facial meshes to model and analyze facial morphology comes from Claes 

et al., 2018, where they were able to identify 38 loci related to facial morphology28,29. It is also 

important to note that these facial genome-wide association studies (GWAS), and GWAS in 

general, are adapted to specifically analyze independent variant effects on a phenotype. Because 

of this, potential variant interactions or pathway contributions are often left unexplored.   
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Therefore, the research presented here attempts to fill in the gaps pertaining to human iris color 

and facial morphology. I also present a tool that may help other researchers accelerate their own 

work by making bioinformatic tools more easily accessible to those without a computer 

programming background. 

1.1 SQL Servers 

Often researchers find it necessary to work with and archive vast amounts of data for research. 

From storing small output files from an analysis to large images or genomic data, the success of 

research is partially dependent upon data management and organization. However, there are many 

methods of storing data from a folder of excel or word documents to databases created via 

Microsoft Access to large production servers like SQL Server (Microsoft, Redmond, WA), 

MySQL (Oracle, Redwood City, CA), and Oracle Database (Oracle, Redwood City, CA). The 

choice of implementation method is often tied to the analysis that is being conducted, the level of 

experience of the user, and how much effort the user wishes to setup the data repository. Storing 

data via Microsoft Excel and Word are quickly implemented but are not designed to store large 

amounts of data since they are not as easily managed. Conversely, production servers take longer 

to setup, but once they are established allow for easy manipulation of terabyte size amounts of 

data. As production servers are designed for small to large corporations, they also come with a 

suite of analysis tools that allow for quick in-place (i.e. the data does not have to be extracted first) 

dataset analysis. However, despite these options, problems arise when scientists exceed the limits 

of easy-to-implement solutions. The problems that result from attempting to store large amounts 

of data not maintained by a database can range from disorganized data that cannot be extracted 

quickly to loss of data due to file corruption. The ability to maintain organizational schemes 

between lab personnel also grows to be a challenge when a server-managed database is not being 

used. The three main advantages of using SQL server are 1) organization, 2) ease of manipulation, 

and 3) security. Relational databases are especially useful since the lab collects many types of data 

(i.e. spectrophotometry, questionnaires, and pictures) that relate to a certain study participant. 

Since relational databases are setup via numerous primary and secondary keys and allow for many 

data entry rules, this forces data being entered to be organized. For example, rules exist so that no 

two people may have the same questionnaire number or that number fields cannot contain non-

numerical data. Second, SQL servers are indexed, which allows for their fast lookup speeds. For 
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example, with SQL it is possible to extract a single picture out of a group of 21,000 pictures in less 

than 10 seconds. Since SQL Servers are designed for enterprise, they have enterprise level security 

features, which helps keeps sensitive subject data secure. Another benefit of the lab’s SQL server 

is that it is easily portable allowing for fast and easy data sharing between collaborators. 

1.2 Genome Wide Association Studies and META Analyses 

Genome-wide-association studies or GWAS are a form of observational study that attempts to 

draw correlations between a phenotype of interest and genotypic variants that are normally 

scattered throughout the genome (i.e. genome wide). To perform a GWAS, a researcher must have 

access to both phenotypic data and its corresponding genotypic data. Prior to analysis however, 

multiple factors must be investigated in order to control for a variety of confounders. First, a 

researcher may want to increase his or her genomic coverage since chances are the genotypic data 

is genotyped on a SNP array due to cost restraints. To increase coverage, the computationally 

demanding task of phasing and imputing the genotyped data must be performed in tandem with a 

sequenced reference genome such as the 1000 Genomes Project30. Through this process the non-

genotyped “gaps” in the researcher’s SNP array will be filled with predicted imputed data. 

Imputation quality metrics such as IMPUTE’s31,32 INFO or Minimach’s33 R2 must also be 

consulted in order to remove any poorly imputed variants. Once the phenotypes and genotypes 

have been assembled, the researcher must address a variety of quality control (QC) measures prior 

to GWAS. One confounder is ancestry, which can be assessed visually through a principal 

component analysis (PCA) or non-visually via programs, such as Eigensoft34, that automatically 

removes ancestral outliers. As one of the GWAS assumptions is having a group of independent 

non-related individuals, familial relatedness (e.g. mother-daughter relationships) must also be 

assessed and corrected for. Other QC steps, such as assessing for genotype and individual 

missingness rates, Hardy-Weinberg Equilibrium (HWE), excessive heterozygosity rates, and 

minor allele frequencies (MAF), should also be analyzed prior to performing GWAS. However, 

once all confounders have been addressed, a basic linear or logistic-based regression GWAS can 

be performed depending on whether the phenotype of interest is quantitative or categorical, 

respectively. GWAS results are often displayed in the form of Manhattan plots (See Figure 1.1) 

which displays the variant being tested (x-axis by chromosome and position) versus the reported 

p-value (y-axis on a -log10 scale). Since the test analyzes anywhere from several hundred thousand 



 

 

15 

to millions of variants at one time, multiple testing corrections, such as the family wise error rate 

(FWER) correction of Bonferroni35 (visualized by the black line occurring at -log10 ~ 7.5 in Figure 

1.1), or the more lenient false discovery rate (FDR) correction of Benjamini-Hochberg36 

(visualized as the fainter dashed line occurring at -log10 ~ 5 in Figure 1.1) must be performed in 

order to reduce the number of false positives. Alternatively, more advanced GWAS analyses such 

as the linear-mixed model (LMM), which natively creates a genetic relatedness model that corrects 

for cryptic and familiar relatedness prior to running a GWAS may also be performed. Lastly, 

META analyses may be performed in cases where a GWAS is not powerful enough to detect 

associated variants and the researcher wishes to combine GWAS together. However, what is 

unique about META analyses is that it only requires a significance value (e.g. a p-value), an effect 

size (e.g. an odds-ratio or beta), a sample size, and a variant ID. In this way, researchers who do 

not wish, or cannot share their raw genotypic or phenotypic data, can safely share their analysis 

output with a fellow researcher to perform the combined analysis. Luckily a variety of free 

bioinformatic tools exist that can perform a variety of QC, ancestry and relatedness analyses, and 

eventually the GWAS itself, such as PLINK37,38, GCTA39, and GEMMA40. However, these tools 

often have their own unique syntax, as well as their own input and output requirements. Simply 

put, bioinformatic tools do not make it easy for a researcher to output a file in one program and 

enter it into another for a follow-up analysis. 

 

Figure 1.1. An Example Manhattan Plot 
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1.3 Iris Pigmentation – A Biological Background 

Human pigmentation is highly visible and one of the most variable traits seen between individuals 

and populations. Much of this variation is due to an individual’s geography and ancestry, since 

pigmentation has largely been seen to serve as a protection mechanism against UV damage, most 

notable with skin color41 and even iris color42. As pigmentation is highly integrated into various 

biological, anthropological, and forensic-based applications, understanding its complex 

composition on a molecular and genetic level is very useful. 

  

On the molecular level, iris color is the result of the pigment melanin43. Melanin pigments are 

produced within specialized organelles called melanosomes (See Figure 1.2, which is based on the 

figures from Wasmeier et al., 2008 and Scherer et al., 201043,44), which are responsible for 

synthesizing, storing, and transporting the pigment via dendrites43. The final destination of these 

pigments varies depending on the location, with melanosomes being deposited into the iris stroma 

or the retinal pigment epithelial of the eyes. 

 

Figure 1.2. Melanin Production Pathway 
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There are also two different types of melanin; eumelanin, a dark brown polymer and pheomelanin, 

a red yellow polymer. Both pigments are derivates of the amino acid tyrosine with both forming 

the intermediate DOPA-quinone via the enzyme Tyrosinase45,46. At this stage, if cysteine is present 

then pheomelanin is formed; if not, eumelanin is produced (See Figure 1.3, which is based on the 

figure from Horrell et al., 201547).  

 

Figure 1.3. Chemical Differences Between Eumelanin and Pheomelanin  

Genetically, a number of factors are responsible for the production, transport, and distribution of 

pigment, which ultimately give rise to pigmentation. In general, developmental genes such as stem 

cell factor (SCF) and its receptor KIT, endothelin 3 (ET3) and its endothelin B receptor (EDNBR), 

and several cadherin genes are responsible for the development of melanocytes44,48. Melanocortin 

receptors, specifically MC1R, are located on the surface of melanosomes and either increase the 

production of melanin, if exposed to the alpha-melanoctye-stimulating hormone (alpha-MSH) or 

decrease production if exposed to its ASIP antagonist44,46. This in turn either stimulates or 

suppressed the microphthalmia-associated transcription factor (MITF)49, which either induces or 

silences the production of  tyrosinase (TYR), the protein responsible for synthesizing melanin50, 

and tyrosinase related proteins (TRYP). Other intermembrane proteins that are involved in 
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melanosome survivability include SLC24A5, OCA2, and MATP, whose roles include maintaining 

the stability of the melanosome through regulating pH and transporting small molecules (See 

Figure 1.2)44. 

 

In the iris, several cells are responsible for the eyes visual appearance; uveal melanocytes derived 

from the neural crest, melanocytes in the iris pigment epithelium (IPE) derived from the 

neuroectoderm, and clump cells, which are thought to be of histiocytic origin51–53 (See Figure 

1.454). While all cells contribute to giving eyes their unique color, the uveal melanocytes play the 

largest role. Uveal melanocytes, located primarily in the anterior border layer of the stroma55, 

deposit pigments into the iris stroma (See Figure 1.5, which is a cartoon based on the light 

micrograph found in Clinical Anatomy and Physiology of the Visual System56). In comparison to 

melanocytes in the IPE, uveal melanocytes produce less pigment, and also produce both eumelanin 

and pheomelanin, whereas IPE melanocytes produce mainly eumelanin52,57. More importantly, the 

amount and type of pigment produced in the iris stroma varies, with higher melanin deposition and 

a larger eumelanin to pheomelanin ratio giving rise to darker color irises, and lower melanin 

content and/or smaller ratios yielding lighter colors57. Playing a more minor role in the coloration 

of the iris is the iris pigment epithelium, located on the posterior surface of the iris52. This 

epithelium is heavily pigmented with mostly eumelanin content, regardless of iris color. The IPE 

serves primarily as a protector of the retina by absorbing excess light, thereby minimizing UV 

damage through eumelanin’s ability to reduce free radicals and, in particular, reactive oxygen 

species58. While the IPE always contains a large amount of eumelanin regardless of visible iris 

color, the notable exception is in individuals affected by Oculocutaneous albinism, in which the 

IPE is devoid of pigment, sometimes causing a pink tint to the iris from the blood vessels in the 

retina59. Lastly, clump cells (see Figure 1.5), which do not produce pigment, but rather 

phagocytose melanin, have been hypothesized to scavenge free pigment within the iris and are 

normally located near the sphincter muscle anterior of the IPE55,56. These cells nominally affect 

iris color, but can still be seen as clumps of color near the pupillary zone (i.e. the part of the iris 

that is nearest the pupil) or where the iris attaches to the ciliary body (i.e. near the periphery of the 

iris)60. 
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Figure 1.4. Iris Anatomy 

 

Figure 1.5. Layers of the Iris 
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1.4 Iris Color Phenotyping and Prediction 

As our knowledge of iris pigmentation develops through tools such as GWAS, so too do our 

prediction tools. Initially, GWAS were performed on categorical colors that were defined as blue, 

intermediate, and brown3–6. Through these initial studies, it was found that the primary switch in 

blue vs brown iris color was HERC2 through its regulation of OCA2 with later studies identifying 

other iris color influencing genes such as TYR, TYRP1, IRF4, SLC2A4, and SLC45A211,61–64. Using 

these identified variants, Bayesian10 and non-Bayesian7–9 prediction tools were designed, which 

have the capability of predicting certain iris colors with a high degree of accuracy. For example, 

the IrisPlex model is capable of predicting blue and brown iris color quite well, with an area under 

the receiver operating curve (AUC) of 0.91 for blue and 0.93 for brown eyes11. However, for the 

more intermediate colors, prediction AUC drops to 0.73 due to a lack of knowledge surrounding 

intermediate iris colors11. Therefore, a more in-depth look at the wide-ranging phenotype that is 

currently classified as ‘intermediate’ iris color is warranted. However, intermediate iris colors are 

often highly diverse and thus, a novel method of quantifying iris color may first need to be 

developed. Moving from categorical color to a more realistic quantitative measurement is needed 

to more thoroughly measure these intermediate colors. Quantitative measurement techniques 

developed and presented in Liu et al., 2010 and Wollstein et al., 2017 (See Figure 1.6, which 

demonstrates our use of the software used in Wollstein et al., 2017), used in tandem with traditional 

GWAS may be the solution to identifying novel variants associated with intermediate color that 

have eluded iris pigmentation studies thus far11,65.  

 

Figure 1.6. Quantitatively Measuring Iris Color. An example of quantitatively measuring iris 

color where perceived blue areas of an actual iris image (left) is represented on the classified 

image (right) in blue, perceived green/yellow in pink, light brown in green, dark brown in red, 

and crypts (i.e. a lack of color) in yellow 
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1.5 Normal Variation in Facial Morphology 

It has already been concluded from twin studies that facial morphologies are based, to a large 

extent, on genetic composition due to their high rates of heritability24,66. However, with any genetic 

interaction that influences a phenotype, environment also has to be taken into consideration67,68. 

Age, sex, and ancestral origins can also influence facial morphologies, demonstrated in Williams 

and Slice, 2010, where facial shape was found to be variable in the orbits, zygomatic arches, and 

maxillary alveolar process69. The difficulties of identifying a gene’s interaction on a complex and 

quantitative phenotype such as facial structure, amid other factors that contribute to the final 

phenotype, are but one reason why GWAS on facial morphology are few and far between. Yet, 

new technology such as next generation sequencing, advanced statistical software, and better 

methods of phenotyping face shape, combined with a better understanding of the genes that are 

involved in the determination of facial structure are allowing these genetic association studies to 

become more effective at finding increased numbers of facial morphology variants. 

 

Since 2010 an increasing amount of studies have shown promise in associating genes/SNPs with 

facial structure amid a cohort of confounding variables (such as age, sex, and ancestral origin). 

Many of these first studies rely primarily on facial landmarking and then measuring the distance 

between said landmarks to define a phenotype (See Figure 1.7). Studies such as Paternoster et al., 

2012 used principal components and 3D distances of facial features in a sample of Europeans in 

order to determine genetic-phenotypic associations. Paternoster was able to identify the relation 

between rs7559271 in PAX3, a gene known to be associated with Waardenburg syndrome Type I, 

and nasion to midenocanthion distance70. In 2012, a study was published by Liu et al. who also 

used 2D facial landmarking but supplemented that method with 3D MRI scans in order to better 

define the landmark in a three-dimensional space. By assessing Europeans, Liu et al., 2012 was 

able to determine that intronic SNPs of PRDM16, PAX3, COL17A1, C5orf50, and TP63 were 

associated with facial morphology24. The researchers also noted that PAX3 was one of the six genes 

associated with Waardenburg syndrome25, and that variations in PAX3 were associated with broad 

nasal root and an increase in the distance between corners of the eyes24. Mutations in TP63, a gene 

that encodes a transcription factor that helps to regulate developmental signaling and epithelial 

morphogenesis71, was found to cause facial defects such as Ectrodactyly-ectodermal dysplasia-

cleft lip/palate72,73. Variations in TP63 were also associated with the distance between eyeballs24. 
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Figure 1.7. An Example of Human Facial Landmarking 

Peng et al., 2013 performed a similar GWAS except the sample population was predominantly of 

Asian ancestral origin. Similarly, their genes of interest were selected from previous studies that 

had identified genes associated with diseased phenotypes such as Laron, Pfeiffer, and Kallmann 

syndrome. The researchers specifically identified SNPs from GHR, FGFR1, and IRF674. Variants 

in ENPP1 was found by Ermakov et al., 2010 to be essential in bone physiology and were 

associated with upper facial height in Chuvashians75. GHR was found to be correlated with 

mandible shape in Japanese and Chinese individuals76–78, FGFR1 is a genetic marker associated 

with the cephalic index in multiple populations79, and IRF6 has already been discussed as having 
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an association with the formation of non-syndromic cleft lip and palate16–18. Using these SNPs and 

the 3D imagery data collected from the participants within the dataset, the researchers attempted 

to correlate SNPs with distances between 15 landmark distances. The authors do find several 

correlations between their SNPs of interest and facial morphology, particularly rs642961 (IRF6) 

and how its variants may contribute to more protrusive and thicker lips. In 2016, Adhikari et al. 

used 3D morphology measurements and a Euclidean distance phenotyping approach on South 

Americans to identify variants within DCHS2, RUNX2, GLI3, and PAX1 that influence nose 

morphology, while they identified a variant within EDAR that influences chin protrusion27.  

 

Thus far, facial morphology GWAS have operated under the assumption that variants contribute 

to distances between two points, however, in 2018 Claes et al. attempted to model facial 

morphology in a different manner. Instead of measuring distances between points, they captured 

facial variation within a section of the face and performed analyses on those landmark correlations. 

Briefly, the researchers captured 3D photographs of faces and systematically, mapped their dense 

mesh landmarks to a facial average of 2329 individuals and in the process created quasi-landmarks 

(i.e. landmarks created from mapping an actual face onto a ‘mean’ face). These mapped faces were 

then normalized using a generalized Procrustes analysis to make the face symmetric and corrected 

for position and orientation. Facial landmarks were then analyzed via 3D correlation using an RV 

coefficient80, which resulted in a squared similarity matrix that explains the correlations between 

each landmark versus all neighboring landmarks. This correlation matrix was input into a 5-level 

hierarchical spectral clustering procedure, which clustered groupings of landmarks with high 3D 

correlations into 63 total masks on five separate layers (see Figure 1.8). After normalizing each 

segment using a generalized Procrustes analysis, each segment, with its unique quasi-landmarks, 

were subjected to a principal component analysis, to determine the significant components 

contributing to that particular facial shape28. As a result, the group was able to identify 38 loci 

associated with facial morphology, of which 15 were replicated in a separate European cohort. 

Four loci were novel, while the eleven others were found to have literature supporting their 

connection to cranio-facial morphology.  
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Figure 1.8. Hierarchical Clustering of Face Shape. Facial segmentation was performed on a 

dataset of N = 2329. First, a squared similarity matrix was constructed based on a landmark and 

all other neighboring 3D landmarks. Subsequently, a 5-level hierarchical spectral clustering was 

performed on this matrix that resulted in 63 total masks 

By examining the progression of these studies, it is possible to see that researchers skipped a 

categorical approach to facial phenotyping, as was seen with the first iris color GWAS, and moved 

straight into a quantitative measure. By and large, these distance measurement GWAS have 

yielded plenty of genes that have later been found to be associated with facial morphology 

including PAX3, PRDM16, and C5orf50. However, as facial morphology continues to evolve and 
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these old forms of measurements lose their effectiveness due to a lack of discovered novel SNPs, 

our methods of phenotyping this complex phenotype must evolve as well. 

1.6 Canonical Correlation (Cancorr) and Cancorr Implementation in GWAS 

A canonical correlation is a multivariate analysis of correlation, where the user wishes to analyze 

multiple X variants with multiple Y variants. The analysis has two parts: 1) variable grouping into 

latent variables (i.e. canonical variates or CV) where CVX1 = a1x1 + a2x2 + a3x3 + … anxn and 

CVY1 = b1y1 + b2y2 + b3y3 + … bmym  and, 2) maximizing the correlation between canonical 

variates by adjusting the weights (a1…an and b1…bn). The output is termed a canonical pair which 

summarizes the relationship between subgroupings of the X and Y variables. Multiple canonical 

pairs are possible since different sub-groupings of either the X and or Y variables may be correlated 

with the Y or X subgroupings respectively. As a result, users may be able to explore higher 

dimensional correlations between several groups (e.g. X vs Y variables) in terms of the 

significance of the canonical pair and their respective variable standardized loadings, which gives 

insight into the relative effect or correlations one variable has with variables on the same size of 

the equation (e.g. the effect a1x1 has on  CVX1 = a1x1 + a2x2 + a3x3 + …  anxn) and the opposite (e.g. 

the effect b1y1 has on  CVX1 = a1x1 + a2x2 + a3x3 + …  anxn). 

 

The implementation of canonical correlation to be used with a GWAS analysis stems from the idea 

that each SNP can be associated with multiple univariates instead of a single univariable that is 

normally conducted in a GWAS. In the analysis from Claes et al., 201828, an individual SNP (i.e. 

CVSNP = a1SNP) was input into a canonical correlation with a grouping of significant principal 

components found via the hierarchical spectral clustering and Procrustes normalization so that 

CVPC = b1PC1 + b2PC2 + b3PC3 + … bmPCm. When analyzed, this yields the following general 

equation: CVSNP = CVPC for each canonical pair. These identified CVPC’s, which are simply a 

subset combination of PC’s, can then be used as a projection target for the originally calculated 

PC’s, rendering a single latent variable that can be used to perform a linear model based GWAS. 

While this method is robust it does require a substantial amount of computing power since multiple 

regressions are being calculated on each variant in the GWAS. In Claes et al., 2018, Matlab 2016b 

was used to perform the calculation, and while they do not provide such details, it would have 
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required, at a minimum, a powerful cluster computer to perform such analyses in parallel, and 

expertise in resource management. 

1.7 Structural Equation Modeling 

Structural Equation Modeling (SEM) is a form of causal modeling that attempts to define the 

cause-effect relationship between observed and unobserved variables. Mathematically, SEM’s are 

a combination of a measurement model which is constructed via confirmatory factor analysis, and 

the structural model that utilizes path analysis. Once the full SEM model is specified, parameter 

estimation is conducted by comparing the real covariance matrix between parameters and the 

estimated matrix created by numerical maximization. For this model, numerical maximization was 

carried out via maximum likelihood (ML) estimation. When the model converges on a solution, a 

host of fit indices are populated, which indicates the strength of how well the SEM models the 

data. If the fit indices indicate a good fitting model, then the parameters estimated (i.e. the 

regression weights) in the model may be interpreted. Here I use SEM to simultaneously model the 

polygenic and covariate genotypic effects of facial phenotypes. The analysis condenses the 

multidimensional facial phenotype from many principal components down to a single univariate 

phenotype via built-in dimensional reduction. While SEM’s are traditionally used to analyze a 

relatively small number of measured indicators and latent factors with complex interactions on 

questionnaire datasets, this analysis sought to analyze and rank the effects of multiple genotypes 

on a phenotype. The output of which was to understand which genetic variants best explain the 

variance observed within each facial segment. In addition, most SEM’s can be built visually with 

graphical statistical packages such as the AMOS SPSS module81, however, for larger analyses that 

require hundreds of interactions, inputting the model in a graphical format becomes impractical. 

Thus, more robust packages such as the R-based Lavaan82 package or the Mplus83 software that 

allow for command line model input become more useful. As eluded to earlier with canonical 

correlation, the amount of computational power required to perform SEM’s on GWAS-sized 

genotypic and phenotypic data requires an exceptional amount of resources that normally exceeds 

the limits of a high-powered desktop computer. 
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1.8 Research Aims 

The aims of the research that will be presented here attempt to better our understanding of the 

genes that impact iris pigmentation and its prediction. It will be shown that a more thorough and 

quantitative phenotyping approach, especially regarding the intermediate iris colors of hazel and 

perceived green, is better suited to identify variants contributing to these phenotypes through 

GWAS analyses. It will also be demonstrated that the future of iris pigmentation prediction may 

lie in a quantitative model instead of a categorical model of prediction. This research will also 

provide a better understanding of facial morphology by performing a simple face/jaw shape 

GWAS, in addition to using more advanced multivariate statistical modeling to identify new 

variants and gene interaction networks that are active in facial morphology segments.  
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 ODYSSEY: A SEMI-AUTOMATED PIPELINE FOR 

PHASING, IMPUTATION, AND ANALYSIS OF GENOME-WIDE 

GENETIC DATA 

Eller, R. J., Janga, S. C. & Walsh, S. Odyssey: a semi-automated pipeline for phasing, imputation, 

and analysis of genome-wide genetic data. BMC bioinformatics 20, 364 (2019). 

2.1 Introduction 

Genome-wide association studies (GWAS) have grown in popularity thanks to the increased 

availability of genome-wide data and sequence information. GWAS, while successful at 

identifying candidate variants, has also been aided by imputation methods31,84,85 that increase 

coverage and allow for increased sensitivity. Imputation is often performed to fill in the genomic 

gaps, increase statistical power, and to “standardize” datasets so they can be combined with others 

that are genotyped with different arrays86. Over the last few decades several reference datasets 

have become available to use for imputation, such as the international HapMap Project in 200387, 

the 1000 Genome Project in 2015,30 the Haplotype Reference Consortium (HRC) in 201688, and 

the more recently announced All of US Research Program currently being conducted by the NIH 

in 201889. Increasing the number and diversity of reference panels allow for increased flexibility 

in how imputation is performed for a particular sample set. Van Rheenen et al., 2016 has shown 

that custom reference panels that combine an existing reference panel with sequence data collected 

from a subset of individuals within their analysis cohort may also increase imputation accuracy90. 

 

Current imputation options include the popular free-to-use imputation servers such as the 

Michigan Imputation Server (https://imputationserver.sph.umich.edu/) and the Sanger Imputation 

Server (https://imputation.sanger.ac.uk/), which provide an online solution to imputation. There 

are also offline solutions such as the Michigan Imputation Server Docker33, and imputation 

packages such as Python’s Genipe91. The strengths of online solutions are that they normally 

require no setup and are easy to use. However, a major drawback is that they require data to be 

sent off-site (albeit via a secure SFTP or SCP connection in the cases of the Sanger and Michigan 

Imputation Servers), which may or may not be possible for a researcher due to ethical or legal 

constraints. As with most online servers users may need to sit in a queue before their job is run, 

https://imputationserver.sph.umich.edu/
https://imputation.sanger.ac.uk/
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and users are often restricted by analysis options, such as the choice of phasing/imputation 

programs as well as the reference panels the sites support. At the time of writing, both the Sanger 

and Michigan Imputation Servers support three main panels: the HRC, 1000 Genomes (Phase 3), 

and the CAAPA African American Panel92. Sanger also provides access to the UK10K dataset, 

which is currently unsupported by the Michigan Imputation Server. It is important to note that 

apart from Sanger’s option of imputing with a combined UK10K dataset and 1000 Genomes 

Reference panel, the online solutions do not give much flexibility if the user wishes to combine 

several reference panels or integrate collected data into a custom reference set to enrich the 

imputation. Users must then opt for offline solutions, such as the Michigan Imputation Server 

Docker image and Python Packages such as Genipe, that do not require data to be sent offsite and 

provide considerably more flexibility in the imputation analysis as they allow custom reference 

datasets to be installed. However, an issue of using offline solutions is that they need to be 

configured by the user, which may not be straightforward due to the many programs these pipelines 

require as well as their interconnected library dependencies. 

 

While imputation is the main goal of all these platforms, it is imperative that data must be formatted 

properly before submitting it through phasing and imputation. Furthermore, quality control 

measures should be enacted to achieve the highest possible imputation accuracy. While a 

researcher should know what quality control measures they would like to use for imputation, there 

are inconsistencies between different programs and their default settings. The established online 

imputation servers perform some filters for minor allele frequency, duplicated variant detection, 

and VCF integrity, but most of the data cleanup is left to the user. While this data prep must be 

done offline, most of these platforms provide a thorough walk-through on how to implement these 

steps. It is also worth noting that the offline docker solution, which is similar to the Michigan 

Imputation Server, provides guidance with quality control but like its online counterpart does not 

perform it automatically. Thus, the responsibility of proper data preparation falls largely on the 

user and their ability to find acceptable imputation quality control thresholds, such as those found 

in Manolio et al., 200793. In addition to cleaning the data, the user is expected to provide data in a 

compatible format for the imputation workflow, which is normally a VCF (for the Sanger and 

Michigan Imputation Servers and docker image) or a PLINK .bed/.bim/.fam (for the Genipe 

package). While most commercial genome array software, such as Illumina’s Bead Studio or 
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Affymetrix’s Power Tools, perform these conversions, the user must still rectify any genome array 

compatibility issues, such as remapping incompatible sample data to the same genome build used 

by the imputation reference panel. 

