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ABSTRACT

Katare, Dewant. M.S.E.C.E., Purdue University, December 2019. Exploration of
Deep Learning Applications on An Autonomous Embedded Platform (Bluebox 2.0).
Major Professor: Mohamed El-Sharkawy.

An Autonomous vehicle depends on the combination of latest technology or the

ADAS safety features such as Adaptive cruise control (ACC), Autonomous Emergency

Braking (AEB), Automatic Parking, Blind Spot Monitor, Forward Collision Warning

or Avoidance (FCW or FCA), Lane Departure Warning. The current trend follows

incorporation of these technologies using the Artificial neural network or Deep neural

network, as an imitation of the traditionally used algorithms. Recent research in the

field of deep learning and development of competent processors for autonomous or self

driving car have shown amplitude of prospect, but there are many complexities for

hardware deployment because of limited resources such as memory, computational

power, and energy. Deployment of several mentioned ADAS safety feature using

multiple sensors and individual processors, increases the integration complexity and

also results in the distribution of the system, which is very pivotal for autonomous

vehicles.

This thesis attempts to tackle two important adas safety feature: Forward collision

Warning, and Object Detection using the machine learning and Deep Neural Networks

and there deployment in the autonomous embedded platform.

This thesis proposes the following:

1. A machine learning based approach for the forward collision warning system in

an autonomous vehicle.

2. 3-D object detection using Lidar and Camera which is primarily based on Lidar

Point Clouds.
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The proposed forward collision warning model is based on the forward facing au-

tomotive radar providing the sensed input values such as acceleration, velocity and

separation distance to a classifier algorithm which on the basis of supervised learn-

ing model, alerts the driver of possible collision. Decision Tress, Linear Regression,

Support Vector Machine, Stochastic Gradient Descent, and a Fully Connected Neural

Network is used for the prediction purpose.

The second proposed methods uses object detection architecture, which combines

the 2D object detectors and a contemporary 3D deep learning techniques. For this

approach, the 2D object detectors is used first, which proposes a 2D bounding box

on the images or video frames. Additionally a 3D object detection technique is used

where the point clouds are instance segmented and based on raw point clouds density

a 3D bounding box is predicted across the previously segmented objects.
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1. INTRODUCTION

The number of sensors and ADAS safety feature in a vehicle has been categorically in-

creased in the past years, the latest progression is towards integration of these sensors

with the state-of-the art deep learning architecture based on the sense, think and act

model, which can provide the assistance to the driver or replace a driver by providing

the highest level of autonomy [5]. The highest level of autonomy in a vehicle can be

described as execution of multiple processes, that serves the self driving functionality

from a source point to destination point without any input or control to a vehicle from

the human. Research shows, this highest level of autonomy is achieved by integrat-

ing multiple sensors such as camera, lidar, global navigation satellite system, radar

thus providing the automotive safety feature or the advanced driver assistance system

[13], [18]. The automotive industry is already using several simple and complex adas

features for long time and has resulted in improving the Over-all drivers experience

Fig. 1.1.: Sense, Think and Act Model [Pic Courtesy NXP]
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with the ultimate objective of providing better road safety. Braking assistance, Lane

Departure Warning, Adaptive cruise control, GPS based navigation are some of the

features which has been used since its introduction, between the year 1990-2000 [6].

The current trend follows incorporation of the deep learning and machine learning

approaches with the autonomous vehicle to provide maximum precision and human

level accuracy. The principle behind these statistically based learning algorithms is to

interpret and understand the drivers surrounding when provided with the impartial

or neutral-data and thus based on the characteristics of the provided input these al-

gorithms classifies or predict an output. Some of the machine learning approach have

already replaced traditionally used algorithms in applications such as vision-based de-

tection, path planning, and recognition of multiple objects and further classification

of them into traffic signs, cars, bicyclists, pedestrian to name few [5], [15]. Although

the deep neural networks counters the above mentioned problems, the deployment

on the microprocessor or the compact embedded system and therefore the computing

related factors cannot be neglected.

Fig. 1.2.: Levels of Autonomy [Pic Courtesy Synopsys]
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1.1 Motivation

As mentioned previously the autonomy of vehicle depends on the ADAS features

which are based on the algorithms and the implementation using sensors. The de-

velopment of machine learning and deep neural network architecture predominantly

depends on the data; therefore, it is necessary to have the huge annotated dataset for

the learning of these statistically oriented algorithms. Enormous amount of Image or

video frame related dataset such as CIFAR-10, Imagenet, has been made available

in the past 10 year with the sole purpose of 2d object detection, and advancement

in the GPU computation power has contributed adequately. Some of the well known

2D object detection methods include YOLO [28], Fast R-CNN [30], SSD [29].

