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ABSTRACT 

Author: Valencia-Zapata, Gustavo, A. Ph.D. 

Institution: Purdue University 

Degree Received: December 2019 

Title: Probabilistic Diagnostic Model for Handling Classifier Degradation in Machine Learning. 

Committee Chair: Dr. Gerhard Klimeck 

 

Several studies point out different causes of performance degradation in supervised machine 

learning. Problems such as class imbalance, overlapping, small-disjuncts, noisy labels, and 

sparseness limit accuracy in classification algorithms. Even though a number of approaches either 

in the form of a methodology or an algorithm try to minimize performance degradation, they have 

been isolated efforts with limited scope. Most of these approaches focus on remediation of one 

among many problems, with experimental results coming from few datasets and classification 

algorithms, insufficient measures of prediction power, and lack of statistical validation for testing 

the real benefit of the proposed approach. This research consists of three main parts: In the first 

part, a novel probabilistic diagnostic model based on identifying signs and symptoms of each 

problem is presented. Thereby, early and correct diagnosis of these problems is to be achieved in 

order to select not only the most convenient remediation treatment but also unbiased performance 

metrics. Secondly, the behavior and performance of several supervised algorithms are studied 

when training sets have such problems. Therefore, prediction of success for treatments can be 

estimated across classifiers. Finally, a probabilistic sampling technique based on training set 

diagnosis for avoiding classifier degradation is proposed. 
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1. INTRODUCTION 

A diagnosis is an investigation or analysis of causes or nature of a condition, situation, or 

problem. For example, in Health Care the diagnostic process gathers information related to a 

patient health problem in order to plan the best path or treatment. Recent retrospective studies of 

adult healthcare and post-mortem examinations  show a diagnostic error in up to 17% of hospital 

adverse events and in approximately 10% of patient deaths [1]. Therefore, several efforts in Health 

Care focus on improving diagnosis such as reducing uncertainty, early diagnosis, and second 

opinion [2], [3].  Using the analogy of "Medical Diagnosis", it is plausible to argue that the concept 

of "Diagnostic" as human cognitive function can be incorporated to the Artificial Intelligence 

domain. This research investigates whether the implementation of diagnostic tests aids to 

characterize the most common problems on classification tasks in order to select the most 

convenient treatment for avoiding classification degradation. Thereby, the questions now arise:  

• What are the most representative problems on classification? there is any 

correlation, causality or association between them? 

• Is it possible to measure a direct impact of each problems to the classifier 

degradation? 

• Is there any process or technique to diagnose training datasets and subsequent 

remediation (treatments) selection before the training stage? 

 

Mainly there are 5 degradation problems related to training datasets that limit the learning 

process: class imbalance, sparseness, small-disjuncts, overlapping, and noise labels. The class 

imbalance is one of the most recurrent problems and has received big interest on the artificial 

intelligence field for the last years [4]–[13]. A dataset is imbalanced when its class distribution or 

classification categories do not have similar proportions in terms of the number of instances. That 

situation is a problem because classification algorithms are not designed to handle unbalanced 

datasets and tend to favor the major classes over minor ones [14]. A second important issue related 

to class imbalance is the performance measurement. The most used performance metric for 

classification algorithms is the area under the ROC curve (AUC) [15], which may provide an 
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overly optimistic performance evaluation [16] and wrong performance evaluation for unbalance 

cases [16].  

Several questions have arisen about the class imbalance problem: 

• What is the optimal class distribution for training a classification algorithm?  

• What are treatments for handling class imbalance? 

• Is the class imbalance only responsible for classifier degradation? 

 

Several approaches [17]–[19] have tackled these questions applying resampling (oversampling 

and undersampling) to reach the balance between classes modifying the distribution of the dataset. 

More sophisticated techniques change that distribution generating synthetic data as a balance 

strategy, not only for reducing overfitting and improving performance in classification tasks, but 

also for handling the sparseness in the feature space [13]. On the other hand, cost-sensitive learning 

treat the class imbalance problem arguing that each type of error has its own costs [20], [21]. 

Therefore, instead of changing the distribution of the whole dataset, cost-sensitive based models 

assume that misclassification cost for the observed dataset is known and use a "cost matrix" for 

describing it. Different approaches suggest that class imbalance is not completely responsible for 

degradation and argue that the phenomena of small-disjuncts contributes to overfit and 

misclassification [12], [22]–[26]. Small-disjuncts are subclasses of few instances inside the minor 

class. Other studies stated that the “overlapping” regions between classes [9], [27] and “noisy 

labels” due mislabeling [28] have strong negative effect over the classification algorithms 

performance. Different approaches based on ensemble methods [6], [11], [28]–[31] combine 

multiple learning algorithms and strategies for handling class imbalance, noisy labels detection 

[28], and improve performance. 

This research presents a comprehensive empirical study of degradation problems in supervised 

learning through datasets from real-world domains. The thesis is organized as follows: Chapter 2 

describes the importance of diagnostic methods in machine learning, research aims and approach. 

Chapter 3 describes the five major degradation problems and remediation techniques for handling 

degradation in supervised learning algorithms. Chapter 4 presents the implementation of a 

probabilistic diagnostic model for classifiers degradation, which supports the framework proposed 

in this research. Chapter 5 describes a new technique for handling degradation problems called 

“PSATE” (Probabilistic SAmpling TEchnique), which is directly related to the diagnostic model 
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outputs. Chapter 6 presents experimental results over 49 datasets across classification algorithms 

and techniques for handling degradation problems. Finally, Chapter 7 presents general conclusions 

and recommendations for future work. 

Additionally, Appendices present information related to equations and details of the diagnostic 

model, information of the datasets involved in the experiments, performance metrics descriptions, 

and results associated with nonparametric statistic tests. 
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2. RESEARCH PROBLEM: LACK OF DIAGNOSIS 

The motivation of the present work is to reduce degradation on classification algorithms caused 

by inherent problems associated with datasets. Previous studies make evident the lack of diagnosis 

for training sets before building classifiers. Although there exist methodologies or techniques that 

try to mitigate degradation, most of those efforts are blind to the characteristics of the datasets.  

 Importance of Diagnostic Methods in Supervised Learning 

The diagnostic process in Health Care has several components [32] such as stages related to 

information gathering, diagnostic testing, clinical history, etc. This research uses similar 

components applied to the artificial intelligence domain, specifically associated with supervised 

learning. In other words, the diagnostic process starts with the “dataset” or target, who experiences 

a problem. After the dataset engages with the process, information is gathered from several sources 

(characteristics, testing, records, best practices, and so on) for building a diagnosis. Consecutively, 

an explanation of the problem is built. Finally, a treatment is defined based on the diagnosis and 

its outcomes are available as inputs to the diagnostic process.  

Two fundamental principles are adopted from Health Care: 

• Correct diagnosis avoid inappropriate treatments [32]. Even though a number 

of approaches (treatments) either in the form of a methodology or a technique try 

to minimize performance degradation in supervised learning, they have been 

isolated efforts without the input from a diagnostic process. 

• Treatment procedures according to the needs and characteristics of individual 

patients [33]–[35]. Treatment effectiveness for classifier degradation does not 

exclusively depend on the degradation problem (class imbalance, sparseness, 

small-disjuncts, overlapping, and noise labels), but also characteristics associated 

with the training set are relevant for treatment selection and reaching optimal results. 
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 Research Aims and Approach 

Given the lack of diagnostic process in supervised learning, this research focuses on the study 

of degradation problems, as well as the statistical approach for measuring their criticality levels. 

Classification tasks usually involve different kinds of challenges: complexity of the dataset, 

algorithm selection, and performance metrics for classification algorithms. This study aims to 

answer the following question: How do diagnostic model reduce performance degradation in 

supervised learning? 

The objective of this research is to prove that the use of diagnostic procedures before the 

training stage provides useful information for decision making and handling recurrent degradation 

problems and challenges in supervised learning. Thus, two hypotheses are defined: 

• Hypothesis 1: it is not possible to find one treatment that is the best in remediation 

for all degradation problems, datasets or classifiers [36], [37]. The selection of the 

“best treatment” or even the most convenient classification algorithm depends on 

the available information and knowledge associate with the target dataset. 

• Hypothesis 2: the diagnostic process helps to minimize performance degradation.  

A correct diagnosis provides useful information for planning the best path of 

remediation, it can include several methodologies or techniques to mitigate 

detected problems. 
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3. DEGRADATION PROBLEMS FOR SUPERVISED LEARNING 

Data complexity can be associated with issues as class imbalance, overlapping, sparseness, and 

others [38]. This chapter presents five degradation problems for supervised learning and their most 

well-known remediation techniques. Those degradation problems damage can range from 

hampering the training stage to dramatically reduce classification algorithm performance. 

 Class Imbalance 

Imbalanced data is present in many fields and represents a continuous challenge for Data 

Mining and Artificial Intelligence tasks. For instance, in medical diagnosis some diseases are 

infrequent or hard to detect since the limited number of cases. Fraud detection is a well-known 

case of class imbalance, where the number of fraud transactions is much smaller than the legitimate 

ones. As previously mentioned, part of the misclassification levels in supervised learning tasks 

may be attributed to the effect of the class imbalance and the fact that most of the classifiers are 

not designed to address this effect. Class imbalance occurs when one or more classes from the 

training set have few instances as compared to other classes. Usually, the level of class imbalance 

is measured using the Imbalance Ratio (IR), which indicates the relationship between two classes 

that expresses how much bigger one is than the other. For example, in a binary classification task 

(dataset with two classes), the class with few observations or minority class is called the "Positive 

class". On the other hand, the majority class is called the "Negative class" and the IR is estimated 

using the ratio between the total number of observations for each class. Figure 3.1 (a) shows an 

example of a two-class dataset in two dimensions, where the issue of class imbalance is easy to 

detect.  

Generally, the class imbalanced problem has been addressed since two main approaches: 

methods based on resampling (oversampling and undersampling) and synthetic data techniques 

and cost-sensitive methods. In the case of the latter approach, it argues that errors do not have same 

cost. The present research focus on the resampling and synthetic data techniques, because cost-

sensitive techniques assume the prior knowledge about the cost of misclassification for each class, 

which is a condition unknown in most of the cases and defined by the nature and domain of the 

dataset. The most representative resampling methods are oversampling and undersampling [39], 



16 

 

[40], these two techniques seek to reach the balance between classes modifying the distribution of 

the dataset. The first replicates randomly some instances from the Negative class, this is shown in 

Figure 3.1 (b) by the color intensity of the observation for the positive class. More color intensity 

means that the observation was sampled more times. The main disadvantages of oversampling are 

the overfitting [13], [40] and the low performance for unseen testing instances at the training stage 

[41]. Contrary, undersampling subtracts a random sample of a specified size from the observations 

of the Negative class (Refer Figure 3.1 (c)), leading losing important information and limiting the 

learning process for such class. C. Drummond et al. [42] tested oversampling and undersampling 

techniques over class imbalance datasets using the decision tree learner C4.5, showing better 

performance for classification tasks when undersampling technique was selected. However, more 

modern strategies such as Synthetic Minority Oversampling Technique (SMOTE) [13], 

Borderline-SMOTE [14], Adaptative Synthetic Sampling Approach for Imbalanced Learning 

(ADASYN) [43], Density-base SMOTE (DBSMOTE) [44], and BalanceCascade and 

EasyEnsemble [11] combine oversampling, undersampling, and algorithms in order to produce 

synthetic entries, reach balance, avoid overfitting, and obtain better performance. 

 

 

Figure 3.1 Class Imbalance and basic solutions: example for a binary classification. 

(a) Two-class dataset in two dimensions, (b) oversampling over the positive class, (c) 

undersampling over the Negative class, and (d) combination of resampling and synthetic data 

 Sparseness 

Several studies argue that the imbalance issue in data should be understood as the level of 

sparseness and the low degree of instances for some classes [13], [14], [17]. Therefore, synthetic 

data techniques such as SMOTE [13] not only generates new synthetic entries for balancing, but 

a b

c d

Positive class           Negative class Synthetic              Classifier
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also builds larger and better defined decision regions for the minority class filling holes in the 

space (Refer Figure 3.1 (d)). 

 Small-disjuncts 

Holte et al. [22] introduced the term of small-disjuncts, which would be the major cause of 

learning problems in the positive class [22], [45]. The small-disjuncts could be interpreted as a 

direct consequence of the "Sparseness". In simple words, small-disjuncts are “sub-clusters” or 

subclasses of few instances inside the Positive class. Generally, the small-disjunct concept can be 

interpreted as the imbalance problem between-class and within-class, the between-class case refers 

the imbalanced between the Negative class and the Positive class, which is usually estimated by 

the IR. On the other hand, the within-class refers to how observations are distributed within each 

class, since a class could be composed by several subclasses with imbalanced in number of 

instances [23]–[26]. This research extends the concept of small-disjuncts to the Negative class. 

Therefore, using the new definition of small-disjuncts: both classes can have subclasses of few 

instances that difficult the training stage for classification algorithms. Figure 3.2 illustrates the 

small-disjuncts problems for both classes. 

 

 

Figure 3.2 Small-disjuncts: example for a binary classification 

 Overlapping 

Datasets can have ambiguous regions, which contain observations from two or more classes 

with similar probability. This problem is known as overlapping. Diverse studies claim that 

classifier degradation is not only affected by the class imbalance problem or small-disjuncts, but 

Positive class

Negative class

Classifier

Small disjuncts
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perhaps even more so, in terms of the degree of overlapping [9], [27], [46].  Figure 3.3 shows the 

overlapping concept for a binary classification problem.  

Garcia et al. [9] conducted several experiments over two-dimensional artificial datasets with 

two classes separated by a line orthogonal to one of the axis and six different classifiers. They 

found that by changing the IR of the overlapping region is more beneficial than changing the 

overall IR in the dataset. Although the simplicity of experiments is far from real datasets, the results 

point out the degree of overlap as an important factor in the process of building classifiers. Most 

of the treatments for handling Noisy labels focus on cleaning overlap regions by using the k-nearest 

neighbors’ rules as a component of their procedure. The degradation problem below lists some of 

those techniques. 

 

 

Figure 3.3 Overlapping: example for a binary classification. 

Overlapping regions contain observations from two or more classes with similar probability 

 Noisy Labels 

Labeling error is a recurrent problem in supervised learning datasets. This problem describes 

instances with wrong label assignation due to different causes (i.e. data-entry error, subjectivity, 

and lack of information for the labeling process), Figure 3.4 illustrates the noisy labels problem.  

Quinlan [47]–[49] conducted several experiments in order to measure the effect of class noise over 

decision trees performance, finding two patterns: class noise is more harmful than feature 

(characteristics) noise and cleaning noisy observations from training sets produces classifiers with 

better accuracy. Condensed Nearest Neighbors algorithm (CNN) [50] was the first attempt of 

filtering noisy observations or building a better subset from the training set using Nearest Neighbor 

Rule (NN Rule) [51], [52]. Several subsequent proposals based on the CNN concepts have been 

Positive class

Negative class
Overlapping
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discussed, such as Edited Nearest Neighbors (ENN) [53], Neighborhood Cleaning Rule NCL [54],  

Tomek [55], Mutual Nearest Neighborhood  (MNN) [56], and One-Side Selection (OSS) [40]. For 

instance, Tomek algorithm extends that approach calling ENN for increasing the number of 

neighbors and focus on removing noisy observations from the Negative class close to the 

borderline with the Positive class and returning a better subset for the training stage. On the other 

hand, Brodley et al.  [57] used Ensemble filters for detecting noisy observations. In this approach 

the filter is composed by a set of classifiers called base-level detectors, which receive the training 

set and detect the misclassified cases. Finally, the filter removes observations based on majority 

voting or consensus and generate a training subset. 

 

 

Figure 3.4 Noisy Labels: example for a binary classification. 

Labeling error refers to instances with wrong label assignation 

 Treatments and side effects 

As previously stated, there are numerous treatments in the form of methodology or technique 

that seeks to mitigate negative effects of the degradation problems. However, the effectiveness of 

such treatments may be reduced by the lack of diagnosis. The following is the list of techniques 

implemented in the Chapter 6 related to experimental framework. 

• Resampling (Random) 

This technique combines oversampling and undersampling to obtain a balanced dataset. 

Naïve oversampling replicates randomly some instances from the Positive (minority) class. 

On the other hand, naïve undersampling removes randomly some instances from the 

Negative (majority) class. 