 

Genome-wide association studies that use probabilistic imputation data or dosage data require a 

considerable number of programs for the analysis to be run. Currently, only PLINK 2.037 and 

SNPTEST31,86,94 are capable of performing such analyses, short of writing a custom script. It is 

important to note that additional programs accept dosage data, but subsequently hard-call (i.e. 

probabilistically round) genotypes that are used in downstream analysis. While analyzing hard-

called data is a valid strategy, data is ultimately being altered and may alter study outcomes. In 

addition to having few analysis programs that can analyze dosage data, it is often cumbersome and 

time consuming to input data into these programs. Dosage data often needs to be concatenated or 

merged (as imputation is normally done in segments) and then converted into a format accepted 

by PLINK 2.0 or SNPTEST in a manner that does not alter the data as previously described. 

Further complicating the matter of compatibility is the continual evolution of dosage data formats, 

such as Oxford’s .bgen and PLINK’s .pgen, since programs may not accept both file formats or 

even certain version iterations of a particular filetype. Due to the aforementioned issues, the 

transition between imputation and data analysis is the largest hurdle to analyzing imputation data 

and is probably an area in the largest need of improvement in imputation analysis workflows. 

 

Admixture considerations while performing a GWAS lie primarily in performing a separate 

stratified analysis using ancestry informative programs such as the model-based Admixture95 or 

PCA-based Eigensoft34 programs, and therefore require knowledge of these additional programs 

to account for population stratification prior to GWAS analyses. Of course, another option is to 

perform the analysis via a program that supports a linear mixed model (LMM) and therefore does 

not require pre-ancestry testing, such as BOLT-LMM96 or GEMMA40, which takes ancestral 

interactions into account during the association analyses97. However, this may not be the desired 

algorithm of choice for most GWAS. 

 

While much effort is expended on performing the analyses, it is essential to remember that 

dissemination of the results in an easy to understand manner is equally as important. Result 
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condensation and visualization via charts, graphs, and summary tables is therefore important in 

any imputation analysis workflow. Advanced R plotting packages, such as Plotly98, allow close 

integration with association analyses, providing users with interactive Manhattan and Quantile-

Quantile (QQ) plots that give an overview of the GWAS results. Plotly data visualizations are also 

invaluable when assessing admixture-based PCA plots since the plots are often three-dimensional 

and more easily to interpret as dynamic images. At present, incorporation of data visualization into 

a GWAS pipeline is not present on any previously published workflows. 

 

Genipe is one of the first to successfully integrate many of the imputation and GWAS workflow 

steps, as described above, into a single, easy-to-use package. The Python package is designed to 

facilitate the transfer of data through phasing, imputation, and various analyses using a variety of 

program dependencies such as PLINK, SHAPEIT, IMPUTE, and Python analysis packages as well 

as various custom analysis scripts. Similar to other imputation platforms, Genipe lacks built-in 

pre-imputation quality control measures, instead outsourcing quality control to the user via 

recommendations in the user manual. In addition, the program gives the option of running logistic 

and linear analyses, but fails to assess sample admixture, which would require the user to refer to 

external admixture analysis programs prior to running these analyses. However, Genipe does give 

the option of running an LMM, which historically has shown more success than naive logistic and 

linear analyses for admixed samples99. In addition, the program does not provide ways to visualize 

the association results, which would have provided a nice complement to its large repertoire of 

analysis options. Finally, while it is easy to setup Genipe’s Python-based framework, it does 

require the user to manually install and configure several of its dependencies. 

 

Essentially, it would be beneficial from a time and resource perspective to have an imputation 

solution that can leverage the easy setup of online imputation servers with the flexibility of local 

imputation packages. Being able to control the workflow’s options and automations steps from a 

single configuration file would also be an advantage over programs that require the user to refer 

to a lengthy user-manual describing the necessary flags needed to implement a program feature. 

Here we describe a flexible and easy-to-use local pipeline that not only phases and imputes data, 

but also automates data preparation, organization, quality control, admixture and association 

analysis, and visualization of genome-wide data. This pipeline was designed to be compatible with 
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all major operating systems and is also scalable, having the ability to leverage the computational 

power of HPS, facilitating parallelization and reducing GWAS run time from start to finish. 

2.2 Methods 

Several obstacles of many pipelines that contain multiple dependencies is portability, compatibility, 

and in the case of this resource intensive process, scalability. Odyssey attempts to address each of 

these issues by utilizing Singularity100, which is similar to the commonly used Docker container 

solution (https://www.docker.com/). All of Odyssey’s dependencies save two (IMPUTE4 due to 

licensing restrictions and GNU-Parallel due to technical limitations), are packaged into a 

Singularity container, which is contained within the Odyssey Github repository. Therefore, 

running Odyssey is as easy as installing Singularity on the host system allowing for increased 

portability. Since Singularity can be run on all major operating systems including Linux, MacOS, 

and Windows, this allows Odyssey to be compatible on the same systems. Unlike Docker, 

Singularity was created with High-Performance Systems in mind, and thanks to its unique handing 

of user security settings, is employed on many HPS around the world allowing Odyssey to scale 

from small desktops to large cluster computing systems. 

 

Odyssey is primarily a collection of Bash and R scripts housed within a Github repository that are 

controlled by a single configuration text file. Researchers who wish to use the main functions of 

Odyssey would thus only need to interact with a single file that contains all the “flags” that affect 

how Odyssey behaves. Whereas other programs are controlled via command line by specifying 

flags and their subsequent options, Odyssey, explicitly states its options (as well as a small 

description of its purpose), which partially eliminates the need to refer to a user manual. 

 

Odyssey also relies on a set of dependent programs, which are all installed and configured (save 

IMPUTE4 and GNU-Parallel) on startup, to perform the pipeline’s main tasks. These 

bioinformatic programs include PLINK37 and BCFTools101 to perform quality control and analysis, 

SHAPEIT2102 and Eagle2103 for phasing, IMPUTE431,32 and Minimac433 for imputation, 

SNPTEST31,86,94 for post-imputation quality control reporting, R as a platform for visualization 

and population stratification analysis, and GNU-Parallel104 for increasing throughput. The pipeline 

is divided into the following main steps (see Figure 2.1). 

https://www.docker.com/
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Figure 2.1. Odyssey Workflow. Odyssey performs 4 steps after data cleanup: Pre-Imputation 

Quality Control, Phasing, Imputation, and GWAS Analysis. Data can be easily removed from the 

pipeline at the ends of each major step. A Population Stratification and Phenotype Prep Module 

are provided, which assists in the removal of ancestral backgrounds deemed unwanted though a 

PCA-based approach and normalizing phenotypes 



 

 

34 

Step 0 provides a range of data cleanup options designed to take genotype data from a sequencer 

and prepare it for imputation and downstream analysis. The input criteria for Odyssey is a 

PLINK .bed/.bim/.fam. While there are a range of genotyping platforms, Illumina and Affymetrix 

were used as a starting point for which there are tools (i.e. BeadStudio with the PLINK Plugin, 

and Affymetrix Power Tools respectively) to convert raw array data into PLINK format. The 

Remapping Module in Step 0 gives the option of remapping input data to the genome build used 

in the imputation reference panel by utilizing NCBI’s Coordinate Remapping Service 

(https://www.ncbi.nlm.nih.gov/genome/tools/remap). The Data Prep Module provides the option 

of using BCFTool’s “fixref” plugin to correct strand orientation errors on the input data so that it 

matches a given reference dataset, which helps improve imputation as well as reducing the chance 

of getting an imputation error downstream. Both modules within Step 0 are optional and may be 

used if needed. 

 

Step 1 calculates quality control metrics (including missingness, minor allele frequency, 

relatedness, etc.) with PLINK, and visualizes the data to better inform the use of the nature of the 

dataset. In addition, Odyssey provides the option to filter out variants that do not pass the default 

thresholds, which while set based on current practices93, can be modified from Odyssey’s 

configuration file. Quality controlled data is separated by chromosome and sent to Step 2 where it 

is phased with either SHAPEIT or Eagle, depending on user preference. Like most other 

imputation pipelines, Odyssey supports the phasing, imputation, and analysis of the X 

chromosome. At the end of Step 2, an internal check is performed to determine whether all 

chromosomes were phased properly. If a chromosome failed imputation, Odyssey displays which 

chromosome failed, why it failed (by returning the phasing error message), and can be set to re-

phase the offending chromosome/s. 

 

In Step 3 phased chromosomal data is imputed with IMPUTE or Minimac, depending on user 

preference, in chromosomal segments to ease the computational burden of imputation. Following 

imputation, another error check, similar to the error check following Step 2, is performed to check 

for imputation errors and provides guidance on fixing offending segments. Once all the 

chromosomal segments are imputed, a post-imputation quality control check is run, where poorly 

imputed variants are filtered out based on a user-specified IMPUTE INFO or Minimac R2 metric. 

https://www.ncbi.nlm.nih.gov/genome/tools/remap
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The resulting files are converted and merged into a dosage VCF-4.3 with PLINK and BCFTools, 

which can be loaded into most major analysis programs including PLINK and SNPTEST. Odyssey 

also provides a “Custom Reference Panel Creator Module”, which semi-autonomously takes 

several user-provided reference panels (in .hap and .legend formats, which can be created from 

running VCF or PLINK files through SHAPEIT) and merges them together via IMPUTE to create 

a custom imputation reference panel. In this way users are not limited to using the default 1000 

Genome Phase 3 Reference Panel that is downloaded and can thus use Odyssey to tailor their 

imputation runs to their own data. 

 

Step 4 uses the dosage data calculated in Step 3 in addition to a user-provided phenotype file to 

perform a GWAS using PLINK, whose results are parsed, analyzed, and visualized in R via a 

summarized table, a Quantile-Quantile plot, and an interactive Manhattan plot using several R 

packages. In addition, a Population Stratification Module can be run prior to performing the 

GWAS, which visualizes the ancestral background of cohort individuals. Then, users can either 

incorporate this ancestry information into the final GWAS as a covariate or exclude individuals 

who lie outside of an acceptable ancestral background. This exclusion method is accomplished via 

an Eigensoft-like method34 in which a reference set (e.g. the 1000 Genomes reference data) is 

combined with cohort data in a Principal Component Analysis to establish an X-dimensional 

centroid that identifies the ancestry the user wishes to retain. Outliers that fall outside of the X-

dimensional centroid are determined based on a specified standard deviation or inter quartile range 

cutoff. Unlike Eigensoft, the exclusion method performed by Odyssey only occurs once as opposed 

to Eigensoft’s iterative exclusion method. 

 

Since imputation creates many files, Odyssey organizes all the data by grouping it into 6 folders 

(one folder for each step including a summary project folder that contains project meta data 

collected from each step) and provides a single dosage VCF.gz output that can be manipulated and 

viewed with programs such as PLINK, SNPTEST, or BCFTools. Odyssey also provides support 

for archiving multiple imputation runs and GWAS analyses since data is organized in the 6 folders 

within discrete “Project” directories. In this way a user may run multiple GWAS analyses or 

Imputation runs without worrying about data being overwritten. As an added benefit these 

modularized projects allow the user to zip and extract data at the end of each step. In this way, raw 



 

 

36 

project data or the summarized results folder can be easily shared with collaborators and even 

integrated within their Odyssey pipeline for further analysis. 

2.3 Results 

Odyssey provides a user manual (See Appendix A), a tutorial, and a publicly available HGDP 

dataset105 (http://www.hagsc.org/hgdp/files.html) to illustrate a sample workflow for new users. 

Benchmarking was conducted on Indiana University’s large memory HPS, Carbonate. Carbonate 

contains 72 Lenovo NeXtScale nx360 M5 server compute nodes containing 12-core Intel Xeon 

E5–2680 v3 CPUs and 256 GB of RAM, in addition to 8 large-memory compute nodes containing 

512 GB of RAM. RAM and CPU usage metrics were collected using the collectl utility 

(http://collectl.sourceforge.net/). To provide a baseline estimate of the resources needed by 

Odyssey for an imputation job, benchmarking was conducted using 3 CPU’s when applicable. 

 

The Human Genome Diversity Project (HGDP) dataset of 940 individuals with 542 K genetic 

markers (after quality control) was used in a SHAPEIT-IMPUTE and Eagle-Minimac workflow 

to show Odyssey’s performance metrics. A breakdown of these benchmarks for each step can be 

found in Appendix B Tables B1 and B2, in addition to real-time analyses in Appendix B Figures 

B1-B11. To summarize, all 940 individuals were cleaned, pre-imputation quality-controlled, 

phased, imputed, post-imputation quality controlled, analyzed (by performing a linear regression 

on the dosage data and randomly generated phenotypic data), and visualized within 8 h when using 

SHAPEIT-IMPUTE and within 3 h when using the Eagle-Minimac workflow. Performing the 

optional Population Stratification add-in using the HGDP dataset and the 1000 Genomes reference 

set to remove non-European individuals took approximately 20 min. One of the major steps, 

imputation, using the 1000 Genomes Phase 3 reference panel provided by IMPUTE 

(https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html), imputed approximately 40 M 

(post-QC) genotypes from 542 k input genotypes in approximately 20 min by running the 

SHAPEIT-IMPUTE workflow on Carbonate’s hyperthreaded Xeon E5–2680 CPU’s, which 

performed 100 to 200 concurrent jobs. Conversely, when running the Eagle-Minimac workflow 

on the same hardware, using the same input genotypes, and a 1000 Genomes Phase 3 reference 

panel provided by the Minimac4 website (https://genome.sph.umich.edu/wiki/Minimac4), 

imputation took 45 min and 25.4 M (post-QC) variants were imputed. Therefore, in this 

http://www.hagsc.org/hgdp/files.html
http://collectl.sourceforge.net/
https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html
https://genome.sph.umich.edu/wiki/Minimac4
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comparison, although the choice of the Eagle-Minimac workflow was faster, the total number of 

variants available post QC for GWAS was only 64% of the total variants available when 

implementing the SHAPEIT-IMPUTE workflow under a set 0.3 INFO score threshold. This 

disparity could be due to the fact that imputation quality control cutoffs need to be adjusted when 

using alternative imputation programs and that reference panels are curated differently (e.g. some 

variants may be taken out of a reference panel to simplify the imputation analysis). These factors 

are all important considerations when choosing a workflow to help maximize the effectiveness of 

an imputation analysis. However, when all these aspects are held equal as shown by Liu et al., 

2015106, the accuracy differences between imputation workflows, specifically IMPUTE v Minimac, 

are small. 

 

While a direct analysis with the popular online solutions, such as the Sanger Imputation Server, 

could not be easily measured (due to the randomness of queue wait times), in general a small 

dataset (N~ 900 with 550 K markers) could be submitted to Sanger and returned within similar 

time frames. This is expected due to the underlying programs that runs Odyssey, the Sanger and 

Michigan Imputation Server, and Genipe are similar, if not identical, and thus have similar time 

and resource requirements. Thus, in general the speed of the analysis will primarily depend on the 

hardware available to the user. While the runtime of the analyses will be similar, the setup time of 

these pipelines vary depending on the amount of data prep, the configuration of the imputation 

solutions, and the input of imputation options. Odyssey attempts to minimize setup time by 

employing modules that streamlines the data prep process, utilizing Singularity, which minimizes 

the time needed to configure the pipeline, and using a configuration file, which centralizes control 

of the pipeline and minimizes the need to constantly refer to a reference manual to lookup program 

options. 

 

In the future, Odyssey’s capabilities will be further improved via implementation into domain-

specific language (DSL) implicit frameworks such as Snakemake107 and by continuing to explore 

routes to optimize the pipeline to save time and space. 
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2.4 Conclusion 

In conclusion, Odyssey allows quick and easier access to genome imputation by scientists who 

seek a local pipeline that is easy to setup, offers the flexibility to accommodate highly customizable 

analyses, and accommodates those who may not be allowed to outsource data to imputation servers. 

Odyssey attempts to take the best parts of the previous local and cloud imputation solutions and 

combine them into a portable, compatible, and scalable pipeline that offers a default simple 

analysis option for those wanting a simple analysis, or a highly customizable advanced analysis 

options for those looking for more complex analysis. Using modular and portable project 

directories, Odyssey is built to maximize collaborations as project data and results may be ported 

from one research group to another. Ultimately, Odyssey condenses a difficult workflow into a 

fast and easy-to-use pipeline that will benefit and complement biologists working with big data 

from multiple admixed cohorts. 
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 QUANTITATIVE IRIS COLOR ASSOCIATION & 

PREDICTION  

3.1 Introduction  

Human iris color, and human pigmentation in general, has been a widely studied topic over the 

last few years. Multiple groups have tried to identify causal variants that affect melanin production 

and all related steps that ultimately result in the deposition of pigment to the area of interest: iris, 

hair follicle, and dermis. Initially, iris color GWAS’s chose to phenotype eye color on the basis of 

a 3-point color scale: blue, intermediate, and brown3–6 out of its simplistic and easy implementation. 

Because of these studies, conducted primarily in Europeans, it was found that HERC2 and OCA2 

are most informative for blue and brown iris phenotypes followed by other genes such as TYR, 

TYRP1, IRF4, SLC2A4, and SLC45A211,61–64. However, as phenotyping with categorical color was 

able to find variants that most effected the color extremes, blue and brown, the analysis setup was 

unable to discern variants that had a profound effect on intermediate hues such as hazel and 

perceived green. Therefore, as the capabilities of categorical phenotyping were quickly becoming 

exhausted, quantitative iris color phenotyping has more recently been explored. Studies such as 

Liu et al., 2010108 measured hue, saturation, and value (HSV) from digital photography in order to 

measure iris color. Other researchers such as Beleza et al., 2013 and Candille et al., 2012 performed 

similar analyses with digital photography, albeit using their own defined color scales109,110. 

However, one disadvantage of all these approaches is that the measurements either fails to capture 

the entire color content of the eye, such as in the analysis of Liu et al., 2010, or color is simplified 

to a custom scale and averaged over the entire iris109,110. Ultimately, phenotyping iris color 

quantitatively may provide the specificity that is needed to ascertain variants that contribute to 

intermediate pigmentation. For example, in 2017 Wollstein et al., used digital photography and a 

support vector machine algorithm to digitally categorize each pixel within a cropped iris image as 

having eumelanin, pheomelanin, or a lack of pigment based on training65. To test against other 

phenotypic quantitation methods, the researchers quantified iris color using their phenotypic 

method as well as the methods outlined in several other papers108,109,111,112 and compared the 

GWAS effect strength of known pigmentation variants. As a result, the researchers found that their 

method yielded greater power due to their quantified phenotype being calculated per pixel and not 

an average over the entire iris. Therefore, by using more detailed and sophisticated phenotyping 
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methods to detect these hard-to-find variants that may affect intermediate colors, it may be possible 

to ascertain if the variant has predictive capabilities. This in turn may supplement existing 

pigmentation prediction systems such as HIrisPlex-S7–9, and in particular, help increase the 

accuracy of the IrisPlex  iris color prediction model, improving its accuracy for the currently hard-

to-predict intermediate category. Currently the model is capable of predicting blue and brown iris 

color with an area under the receiver operating curve (AUC) of 0.91 for blue and 0.93 for brown 

eyes11. However, for the more intermediate colors, prediction AUC drops to 0.73 due to a lack of 

genetic knowledge surrounding intermediate iris color11. Likewise, akin to phenotyping, perhaps 

it is now time to attempt quantitative color prediction from DNA. 

 

The aim of this research was to expand upon and improve the quantitative iris color phenotyping 

first proposed in Frudakis, et al., 200862 and advanced in Wollstein et al. 2017 to determine whether 

the collection of quantitative color from a class phenotype (e.g. determining the percentage of blue 

content within an iris) increases the power of a GWAS to identify novel variants. Second, this 

research used known pigment variants to construct a model that could quantitatively predict a 

categorical color based on the same quantitative scale. 

3.2 Materials & Methods 

3.2.1 IUPUI Dataset Collection and Organization 

To prepare for the various analyses that would be conducted on the dataset collected by the Walsh 

Lab at IUPUI, I prepared, setup, and currently manage a SQL server that houses all the lab’s 

phenotypic and genotypic data. SQL Server data repositories are very efficient and safe, and thus 

an instance of Microsoft SQL Server was deemed the most appropriate for storing the lab’s data.  

The capacity of the collection data, the importance of being able to quickly extract the data for 

analyses and securing the data to protect privacy were all factors that contributed to the SQL Server 

set up. Utilizing the SQL language for setup, deployment, and maintenance, the server was set up 

on the lab’s computers and over 6600 records already collected via questionnaire, 

spectrophotometer, and camera were optimized and input into the server. A script protocol for 

importation and extraction in C# was generated to enter and extract data quickly for use in analyses. 

The data was secured on the computer level, via full volume encryption, server level via service 
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key, as well as on the database level via a database key and auto-expiring certificates. Backups are 

automatically performed on in-lab RAID1 drives, and also off-site to the University’s Scholarly 

Data Archive.  

 

In order to make the data collection process quicker, more efficient, and less error prone, an 

automated online version of our questionnaire was set up and its link placed on our website. This 

minimizes erroneous responses by study participants and reduces the chance of error of lab-

personnel copying a printed questionnaire’s responses into the computer. The questionnaire also 

contains a variety of validation options resulting in real-time validation as participants are filling 

out study questions, which further increases the quality of our questionnaire responses. 

3.2.2 Samples & Genotyping 

3.2.2.1 IUPUI Dataset 

The IUPUI dataset includes 2D images and genotypic data on 3528 individuals collected from 

individuals recruited in Ireland, Lebanon, Indianapolis, IN and Twinsburg, OH (IUPUI IRB 

1409306349). Demographic distributions of the data can be found in Appendix C. Participant’s 

self-reported information on various physical characteristics including age and ancestry was also 

obtained at the time of the collection. Individuals who were below 18 years of age were included 

if they had a parent or legal guardian’s signature. No restrictions were placed on the recruitment 

of participants. Genotyping was performed by the University of Chicago’s DNA Sequencing and 

Genotyping Facility (Chicago, IL) using Illumina’s Infinium Multi-Ethnic Global-8 v1 array 

(Illumina, San Diego, California USA) consisting of 1.78M genome-wide markers. 

3.2.2.2 Penn State University (PSU) Dataset 

The PSU dataset includes three cohorts: Axiom, Euro180, and FEMMES. Collectively 2D images 

and genotypes of the participants from these cohorts were recruited through several studies at the 

Pennsylvania State University and sampled at the following locations: Urbana-Champaign, IL 

(PSU IRB 13103); New York, NY (PSU IRB 45727); Cincinnati, OH (UC IRB 2015-3073); 

Twinsburg, OH (PSU IRB 2503); State College, PA (PSU IRB 44929 and 4320); Austin, TX (PSU 

IRB 44929); and San Antonio, TX (PSU IRB 1278). Participants self-reported information on age, 
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ethnicity, ancestry, and body characteristics, and data were gathered on height and weight. 

Individuals were excluded from the analysis if they were below 18 years of age and if they reported 

a personal history of significant trauma or facial surgery, or any medical condition that might alter 

the structure of the face. No restriction on ancestry or ethnicity was imposed during recruitment. 

PSU participants were genotyped on a variety of arrays as explained below in Table 3.1. 

Table 3.1. Sample and Genotype Counts of PSU Cohorts 

Cohort Name 
Number of 

Individuals 
Variants Genotyped Genotype Array 

Axiom 925 112K 
Affymetrix Axiom 

Custom Array 

Euro180 176 317K Affymetrix Exome Array 

FEMMES 176 518K 23andMe v4 

3.2.2.3 University of Toronto Dataset 

Between 2012 and 2014, 1465 participants of diverse ancestries were recruited for a research study 

on human pigmentation variation. Among these, there were 624 healthy volunteers of European 

ancestry. All 624 participants ranged between 18 and 35 years of age and were recruited using 

online and print advertisements directed towards the University of Toronto student community. A 

personal questionnaire was administered to each participant to determine their age, sex, self-

described eye color and whether or not they had been diagnosed with any pigmentation- related 

diseases or disorders. Individuals were categorized as European if their four grandparents 

originated in any country in Europe, other than Turkey. When information about the grandparents 

was not known, the self-described ancestry of both parents was used to assess biogeographical 

ancestry. This study was approved by the University of Toronto Research and Ethics Board 

(Protocol Reference #27015), and all participants were required to provide written informed 

consent. 

 

A photograph of each participant’s right eye was taken using a Miles Research Professional Iris 

Camera (Miles Research, United States). This camera consists of a Fujifilm Finepix S3 Pro DSLR 
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12-megapixel camera body attached to a 105-mm Nikkor lens. A biometric coaxial cable was used 

to deliver light to the iris at a constant light temperature to maintain color and brightness fidelity 

and reduce the impact of ambient light. All photographs were taken with an ISO of 200, a shutter 

speed of 1/125” and an aperture of f19. Photographs were initially acquired in RAW format and 

later converted to JPEG format using Adobe Camera Raw in Adobe Photoshop CS5 (Adobe 

Systems Incorporated, United States). 

 

A 2-ml saliva sample was obtained from each participant using the Oragene DNA (OG-500) 

collection kit (DNA Genotek, Canada). All participants were instructed not to eat, drink or smoke 

for at least 30 minutes prior to obtaining the sample to ensure maximal sample purity. DNA was 

isolated from each sample using the protocol provided by DNA Genotek and eluted in 500 ml of 

TE (10 mM Tris- HCl, 1 mM EDTA, pH 8.0) Buffer. Genotyping was done using the Multi-Ethnic 

Global Array (MEGA) chip (Illumina Inc., San Diego, California, U.S.A.) at the Clinical 

Genomics Centre (Mount Sinai Hospital, Toronto, Ontario, Canada) using standard protocols. 

Four samples were included as blind duplicates, and the concordance rate was in all samples higher 

than 99.99%. 

3.2.2.4 QIMR Berghofer Medical Research Institute Dataset 

Participants from the QIMR dataset were genotyped on the Illumina Human610-Quad and 

Core+Exome SNP chips. These samples were genotyped in the context of a larger genome-wide 

association project that resulted in the genotyping of 28,028 individuals using the Illumina 317, 

370, 610, 660, Core+Exome, PsychChip, Omni2.5 and OmniExpress SNP chips which included 

data from twins, their siblings and their parents. As these samples were genotyped in the context 

of a larger project, the data were integrated with the larger QIMR genotype project and the data 

were checked for pedigree, sex and Mendelian errors and for non-European ancestry. As the QIMR 

genotyping project included data from the multiple chip sets, to avoid introducing bias to the 

imputed data, individuals genotyped on the Human Hap Illumina chips (the 317, 370, 610, 660K 

chips) were imputed separately from those genotyped on the Omni chips (the Core+Exome, 

PsychChip, Omni2.5 and OmniExpress chips). All participants, and where appropriate their parent 

or guardian, gave informed consent, and all studies were approved by the QIMR Berghofer Human 

Research Ethics Committee. All SNPs are described using the dbSNP ID according to human 
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reference assembly GRCh37.p13. Close-up images of study participants’ irises were taken using 

a DSLR. 

3.2.3 Phenotype Processing and Color Training/Quantitation 

In total 21,555 left and right 2D iris images were sent to IUPUI where they were processed, 

quantified and either returned to collaborators for analysis or analyzed at IUPUI. Image processing 

included selecting the highest quality left and right iris image (if there were duplicates), selecting 

cropping out artifacts such as eyelashes, flashes, the pupil, and converting the JPG to PNG format. 

Images that were too blurry or had substandard lighting were dropped from the analysis. Images 

that displayed a non-standard white balance were also corrected by identifying all images that 

came from the same collection period and using the auto-white balance tool on Adobe Photoshop. 

The tool was used on an approximately 1cm by 1cm area of the sclera of five people within the 

cohort to establish a stable white balance correction adjustment, which was automatically applied 

to everyone in the cohort. 

 

The training for quantitation of categorical color classes came from a Matlab implemented 

algorithm described elsewhere65 and a built in-house Java program by the paper author, that will 

be referred to as IrisQuanter. Briefly, quantitative measurements of quantitative color were 

obtained in two steps: training of the program to recognize types of color classes (categories) and 

quantitation of iris images based on said color classes. 