Similarly, there has been also increase in collection of instrumented vehicle study

with the purpose of collecting naturalistic driving information recorded with respect

to the road events. One such dataset is 100-car Naturalistic driving data [11], [12]

containing information based on the event such as crash, near-crash and some mis-

cellaneous incidents, the dataset comprises of speed and distance related information

based on the Radar Sensor. However, as mentioned before the self driving vehicle will

consist of multiple sensors connected to a powerful embedded platform comprising of

multiple cores and thus is capable of very fast computation, it is important to address

the applications developed with the inputs of multiple sensors such as Lidar, Camera

and Radar.

Two dimensional object detectors are capable of solving multiple detection and

classification related problems such as traffic sign classifier, lane keeping assistance,

but it fails to map the objects or surrounding around the car in three dimension.

Therefore, there is need of 3D annotated data-set for the development of deep learning

applications. One such dataset is KITTI dataset [26], which comprises of images and

lidar point clouds and 3D annotations. Several machine and deep learning approaches

have been developed and successfully tested to predict and the classify the object.
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1.2 Research Problem

As discussed in previous section, combination of the image or video information

from the camera, point cloud from Lidar and speed, distance related information from

Radar can contribute in precise estimation of the object present in the surrounding

of the car as shown in Figure 3. Therefore, for this thesis, there are two research

problem described and discussed thoroughly:

1. Propose an approach for forward collision warning system based on radar, and

the deployment on an autonomous embedded system.

2. Propose an approach for the Point cloud and camera based 3D object detector,

following the deployment on the autonomous embedded Platform.

Fig. 1.3.: An annotated Lidar Point Cloud [Pic Courtesy KITTI]
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1.3 Contribution

For the first research problem i.e. the Forward Collision warning system: this

thesis proposes an efficient method to predict a warning or no-warning alert using

the multi-class hidden layer fully connected neural network. During the development

of algorithms several other methods such as Linear Regression, Logistic Regression,

Stochastic Gradient Descent and Support Vector machine were also tried and tested

on the 100-car naturalistic dataset. For the real time application in an embedded and

low power devices the model size and the inference time play a vital role.

For the second research problem i.e. 3D object detection: this thesis proposes a

method to utilize the raw point clouds from the Lidar and process them for object

detection using the instance segmentation. Once an object is detected on the batch of

point clouds, the detected information is further utilized to predict a 3d bounding box

across it. For the authenticity of the 3d detected object in point clouds, a pre-trained

state of the art 2d object detector ”ResNet” is used to detect the object on the video

frames.

This thesis documents the implementation and comparison of above mentioned

methods. Finally, the proposed model is deployed on an autonomous embedded

hardware: BlueBox 2.0, using the RTMaps embedded framework.
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2. BACKGROUND

This chapter introduces the background and basic fundamentals required for the

implementation of first proposed research statement i.e. Forward Collision Warning

System which is discussed in detail in Chapter 4. The chapter comprises of sections:

Machine Learning, Supervised and Unsupervised Learning, Classification, and the

Artificial Neural Networks.

Definition of Machine Learning:

”A computer program is said to learn from experience E with respect to some class of

tasks T and performance measure P , if its performance at tasks in T , as measured

by P , improves with experience E.” – Dr. Tom M. Mitchell

2.1 Machine Learning

Machine learning has become an important field of computer science, it can be

considered as an abstract of applied statistics where an approach is used to perform

a line of best fit or in other terms, it can be explained as performing a prediction or

classification on the set of data using statistical approach. With the development of

several algorithms and data-sets the Artificial Intelligence system has been provided

with ability to collect and learn extracting patterns or features from the raw data,

and this is known as machine learning. Support Vector Machine and Convolutional

Neural Network are such example, which are generally used as classifier and object

recognition respectively.
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The primary purpose of using machine learning is to anticipate or predict the out-

come from the unlabeled data, based on the labelled data. The labeled or unlabeled

dataset categorize the machine learning further into the class of supervised learning

or unsupervised learning respectively.

Fig. 2.1.: Supervised Learning [Pic Courtesy Abeyon]

2.2 Supervised Learning

Supervised Learning is the most commonly used class of the machine learning

because of the availability of the dataset. For supervised learning, every content or

index of the dataset is labelled with the some ground truth (right outcome). An

example can be seen from the Figure 2.1 where the dataset consists of images of

labeled cats and they are trained on a supervised learning model. Once the training

is completed the model generates weights containing vital information related to the

classification of the cats based on the ground truth or labeled features. Therefore,

when this predictive binary model is provided with images of cats and other animals

it will classify them into cats and not cats category as shown in the image above.

For a given input variable x and output variable y, after implementing the classi-

fication algorithm the above description can be formally written as:

Y = f(x) (2.1)
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The primary purpose of the supervised learning approach is to approximate the

above mapping function so that the given input can be mapped to the right class.