 

Positive class

Negative class

Classifier

Noisy Labels
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• Synthetic Minority Oversampling Technique (SMOTE) [13] 

This algorithm generates synthetic instances of the Positive (minority) class based on the 

feature space similarities, using k-Nearest Neighbor algorithm. Besides, the Negative 

(majority) class instances are under-sampled in order to reach the balance between classes. 

• Borderline-SMOTE (B-SMOTE) [14] 

This technique is an extension of SMOTE, which focus on generating synthetic Positive 

instances in the neighborhood of the borders. 

• Adaptative Synthetic Sampling Approach for Imbalanced Learning (ADASYN) [43] 

This algorithm is an extension of SMOTE, which generates synthetic instances using a 

density distribution based on k-Nearest Neighbors algorithm. Thus, this technique 

automatically decides the number of synthetic instances that must be generated for each 

real Positive instance. 

• Density-base SMOTE (DBSMOTE) [44] 

This technique initially clusters the Positive class using DBSCAN algorithm [58] and 

generates synthetic instances along a shortest path from each Positive instance to a pseudo-

centroid of the cluster. 

• Edited Nearest Neighbors (ENN) [53] 

Edited Nearest Neighbor removes any instance whose class label differs from the class of 

at least half of its k-Nearest Neighbors. Therefore, both classes may be under-sampled. 

• Neighborhood Cleaning Rule NCL [54] 

This algorithm is a modification of ENN, which only excludes instances from the Negative 

class (majority) in two steps: first, it removes Negatives instances which are misclassified 

by their 3-Nearest Neighbors. Then, the neighbors of each Positive instance are found and 

the ones belonging to the Negative class are removed. 

• One-Side Selection (OSS) [40] 

This technique combines Tomek links [55] and Condensed Nearest Neighbor (CNN) [50]. 

First, Tomek links focus on cleaning overlapping between classes by removing Negative 

instances using 1nearest neighbors. Then, CNN removes instances from both classes that 

are not correctly classifying by the 1-Nearest Neighbor rule. 
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This research categorizes the above treatments based on the degradation problems that intend 

to remedy and possible side effects. Table 3.1 summarizes such categorization. The symbol (+) 

refers to the problem that the treatment intends to remediate. Contrarily, the symbol (−) refers to 

negative side effects due to the treatment. For instance, Random combines undersampling and 

oversampling to obtain a balanced dataset; however, the first one removes instances that may be 

important for the training stage and the second one produces overfitting. A second very concrete 

example is OSS, which solves the problems of overlapping and noisy labels by removing instances. 

However, it reduces the amount of data, produces holes in the space, and may increase the class 

imbalance. On the other hand, SMOTE and its extensions not only regenerate synthetic instances 

for reaching balance between classes, but also fill the space of the Positive class. Therefore, those 

techniques reduce the sparseness effect and build better decision regions. 

 

Table 3.1 Treatments: benefits and side effects. 

The symbol (+) refers to the problem that the treatment intends to remediate. 

Contrarily, the symbol (−) refers to negative side effects due to the treatment 

Treatments target and side effects 

  Degradation problem 

Treatment 
Class 

Imbalance 
Sparseness 

Small-

disjuncts 
Overlapping 

Noisy 

Labels 

Amount 

of data 
Overfitting 

Random (+)         (−) (−) 

SMOTE (+) (+)   (−) (−) (−)   

B-SMOTE (+)        (−)   

DBSMOTE (+) (+) (+)     (−)   

ADASYN (+) (+)       (−)   

ENN (−) (−)   (+) (+) (−)   

NCL (+) (−)   (+) (+) (−)   

OSS (−) (−)   (+) (+) (−)   
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4. PROBABILISTIC DIAGNOSTIC MODEL FOR HANDLING 

CLASSIFIER DEGRADATION 

After the main degradation problems and their remediation treatments have been mentioned, 

this Chapter presents a diagnostic model called “Probabilistic Diagnostic Model for Handling 

Classifier Degradation”, which allows to determine the level of degradation problems presence for 

classification datasets. References of previous datasets diagnosis efforts point to basic description 

of the dataset such as missing values, duplicate instances, and statistics (frequency, percentage, 

mean, standard deviation, etc.). Nevertheless, there is no explicitly reference related to tools, 

techniques, methodologies or any other approach for diagnosis of degradation problems on 

supervised learning.  

 Diagnostic Model Components 

The diagnostic model consists of five main components, which have a direct connection with 

the five degradation problems discussed in Chapter 3. Those components are connected through a 

workflow where each component provides information to the next one during the diagnostic 

process. Figure 4.1 illustrates the sequence of the diagnostic model, where dataset (training set) is 

the input to the flow and the diagnostic report is the output. Subclasses detection is the first 

component, which is conducted for each class by separated. Then, the process runs several 

“diagnostic tests” that measure the criticality levels of the degradation problems. Finally, the 

output of the process is a diagnostic report.  

4.1.1 Subclasses detection 

Previous proposals have formulated strategies of segmenting for training sets [4], [24]–[26], 

[59], [60] by using algorithms such as Principal Direction Devise Partition (PDDP) [61], K-means 

[62], [63], and DBSCAN [58]. Those strategies focus on finding subclasses (clusters) for the 

positive class or even for the complete training set regardless the membership class. Nevertheless, 

the major drawbacks of those approaches are the lack of parameters associated with the subclasses 

description and the need of provide the number of subclasses (clusters) in the training set a priori. 
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Figure 4.1 Diagnostic model process. 

The training set is the input to the flow and the diagnostic report is the output 

 

The first component of the Diagnostic model runs a segmentation process of partitioning each 

class into subclasses by separated. Such segmentation is implemented by Gaussian Mixture 

Models (GMM) [64], [65] and the EM algorithm [66], which is used to estimate the mixture 

parameters. The advantage of this approach is to obtain statistical parameters that describe each 

subclass for subsequent analysis. However, there is an inevitable, indeed necessary, question at the 

time of modeling a mixture of probabilistic distributions or any segmentation technique: how many 

clusters (subclasses) should be included in the model? A second question is related to the 

covariance matrix model selection for the GMM. For this research, the total number of subclasses 

per class and the covariance matrix model are determined by seeking to balance the increase in 

likelihood and the complexity of the mixture model, introducing a penalty term for each parameter. 

Then, the selection of the best model is addressed by the Bayesian Information Criterion (BIC) 

[67], [68], which is described with more details at Appendix A. 

Once the number of subclasses per class is defined, it is possible not only moving to the next 

component of the diagnostic tool, but also knowing more detail about the complexity of the dataset 

in terms of small-disjuncts. Greater number of subclasses is associated with higher difficulty levels 

of classification [17], [26]. Moreover, it should be taken into consideration that not all detected 

subclasses are small-disjuncts, such category usually describes subclasses with few instances. 
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4.1.2 Imbalance Ratio (IR) 

The IR component not only estimating the IR between classes, but also between subclasses. 

This information enables to focus any resampling or synthetic data process over specific subclasses 

in future remediation treatments. The IR is estimated as many times as the combination of detected 

subclasses taken 2 at a time without repetition. 

4.1.3 Degree of Overlap 

The third component measures the degree of overlap based on the separation index (𝐽∗ ) 

proposed by Qiu et al. [69], [70]. This index measures the magnitude of the gap between pairs of 

subclasses. It has a value between −1 and +1, where negative values indicate subclasses are 

overlap, zero means subclasses are touching, and positive values indicate subclasses are separated. 

Experiments based on Multivariate Gaussian Distributions (MGD) [58] suggest that values larger 

than 0,21 indicate subclasses are well-separated. The separation index is estimated as many times 

as the combination of subclasses taken 2 at a time without repetition. Further information about 

estimation process of the separation index estimation can be found at Appendix A. 

One recurrent challenge of classification tasks is to build a mathematical function sufficiently 

flexible and able to discriminate instances even with high levels of overlapping or merge between 

classes. Therefore, some techniques focus on solving overlapping issues before the training stage. 

For instance, generating Positive instances in the overlap regions by reinforcing borderlines [14] 

or removing noisy instances from the Negative class [54], [55], [40]. The feasibility, advisability, 

and parametrization of those technique could be elements easy influenced by the separation index. 

4.1.4 Noise level 

The noise level component detects noisy instances by using the 3-Nearest Neighbor rule and 

estimates the noise ratio for the training dataset, the Positive class, and the Negative class. Since 

separation indexes between subclasses are known, this component is able to identity noisy 

instances between well-separated subclasses. In other words, this component detects noisy labels 

unrelated to the overlapping issue and estimates a ratio related to the noise due overlap issues. 
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4.1.5 Dispersion test 

This component implements two procedures: the first one, estimates the degree of sparseness 

for each subclass by calculating the average and standard deviation of the distances (Euclidian, 

Mahalanobis, or Manhattan) to the subclass median. On the other hand, the second procedure 

implements the Anderson's test (PERMDISP2)  [71]–[73] for multivariate homogeneity of groups 

dispersion, which is a multivariate analogue of Levene’s test for homogeneity of variances [74]. 

Anderson's test seeks to validate if the dispersion of two or more subclasses is equal (similar 

sparseness). 

 Case in point Artificial Domain 

This subsection presents a systematic example of the procedures and outputs of the diagnostic 

model. The purpose of this example is to provide a full understanding of the diagnostic tool 

components and outputs. The case in point considers a two-dimensional artificial dataset for 

classification, which has been generated on the basis of Gaussian distributions and three controlled 

parameters: size of the subclasses, degree of overlapping, and distributional parameters (mean 

vector and covariance matrix). 

4.2.1 Output 1: Training set basic description 

The first output is related to basic characteristic of the dataset under analysis. In the supervised 

learning case, such dataset is the training set. Table 4.1 shows the first output, which is a list of 

basic characteristics and values for the artificial training set. The Negative class with 404 instances 

represents 82.4% of the data. On the other hand, the Positive class with 86 instances represents 

17.6% of the data. Therefore, this training set is said to have an Imbalance Ratio of 4.7: 1 or IR =

4.7. In other words, there is one instance in the Positive class per 4.7 instances in the Negative 

class. 
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Table 4.1 Output 1: Basic description for the artificial training set 

Dataset description 

Dimensions 2 

Duplicate Instances NA 

Total instances 490 

Instances Positive class 86 

Instances Negative class 404 

Imbalance Ratio (IR) 4.7 

 

4.2.2 Output 2: Subclasses detection 

Table 4.2 shows the next output related to the fist component of the diagnostic tool, which uses 

MGG for sub-subclass detection. For the Positive class two subclasses were detected using the 

covariance matrix model VEE (ellipsoidal, equal shape and orientation). On the other hand, the 

Negative class has three subclasses detected by the covariance matrix model VEI (diagonal, 

varying volume, equal shape).  

 

Table 4.2 Output 2: Subclass detection for the artificial training set. 

Selection of the best covariance matrix model and number of subclasses 

Subclasses detection 

Positive class   

Instances 86 

Covariance matrix model VEE 

Subclasses 2 

Negative class   

Instances 404 

Covariance matrix model VEI 

Subclasses 3 

 

 

Figure 4.2 illustrates the best number of subclasses and top three covariance matrix models 

based on the BIC for the artificial dataset. In the Figure 4.2 (a) all covariance matrix models are in 

agreement with two subclasses for the Positive class, where covariance best model is VEE. In the 

Figure 4.2 (b) two out of three covariance matrix models are in agreement with three subclasses 
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for the Negative class and VEI is the best covariance model. For further information about 

covariance matrix models implemented in GMM may be consulted in the Appendix A.  

 

Figure 4.3 makes a visual representation of the segmentation results through the GMM over the 

artificial dataset. The overall result is five subclasses, two for the Positive class and three for the 

Negative class. 

 

 

Figure 4.2 Number of subclasses and covariance matrix selection for the artificial training set. 

(a) The top three models for the Positive class are: VEE (ellipsoidal, equal shape and 

orientation), VEI (diagonal, varying volume, equal shape), and VEV (ellipsoidal, equal shape). 

(b) The top three models for the Negative class are: VEI (diagonal, varying volume, equal 

shape), VEV (ellipsoidal, equal shape), and VII (spherical, unequal volume) 
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Figure 4.3 Detecting subclasses by using GMM for the artificial training set. 

(a) The original training set. (b) Training set with five subclasses. 

N = Negative subclasses and     P = Positive subclasses 

 

 

Figure 4.3 makes a visual representation of the segmentation results through the GMM over the 

artificial dataset. The overall result is five subclasses, two for the Positive class and three for the 

Negative class. 

4.2.3 Output 3: IR and Overlap matrix (IRO) 

Table 4.3 below shows the third output related to the IR and Overlap matrix (IRO matrix) for 

the artificial training set. This is a square matrix, whose size is determined by the number of 

subclasses. The upper triangular part shows the IR between subclasses. For instance, the IR 

between N-01 (Negative subclass 01) and N-03 (Negative subclass 03) is 3. That means, there is 

one instance in N-03 per 3 instances in N-01. The diagonal of the IRO matrix contains the number 

of instances per subclass. For example, P-01 (Positive subclass 01) is the smaller subclass with 36 

instances in the artificial training set. Finally, the lower triangular part shows the separation index 

𝐽∗ between subclasses. For instance, 𝐽∗ = 0.29 between N-02 and P-02 9, which makes sense since 

both subclasses are far from each other according to Figure 4.3 (b). 
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Table 4.3 Output 3: IR and Overlap matrix (IRO) for the artificial training set. 

The upper triangular part shows the IR between subclasses, the diagonal contains the  

number of instances per subclass, and the lower triangular part shows the separation  

index between subclasses. N = Negative subclasses and P = Positive subclasses 

  IRO matrix 

  N-01 N-02 N-03 P-01 P-02 

N-01 189 1.24 3 5.25 3.78 

N-02 0 152 2.41 4.22 3.04 

N-03 0 0 63 1.75 1.26 

P-01 -0.3 0.21 0.2 36 0.72 

P-02 0 0.29 -0.1 0.4 50 
 

4.2.4 Output 4: Noise level 

The noise level component has several tables as outputs. Table 4.4 (a) summarizes the number 

of noisy and valid instances per class for the artificial training set. Additionally, Table 4.4 (b) 

breakdowns the number of noisy instances per subclass and includes the noise location (last two 

columns). The column called “Noise overlap” refers to noise between subclasses with a separation 

index less than 0.2 (close subclasses). Then, this noise could be due to the overlap effect instead 

of mislabeled issues. On the other hand, the column called “Noise label” refers to noise between 

subclasses with a separation index larger or equal to 0.2 (well-separated subclasses). Therefore, 

noisy instances are likely associated with mislabeled issues. For the artificial training set, all noisy 

instances are associated with the overlap effect. 
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Table 4.4 Output 4: Noise per class and subclass for the artificial training set. 

a) Noisy and valid instances per class. b) Breakdowns the number of noisy  

instances per subclass and includes the noise location. N = Negative subclasses  

and P = Positive subclasses 

        Noise per subclass 

          
Instances Valid Noise Noise 

overlap 

Noise 

label 

Noise per class   N-01 189 177 12 12 0 

  Instances     N-02 152 152 0 0 0 

Class Noise Valid   N-03 63 60 2 3 0 

Negative 15 389   P-01 36 26 10 10 0 

Positive 12 74   P-02 50 48 2 2 0 

(a)                                                                        (b) 

 

Under the noise location concept, the diagnostic tool proposes three new metrics, which 

describes noise proportions for training sets (refer Table 4.5 (a)). The first metric is the Noise Ratio 

(𝑁𝑅), which is the quantitative relation between valid and all noisy instances. For instance, the 

artificial training set has a 𝑁𝑅 = 17.14. That means there is one noise instance per 17.14 valid 

instances. The second metric is the Noise Overlap Ration (𝑁𝑂𝑅), that considers noisy instances 

associated with close subclasses. Finally, the Noise Label Ratio (𝑁𝐿𝑅) considers noise related to 

well-separated subclasses. In the example, all noisy instances are associated with close subclasses. 

Therefore, 𝑁𝑅 = 𝑁𝑂𝑅 and 𝑁𝐿𝑅 does not apply. Table 4.5 (b) shows the Noise matrix. This is a 

square matrix, whose size is determined by the number of subclasses. Each column of the matrix 

represents the instances in an estimated subclass based on the three-nearest neighbor rule while 

each row represents the instances in an actual subclass (original membership). Thus, the diagonal 

of the matrix contains the number of valid instances per subclass (instances that kept the same 

subclass label after the noise analysis). For instance, reading the first row: 176 instances from N-

01 did not change their membership, one instance moved to N-03 (it is not considered noise 

because N-01 and N-03 belong to the same Negative class), 10 noisy instances from P-01, and 2 

noisy instances from P-02. 
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Table 4.5 Output 4: Noise Ratios and Noise matrix for the artificial training set. 