 

First iris color was segmented into classes of blue, perceived green/yellow, light brown, and dark 

brown. The crypt class was also created as a negative selector since the shadows that were cast 

within the crypts were reporting as dark brown. Thus, when the total color plus crypt percentages 

of an iris were calculated, the crypt percentage was subtracted from the total normalizing for the 

lack of color (i.e. shadows) that crypts cause. Each of these colors (and one crypt class) were 

trained by making a color training file (See Appendix D) that contained a range of pigments 

observed in real-life iris images obtained from participants in the IUPUI and Australian datasets. 

Approximately twenty irises containing significant amounts of the color being trained were used 

in the creation of each training image. These training images were then edited with Python and the 

Data Structures, Matplotlib, Pillow, and NumPy libraries113–116 to remove pixels that did not fall 
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into the hue, saturation, and value (HSV) upper and lower limits that had been set for each color 

category (See Figure 3.1). The aim of this filtering approach was to create color training images 

that did not have pixels with overlapping HSV’s in more than one color training file in order to 

reduce the training error of the IrisQuanter. A screenshot of the IrisQuanter performing its color 

training can be seen in Figure 3.2 and the final HSV color space boundaries for each training 

category can be seen in Figure 3.3. 

 

Figure 3.1. HSV Filtering. A) A light brown iris image prior to HSV filtering for light brown 

pixels. B) The same light brown iris image post HSV filtering. Notice how the darker areas near 

the pupil and the lighter areas in the upper right-hand corner have been trimmed 

 

 

Figure 3.2. IrisQuanter Training. The IrisQuanter uses the defined classes (i.e. the color/crypt 

classes) from the training files we created from real irises. At the bottom the pre-HSV filtered 

HSV separations can be seen allowing for model tuning 
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Figure 3.3. HSV Color Space Boundaries for Color Classes. Each pixel contained with the five 

color/crypt training images are plotted. A-C illustrates the separation between color categories on 

the basis of A) saturation v hue, B) value v hue, and C) value v saturation. Blue points represent 

the blue color category, pink represents the green color category, green represents light brown, 

red represents dark brown, and yellow represents crypts. D-F are identical to A-C except instead 

of illustrating the boundaries of each color class, each point is HSV colored  
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Once the color trainings had been established and all the iris photos were processed, the IrisQuanter 

was given the 2D left and right irises pictures of all the datasets. Quantified image results were 

returned in visual format to assess for accuracy and performance as well as a tabulated output 

which listed the pixel counts for each of the trained categories (see Figure 3.4).  

 

Figure 3.4. Visual Output of IrisQuanter. A-B) The processed left and right iris images are 

shown before quantitation and C-D) after quantitation. Note that the color categories for “blue 

defined” iris pixels are blue, “green defined” are pink, “light brown defined” are green, and 

“dark brown defined” are red. “Crypt defined” are also shown in yellow 

To normalize for the variation in picture sizes and cropping, the pixel counts for each of the color 

classes, and not the crypt category, was summed and divided by the color classes to return the 

percent color of the image. The left and right iris color percentages were also averaged to give the 

final color class percentage for the individual. These percentages were then visualized and found 

to be non-normal. To correct for this, an inverse rank-order normalization was performed which 

drastically improves the normality of the dataset for all iris percentages (See Figure 3.5). 
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Figure 3.5. Inverse Rank-Order Transformation on Iris Phenotypes. A) Blue/Grey average 

percentage of the left and right irises prior to normalization and B) after inverse rank-order 

normalization. Note that the peak on the left side of the graph is caused by values tied for zero 

percent 

We also performed a principal component analysis of all four-color percentages followed by a 

factor analysis of the eigenvectors to yield a single latent color factor, which encompasses all four 

classes. This latent factor was also analyzed for normality and corrected, due to a departure from 

normal (albeit less of a departure than the individual color percentages) via the same inverse rank 

order normalization method. 

3.2.4 Ancestry Analysis 

For the IUPUI and dataset, pre-phased quality controlled genotyped variants underwent a filter for 

Hardy-Weinberg Equilibrium (p < 0.00001) and were merged with the 1000 Genomes Phase 3 

reference dataset. Variants that were in common between the datasets were assessed for linkage 

disequilibrium and then pruned using a 1500 kb window, 50 bp step size, and a 0.4 R2 threshold 

yielding 194K variants. This pruned dataset which contained 2504 individuals from the 1000G 

reference in addition to the IUPUI individuals were used in a principal component analysis to 

construct an ancestry space. Using the eigenvalues who were found to explain more than 5% of 

the total amount of variance, an X-dimensional centroid was created from 503 individuals who 
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were deemed by 1000G to be of European ancestry. This in term created a “European centroid” 

(See Figure 3.6). If participants were 3 standard deviation away from the centroid, they were 

deemed to not be of European descent and were subsequently dropped. As a result, 1081 

individuals were removed from the IUPUI dataset. Ancestry analysis on the PSU dataset was 

performed the same way resulting in the removal of 719 individuals (705 from Axiom, 1 from 

Euro180, and 14 from FEMMES). 

 

Figure 3.6. Analyzing Population Stratification via PCA. 6032 individuals were plotted, 

including 3528 IUPUI individuals of unknown ancestry and 2504 1000 Genome individuals of 

known ancestry, including 503 Europeans. The 503 reference Europeans (shown in blue) create 

the European centroid around which individuals are either dropped (shown in green as outliers) 

or kept for subsequent analysis (illustrated in pink) 

3.2.5 Genotype Quality Control (QC), Imputation, and GWAS Analysis 

The following are a summary of the quality controls, imputation settings, and GWAS analyses that 

were conducted for each study’s dataset. A summary of the post-imputation QC statistics as well 

as the surviving variants and individuals used for the GWAS analyses can be seen in Table 3.2. 
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Table 3.2. Iris Color Post-Imputation Quality Control 

Dataset Individuals Variants Imputed 
Imputation INFO 

Score Cutoff 
Analysis Method* 

IUPUI 2119 6.3M 0.7 LMM (GCTA) 

Axiom 177 948K 0.7 LMM (GCTA) 

Euro180 155 6.5M 0.7 LMM (GCTA) 

Femmes 162 7.0M 0.7 LMM (GCTA) 

Toronto 545 8.9M 0.8 LM (SNPTEST) 

QIMR 3740 7.5M 0.7 LMM (GEMMA) 

*Note: Mixed Linear Model (LMM) and Linear Model (LM) 

3.2.5.1 QC, Imputation, and GWAS Analysis: IUPUI and PSU 

Quality control practices used to prepare the IUPUI and PSU datasets for imputation were 

performed using the GRCh37 (hg19) genome assembly117. Quality control included filtering out 

individuals who had more than 5% of their genome missing, variants that were missing in more 

than 5% of the dataset, individuals who were missing either phenotypic or genotypic data, and 

related individuals (i.e. identity by descent greater than 0.1875, or the halfway point between 

second and third degree relatives). Individuals who had unusually high heterozygosity (+/-3 

standard deviations), were also excluded. In total 3528 IUPUI, 919 Axiom, 176 Euro180, and 176 

Femmes individuals were selected for imputation via the Odyssey pipeline (See Chapter 2), using 

the SHAPEIT2102 and IMPUTE431,32 workflow to phase and impute, respectively. The Haplotype 

Reference Consortium88 reference panel was used for both phasing and imputation. After 

imputation, variants were filtered base on the imputation quality control INFO metric (INFO score 

> 0.7). Prior to GWAS, the dataset was pruned based on SNP missingness (missingness < 5%), 

minor allele frequency (MAF > 1%), and Hardy-Weinberg equilibrium (p < 1 x 10-6). 

 

After converting the dosage data to hard-calls due to programming compatibility, linear mixed 

model GWAS were performed on 6.3M variants using the GCTA software39,118. Specifically, a 

genetic relatedness matrix (GRM) was first created separately for the autosomes and X 

chromosome using the imputed variants, which then informed the linear mixed model (LMM) of 

any residual cryptic relatedness between samples not filtered out in the ancestry analysis and 

identity by descent QC. LMM’s were conducted separately on autosomes and the X chromosome 

for the five color-based normalized phenotypes. In addition, covariates of age and sex were 
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included in the IUPUI and Axiom LMM’s. Age was the only covariate in the Euro180 and Femmes 

LMM’s since all individuals were females. The separate autosome and X chromosome LMM 

results were combined following the analysis and analyzed. 

3.2.5.2 QC, Imputation, and GWAS Analysis: University of Toronto 

For the University of Toronto’s dataset, our collaborator performed QC steps to remove samples 

and markers, according to the following criteria. Sample QC: 1) removal of samples with missing 

call rates < 0.9; 2) removal of samples that were outliers in Principal Component Analysis (PCA) 

plots; 3) removal of samples with sex discrepancies; 4) removal of samples that were outliers for 

heterozygosity; and 5) removal of related individuals (pi-hat > 0.2). Marker QC: 1) removal of 

markers with genotype call rate < 0.95; 2) removal of markers with Hardy-Weinberg p-values < 

10−6; 3) removal of Insertion/Deletion (Indel) markers; 4) removal of markers with allele 

frequencies < 0.01; 5) removal of markers not present in the 1000 Genomes reference panel, or 

that did not match on chromosome, position and alleles; 6) removal of A/T or G/C SNPs with 

MAF > 40% in the 1000 Genomes European reference sample; and 7) removal of SNPs with allele 

frequency differences > 20% between the study sample and the 1000 Genomes European reference 

sample. After these QC steps, we retained 545 samples and 561,400 markers. The samples were 

then phased using the program SHAPEIT2119 and imputed using the Sanger Imputation Service, 

using the Positional Burrows-Wheeler Transform (PBWT) algorithm120, and the samples of the 

1000 Genomes Phase 3 as reference haplotypes30.  The final number of variants after imputation 

and a filtering step for INFO > 0.3 was approximately 8.9 million. 

 

GWAS were run on the SNPTEST software31,86,94 using an additive model and the genotype 

dosages (‘expected’ method), for each of the five phenotypes. We ran the GWAS conditioning for 

sex and the first four principal components. Age was not correlated with any of the phenotypes. 

Afterwards, we filtered the SNPTEST results by removing SNPs with INFO < 0.8. 

3.2.5.3 QC, Imputation, and GWAS Analysis: QIMR 

Our collaborators imputed individuals with the Haplotype Reference Consortium (HRC.1.1) using 

a set of SNPs common to the first-generation genotyping platforms (N ~ 278,000). Imputation was 
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performed on the Michigan Imputation Server using the SHAPEIT/minimac Pipeline33. Genotype 

data were screened for genotyping quality (GenCall < 0.7), SNP and individual call rates (< 0.95), 

HWE failure (P < 1 x 10-6) and MAF (< 0.01). After phenotype and genotype quality control, data 

were available for 7,624,941 SNPs and 2,361 participants. 

 

GWAS were run on the GEMMA software40,121 using a LMM for each of the five inverse rank-

order normalized phenotypes. Covariates of age, sex, and five principal components were also 

included in the model. 

3.2.6 IUPUI, PSU, Toronto, and QIMR META Analysis 

A meta-analysis was carried out with the METAL program122 using Stouffer’s method123 on the 

IUPUI, PSU (Axiom, Euro180, and Femmes), Toronto, and QIMR GWAS results on each of the 

five iris color phenotypes. As alternative genotyping platforms use different naming schemes, the 

variants were renamed by chromosome, position, and minor allele. The genotypes were coded 

additively based on the presence of the minor allele and were consistent between cohorts. 

3.2.7 Iris Prediction Modeling Using Neural Networks 

A feedforward neural network model that attempts to predict quantitative measurements of iris 

color classes (e.g. a model with a prediction of 80% blue, 15% green, and 5% light brown eye 

color) was created. 981 variants that have a known connection to pigment were collected from 

various sources (See Appendix E) and extracted from the IUPUI imputed dataset124. Of the 981 

variants identified 875 overlapped with the contents of the imputed dataset. After excluding 

variants that were fixed (MAF > 1 x 10-7) and those that were linked assessed via a Plink LD 

pruning procedure using a 1500 kb window, a 50 bp step size, and a 0.4 R2 threshold, 527 variants 

were left for feature selection. Feature/variant selection was performed in a manner that is similar 

to the variant ranking method as outlined in section 5.2.5. Briefly, 527 variants were broken into 

four equally sized groups and input into a SEM, composed of a single latent factor being comprised 

of eye color percentages. Variants were then regressed onto (i.e. are predictors of) the latent 

variable (See Figure 3.7). 
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Figure 3.7. A Visual Representation of the SEM Used for Iris Pigmentation Feature Selection. 

The SEM is composed of iris color percentage exogenous variables (Input) that comprise the 

unobserved latent factor that explains the relationship between all iris colors (ξ1). Groupings of 

the 527 variants (Responses) are input into the model which are regressed onto the latent factor 

Four SEMs, one for each grouping of variants were created separately due to computational 

resource limitations. Variants that were found to be nominally influential in explaining the latent 

factor (assessed by examining the significance of the variants regression weight at a threshold of 

p < 0.2) were passed to the second ‘round’ of SEM creation in which variants again were assessed, 

except with a more strict criteria of p < 0.05. This process was iteratively done, explained more in 

depth in section 5.2.5, until the most influential variants that contribute to iris color were identified. 

This list was comprised of 39 variants (See Appendix F) that were passed to a neural network 

model. 

 

A neural network model was created in Python using the Tensorflow backend, Keras frontend, 

CUDA GPU acceleration on a Nvidia RTX2070, and the Scikit-learn, numPy, and Pandas package 

libraries113,116,125–128. The model was created with three layers that contained 39 input nodes (one 

for each input variant), ten hidden nodes, and four output nodes (one for each predicted color) 

respectively. Model specifications can be seen in Figure 3.8. Several models were created with 

this structure. First a ten-fold cross validated model was performed using a training to test ratio of 

80-20 for 3276 individuals from the IUPUI database and run for 5000 epochs. A second model 

was created to serve as the ‘upper estimate’ model that contained all 3276 for training and was 
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tested on 5 randomly selected individuals who were held out and run for 50000 epochs. Accuracy 

was measured in the same way between both models and consisted of measurements on mean 

squared error (MSE), root mean squared error (RMSE), and R2. Mean absolute error (MAE) was 

also calculated for the entire model as well as each individual iris color. 

 

Figure 3.8. Diagram of the Quantitative Iris Color Prediction Neural Network. A) The model is 

comprised of 39 input nodes (red), 10 hidden nodes (blue), and 4 output nodes (yellow), resulting 

in 430 interconnected backpropagated regression weights (purple; only four are shown for 

simplicity). B) Activation, optimizer, and epoch iterations of the neural network 

3.3 Results & Discussion 

3.3.1 Identification of Known and Novel Hits Regarding Iris Pigment 

The META analysis consisting of 6898 individuals between six cohorts on the five phenotypes 

tested (See Tables 3.3 and 3.4) returned several known and expected loci as evident by the large 

peaks occurring on chromosomes 15 (HERC2), 14 (SLC24A4), 11 (TYR), 9 (TYRP1), and 6 (IRF4). 
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However, there were 3 potentially novel variants found within the META. First, within the blue 

META analysis (See Figure 3.9), known hits can be seen on chromosomes 6, 9, 11, 14, and 15 as 

mentioned above. However, one novel significant hit was found within chromosome 1, within the 

Axiom, Euro180, Femmes, Toronto, and QIMR datasets. Rs3820285 is a missense SNP located 

within CELA3A that has a 2.4% allelic frequency in Europeans. While CELA3A itself may not 

appear to have any relation to melanin formation, as the protein is a serine protease and has known 

to serve a digestive function in the intestine129, the variant is found adjacent to numerous candidate 

cis-regulatory elements as identified by Encode130,131 as well as 784bp downstream of an enhancer 

(ENSR00000921031) that is actively enhanced in keratinocytes. While there is no evidence to 

support the function of this enhancer, it is interesting that 16.5kb downstream of the enhancer is a 

gene, CDC42, that has been implicated in actin reformation and formation of filopodia132,133. While 

there are several methods for melanosomes to migrate from melanosomes to keratinocytes, one 

method is melanosome transfer via filopodia134. As Singh et al., 2010 demonstrates, constitutively 

active CDC42 results in the increased melanosome transfer from melanocytes to keratinocytes135. 

Furthermore, rs3820285 is in relatively high LD (R2 = 0.69) with rs182609273 (See Figure 3.10) 

which has shown evidence of histone deacetylase binding (found through ENCODE ChIP-seq 

studies). Therefore, while the initial correlation of rs3820285 to pigmentation may be weak, the 

variant may be in an area worth exploring due to its dense concentration of regulatory elements. 
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Table 3.3. Iris META Analysis Results 

GWAS Pheno RSID META P Axiom Euro Femmes IUPUI Toronto QIMR 

B P B P B P B P B P B P 

Blue rs916977 6.4E-323 0.92 4.1E-11 -0.67 6.0E-10 -0.99 1.8E-11 -1.00 9.9E-123 -0.82 4.6E-29 -0.94 1.8E-175 

Blue rs12203592 1.1E-20 0.11 4.9E-01 NA NA 0.28 5.0E-02 0.28 3.9E-13 0.29 1.3E-04 0.16 5.7E-07 

Blue  rs1393350 5.9E-19 -0.04 7.6E-01 0.23 3.2E-02 0.04 7.6E-01 0.21 2.1E-09 0.06 1.9E-03 0.17 2.7E-09 

Blue rs35983729 1.3E-16 -0.34 3.7E-03 0.18 8.0E-02 0.04 6.7E-01 0.12 1.4E-04 0.16 5.9E-03 0.16 4.4E-10 

Blue rs2762457 5.8E-10 NA NA 0.23 1.9E-02 0.22 4.7E-02 NA NA 0.05 4.3E-01 0.15 2.6E-08 

Blue rs3820285 2.8E-08 0.02 9.7E-01 -1.33 5.8E-04 -0.12 6.9E-01 NA NA -0.26 2.1E-01 -0.38 3.1E-07 

Green rs12913832 5.7E-128 NA NA NA NA -0.41 5.8E-04 -0.70 1.8E-127 -1.03 7.1E-60 NA NA 

Green rs12896471 5.7E-10 -0.15 2.1E-01 -0.05 6.1E-01 0.03 7.5E-01 0.07 4.4E-03 0.06 4.1E-01 0.16 3.7E-10 

Green rs77373930 4.2E-08 NA NA -0.05 8.7E-01 0.69 1.7E-01 NA NA 0.98 2.0E-03 0.50 3.4E-06 

Light Brown rs1667394 1.8E-230 -0.50 1.2E-03 -0.18 1.2E-01 -1.08 1.5E-14 -0.72 3.2E-82 -0.56 1.2E-139 -0.86 1.9E-11 

Light Brown rs941799 2.9E-16 -0.27 3.7E-02 -0.23 4.2E-02 -0.08 3.8E-01 -0.10 4.2E-04 -0.19 1.3E-03 -0.16 6.5E-10 

Light Brown rs72963135 2.2E-12 NA NA -0.1 4.1E-01 0.08 5.2E-01 -0.17 7.4E-08 -0.13 9.0E-02 -0.14 2.2E-06 

Light Brown rs12203592 6.1E-11 0.12 4.8E-01 NA NA -0.24 8.0E-02 -0.19 4.4E-08 -0.18 2.0E-02 -0.12 3.7E-04 

Dark Brown rs1667394 2.8E-183 -0.85 5.7E-10 -0.68 7.9E-10 -0.84 3.5E-09 -0.30 -3.6E-20 -0.78 1.9E-24 -0.85 3.7E-159 

Dark Brown rs12203592 8.8E-22 -0.17 2.7E-01 NA NA -0.24 8.8E-02 -0.25 2.0E-16 -0.31 6.1E-05 -0.14 6.2E-06 

Dark Brown rs35983729 2.5E-11 0.09 4.3E-01 0.14 1.7E-01 0.00 9.9E-01 0.07 2.0E-03 0.08 1.6E-01 0.14 8.3E-09 

Dark Brown rs72963135 2.9E-11 NA NA -0.02 8.4E-01 0.00 1.0E+00 -0.14 1.2E-06 -0.17 1.2E-02 -0.12 1.7E-05 

Dark Brown rs2733831 1.7E-10 0.18 1.2E-01 0.2 5.0E-02 0.11 3.2E-01 0.10 2.0E-04 0.07 2.5E-01 0.12 4.4E-06 

Dark Brown rs6420484 4.2E-08 NA NA NA NA NA NA 0.08 1.4E-03 0.14 2.4E-02 0.11 8.5E-06 

Factor Reduced rs1667394 4.8E-192 0.88 3.1E-12 0.7 4.5E-11 0.53 3.2E-11 0.59 2.1E-131 0.9 2.5E-31 0.73 8.4E-199 

Factor Reduced rs12203592 8.9E-12 0.24 1.1E-01 NA NA 0.17 2.2E-01 0.23 1.7E-13 0.13 9.5E-02 0.08 2.0E-02 

Factor Reduced rs77373930 3.7E-08 NA NA 0.06 8.7E-01 0.51 2.9E-01 NA NA 0.84 7.3E-03 0.52 1.4E-06 

*Note: B (beta); P (p-value) 
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Table 3.4. Iris META Analysis Datamining Results 

GWAS Pheno RSID Chr Position* META P Associated Gene Eur Allele Freq 

Blue rs916977 15 28268218 6.4E-323 HERC2 0.24 

Blue rs12203592 6 396321 1.1E-20 IRF4 0.12 

Blue  rs1393350 11 89277878 5.9E-19 TYR 0.24 

Blue rs35983729 14 92321417 1.3E-16 SLC24A4 0.43 

Blue rs2762457 9 12689313 5.8E-10 TYRP1 0.41 

Blue rs3820285 1 22009784 2.8E-08 CELA3A 0.02 

Green rs12913832 15 28120472 5.7E-128 HERC2 0.36 

Green rs12896471 14 92307559 5.7E-10 SLC24A4 0.43 

Green rs77373930 2 65970440 4.2E-08 AC007389.1 0.02 

Light Brown rs1667394 15 28285036 1.8E-230 HERC2 0.24 

Light Brown rs941799 14 92310481 2.9E-16 SLC24A4 0.43 

Light Brown rs72963135 11 89188404 2.2E-12 TYR 0.24 

Light Brown rs12203592 6 396321 6.1E-11 IRF4 0.12 

Dark Brown rs1667394 15 28285036 2.8E-183 HERC2 0.24 

Dark Brown rs12203592 6 396321 8.8E-22 IRF4 0.12 

Dark Brown rs35983729 14 92321417 2.5E-11 SLC24A4 0.43 

Dark Brown rs72963135 11 89188404 2.9E-11 TYR 0.24 

Dark Brown rs2733831 9 12703484 1.7E-10 TRYP1 0.41 

Dark Brown rs6420484 17 81,645,371 4.2E-08 TSPAN10; NPLOC4 0.36 

Factor Reduced rs1667394 15 28530182 4.8E-192 HERC2 0.24 

Factor Reduced rs12203592 6 396321 8.9E-12 IRF4 0.12 

Factor Reduced rs77373930 2 65970440 3.7E-08 AC007389.1 0.02 

*Note: RSID position is based on hg19
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Figure 3.9. Iris META Manhattan Plots for Blue Irises. Near genome-wide significant variants (p 

< 1 x 10-5) are illustrated in green and genome-wide significant variants (p < 5 x 10-8) are shown 

in red 
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Figure 3.10. LD Plot of Rs3820285. Rs3820285 is located at R2 = 1 

Another potential variant, rs77373930, first appeared to be a false positive on the green META 

GWAS on chromosome 2 due to it only being found in four of the six datasets and because aside 

from it being in the middle of a lncRNA, it is in a gene desert. Rs77373930 is an intronic variant 

located within AC007389.1, a lncRNA (See Figure 3.11 A). However, as rs77373930 was also 

found on the Factor Reduced META GWAS (See Figure 3.11 B) a more thorough investigation 

was performed. As lncRNA often have regulatory roles, the lncRNA was searched on FANTOM 

CAT136 to attempt to elucidate a function. Unfortunately, the FANTOM query did not have any 

records of co-expressed mRNA and suggested that the lncRNA was most expressed in the middle 

temporal gyrus and likely associate with obesity137. A query of the closet adjacent coding gene, 

MEIS1 (~460kb upstream) found that knockouts of the gene in mouse models resulted in embryos 

that had partially duplicated retinas and smaller than average lenses138. Thus, while the connection 

to MEIS1 is weak, the area may still be worth exploring. 
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Figure 3.11. Iris META Manhattan Plots for Green and PCA-FA Phenotypes. A) Green Iris 

META and B) PCA-FA Factor Reduced META Manhattan plots. Near genome-wide significant 

variants (p < 1 x 10-5) are illustrated in green and genome-wide significant variants (p < 5 x 10-8) 

are shown in red 
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Finally, there was a significant hit on the dark brown META GWAS on chromosome 17 (See 

Figure 3.12). Rs6420484 which was only found in the IUPUI and QIMR cohorts, is an intronic 

variant that lies at the intersection of NPLOC4 and TSPAN10. Importantly, variants in this area, 

such as rs9894429,  have been found previously in eye GWAS and are in slight LD (R2 = 0.46) 

with rs6420484108. However, in Liu et al., 2010, it is important to note that the researchers were 

quantifying eye color via averaging hue, saturation, and value measurements. While rs6420484 is 

located in NPLOC4 and TSPAN10 it is also in LD with several variants that are in neighboring 

PDE6G (See Figure 3.13). PDE6G encodes the gamma subunit of cyclic GMP-phosphodiesterase, 

is expressed in rod photoreceptors in the eye, and when mutated has also been shown to be involved 

in the development of Retinitis Pigmentosa, a disorder that results in abnormal pigment production 

in the retina139,140. No novel variants were found running the light brown META (See Figure 3.14), 

but the hits on chromosome 6 (IRF4), 11 (TYR), 14 (SLC24A4), and 15 (HERC2), were found in 

previous GWAS analyses11,61–64. 

 

Figure 3.12. Iris META Manhattan Plots for Dark Brown Irises. Near genome-wide significant 

variants (p < 1 x 10-5) are illustrated in green and genome-wide significant variants (p < 5 x 10-8) 

are shown in red 
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Figure 3.13. LD Plot of rs6420484. Rs6420484 is shown in blue 
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Figure 3.14. Iris META Manhattan Plots for Light Brown Irises. Near genome-wide significant 

variants (p < 1 x 10-5) are illustrated in green and genome-wide significant variants (p < 5 x 10-8) 

are shown in red 

3.3.2 Evaluation of Quantitative Categorical Iris Color Prediction Model 

Initially, we planned to build a prediction model based on the known iris pigmentation variants 

found in the literature in addition to the novel hits that we would find in the aforementioned 

GWAS. However, due to the weak strength of the novel hits found, we elected to proceed with 

building an iris prediction model using already known pigmentation variants to predict a 

quantitative output based on our color class phenotype scale. Therefore, after setting up the three-

layer neural network, the model’s performance was assessed through statistical measurements 

evaluating accuracy as well as ‘visually’ evaluating the model to assess how applicable it may be 

in forensic or anthropologic scenarios. The first neural network model, which will be referred to 

as the cross-validated (CV) model, was generated to assess performance via 10 cross-validations 

(80% training and 20% testing) of the full global cohort of 3265 individuals. Its performance 

metrics can be seen in Figure 3.15 and Table 3.5. These models were able to achieve a mean 

absolute error (MAE) of 13.57% +/- 0.36% overall across all eye color predictions. Individually 

the model can predict the percent quantity of blue irises with 84.4% (+/- 0.06%) accuracy, 95.0% 
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(+/-0.4%) for green, 82.3% (+/- 0.5%) for light brown, and 84.0% (+/- 0.8%) accuracy for dark 

brown. The overall RMSE was 0.1927 (+/- 0.0044). The full set of training individuals was then 

utilized to generate a full version of the model, denoted as the Full model, using the same 

parameters as the cross-validated model apart from increasing the epochs to 50000 from 5000, 

which as Figure 3.15 demonstrates, was negligible to increasing model performance. This model 

achieved a MAE of 11.5% overall across all eye color predictions (See Table 3.5). 

 

 

Figure 3.15. Neural Network Model Performance Per Epoch. Full Model A) loss and B) 

accuracy are shown per epoch. Ten-fold cross validated model C) loss and D) accuracy are also 

shown between the training (blue) and testing (orange) set 

Finally, the Full model was used to visually inspect its prediction with that of the actual iris image. 