Supervised learning is further categorized into classification and regression category.

2.3 Classification

Classification in machine learning is an approach with respect to the given ob-

servation. Here based on the dataset and its pattern, the algorithm tries to fit and

perform the classification on the given set of observation. The simplest form of clas-

sification is a binary classifier, where the observation consists of two classes and a

linear classification approach is utilized to separate them. Another variant of classifi-

cation can be presence of multiple class in the observation set and Supervised form of

machine learning (Support vector machine or logistic regression) is used to separate

and classify the multiple class, the example can be seen in Figure 2.2.

Fig. 2.2.: Types of Classification approach

For the above example with two classes, the line of fit can be given as:

y = f(w,X) = wTX + b (2.2)

Here X is the input vector under observation, w is the weight vector and b is the

bias term, which shifts or adjusts the line of classification.
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2.4 Artificial Neural Network

In machine learning the Artificial Neural Networks (ANN) are based on the con-

cepts of biological neural network, it falls primarily in the category supervised learn-

ing. For development of model, the Neural Network (NN) is formed by creating the

directed acyclic graph to form a feed-forward neural network. These neurons are

grouped to form layers. Figure 2.3 shows the biological neurons, the main computa-

tional unit of the brain.

As mentioned depending on the requirement a neural network can be organized

in layers and each layer will consists of a number of neurons. These layers can be an

input layer, hidden layer or an output layer. A hidden layer is a layer that is neither

an input nor an output to the network. Depending on the design of the network, there

can be one or several hidden layers. Artificial neurons get the inputs passed from the

x0 or the previous neurons, and then this input is multiplied by weight factor wi to

simulate the interaction. In the later stage these, weighted input signals are summed

up and fixed bias is added, finally this is fed to the non-linear activation function

which gives the output signal. Weights are adjusted according to labels of data to

learn and approximate the inference.

y = f(P [xi × wi] + b) (2.3)

Fig. 2.3.: Biological neuron (left) and its Mathematical model (right).
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As shown in the image below each layer consists of the neurons representing a

mathematical function, these neurons can be locally or fully connected to each other

in the layers. The edges between the neurons are generally directed.

Fig. 2.4.: An example of multilayer Feed Forward multi layer ANN

The ultimate goal of the feed forward neural network is to best approximate a

function. For example in a case of classifier network the representation will be similar

to the previously mentioned Equation (2.2) where an input x is mapped to class y:

y = f(x,w) (2.4)
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3. FORWARD COLLISION WARNING ON AN

AUTONOMOUS EMBEDDED SYSTEM

3.1 Introduction

Forward Collision Warning is an advanced driver assistance system or feature that

supervises the speed of the ego vehicle, lead vehicle and the distance between these two

vehicle. Advancement in the latest state of technology with regards to autonomous

vehicle or self driving car ensured the usage of the Forward Collision Warning or

Avoidance (FCW/FCA) System, as one of the most important and the commonly used

active safety feature set, essentially as the prominent crash avoidance system. The

FCW system has already been implemented by several automobile manufacturers in

combination with the Autonomous Emergency Braking System [3] as shown in Figure

3.1 and is highly recommended by National Highway Traffic Safety administration

because of the FCW system meeting the later, performance specification. The FCW

system is dependent on the sensors (radar, lidar or camera) to detect the objects [21]

or any possible obstacles in front of the vehicle and to generate a warning or alert in

the form of sound or visual for the driver to avoid any possible collision. This paper

propose and elaborates on a supervised machine learning based approach to detect

possible collision using the forward-facing radar present in the ego vehicle, by using

the relative velocity, acceleration and the separation distance. For the prediction

or classification purpose, two supervised learning approaches: regression, and the

classification are used. For training of these algorithms, the crash and collision data

collected from the 100-car Naturalistic driving study [7] is used. The data consists

of the radar sensed input values: velocity, acceleration, separation distance, along

with the driver’s reaction time. The regression and classification approach based on

the linear model is trained with these input values along with the ground truth label
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Fig. 3.1.: FCW with Emergency Braking System [38]

and then predicts and classifies the warning or no-warning based on the separation

distance and velocity [38], [43].

3.2 FCW Algorithm

The key behind any FCW system is the warning algorithm [17], [18]. The existing

warning algorithm can be divided into two categories, the kinematic-based and per-

ception based. The Perceptual based algorithm depends on the risk calculating the

factor to present the alert or warning, such as time to a collision that depends on the

data such as the range and speed. However, the kinematic based approach uses the
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minimum distance required to stop before the collision; therefore, it requires more

detailed data which includes the speed, range, relative deceleration rates and Drivers

reaction time [23]. R. J. Kiefer [11], [12] proposed a kinematic-based FCW algorithm

to calculate the minimum distance needed to stop safely before a collision, under the

Collision Avoidance Metrics Partnership (CAMP) project developed. This algorithm

generates a linear function based on the dynamic parameters to predict the drivers

expected deceleration response based on the last-minute breaking database collected

during the CAMP project. Then proposed Linear equation is by:

Decev = 0.164 + 0.668Declv + 0.00368(Vev − Vlv)
2 − 0.078

The generated function is correct for most of the traffic scenario, but may result

in false prediction during the severe risk scenarios [13].