(a) Noise Rations estimates the relation between valid and noisy instances.  

(b) Noise matrix shows the amount of noise between subclasses.  

N = Negative subclasses and P = Positive subclasses 

         Noise matrix 

          Noise Level estimation 

          N-01 N-02 N-03 P-01 P-02 

      

M
e

m
b

e
rs

h
ip

 

N-01 176 0 1 10 2 

Noise Ratios   N-02 2 149 1 0 0 

Noise Ratio (NR) 17.14   N-03 1 1 58 0 3 

Noise Overlap Ratio (NOR) 17.14   P-01 10 0 0 26 0 

Noise Label Ratio (NLR) NA   P-02 0 0 2 0 48 

     (a)                                                                                            (b) 

 

4.2.5 Output 5: Dispersion test 

The dispersion test component has two outputs. The first one presents the dispersion per 

subclass by estimating the average and standard deviation of the distances to the subclass median. 

For instance, Table 4.6 shows such dispersion per each class by separated. Specifically, P-01 and 

N-01 are the subclasses with larger dispersion values. Besides to the dispersion table, this first 

output includes dispersion plots per class. Figure 4.4 below presents such dispersions for the 

artificial training set, where visual sparseness not only coincides with the values from Table 4.6, 

but also with that observed in the Figure 4.3 (b).  
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Table 4.6 Output 5: Subclass dispersion for the artificial training set. 

N = Negative subclasses and P = Positive subclasses 

Dispersion per subclass 

  Mean Std 

N-01 0.96 0.46 

N-02 0.63 0.32 

N-03 0.65 0.33 

  Mean Std 

P-01 1.05 0.85 

P-02 0.57 0.41 

 

 

Figure 4.4 Subclasses dispersion for artificial training set.  

(a) Dispersion for Negative subclasses.  (b) Dispersion for Positive subclasses.  

The dotted lines represent the median as a reference point. For each subclass plotted on the X 

axis, the distance of each observation to the median, is plotted in the Y axis. Where dark dots 

represent the mean of the distances to the median and the error bars the standard deviation 
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In case of detecting two or more subclasses within a class (refer subclass detection component), 

a second output shows the results of the Anderson's multivariate test for homogeneity of variance. 

The goal is to test the null hypothesis that assumes variance is equal across subclasses. A p-value 

less than 0.05 indicates a violation of the assumption. Therefore, same resampling or synthetic 

data treatments strategy cannot necessarily be generalized to all subclasses, because the variance 

is not the same across subclasses. For example, Table 4.7 makes evident the latter statement for 

the artificial dataset.  

 

Table 4.7 Output 5: Anderson's test for homogeneity of variance for the artificial training set. 

Df (Degree of freedom), Sum Sq (Sum of squares), Mean Sq (Mean squared), F (The F-test), 

N.Perm (Number of permutations), and p-value (Probability value) 

Test for homogeneity of multivariate dispersion 

Negative class 

  Df Sum Sq Mean Sq F N.Perm p-value 

Subclasses 1 5 4.9 12.319 999 0.002 

Residuals 84 34 0.4       

              

Positive class 

  Df Sum Sq Mean Sq F N.Perm p-value 

Subclasses 2 11 5.3 34.001 999 0.001 

Residuals 401 63 0.2       

 

 Diagnostic Model Algorithm 

The Diagnostic model was develop using R open source software. Pseudo-code for the 

diagnostic model components and procedures is shown below. 
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Table 4.8 Diagnostic model algorithm 
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5. PROBABILISTIC SAMPLING TECHNIQUE 

The purpose of PSATE (Probabilistic SAmpling TEchnique) is to build treatments based on 

diagnostic tests and its primary focus is reversing the degradation effects due class imbalance 

between-classes and within-classes (small-disjuncts). Furthermore, PSATE includes a data 

cleaning procedure of removing instances with wrong label based on 3-nearest neighbor rule. The 

novelty of the cleaning process lies with the nature of the noise. If a noisy instance is detected 

between two well-separated subclasses, then it is removed. Otherwise, that noisy instance is 

retained and associated with overlapping effects instead of a mislabeling causes. The probabilistic 

component in this technique is due not only to use the GMM detected subclasses, but also to 

probabilistic parameters that allow to restructure the training set through new synthetic entries, 

label reallocation, and observations filtering. The early PSATE version proposes remediation for 

class imbalance and small-disjuncts, which have direct effect on the sparseness problem. In a 

nutshell, the aim of PSATE is generate a better version of the original training set, which seeks to 

facilitate the training stage of classification algorithms and reduce misclassification. 

 PSATE Components 

PSATE consists of three main components, which have a direct connection with class 

imbalance and small-disjuncts problems discussed in Chapter 4. Those components are connected 

through a workflow where each component provides information to the next one during the 

sampling process. Figure 5.1 illustrates the sequence of PSATE, where diagnostic process outputs 

(subclasses, IRO matrix, and noise instances) and sampling parameters are the inputs in the 

technique. Noise handling is the first component, which can either removing the noisy instances 

or change their labels (it is set by the user). Both strategies focus on noise cases between two well-

separated subclasses because such case represents in a better way the causes of labeling errors. 

 

 

 

 



36 

 

 

Figure 5.1 PSATE workflow. 

The diagnostic process outputs (subclasses, IRO matrix, and noise instances) 

and sampling parameters are the inputs and the new training 

dataset (Modified Dataset) is the output. 

 

Then, the "Sampling control" component estimates the number of instances to be random 

removed or generate synthetically per subclass seeking balance between classes and within classes. 

Lastly, the "Balance procedure" component applies undersampling and synthetic data generation 

to each subclass by separated. The synthetic data generation can be conducted by the k-nearest 

neighbor algorithm or Multivariate Gaussian Distribution (MGD) parameters. Finally, the PSATE 

flow output is a new version of the training set. More details about these components will be 

discussed in the following section. 

 Case in point Artificial Domain 

Continuing the same example from Chapter 4, information from the IRO matrix, noise per 

subclass, and the sampling parameters are the inputs for PSATE. Since the artificial dataset does 

not show noisy instances between well-separated subclasses (Refer column "Noise Label" from 

Table 4.4 (b)), noise cleaning or label reallocation processes are not required. 

5.2.1 Sampling control 

PSATE seeks to reach the balance between classes changing the subclasses distribution 

regardless of the origin subclasses. It means the technique attends to solve the problem of 

imbalance class and small-disjuncts in a novel way, focus on the fact that these problems could be 

present either in the Positive and Negative class. For instance, the artificial dataset shows 404 

Remove
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Balance
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instances (82.4%) for the Negative class, which are distributed in three subclasses. On the other 

hand, the Positive class has 86 instances (17%), which are distributed in two subclasses. Therefore, 

the 𝐼𝑅 =  (404 86⁄ ) = 4.7. The balance level achieved between classes not only depends on the 

original distribution of the subclasses, but also the sampling parameters set by the user.  

The sampling parameter Over controls the number of synthetic instances for the Positive class 

𝑁𝑒𝑤(𝑃), which is determined by Equation (1). 

 

𝑁𝑒𝑤(𝑃) =
𝑆𝑖𝑧𝑒(𝑃) ×  𝑂𝑣𝑒𝑟

100%
                            (1) 

 

where 𝑆𝑖𝑧𝑒(𝑃) is the number of instances in the Positive class. The final size of the Positive class 

𝐹𝑖𝑛𝑎𝑙(𝑃) is given by 𝐹𝑖𝑛𝑎𝑙(𝑃) =  𝑆𝑖𝑧𝑒(𝑃) +  𝑁𝑒𝑤(𝑃). For example, if 𝑂𝑣𝑒𝑟 = 300% and 𝑆𝑖𝑧𝑒(𝑃) = 86. 

Then, 𝑁𝑒𝑤(𝑃) = 258 and 𝐹𝑖𝑛𝑎𝑙(𝑃) = 344. On the other hand, the final size of the Negative class 

𝐹𝑖𝑛𝑎𝑙(𝑁) is determined by Equation (2). 

 

𝐹𝑖𝑛𝑎𝑙(𝑁) =
𝑁𝑒𝑤(𝑃) × 𝑈𝑛𝑑𝑒𝑟

100%
                           (2) 

 

For example, if 𝑈𝑛𝑑𝑒𝑟 = 130. Then, 𝐹𝑖𝑛𝑎𝑙(𝑁) = 335. Based on the new size of the classes the new 

imbalance ratio 𝐼𝑅𝑛𝑒𝑤 =  𝐹𝑖𝑛𝑎𝑙(𝑁) 𝐹𝑖𝑛𝑎𝑙(𝑃)⁄ , which is 1.03. The last procedure of the sampling 

control component calculates the final size of each subclass as a function of the final size of each 

class and their subclasses.  

This procedure defines the sampling strategy to be adopted for each subclass, which is based 

on the principle to reach balance within classes. For instance, some subclasses may increase in size 

by adding synthetic instances. On the other hand, other subclasses may decrease in size by 

removing instances randomly. Equation (3) and Equation (4) estimate the final size of subclasses 

for the Positive and Negative class respectively. Pseudo-code for the PSATE algorithm is shown 

in section 5.3. 

 

𝐹𝑖𝑛𝑎𝑙(𝑃. 𝑠𝑢𝑏) = 𝑓𝑙𝑜𝑜𝑟 (
𝐹𝑖𝑛𝑎𝑙(𝑃)

𝐾𝑃
)                           (3) 

 

𝐹𝑖𝑛𝑎𝑙(𝑁. 𝑠𝑢𝑏) = 𝑓𝑙𝑜𝑜𝑟 (
𝐹𝑖𝑛𝑎𝑙(𝑁)

𝐾𝑁
)                           (4) 
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where 𝐾𝑃 and 𝐾𝑁 are the number of subclasses within the Positive and Negative class respectively. 

For the artificial dataset under study, 𝐹𝑖𝑛𝑎𝑙(𝑃. 𝑠𝑢𝑏) = 𝑓𝑙𝑜𝑜𝑟(344 2⁄ ) = 172  and 𝐹𝑖𝑛𝑎𝑙(𝑁. 𝑠𝑢𝑏) =

𝑓𝑙𝑜𝑜𝑟(355 3⁄ ) = 111. That means, subclasses which belong the Positive class will have a final size 

of 172 instances and subclasses belonging to the Negative class will have a final size of 111. Table 

5.1 shows the sampling strategy for each subclass. 

 

Table 5.1 Sampling strategy per subclass for the artificial training set. 

The column Instances shows the original number of instances per subclass, 

the column Sampling refers to the number of instances to be removed or 

generated per subclass. The column Final size shows the number of instances 

per subclass defined by the sampling control stage. 

Sampling strategy 

  Instances Sampling Final size 

N-01 189 -78 111 

N-02 152 -41 111 

N-03 63 +48 111 

P-01 36 +136 172 

P-02 50 +122 172 

 

 

Figure 5.2 PSATE results for the the artificial training set. 

a) Subclasses detection and sampling control for balance between and within classes. 

b) Balance procedure based on k-NN algorithm. Dots are synthetic instances 

generated for specific subclasses based on the sampling strategy. 
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5.2.2 Balance procedure 

Once sampling strategy per subclass has been made known, the procedure for removing 

instances is conducted by classical undersampling. On the other hand, synthetic samples 

generation can be performed by two methods. The First one is called “PSATE k-NN” because is 

based on the k-NN rule (k-nearest neighbors), which generates synthetic instances by linearly 

interpolating selected instances and their neighbors. Equation 5 describes the generation of a 

synthetic sample. 

 

 𝑥 =  𝑎⃗ + 𝑤 × (𝑏⃗⃗ − 𝑎⃗)                           (5) 

 

where, 𝑥⃗  is the synthetic sample, 𝑎⃗  is a real instance and 𝑏⃗⃗ one on its k-nearest neighbors 

selected randomly. Finally, 𝑤 is a random weight in [0,1]. The second method is called “PSATE 

Gauss” because it uses the Multivariate Gaussian Distribution parameters (mean vector and 

covariance matrix) associated with each subclass, which were estimated by the GMM at the 

diagnostic framework. More details about Multivariate Gaussian Distribution parameters can be 

found at Appendix A. Figure 5.2 shows the implementation of PSATE k-NN using the sampling 

values defined above section. Note that this sampling strategy not only cover the global imbalance 

between classes, but also lack of instances in the subclasses (small-disjuncts) for the Positive and 

Negative class. 

5.2.3 Sampling strategies comparison 

As previously mentioned in the Chapter 3, exist several techniques for handling imbalance data 

in supervised learning. Most of them are extension of the well-known SMOTE algorithm. For 

example: ADASYN, DBSMOTE, and B-SMOTE. Figure 5.3 illustrates sampling results over the 

artificial dataset by using such techniques and the two versions of PSATE. All sampling techniques 

use the same sampling parameter (Refer Table B. 2). In general, the PSATE approach seeks to 

approximate the true data distribution for the Positive and Negative class in order to generate 

synthetic samples. On the other hand, PSATE competitors focus primarily on the Positive class 

and its local information. In particular, the major difference between PSATE and its competitors 

is that it effectively combats the imbalance between classes and within classes, extending the 

synthetic samples generation to the Negative class. For instance, only in cases (a) and (b) from 

Figure 5.3 synthetic data generation for one of the subclasses (small-disjunct) in the Negative class 
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is performed. Another important benefit to consider about PSATE is to avoid punishment over 

small-disjuncts (subclasses) in the Negative class by removing instances from larger size 

subclasses. 

PSATE k-NN and SMOTE have similar synthetic sample pattern generation because both 

techniques implement k-NN, which generate synthetic samples along the line segmented that join 

Positive instances (Refer cases from Figure 5.3 (a) and Figure 5.3 (c)). On the other hand, PSATE 

Gauss generates synthetic samples randomly through the MGD probabilistic parameters that 

describe each subclass. In a nutshell, PSATE Gauss effectively combats the sparseness in 

subclasses. ADASYN is characterized by the fact that the synthetic samples are controlled by a 

density distribution based on k-NN. Therefore, it reduces linear segments of synthetic samples 

recurrent in SMOTE. The DBSCAN pattern is characterized by the generation of synthetic samples 

along a shortest path from each Positive instance to its centroid. For this reason, DBSCAN pattern 

looks similar to an asterisk shape. Finally, B-SMOTE concentrates the synthetic sample generation 

in the neighborhood of the borders, which are the most problematic region in the presence of 

overlapping. However, this strategy does not contribute to minimize the sparseness problem. 
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Figure 5.3 Comparison between sampling techniques for the artificial training set. 

Synthetic instance generation for subclasses (Positive and Negative): PSATE k-NN (a) 

and PSATE Gauss (b). Synthetic instances generation only for the Positive class: 

SMOTE (c), ADASYN (d),  DBSMOTE (e), and  Borderline SMOTE (f) 
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 PSATE Algorithm 

PSATE was develop using R open source software. Pseudo-code for the PSATE components 

is shown below. 

 

Table 5.2 PSATE algorithm 
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6. EXPERIMENTAL METHODOLOGY 

Previous studies have been suggested that the class imbalance is not an issue by itself, but 

performance degradation on classifiers is also related to other problems such as overlapping, noisy 

labels, and small-disjuncts [9], [12], [17], [25], [27], [40], [46].  Although those studies indicate a 

relationship between such problems, the true correlation and causality between them is not yet 

well-established. Furthermore, limitations of previous research are based on the use of artificially 

generated dataset, simple datasets, and limited number of datasets and classifiers. Therefore, their 

conclusions may hold only for those limited scenarios. 

 Experimental Framework 

Figure 6.1 illustrates the experimental methodology implemented in the present research, which 

is composed by three experimental stages. First, stage A seeks to build a Dataset Degradation 

Profile (DDP) based on the diagnostic model output. This makes possible to know deeper the 

relationship between degradation problems and their level of criticality. The stage B builds and 

evaluates several classification algorithms in order to assess the level of concordance between 

performance metrics and tests classification algorithms robustness in presence of degradation 

problems. Finally, stage C compares PSATE with other techniques for handling degradation 

problems by making use of the diagnostic model outputs. This stage mainly seeks to make evident 

that the success of classification tasks depends on the combination of several factors related to 

dataset diagnosis, treatment, and classification algorithm. 
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Figure 6.1 Experimental methodology 

Stage A: Dataset Degradation Profiling (DDP). Stage B: Classifiers performance. 