However, as the model only outputs percentages of color categories, the top five closest quantitated 

training iris images to that of the prediction were extracted. To accomplish this, we took the model 

prediction (i.e. a series of 4 color percentages) and then created a difference matrix between the 

prediction and the actual quantified percentages of the 3265 individuals that were in the testing 
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set. By summing the errors between each prediction and actual color type the five smallest total 

errors were extracted, which allowed us to output the most similar quantified iris image. By 

observing three of these ‘predicted’ images next to the actual image, the model’s performance 

could be visually assessed (See Figure 3.16). While evaluating the model, it was possible to see 

that it was able to predict the general color of the iris from the five images that were visually tested. 

This visual check supports the cross-validation metrics that the model is able to quantitatively 

predict categorical eye color with a decent accuracy. The model does struggle with green eyes and 

also irises that have a combination of blue and brown. As one final benchmark the Full model was 

compared against the Irisplex model7–9. In the comparison, six variants were input as instructed on 

the HIrisPlex-S website (https://hirisplex.erasmusmc.nl/) for each of the test subjects. The Full 

model seemed to predict similarly to that of the IrisPlex model (see Cat Prediction in Table 3.6). 

Irisplex was better at predicting the iris color extremes of blue and brown better, as seen by its blue 

and brown predictions of individuals #2, #4, and #5. On the other hand, the neural network 

correctly predicted #2 and #4 to have primarily blue and dark brown iris color, but incorrectly 

predicting #5 as having more of an intermediate phenotype. However, the neural network appears 

to better predict intermediate colors with a higher accuracy especially in individual #1 while also 

predicting the correct lighter shade of light brown in individual #3. 

https://hirisplex.erasmusmc.nl/
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Table 3.5. CV and Full Model Performance Metrics  

 CV Full* 

Performance Metrics Mean Stdev Mean 

MSE 0.037 0.002 0.023 

RMSE 0.198 0.004 0.151 

R2 0.427 0.015 0.554 

MAE Overall 0.136 0.004 0.115 

MAE Blue 0.156 0.006 0.167 

MAE Green 0.050 0.004 0.051 

MAE Light Brown 0.177 0.005 0.185 

MAE Dark Brown 0.160 0.008 0.058 

* Note: Full Model Performance Metrics were carried out on a testing set of 5. Thus, they are reported for completeness, but true model 

performance should be assessed using the Cross-Validation Model 

Table 3.6. Comparison of the Neural Network Model and Irisplex 

 Blue Light Brown Intermed Green Dark Brown Cat Prediction 

ID Actual NN P IrisPlex P Actual NN P IrisPlex P Actual NN P Actual NN P IrisPlex P NN P IrisPlexP 

1 31.7% 41.8% 0.884 57.7% 33.5% 0.073 3.0% 10.7% 7.6% 14.1% 0.044 Intermed Blue 

2 94.5% 69.0% 0.948 1.1% 13.0% 0.038 0.2% 7.6% 4.2% 10.4% 0.014 Blue Blue 

3 1.5% 5.2% 0.050 83.2% 61.9% 0.114 0.0% 1.4% 15.3% 31.5% 0.836 Intermed Brown 

4 3.0% 20.2% 0.000 20.9% 19.6% 0.070 0.0% -0.1% 76.1% 60.3% 0.993 Brown Brown 

5 74.7% 40.9% 0.884 4.7% 34.1% 0.073 15.8% 10.8% 4.9% 14.2% 0.044 Intermed Blue 

* Note: Neural Network (NN), P (Percentage of color – NN; Probability of Color – Irisplex) 

**Note: Cat Prediction is a categorical prediction in which the highest percentage of color is reported as being the iris color 
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Figure 3.16. Visual Quantitative Prediction of Categorical Color. Five irises of known color (Actual) were input into the Full Model. 

A prediction of blue, green, light brown, and dark brown iris percentage were returned. These predicted values were then compared 

against quantitated percentages from the IUPUI testing dataset. Testing individuals with quantitated percentages closest to the 

prediction (calculated by summing the errors between all four-color categories) were output (prediction) to give a visual representation 

of the model’s prediction. Note that the ID’s of the individuals in the table match the figure
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3.4 Conclusion 

In conclusion, the META analysis conducted on nearly 6900 individuals has identified both known 

variants that have shown to contribute to iris color as well as some potentially new variants that 

may warrant follow-up analysis via replication studies, functional studies, or both. I have also, for 

the first time, produced a model that is able to predict quantitatively pre-set categorical color 

measurements, which can be converted to a physical image.  
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 FINDING NEW VARIANTS ASSOCIATED WITH 

CATEGORICAL FACIAL (MANDIBLE) DEFINITIONS 

4.1 Introduction  

Human facial morphology has been widely understood through the course of twin and disease-

based studies that have explored the genetic influence of diseases such as cleft lip and palate, Down 

syndrome, and Prader-Willi syndrome. Through these studies, facial morphology has been shown 

to be a highly heritable trait24,66. However, until recently, knowledge of the genetic factors that 

influence non-diseased phenotypes has been limited. One reason for this is likely due to the face’s 

multifaceted and complex structure. Nearly all of the facial morphology studies thus far have 

attempted to quantify facial shape using Euclidean distance measurements or a derivative of a 

distance metric either on individual points or on groupings of points24–27. Several studies have 

attempted to construct a more wholistic phenotype by combining either 2D or 3D landmarks to 

create face shapes whose pair-wise distance can be calculated to yield a distance phenotype74,141. 

To date, this has proved successful in identifying numerous variants and genes associated with the 

facial phenotype, such as PAX3, PRDM16, and C5orf50. However, as facial phenotypes are the 

result of complex embryologic developmental it should not be surprising that assessing single 

variant associations with distances calculated between two facial landmarks or even groupings of 

landmarks may limit the potential for discovery. A more recent approach by Claes et al., 2018 and 

distributed in White et al., 2019 examines a more holistic and quantitative view of facial 

morphology, in which a 3D facial mesh is broken up into highly correlated segments via a data-

driven hierarchical spectral clustering methodology. These segments are subsequently analyzed 

individually (i.e. there are no Euclidean distance measurements) via a generalized Procrustes 

analysis, Principal Component analysis, a canonical correlation analysis, and ultimately a general 

linear model based GWAS 28,29.  

 

Amid all these complex facial phenotyping methods, many standard approaches to GWAS’s 

conducted on other phenotypes began with a simplified phenotype, which evolved into something 

more complex. For example, ‘early’ iris color GWAS’s phenotyped eye color on the basis of a 

three-point color scale: blue, intermediate, and brown3–6. Quantitative iris color phenotyping was 

adopted only after exhausting the capabilities of the categorical approach. However, no facial 



 

 

70 

GWAS has been conducted on a simple categorical face shape that explores genetic contributions 

to the face holistically or to the jawline. Thus, the aim of this research was to analyze whether a 

simplified categorical phenotype of face and jaw shape could identify novel face-shape variants 

that may have been missed by the more complex facial phenotyping methods previously applied.  

4.2 Materials & Methods 

4.2.1 Samples & Genotyping 

4.2.1.1 IUPUI Dataset 

Refer to section 3.2.2.1 IUPUI Dataset Collection and Organization. 

4.2.1.2 Penn State University (PSU) Dataset 

The PSU dataset partitioned for this study includes 1760 individuals that contained 2D images and 

genotypes. Additional details of participant recruitment can be found in Section 3.2.2.2. PSU 

participants were genotyped by 23andMe on the v3, (900K SNPS) and v4 arrays (600K SNPS) 

(Mountain View, CA). 

4.2.2 Phenotyping for Categorical Analysis 

Study participants from both the IUPUI and PSU dataset were independently graded by three lab 

members into four broad facial categories; oval, round, square, and diamond (See Figure 4.1). 

Phenotypes were chosen based on face shape phenotypes commonly referred to by plastic 

surgeons142,143. Of particular note, we combined the ‘heart’ and ‘diamond’ face shape into just 

‘diamond’ for grading simplicity. To train the raters to achieve high inter-rater correlation, three 

raters cycled through a set of approximately 50 images and discussed the features of each face that 

best fit the grading criteria. Once an understanding of the criteria was established, the raters 

independently rated all the PSU and IUPUI facial images. Any picture in which all three graders 

disagreed on a facial category, was dropped from the analysis, while pictures that had two or more 

raters in agreement were kept, with the agreed classification being assigned to that picture. 
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Figure 4.1. Categorical Facial Shape Evaluation Criteria. Criteria is shown for A) square, B) 

Oval, C) Round, and D) diamond facial shapes. Each rater had a face model and a real-life facial 

example to refer back to when making ratings 

4.2.3 Quality Control and Imputation 

Quality control practices used to prepare the IUPUI dataset for imputation were performed using 

the GRCh37 (hg19) genome assembly117. Quality control included filtering out individuals who 

had more than 5% of their genome missing, variants that were missing in more than 5% of the 

dataset, individuals whose phenotypic data did not match their genotypic data, and related 

individuals (i.e. identity by descent greater than 0.1875 or the halfway point between second and 

third degree relatives). Individuals who had unusually high heterozygosity (+/-3 standard 

deviations), were also excluded. In total 3528 individuals were sent for imputation via the Odyssey 

pipeline (See Chapter 2), using SHAPEIT2119 and IMPUTE484 to phase and impute respectively. 

A custom reference genome combining the Haplotype Reference Consortium88 and the 1000 

Genomes Phase 330 were used for both phasing and imputation, which resulted in the imputation 

of 43.9M variants. After imputation, variants were filtered based on the imputation quality control 

INFO metric (INFO score > 0.3). Prior to GWAS, the dataset was pruned based on SNP 

A 

C 

B 

D 
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missingness (missingness < 5%), minor allele frequency (MAF > 1%), and Hardy-Weinberg 

equilibrium (p < 1 x 10-5) to yield approximately 6.7M variants for analysis. 

 

As the PSU dataset was collected from multiple arrays, imputation was performed by our 

collaborator at PSU separately for each platform and then combined following Verma, et al. 

2014144. For each dataset, standard data cleaning and quality assurance practices were performed 

based on the GRCh37 (hg19) genome assembly145. The genotypes were “harmonized” with 1000 

Genomes Project (1000G) Phase 330 using Genotype Harmonizer146 with a window size of 200 

SNPs, a minimum of 10 variants, and alignment based on minor allele frequency (--mafAlign 0.1). 

This program was also used to filter out ambiguous SNPs, update the SNP id, and update the 

reference allele as needed, all in reference to the 1000G Phase 3 genotypes. After genotype 

harmonization, additional QC metrics, such as relatedness and ancestry analyses were performed. 

Prior to GWAS, the dataset was again pruned based on SNP missingness (missingness < 50%), 

minor allele frequency (MAF > 1%), and Hardy-Weinberg equilibrium (p < 1 x 10-6) to yield 

approximately 9.4M variants for analysis.  

4.2.4 Ancestry Analysis 

Ancestry analysis for the IUPUI dataset was performed in an identical manner as explained in 

Section 3.2.4. 1081 individuals were removed in this fashion. 

 

For the PSU dataset from the post-imputation merged datasets, individuals containing primarily 

European ancestry were determined by projecting them into a principal component (PC) space 

constructed using the 1000G Phase 3 dataset. To do this, all indels, multi-allelic SNPs, and SNPs 

with MAF ≤ 0.1 in both the 1000G dataset and the PSU dataset were excluded. Those variants that 

were common to the 1000G and the merged dataset were used in the projection. On this list of 

variants, linkage disequilibrium (LD) pruning (50 bp window, 5 bp step size, 0.2 correlation 

threshold) was iteratively performed on the 1000G dataset until no variants were excluded. This 

LD-pruned list (n = 461,372 SNPs) was then used in a principal component analysis (PCA) to 

construct a population structure space based upon the 1000G project and projected the dataset onto 

that PCA space to obtain the ancestry axes of the dataset. Once in a combined PC space, Euclidean 

distance was calculated between all participants and the 1000G samples. Using a k-th nearest 
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neighbor algorithm, the five nearest 1000G sample neighbors for each US participant was 

identified. The most common 1000G population label (e.g. CEU, GIH, YRI) from these five 

nearest neighbors was then assigned to the participant. Participants with the 1000G European 

population labels of CEU, TSI, FIN, GBR, and IBS were then selected for analysis. 

4.2.5 Genome Wide Association Study (GWAS) and META Analysis 

A series of categorical and one multinomial GWAS on the five categorical facial shapes of oval, 

round, diamond, square, and a combination of oval and round were performed at both the IUPUI 

and PSU sites using their respective data. After ancestry exclusion and other forms of quality 

control on these datasets, the total number of individuals were 1642, and 2149, respectively. In the 

IUPUI cohort a logistic model was created that was adjusted for age and sex. An additional 

genotype missing filter was performed to exclude any genotypes that were missing in more than 

5% of the dataset as well as filters for HWE (p < 0.00001) and minor allele frequency (MAF > 

1%). The PSU cohort was analyzed in an identical manner by our collaborator with the only 

difference being the inclusion of BMI as an additional covariate. 

 

A meta-analysis was carried out with the METAL program122 using Stouffer’s method123 on the 

PSU and IUPUI result for each of the 5 categorical facial phenotypes (See Table 4.1). As different 

genotyping platforms can use alternative naming schemes, the variants were renamed by 

chromosome, position, and minor allele. The genotypes were coded additively based on the 

presence of the minor allele and were consistent between cohorts. 
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Table 4.1. Categorical Facial Shape META Analysis Metadata. A breakdown of the META 

analysis listing the two META datasets by variants tested, cases (the facial shape being tested), 

and controls (the face shapes not being tested) 

Phenotype 
IUPUI META Dataset 1 PSU META Dataset 1 

Variants Cases Controls Variants Cases Controls 

Diamond v Others 6.7M 227 1735 9.4M 277 1365 

Square v Others 6.7M 530 1432 9.4M 322 1320 

Round v Others 6.7M 626 1336 9.4M 268 1374 

Oval v Others 6.7M 579 1383 9.4M 775 867 

R/O v D/S* 6.7M 757 1205 9.4M 599 1043 

*Note: Round/Oval (R/O) were considered cases and Diamond/Square (D/S) were considered controls 

4.3 Results & Discussion 

Due to a lack in power, as evident by numerous signals which failed to reach the significance level 

of the family-wise error rate (FWER) adjusted threshold of 5 x 10-8, a META analysis (n = 3791) 

consisting of a combination of the results generated from the IUPUI dataset (n = 2149) and the 

PSU dataset (n = 1642) was conducted. It is evident that the Round, Oval, and Oval/Round versus 

Square/Diamond analysis did not return any significant signals as illustrated in Figures 4.2 and 4.3. 

 

Figure 4.2. Quantile-Quantile Plots for the Round, Oval, and Oval/Round Face Shape Analyses. 

The META analysis results of A) Round, B) Oval, and C) Oval/Round v Square/Diamond are 

shown. The distance of the point from the red line, y = x, measures the deviation of the 

distribution from the -log10(p) that was expected under a gaussian distribution vs what was 

observed. The grey shaded area is the 95% confidence interval, and points in red indicate 

significant p-values (p < 5 x 10-8) 
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Figure 4.3. Manhattan Plots for the Round, Oval, and Oval/Round Face Shape Analyses. 

Manhattan plots of A) Oval, B) Round, C) Oval/Round v Square/Diamond. Near genome-wide 

significant variants (p < 1 x 10-5) are illustrated in green and genome-wide significant variants (p 

< 5 x 10-8) are shown in red 
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However, we did find several signals, illustrated in Figure 4.4 and reported in Tables 4.2 and 4.3, 

that may warrant a more in-depth look. The first variant seen in a cluster of three hits within the 

square META GWAS on chromosome 2 is rs187236608, an intron variant located within STON1. 

STON1 encodes one of the two human homologs of the Drosophilia melanogaster Stoned B 

protein, which is involved in the formation of components within endocytic machinery147. While 

functionally, there does not seem to be much evidence that STON1 plays a substantial role in bone 

development, while searching the literature it was found that STON1 was formerly associated in a 

GWAS that reduced 276 facial linear distances using factor analysis141. However, in that study the 

variant was rs76889437, it was near significant (p = 3 x 10-6), and it was also suggested to be 

associated with STON1. Linkage disequilibrium (LD) analysis shows that rs187236608 is in high 

LD (r2 = 1) with variants found on the neighboring LHCGR gene (See Figure 4.5). 

 

Drawing on the connection of this peak signal with LHCGR, the second variant of the trio cluster 

in the square face analysis is rs111431304, which is located 106kb downstream of rs187236608 

and is found within an intron on LHCGR. This gene encodes for a lutropin-choriogonadotropic 

hormone receptor148. Mutations of this receptor have led to Leydig Cell Hypoplasia Type I, due to 

the receptor being an integral part of Leydig cell development and, by extension, testosterone149. 

Leydig Cell Hypoplasia has been known to retard pubertal development and delayed bone 

maturation150 in young males as well as contribute to bone health and strength in older males151. 

The literature also suggests that females may be affected by alterations of the LHCGR gene. 

Yarram et al., 2003 specifically demonstrate that mice knockout (KO) models of the luteinizing 

hormone receptor results in decreased bone mineral density, caused by a reduction in bone 

formation or an increase in bone resorption in both males and female mice152.  



 

 

77 

 

Figure 4.4. Quantile-Quantile and Manhattan Plot for the Square Face Shape Analysis. A) QQ 

plot.  The distance of the point from the red line, y = x, measures the deviation of the distribution 

from the -log10(p) that was expected under a gaussian distribution vs what was observed. The 

grey shaded area is the 95% confidence interval, and points in red indicate significant p-values (p 

< 5 x 10-8). B) Manhattan plot. Near genome-wide significant variants (p < 1 x 10-5) are 

illustrated in green and genome-wide significant variants (p < 5 x 10-8) are shown in red 
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Table 4.2. Categorically Analyzed Face Shape META Results 

GWAS Pheno* RSID Chr Position** META P IUPUI OR IUPUI P PSU OR PSU P 

Square rs187236608 2 48590930 1.35E-09 -0.28 6.80E-07 -0.32 3.80E-04 

Square rs111431304 2 48697075 2.75E-09 -0.30 2.83E-06 -0.29 2.21E-04 

Square rs113531385 2 48629079 3.72E-09 0.32 6.76E-06 0.34 1.34E-04 

Diamond rs59143906 18 9435944 2.92E-08 
Not 

Found 
Not 

Found 0.24 2.92E-08 

Diamond rs16940196 18 13185735 1.52E-07 -1.87 1.55E-05 -1.44 0.00222403 

*Note: Bold Denotes Genome Wide Significance (p < 5 x 10-8)      

**Note: RSID position is based on hg19       

Table 4.3. Categorically Analyzed Face Shape META Datamining Results 

GWAS Pheno* RSID EUR MAF** Type Assoc Gene Assoc PubMedID*** Assoc Phenotype 

Square rs187236608 1% (a) Intronic STON1; LHCGR Yes; 28441456 Face Shape 

Square rs111431304 1% (a) Intronic STON1; LHCGR Yes; 28441457 Face Shape 

Square rs113531385 
2% (g) Intonic 

STON1; 
GTF2A1L 

Yes; 28441458 Face Shape 

Diamond rs59143906 4% (aaaa) Regulatory No No NA 

Diamond rs16940196 23% (t) 
Upstream Gene 

Variant 
LDLRAD4  

Yes; 30048462; 
30172743 

Hip/Heel Bone 
Density 

*Note: Bold Denotes Genome Wide Significance (p < 5 x 10-8) 
**Note: Minor allele frequencies found in 1000 Genome Phase 3 European individuals 
***Note: References listed as Pubmed IDs
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Figure 4.5. LD Plot of Rs187236608. Rs187236608 is shown in blue 

The final square face shape hit of the trio is rs113531385, which was found between rs111431304 

and rs187236608 and located in an intron of the STON1-GTF2A1L gene, which, like LHCGR, has 

been implicated in testes biology153. Importantly, all three variants on the square face META have 

low allele frequencies in Europeans (~1% in 1000 Genome Euro Reference populations and ~1.6% 

in gnomAD on average). Due to this lack of variance, a certain level of caution should be applied 

to the validity of these hits. Still, the presence of LD between all 3 hits (R2 = 1) as well as the 

potential biological evidence may warrant a closer look via functional studies. In addition to its 

association signal, the variant was found in both the IUPUI and PSU cohorts and had similar 

directional effects (see Table 4.2 IUPUI and PSU OR). 
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The peak on chromosome 18 within the diamond META may also warrant further exploration (See 

Figure 4.6). Rs142553210, which was only found in the PSU cohort, mostly likely indicates that 

this is a false positive as it is monoallelic in the EUR population of the 1000 Genomes Project30. 

While not genome-wide significant, the closest near-genome wide significant ‘hit’ was 

rs16940196 (p = 1.52 x 10-7). Rs16940196, was found in both cohorts and was not fixed in 

European populations (MAF = 23%). Rs16940196 is situated 32kb upstream of LDLRAD4 which 

functions as a negative regulator of TGF-beta signaling suggesting that it plays a role in cellular 

proliferation, differentiation, motility, apoptosis, immunosuppression, and extracellular matrix 

production154. LDLRAD4 has also been associated with bone mineral density in the hip and 

heel155,156. Furthermore, rs16940196 is within the proximity of the cis-Regulatory Element 

EH37E1163681 (chr18:13185718-13186266), which has shown high H3K4me3 modification 

activity (+1.66 standard deviations higher than 210 other cell types measured) in mesenchymal 

stem cells and decreased levels of H3K27ac modification in osteoblasts (-0.95 standard deviations 

less than 136 cell types sampled)130,131. Therefore, as H3K27ac and H3K4me3 are epigenetic 

markers commonly associated with gene expression, this may suggest that rs16940196, based on 

its proximity to this regulatory element may affect bone formation and, by extension, may play a 

role in craniofacial development. Further functional analyses may add to this evidence. 

 

As seen in Figure 4.3, there did not appear to be any additional significant or highly promising hits 

worth investigating in this study. However, by refining our analysis, we may be able to boost our 

power and bring several potential variants up past genome-wide significance. 
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Figure 4.6. Quantile-Quantile and Manhattan Plot for the Diamond Face Shape Analysis. A) QQ 

plot.  The distance of the point from the red line, y = x, measures the deviation of the distribution 

from the -log10(p) that was expected under a gaussian distribution vs what was observed. The 

grey shaded area is the 95% confidence interval, and points in red indicate significant p-values (p 

< 5 x 10-8). B) Manhattan plot. Near genome-wide significant variants (p < 1 x 10-5) are 

illustrated in green and genome-wide significant variants (p < 5 x 10-8) are shown in red 

4.4 Conclusion 

In conclusion, these analyses have shown for the first time that a basic phenotype defining the 

general shape of the face/jawline can be used to identify variants that may play a role in 

craniofacial development of the mandible and overall bone health. The aforementioned mice 

knockout models and enhancer regulatory studies add to the association evidence that indicates 

that the variants identified here, specifically the regions surrounding genes STON1, LHCGR, 

GTF2A1L, and LDLRAD4, warrant further investigation. However, as the META was performed 



 

 

82 

with no validation dataset, it is important to validate these results on an additional, external dataset 

and/or utilize a functional approach for candidate validation. Still, these analyses have 

demonstrated that fast, non-technical, and categorical facial phenotyping is powerful enough to 

detect variants associated with our phenotype of interest and may also be expanded to other 

identifiable facial features (e.g. hook and button noses). 
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 ASSESSING VARIANT INTERACTION THROUGH 

STRUCTURAL EQUATION MODELING USING QUANTITATIVE 

FACIAL DEFINITIONS 

Part of “Insights into the genetic architecture of the human face.” Julie D. White, Karlijne 

Indencleef, Sahin Naqvi, Ryan J. Eller, Jasmien Roosenboom, Myoung Keun Lee, Jiarui Li, Jaaved 

Mohammed, Stephen Richmond, Ellen E. Quillen, Heather L. Norton, Eleanor Feingold, Tomek 

Swigut, Mary L. Marazita, Hilde Peeters, Greet Hens, John R. Shaffer, Joanna Wysocka, Susan 

Walsh, Seth M. Weinberg, Mark D. Shriver, Peter Claes 

[Submitted for Review] 

5.1 Introduction  

Due to the intrinsic nature of GWAS, the phenotype or trait of interest is typically a univariate 

variable. As mentioned previously in Chapter 4, facial GWAS have slowly evolved from 

performing GWAS on individual Euclidean distance measurements between facial landmarks, to 

performing tests on multivariate constructs that encapsulate multiple facial ‘dimensions’ into a 

‘singular variable’. Essentially, these first studies have tried to convert a complex phenotype 

encompassing multiple measurements into a form that a traditional GWAS approach can analyze; 

a single input vector on a quantitative scale. Zhang et al., 2010 and Denny et al., 2010, have tried 

to adjust the GWAS analysis itself to accommodate tests on multiple correlated phenotypes157,158. 

Ultimately, these two solutions can be condensed down to a fundamental weakness inherit in most 

GWAS; that they are best suited to assess single, independent, and highly associative variants with 

an independent phenotype. GWAS can still be conducted in scenarios that do not fit these idealized 

parameters, however they often suffer in power as a phenotype that is multifaceted will ultimately 

cause the correlation signal to be spread out across analyses. Also, a test on a phenotype that is 

influenced by multiple correlated genotypes, will also cause the signal to be spread across 

genotypes within the same run. Since the threshold for significance is often set very conservatively 

(p < 5 x 10-8) to reduce the chance of false positives, these signals are often lost in the background, 

forcing researchers to perform META analyses in order to boost power and their signals.  
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Therefore, it is no surprise that a GWAS analysis of a multifaceted polygenic trait such as facial 

morphology, and the numerous interacting genotypes that regulate the concert of proteins that 

coordinate craniofacial development suffers from the inability to separate signal from noise. 

However, the weaknesses of performing GWAS on multifaceted phenotypes like facial 

morphology can be mitigated by developing novel methods of modeling that captures the face’s 

complex phenotype without muting any of its intricate details.  Ideally, if one can capture the 

multidimensional complexities of the face in combination with modeling the polygenic effects that 

a traditional GWAS is not capable of analyzing, this may allow the signal to noise ratio to be 

increased considerably. In this collaborative approach that utilizes a hierarchical spectral clustering 

method as seen previously in Claes et al.,2018 and White et al., 2019, we sought to understand 

facial morphology on the basis of measuring and accounting for localized variance within a facial 

region with a larger sample set than analyzed in Claes et al., 2018. In addition, although this 

approach could assess a multivariate phenotype, thus capturing a better representation of the 

human facial structure, it could still only explore the relative role multiple phenotypes have on a 

single variant at a time. Therefore, through our analysis we utilized structural equation modeling 

(SEM) on the output of the canonical correlation results in order to inform us of any structural 

relationship between the significantly associated variants within each mask. In addition, we 

explored the potential for epistatic interactions between the variants that are competing to express 

their biological contribution and thus their phenotypic effect within these data-driven facial 

segments.  

5.2 Materials & Methods 

5.2.1 Samples, Genotyping & Facial Imagery 

The samples used for this study included a combination of three independently collected datasets 

from the United States (US) and one dataset from the United Kingdom (UK), for a total sample 

size of 8,246 (after processing and quality control). The US samples originated from Indiana 

University-Purdue University Indianapolis (IUPUI), the 3D Facial Norms cohort (3DFN), which 

were collected by the University of Pittsburgh, and from studies conducted by collaborators from 

the Pennsylvania State University (PSU). The UK dataset included samples from the Avon 
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Longitudinal Study of Parents and their Children (ALSPAC). Each cohort’s collection is described 

below. 

5.2.1.1 IUPUI Dataset 

Refer to section 3.2.2.1. Of the individuals collected at IUPUI, 784 individuals who had 3D 

imagery and genotypic data were partitioned for use in this study. 

5.2.1.2 Penn State University (PSU) Dataset 

The number of individuals from the PSU dataset partitioned for this study included 1,990 

individuals with 3D imagery and genotypic data. Additional details of participant recruitment can 

be found in Section 3.2.2.2. PSU participants were genotyped by 23andMe on the v3, (900K 

variants) and v4 arrays (600K variants) (Mountain View, CA).  PSU sample images were obtained 

with either the 3dMDface (3dMD, Atlanta, GA) or Vectra H1 systems (Canfield, Parsippany, NJ). 