Stage C: Treatments for degradation problems comparison 

 

The Diagnostic model, PSATE (Probabilistic SAmpling TEchnique) and other treatments 

(techniques for degradation problems) results were studied empirically by using 49 datasets from 

real-world domains. Table 6.1 describes main characteristics of that collection, which varies in 

their number of features (Feat.), size (Instances), missing (Miss.) and duplicated (Dupl.) values, 

class imbalance (IR), and size of subset for training and testing. First 35 datasets are from the UCI 

machine learning repository [75], 7 datasets, identified with “+”, from R packages, 6 datasets from 

different repositories, and one new dataset, the “Simulated dataset”, generated by the author. Those 

multiclass datasets marked with “*” were binarized by using the original dataset description. 

Finally, datasets identified with “” are subsets of the original datasets. Complete names and 

references of the datasets can be found at the Appendix B. Experiments from stages B and C are 

based on 14 classification algorithms, whose parameter values were set based on two criteria:  

authors recommendations and model tuning using resampling. In the latter case, the "caret" 

(Classification And Regression Training) package [76]–[79] was used, which is available in R 

open source software. This package offers a framework for building machine learning models. For 

instance, it includes several functions for data splitting, pre-processing, feature selection, variable 
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importance estimation, and model tuning by using resampling. This research used that latter 

component, which allowed to choose the optimal model across parameters for each classification 

algorithm. Finally, the experimental results are obtained based on 10-fold cross-validation.  

In summary, stage A results come from the 49 datasets analysis. Stage B experimental results 

stem from every combination of the 49 datasets and 14 classifiers (674 trained models); in short, 

all classifiers in this stage were trained by using original raw data without the intervention of any 

remediation technique for handling degradation problems. Table 6.2 shows a brief description of 

the implementation, which lists functions, packages and tuning parameters for the 14 classification 

algorithms. The following are the abbreviation names for the classifiers: NB (Naive Bayes), 

LOGREG (Logistic Regression), LDA (Linear Discriminant Analysis), QDA (Quadratic 

Discriminant Analysis), C5.0, CART (Classification and Regression Trees), k-NN (k-Nearest 

Neighbors), MLN (Multilayer Neural Network), SVM-G (Support Vector Machines with Gaussian 

kernel), SVM-P (Support Vector Machines with Polynomial kernel), RF (Random Forest), SGB 

(Stochastic Gradient Boosting), ADABOOST (AdaBoost Classification Trees), and RBFN (Radial 

Basis Function Network). 

Finally, stage C experimental results derive from every combination of the 49 datasets, 14 

classifiers, and 11 treatments (7343 trained models). Table 6.3 lists the treatments techniques and 

set parameters. 
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Table 6.1 Description of datasets 

id Name Feat. Instances Miss. Dupl. IR train IR test % Train %Test 

1 Satimage * 36 6435 0 0 9.69 8.48 68.92 31.08 

2 EEG 14 14980 0 0 1.23 1.23 70.51 29.49 

3 Blocks * 10 5473 0 45 45.44 49.63 70.15 29.85 

4 ILPD * 9 583 4 8 2.50 2.45 70.40 29.60 

5 Glass * 9 214 0 1 1.88 2.60 66.20 33.80 

6 QSAR 41 1055 0 1 2.11 1.71 68.41 31.59 

7 Ozone 72 2534 687 0 13.76 12.67 71.14 28.86 

8 Occupancy 5 17895 0 867 3.21 3.76 42.73 57.27 

9 Vertebral 6 310 0 0 2.45 1.53 69.03 30.97 

10 Haberman 3 306 0 7 3.02 2.13 68.56 31.44 

11 Spam 57 4601 0 238 1.51 1.53 69.20 30.80 

12 Gamma 10 19020 0 60 1.86 1.87 70.46 29.54 

13 Blood 4 748 0 131 2.56 3.48 62.24 37.76 

14 Seismic 11 2584 0 2 13.50 16.23 71.30 28.70 

15 Wilt 5 4839 0 14 57.45 1.67 89.64 10.36 

16 Abalone * 7 4177 0 0 19.89 24.46 69.52 30.48 

17 Audit 8 776 1 26 1.98 1.57 68.49 31.51 

18 Wireless * 7 2000 0 0 2.94 3.16 70.45 29.55 

19 User-Knowledge * 5 403 0 0 9.75 4.58 64.02 35.98 

20 Shuttle * 9 17500 0 0 4.00 3.84 71.43 28.57 

21 Image 18 2310 0 120 1.27 1.43 69.41 30.59 

22 Happiness 6 143 0 9 1.08 0.72 58.96 41.04 

23 Skin  3 12500 0 3723 2.38 4.00 57.97 42.03 

24 Seeds 7 210 0 0 1.82 2.45 67.14 32.86 

25 Musk1 166 476 0 0 1.40 1.08 71.22 28.78 

26 CTG * 20 2129 3 8 3.58 3.40 70.30 29.70 

27 Sonar 60 208 0 0 1.18 1.06 69.23 30.77 

28 Forest * 27 523 0 0 4.35 6.07 37.86 62.14 

29 HTRU2 8 17898 0 0 9.90 9.97 70.45 29.55 

30 Adult  6 26281 0 24 3.13 3.23 37.99 62.01 

31 Sports 59 1000 0 3 1.86 1.52 67.60 32.40 

32 Banknote 4 1372 0 11 1.21 1.28 69.29 30.71 

33 Electrical 13 10000 0 0 1.78 1.73 70.43 29.57 

34 Wine * 13 178 0 0 2.94 2.20 73.03 26.97 

35 Breast 9 699 0 153 1.03 0.49 66.79 33.21 

36 nanoHUB 18 14110 0 142 39.63 38.02 70.39 29.61 

37 Simulated 2 700 0 0 4.70 5.18 70.00 30.00 

38 Weather + 17 266 0 0 4.52 4.55 68.64 31.36 

39 Pima1+ 7 532 0 0 2.11 1.76 71.99 28.01 

40 Ionosphere + 32 351 0 1 1.76 1.96 79.71 20.29 

41 Pima2 + 8 768 0 0 2.01 1.58 69.40 30.60 

42 Ringnorm 20 7400 0 0 1.02 1.02 70.31 29.69 

43 College + 17 777 0 0 3.05 2.03 69.24 30.76 

44 Iris +* 4 150 0 0 1.74 2.56 62.00 38.00 

45 MDRR + 342 528 0 2 1.36 1.16 71.67 28.33 

46 Mammo 6 11183 0 2343 28.56 46.58 62.86 37.14 

47 Phoneme 5 5404 0 32 2.39 2.48 70.16 29.84 

48 Fraud  30 10492 0 13 21.94 18.69 70.49 29.51 

49 SDSS * 15 10000 0 0 11.28 9.74 69.39 30.61 
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Table 6.2 List of classification algorithms with tuning parameters. 

Abbreviation names for classifiers: NB (Naive Bayes), LOGREG (Logistic Regression), LDA 

(Linear Discriminant Analysis), QDA (Quadratic Discriminant Analysis), C5.0, CART 

(Classification and Regression Trees), k-NN (k-Nearest Neighbors), MLN (Multilayer Neural 

Network), SVM-G (Support Vector Machines with Gaussian kernel), SVM-P (Support Vector 

Machines with Polynomial kernel), RF (Random Forest), SGB (Stochastic Gradient Boosting), 

ADABOOST (AdaBoost Classification Trees), and RBFN (Radial Basis Function Network) 

 

Classifier Function Package Tuning parameters 

NB nb klaR 

fL (Laplace Correction) 

usekernel (Distribution Type) 

adjust (Bandwidth Adjustment) 

LOGREG glm R Stats NA 

LDA lda MASS NA 

QDA qda MASS NA 

C5.0 C50 C50, plyr 
trials = c(1,5,10,15,20)  

winnow = c(T,F), model = tree 

CART rpart rpart method = clas, cp = 0, xval = 10 

k-NN knn class k (#Neighbors) 

MLN nnet nnet 

size (# Hidden Units)  

decay (Weight Decay) 

bag (Baggaing) 

SVM-G ksvm kernlab 
type = C-svc, kernel= rbfdot 

kpar = automatic, C=1 

SVM-P ksvm kernlab 
type = C-svc, kernel= polydot 

kpar = automatic, C=1 

RF rf randomForest 
mtry (# Randomly Selected 

Predictors) 

SGB gbm gbm, plyr 

n.trees (# Boosting Iterations) 

interaction.depth (Max Tree Depth) 

shrinkage (Shrinkage) 

n.minobsinnode (Min. Terminal 

Node Size) 

ADABOOST adaboost fastAdaboost nIter (#Trees), method 

RBFN rbfDDA RSNNS 

negativeThreshold 

(Activation Limit for Conflicting 

Classes) 
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Table 6.3 List of treatments with tuning parameters. 

Abbreviation names for treatments: Raw (original set), Random (resampling), SMOTE 

(Synthetic Minority Oversampling Technique), B-SMOTE (Borderline-SMOTE), DBSMOTE 

(Density-base SMOTE), ADASYN (Adaptative Synthetic Sampling Approach for Imbalanced 

Learning), ENN (Edited Nearest Neighbors), NCL (Neighborhood Cleaning Rule NCL), OSS 

(One-Side Selection), and PSATE (Probabilistic SAmpling TEchnique) 

Treatments for handling degradation problems 

Name Function Package Tuning parameters 

 Raw - - - 

 Random - - 
Over (Oversampling parameter) 

Under (Undersampling parameter) 

 SMOTE SMOTE DMwR 
perc.over, perc.under 

k = 3 

 B-SMOTE BLSMOTE smotefamily 

K = 3 (# Neighbors sampling 

process) 

C = 3 (# Neighbors safe-level 

process) 

dupSize (# Synthetic Positive 

instances) 

method = "type2" 

 DBSMOTE DBSMOTE smotefamily 
dupSize (# Synthetic Positive 

instances) 

 ADASYN ADASYN smotefamily 
K = 3 (# Neighbors sampling 

process) 

 ENN ubENN unbalanced K = 3 (# Neighbors) 

 NCL ubNCL unbalanced K = 3 (# Neighbors) 

 OSS ubOSS unbalanced - 

 PSATE - - 

Over (Oversampling parameter) 

Under (Undersampling parameter) 

k = 3 (# Neighbors sampling 

process) 

Subclasses 

Noisy labels 

MGD parameters 

method = (k-NN or MGD) 
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 Stage A: Dataset profiling 

As previously mentioned, different studies suggest class imbalance is not completely 

responsible for classifiers degradation and argue that the problem of small-disjuncts is even more 

severe [12], [22]–[26]. However, the small-disjunct concept itself can be interpreted as the 

imbalance problem between-class and within-class. Furthermore, one of the reasons why small-

disjuncts show higher misclassification than large disjuncts is due to class imbalance [80], [81]. 

On the other hand, other studies state that misclassification is not solely caused by class imbalance, 

but also associated with the degree of overlapping among classes [9], [12], [27]. Keeping the above 

in mind, the diagnostic tool integrates those elements by building an output called "IRO matrix" 

(Refer Chapter 4), which creates a "diagnosis" or profile of the target dataset. In the following, a 

comparative example is presented by using Ozone and Wine datasets (Refer Table 6.1) to illustrate 

the benefits derived from the diagnostic model. Initially, Ozone dataset looks more complex since 

it has higher dimensionality (number of features) and class imbalance (IR). On the other hand, the 

low amount of data may be the major issue for the Wine dataset. Figure 6.2 compares the IRO 

matrix for those datasets. The diagonal of each matrix contains the number of instances per 

subclass (white), which allows for identifying small-disjuncts in both classes. The upper triangular 

part (blue) shows the IR between subclasses. Finally, the lower triangular part (red) of the matrix 

shows the separation index (degree of overlapping) between subclasses. The intensity of the colors 

helps to identify how critical is the problem based on each metric. It is important to mention that 

overlap between subclasses from the same class is not considered a problem.  Overall, Wine has 

more subclasses (disjuncts), less amount of data, higher IR between subclasses, and lack of overlap. 

In contrast, the most relevant problem of Ozone is related to several regions with high overlap and 

some subclasses with few instances. Moreover, the segment chart below of each IRO matrix shows 

the performance of 14 classifiers for each dataset by using the G-mean performance metric. There 

is an evident low performance for most of the classifiers in the Ozone dataset case, suggesting a 

need to implement remediation treatments. Furthermore, even though Wine has more small-

disjuncts and higher IR between subclasses, this dataset does not require any remediation treatment. 

Finally, Wine may be considered as no challenging dataset for classification task given lack of 

overlapping between subclasses from different classes. This latter statement will be validated in 

the next section. 
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Figure 6.2 IRO matrix comparison and performance for multiple classifiers. 

The diagonal contains the number of instances per subclass (white), which allows for 

identifying small-disjuncts in both classes. The upper triangular part (blue) shows the IR 

between subclasses. Finally, the lower triangular part (red) of the matrix shows the separation 

index (degree of overlapping) between subclasses. The intensity of the colors identifies how 

critical is the problem based on each metric. The segment chart below of each IRO matrix shows 

the performance of 14 classifiers for each dataset by using the G-mean performance metric 

 

 

In conclusion, the aim of the DDP (Dataset Degradation Profile) is to provide useful 

information for selecting or designing a tailored treatment. Dataset profiles are categorized 

according to levels of criticality. The DDP results are categorized as follows: 

• IR: If IR is less or equal than 10 then level is "Low", otherwise level is "High" 

• Disjuncts: If the number of Disjuncts (subclasses) is less or equal than 10 then level is 

"Low", otherwise level is "High" 

• Overlap: If NOR (Noise Overlap Ratio) is less or equal to 0.1 then level is "Low", 

otherwise level is "High" 
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Table 6.4 shows a contingency table that summarized the results of the DDP process for the 49 

datasets. The table describes the relationship between three degradation problems (IR, Disjuncts, 

and Overlap) in terms of frequencies of their levels of criticality (Low and High). The level 

“Unknown" from the Overlap problem refers to datasets for which it was not possible to find an 

optimal projection for estimating the separation index. 

Table 6.4 Contingency table of dataset profiles. 

Cross levels show the number of datasets for each criticality combination 

      Overlap   

    IR Low High Unknown Total 

D
is

ju
n

ct
s 

Low 
Low 9 12 4 25 

High 1 - - 1 

High 
Low 7 4 4 15 

High 6 - 2 8 

    Total 23 16 10 49 

 

 Stage B: Performance metrics selection 

Performance metrics are used to evaluate how well classification algorithms conduct the 

discrimination task between classes. Several studies point out limitations of the global accuracy as 

a metric of performance in class imbalance situation [82]–[87] . In a nutshell, the global accuracy 

metric is heavily biased to favor the Negative class and may hide poor performance for the Positive 

class. Furthermore, Positive class is usually the class of interests in real world applications. 

Typically, the aim is to learn in detail the Positive class distribution in order to recognize its 

members as accurately as possible. For example, fraud detection is a well-known case in point, 

where the number of fraud transaction is much smaller than the legitimate ones and the goal is 

detect such transaction immediately in order to avoid financial losses. In conclusion, the main goal 

of classifiers is not only improving the accuracy for the Positive class, but also avoiding decreasing 

the accuracy for the Negative class during the process. Continuing with the same fraud example, 

financial institutions want to increase the detection of the number of "True Positive" cases  (real 

fraud transactions) and avoid to increase the number of "False Positive" cases (legitime 
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transactions classified as fraud) because the latter means higher administrative costs related to 

respond to the false fraud alerts. 

Practitioners have opted to use the Area Under the Curve (AUC) of the Receiver Operating 

Characteristic (ROC) [15] as metric of performance for supervised learning, since it is considered 

more appropriate for imbalance learning [88]–[90]. However, recent studies have raised that  the 

AUC may provide an optimistic performance evaluation [16], [91] and draw wrong conclusions 

for imbalance datasets. Thereby, the first crucial contribution of this study in this context is to 

clarify how convenient is to use the AUC as performance metric for datasets in the presence of 

degradation problems. If the AUC metric is shown to be optimistic and misleading, it will be not 

only inconvenient for classifiers performance evaluation, but also for testing the effectiveness of 

the remediation techniques for degradation problems such as SMOTE, OSS, ENN, and so on. For 

instance, Figure 6.3 compare four performance metrics (AUC, Acc-, Acc+, and G-mean) 

associated with a Support Vector Machine with Gaussian kernel (SVM-G) implementation for 

Ozone and Wine datasets. As previously mentioned, Wine dataset is not a challenging case for 

classification. Thereby, these metrics agree in terms of the SVM-G performance for Wine dataset. 

Nevertheless, Ozone dataset shows discrepancy between some metric. Even though the AUC is 

above 80% and the accuracy of the Negative class (Acc-) is 100%, the accuracy of the Positive 

class (Acc+) is 0%. This could imply that the AUC is an inaccurate metric in relation to certain 

cases. For example, the low Acc+ may be associated with high level of global IR (13.76) in the 

Ozone dataset. In summary, there is one instance in the Positive class per 13.76 instances in the 

Negative class. Moreover, the separation index shows overlap problems between subclasses (refer 

IR and Overlap matrix from Figure 6.2). On the other hand, the G-mean is more conservative and 

intuitive metric because shows the balance between the accuracy from both classes. Since the Acc+ 

for the Ozone dataset is zero, the G-mean punishes the classifier performance because it is unable 

to classify one of classes correctly. Technically, the G-mean (also called G-measure) is the 

geometric mean of the Positive class accuracy (Acc+) and the Negative class accuracy (Acc-), 

which return a value between 0 and 1. Technical details of the evaluation metrics implemented in 

the present research such as AUC, F-Measure (F1-score), G-measure (G-mean), sensitivity, 

specificity, precision and other metrics can be found at the Appendix B. This example makes 

evident limitations of the AUC as performance metric for complex datasets. Since the ROC graphs 

are drawn by using True Positive Rates (TPR) and False Positive Rates (FPR), the relative 
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imbalance between classes directly affects the FPR, which tends to zero and generates misleading 

estimations of the AUC measure. 

In general, most classifiers are not designed with the assumption of dealing with class 

imbalance [92] , and Figure 6.3 is a clear example of this by using Acc+ and the G-mean metrics, 

which are performance measures more conservative than the AUC. The SVM-G showed a low 

performance in term of Acc+ for the Ozone dataset, which is not surprising due to the high 

imbalance ratio. Figure 6.4 clearly shows the disagreement between AUC and G-mean metrics for 

Ozone dataset across 14 classification algorithms, where the AUC for all cases always overpass 

the G-mean performance. 

 

 

Figure 6.3 Performance metrics comparison for two datasets by using SVM-G classifier.  

The AUC and G-mean are consistent with the values of Acc- (Accuracy Negative class) and 

Acc+ (Accuracy Positive class) for the wine dataset. However, the AUC is an extremely 

optimistic metric for the Ozone dataset (85%) despite its low Acc+ performance (0%). On the 

other hand, the G-mean is more realistic performance metric based on the levels of 

misclassification 
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Figure 6.4 Performance metric comparison for Ozone dataset. 

AUC and G-mean metrics for Ozone dataset across 14 classification algorithms, where the AUC 

for all classifiers get higher performance values (more optimistic) than the G-mean. 

 

 

Another important finding related to the Wine dataset is that for well-separated subclasses the 

performance metric did not decreased even with high levels of imbalance ratio between subclasses. 

Thereby, the present experimental stage has two main purposes: the first one seeks to generalize 

the impropriety use of the AUC as performance metric for datasets under degradation problems. 

The second one refers to establish solid causality with statistical evidence between degradation 

problems and classifiers performance by using real-world datasets.  

Figure 6.5 compares the distribution of the AUC and G-mean metrics for the 49 datasets across 

the 14 classification algorithms. AUC boxplot shows a lower variability and its values are closer 

to the high levels of prediction power. Moreover, AUC outliers below the lower quartile show 

better performance than the outliers from the G-mean. Finally, the measures of central tendency 

such as the median and the mean have larger values in the AUC than the G-mean distribution. 

Additionally, this figure shows the result of the paired samples Wilcoxon test [93]–[95], which is 

a nonparametric version of the paired t-test. The null hypothesis states that the AUC has values of 

prediction power equal or lower than the G-mean values. In contrast, the alternative hypothesis 
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claims that the AUC has values of prediction power higher than the G-mean values. As the p-value 

turns out to be 5.06e-88, and is less than the 0.05 significance level, it is possible to reject the null 

hypothesis. Therefore, for the experimental design defined in the present research, the Wilcoxon 

for paired samples test confirms the risky and inconvenience of using the AUC. 

 

Table 6.5 illustrates the categorization in two levels of three degradation problems across the 

49 datasets under study. This table is sub-table from the contingency table of dataset profiles 

mentioned from the previous section. Complete information can be found at Table 6.4. A fair 

question could be raised as to if the AUC limitation is the same through levels of criticality of the 

degradation problems. 

 

 

Figure 6.5 Boxplots for AUC and G-mean performance metrics. 

It compares the distribution of the AUC and G-mean metrics for the 49 datasets across the 14 

classification algorithms. The AUC shows noticeably more optimistic prediction power than the 

G-mean. Moreover, the paired samples Wilcoxon test rejects the hypothesis that states the AUC 

has values of prediction power equal or lower than the G-mean values. 
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Table 6.5 Number of datasets per criticality levels 

Level of criticality 

  Degradation problems 

Level  IR Disjuncts Overlap 

Low 40 23 23 

High 9 26 16 

 

 

Figure 6.6 AUC and G-mean comparison across criticality levels of degradation problems. 

It compares the scatter between AUC and G-mean by levels of criticality of degradation 

problems for the 49 datasets across the 14 classification algorithms. The ideal scenario would be 

a high linear positive correlation between values for both performance metrics, even for the low 

and high values. In a nutshell, if the dots do not lie close to the 45-degree line, exist discrepancy 

between both metrics. Moreover, the paired samples Wilcoxon test rejects the hypothesis that 

states the AUC has values of prediction power equal or lower than the G-mean values 

 

 

Figure 6.6 answers the above question by comparing the scatter between AUC and G-mean for 

levels of criticality of each degradation problem. The ideal scenario would be a high linear positive 

correlation between values for both performance metrics, even for the low and high values. In a 

nutshell, if the dots do not lie close to the 45-degree line, exist discrepancy between both metrics. 

It is evident that the AUC limitation persists through the different levels of criticality; however, 

for high levels of IR the AUC is more optimistic due to the low values of the FPR. For the next 

degradation problem, the dispersion of the disjunct levels does not show significant difference. 

Finally, the overlap problem shows an interesting behavior through its levels. High levels of 
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overlap make harder to learn the distribution for both classes. Then, the FPR is increased and the 

TPR is reduced, which decreases the AUC values. On the other hand, low levels of overlap avoid 

decreasing the "True Negative" value and follow a similar dispersion to the high level of IR. 

Similarly, the paired samples Wilcoxon test was conducted for each level of criticality by 

separate. All p-values turns out to be less than the 0.05 significance level, it is possible to reject 

the null hypothesis. Therefore, for the experimental design defined in the present research, the 

Wilcoxon for paired samples test confirms the risky and inconvenience of using the AUC; even 

for different criticality levels of degradation problems. 

 Stage B: Classifiers robustness in the presence of degradation problems 

Once the issue related to the most convenient performance metric is solved, the next aim of this 

research is to test classification algorithms robustness in the presence of degradation problems. 

The following results correspond to the same experimental design defined in the previous section. 

Basically, this section seeks to validate three recurrent statements in the literature, by incorporating 

a considerable real-world dataset, several classification algorithms, unbiased performance metrics, 

and statistical validation. 

The three statements to valid are: 

S1. The more class imbalance, the bigger classifier performance degradation. 

S2. The greater number of disjuncts, the bigger classifier performance degradation. 

S3. The larger overlap regions, the bigger classifier performance degradation. 

 

Table 6.6 illustrates the results of an alternative version of the Wilcoxon signed-rank test, which 

is used to compare two related samples. In this example, results derive from the 49 datasets and 

SVM-G classifier by making use of three performance metrics (G-mean, F1-Score, and AUC). 

Basically, two tests were implemented in order to validate if exist statistical differences between 

the performance metric distribution across the levels of criticality for each degradation problem. 

In other words, those tests assess the truthfulness of the three above statements. Test A compares 

if the performance metric distributions between levels are equal and Test B compares if the 

performance metric distribution of the datasets with high levels of criticality have better prediction 

power than the performance metric distribution of the datasets with low levels of the criticality. 

Both tests have a 0.05 significance level. The p-values shown in the table are used to reject or not 
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reject the null hypothesis. However, an easier notation combines results from both statistical tests. 

Symbol “✓” means that exist statistical evidence to accept the statement on the other hand, symbol 

“✗” implies that there is no statistical evidence to accept the statement. Therefore, it is not 

possible to reject that the performance metric distributions across the levels are different. 

 

Analyzing the outputs from Table 6.6, it is possible to state the following conclusions for the 

classifier SVM-G under the experimental framework defined in this research: 

1. The more class imbalance, the bigger classifier performance degradation for 

metrics G-mean and F1-Score. On the other hand, AUC metric is not affected by 

the imbalance problem since it is an optimistic and misleading performance metric. 

2. It is not true that the greater number of disjuncts, the bigger classifier performance 

degradation; however, disjuncts detection allows to know the imbalance ratio 

within classes [26], [80]. 

3. It is true that the larger overlap regions, the bigger classifier performance 

degradation. 

 

Table 6.6 p-values of the Wilcoxon signed-rank tests for degradation problems. 

Test A compares if the performance metric distributions between levels are equal and Test B 

compares if the performance metric distribution of the datasets with high levels of criticality 

have better prediction power than the performance metric distribution of the datasets with low 

levels of the criticality 

p-values Wilconox test for SVM-G 

  Statements for degradation problems (p-values) 

Metric S1 (IR) S2 (Disjuncts) S3 (Overlap) 

G-mean       

Test A 0.00812 
✓ 

0.86476 
✗  

0.07202 
✓ 

Test B 0.00406 0.57548 0.03601 

F1-Score             

Test A 0.03484 
✓ 

0.82594 
✗  

0.06566 
✓ 

Test B 0.01742 0.41297 0.03283 

AUC             

Test A 0.15913 
✗ 

0.984 
✗  

0.01767 
✓ 

Test B 0.07956 0.51598 0.00883 
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Table 6.7 Wilcoxon test for degradation problems across classifiers by using. The G-mean.  

The column "Tests" validates the statements about level of criticality and column "% Diff." 

shows the difference in percentage between the means of criticality levels 

 

  Statements for degradation problems 

Classifier S1 (IR) S2 (Disjuncts) S3 (Overlap) 

  Tests % Diff. Tests % Diff. Tests %Diff. 

NB ✗ 0.07 ✗ 0.06 ✓ 0.05 

LOGREG ✓ 0.15 ✗ 0.03 ✓ 0.17 

LDA ✗ 0.13 ✗ 0.03 ✓ 0.17 

QDA ✗ 0.12 ✗ -0.01 ✗ 0.02 

C5.0 ✓ 0.17 ✗ -0.05 ✓ 0.12 

CART ✓ 0.21 ✗ -0.08 ✓ 0.14 

k-NN ✓ 0.22 ✗ -0.03 ✓ 0.10 

MLN ✗ 0.16 ✗ 0.00 ✓ 0.14 

SVM-G ✓ 0.29 ✗ -0.01 ✓ 0.09 

SVM-P ✓ 0.27 ✗ 0.05 ✓ 0.18 

RF ✓ 0.23 ✗ 0.01 ✓ 0.08 

SGB ✓ 0.18 ✗ 0.01 ✓ 0.09 

ADABOOST ✓ 0.23 ✗ 0.01 ✓ 0.08 

RBFN ✓ 0.24 ✗ -0.02 ✓ 0.08 

 

 

Table 6.7 shows same statistical analysis for the complete set of classifiers and datasets by using 

the G-mean as performance metric. The column "Tests" validates the statements about level of 

criticality (Test A and Test B) and column "% Diff." shows the difference in percentage between 

the means of the levels of criticality. Some important findings are: 

• Ten out of fourteen classifiers present G-mean degradation in the presence of high 

levels of IR. 

• Thirteen out of fourteen classifiers show G-mean degradation in presence of high 

levels of overlap. 

• The G-mean for all classifiers is not affected by high levels of disjuncts.   

• QDA classifier does not show statistical difference for the G-mean distribution 

between high and low levels of IR, disjuncts and overlap. 
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Figure 6.7 G-mean comparison between criticality levels of degradation problems. 

The mean of the G-mean is estimated across the level of criticality using bootstrap for the 

following selected classifiers: Random Forest (RF), Multilayer Neural Network (MLN), Supper 

Vector Machine with Gaussian kernel (SVM-G), and Logistic Regression (LOGREG) 

 

 

Figure 6.7 illustrates some selected cases from Table 6.7. The mean of the G-mean is estimated 

across the level of criticality by using bootstrap for the following classifiers: Random Forest (RF), 

Multilayer Neural Network (MLN), Supper Vector Machine with Gaussian kernel (SVM-G), and 

Logistic Regression (LOGREG). Even though this chart is a visual and descriptive comparison 

between means, it is evident that there are no relevant differences between the Disjuncts levels. In 

contrast, the differences between means for the levels of IR and Overlap are significative. 
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 Stage C: Statistical identification of the best treatment 

To demonstrate that it is not possible to find one treatment that is the best in remediation for all 

degradation problems and classifiers, a ranking score was computed over three performance 

metrics (AUC, F1-Score, and G-mean) to each treatment (remediation technique) results across 

the 73443 trained models (Refer Stage C from Figure 6.1). Therefore, the ranking score for the 

best performing treatment is 11 and the worst performing treatment is 1. Then, the nonparametric 

Friedman test [96]–[98] and multiple comparison of treatments were applied to the ranking results. 

This test not only allows to detect differences between treatments results across multiple 

experimental related samples, but also implements the post hoc Friedman tests (multiple 

comparisons between treatments) by using the criterium Fisher’s Least Significant Differences 

(LSD) [94], [95], [99], which groups the treatments according to similarities by using the Compact 

Letter Display method [100]. The null hypothesis for the Friedman test is that there are no 

differences between treatments results across multiple experimental attempts. If the null 

hypothesis is rejected (p-value less that the 0.05 significance level), it can be concluded that at 

least two of the treatments are significantly different from each other. Then, a multiple 

comparisons analysis can be executed in order to know which of the treatments are significantly 

different from which other treatments.  In particular, the multiple comparisons results are presented 

by listing the treatments in order of decreasing average score and grouping the treatments that are 

not significantly different. Thus, the procedure uses a group (identified by a letter) as a union of 

different treatments that can contain one or more members and the members of these groups are 

the eleven different treatment in this research (Raw, Random, SMOTE, B-SMOTE, DBSMOTE, 

ADASYN, ENN, NCL, OSS, PSATE k-NN, and PSATE Gauss). Treatments with the same letter(s) 

are not statistically different. On the contrary, treatments that are statistically different get different 

letters. Treatments can have more than one letter to reflect overlap between the groups of 

treatments. Table 6.8 shows the Friedman test results for experimental definition on Stage C, which 

includes the 49 datasets. According to the p-value column, only the MLN classifier cannot reject 

the null hypothesis because its p-value is slightly higher to 0.05 (borderline result). That means, 

there are statistical differences between treatments for the remaining classifiers.  
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Table 6.8 Friedman test results for all datasets. 

According to the p-value column, only the MLN (Multilayer Neural Network) classifier cannot 

reject the null hypothesis because its p-value is slightly higher to 0.05 (borderline result). That 

means, there is statistical differences between treatments for the remaining classifiers. 