5.2.1.3 University of Pittsburg Dataset 

1,906 3D images and genotype data were obtained from the 3D Facial Norms repository159. The 

repository includes 3D facial surface images and self-reported demographic descriptors as well as 

basic anthropometric measurements from individuals recruited at four US sites: Pittsburgh, PA 

(PITT IRB PRO09060553 and RB0405013); Seattle, WA (Seattle Children’s IRB 12107); 

Houston, TX (UT Health Committee for the Protection of Human Subjects HSC-DB-09-0508); 

and Iowa City, IA (University of Iowa Human Subjects Office IRB (200912764 and 200710721). 

Recruitment was limited to individuals aged 3 to 40 years old and of self-reported European 

ancestry. Individuals were excluded if they reported a personal or family history of any birth defect 

or syndrome affecting the head or face, a personal history of any significant facial trauma or facial 

surgery, or any medical condition that might alter the structure of the face. 3DFN sample 

genotyping was performed at the Center for Inherited Disease Research at Johns Hopkins 

University. Participants, including 70 duplicate samples and 72 HapMap control samples, were 

genotyped on the Illumina OmniExpress + Exome v1.2 array in addition to 4,322 investigator-

chosen SNPs included to capture variation in specific regions of interest involved in the genetics 
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of facial variation to yield a total variant count of 968K. Facial surface images were acquired using 

the 3dMDface camera system (3dMD, Atlanta, GA). 

5.2.1.4 UK ALSPAC Dataset 

The UK sample was derived from the ALSPAC dataset, a longitudinal birth cohort in which 

pregnant women residing in Avon with an expected delivery date between 1 April 1991 and 31 

December 1992 were recruited160. At the time, 14,541 pregnant women were recruited, and DNA 

samples were collected for 11,343 children. Genome-wide data was available for 8,952 subjects 

of the B2261 study, titled “Exploring distinctive facial features and their association with known 

candidate variants.” In addition to this, 4,731 3D images were available along with information on 

sex, age, weight, height, ancestry, and other body characteristics. The ALSPAC study website 

contains details of all the data that is available through a fully searchable data dictionary 

(http://www.bris.ac.uk/alspac/researchers/our-data/). Ethical approval for the study was obtained 

from the ALSPAC Ethics and Law Committee and the Local Research Ethics Committees. 

Informed consent for the use of data collected via questionnaires and clinics was obtained from 

participants following the recommendations of the ALSPAC Ethics and Law Committee at the 

time. Consent for biological samples has been collected in accordance with the Human Tissue Act 

(2004). ALSPAC samples were genotyped using the Illumina Human Hap550 quad genome-wide 

SNP genotyping platform by Sample Logistics and Genotyping Facilities at the Wellcome Trust 

Sanger Institute (Cambridge, UK) and the Laboratory Corporation of America (Burlington, NC), 

supported by 23andMe. Using the Hap550 quad genome-wide array yielded approximately 550K 

variants. The ALSPAC sample was imaged using a Konica Minolta Vivid 900 laser scanner 

(Konica Minolta Sensing Europe, Milton Keynes, UK). For this system, two high-resolution facial 

scans were taken and then processed, merged, and registered using a macro algorithm in 

Rapidform® software (INUS Technology Inc., Seoul, South Korea). Ultimately, the final subset 

of European individuals who also had imaging data, covariates, and genotypes was 3,566 

individuals. 

http://www.bris.ac.uk/alspac/researchers/our-data/
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5.2.2 Facial Phenotyping  

Phenotyping was performed by our collaborator at PSU. 3D surface images were imported in 

wavefront.obj format into Matlab 2017b to perform the spatially dense registration process using 

a series of in-house functions packaged together in the MeshMonk registration framework29. To 

study global and local effects on facial variation, a data-driven facial segmentation on the UK and 

US datasets combined was performed, as described previously28. Before segmentation, images in 

the two datasets were separately adjusted for sex, age, age-squared, height, weight, facial size, the 

first four genomic ancestry axes, and the camera system. After adjustment, facial segments were 

defined by grouping vertices that are strongly correlated using hierarchical spectral clustering. This 

resulted in the construction of 63 facial segments (See Figure 5.1), broken into five levels of the 

face. Following additional spatial configuration and Principal Components Analyses (PCA), in 

combination with parallel analysis, each facial segment’s information was captured up using 

principal coordinates ranging from 8 to 70, depending on the segment. 
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Figure 5.1. Hierarchical Clustering of Face Shape. Facial segmentation was performed on a 

dataset of 2329. First, a squared similarity matrix was constructed based on a landmark and all 

other neighboring 3D landmarks. Subsequently, a 5-level hierarchical spectral clustering was 

performed on this matrix that resulted in 63 total masks 

5.2.3 Quality Control, Imputation & Facial GWAS Meta Analyses 

For this part of the study, our PSU collaborator gathered all available raw genotypic data from the 

IUPUI, PSU, and University of Pittsburgh datasets, hereafter referred to as US. The US datasets 

were imputed separately, and then combined following Verma, et al., 2014144. For each dataset, 

standard data cleaning and quality assurance practices were performed based on the GRCh37 

(hg19) genome assembly145. The genotypes were “harmonized” with 1000 Genomes Project 

(1000G) Phase 330 using Genotype Harmonizer146 with a window size of 200 SNPs, a minimum 
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of 10 variants, and alignment based on minor allele frequency (--mafAlign 0.1). This program was 

also used to filter out ambiguous SNPs, update the SNP id, and update the reference allele as 

needed, all in reference to the 1000G Phase 3 genotypes. After genotype harmonization, additional 

QC metrics, such as relatedness and ancestry analyses (selected individuals aligned with 1000 

Genomes European populations only) were performed that led to a final merged dataset of 4,680 

US participants with 7,417,619 SNPs for analysis. The raw genotype data from ALSPAC, hereafter 

referred to as UK, was not available and restrictions are in place against merging the ALSPAC 

genotypes with any other genotypes. For this reason, imputed UK genotypes were obtained directly 

from the ALSPAC database. After post-imputation quality control and ancestry analyses, the UK 

dataset contained 8,629,873 SNPs from 3,566 individuals for analysis. 

 

The meta-analysis framework consisted of three steps: identification, verification, and meta-

analysis (See Figure 5.2). For all analyses, the genotypes were coded as either 0, 1, or 2, based on 

the presence of the major allele. In the identification step (using both US, and UK data), within 

each of the 63 facial segments, each SNP was associated with phenotypic variation using canonical 

correlation analysis (CCA, canoncorr in Matlab 2017b). CCA is a multivariate analysis which 

extracts the linear combination of PCs that are maximally correlated with the SNP, which represent 

the direction of phenotypic effect in shape space (i.e. a phenotypic trait). In the verification step, 

the shape variables (PCs) of the non-identification dataset (i.e. the verification dataset) were 

projected onto the trait found in the identification stage, which returns a univariate variable (See 

UniVar in Figure 5.2). These univariate variables were then tested for genotype-phenotype 

associations in a standard linear regression with the SNP genotypes of the verification dataset as 

independent variables and the univariate trait projection score as the dependent variable. Next, the 

identification p-value (from the CCA) and the verification p-value (from the univariate regression) 

were combined in a meta-analysis using Stouffer’s method123,161. This process was repeated, 

resulting in two meta-analysis p-values accompanied by two identified traits, per segment and per 

SNP: first using US in the identification stage and UK as verification (METAUS), then using UK 

in the identification stage and US as verification (METAUK).
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Figure 5.2. Study Design. Sample Wrangling: Images and genotypes from each study were 

intersected and unrelated participants of European ancestry, with quality-controlled images, 

covariates, and imputed genetic data were selected to obtain the analyzed data. Identification: 

Within each facial segment, canonical correlation analysis (CCA) was used to identify the facial 

principal components most correlated with the genotypes, which led to a p-value (PCCA-US or 

PCCA-UK) and facial trait most correlated with each SNP (TraitUS and TraitUK). Verification: The 

principal components of the other dataset were then projected onto this trait to obtain a univariate 

variable representing the distribution of participants from the verification dataset for the trait 

identified in the identification dataset (UniVarUK and UniVarUS). The genotypes of the 

verification dataset are then tested against this variable via linear regression, resulting in an 

additional p-value (PUniVar-UK and PUniVar-US). Meta-Analysis: The p-values from identification and 

verification are meta-analyzed using Stouffer’s method, resulting in the final set of p-values from 

each meta-analysis permutation (PMETA-US and PMETA-UK) 
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5.2.4 Gene Annotation 

Genes 500 kb up and downstream of the lead SNPs found during association analyses were 

identified using the Table Browser of the UCSC Genome Browser162. The most likely candidate 

gene per lead SNP was identified based on a three-step system. First, we investigated whether any 

gene in the window was previously associated with craniofacial development or morphology 

through normal-range facial association studies, genetic disorders with facial dysmorphology as a 

symptom, or animal models. If this was not the case, we checked whether the gene was a known 

contributor to facial development based on the paper of Hooper and colleagues, who used 

transcriptome data from critical periods of mouse face formation to assess gene activity across 

facial development163. If both methods did not deliver a suitable candidate gene, the most likely 

candidate gene was selected based on the FUMA gene prioritization algorithm164. To investigate 

the potential roles of the identified lead SNPs, enrichment analyses using FUMA and GREAT165 

were performed using default parameters (See Figure 5.3). 



 

 

92 

 

Figure 5.3. GREAT and FUMA Analyses Showing Enrichment for Craniofacial and Limb 

Development. A) GREAT analysis. Plotted is the binomial test FDR (blue) and binomial 

enrichment (orange). We indicate the actual number of genomic regions in the test set with the 

annotation compared to the observed region hits (expected number of genomic regions in the test 

set with the annotation) behind every term. B) FUMA analysis, indicating the KEGG pathways 

that were enriched in our results. Multiple pathways are relevant for craniofacial development. 

The right panel shows the genes that are involved in the pathways 



 

 

93 

5.2.5 Structural Equation Modeling on Multiple Univariate Facial Phenotypes 

Structural equation modeling was performed on a collection of phenotypic and genotypic data 

collected from both US and UK-based cohorts (N = 8246). Phenotypic data was provided in the 

form of 8 to 70 principal components derived from quasi-landmarks collected from each of the 63 

total facial masks (See Figure 5.1). Genotypic data included a list of 203 variants, scored additively 

(i.e. 0, 1, or 2), found to be significant during the canonical correlation GWAS mentioned 

previously. Missing genotypic data points were substituted with the mode genotype, or the most 

commonly seen genotype based on genotype frequencies. Covariates of age, sex, height, weight, 

and face size were also included in the model to control for effects such as BMI and sex-based 

facial dimorphism. Distributions of the continuous covariates of age, height, weight, and face 

shape were plotted and displayed near normal distributions. As genotypes were trichotomous, 

normality was not accessed, however the principal components that comprise the latent variable, 

were by nature, normally distributed. All SEM analyses were conducted in R using the Lavaan 

Package82.  

 

Since analyzing the entire dataset via a single SEM would require the modeling of thousands of 

interactions and would also require extensive computational resources, separate SEM’s were 

conducted. Thus, several models were run iteratively, first to filter the original list of 203 variants 

down to the most influential by assessing model fit parameters and genotype regression weights. 

Significant regression weights of genotypes (evaluated at p < 0.2) were combined and included in 

the second SEM, which was used to output a ranked list of variants that were deemed most 

influential to the segment. Variants that significantly explained the segment (assessed at p < 0.05) 

were retained for the refined model used in follow-up epistasis and projection analyses. In the 

specific application of this multivariate technique, measured principal components from the full 

dataset (N = 8,246) of 3D facial images for each segment were used to generate the latent variable. 

The latent variable was regressed against these observed variables (PC’s and covariates) 

subsequently explaining their relationship (See Figure 5.4). 
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Figure 5.4. SEM Model Structure for Facial Segments. A) A visual representation of the SEM that is comprised of Principal 

Components (PC) that create half the measurement model, the genotypes and covariates (GC) that comprise the other half. Together 

the two halves of the measurement with the structural model comprised of a singular unobserved latent factor (ξ1) makes up the entire 

SEM model. B) The model’s general mathematic equation 
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After pruning the SEM for variants that best explain our latent variable construct, I validated the 

accuracy of our model using the Chi-square, RMSEA, CFI, and SRMR fit indices populated by 

the model. Groups of variants per facial segment were also functionally validated by examining 

in-silico their H3K27ac activity across cell types between facial segments and comparing that to 

variant H3K27ac activity within facial segments using Spearman’s rho.  

5.2.6 Epistasis Analysis 

The refined SEM model generated a latent univariate variable that was used to assess whether 

interactions between genotypes increase or decrease the effect (distribution) of a phenotype. 

Variants deemed significant by the refined SEM model (p < 0.05) were input into the Plink37 

analysis program where all diplotype combination effects on the dimensionally reduced latent 

segment constructs were assessed via a chi-square analysis38. Four diplotype combinations that 

were deemed significant at p < 0.05, after correcting for multiple testing, were reported and 

followed up with various data mining analyses.  

 

To assess the genotypic contribution to epistatic masking (i.e. the combination of two variants 

reduce the output phenotype) and boosting (i.e. the combination of two variants elevate the output 

phenotype), all nine diplotypes and their phenotypic distributions were plotted along with marginal 

distributions using R and various analysis packages including Agricolae, Cowplot, ggplot2, ggpubr, 

gridExtra, gtable, grid, Hmisc, psych, and data.table166–175. The marginal phenotypic medians of 

the singular genotypes were averaged in order to visualize the predicted phenotypic distribution 

that would occur if the two genotypes were acting independently. The average median of the 

singular genotypes using the univariate latent phenotype variable (dashed blue line in Figure 5.6) 

was compared to the medians of the varying combined diplotypes (solid black line in figure 

5.6).  Significance was performed using a Mood’s Median test to discern the epistatic significance 

of these diplotype combinations (reported P-value in Figure 5.6)176. Follow-up data mining on the 

results of the epistatic analyses was performed using various online research tools and databases 

including VarElect,177 StringDB178, and Encode130,131. 



 

 

 

96 

5.3 Results and Discussion 

The identification and verification analysis strategy yielded 126 p-values and 126 traits for every 

SNP, representing the 63 segments by two permutations. Per SNP, the lowest p-value was selected, 

and was noted in which version of the meta-analysis (METAUS or METAUK; “Best Permutation”) 

and segment (“Best Segment”) this p-value occurred (See Table 5.1). Peak selection on both 

genomic position and phenotypic effect resulted in 218 lead SNPs. Of these 218 lead SNPs, 203 

showed consistent phenotypic effects in the US and UK in the Best Segment and were noted as 

genome-wide significant hits within the overall META GWAS. Of the 203 variants, 86 of the 

peaks these variants were found in overlap with GWAS conducted on facial phenotypes, 64 were 

observed at loci that contain genes potentially influencing craniofacial morphology (which were 

determined either from human malformations or animal studies), and 53 were novel with no 

connection with previously known craniofacial morphology (See Annotation Category column 

within Table 5.1). 
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Table 5.1. 203 Lead Facial SNPs 

RSID* 
Lowest 

P 
Best 

Segment 
Best 

Dataset 
Candidate 

gene 
Annotation category 

rs76244841 1.5E-08 30 UK PRDM16 Region previously implicated in normal-range 
facial morphology 

rs1572037 2.6E-22 2 US PRDM16 Region previously implicated in normal-range 
facial morphology 

rs742071 1.1E-15 11 UK PAX7 Region previously implicated in normal-range 
facial morphology using other analyses of these 

data 

rs4912082 3.2E-08 10 UK CAPZB Candidate gene implicated in craniofacial 
morphology through animal model 

rs16834081 2.4E-09 11 US MATN1 Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs199971562 1.2E-11 30 UK PLPP3 No previous association 

rs4916071 1.9E-51 11 US c1orf87 Region previously implicated in normal-range 
facial morphology using other analyses of these 

data 

rs79297754 9.7E-10 61 US SLC44A5 No previous association 

rs12070922 3.7E-09 11 US LPHN2 Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs7513680 7.0E-13 51 UK TBX15 Region previously implicated in normal-range 
facial morphology 

rs3936018 8.0E-58 14 US WARS2 Region previously implicated in normal-range 
facial morphology 

rs17023457 3.3E-15 48 UK WARS2 Region previously implicated in normal-range 
facial morphology 

rs11589479 3.9E-09 1 US ADAM15 Region previously implicated in normal-range 
facial morphology 

rs577676 1.1E-08 51 US PRRX1 Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs10919462 2.7E-11 9 US PRRX1 Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs2759656 1.2E-79 53 UK CRB1 Region previously implicated in normal-range 
facial morphology 

rs12039502 1.9E-10 13 US MARK1 No previous association 

rs7558413 1.3E-10 1 US NT5C1B No previous association 

rs6715010 1.3E-14 22 US OSR1 Region previously implicated in normal-range 
facial morphology 

rs79037251 9.5E-11 24 UK OSR1 Region previously implicated in normal-range 
facial morphology 

rs1427539 2.5E-09 7 US OSR1 Region previously implicated in normal-range 
facial morphology 

rs6740960 3.4E-36 1 US PKDCC Region previously implicated in normal-range 
facial morphology 
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rs10189338 2.5E-08 11 US PKDCC Region previously implicated in normal-range 
facial morphology 

rs7590268 1.1E-08 29 US THADA Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs921119 1.4E-46 36 US SIX3 Region previously implicated in normal-range 
facial morphology using other analyses of these 

data 

rs35395759 3.6E-10 44 US SIX2 Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs1367228 6.4E-09 30 UK EFEMP1 No previous association 

rs13035645 2.4E-08 27 UK BCL11A Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs6546175 4.8E-12 58 US SPRED2 No previous association 

rs3891585 3.8E-10 15 UK MEIS1 Candidate gene implicated in craniofacial 
morphology through animal model 

rs11675008 2.8E-08 49 UK PNO1 No previous association 

rs17655927 2.6E-09 61 US DYSF No previous association 

rs772154 1.3E-08 21 UK NCAPH Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs7597495 6.5E-10 25 US FBLN7 Candidate gene implicated in craniofacial 
morphology through animal model 

rs11692600 1.9E-12 14 UK INSIG2 Candidate gene implicated in craniofacial 
morphology through animal model 

rs332108 5.7E-12 14 UK EN1 Candidate gene implicated in craniofacial 
morphology through animal model 

rs148912137 3.4E-12 7 US ZEB2 Region previously implicated in normal-range 
facial morphology 

rs970797 5.4E-68 1 US HOXD1 Region previously implicated in normal-range 
facial morphology 

rs10178696 2.6E-11 24 UK MTX2 Region previously implicated in normal-range 
facial morphology 

rs8176501 4.1E-09 32 UK CALCRL No previous association 

rs13035389 2.7E-13 53 US SATB2 Region previously implicated in normal-range 
facial morphology 

rs4675617 2.5E-13 18 UK SATB2 Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs1370926 6.5E-62 11 US PAX3 Region previously implicated in normal-range 
facial morphology 

rs7579011 7.1E-14 2 US FARSB Region previously implicated in normal-range 
facial morphology 

rs4686337 2.1E-08 11 UK SRGAP3-
SETD5 

Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs73048344 3.0E-08 15 UK THRB No previous association 
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rs17054293 2.8E-24 2 UK CACNA2D
3 

Region previously implicated in normal-range 
facial morphology 

rs9310211 4.6E-22 23 US FOXP1 Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs3072056 3.8E-11 2 US VGLL3 Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs34199564 2.2E-08 30 US ARL13B No previous association 

rs793487 2.0E-08 1 US COL8A1 Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs1391361 3.9E-08 4 UK CD96 Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs7373685 9.0E-49 18 UK GATA2 No previous association 

rs6795164 1.4E-09 1 UK SLCO2A1 Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs792736 1.2E-16 3 US SHOX2 No previous association 

rs58022575 2.8E-26 5 US EPHB3 Region previously implicated in normal-range 
facial morphology 

rs56081252 4.7E-11 6 UK EPHB3 Region previously implicated in normal-range 
facial morphology 

rs74921869 3.5E-11 5 US FGFRL1 Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs3910659 4.5E-09 25 UK STX18 No previous association 

rs13117653 4.2E-18 34 US MSX1 Region previously implicated in normal-range 
facial morphology using other analyses of these 

data 

rs7674010 4.4E-08 20 UK LEF1 Candidate gene implicated in craniofacial 
morphology through animal model 

rs514892 2.2E-09 15 UK PITX2 Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs7655723 8.4E-09 31 US MYOZ2 No previous association 

rs7694450 1.3E-08 9 UK PRDM5 Candidate gene implicated in craniofacial 
morphology through animal model 

rs6852838 3.5E-11 24 US FAT4 Region previously implicated in normal-range 
facial morphology 

rs62324070 2.8E-29 2 US INTU Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs9995821 5.7E-65 2 US DCHS2 Region previously implicated in normal-range 
facial morphology 

rs4342159 3.7E-10 2 UK PALLD No previous association 

rs4695846 1.7E-19 53 UK HAND2 Region previously implicated in normal-range 
facial morphology 
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rs3054104 3.1E-21 53 UK HPGD Region previously implicated in normal-range 
facial morphology 

rs4866909 2.4E-10 62 UK FGF10 Region previously implicated in normal-range 
facial morphology using other analyses of these 

data 

rs10078545 1.7E-09 2 US XRCC4 Region previously implicated in normal-range 
facial morphology 

rs76770688 3.7E-09 9 US MCC Region previously implicated in normal-range 
facial morphology using other analyses of these 

data 

rs13182341 3.5E-15 6 US FBN No previous association 

rs4582322 9.5E-09 5 US FABP6 No previous association 

rs6555969 1.0E-13 56 US FGF18 Region previously implicated in normal-range 
facial morphology 

rs17073930 4.0E-08 2 US FGF18 Region previously implicated in normal-range 
facial morphology 

rs4959652 2.2E-12 7 UK MYLK4 No previous association 

rs7755467 1.1E-09 2 UK NRSN1 No previous association 

rs9274522 2.2E-08 62 UK COL11A2 Region previously implicated in normal-range 
facial morphology using other analyses of these 

data 

rs1520 2.3E-22 21 UK DAAM2 Candidate gene implicated in craniofacial 
morphology through animal model 

rs227832 3.9E-37 23 US SUPT3H Region previously implicated in normal-range 
facial morphology 

rs73457129 4.9E-08 21 UK RUNX2 Region previously implicated in normal-range 
facial morphology 

rs12055796 1.5E-08 22 UK RCAN2 No previous association 

rs9381923 7.3E-19 22 US TFAP2B Region previously implicated in normal-range 
facial morphology 

rs6923760 1.0E-10 11 US PKHD1 No previous association 

rs4715567 1.7E-08 1 US BMP5 Candidate gene implicated in craniofacial 
morphology through animal model 

rs112411726 1.1E-09 15 US TBX18 No previous association 

rs6568401 4.6E-08 19 US PRDM1 No previous association 

rs9388518 3.7E-21 53 US RSPO3 Region previously implicated in normal-range 
facial morphology using other analyses of these 

data 

rs519332 6.5E-45 28 US EYA4 Region previously implicated in normal-range 
facial morphology using other analyses of these 

data 

rs34729823 9.2E-21 59 US MTFR2 No previous association 

rs2108791 2.6E-08 28 UK COL28A1 No previous association 

rs212672 1.3E-20 1 US TWIST1 Region previously implicated in normal-range 
facial morphology using other analyses of these 

data 
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rs2465274 4.2E-09 9 UK HOXA2 Region previously implicated in normal-range 
facial morphology using other analyses of these 

data 

rs62443772 5.3E-16 22 UK GLI3 Region previously implicated in normal-range 
facial morphology 

rs12535551 4.6E-11 11 UK IGFBP3 No previous association 

rs7806852 1.9E-08 5 UK HGF No previous association 

rs7807002 3.3E-10 61 US SEMA3A No previous association 

rs4296976 8.0E-74 54 US DLX6 Region previously implicated in normal-range 
facial morphology 

rs884373 7.2E-17 26 US WNT16 Candidate gene implicated in craniofacial 
morphology through animal model 

rs798682 8.7E-24 45 US FEZF1 No previous association 

rs4732070 8.9E-09 3 US CALD1 No previous association 

rs6948022 6.1E-09 60 UK DGK1 No previous association 

rs2976940 8.6E-09 3 US USP17L8 No previous association 

rs12114954 1.1E-11 2 US PPP1R3B Region previously implicated in normal-range 
facial morphology 

rs657913 4.0E-10 18 UK MSRA Region previously implicated in normal-range 
facial morphology 

rs5029306 5.3E-10 1 UK DPYSL2 Region previously implicated in normal-range 
facial morphology using other analyses of these 

data 

rs149814396 2.7E-08 45 US SFRP1 Candidate gene implicated in craniofacial 
morphology through animal model 

rs56252175 1.7E-09 63 US SNAI2 Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs116867275 1.9E-08 1 UK PXDNL No previous association 

rs1588405 1.3E-08 60 UK PKIA No previous association 

rs139016242 2.9E-10 63 UK POP1 Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs60373317 2.0E-09 1 US VPS13B Region previously implicated in normal-range 
facial morphology 

rs10089785 2.6E-08 10 UK TRHR Region previously implicated in normal-range 
facial morphology using other analyses of these 

data 

rs2245221 1.9E-08 48 UK TRPS1 Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs11337200 7.0E-13 2 US TRPS1 Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs7843236 9.5E-10 2 UK SNTB1 No previous association 

rs2581548 8.5E-11 2 UK HAS2 Candidate gene implicated in craniofacial 
morphology through animal model 
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rs871502 3.3E-08 4 UK CCDC26 Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs7859005 2.7E-10 57 US DMRT2 Region previously implicated in normal-range 
facial morphology 

rs10758593 6.0E-14 3 UK GLIS3 Region previously implicated in normal-range 
facial morphology 

rs303751 2.8E-12 38 US FREM1 Region previously implicated in normal-range 
facial morphology using other analyses of these 

data 

rs10962767 5.1E-14 2 UK BNC2 Region previously implicated in normal-range 
facial morphology 

rs2230578 5.8E-09 2 UK ROR2 Region previously implicated in normal-range 
facial morphology 

rs12553508 5.9E-09 3 US BARX1 Region previously implicated in normal-range 
facial morphology 

rs145965565 1.2E-14 44 US PTCH1 Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs1999464 1.7E-34 7 US ELP1 No previous association 

rs10448285 1.4E-10 57 UK LMX1B Region previously implicated in normal-range 
facial morphology 

rs1902713 1.8E-08 20 US GDF10 No previous association 

rs9633535 4.3E-11 5 US ARID5B No previous association 

rs138458666 7.5E-09 2 UK KAT6B Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs1907342 6.3E-19 9 US C10orf11 Region previously implicated in normal-range 
facial morphology 

rs1536446 4.0E-08 45 US TCTN3 Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs11190970 7.5E-09 45 UK FGF8 Candidate gene implicated in craniofacial 
morphology through animal model 

rs242983 1.8E-20 1 US EMX2 Region previously implicated in normal-range 
facial morphology 

rs34988394 5.5E-14 62 UK EMX2 Candidate gene implicated in craniofacial 
morphology through animal model 

rs1696840 2.8E-08 34 UK FGFR2 Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs6578283 2.5E-10 9 US KCNQ1 Region previously implicated in normal-range 
facial morphology using other analyses of these 

data 

rs34121257 1.1E-08 7 US SOX6 Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs7121535 4.7E-09 1 US ALX4 Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 
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rs10838269 8.9E-15 30 UK ALX4 Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs10743452 4.7E-08 7 US A2ML1 Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs11049359 4.2E-19 1 US PTHLH Candidate gene implicated in craniofacial 
morphology through animal model 

rs7970054 6.6E-11 7 US LRIG3 No previous association 

rs60493340 4.0E-19 3 US WIF1 No previous association 

rs11175967 2.1E-15 28 UK HMGA2 Region previously implicated in normal-range 
facial morphology 

rs2695152 1.3E-08 35 US NAV3 Region previously implicated in normal-range 
facial morphology using other analyses of these 

data 

rs10160931 8.8E-14 13 US NAV3 No previous association 

rs58687115 5.3E-11 12 UK gene 
desert 

No previous association 

rs4385969 2.5E-11 2 US SLC6A15 No previous association 

rs11609649 6.6E-29 1 US ALX1 Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs10779162 4.1E-17 9 US ALX1 Region previously implicated in normal-range 
facial morphology 

rs2098990 6.7E-25 5 US TBX3 Region previously implicated in normal-range 
facial morphology 

rs66516258 1.3E-09 11 US SPRY2 Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs11842203 7.2E-11 5 UK TGDS-
SOX21 

Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs9524742 3.1E-15 1 US TGDS-
SOX21 

Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs2390383 2.0E-08 14 UK PCCA Region previously implicated in normal-range 
facial morphology using other analyses of these 

data 

rs9558696 9.6E-10 2 US EFNB2 Region previously implicated in normal-range 
facial morphology using other analyses of these 

data 

rs1411551 3.8E-12 20 US IRS2 Region previously implicated in normal-range 
facial morphology 

rs59081965 7.5E-09 1 US PAX9 Region previously implicated in normal-range 
facial morphology using other analyses of these 

data 

rs12878658 4.6E-09 11 US BMP4 Region previously implicated in normal-range 
facial morphology 

rs10047930 1.6E-08 53 UK DACT1 No previous association 
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rs12881623 1.0E-09 18 UK SIX1 Candidate gene implicated in craniofacial 
morphology through animal model 

rs12890110 2.2E-09 17 UK RAD51B Region previously implicated in normal-range 
facial morphology 

rs1542448 1.5E-13 7 US BCL11B Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs76810699 2.5E-09 1 US BCL11B Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs1257585 7.4E-11 56 UK BCL11B Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs148375239 4.7E-10 53 US GREM1 Region previously implicated in normal-range 
facial morphology 

rs34961041 9.4E-14 31 US MEIS2 Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs2306022 5.9E-09 15 US ITGA11 No previous association 

rs34430707 6.9E-12 2 US THSD4 Region previously implicated in normal-range 
facial morphology 

rs112087864 7.1E-11 24 UK THSD4 Region previously implicated in normal-range 
facial morphology 

rs2401176 9.1E-11 11 UK ADAMTSL
3 

No previous association 

rs9923447 5.9E-27 9 UK RPGRIP1L Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs62051935 2.0E-13 19 US FOXC2 Region previously implicated in normal-range 
facial morphology 

rs2760734 2.1E-09 51 UK DPH1 Region previously implicated in normal-range 
facial morphology 

rs9899183 8.1E-13 26 UK SHBG Region previously implicated in normal-range 
facial morphology 

rs7218433 1.1E-21 7 UK NOG Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs227727 1.0E-16 38 US NOG Region previously implicated in normal-range 
facial morphology using other analyses of these 

data 

rs9893705 8.3E-12 49 US TBX4 No previous association 

rs34439270 8.1E-09 3 US KCNJ2 Region previously implicated in normal-range 
facial morphology using other analyses of these 

data 

rs9908442 3.3E-46 5 US SOX9 Region previously implicated in normal-range 
facial morphology 

rs9302943 9.8E-47 44 US SOX9 Region previously implicated in normal-range 
facial morphology 
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rs2359442 3.3E-09 22 US SETBP1 Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs11665450 1.3E-10 46 US TCF4 Region previously implicated in normal-range 
facial morphology 

rs634687 2.5E-11 11 US TSHZ1 Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs287104 3.8E-37 5 UK KCTD15 Region previously implicated in normal-range 
facial morphology using other analyses of these 

data 

rs6139982 3.9E-09 60 US BMP2 Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs116792 5.0E-11 11 US MKKS No previous association 

rs6047635 2.3E-12 11 UK PAX1 Region previously implicated in normal-range 
facial morphology using other analyses of these 

data 

rs6047637 4.5E-20 31 UK PAX1 Region previously implicated in normal-range 
facial morphology using other analyses of these 

data 

rs6113624 7.1E-17 21 US FOXA2 Region previously implicated in normal-range 
facial morphology 

rs1474738 2.9E-10 1 UK DNMT3B Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs877313 1.1E-29 2 US DHX35 Region previously implicated in normal-range 
facial morphology 

rs6022641 3.0E-10 36 US CYP24A1 No previous association 

rs4811827 2.9E-09 23 UK BMP7 Region previously implicated in normal-range 
facial morphology 

rs736702 1.9E-08 30 UK FBLN1 Candidate gene implicated in craniofacial 
morphology through animal model 

rs6529847 4.2E-08 28 US NLGN4X No previous association 

rs2520378 3.6E-10 1 US EDA Region or candidate gene implicated in 
craniofacial morphology through human 

dysmorphology 

rs1045686 4.8E-08 60 UK FAM133A No previous association 

rs11167418 3.9E-08 2 US PLS3 Candidate gene implicated in craniofacial 
morphology through animal model 

rs4829906 9.5E-14 63 UK ZIC3 No previous association 

*Variants organized by chromosome and position 
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5.3.1 Using SEM to Identify Groups of Variants that Explain Within Facial Segment 

Variation 

As mentioned previously, GWAS themselves are unable to model complex multivariate 

relationships between multiple variants and several phenotypes. Therefore, to more fully explain 

the complex genetic interactions occurring within facial segments on the 203 variants identified as 

being significant both the US and UK datasets were input into a structural equation model. In 

general, the number of model parameters generated by the final refined SEM model for each 

segment ranged between 92 and 217, depending on the number of shape PCs and SNPs included 

in each model (See Table 5.2). As 8,246 participants were used, this led to a range of 38-90 

participants per parameter, which is well above recommendations179. Additional statistical power 

was lent to our models by having a large number of samples and input variables per latent factor180. 

Of the 63 segments, the SEM models for 13 segments were discarded because they did not 

converge on a solution, which normally occurs when variants are non-informative for that segment 

or the variance of the segment is too low. For each of the 50 SEM models where the refinement 

process was successful, we evaluated the fit of each model by instituting cutoffs on the following 

indices: Chi-square (p-value < 0.05), comparative fit index (CFI > 0.90), root mean square error 

of approximation (RMSEA < 0.08), and standardized root mean square residual (SRMR < 

0.08)179,180, which generally indicate the strength of how well the SEM models the data. 18 models 

passed all recommended model fit parameters and 32 models passed all but one of the fit indices, 

leading to the conclusion that the refined SEM models fit our data well. Final model fit indices 

and model parameter estimates are provided in Table 5.3. 
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Table 5.2. Facial SEM Metadata 

Segment 
Name 

Quad 
Number of PCs 
representing 

shape variation 

Number of 
SNPs surviving 

model 
refinement 

P-value cutoff 
for refinement 
and epistasis 

Number of 
SNPs kept for 

epistasis 
analysis 

Epistasis test 
performed? 

Mask1 Full 
face 

Model removed Model removed Model removed Model removed Model removed 

Mask2 Nose 44 12 0.05 10 Yes 

Mask3 Non-
nose 

60 20 0.05 19 Yes 

Mask4 I Model removed Model removed Model removed Model removed Model removed 

Mask5 II 32 44 0.05 43 Yes 

Mask6 III 41 26 0.05 20 Yes 

Mask7 IV 51 52 0.1 50 Yes 

Mask8 I 15 37 0.05 32 Yes 

Mask9 I 19 34 0.05 32 Yes 

Mask10  II 18 57 0.05 52 Yes 

Mask11  II 29 42 0.05 39 Yes 

Mask12  III 26 26 0.05 25 Yes 

Mask13  III 31 49 0.05 46 Yes 

Mask14  IV 31 38 0.05 36 Yes 

Mask15  IV 45 11 0.05 5 Yes 

Mask16  I 8 34 0.1 1 Not enough 
variables 

Mask17  I 11 49 0.05 47 Yes 

Mask18 I Model removed Model removed Model removed Model removed Model removed 

Mask19  I 16 37 0.05 33 Yes 

Mask20  II 10 61 0.05 60 Yes 

Mask21  II 14 32 0.05 29 Yes 

Mask22  II 25 44 0.05 41 Yes 

Mask23  II 13 36 0.05 23 Yes 

Mask24  III 23 2 0.05 1 Not enough 
variables 

Mask25  III 20 13 0.1 3 Yes 

Mask26  III 23 35 0.05 34 Yes 

Mask27  III 21 49 0.05 46 Yes 

Mask28  IV 21 48 0.05 47 Yes 

Mask29  IV 23 29 0.05 28 Yes 

Mask30  IV 33 44 0.05 43 Yes 

Mask31  IV 26 38 0.05 33 Yes 

Mask32  I 8 36 0.05 29 Yes 

file:///C:/Users/relle/AppData/Local/Packages/oice_16_974fa576_32c1d314_3d61/AC/Temp/240DE090.xlsx%23'Mask2'!A1
file:///C:/Users/relle/AppData/Local/Packages/oice_16_974fa576_32c1d314_3d61/AC/Temp/240DE090.xlsx%23'Mask3'!A1
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Mask33  I 7 42 0.05 37 Yes 

Mask34  I 11 31 0.05 25 Yes 

Mask35  I 8 40 0.05 22 Yes 

Mask36 I Model removed Model removed Model removed Model removed Model removed 

Mask37 I Model removed Model removed Model removed Model removed Model removed 

Mask38 I Model removed Model removed Model removed Model removed Model removed  

Mask39  I 11 37 0.05 32 Yes 

Mask40  II 7 13 0.05 13 Yes 

Mask41  II 7 43 0.05 42 Yes 

Mask42  II 10 39 0.05 35 Yes 

Mask43 II Model removed Model removed Model removed Model removed Model removed 

Mask44 II Model removed Model removed Model removed Model removed Model removed 

Mask45 II Model removed Model removed Model removed Model removed Model removed 

Mask46  II 7 58 0.05 56 Yes 

Mask47  II 9 55 0.05 51 Yes 

Mask48  III 17 39 0.05 30 Yes 

Mask49 III Model removed Model removed Model removed Model removed Model removed 

Mask50  III 18 18 0.05 12 Yes 

Mask51 III Model removed Model removed Model removed Model removed Model removed 

Mask52  III 13 44 0.05 37 Yes 

Mask53 III Model removed Model removed Model removed Model removed Model removed 

Mask54 III Model removed Model removed Model removed Model removed Model removed 

Mask55  III 14 30 0.05 26 Yes 

Mask56  IV 14 54 0.05 52 Yes 

Mask57  IV 19 21 0.05 0 Not enough 
variables 

Mask58  IV 13 32 0.05 24 Yes 

Mask59  IV 13 35 0.05 32 Yes 

Mask60  IV 27 50 0.05 49 Yes 

Mask61  IV 21 51 0.05 48 Yes 

Mask62  IV 22 25 0.05 22 Yes 

Mask63  IV 25 37 0.05 35 Yes 
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Table 5.3. Facial SEM Fit Indices 

Name Quadrant 
Model fit parameters* 

Chi-Sq Chi-Sq DF 
Chi-Sq 

p < 0.05 
CFI 

> 0.90 
RMSE 
< 0.08 

SRMR 
< 0.08 

TLI 
> 0.95 

GFI 
> 0.95 

Mask1 Full face NA NA NA NA NA NA NA NA 

Mask2 Nose 1534 1848 1.000 1.000 0.000 0.009 1.073 0.992 

Mask3 Non-nose 2357 3480 1.000 1.000 0.000 0.008 1.322 0.991 

Mask4 I NA NA NA NA NA NA NA NA 

Mask5 II 4401 2138 0.000 0.704 0.011 0.012 0.693 0.968 

Mask6 III 2284 2219 0.166 0.987 0.002 0.009 0.986 0.987 

Mask7 IV 5339 4324 0.000 0.840 0.005 0.010 0.836 0.976 

Mask8 I 1539 748 0.000 0.862 0.011 0.010 0.851 0.976 

Mask9 I 1638 944 0.000 0.871 0.009 0.010 0.862 0.980 

Mask10  II 3049 1274 0.000 0.742 0.013 0.010 0.724 0.961 

Mask11  II 4240 1833 0.000 0.692 0.013 0.012 0.679 0.966 

Mask12  III 1419 1199 0.000 0.956 0.005 0.009 0.954 0.987 

Mask13  III 3442 2204 0.000 0.812 0.008 0.010 0.805 0.974 

Mask14  IV 2743 1874 0.000 0.852 0.008 0.010 0.846 0.979 

Mask15  IV 866 1869 1.000 1.000 0.000 0.007 1.298 0.995 

Mask16  I 499 328 0.000 0.965 0.008 0.007 0.959 0.985 

Mask17  I 1343 634 0.000 0.877 0.012 0.008 0.864 0.972 

Mask18 I NA NA NA NA NA NA NA NA 

Mask19  I 1251 809 0.000 0.917 0.008 0.009 0.910 0.982 

Mask20  II 1503 674 0.000 0.862 0.012 0.007 0.846 0.965 

Mask21  II 1369 623 0.000 0.867 0.012 0.010 0.855 0.977 

Mask22  II 3781 1571 0.000 0.708 0.013 0.012 0.693 0.965 

Mask23  II 1633 617 0.000 0.834 0.014 0.010 0.818 0.971 

Mask24  III 76 494 1.000 1.000 0.000 0.004 1.116 0.999 

Mask25  III 407 607 1.000 1.000 0.000 0.007 1.050 0.995 

Mask26  III 2158 1220 0.000 0.847 0.010 0.010 0.839 0.978 

Mask27  III 2206 1369 0.000 0.860 0.009 0.009 0.852 0.975 

Mask28  IV 2106 1349 0.000 0.872 0.008 0.009 0.864 0.977 

Mask29  IV 1394 1088 0.000 0.941 0.006 0.009 0.938 0.986 

Mask30  IV 2532 2223 0.000 0.940 0.004 0.009 0.937 0.982 

Mask31  IV 2095 1499 0.000 0.890 0.007 0.010 0.884 0.981 

Mask32  I 547 342 0.000 0.958 0.009 0.007 0.952 0.984 

Mask33  I 636 326 0.000 0.938 0.011 0.007 0.927 0.979 

Mask34  I 1089 454 0.000 0.886 0.013 0.010 0.873 0.977 

Mask35  I 744 370 0.000 0.929 0.011 0.007 0.918 0.978 

Mask36 I NA NA NA NA NA NA NA NA 

Mask37 I NA NA NA NA NA NA NA NA 

file:///C:/Users/relle/Downloads/SI_TableS6_ModelEstimatesAfterRefinement%20(1).xlsx%23'Mask2'!A1
file:///C:/Users/relle/Downloads/SI_TableS6_ModelEstimatesAfterRefinement%20(1).xlsx%23'Mask3'!A1
file:///C:/Users/relle/Downloads/SI_TableS6_ModelEstimatesAfterRefinement%20(1).xlsx%23'Mask5'!A1
file:///C:/Users/relle/Downloads/SI_TableS6_ModelEstimatesAfterRefinement%20(1).xlsx%23'Mask6'!A1
file:///C:/Users/relle/Downloads/SI_TableS6_ModelEstimatesAfterRefinement%20(1).xlsx%23'Mask7'!A1
file:///C:/Users/relle/Downloads/SI_TableS6_ModelEstimatesAfterRefinement%20(1).xlsx%23'Mask8'!A1
file:///C:/Users/relle/Downloads/SI_TableS6_ModelEstimatesAfterRefinement%20(1).xlsx%23'Mask9'!A1
file:///C:/Users/relle/Downloads/SI_TableS6_ModelEstimatesAfterRefinement%20(1).xlsx%23'Mask10'!A1
file:///C:/Users/relle/Downloads/SI_TableS6_ModelEstimatesAfterRefinement%20(1).xlsx%23'Mask11'!A1
file:///C:/Users/relle/Downloads/SI_TableS6_ModelEstimatesAfterRefinement%20(1).xlsx%23'Mask12'!A1
file:///C:/Users/relle/Downloads/SI_TableS6_ModelEstimatesAfterRefinement%20(1).xlsx%23'Mask13'!A1
file:///C:/Users/relle/Downloads/SI_TableS6_ModelEstimatesAfterRefinement%20(1).xlsx%23'Mask14'!A1
file:///C:/Users/relle/Downloads/SI_TableS6_ModelEstimatesAfterRefinement%20(1).xlsx%23'Mask15'!A1
file:///C:/Users/relle/Downloads/SI_TableS6_ModelEstimatesAfterRefinement%20(1).xlsx%23'Mask16'!A1
file:///C:/Users/relle/Downloads/SI_TableS6_ModelEstimatesAfterRefinement%20(1).xlsx%23'Mask17'!A1
file:///C:/Users/relle/Downloads/SI_TableS6_ModelEstimatesAfterRefinement%20(1).xlsx%23'Mask19'!A1
file:///C:/Users/relle/Downloads/SI_TableS6_ModelEstimatesAfterRefinement%20(1).xlsx%23'Mask20'!A1
file:///C:/Users/relle/Downloads/SI_TableS6_ModelEstimatesAfterRefinement%20(1).xlsx%23'Mask21'!A1
file:///C:/Users/relle/Downloads/SI_TableS6_ModelEstimatesAfterRefinement%20(1).xlsx%23'Mask22'!A1
file:///C:/Users/relle/Downloads/SI_TableS6_ModelEstimatesAfterRefinement%20(1).xlsx%23'Mask23'!A1
file:///C:/Users/relle/Downloads/SI_TableS6_ModelEstimatesAfterRefinement%20(1).xlsx%23'Mask24'!A1
file:///C:/Users/relle/Downloads/SI_TableS6_ModelEstimatesAfterRefinement%20(1).xlsx%23'Mask25'!A1
file:///C:/Users/relle/Downloads/SI_TableS6_ModelEstimatesAfterRefinement%20(1).xlsx%23'Mask26'!A1
file:///C:/Users/relle/Downloads/SI_TableS6_ModelEstimatesAfterRefinement%20(1).xlsx%23'Mask27'!A1
file:///C:/Users/relle/Downloads/SI_TableS6_ModelEstimatesAfterRefinement%20(1).xlsx%23'Mask28'!A1
file:///C:/Users/relle/Downloads/SI_TableS6_ModelEstimatesAfterRefinement%20(1).xlsx%23'Mask29'!A1
file:///C:/Users/relle/Downloads/SI_TableS6_ModelEstimatesAfterRefinement%20(1).xlsx%23'Mask30'!A1
file:///C:/Users/relle/Downloads/SI_TableS6_ModelEstimatesAfterRefinement%20(1).xlsx%23'Mask31'!A1
file:///C:/Users/relle/Downloads/SI_TableS6_ModelEstimatesAfterRefinement%20(1).xlsx%23'Mask32'!A1
file:///C:/Users/relle/Downloads/SI_TableS6_ModelEstimatesAfterRefinement%20(1).xlsx%23'Mask33'!A1
file:///C:/Users/relle/Downloads/SI_TableS6_ModelEstimatesAfterRefinement%20(1).xlsx%23'Mask34'!A1
file:///C:/Users/relle/Downloads/SI_TableS6_ModelEstimatesAfterRefinement%20(1).xlsx%23'Mask35'!A1


 

 

 

110 

Mask38 I NA NA NA NA NA NA NA NA 

Mask39  I 760 514 0.000 0.951 0.008 0.007 0.945 0.984 

Mask40  II 305 152 0.000 0.967 0.011 0.009 0.961 0.990 

Mask41  II 714 332 0.000 0.928 0.012 0.007 0.915 0.976 

Mask42  II 874 476 0.000 0.923 0.010 0.008 0.913 0.979 

Mask43 II NA NA NA NA NA NA NA NA 

Mask44 II NA NA NA NA NA NA NA NA 

Mask45 II NA NA NA NA NA NA NA NA 

Mask46  II 1025 422 0.000 0.893 0.013 0.007 0.875 0.966 

Mask47  II 1468 547 0.000 0.847 0.014 0.008 0.826 0.962 

Mask48  III 1279 903 0.000 0.927 0.007 0.008 0.921 0.982 

Mask49 III NA NA NA NA NA NA NA NA 

Mask50  III 566 611 0.902 1.000 0.000 0.008 1.011 0.992 

Mask51 III NA NA NA NA NA NA NA NA 

Mask52  III 771 713 0.065 0.988 0.003 0.006 0.987 0.986 

Mask53 III NA NA NA NA NA NA NA NA 

Mask54 III NA NA NA NA NA NA NA NA 

Mask55  III 696 597 0.003 0.979 0.004 0.007 0.977 0.988 

Mask56  IV 1683 909 0.000 0.869 0.010 0.008 0.857 0.972 

Mask57  IV 756 710 0.111 0.990 0.003 0.008 0.989 0.991 

Mask58  IV 763 569 0.000 0.960 0.006 0.008 0.956 0.986 

Mask59  IV 952 605 0.000 0.933 0.008 0.008 0.927 0.983 

Mask60  IV 2464 1884 0.000 0.898 0.006 0.009 0.894 0.979 

Mask61  IV 2012 1409 0.000 0.888 0.007 0.008 0.882 0.977 

Mask62  IV 1044 944 0.012 0.979 0.004 0.009 0.978 0.989 

Mask63  IV 1857 1403 0.000 0.915 0.006 0.009 0.910 0.982 

*Note: Green highlights indicate a good model fit metric 

 

Reassuringly, for segments that are closely related in the segmentation hierarchy (i.e. segments 5, 

11, 23, and 47) there is an average overlap of 46% of the variants meeting the p < 0.05 cutoff for 

significance, compared to 13.6% average overlap for non-hierarchically related segments (i.e. 

segments 5 and 6). As further validation of the SEM’s, the H3K27ac activity across all cell types 

was compared by a collaborator for significant variants both within and between segments using 

Spearman’s rho (See Figure 5.5). In the analysis it was found that pairs of SNPs are significantly 

(p = 0.0062) more correlated if they originate from the same masks as opposed to originating from 

different masks, which should be the trend if the SEM models are accurately grouping SNP’s based 

on the facial segments they influence most. 
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Figure 5.5. Correlation of H3K27ac Activity Among SEM Models. A) For all segments (aka 

“masks”), we compared the H3K27ac activity for significant SNPs from the refined SEM model 

for variation at that facial segment. Plotted is the Spearman’s rho correlation between pairs of 

SNPs significant in the same SEM model (“Within Mask”); pairs of SNPs where one is from the 

SEM model and the other is not (“Within To Out”); and where both SNPs in the pair are from a 

different SEM model (“Out To Out”). Segments where the distribution of correlation across all 

cell types was significantly different (p < 0.05) are indicated in black. B) For all cell types, the 

median correlation across all segments is plotted for each of the three SNP groupings. 

Significance between the means was determined using Kruskal-Wallis test 
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5.3.2 Epistatic Results  

50 of the 63 facial segments were analyzed for epistatic interactions based on the subset variant 

list output from the refined facial segment’s SEM. 13 segment models were either unable to 

converge or did not have enough surviving variants to perform a test on epistasis. Within the 50 

successful segments, four variant pairs (see Table 5.4) showed a significant pairwise epistatic 

interaction (multiple testing corrected p < 0.05) showing some form of a biological interaction on 

the face shape, which is illustrated by the ‘Facial Morph’ column in Table 5.4. Furthermore, the 

phenotypic and marginal distributions for the epistatic pairs can be seen in Figure 5.6 A-E. By 

looking at Figure 5.6 B, it is possible to see that there is a highly significant difference between 

the diplotype phenotype TTCC (i.e. the TTCC with interaction phenotype) shown as a solid black 

line, and the expected phenotype determined by observing the CC and TT genotypes separately 

(i.e. the expected phenotype of TTCC if TT and CC had no interaction effects) shown as a dotted 

blue line. Thus, the interaction of the two homozygous major alleles results in the depression of 

the phenotype. Conversely, scanning across the top row of Figure 5.6 B from right to left, it is 

evident that altering rs10838269 to include one copy of the minor allele, C, has the opposite effect 

boosting the phenotype higher than what is expected with the diplotype of CTCC. An addition of 

yet another minor allele to rs10838269 yielding a diplotype of CCCC, further increases the facial 

segments phenotype.
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Table 5.4. Summary of the Epistatic Interactions Found in Four Pairs of Facial Segments. The 

segment in which the epistatic interaction was found is listed followed by the RSID’s, the facial 

morphs, the associated genes, and the p-value associated with the linear regression-based test of 

epistasis. The facial morph is shown to better depict the potential phenotypic effects with red 

colorations indicating an outward direction while blue colorations indicate an inward direction  

 

 

Segment RSID Facial Morph Assoc. Gene RSID Facial Morph Assoc Gene Pvalue

6
rs10838269

Chr 11
TSPAN18

rs11175967

Chr12
IRAK3 9.94E-07

9
rs76244841

Chr1
GNB1

rs62443772

Chr7
GLI3 4.68E-06

11
rs6740960

Chr2
PKDCC

rs6795164

Chr3
SLCO2A1 5.21E-05

22
rs7373685

Chr3
GATA2

rs7843236

Chr8
SNTB1 7.10E-05

SNP2SNP1
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Figure 5.6. Phenotypic Effects of the Epistatic Interactions Found in Four Pairs of Facial 

Segments. Phenotypic and marginal distributions for diplotype combinations for A) a random 

SNP pairing and B-E) each significant epistasis pair. Boxplots are plotted to visualize the 

epistatic effect on the phenotype. The marginal phenotypic medians of the singular genotypes 

(first column and last row of boxplots) were used to calculate and visualize the predicted 

diplotype phenotypic distribution that would occur if the two genotypes were acting 

independently (dashed blue lines in colored boxplots). This median was compared to the 

observed medians of the diplotypes (solid black lines; colored boxplots) via Mood’s Median test 

with one degree of freedom. Log transformed p-values were used to color the boxplots if there 

was a significant (p < 0.05; log(p) > 1.30) difference between the expected phenotype of the 

combined genotype and observed diplotype 
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Figure 5.6. Continued 
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Figure 5.6. Continued 
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The strongest pairwise variant epistatic interaction (p = 9.94 x 10-7) between rs10838269 (ALX4 

associated) and rs11175967 (HMGA2 associated) within segment 6 (See Figure 5.6 B), which 

covers the area of the face from the zygoma to the mandible, was explored further via a literature 

search. Rs11175967 is an intronic variant mapped to the HMGA2 gene that encodes a high mobility 

group AT-hook protein, which forms components of enhancesomes and may also function as a 

transcriptional regulator181. HMGA2 has been associated with Silver-Russell Syndrome, 

symptoms of which include a triangular face shape and broad foreheads182,183. HGMA2 has also 

been linked to H3K27ac chromatin regulation in osteoblasts [GEO:GSM733739, Bradley 

Bernstein, Broad]. Rs10838269, its epistatic partner, is an intergenic variant whose nearest protein 

coding gene is ALX4. ALX4 encodes a paired-like homeodomain transcription factor that is known 

to be expressed in the mesenchyme of developing bones and has been shown to play a vital role in 

craniofacial development184. Based on experimental evidence from Encode, the variant is located 

in a region that is a known to be regulated by H3K27ac [GEO:GSM733656, Bradley Bernstein, 

Broad] in K562 (i.e. bone marrow) cells. ALX4 has also been shown to be involved in Potocki-

Shaffer Syndrome, which is characterized by abnormal bone development including deformations 

in the parietal bones that comprise the top and sides of the skull185.  

 

ALX4 knockouts in mice have also demonstrated abnormal fusion of nasal cartilage186,187. The 

connection between HMGA2 and ALX4 has already been documented in genome-wide analyses of 

adaptive loci in sheep, where the authors found both HMGA2 and ALX4 contributing to sheep 

phenotype with the former being tied to ear morphology and the latter being associated with 

“stature and morphology.”188 

 

In addition, genomic analyses on finches have shown that alterations of ALX1 and HMGA2 have 

been associated with beak shape189 and size190. It is important to note that while ALX1 and ALX4 

are separate proteins, the work by Qu et al., 1999 have found the two paired-like homeodomain 

transcription factors functionally redundant187. Therefore, beak morphology is affected by multiple 

interconnected genes working in tandem, which may be very similar to vertebrate craniofacial 

development, which is also controlled by complex multi-gene pathways191,192. Thus, this epistatic 

interaction between ALX4 and HMGA2 found in silico to have an effect on human craniofacial 
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morphology also has support in the literature from non-human studies that illustrates its effect on 

face and beak shape. Future functional examination of this proposed epistatic connection may 

provide additional evidence of this gene masking effect. 

 

Rs76244841 (PRDM16 associated) and rs62443772 (GLI3 associated) were also found to have a 

significant interaction (p = 9.94 x 10-7) in facial segment 9 (See Figure 5.6 C). PRDM16 encodes 

a zinc finger transcription factor193,194  and has been shown to repress TGFβ signaling195. While 

previous studies have demonstrated a link between TGFβ signaling and craniofacial 

development196–199, Bjork et al., 2010 specifically suggests that PRDM16’s modulation of TGFβ 

effects craniofacial development including palate shelf elevation200. GLI3 encodes a transcriptional 

activator and a repressor of the sonic hedgehog (Shh) pathway, which has been shown to play a 

role in limb development201–203. In addition, there is evidence that mouse null Gli3 mutants result 

in a broad nose phenotype204 as well as genome-wide scans that identified GLI3 as affecting nose 

morphology27. The connection between PRDM16 and GLI3 can be best seen through their 

interaction through the SUFU intermediary, which is a negative regulator of the 

hedgehog/smoothened signaling pathway157,205–209. Multiple studies conducted on Drosophila 

melanogaster have identified evidence for a tetrameric Hedgehog signaling complex comprising 

Fu, Ci (an ortholog of PRDM16), Cos2, and Su(fu) (an ortholog of SUFU), including evidence 

that Su(fu) binds directly to Ci210–212. Subsequently, SUFU has been shown to mediate the 

phosphorylation of GLI3 via GSK3213 and has also been shown to interact with the GLI1-3 zinc-

finger, DNA-binding proteins206,214. Thus, the literature suggests a link between PRDM16 and 

GLI3 via the SUFU intermediary, which contributes to palatal shelf elevation and nose 

morphology (specifically, nose width). Interestingly, the facial segment we observed this epistatic 

interaction within was segment 9, which covers the premaxillary soft tissue from the base of the 

columella to the oral commissure.  

  

Rs6740960 (PKDCC associated) and rs6795164 (SLCO2A1 associated) (p = 5.21 x 10-5), and 

rs7373685 (GATA2 associated) and rs7843236 (SNTB1 associated) (p = 7.10 x 10-5) were found 

in facial segments 11 and 22 (See Figures 5.6 D and E) respectively, which are hierarchical masks 

that include areas surrounding the base of the nose. Due to the overlapping nature of the masks, 

these variants were analyzed as a collective group. The nature of the relationship between these 
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four variants is less clear, however some trends are evident. The first is that there appears to be a 

connection between GATA2 and SLCO2A1 through AKT1. AKT1 is one of 3 related 

serine/threonine-protein kinases first found in mouse models215, which regulate multiple processes, 

such as metabolism, cell survival, growth, proliferation, and angiogenesis. It has also been 

indicated in Proteus syndrome whose symptoms include bone development abnormalities216,217. 

SLCO2A1 is a solute carrier involved in the release and transport of prostaglandin218,219 and has 

also been shown to be involved in hypertrophic osteoarthropathy220–222. SLCO2A1 regulates AKT1 

and the Akt pathway through prostaglandin223. Furthermore, the PI3K/Akt signal pathway has been 

shown to negatively regulate the transcriptional activator GATA2224. There were not any 

connections found with PKDCC and SNTB1, however, there was an interesting connection 

between SNTB1 and GATA2 via Dystrophin (DMD). DMD serves as a key component of the 

dystrophin-associated glycoprotein complex, which helps stabilize the sarcolemma225. SNTB1 is 

an adapter protein that has been suggested to link receptors to the dystrophin glycoprotein 

complex226,227. GATA2 has also been shown to be a transcriptional factor of DMD215.  Finally, 

there is evidence in mouse models that supports a connection between the Akt signaling pathway 

and DMD216, which serves as another underlying link between three of the four epistatic hits 

(SLCO2A1, GATA2, and SNTB1). While there were no evident links between PKDCC and the 

other epistatic hits, it may be worth noting that this tyrosine-protein kinase has been previously 

shown to be involved in bone growth217–219.  

 

 Therefore, SEM conducted on a particular facial segment, consisting of a PC comprised latent 

variable, and utilizing a pool of 203 significantly associated facial variants was found to be capable 

of identifying relationships between variants that can then be used to assess for epistatic 

interactions. However, it is important to note that bioinformatic analyses such as GWAS and SEM 

only give us a starting point, or in this case a list of variants, that we can then use to create 

functional experiments in order to determine whether these variants found in silico are valid in 

vivo. 



 

 

 

120 

5.3.3 Using SEM for Prediction  

The constructed refined SEM models can also be used to predict the latent factor phenotype given 

a genotypic profile. From these models, the predicted latent factor phenotype can then be translated 

back into principal components and used to construct a predicted 3D model of the particular facial 

segment. Using a refined model, several artificial genotype profiles, which contained the NCBI 

definition of a 100% ancestral, a 100% derived profile (based on NCBI), and 20 additional 

randomized genetic profiles were combined with the covariate mean (as determined from the US-

UK combined dataset). These profiles were fed into the SEM model, which resulted in the 

prediction of the principal components for the corresponding segment. The principal components 

were subsequently projected into the initial PCA space and output visually. While these projections 

were done for all models that had a refined model, only the masks showing the most noticeable 

results are displayed in Figure 5.7. These projections are for display purposes only since there has 

been no attempt to assess the accuracy of these predictions, which are based on the genotypes of 

simulated individuals. In order to generate these projections, principal components are reinserted 

in the shape space of each segment (generated from the original set of individuals) and the image 

is exaggerated along the linear axis (Figure 5.7 “Exaggerated”) to better show the difference 

between the ancestral and derived projections.  
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Figure 5.7. SEM Projections Based on Theoretical Ancestral and Derived Individuals Using 203 

Variants. Segments 2, 3, 5, and 6 are shown with the ancestral profile being shown in the 

leftmost two columns and the derived profile being shown in the rightmost two columns. Since 

the ancestral and derived profiles did not encapsulate the extreme phenotypes like we had 

assumed, we mathematically exaggerated the phenotypes (columns 1 and 3; “exaggerated”) to 

better visually demonstrate phenotypic differences 
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5.4 Conclusion 

In conclusion, by employing a multivariate technique that is capable of modeling interactions 

between correlated genotypes and a multifaceted phenotype, I have shown that it is possible to 

delve deeper into traditional GWAS results in order to explore the cross talk that occurs between 

variants that may influence facial morphology. This analysis shows that it is possible to assign 

groups of variants to certain segments of the face and measure their contribution towards 

understanding the variation that exists within that segment. It is also possible to identify pairs of 

variants that are directly masking/enhancing phenotypic distributions due to their diplotype 

combinations, which warrant further functional investigation.  Through these advanced methods 

(e.g. CCA and SEM) we are bridging the gap between statistically correlated variants, their 

potential biological interactions, and measuring their phenotypic variance. 
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 CONCLUSION 

Over the course of this research I found novel results by innovating and implementing new 

phenotyping and analysis methods. For example, many previous iris pigmentation studies have 

phenotyped iris color by assigning eyes into three simple categories: blue, intermediate, and brown. 

Even quantitative methods more recently applied could not capture true iris color as they either 

extracted a small segment of color or averaged color across every image pixel, which is not a true 

reflection of the phenotype. However, by digitally training and quantifying irises, we were better 

able to capture the mixture of color seen within irises. Due to this approach, several variants were 

identified that may warrant further exploration through replication and functional studies. 

Rs3820285, located within CELA3A, was found to be associated with blue iris phenotypes. While 

no biological link was found between CELA3A and pigment, we did find the variant nearby various 

regulatory features that were within 17kb of a gene, CDC42, known to affect melanin 

deposition135. Rs77373930, an intronic variant located within AC007389.1, was also identified in 

both green iris and the PCA-FA reduced phenotype GWAS, as well as rs6420484, an intronic SNP 

located within NPLOC4 and TSPAN10. The biological evidence for a pigment connection was low 

for rs77373930, but was high for rs6420484, which was found in a previous iris color GWAS108 

and is also in LD with several variants located in PDE6G, a gene known to cause Retinitis 

Pigmentosa139,140. In order to gain power in our GWAS to bring the near-genome-wide significant 

variants past the significance threshold, we will continue to refine our phenotyping training and 

classification. One trend that we saw over the course of the analysis was that some individuals who 

may be deemed as having blue eyes were quantified as brown due to some of the thresholds that 

were set within the training parameters. By improving the training and quantitation procedures, 

we may further increase analyses power and remove background noise. 

 

Currently the standard output for iris prediction is a categorical output of blue, intermediate, or 

brown. Here I illustrated that by implementing a neural network, we are capable of outputting a 

model that can predict a quantitative amount of four iris color classes with a mean absolute error 

(MAE) of 13.57% +/- 0.36% across all eye colors. In addition, when the model was compared with 

a currently published model, the results were very similar, although we were only testing five 
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individuals so more extensive testing is required. Nevertheless, after nearly a decade since the first 

categorical iris prediction tool was released228, it is long past due for a quantitative prediction of 

iris color. However, the application of ‘black-box’ neural networks and deep neural networks must 

be treated with caution in terms of feature selection and model structure. With that caveat, we will 

continue to improve our quantitative prediction tool by further increasing its accuracy and usability. 

Although the prediction model had trouble predicting individuals with high green iris content, it 

was still able to capture some portion of perceived green within the iris. The aim during the 

association analyses was to try to find new variants associated with that phenotype, however there 

were no clear hits. There are candidates that required further study, and perhaps examining an 

increased number of green-eyed individuals for these markers, diplotype combinations, and/or 

epistatic interactions may allow a better prediction of this difficult phenotype. As green was the 

most underrepresented iris category in the dataset, we may be able to improve the model by either 

enriching our testing set with additional green irises, or by reducing the number of non-green irises 

in the training set. We also plan on consulting with computer scientists in the creation of an 

‘artificially’ created iris output for prediction visualization purposes instead of relying on dataset 

retrieved irises, which due to their ‘identifying’ biometric capabilities would not be ideal to use as 

output for the prediction of an ‘unknown’ person. One of the avenues we plan to investigate in 

particular is the implementation of a generative adversarial network (GAN), which has showed 

promise in recreating human irises from a dataset of iris images229.  

 

To date many facial morphology studies have focused on examining distance measurements 

between facial landmarks. However, none had analyzed simple face or jaw shape. Here it was 

found that despite having a simpler phenotype, we were still able to detect variants that may affect 

face shape. Rs187236608, and intronic variant within STON1, rs11431304, an intronic variant 

found within LHCGR, and rs113531385, an intronic variant located within STON1-GTF2A1L, 

were all identified in this manner. While STON1 did not return any connections with facial 

morphology, LHCGR was associated with delayed bone maturation and reduced bone formation 

in a mouse study. STON1-GTF2A1L has links to LHCGR through testes biology and may result in 

similar developmental disorders. We will need follow-up replication studies in order to validate 

our results and, if validated, subsequent functional studies to explore the biological role of these 

variants. It may also be advantageous to find a more objective method of classifying categorical 
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face shape in order to boost power, reduce classifier bias, and increase the speed of phenotyping 

even further. One avenue we may explore is deep learning. Specifically, we may try to implement 

a convolutional neural network that is capable of classifying image inputs to better assess jaw 

shape and even entire face shape. 

 

In addition to looking at a simpler method of facial phenotyping, we also implemented a network-

based analysis method to analyze the result output of a more complex facial phenotyping analysis. 

By using the facial phenotyping methods as discussed in Claes et al., 2018 and White et al., 2019, 

I was able to implement a structural equation model on 203 variants output from their canonical 

correlation GWAS. By giving structure to their results through modeling the variants, the PC 

phenotypes, and the latent factor comprised of PC’s, we were able to assess how each variant 

affected this complex network and how they worked together via epistatic interactions to either 

amplify or suppress a facial phenotype. It should also be highlighted that while SEM’s have long 

been used to model structure within simple questionnaire data230–232, far fewer have attempted a 

SEM of this magnitude on variables as complex as genomic variants233,234.  Still, to follow up on 

our work, we may attempt to delve into some of the canonical correlation intermediates that are 

created prior to the creation of the single latent variable that was used in the analysis that was 

submitted for review. We may also explore other types of multi-trait GWAS analyses235, in order 

to better analyze this multi-faceted phenotype. 

 

As our analysis and phenotyping methods improve, so too must our bioinformatic tools that make 

these research projects possible. One of the major hurdles in performing bioinformatics, especially 

for first-time users, is the lack of inter-operability between various analysis programs. By creating 

the Odyssey pipeline, I attempted to rectify this problem for several types of commonly used 

GWAS analysis. This pipeline will drastically decrease the analysis time of phasing and imputation 

as well as offer an offline imputation solution for those who are unable to use other online options 

such as the Michigan Imputation Server or the Sanger Sequencing Service. I also developed several 

‘add-on’ modules that should benefit researchers wanting to QC their data, perform phenotype 

normalization, and wish to correct for ancestry prior to performing a GWAS. However, much can 

be improved with Odyssey from making the code cleaner, improving the user-interface, and 

expanding the amount of analysis options. 
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While there is still much to explore, our understanding of human facial morphology and iris 

pigmentation continues to expand. As we continue to innovate new phenotyping methods and 

perform new types of analyses, we hope to incorporate the variant associations we find in a variety 

of applications such as prediction modeling for forensic and anthropological purposes. These 

variants may also lay the groundwork in order to understand various pigment and morphological 

diseases, which may someday lead to treatment. Hopefully, the advances made through the course 

of this research can be used as yet another stepping-stone to further advance these two fields and 

help those who will reap the benefits of their potential applications. 
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APPENDIX A. ODYSSEY USER GUIDE 

Odyssey 

Version: 2.1.0 

Odyssey is semi-autonomous workflow that aids in the preparation, phasing, and 

imputation of genomic data. Odyssey also provides support for custom reference panel 

merging, population structure (admixture) analysis, phenotype normalization, genetic 

data quality control, genome-wide-association studies (GWAS), and visualization of 

analysis results. 

If you use Odyssey in any published work, please cite the following paper: 

Eller, Ryan J., Sarath C. Janga, and Susan Walsh. "Odyssey: a semi-automated pipeline for 

phasing, imputation, and analysis of genome-wide genetic data." BMC bioinformatics 20.1 

(2019): 364. https://doi.org/10.1186/s12859-019-2964-5 

General Overview 

Odyssey relies primarily on the idea that the creation of imputed genomic data must go 

through 4 basic steps: pre-imputation QC, phasing, imputation, and post imputation 

cleanup and QC. Once Odyssey is setup, users can automate these 4 steps on a High 

Performance System (HPS) running some form of Linux or a desktop (if you are not 

concerned about time requirements as phasing/imputation is normally resource 

intensive). Odyssey contains 6 main folders. The '0_DataPrepModule' directory is where 

the user places his or her target data that needs to be remapped and/or 'fixed' to a 

reference genome (to assure proper genomic positions and allele 'flippige'). The '1_Target' 

directory is where the cleaned data from '0_DataPrepModule' is automatically put 

following the data being cleaned. The 'Reference' directory is where the reference data 

that will be used by Shapeit2/Eagle2 and Impute4/Minimac4. The '2_Phasing' directory is 

where phasing scripts, logs, and phased data will be housed while the '3_Impute' directory 

is where an imputed dosage VCF will be stored. The '4_GWAS' directory is where GWAS 

analyses are conducted and also contains the Phenotype sub-directory where phenotype 

normalization may be performed. A 'SubModule' directory contains the 'PopStratModule,' 

which performs admixture analysis on a given dataset, 

'Remapping_Made_Easy_Submodule, which allows for semi-autonomous genome 

https://doi.org/10.1186/s12859-019-2964-5
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remapping on a given dataset, and the 'HGDP_Starter-SubModule', which formats a 

version of the HGDP dataset for Odyssey use. Lastly the '5_QuickResultsis' directory 

populates metadata collected over the range of analysis for a given imputation or GWAS 

project. Each imputation run and GWAS analysis are stored in discrete project folders 

within the main 4 directories (e.g. 1_Target, 2_Phasing, 3_Impute, and 4_GWAS). 

Odyssey is setup based on a pre-made downloadable Singularity container, which 

contains all but 2 of Odyssey's dependencies. Impute4 must be downloaded separtely 

due to licensing restrictions, and GNU-Parallel (which is an optional dependency that 

speeds up runtime) must be configured separtely. All of Odyssey's dependencies are 

housed within the 'Configuration' directory. 

Users should also make note of the Settings.conf file, which guides users in setting 

Odyssey's variables, which controls the workflow. This method of user control was used 

instead of the more traditional command line arguments in order to simplify the workflow 

while allowing the users to visualize all the options Odyssey has to offer. 

Once Odyssey is setup and the workflow settings are configured in Settings.conf, the user 

can execute the various scripts in the main Odyssey folder which cleans, phases, imputes, 

and performs a GWAS on the data. Odyssey is optimized for human data, but it is 

theoretically possible to analyze data from other organisms using Odyssey as well. 

Odyssey Tutorial 

As an added reference, an Odyssey Tutorial has been provided which contains a 100 

sample HGDP dataset (provided in the 'Tutorial_Data' directory) as well as an 'Odyssey 

Tutorial [v#]' document, which walks you through the data prep, phasing, imputation, post 

imputation QC that is needed to create a dosage VCF, as well as some of the sub modules. 

The tutorial as well as configuration instructions can be found within the 

'Odyssey_Literature' directory. I would highly recommend new users to utilize the detailed 

explanation that can be found in the tutorial in order to become more familiar with 

Odyssey. Running through the tutorial covers all the essential steps, offers some tips, and 

provides a look at more advanced settings that will hopefully make data prep, QC, phasing, 

imputation, post Imputation QC, GWAS and admixture analysis, and phenotype 

normalization very simple and easy. It will only take around 3-6 hour to complete the 

tutorial given adequate computational resources. One can even truncate the analysis to a 

few chromosomes to decrease the amount of time to completion even further. 
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Quick Setup 

Note: It is best to use Odyssey on a system that has Singularity already installed. There 

are non-Singularity setup methods of setting up Odyssey, but doing so is not 

recommended. A detailed explanation of Odyssey setup can be found in 'Odyssey 

Installation Instructions' found within the Readme folder 

Download Odyssey via Github: 

1. On the Odyssey Github page navigate to the Github Release tab 

The release should have 3 files for download: OdysseyContainer.sif.gz + Source 

code (zip) + Source code (tar.gz) 

2. Download and extract the Source code to your working directory 

3.  cd /Directory/You/Want/To/Work/From 
4.  unzip Odyssey-[#.#.#] 

5. Download and extract the OdysseyContainer.sif.gz to the Singularity directory: 

6.  cd ./Odyssey-[#.#.#]/Configuration/Singularity  
7.  unzip OdysseyContainer.sif.gz 

8. Due to licensing restrictions, you will need to download and extract the Impute4 

(if you choose to use that imputation software over Minimac4) executable to the 

Impute4 directory within Configuration 

a) Request access to Impute4 here: https://jmarchini.org/impute-4/ 

b) After downloading Impute4 to the Impute4 directory you will need to alter the 

following line in ./Configuration/Setup/Programs-Singularity.conf: 

 Impute_Exec4="${WorkingDir}Configuration/Impute4/impute4.1.1_r294.2"; 

d) Replace impute4.1.1_r294.2 with the appropriate version you just downloaded 

9. You’re done. Start using Odyssey 

Extra Note: While the pre-made releases are an easy way to download everything you 

need to run Odyssey, I am constantly updating Odyssey's Github page so you may use 

https://jmarchini.org/impute-4/
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Git to pull changes from Github between releases, if you want the latest and greatest 

improvements. 

Setup Reference Data: 

Reference data to be used with phasing/imputation is installed by the workflow by default, 

but can be changed in Settings.conf so that you can use your own reference data. To do 

so, simply populate the Reference Data Folder with your preferred reference data. By 

default reference data is downloaded from the IMPUTE2/Minimac3 site under their 

reference data for "1,000 Genomes haplotypes -- Phase 3 integrated variant set release in 

NCBI build 37 (hg19) coordinates" (Updated 3 Aug 2015) 

If you choose to use a custom reference dataset, then several adjustments may need to 

be made to the naming of the reference files (.legend, .map, and .hap) and also to the 

Settings.conf file. These adjustments are explained in greater detail in the Settings.conf 

file. Users should pay particular attention to make sure that custom reference data is 

sync'ed to the target data (i.e. don't try and use a Target dataset mapped to GRCH 37 to 

a reference dataset mapped to GRCH 38). 

Setup Target Data: 

As an optional first step to cleanup your genomic data (hereafter referred to as "Target" 

data) you may put your Plink formatted data (.bed/.bim/.fam) 

in ./0_DataPrepModule/PLACE_DATA_2B_FIXED_HERE/. Running the 

'0_DataPrepCleanup.sh' script from Odyssey's main directory will give you the option of 

fixing your target data to a GRCH 37 reference build and will remove positional duplicates 

if they exist. This step is not required, but highly recommended as positional duplicates 

will cause the pipeline to error out. Fixing the data to a reference genome also helps 

reduce the chances of encountering a workflow error caused by 'dirty' data. This optional 

step will deposit your data in the ./1_Target/PLACE_NEW_PROJECT_TARGET_DATA_HERE/. 

Additional Note: As data that will be imputed should match the genomic build of the 

reference dataset, it may be helpful to utilize the Remapping_Made_Easy_SubModule 

found within the 'SubModules' Directory. It utilizes NCBI's Remap Service to semi-

automate the remapping of your data to a build of your choice (that is supported by NCBI 

of course). More information on running this sub-module can be found within the 

Odyssey Tutorial. 
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The first required step of Odyssey is placing data in 

the ./Target/PLACE_NEW_PROJECT_TARGET_DATA_HERE/ directory. Data placed here 

undergo basic quality control prior to phasing (e.g. filtering individuals and variants based 

on missingness, minor allele frequency, and Hardy-Weinbergy Equilibrium). The cutoffs 

are set by default to industry standards, however users may choose to adjust the 

thresholds in Settings.conf. In addition, at this step users may opt to interactively visualize 

their dataset exploring the quality control measures mentioned above, as well as evaluate 

sample relatedness via IBD. Dataset QC plots (e.g. IBD, HWE, and Missingness) are saved 

automatically to a results folder 

within ./Target/PLACE_NEW_PROJECT_TARGET_DATA_HERE/. 

Fill out Settings.conf: 

Settings.conf file is responsible for setting the variables that will be used to execute the 

scripts in the home directory. Essentially, all the main scripts on the home directory 

"phone home" back to the Settings file to lookup their variables. Because of this, unless 

additional customization is needed, you should never have to modify any of the main 

scripts in the home directory (however, each script within Odyssey Modules and 

Submodules are heavily commented to allow for easy navigation when attempting more 

advanced customization not supported by the Settings file). Most of these variables are 

relating to toggling steps of Odyssey (to allow for more user control and to help with 

troubleshooting), specifying the home directory (i.e. './Odyssey/'), etc. Step-by-step 

instructions on how to setup Settings.conf variables can be found in the Settings file itself 

and a more detailed explanation can be found in the Odyssey Tutorial. 

A Note on Odyssey File Organization: 

Odyssey has an organization scheme to keep all imputation results separate from each 

other so the user does not have to "reset" the Odyssey folder after each imputation run. 

Odyssey does this by organizing files into 'Imputatation Projects'. Each project will create 

a folder that is identified by a BaseName, or a name that is specified in Settings.conf at 

the beginning of the analysis to identify the imputation run. This will allow for the creation 

of identifiable folders within the Target, Phase, Impute, GWAS, and QuickResults folders. 

For example, if I have a dataset of Homo sapien target DNA that I want imputed, I will 

setup an Imputation Project named "Human_Impute1" (the name must not contain 

whitespaces). Odyssey will then create a target folder (within the Target directory) specific 

to my imputation run and move my data into it. Odyssey will then deposit phased and 

imputed scripts, outputs, and results within the Phase and Impute folders respectively. If 
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I then want to impute a different set of data, I simply create a new Imputation project, 

which will separately house the target, phase, and impute data from my second 

imputation run. 

 

Running Odyssey 

Step 1: Pre-Imputation QC and Setup 

1. Once the target data has been cleaned and is deposited in the 

'PLACE_NEW_PROJECT_TARGET_DATA_HERE' folder within the Target folder 

directory, the first script, "1_ImputeProjectSetup-QC-Split.sh" can be run from the 

home directory. Simply use a command prompt to navigate to the home 

directory (e.g. $ cd /path/to/Odyssey-v[#.#.#]/) and execute the script (e.g. $ bash 

1_ImputeProjectSetup-QC-Split.sh) which will setup an Imputation Project Folder, 

move your Target Data into this Project Folder, and will provide a small amount 

of pre-imputation QC which includes (by default): 

a) Filtering for individual missingness (removes individuals missing more than 5% 

of genomic content) 

b) Filtering for genetic variant missingness (removes variants missing in more than 

5% of individuals) 

c) Filtering for minor allele frequencies (removes variants that contain a minor allele 

frequency of 2.5% or less) 

d) Filtering for Hardy-Weinberg Equilibrium (removes variants that have a HWE p-

value of 1e-5 or below). This test is very lenient to allow for diverse target data. 

2. SHAPEIT/EAGLE requires data to be split by chromosome so the last step is 

splitting the dataset into their respective chromosomes By default the script looks 

for chromosomes 1-26 (the default for human samples) into their respective 

chromosomes.  
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Step 2: Phasing 

1. Odyssey organizes phased data into an Imputation Project Folder created within 

the Phase folder. The name of this folder is specified by the Imputation Project 

Name variable and will contain subdirectories that house the phasing scripts, 

outputs, and results. 

2. No additional files outside of those created in Step 1 need to be created to run 

the Phasing step. Each step builds on the next and contains all the files necessary 

to run the next step. 

3. Phasing is carried out using SHAPEIT/EAGLE recommended settings (shown 

below) and a reference data map provided by IMPUTE2 (by default) or the user. 

a) The SHAPEIT command has the following general form: shapeit --thread [# 

threads] --input-bed [PlinkTargetBedFile] --input-map [ReferenceMapFile] --

output-max [OutputPhasedName] --output-log [OutputPhasedLogName] 

b) The EAGLE command has the following general form: eagle --numThreads [# 

threads] --bfile [PlinkTargetBedFile] --geneticMapFile=[ReferenceMapFile] --

outPrefix=[OutputPhasedName] --chrom [Chrom #] 

4. Phasing customization can be set via altering settings found in Settings.conf 

5. Phased output, logs, and scripts are deposited within the Imputation Project 

directory placed within the Phase directory 

Step 3a: Imputation 

1. Odyssey organizes imputed data into an Imputation Project Folder created within 

the Impute folder. The name of this folder is specified by the Imputation Project 

Name variable and will contain subdirectories that house the imputation scripts, 

outputs, and results. Note that either Impute or Minimac can be used with a pre-

phased dataset run through either Shapeit or Eagle. 

2. Imputation is carried out using IMPUTE/Minimac recommended settings using 

reference data (genetic, hap, and map files) provided by either IMPUTE/Minimac 

(by default) or the user. The General IMPUTE/Minimac commands are listed 

below. Note that the reason why Impute4 is used is because it has superior speed 

in comparison to Impute2. Minimac is another imputation solution and is setup 
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by default for users who do not need to utilize Impute's abilities to more 

accurately impute admixed datasets. 

a) impute4 -g [PhasedHapsFile] -s [PhasedSampleFile] -m 

[ReferenceGeneticMapFile] -h [ReferenceHapsFile] -l [ReferenceLegendFile] -int 

[StartChromosomeChunkSegment EndChromosomeChunkSegment] -maf_align -

Ne [20000] -o [OutputName] 

b) minimac4 --cpus [# cpus] --allTypedSites --minRatio 0.00001 --refHaps 

[ReferenceHapsFile] --haps [PhasedHapsFileFromSHAPEIT] --prefix [OutputName] 

3. Imputation customization can be set via altering settings found in Settings.conf. 

4. Imputed output, logs, and scripts are deposited within the Imputation Project 

directory placed within the Raw_Imputation folder within the Impute directory 

Step 3b: Post Imputation Cleaning and Concatenation 

Post imputation cleaning is performed differently depending on whether Impute or 

Minimac was used. 