Means of the G-mean of rank 
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p-value 

NB  c ab a c cd bc abc c c abc d 2.0E-04 

LOGREG  e a ab bcd ab abc de de e abc cd 1.7E-10 

LDA  e a bc bc c ab e de de bc cd 9.2E-13 

QDA  d a abc cd cd ab bcd abc abcd abcd abcd 4.6E-02 

C5.0  d ab ab a abc a cd bcd abc ab ab 1.5E-03 

CART  d a a ab ab a cd ab bcd ab abc 1.6E-04 

k-NN  c a ab bc ab a c ab ab a ab 1.2E-05 

MLN  c ab ab ab abc a bc ab bc abc abc 5.2E-02 

SVM-G  e a ab bc cd ab e cd d abc abc 0.0E+00 

SVM-P  f ab a bcd ab abc ef bcd de abc cde 2.0E-09 

RF  e bc a bc bc a de cd cd ab abc 3.8E-08 

SGB  e a ab ab bc ab de bcd cd abc cde 1.6E-07 

ADABOOST  d bc ab abc ab a cd bc ab ab ab 2.4E-05 

RBFN  e cd a cd abc ab de bcd bc abc abc 4.2E-07 

 

For example, Figure 6.8 shows the boxplots of the G-mean rank distribution of each treatment 

and how they are grouped for the classifier k-NN. These boxplots are listed in decreasing order 

(from left to right) of the mean rank. In addition, the right table illustrates the G-mean rank position 

and mean rank value for each treatment. Even though ADASYN is the treatment with higher mean 

rank, it shares the same group "a" as PSATE k-NN and Random. On the contrary, Figure 6.9 shows 

a different order and grouping for the G-mean rank distribution of each treatment for the SVM-G 

classifier. In this case, Random has the highest mean rank and it does not share group with any 

other treatment. For both classifiers the worst treatments are ENN and Raw (original dataset). 
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Ranking treatments for k-NN 

Position Treatment Mean rank 

11 ADASYN 7.24 

10 PSATE kNN 7.06 

9 Random 7.02 

8 DBSMOTE 7.00 

7 PSATE Gauss 6.96 

6 OSS 6.88 

5 SMOTE 6.80 

4 NCL 6.78 

3 B-SMOTE 5.63 

2 ENN 5.08 

1 Raw 4.94 

 

 

 

 

 

Figure 6.8 Boxplots of the G-mean rank treatments for the classifier k-NN - All dataset 

These boxplots are listed in decreasing order (from left to right) of the mean rank. In addition, 

the right table illustrate the G-mean rank position and the mean rank value for each treatment. 

Even though ADASYN is the treatment with higher mean rank, it shares the same group "a" as 

PSATE k-NN and Random treatments 

 

These results call into question those in previous research on degradation problems (class 

imbalance, small-disjuncts, overlapping, sparseness, and noisy labels), which present successful 

techniques across few classifiers and datasets. More importantly, this analysis supports one of the 

hypotheses of the present research that states is not possible to find one treatment that is the best 

in remediation for all degradation problems, datasets or classifiers. The selection of the “best 

treatment” or even the most convenient classification algorithm depends on the available 

information and knowledge associated with the target dataset. For this reason, the diagnostic model 

for degradation problems has a direct relevance for the treatment selection in order to obtain 

successful classification outcomes and avoid degradation. 

 

  

a a a ab ab ab ab ab bc c c

1

2

3

4

5

6

7

8

9

10

11

A
D

A
S

Y
N

P
S

A
T

E
k
N

N

R
a

n
d

o
m

D
B

S
M

O
T

E

P
S

A
T

E
G

a
u

s
s

O
S

S

S
M

O
T

E

N
C

L

B
-S

M
O

T
E

E
N

N

R
a
w

Treatment

R
a
n

k

Multiple comparison of treatments - All datasets

Friedman test for k-NN



64 

 

 

Ranking treatments for SVM-G 

Position Treatment Mean rank 

11 Random 8.29 

10 SMOTE 7.96 

9 ADASYN 7.69 

8 PSATE kNN 7.33 

7 PSATE Gauss 7.12 

6 B-SMOTE 7.00 

5 NCL 6.57 

4 DBSMOTE 6.27 

3 OSS 5.78 

2 ENN 4.63 

1 Raw 3.51 

 

 

 

 

 

 

Figure 6.9 Boxplots of the G-mean rank treatments for the classifier SVM-G - All datasets. 

These boxplots are listed in decreasing order (from left to right) of the mean rank. In addition, 

the right table illustrate the G-mean rank position and the mean rank value for each treatment. 

Random has the highest mean rank and it does not share group with any other treatment 

 

 

 

As previously mentioned in the Chapter 5, PSATE strategy focus on controlling the negative 

effects related to high levels of criticality for class imbalance and small-disjuncts. Datasets with 

such characteristics are marked as “Profile A”. Based on the information of Table 6.4, there are 8 

datasets (Seismic, Wilt, Abalone, Blocks, nanoHUB, Fraud, Mammo, and SDSS) that cover such 

profile. Table 6.9 shows the Friedman test results for dataset with Profile A. In this case, there is 

statically differences between all treatments for each classifier because all p-values turns out to be 

much less than the 0.05 significance level. 
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Table 6.9 Friedman test results for datasets with profile A. 

There are statically differences between all treatments for each classifier because all p-values 

turns out to be much less than the 0.05 significance level. 

Means of the G-mean of rank 
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p-value 

NB  cd ab a a abc ab cd cd d ab bcd 1.4E-03 

LOGREG  d a a b b b cd c cd b b 3.9E-09 

LDA  c a ab b b ab c c c ab ab 6.2E-08 

QDA  cd a ab abc cd a d bcd bcd abc bcd 6.0E-03 

C5.0  d ab ab bc bc a d cd cd ab ab 6.3E-05 

CART  cd ab a c c a d cd d ab b 7.0E-08 

k-NN  f a ab cd bcd ab ef de ef a abc 3.3E-07 

MLN  e abcd ab abc bcde a e de cde abcd a 6.2E-04 

SVM-G  e a a b c a e cd d a a 4.5E-11 

SVM-P  f a ab abc d d ef e ef bcd cd 5.1E-10 

RF  d bc a cd ab a d cd d a a 1.7E-06 

SGB  f ab ab bc cd a f de ef ab cd 4.8E-08 

ADABOOST  e de ab cd bc ab de de e a ab 2.1E-07 

RBFN  f cd ab cd bc abc ef cde def ab a 7.1E-06 

 

Similarly, Figure 6.10 and Figure 6.11 show boxplots of the G-mean rank distribution for each 

treatment and how they are grouped for the classifiers k-NN and SVM-G respectively; however, 

these charts describe different behavior in terms of dispersion and grouping for treatments. 

Although ENN and Raw treatments remain the lowest ranking for both classifiers, the best 

treatments are PSATE k-NN for the k-NN classifier and PSATE Gauss for the SVM-G classifier. 

The next major aspect refers to the PSATE performance compared with other treatments. For this 

purpose, the Friedman's Aligned Rank post hoc test [37] was implemented. This pos hoc test allows 

to compare every treatment against a control, which in this case is PSATE. Therefore, the null 

hypothesis states that there is no statistical difference between PSATE and the compared treatment.  
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Complete outputs with p-values of this test can be found at the Appendix C; however, a 

summarized version of the results is shown in Table 6.10. The symbols “*” and “**” identify 

PSATE as the best treatment and the second-best treatment respectively. In general, for datasets 

with profile A (high class imbalance and high disjuncts), PSATE showed an outstanding 

performance for seven out of fourteen classifiers.  

 

 

Ranking treatments for k-NN 

Position Treatment Mean rank 

11 PSATE kNN 9.13 

10 Random 9.00 

9 SMOTE 8.38 

8 ADASYN 8.00 

7 PSATE Gauss 7.75 

6 DBSMOTE 6.25 

5 B-SMOTE 5.75 

4 NCL 4.63 

3 OSS 3.50 

2 ENN 3.00 

1 Raw 2.63 

 

 

 

Figure 6.10 Boxplots of the G-mean rank treatments for the k-NN - Profile A. 

These boxplots are listed in decreasing order (from left to right) of the mean rank. 

In addition, the right table illustrate the G-mean rank position and the mean rank 

value for each treatment. Even though PSATE kNN has the highest mean rank, 

it shares the same group "a" as Random treatment 
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Ranking treatments for SVM-G 

Position Treatment Mean rank 

11 PSATE Gauss 9.50 

10 Random 9.13 

9 PSATE kNN 8.75 

8 SMOTE 8.75 

7 ADASYN 8.75 

6 B-SMOTE 6.63 

5 DBSMOTE 4.88 

4 NCL 4.00 

3 OSS 3.38 

2 ENN 2.25 

1 Raw 1.88 

 

 

 

Figure 6.11 Boxplots of the G-mean rank treatments for the SVM-G - Profile A 

These boxplots are listed in decreasing order (from left to right) of the mean rank. In addition, 

the right table illustrate the G-mean rank position and the mean rank value for each treatment. 

PSATE Gauss has the highest mean rank and it does not share group with any other treatment 

 

 

The feasibility of conducting similar analysis for different profiles of criticality between 

degradation problems resides in the fact of having enough datasets for such configuration. Based 

on the information from Table 6.4, it is possible to stablish a second profile (Profile B), which 

compares the treatments across classifiers for datasets with high levels of overlap. For this new 

Profile, there are 16 datasets (Blood, College, Glass, ILPD, Ionosphere, MDRR, Phoneme, Pima1, 

Pima2, Ringnorm, Satimage, Sonar, Spam, Sports, Vertebral, and Weather). The nonparametric 

test results for this case can be found at Appendix C. Table 6.11 shows a heat map of the predict 

success of treatments across classifiers for two dataset profiles in terms of the mean rank for the 

G-mean metric: 

• Profile A: High levels of class imbalance and disjuncts 

• Profile B: High levels of overlap and low levels of class imbalance 
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Table 6.10 Summary of PSATE performance for datasets with Profile A. 

The symbols “*” and “**” identify PSATE as the best treatment and the  

second-best treatment respectively.  

Performance ranking PSATE 

Classifier 
Mean rank 

PSATE kNN PSATE Gauss 

NB 8.00 5.63 

LOGREG 7.50 7.38 

LDA 8.25      8.75 ** 

QDA 6.88 5.50 

C5.0 7.50 7.63 

CART 8.25 7.25 

k-NN    9.13 * 7.75 

MLN 7.25      8.13 ** 

SVM-G 8.75    9.50 * 

SVM-P 7.75 7.50 

RF 8.25      8.88 ** 

SGB 8.63 5.88 

ADABOOST    9.50 * 8.13 

RBFN 8.50    9.50 * 
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Table 6.11 Prediction of success of treatments across classifiers for two critical cases. 

High mean rank values of the G-mean tend to increase the steepness of the color gradient to 

green. On the contrary, low mean rank values tend to decrease the steepness of the color gradient 

to red. Profile A: High levels of class imbalance and disjuncts. Profile B: High levels of overlap 

and low levels of class imbalance 
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NB  
     A             

     B                       

LOGREG  
     A             

     B                       

LDA  
     A             

     B                       

QDA  
     A             

     B                       

C5.0  
     A             

     B                       

CART  
     A             

     B                       

k-NN  
     A             

     B                       

MLN  
     A             

     B                       

SVM-G  
     A             

     B                       

SVM-P  
     A             

     B                       

RF  
     A             

     B                       

SGB  
     A             

     B                       

ADABOOST  
     A             

     B                       

RBFN  
     A             

     B                       
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The following list shows some relevant findings from Table 6.11: 

• In general, training sets treated with remediation techniques showed better 

classification performance than Raw training sets. 

• Data cleaning (ENN, NCL, and OSS) techniques showed low performance for 

profiles A and B. 

• For NB (Naive Bayes) classifier the best remediation technique for datasets with 

Profile B (High levels of overlap and low levels of class imbalance) is ENN. 

• SMOTE treatment takes top places in terms of increasing the classification 

performance. 

• BDSMOTE technique takes top places associated with Profile B (High levels of 

overlap and low levels of class imbalance) for LOGREG (Logistic Regression), 

CART (Classification and Regression Trees), and SVM-P (Support Vector 

Machines with Gaussian Polynomial). 

• PSATE Gauss showed low performance associated with Profile B (High levels of 

overlap and low levels of class imbalance) for NB (Naive Bayes) and SGB 

(Stochastic Gradient Boosting). 

• PSATE treatment takes top places associated with Profile A (High levels of class 

imbalance and disjuncts) for classifiers k-NN (k-Nearest Neighbors), LDA (Linear 

Discriminant Analysis), MLN (Multilayer Neural Network), RF (Random Forest), 

ADABOOST (AdaBoost Classification Trees), and RBFN (Radial Basis Function 

Network). 
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7. SUMMARY AND OUTLOOK 

The performance of supervised learning algorithms is hindered by the presence of degradation 

problems and lack of diagnosis for training sets before building classifiers. This thesis describes 

how the introduction of diagnostic methods help to minimize degradation in classification 

performance. Moreover, a new technique called “PSATE” (Probabilistic SAmpling TEchnique) 

for handling degradation problems is proposed, which is directly related to the diagnostic model 

outputs and focus on mitigating problems related to class imbalance and small-disjuncts. 

 

In this  research, an experimental framework was proposed to describe the complete diagnostic 

method and the new technique, where experimental results derive from statistical analysis over 

every combination of the 49 datasets, 14 classifiers, and 11 treatments (techniques for handling 

degradation problems). 

 

Experimental results in this research allowed to implement statistical validation related to 

performance degradation in supervised learning. 1)  The more class imbalance, the bigger classifier 

performance degradation for metrics G-mean and F1-Score. On the other hand, AUC metric is not 

affected by the imbalance problem since it is an optimistic and misleading performance metric. 2) 

It is not true that the greater number of disjuncts, the bigger classifier performance degradation; 

however, disjuncts detection allows to know the imbalance ratio within classes. 3) It is true that 

the larger overlap regions, the bigger classifier performance degradation. 

 

Contrary to previous studies [101], [102], this research found empirical evidence that 

rebalancing the classes artificially have a positive effect on the predictive performance of 

classification algorithms. Furthermore, synthetic data generation may be useful strategy when 

scarcity of training samples is a problem due to characteristics of the phenomena studied itself or 

cost associated with data collection. For those cases, the goal is to minimize the probability of 

discarding instances located on overlap regions or rare cases, rather mislabeling instances. 
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In general, SMOTE treatment takes top places in terms of increasing the classification 

performance even overpassing its most recent extensions such as Borderline-SMOTE and 

DBSMOTE. However, SMOTE based techniques ignore the problem of small-disjuncts, more 

specifically subclass imbalance (imbalance within classes). When training sets have high 

imbalance and large number of disjuncts, PSATE has an outstanding performance for seven out of 

fourteen classifiers. 

 

Even though data cleaning methods are designed to handling overlap problems, experiments 

over datasets with Profile B (high levels of overlap) showed poor classification performance. In 

general, results for the three data cleaning techniques used in this research (ENN, NCL, and OSS) 

were overpassed by sampling techniques. This can be explained by the wrong generalization of 

the concept of "Noisy Labels" or "mislabeling". In other words, instances located in overlap 

regions not necessarily have wrong labels. Thereby, these strategies of removing or label 

reallocation increase the problem of sparseness and reduce the classification performance. This 

latter result is a generalization of the Quinlan [47] results applied to decision trees.  

 

In the light of the previous situation, PSATE conducts data cleaning procedures if, and only if, 

noisy instances are detected between two well-separated subclasses. Otherwise, those instances 

are retained and associated with overlapping effects instead of a mislabeling causes. Consistent 

with this view, PSATE leaves the overlap problem on charge of the classification algorithm. 

 

Results from datasets with high levels of class imbalance and disjuncts support that 

classification performance is significantly improved by increasing the number of synthetic Positive 

instances. In contrast, cleaning techniques such as ENN, NCL, and OSS showed adverse effects 

on classification performance. 

 

An important goal for the future is thus to implement the diagnostic model and PSATE as 

functional components of a new package in R open source software. 

 

It would also be worthwhile to study the classifier and treatments performance for different 

profiles associated with levels of the degradation problems. 
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APPENDIX A. DIAGNOTIC MODEL DETAILS 

Gaussian Mixture Models (GMM) 

 
The Multivariate Gaussian distribution can be defined over a 𝐷 -dimensional vector x  of 

contiguous variables, which is given by 

 

𝒩(x|𝜇, Σ) =
1

(2𝜋)𝐷 2⁄

1

|Σ|1 2⁄
exp {−

1

2
(x − 𝜇)𝑇Σ−1(x − 𝜇)}                     (6) 

 

where 𝜇 is the mean vector of dimension 𝐷, Σ is the covariance matrix of dimension 𝐷 × 𝐷, 

and |Σ| denotes the determinant of Σ. 

Then, Gaussian Mixture Models can be written as a linear superposition of  𝐾 Multivariate 

Gaussian distributions [64], [65] in the form 

 

𝑝(x|𝜋, 𝜇, Σ) = ∑ 𝜋𝑘

𝐾

𝑘=1

𝒩(x|𝜇𝑘 , Σ𝑘)                     (7) 

 

Where 𝜋𝑘 =  {𝜋1, … 𝜋𝐾} is the mixing coefficient vector (probability vector of membership) 

and ∑ 𝜋𝑘 = 1𝐾
𝑘=1 in order to be valid probabilities. Moreover,  𝜇𝑘 =  {𝜇1, … 𝜇𝐾}  and Σ𝑘 =

 {Σ1, … Σ𝐾}. 

 

For a given training set  𝐗 =  {x1, … , x𝑁}, ℒ̂ is the Maximum Likelihood Estimator (LME) and 

its log-likelihood function is expressed by Equation 9, which estimates the probability of 

membership of 𝐾 components. The EM algorithm is used to maximize this function and estimate 

the mixture parameters [66]. 

 

ℒ̂(𝑿; 𝜃) = 𝑝(𝑿|𝜋, 𝜇, 𝛴)                     (8) 
 

𝑙𝑜𝑔 𝑝(𝑿|𝜋, 𝜇, 𝛴) = ∑ 𝑙𝑜𝑔 {∑ 𝜋𝑘𝒩(𝑥|𝜇𝑘 , 𝛴𝑘)

𝐾

𝑘=1

}

𝑁

𝑛=1

                     (9) 
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Determining the optimal number of components 𝐾 continues to be a problem for empirical 

cluster techniques such as k-means. However, probabilistic approaches based on mixture models 

can solve this problem using a penalty function. If the number of components 𝐾 is increased in the 

Equation 9, it results in an increase in the dimensionality of the model, causing a monotonous 

increase in its likelihood. This is particularly a problem because it is not useful to obtain as many 

components as instances. Therefore, the best GMM is the one that maximizes the Bayesian 

Information Criterion (BIC) [67], [68], which seeks to balance the increase in likelihood and the 

complexity of the model by introducing a penalty term for each parameter.  BIC is defined by 

 

𝐵𝐼𝐶(𝑿; 𝜃) = 𝑙𝑜𝑔 𝑝(𝑿|𝜋, 𝜇, 𝛴) −
1

2
𝜂(𝜃)𝑙𝑜𝑔(𝑁)                    (10) 

 

where η(𝜃) is the number of free parameters in the model that represents the complexity of the 

model. 

GMM build ellipsoidal subclasses (clusters), centered at the means 𝜇𝑘 and with covariance 𝛴𝑘. 

The covariance matrix can be determined by geometric characteristics. For instance, Banfield et 

al. [103] develop a covariance matrix model in terms of its eigenvalues decomposition in the term 

form 

 

𝛴𝑘 = 𝜆𝑘𝐷𝑘𝐴𝑘𝐷𝑘
𝑇                     (11) 

 

where 𝐷𝑘 is the orthogonal matrix of eigenvectors and defines the orientation,  𝐴𝑘 is a diagonal 

matrix whose elements are proportional to the eigenvalues of 𝛴𝑘 and determines the shape of the 

density contours,  and 𝜆𝑘 is a scalar that defines the volume of the corresponding ellipsoid. This 

covariance model is the generalization of several earlier proposals based on GMM. Table A. 1 and 

Figure A. 1 are taken for the “mclust” [104], [105] package in R open source software. 

Table A. 1 shows names, models, and geometric interpretation of the covariances model 

implemented for this research. Figure A. 1 illustrates the parametrization concepts related to the 

covariance models. 
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Table A. 1 Parametrization of the covariance matrix for Gaussian models 

Covariance Matrix Models. Source [104] 

Model 𝛴𝑘  Distribution Volume Shape Orientation 

EII 𝜆Ι Spherical Equal Equal — 

VII 𝜆𝑘Ι Spherical Variable Equal — 

EEI 𝜆A Diagonal Equal Equal Coordinate axes 

VEI 𝜆𝑘𝐴 Diagonal Variable Equal Coordinate axes 

EVI 𝜆𝐴𝑘  Diagonal Equal Variable Coordinate axes 

VVI 𝜆𝑘𝐴𝑘 Diagonal Variable Variable Coordinate axes 

EEE 𝜆𝐷𝐴𝐷𝑇  Ellipsoidal Equal Equal Equal 

EVE 𝜆𝐷𝐴𝑘𝐷𝑇  Ellipsoidal Equal Variable Equal 

VEE 𝜆𝑘𝐷𝐴𝐷𝑇  Ellipsoidal Variable Equal Equal 

VVE 𝜆𝑘𝐷𝐴𝑘𝐷𝑇  Ellipsoidal Variable Variable Equal 

EEV 𝜆𝐷𝑘𝐴𝐷𝑘
𝑇  Ellipsoidal Equal Equal Variable 

VEV 𝜆𝑘𝐷𝑘𝐴𝐷𝑘
𝑇 Ellipsoidal Variable Equal Variable 

EVV 𝜆𝐷𝑘𝐴𝑘𝐷𝑘
𝑇  Ellipsoidal Equal Variable Variable 

VVV 𝜆𝑘𝐷𝑘𝐴𝑘𝐷𝑘
𝑇 Ellipsoidal Variable Variable Variable 

 

Ellipses of isodensity for covariance models. Source  [104] 

 

Figure A. 1 Ellipses of isodensity for covariance models obtained by eigen-decomposition in 

case of tree groups in two dimensions. 
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Separation Index 
 

The separation index (𝐽∗) was proposed by Qiu et al. [69], [70]. This index measures the 

magnitude of the gap between pairs of subclasses. It has a value between −1 and +1, where 

Negative values indicate subclasses are overlapped, zero means subclasses are touching, and 

Positive values indicate subclasses are separated. Initially, it is necessary to find the optimal 

projection in one-dimension space in which two subclasses have the maximum separation.  

The initial projection is selected between two possible methods:  (𝛴1 + 𝛴2)−1(𝜇
2

− 𝜇
1
) and 

(𝜇2 − 𝜇1). Then, the Newton-Raphson method is used to search the optimal projection. Therefore, 

it requires that both covariances matrices from subclasses must be positive definite. This 

assumption is covered because all subclasses follow a multivariate Gaussian distribution. In a 

nutshell, the covariance matrix must be a symmetric positive definite matrix in order to the 

Equation 12 makes sense. Let 𝐽12
∗  be the optimal separation index between subclasses 1 and 2. 

Then, 𝐽12
∗ = 𝐽12(𝑎∗) , where 𝑎∗ is the optimal projection direction witch maximizes 𝐽12. Finally, 

the Separation index 𝐽∗ is estimated as follow 

 

𝐽(𝑎∗) =
𝑎𝑇(𝜇2 − 𝜇1) − 𝑞𝛼 2⁄ (√𝑎𝑇𝛴1𝑎 + √𝑎𝑇𝛴2𝑎)

𝑎𝑇(𝜇2 − 𝜇1) + 𝑞𝛼 2⁄ (√𝑎𝑇𝛴1𝑎 + √𝑎𝑇𝛴2𝑎)
                     (12) 

 

where 𝜇1, 𝜇2, 𝛴1, and 𝛴2 are the probabilistic parameters of the two subclasses, 𝛼 ∈ (0,05) is 

a tuning parameter indicating the percentage of data in the extremes to downweigh, 𝑞𝛼 2⁄ =  𝑧𝛼 2⁄ , 

where 𝑧𝛼 2⁄  is the upper 𝛼 2⁄  quantile of the univariate standard normal distribution. 

  



77 

 

APPENDIX B. PERFORMANCE METRICS AND DATASETS 

Performance Metrics 

 
The confusion matrix is used to describe the performance of a classification algorithm on a set 

of test data for which the true classes are known. Table B. 1 shows the confusion matrix elements 

for a binary classification problem. Traditionally, the overall accuracy (Acc) is the most important 

metric to evaluate the performance of a classifier, which can be calculated by using Equation 13. 

 

Table B. 1 Confusion matrix for a binary classification task 

    Prediction 

    Positive (P)  Negative (N) 

Observations 
Positive (P) TP FN 

Negative (N) FP TN 

 

 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                           (13) 

 
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
= 𝐴𝑐𝑐+                     (14)  

  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
= 𝐴𝑐𝑐−                     (15)  

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                       (16)  
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Sometimes the overall accuracy can be misleading [106] and models with a lower overall 

accuracy could have better predictive power. For instance, in case of imbalance data a classifier 

can reach high accuracy levels for the Negative class; however, the accuracy for the Positive class 

is low. Therefore, the overall accuracy has a bias toward the Negative class in imbalance data. To 

solve this situation, more specific metrics are used such as sensitivity (recall, True Positive Rate, 

or Acc+), specificity (True Negative Rate or 𝐴𝑐𝑐−) and precision (Positive Predictive Value). 

 
The Receiver Operating Characteristic (ROC) curve is a well-accepted technique for 

summarizing classifier performance [15].The area under the ROC curve (AUC) is a measure of 

how well a classifier can distinguish between two classes [88], [107]. 

 

𝐴𝑈𝐶 =
1

𝑃 × 𝑁
∑ ∑ 1𝑝𝑖>𝑝𝑗

𝑁

𝑗=1

𝑃

𝑖=1

                     (17)  

 
Where 𝑖 runs over all Positive instances with true class 1, and 𝑗 runs over all Negative instances 

with true class 0; 𝑝𝑖 and 𝑝𝑗 denote the probability score assigned by the classifier to instance 𝑖 and 

𝑗, respectively. 1 is the indicator function: it outputs 1 if, and only if,  the condition (pi > pj) is 

satisfied. In simple words, the ROC curve is generated by plotting the “True Positive Rate” (TPR) 

against the “False Positive Rate” (FPR). However, This AUC metric may provide an overly 

optimistic performance evaluation [16]. Thereby, performance evaluation metrics such as 

Precision-Recall curves, F1-score (F-measure), the geometric mean score (G-mean or G-measure), 

and the correlation coefficient (Phi) are considerate more convenient in the class imbalance context. 

 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                     (18) 

 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
                     (19) 
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In Statistics, F1-score (also F-score or F-measure) uses the precision and sensitivity providing 

a single accuracy measurement for a classifier [86]. Formally, it is the harmonic average of the 

precision and recall, which return a value between 0 and 1. Where 1 indicates perfect precision 

and sensitivity. 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =   2 × 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
                     (20) 

 
The geometric mean score G-mean (also G-measure) is the geometric mean of specificity and 

sensitivity, which return a value between 0 and 1 [38], [108]. 

 

𝐺 − 𝑚𝑒𝑎𝑛 = √𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ×  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦                      (21) 

 

𝐺 − 𝑚𝑒𝑎𝑛 = √𝐴𝑐𝑐+ ×  𝐴𝑐𝑐−                     (22) 
 

In Statistics, the phi coefficient (also phi correlation coefficient or mean square contingency 

coefficient) measure of the degree of association between two binary variables, which are 

considered positively associated if most of the data falls along the diagonal cells of the confusion 

matrix. Phi coefficient return a value between -1 and 1, where values between 0.7 to 1 indicate 

strong association. 

 

𝜙 =
𝑇𝑃 ×  𝑇𝑁 − 𝐹𝑃 ×  𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃) × (𝐹𝑁 + 𝑇𝑁) × (𝑇𝑃 + 𝐹𝑁) × (𝐹𝑃 + 𝑇𝑁)
                     (23) 
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Datasets information 

Table B. 2 Datasets with sampling parameters and IR  

 

id Name IR train IR test Over% Under% New IR train 

1 Satimage  9.69 8.48 500 120 1.00 

2 EEG 1.23 1.23 20 600 1.00 

3 Blocks  45.44 49.63 2000 105 1.00 

4 ILPD  2.50 2.45 100 200 1.00 

5 Glass  1.88 2.60 100 180 1.11 

6 QSAR 2.11 1.71 110 190 1.00 

7 Ozone 13.76 12.67 1200 108 1.00 

8 Occupancy 3.21 3.76 200 150 1.00 

9 Vertebral 2.45 1.53 200 120 1.00 

10 Haberman 3.02 2.13 200 150 1.00 

11 Spam 1.51 1.53 50 300 1.00 

12 Gamma 1.86 1.87 100 185 1.00 

13 Blood 2.56 3.48 200 125 1.20 

14 Seismic 13.50 16.23 1000 110 1.00 

15 Wilt 57.45 1.67 2000 105 1.00 

16 Abalone  19.89 24.46 1000 110 1.00 

17 Audit 1.98 1.57 100 198 1.00 

18 Wireless  2.94 3.16 100 200 1.00 

19 User-Knowledge  9.75 4.58 900 105 1.07 

20 Shuttle  4.00 3.84 300 133 1.00 

21 Image 1.27 1.43 30 420 1.00 

22 Happiness 1.08 0.72 20 530 1.22 

23 Skin 2.38 4.00 100 200 1.00 

24 Seeds 1.82 2.45 100 182 1.11 

25 Musk1 1.40 1.08 50 280 1.06 

26 CTG 3.58 3.40 200 170 1.13 

27 Sonar 1.18 1.06 20 590 1.00 

28 Forest 4.35 6.07 400 109 1.16 

29 HTRU2 9.90 9.97 800 110 1.00 

30 Adult 3.13 3.23 200 150 1.00 

31 Sports 1.86 1.52 100 185 1.08 

32 Banknote 1.21 1.28 20 600 1.00 

33 Electrical 1.78 1.73 100 177 1.13 

34 Wine 2.94 2.20 200 146 1.00 

35 Breast 1.03 0.49 10 1034 1.14 

36 nanoHUB 39.63 38.02 2000 105 1.00 

37 Simulated 4.70 5.18 300 130 1.00 

38 Weather 4.52 4.55 400 113 1.11 

39 Pima1 2.11 1.76 100 200 1.00 

40 Ionosphere 1.76 1.96 76 233 1.00 

41 Pima2 2.01 1.58 200 150 1.00 

42 Ringnorm 1.02 1.02 2 5100 1.00 

43 College 3.05 2.03 200 152 1.00 

44 Iris 1.74 2.56 76 228 1.00 

45 MDRR 1.36 1.16 40 339 1.00 

46 Mammo 28.56 46.58 1000 110 1.00 

47 Phoneme 2.39 2.48 100 200 1.00 

48 Fraud 21.94 18.69 1000 110 1.00 

49 SDSS 11.28 9.74 1000 110 1.00 
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The following is a list with complete names of the datasets and references: 

 

1. Landsat Satellite (Satimage) 

2. EEG Eye State (EEG) 

3. Page Blocks Classification (Blocks) 

4. Indian Liver Patient Dataset (ILPD) 

5. Glass Identification (Glass) 

6. QSAR biodegradation (QSAR) [109] 

7. Ozone Level Detection-eighth (Ozone) 

8. Occupancy Detection (Occupancy) [110] 

9. Vertebral Column (Vertebral) 

10. Haberman's Survival (Haberman) 

11. Spambase (Spam) 

12. MAGIC Gamma Telescope (Gamma) 

13. Blood Transfusion Service Center (Blood) [111] 

14. Seismic-bumps (Seismic) [112] 

15. Wilt (Wilt) [113] 

16. Abalone (Abalone) 

17. Audit (Audit) this research work is supported by 

Ministry of Electronics and Information 

Technology Govt.of India 

18. Wireless Indoor Localization (Wireless) [114] 

19. User Knowledge Modeling (User-Knowledge) 

[115] 

20. Shuttle (Shuttle) 

21. Image Segmentation (Image) 

22. Somerville Happiness Survey (Happiness) [116] 

23. Skin Segmentation (Skin) 

24. Seeds (Seeds) 

25. Musk-Version1 (Musk1) 

26. Cardiotocography (CTG) 

27. Connectionist Bench (Sonar) 

28. Forest type mapping (Forest) [117] 

29. HTRU2 (HTRU2) [118] 

30. Adult (Adult) 

 

31. Sports articles for objectivity analysis (Sports) 

[119] 

32. Banknote authentication (Banknote) 

33. Electrical Grid Stability Simulated (Electrical) 

34. Wine Recognition (Wine) [120] 

35. Breast Cancer Wisconsin-Diagnostic (Breast) 

[121] 

36. Simulation Patterns nanoHUB (nanoHUB), 

37. Simulated dataset (Simulated) 

38. Rain in Australia (Weather) [122] 

39. Pima Indians Diabetes (Pima1) [123] 

40. Johns Hopkins University Ionosphere 

(Ionosphere) [124] 

41. Pima Indians Diabetes 2 (Pima2) 

42. Leo Breiman's Ringnorm (Ringnorm) This 

dataset was taken from Delve (Data for 

Evaluating Learning in Valid Experiments). 

43. U.S. News and World Report's College (College) 

this dataset was taken from the StatLib library 

which is maintained at Carnegie Mellon 

University. The dataset was used in the ASA 

Statistical Graphics Section's 1995 Data Analysis 

Exposition. 