For Impute Workflows: 

1. Since imputted files are divided by chromosome and by segment, these files must 

be concatenated. Odyssey does this through 3b_ConcatConvert.sh which does a 

simple concat command with all the imputed chromsomal segments housed 

within the Raw Imputation folder and re-assigns their chromosome number 

(which isn't explicitly assigned during imputation) 

2. SNPTEST then creates a SNP Report which calculates the INFO imputation QC 

metric. This will later be used to filter the VCF file (the INFO cutoff is set to 0.3 by 

default, but may be adjusted in Settings.conf) 

3. Concatenated chromsomal .GEN files are converted to a dosage VCF file (.VCF) 

using Plink 2.0 and filtered by INFO score 

4. The dosage VCF files are concatenated via BCFTools 

5. The final output within the 'ConcatImputation' Folder contains the following: 
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a) .snpstat (SNPTEST snp report that contains several metrics on the imputed 

chromosome including the INFO score) 

b) .snpstatOut (is a log file for SNPTEST which contains the run results from 

SNPTEST AND a count of the total number of variants imputed for the particular 

chromosome and how many are left after INFO filtering) 

c) Most importantly is the 1Imputed_[BaseName].vcf.gz file which is the final 

imputation product. This dosage VCF file can be inputted into analysis programs 

such as Plink 2.0, SNPTEST, GenAble, etc. for further analysis 

For Impute Workflows: 

1. By default Minimac concatenates imputed chromosomal segments into imputed 

chromosomal.vcf.gz files which already contains the Minimac R2 (very similar to 

Impute's INFO scores) imputation QC metric. 

2. These chromosomal.vcf.gz files are then filtered via Plink 

3. Filtered vcf.gz imputation files are then concatenated via BCFTools 

4. The final output within the 'ConcatImputation' Folder contains the following: 

a) .log and .out files detailing the actions performed on individual dosage 

chromosomal vcf.gz files 

b) Most importantly is the 1Imputed_[BaseName].vcf.gz file which is the final 

imputation product. This dosage VCF file can be inputted into analysis programs 

such as Plink 2.0, SNPTEST, GenAble, etc. for further analysis. Unlike the Impute 

vcf.gz product, the Minimac vcf.gz has the R2 INFO metrics baked into the vcf.gz 

file itself for all imputed and typed variants 

Step 4: Setup GWAS Project and Run GWAS Analysis 

The last step in Odyssey will be to setup a GWAS Analysis Project where a dosage VCF 

can either be manually imported into Plink or an Imputation Project can be specified, 

which will allow Odyssey to automatically lookup the dosage VCF file and corresponding 

sex sample file (the .fam file for the dataset which contains sex information) and perform 

an analysis. How Plink imports the data can be setup via Settings.conf. The GWAS analysis 

is designed to perform and visualize a genotype:phenotype analysis (i.e. a Genome-Wide-
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Association Study). Specifically, the genotypic data and inputted phenotypic data is fit on 

a general linear model or a logistic model, and R is used to visualize the output. 

1. Users will need to setup a GWAS Project for the GWAS analysis by completing the 

GWAS Project Variables Section of Settings.conf. More specific details on how to 

fill out the variables are included within the Settings file itself and the tutorial, but 

briefly: 

a) Specify the GWAS Project Name 

b) List the Imputation Project the user wishes to analyze or manually list the path 

of a dosage VCF 

c) Specify the name of the covariate/phenotype file that correspond to the 

imputation files (which is placed in ./4_GWAS/Phenotype). 

Note: It is important that the user read the instructions in the Plink manual 

regarding the formatting of the phenotype and covariate files. 

d) List any additional Plink options to be run during the analysis withing the 

"Plink_Options" variable 

2. Run the '5_AutomatePlink.sh' script from the Odyssey directory 

3. A new GWAS Project directory should be created which upon analyis completion 

should contain the following: 

a) An analysis log file 

b) A QQPlot 

c) A Plotly interactive Manhattan Plot (with its Plotly dependency folder) 

d) A summary table that contains the top 10000 variants with the lowest 

unadjusted p-values (as well as multiple comparison corrections, effect sizes, etc.) 

e) A gzipped file that contains the raw results from Plink 
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Additional Odyssey Tasks 

Population Stratification Analysis 

Odyssey is capable of performing an Eigensoft-like analysis to assess a datasets ancestry 

structure using reference datasets such as the 1000 Genomes or HGDP datasets. Follow 

the instructions found within 00_PopStrat_Helper.xlsx, which is an Excel file that already 

has 1000 Genomes and HGDP datasets pre-populated and organized. Briefly, a Population 

Stratification workflow follows the following steps: 

1. 2 datasets, a reference dataset that contains known ancestry and a target dataset 

that contains ancestries that will be determined, are placed in 

the ./SubModules/PopStratModule/PLACE_Target-Ref_Datasets_HERE/ directory 

2. Common genotypes are found between the 2 datasets in order to perform an 

inner-merge (i.e. the 2 datasets are merged so that only the common genotypes 

are retained) 

3. The resulting dataset undergoes some basic quality control measures (i.e. 

missingness and HWE) and then pruned based on linkage disequilibrium 

4. A PCA analysis is performed on the combined, QC'ed, and prunned dataset 

5. Files that contain the PCA eigenvectors and eigenvalues are used in tandem with 

an ancestry file (which is a Plink formatted ID list of reference samples that 

contain the ancestry the user wishes to keep) that the user uploads 

6. An R script is then used to construct an X-dimensional centroid based on the 

eigenvectors of the samples that are of the ancestry the user wishes to retain. 

Outliers that fall outside of the X-dimensional centroid are determined based on 

a specified standard deviation or inter quartile range cutoff. 

7. The output of the analysis is an interactive 3D Plotly scatterplot that color 

coordinates individuals who are deemed outliers, reference samples, and samples 

that should be included in the analysis. A text document recommending which 

individuals should be removed based on ancestry is also provided. 
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GWAS Phenotype Normalization 

Non-normal phenotypes occasionally negatively affect GWAS analyses. In response 

Odyssey contains an Analyze/Transform Phenotypes script housed within 

the ./4_GWAS/Phenotype directory. Running this script will prompt for the path to a Plink 

formatted phenotype file to analyze and will then proceed to show the distribution of the 

phenotype by column (with each column, m>2, being a different phenotype). 

See https://www.cog-genomics.org/plink/1.9/input#pheno for more information on 

phenotype file formatting. This interactive script will then ask the user whether to perform 

a Yeo-Johnson, Rank-Order Inverse Normalization, or no normalization on the selected 

phenotype. If normalizing the script will visualize the before and after, ask whether the 

transformation is to be accepted, and if accepted will append the transformed phenotype 

onto the end of the phenotype file. 

Custom Imputation Ref Panel Creation (BETA) 

As more sequence data is being collected it is now possible for users to create highly 

customizable imputation reference panels that better suits their needs. If a user has 

several reference datasets (e.g. custom collected data in addition to 1000 Genomes data) 

and wishes to merge them into a single reference dataset, then this can be accomplished 

using the MergeRefSets Submodule found within ./Reference/MergeRefSets/. In general, 

the workflow is as follows: 

1. Put Reference dataset 1 in ./Reference/MergeRefSets/Reference1 

2. Put Reference dataset 2 in ./Reference/MergeRefSets/Reference2 

3. Add the proper genetic map files in ./Reference/MergeRefSets/GeneticMaps 

4. Configure settings in Merge.conf 

5. From ./Reference/MergeRefSets run 

6.  $ bash ./MergeRef.sh 

7. The two reference datasets will be merged using Impute2's merging function 

(explained 

here: https://mathgen.stats.ox.ac.uk/impute/merging_reference_panels.html) and 

deposited in ./Reference/MergeRefSets/MergedRefPanels 

https://www.cog-genomics.org/plink/1.9/input#pheno
https://mathgen.stats.ox.ac.uk/impute/merging_reference_panels.html
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Note: Depending on the size of the reference panels, this operation may take an incredibly 

long time since the operation is essentially imputing the reference sets to each other, 

which is essentially a dual-imputation procedure. 
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APPENDIX B. ODYSSEY PERFORMANCE METRICS 

Table B1 and B2. Benchmarks for Odyssey. Benchmarks were conducted on an admixed HGDP sample set of 940 individuals (542K 

variants after quality control) with a 1000 Genome Phase 3 Reference dataset (80M variants) on a High-Performance Cluster using a 

SHAPEIT-IMPUTE and a Eagle-Minimac workflow. While Odyssey can be parallelized almost infinitely, benchmarks were 

conducted on 3 CPUs throughout the pipeline unless programs were unable to utilize the additional cores or the use of additional cores 

would be unlikely to increase performance. Benchmarks performed for each step are listed and illustrate the maximum amount of 

RAM and time required to complete each step. Since phasing and imputation can be massively parallelized their benchmarking times 

are divided into “Time per Job,” the time it took to complete a single job for a benchmarking sample for the given step and “Time per 

Step,” the total amount of time it took to complete the entire step for the entire HGDP dataset running on up to 150 concurrent jobs on 

the HPS. Two tables are shown for two specific workflows, the SHAPEIT-IMPUTE workflow (left) and Eagle-Minimac (right) 

 

Step 
Max 

Memory 
Required 

CPU's 
Used 

Benchmarking 
Sample 

Time per Job 
on HPS 

Time per 
Step on 

HPS 

Step 0 - Clean-up 0.9 GB 1 HGDP Dataset 0:18:15 0:18:15 

Step 1 - Pre-QC 0.1 GB 1 HGDP Dataset 0:01:07 0:01:07 

Step 2 – Phase* 1.5 GB 3 Chr 1 1:27:53 1:27:53 

Step 3a – Impute* 1.7 GB 1 Chr 1 Segment 1 0:05:38 0:18:31 

Step 3b - Convert 2.2 GB 3 HGDP Dataset 5:14:40 5:14:40 

Step 4 - Analyze 4.8 GB 3 HGDP Dataset 0:11:25 0:11:25 

Step 4 - Visualize 17.7 GB 1 HGDP Dataset 0:12:45 0:12:45 

Pop Strat Add-in 17.2 GB 1 
HGDP Target – 
1K Genomes 

Reference 
0:18:42 0:18:42 

Total Estimation 17.7 GB - - - 8:03:18 

**SHAPEIT2-IMPUTE4 Workflow 

Step 
Max 

Memory 
Required 

CPU's 
Used 

Benchmarking 
Sample 

Time per 
Job on HPS 

Time per 
Step on 

HPS 

Step 0 - Clean-up 0.9 GB 1 HGDP Dataset 0:18:15 0:18:15 

Step 1 - Pre-QC 0.1 GB 1 HGDP Dataset 0:01:07 0:01:07 

Step 2 – Phase* 1.9 GB 3 Chr 1 0:24:22 0:24:22 

Step 3a – Impute* 3.2 GB 3 Chr 1 0:44:52 0:44:52 

Step 3b - Convert 3.7 GB 3 HGDP Dataset 1:29:32 1:29:32 

Step 4 - Analyze 4.8 GB 3 HGDP Dataset 0:11:25 0:11:25 

Step 4 - Visualize 17.7 GB 1 HGDP Dataset 0:12:45 0:12:45 

Pop Strat Add-in 17.2 GB 1 
HGDP Target – 1K 

Genomes 
Reference 

0:18:42 0:18:42 

Total Estimation 17.7 GB - - - 3:00:41 

**Eagle2-Minimac4 Workflow 
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Figure B1. CPU and Ram Utilization for Step 0 – Data Cleanup. Odyssey Step 0, which fixes strand orientation of the user’s dataset to 

a reference genome, was performed on the entire HGDP dataset containing 940 admixed individuals and approximately 542K 

markers. Collectl was used to monitor the CPU (left) and RAM (right) usage for each process (i.e. program) in the step as well as the 

total time for completion.  A buffer of 120 seconds was added to the end of the step for technical reasons. One hyperthreaded CPU 

core and 32 GB RAM were allotted for Step 0. Using the entire specified dataset, the data cleanup step would require approximately 

18 minutes and 1 GB RAM 

 



 

 

 

 

 

1
4
2
 

 

Figure B2. CPU and Ram Utilization for Step 1 – Data Quality Control. Odyssey Step 1, which performs quality control metrics of 

missingness, minor allele frequency, and Hardy-Weinberg equilibrium filters as well as divide the dataset into individual 

chromosomes, was performed on the entire HGDP dataset containing 940 admixed individuals and approximately 542K markers. 

Collectl was used to monitor the CPU (left) and RAM (right) usage for each process (i.e. program) in the step as well as the total time 

for completion. A buffer of 10 seconds was added to the end of the step for technical reasons. One hyperthreaded CPU core and 32 

GB RAM were allotted for Step 1. Using the entire specified dataset, the data quality control step would require approximately 1 

minute and <1 GB RAM 
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Figure B3. CPU and Ram Utilization for Step 2 – Phasing [SHAPEIT-IMPUTE Workflow]. Odyssey Step 2, which performs phasing 

via SHAPEIT2, was performed on chromosome 1 of the HGDP dataset containing 940 admixed individuals and approximately 542K 

markers (30893 markers were phased on Chromosome 1). Collectl was used to monitor the CPU (left) and RAM (right) usage for each 

process (i.e. program) in the step as well as the total time for completion. A buffer of 10 seconds was added to the end of the step for 

technical reasons. Three hyperthreaded CPU cores were allotted to SHAPEIT2 (which was programmed to run on six threads) as well 

as 32 GB RAM. Phasing 1 chromosome from the specified dataset would require approximately 1.5 hours and 1.5 GB RAM 
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Figure B4. CPU and Ram Utilization for Step 2 – Phasing [Eagle-Minimac Workflow]. Odyssey Step 2, which performs phasing via 

Eagle2, was performed on chromosome 1 of the HGDP dataset containing 940 admixed individuals and approximately 542K markers 

(36543 markers were phased on Chromosome 1). Collectl was used to monitor the CPU (left) and RAM (right) usage for each process 

(i.e. program) in the step as well as the total time for completion. Three hyperthreaded CPU cores were allotted to Eagle2 (which was 

programmed to run on six threads) as well as 32 GB RAM. Phasing 1 chromosome from the specified dataset would require 

approximately 24 minutes and 1.9 GB RAM 
  



 

 

 

 

 

1
4
5
 

 

 

 

Figure B5. CPU and Ram Utilization for Step 3a – Imputation [SHAPEIT-IMPUTE Workflow]. Odyssey Step 3a, which performs 

imputation via IMPUTE4, was performed on the first 5 megabase segment of chromosome 1 of the HGDP dataset containing 940 

admixed individuals and approximately 542K markers (4316 phased markers were used for imputation on the first 5MB segment on 

Chromosome 1 resulting in 161268 total imputed and genotyped markers). Collectl was used to monitor the CPU (left) and RAM 

(right) usage for each process (i.e. program) in the step as well as the total time for completion. A buffer of 10 seconds was added to 

the end of the step for technical reasons. One hyperthreaded CPU core and 32 GB RAM was allotted to IMPUTE4 for Step 3a. 

Imputing the first 5 megabase segment of 1 chromosome from the specified dataset would require approximately 6 minutes and 1.7 

GB RAM 
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 Figure B6. CPU and Ram Utilization for Step 3a – Imputation [Eagle-Minimac Workflow]. Odyssey Step 3a, which performs 

imputation via Minimac4, was performed on chromosome 1 of the HGDP dataset containing 940 admixed individuals and 

approximately 542K markers (36543 Eagle2 phased markers were used for imputation on Chromosome 1 resulting in 3745840 total 

imputed and genotyped markers). Collectl was used to monitor the CPU (left) and RAM (right) usage for each process (i.e. program) 

in the step as well as the total time for completion. Three hyperthreaded CPU cores and 32 GB RAM was allotted to Minimac4 (which 

was programmed to run on six threads) for Step 3a. Imputing Chromosome 1 from the specified dataset would require approximately 

44 minutes and 3.2 GB RAM 

  



 

 

 

 

 

1
4
7
 

 

 

 

Figure B7. CPU and Ram Utilization for Step 3b – Concatenation, Post-Imputation Quality Control, and Conversion [SHAPEIT-

IMPUTE Workflow]. Odyssey Step 3b calculates post-imputation quality control metrics via SNPTEST, converts the segmented 

chromosomal .gen files to VCF files while filtering based on a specified QC metric (i.e. the INFO metric since IMPUTE4 is being 

used), and concatenates the chromosomal VCF files file for analysis. This step was performed on the entire HGDP dataset containing 

940 admixed individuals and approximately 39 million imputed and genotyped markers after post-imputation quality-control 

measures. Collectl was used to monitor the CPU (left) and RAM (right) usage for each process (i.e. program) in the step as well as the 

total time for completion. Three hyperthreaded CPU cores and 32 GB RAM were allotted for Step 3b. Using the entire specified 

dataset, Step 3b would require approximately 5.2 hours and 2 GB RAM. Note that BCFTools and cat are overlapped on the core 

utilization figure between time points 4:30 and 5:14 
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 Figure B8. CPU and Ram Utilization for Step 3b – Concatenation, Post-Imputation Quality Control, and Conversion [Eagle-Minimac 

Workflow].  Odyssey Step 3b filters the dosage.vcf.gz based on a specified QC metric (i.e. the R2 metric since Minimac4 is being 

used), converts, and then merges all chromosomal dosage .vcf.gz files into a single dosage vcf.gz file for analysis. This step was 

performed on the entire HGDP dataset containing 940 admixed individuals and approximately 25.4 million imputed and genotyped 

markers after post-imputation quality-control measures. Collectl was used to monitor the CPU (left) and RAM (right) usage for each 

process (i.e. program) in the step as well as the total time for completion. Three hyperthreaded CPU cores and 32 GB RAM were 

allotted for Step 3b. Using the entire specified dataset, Step 3b would require approximately 1.5 hours and 3.7 GB RAM 
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Figure B9. CPU and Ram Utilization for Step 4 – Analysis. Odyssey Step 4 performs a simple Genome-Wide-Association test by 

using PLINK2 to create a general linear regression model on the 39 million imputed and genotyped variants (generated from the 

SHAPEIT-IMPUTE workflow) in 940 admixed individuals using sex as a covariate and using randomly calculated phenotype data 

that contains values from zero to one. Three hyperthreaded CPU cores and 32 GB RAM were allotted for Step 4. Collectl was used to 

monitor the CPU (left) and RAM (right) usage for each process (i.e. program) in the step as well as the total time for completion. 

Using the entire specified dataset, analysis would require approximately 11.5 minutes and 4.5 GB RAM 
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Figure B10. CPU and Ram Utilization for Step 4 – Visualization. Odyssey Step 4 uses R-3.4.4 to read and clean the results file output 

from the analysis portion of Step 4. R performs a Bonferroni and Benjamini-Hochberg procedure to account for multiple comparisons, 

sorts the data, and outputs 1) a sorted table of the top 10000 variants with the smallest unadjusted p-values, 2) a qqPlot, and 3) an 

interactive Manhattan plot. The raw data file is then gunzipped. One hyperthreaded CPU and 32 GB RAM were allotted for Step 4. 

Collectl was used to monitor the CPU (left) and RAM (right) usage for each process (i.e. program) in the step as well as the total time 

for completion. Step 3b would require approximately 13 minutes and 18 GB RAM 
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Figure B11. CPU and Ram Utilization for Population Stratification Module. The optional Population Stratification Module uses an 

admixed reference set of known ancestries to predict the ancestries of a target dataset via a Principal Component analysis (PCA), uses 

a user-defined subset of reference data corresponding to an ancestry of interest to calculate an “ancestral centroid”, which is then used 

to remove individuals falling outside of the desired ancestral group. R-3.5.1 is used to visualize the PCA including individuals kept for 

GWAS, removed due to being ancestral outliers, and those that were used as a reference. The processed PCA results in addition to a 

list of individuals who should be dropped from the GWAS is also output by R. In this benchmark the 1000 Genomes Phase 3 dataset 

was used as a reference, the 940 admixed individual HGDP dataset was used as the target dataset, the ancestral group of interest that 

was selected was European, principal components that contributed 1% or more were selected for centroid creation, and individuals 

that fell outside of 3 standard deviations of the centroid’s dimensions were considered ancestral outliers and removed. 1 hyperthreaded 

CPU and 32 GB RAM were allotted to run the Population Stratification add-in. Collectl was used to monitor the CPU (left) and RAM 

(right) usage for each process (i.e. program) as well as the total time for completion. The add-in would require approximately 19 

minutes and 18 GB RAM 
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APPENDIX C. IUPUI DATASET DEMOGRAPHICS 

 

Figure C1. Ancestry Breakdown of Individuals Collected in the IUPUI Study 
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Figure C2. Age Distribution of Individuals Collected in the IUPUI Study 

 

Figure C3. Sex Distribution of Individuals Collected in the IUPUI Study
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APPENDIX D. IRISQUANTER TRAINING IMAGES 

 

Figure D1. IrisQuanter Training Images. A) Blue, B) green, C) crypt, D) light brown, and E) 

dark brown images were collected, processed, and used in the iris training of the IrisQuanter 

program
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APPENDIX E. PIGMENTATION VARIANT LITERATURE REVIEW 

Table E1. 981 Pigmentation-Related Variants Based on a Literature Review 
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APPENDIX F. NEURAL NETWORK PIGMENTATION VARIANTS 

Table F1. Feature-Selected Pigmentation Variants Input into the Iris Prediction Neural Network 

Variant Gene 
Associated 

Trait 
Z P Citation 

rs12203592 IRF4 
Eye, Skin, 

Hair 
10.59 0 

https://www.ncbi.nlm.nih.gov/pubmed/2045709
2; 

https://genomebiology.biomedcentral.com/articl
es/10.1186/gb-2012-13-9-248 

rs1129038 HERC2 Skin, Eye -25.78 0 
https://www.sciencedirect.com/science/article/p

ii/S1872497318302205 

rs1800407 OCA2 
Hair, Skin, 

Eye 
7.71 1.22E-14 

https://www.sciencedirect.com/science/article/p
ii/S1872497312001810; "Predicting hair cortisol 

levels with hair pigmentation genes: 
a possible hair pigmentation bias"; 

https://www.nature.com/articles/s41467-018-
07691-z 

rs35763415 PDE6G Hair -4.77 1.89E-06 
https://www.nature.com/articles/s41467-018-

07691-z 

rs28117 SLC45A2 Skin -4.60 4.17E-06 
https://link.springer.com/article/10.1007/s00439

-015-1559-0#enumeration 

rs12202284 IRF4 Skin 4.37 1.25E-05 

https://reader.elsevier.com/reader/sd/87B2B08
122BFE636349CAE57D03D85A7EFABEE31D332C
F5F397F45C23A85CAA4556DD7771188E0C40F1E

3EA8E83ABEEB 

rs12191816
6 

OCA2 Hair 4.20 2.71E-05 
https://www.nature.com/articles/s41467-018-

07691-z 

rs1426654 SLC24A5 Skin 4.10 4.16E-05 

https://www.sciencedirect.com/science/article/p
ii/S1872497318302205; 

https://genomebiology.biomedcentral.com/articl
es/10.1186/gb-2012-13-9-248; 

https://www.nature.com/articles/nature12960; 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC

5353593/pdf/srep44548.pdf; 
https://www.scienceintheclassroom.org/sites/de

fault/files/research-
papers/science.crawfordetal.2017_0.pdf 

rs74653330 OCA2 Skin, Hair 3.78 
0.00015

6 

https://genomebiology.biomedcentral.com/articl
es/10.1186/gb-2012-13-9-248; 

https://www.nature.com/articles/s41467-018-
07691-z 

rs1393350 TYR 
Eye, Skin, 

Hair 
3.76 

0.00017
3 

https://www.ncbi.nlm.nih.gov/pubmed/2045709
2; https://www.nature.com/articles/s41467-018-

07691-z 

rs1408799 TYRP1 Eye, skin -3.72 
0.00019

9 

https://academic.oup.com/hmg/article/18/R1/R
9/2901093; 

https://genomebiology.biomedcentral.com/articl
es/10.1186/gb-2012-13-9-248 
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rs3212355 MC1R Skin 3.44 
0.00057

7 
https://www.sciencedirect.com/science/article/p

ii/S1872497318302205 

rs6917661 OPRM1  Skin -3.41 
0.00064

4 

https://reader.elsevier.com/reader/sd/87B2B08
122BFE636349CAE57D03D85A7EFABEE31D332C
F5F397F45C23A85CAA4556DD7771188E0C40F1E

3EA8E83ABEEB 

rs941799 
LOC1053

70627 
Hair 3.37 

0.00074
6 

https://www.nature.com/articles/s41467-018-
07691-z 

rs7495875 HERC2 Skin 3.27 
0.00105

8 

https://www.scienceintheclassroom.org/sites/de
fault/files/research-

papers/science.crawfordetal.2017_0.pdf 

rs1448484 OCA2 Skin 3.27 
0.00107

3 
https://www.sciencedirect.com/science/article/p

ii/S1872497314001355?via%3Dihub#sec0060 

rs11731416 
RPL34-

AS1 
Hair 3.27 

0.00108
5 

https://www.nature.com/articles/s41467-018-
07691-z 

rs11066284 RPL6 Hair -3.23 
0.00123

6 
https://www.nature.com/articles/s41467-018-

07691-z 

rs7183877 
OCA2-
HERC2 

Eye 3.19 
0.00140

3 
https://www.nature.com/articles/nature12960 

rs16950821 OCA2 Skin -2.95 
0.00317

1 
https://link.springer.com/article/10.1007/s00439

-017-1808-5 

rs79316200 TBCD Hair 2.86 
0.00423

2 
https://www.nature.com/articles/s41467-018-

07691-z 

rs251464 
PPARGC

1B 
Skin -2.80 

0.00513
6 

https://www.nature.com/articles/s41467-018-
04086-y/tables/1 

rs6739706 
TMEM16

3 
Hair 2.80 

0.00522
6 

https://www.nature.com/articles/s41467-018-
07691-z 

rs11806180 
CDC42BP

A 
Hair 2.79 

0.00529
7 

https://www.nature.com/articles/s41467-018-
07691-z 

rs2075508 TYRP1 Eye -2.72 
0.00646

9 
http://www.genetics.org/content/165/4/2071 

rs1448483 OCA2 Eye 2.72 
0.00653

4 
http://www.genetics.org/content/165/4/2071 

rs8049897 DEF8 Skin 2.60 
0.00944

6 
https://link.springer.com/article/10.1007/s00439

-017-1808-5 

rs4248913 MC1R Skin -2.51 
0.01201

2 
https://link.springer.com/article/10.1007/s00439

-015-1559-0#enumeration 

rs6924266 LRRC16A Eye 2.45 0.0142 https://peerj.com/articles/3951/ 

rs28753701 SLTM Skin -2.45 
0.01422

2 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC

5353593/pdf/srep44548.pdf 

rs57836066 
RP11-

134K13.
4 

Skin -2.44 
0.01459

5 
https://peerj.com/articles/3951/ 

rs17820032 GSG1 Skin 2.39 
0.01671

2 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC

5884124/pdf/nihms921744.pdf 

rs4424881 APBA2 Skin 2.35 
0.01870

7 

https://reader.elsevier.com/reader/sd/87B2B08
122BFE636349CAE57D03D85A7EFABEE31D332C
F5F397F45C23A85CAA4556DD7771188E0C40F1E

3EA8E83ABEEB 
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rs2050537 HS6ST3 Skin -2.35 
0.01870

9 
https://link.springer.com/article/10.1007/s00439

-017-1808-5 

rs4980113 KCNMA1 Hair -2.31 
0.02086

1 
https://onlinelibrary.wiley.com/doi/epdf/10.111

1/exd.13333 

rs76648881 TNFRSF9 Hair 2.25 
0.02413

8 
https://www.nature.com/articles/s41467-018-

07691-z 

rs1052030 MYO7A  Skin -2.08 
0.03743

6 
https://onlinelibrary.wiley.com/doi/epdf/10.111

1/j.1600-0625.2009.00846.x 

rs1458046 FGF5 Hair -2.08 
0.03790

7 
https://www.nature.com/articles/s41467-018-

07691-z 

rs1667394 HERC2 Skin -2.02 
0.04317

6 
https://www.sciencedirect.com/science/article/p

ii/S1872497318302205 
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