44. Edgar Anderson' s Iris data (Iris) [125] 

45. Multidrug Resistance Reversal Agent (MDRR) 

[126] 

46. Microcalcifications in Mammography (Mammo) 

[127] 

47. Phoneme (Phoneme) It has been obtained from 

the ELENA Project 

48. Credit Card Fraud Detection (Fraud) [128]–

[130] 

49. Sloan Digital Sky Survey DR14 (SDSS) [131]

  



82 

 

APPENDIX C. STATISTICAL OUTPUTS 

Table C. 1 Mean ranks of G-mean for all datasets 

G-mean: mean of the ranks - All datasets 

  Treatment   

Classifier  R
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p-value 

NB  6.78 7.69 7.86 6.20 5.67 6.43 7.02 6.35 6.06 6.61 4.63 2.0E-04 

LOGREG  4.67 8.39 8.00 6.78 7.86 6.92 5.92 5.76 5.39 7.02 6.29 1.7E-10 

LDA  4.92 8.79 7.33 6.79 6.58 7.77 5.19 5.54 5.42 7.19 6.31 9.2E-13 

QDA  5.75 7.50 7.15 5.78 5.98 7.55 6.53 7.43 6.85 6.70 6.25 4.6E-02 

C5.0  5.27 7.12 7.29 7.51 6.53 7.35 5.61 6.20 6.49 6.73 6.69 1.5E-03 

CART  5.18 7.39 7.33 6.84 6.80 7.22 5.73 7.04 6.12 7.20 6.41 1.6E-04 

k-NN  4.94 7.02 6.80 5.63 7.00 7.24 5.08 6.78 6.88 7.06 6.96 1.2E-05 

MLN  5.33 7.06 6.73 7.16 6.51 7.57 6.10 6.73 6.18 6.31 6.27 5.2E-02 

SVM-G  3.51 8.29 7.96 7.00 6.27 7.69 4.63 6.57 5.78 7.33 7.12 0.0E+00 

SVM-P  4.61 7.84 8.22 6.55 7.57 7.08 5.45 6.80 5.92 6.78 6.08 2.0E-09 

RF  5.00 6.88 7.86 6.73 6.69 8.06 5.31 6.43 6.37 7.65 7.31 3.8E-08 

SGB  5.00 8.06 7.67 7.67 6.71 7.49 5.61 6.59 6.02 6.84 5.49 1.6E-07 

ADABOOST  4.73 6.45 7.24 6.82 7.18 7.71 5.94 6.65 6.96 7.20 7.08 2.4E-05 

RBFN  4.56 6.44 7.65 6.13 6.81 7.63 5.42 6.54 6.33 7.13 7.21 4.2E-07 

 

 

For Tables C. 1, C. 2, C. 3, and C. 4, high mean rank values of the G-mean tend to increase the 

steepness of the color gradient to green. On the contrary, low mean rank values tend to decrease 

the steepness of the color gradient to red. 

Table C. 1 shows the Friedman test results for experimental definition on Stage C, which 

includes the 49 datasets. According to the p-value column, only the MLN classifier cannot reject 

the null hypothesis because its p-value is equal to 0.05 (borderline result). That means, there is 

statistical differences between treatments for the remaining classifiers. However, the means of the 

G-mean ranks do not show improvement for most of the treatments. Therefore, global analysis 

across all datasets without using diagnostic profiles does not show any benefit. 
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Table C. 2 Mean ranks of G-mean for Profile A 

G-mean: mean of the ranks - Profile A 
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NB  5.00 7.13 8.50 8.50 6.00 7.38 5.00 3.88 3.38 8.00 5.63 1.4E-03 

LOGREG  2.00 9.75 9.63 7.00 7.13 7.50 2.63 4.13 3.63 7.50 7.38 3.9E-09 

LDA  3.50 9.25 7.75 6.75 6.88 7.88 3.63 3.38 3.88 8.25 8.75 6.2E-08 

QDA  4.88 9.00 7.88 6.50 3.88 8.63 4.13 5.75 5.88 6.88 5.50 6.0E-03 

C5.0  3.25 7.63 8.50 6.13 6.25 8.88 3.00 4.25 3.88 7.50 7.63 6.3E-05 

CART  3.75 8.13 10.00 5.00 5.13 9.38 3.13 4.88 3.25 8.25 7.25 7.0E-08 

k-NN  2.63 9.00 8.38 5.75 6.25 8.00 3.00 4.63 3.50 9.13 7.75 3.3E-07 

MLN  2.88 6.63 7.50 7.38 5.25 9.00 3.38 4.63 4.88 7.25 8.13 6.2E-04 

SVM-G  1.88 9.13 8.75 6.63 4.88 8.75 2.25 4.00 3.38 8.75 9.50 4.5E-11 

SVM-P  2.50 9.75 9.38 9.00 6.75 7.13 2.88 3.88 3.50 7.75 7.50 5.1E-10 

RF  3.00 6.00 9.25 4.13 7.38 8.88 3.63 4.75 3.63 8.25 8.88 1.7E-06 

SGB  2.50 8.63 9.13 7.13 5.50 9.25 2.25 4.75 3.25 8.63 5.88 4.8E-08 

ADABOOST  2.75 3.88 9.13 5.63 7.25 9.00 4.38 4.13 3.38 9.50 8.13 2.1E-07 

RBFN  2.13 6.13 8.88 5.88 6.88 7.63 3.25 5.38 3.63 8.50 9.50 7.1E-06 

 

 

Table C. 2 shows the Friedman test results associated with datasets from Profile A (high class 

imbalance and large number of disjuncts), where all p-values are less than the level of significance 

(0.05). Therefore, there is statistical differences between treatments across classifiers. Moreover, 

the means of the G-mean ranks show differences between treatments. Table C. 3 shows the same 

test by using the AUC metric; however, most of the treatments do not shows statistical differences 

across classifiers (those marked in bold) because their p-values are larger than the significance 

level. This result makes sense due the optimistic characteristic associated with the AUC metric. 
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Table C. 3 Mean ranks of AUC for Profile A 

 

AUC: mean of the ranks - Profile A 

  Treatment   

Classifier 
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NB  9.00 5.88 6.50 6.50 2.63 7.00 8.88 7.50 8.25 5.25 4.00 1.6E-02 

LOGREG  7.88 9.25 8.00 5.38 6.75 7.38 7.88 8.00 6.50 6.63 3.88 3.5E-01 

LDA  6.75 9.00 7.38 6.13 5.75 7.75 6.75 7.25 5.75 6.13 5.25 5.2E-01 

QDA  8.38 9.75 6.00 4.13 1.50 6.38 9.00 7.88 8.13 5.50 5.75 3.8E-05 

C5.0  5.50 5.50 7.38 6.00 8.13 6.13 5.63 4.38 5.88 7.88 6.63 4.4E-01 

CART  3.13 5.13 9.00 6.50 7.63 7.75 2.50 4.88 4.88 8.25 8.38 4.5E-06 

k-NN  4.88 4.88 7.63 6.13 7.38 7.00 4.25 5.00 4.75 6.63 10.25 2.1E-03 

MLN  7.13 3.50 6.38 7.50 5.75 5.13 6.75 5.75 7.38 5.13 9.00 8.4E-02 

SVM-G  6.00 7.00 6.50 6.00 4.75 5.38 5.88 5.75 5.88 8.50 8.75 2.7E-01 

SVM-P  6.50 9.50 8.63 7.00 6.13 7.75 5.88 6.50 6.63 7.00 5.63 3.8E-01 

RF  7.63 4.38 5.50 8.00 7.00 5.13 6.50 7.63 6.25 6.50 6.63 5.2E-01 

SGB  5.38 9.00 6.88 6.38 5.75 6.88 5.88 6.25 5.38 7.50 5.38 3.2E-01 

ADABOOST  3.75 3.50 5.88 6.88 6.50 6.25 6.25 5.75 5.63 8.50 8.50 6.0E-02 

RBFN  5.88 6.25 5.63 7.63 4.63 4.50 6.38 6.25 7.75 8.00 6.50 4.0E-01 
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Table C. 4 Mean ranks of G-mean for Profile B 

G-mean: mean of the ranks - Profile B 

  Treatment   

Classifier 
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p-value 

NB  7.94 7.88 6.63 5.56 4.81 6.63 8.63 6.81 6.25 5.81 4.69 1.4E-03 

LOGREG  4.31 7.44 7.19 6.56 7.38 6.13 6.00 4.44 5.44 7.13 6.63 3.9E-09 

LDA  4.67 8.47 7.20 6.93 5.93 7.07 4.53 5.13 5.73 6.33 6.80 6.2E-08 

QDA  5.58 6.75 5.75 4.00 7.00 6.83 7.00 7.92 7.17 7.33 6.92 6.0E-03 

C5.0  4.88 6.06 6.88 7.81 6.44 5.81 6.38 5.19 6.31 7.75 7.44 6.3E-05 

CART  5.81 8.13 5.88 5.06 7.94 5.13 6.38 7.25 7.31 7.25 6.38 7.0E-08 

k-NN  4.50 6.44 5.56 5.13 6.75 6.06 5.06 7.38 8.19 6.69 6.38 3.3E-07 

MLN  5.31 6.81 6.56 6.81 6.50 6.44 5.69 6.25 5.88 5.44 7.25 6.2E-04 

SVM-G  2.88 8.25 7.63 7.19 6.81 8.06 3.94 7.31 5.56 7.19 6.94 4.5E-11 

SVM-P  3.94 7.13 7.38 5.88 7.75 7.13 4.88 7.00 6.13 6.50 5.69 5.1E-10 

RF  4.94 7.50 8.00 7.19 5.31 8.25 4.81 6.06 5.88 7.56 6.81 1.7E-06 

SGB  5.19 8.44 7.06 8.13 7.13 5.81 5.44 6.44 6.56 6.38 5.38 4.8E-08 

ADABOOST  4.50 6.75 7.19 7.00 6.50 7.25 6.06 5.94 6.19 6.50 7.94 2.1E-07 

RBFN  3.56 5.88 8.56 5.00 6.44 7.63 4.31 6.38 6.25 7.69 6.19 7.1E-06 

 

 

Table C. 4 shows the Friedman test results associated with datasets from Profile B (high 

overlapping levels), where all p-values are less than the level of significance (0.05). Therefore, 

there is statistical differences between treatments across classifiers. Moreover, the means of the G-

mean ranks show differences between treatments. 
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Table C. 5 Friedman's Aligned Rank post hoc for PSATE Gauss 

G-mean: Post hoc test - Profile A 

Control: PSATE Gauss 

  Treatment 

Classifier 
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  p-values 

NB  5.8E-01 3.3E-01 6.9E-02 6.7E-02 8.6E-01 2.7E-01 5.8E-01 1.8E-01 1.4E-01 1.4E-01 

LOGREG  3.2E-04 1.2E-01 1.4E-01 8.1E-01 8.8E-01 9.2E-01 1.5E-03 3.3E-02 1.1E-02 9.5E-01 

LDA  1.9E-04 7.5E-01 5.5E-01 1.9E-01 2.2E-01 5.8E-01 2.1E-04 2.1E-04 7.5E-04 7.5E-01 

QDA  6.5E-01 2.5E-02 1.3E-01 5.2E-01 2.8E-01 4.4E-02 3.2E-01 9.1E-01 8.3E-01 4.0E-01 

C5.0  4.8E-03 1.0E+00 5.6E-01 3.5E-01 3.8E-01 4.2E-01 2.7E-03 3.3E-02 1.7E-02 9.3E-01 

CART  1.6E-02 6.3E-01 8.5E-02 1.3E-01 1.4E-01 1.9E-01 4.7E-03 1.1E-01 5.5E-03 5.7E-01 

k-NN  6.5E-04 4.5E-01 6.6E-01 2.2E-01 3.6E-01 8.6E-01 1.4E-03 5.9E-02 5.6E-03 3.6E-01 

MLN  8.8E-04 3.3E-01 6.8E-01 6.2E-01 6.9E-02 5.8E-01 2.7E-03 2.5E-02 3.7E-02 5.7E-01 

SVM-G  5.6E-07 8.1E-01 6.1E-01 7.5E-02 4.3E-03 6.2E-01 1.7E-06 4.8E-04 5.9E-05 6.2E-01 

SVM-P  4.8E-04 1.5E-01 2.6E-01 3.3E-01 7.1E-01 8.3E-01 7.5E-04 1.9E-02 5.5E-03 8.8E-01 

RF  1.9E-04 6.0E-02 8.4E-01 2.5E-03 3.1E-01 9.3E-01 7.5E-04 6.7E-03 5.6E-04 6.1E-01 

SGB  3.1E-02 8.0E-02 4.0E-02 4.3E-01 7.9E-01 3.3E-02 2.1E-02 4.8E-01 9.0E-02 8.0E-02 

ADABOOST  4.1E-04 5.5E-03 5.4E-01 1.1E-01 5.8E-01 5.9E-01 1.4E-02 9.5E-03 2.2E-03 3.9E-01 

RBFN  3.2E-06 2.8E-02 6.5E-01 1.9E-02 8.8E-02 2.2E-01 8.2E-05 7.6E-03 1.9E-04 5.2E-01 
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Table C. 6 Friedman's Aligned Rank post hoc for PSATE k-NN 

G-mean: Post hoc test - Profile A 

Control: PSATE k-NN 

  Treatment 

Classifier 
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NB  4.3E-02 6.1E-01 7.3E-01 7.2E-01 1.9E-01 7.1E-01 4.3E-02 5.0E-03 3.0E-03 1.4E-01 

LOGREG  2.5E-04 1.4E-01 1.6E-01 7.5E-01 8.2E-01 9.7E-01 1.2E-03 2.8E-02 8.9E-03 9.5E-01 

LDA  6.5E-04 5.2E-01 7.8E-01 3.3E-01 3.6E-01 8.1E-01 7.1E-04 7.0E-04 2.3E-03 7.5E-01 

QDA  1.9E-01 1.6E-01 4.9E-01 8.5E-01 5.6E-02 2.4E-01 6.7E-02 4.7E-01 5.3E-01 4.0E-01 

C5.0  6.1E-03 9.3E-01 5.1E-01 3.9E-01 4.2E-01 3.7E-01 3.5E-03 4.1E-02 2.1E-02 9.3E-01 

CART  2.8E-03 9.3E-01 2.5E-01 3.8E-02 4.1E-02 4.6E-01 6.8E-04 3.1E-02 8.2E-04 5.7E-01 

k-NN  1.5E-05 8.6E-01 6.3E-01 3.1E-02 6.4E-02 4.5E-01 3.6E-05 4.9E-03 2.2E-04 3.6E-01 

MLN  5.8E-03 6.9E-01 8.7E-01 9.5E-01 2.1E-01 2.6E-01 1.5E-02 9.3E-02 1.3E-01 5.7E-01 

SVM-G  6.4E-06 8.0E-01 9.8E-01 2.0E-01 1.8E-02 1.0E+00 1.8E-05 2.7E-03 4.3E-04 6.2E-01 

SVM-P  2.7E-04 1.9E-01 3.3E-01 4.1E-01 6.0E-01 7.1E-01 4.3E-04 1.2E-02 3.4E-03 8.8E-01 

RF  1.3E-03 1.7E-01 4.8E-01 1.2E-02 6.1E-01 6.7E-01 4.2E-03 2.8E-02 3.3E-03 6.1E-01 

SGB  9.4E-05 1.0E+00 7.7E-01 3.3E-01 4.4E-02 7.0E-01 4.9E-05 1.4E-02 5.6E-04 8.0E-02 

ADABOOST  1.2E-05 2.9E-04 8.1E-01 1.4E-02 1.6E-01 7.5E-01 9.4E-04 5.7E-04 8.9E-05 3.9E-01 

RBFN  5.9E-05 1.2E-01 8.5E-01 9.0E-02 2.9E-01 5.5E-01 9.7E-04 4.2E-02 2.0E-03 5.2E-01 

 

 

Table C. 5 and Table C. 6 show Friedman's Aligned Rank post hoc for PSATE Gauss and 

PSATE k-NN respectively. This pos hoc test allows to compare every treatment against a 

control, which in this case is PSATE. Therefore, the null hypothesis states that there is no 

statistical difference between PSATE and the compared treatment. p-values marked in green 

reject the null hypothesis. Then, this information is subsequently contrasted with the means of 

the G-mean ranks from Table C. 2 to determine the PSATE position (Refer Table 6.10). 
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