Fig. 3.2.: Proposed method for FCW using Regression Approach
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3.3 Regression Approach for Prediction

This proposed approach is similar to the CAMPs FCW linear function mentioned

in the previous section. For Regression based prediction the model is trained with the

input data (velocity, acceleration, separation distance) and expected warning range

which leads to the prediction of collision or no-collision warning range. This warning

range when compared with the separation distance leads to the final prediction of the

collision or no-collision alert to notify the driver [38], [43]. The proposed approach is

shown in the Figure 3.2.

Linear Regression

In linear regression, based approach the predicted value (output) is used to iden-

tify the linear relationship with respect to the input values. To identify this linear

relationship, the most important part is to analyze the data and prepare it for the su-

pervised training and then use the data for testing purpose. The next step is to divide

the data into two sets; a bigger ratio of dataset for training purpose and a smaller

ratio of the data set for testing purpose. This prepared dataset is then trained on the

Least Square Fitting model and thus provides an output in the form of scores which

is the coefficient of determination, of the prediction. This models accuracy (Section

3.5), when compared with the CAMPs algorithm was relatively low, as the generated

intercept could not predict the correct warning range based on the expected warning

range and separation distance [38], [43].

3.4 Classification Approach

As the regression-based approach did not result in high accuracy when compared

with the CAMP algorithm, the classification-based approach is used to generate the

model and predict the label for the warning or no-warning scenario. The scikit-

learn [14] module developed for the statistically based machine learning algorithms
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is used to generate the classifiers based on the artificial neural network, Decision

Tree, Support Vector machine and Stochastic Gradient Descent. The purpose of

any statistical based classification is to use the provided object characteristics and

identify the class or group of the output. The classification approach results in the

prediction based on inputs such as Separation Distance, velocity, acceleration and

Ground Truth Labels (used only for training purpose). The procedure of selecting the

percent size for the training and testing the data is very alike to the Regression based

approach as both falls in the same supervised learning category. The training results

in the generation of a model, which is based on the inputs (velocity, acceleration,

and separation distance) predicts the warning or no-warning scenario by comparing

it with the Ground truth label [38], [43]. The approach is shown in Figure 3.3, The

individual accuracy of the models is discussed in Section 3.5.

Neural Net based classification

Frequently, to model the dataset with higher precision and accuracy, a neural

network based approach can be used to develop a low bias low variance model. The

work-flow of the neural network based classification is very similar to the approach

(Figure 3.4) used for DT, SVM and SGD. The proposed neural network is shown

in Figure 3.5. The input parameters for the neural network model are the velocity,

acceleration, and separation distance and based on these inputs the network classifies

the output into one of the two categories: collision warning and no collision warning.

The proposed neural network architecture has 2 hidden layers with 8 neurons in each

layer. The activation function used to model non-linearity in the dataset for each

neuron in the hidden layer is a sigmoid function. The network model has a compact

size with 402 total number of parameters and is deployable on embedded targets such

as NXP Bluebox 2.0 containing Ubuntu-OS and RTMaps framework with the python

programming support [38], [43].
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Fig. 3.3.: Proposed Classification Approach using supervised learning

3.5 Results

The proposed regression and classification-based approach are first tested on the

RTMaps Studio framework to validate the model and then after initial testing is

deployed on the Bluebox. Since the LS2084 processor provides the maximum available

cores (8 ARM Cortex-A72) for running the RTMaps embedded, it is used for the

deployment. To provide the debug functionality and graphical interface the RTMaps

embedded is shown connected with the RTMaps Studio in the desktop PC (Figure

6.7) using the remote engine connectivity provided over TCP/IP [38], [43].

The standard procedure to make predictions using regression or classification

based approach starts with the finalization of the model. The proposed model is



17

Fig. 3.4.: Proposed Artificial Neural Net classification model for FCW system

trained using the scikit-learn [14] k-fold cross validation and train/test splits of the

data for the regression, classification approach respectively. This practice is preferred

to give an estimate of the performance of the model on the new test-set for example

new data-set. The Figure 7 shows the testing of the regression based approach on

the RTMaps Studio. As seen in the figure the RTMaps consist of the python package

which support the integration of python based programming. The output of the test-

ing result can be seen in the console view. For the classification approach, the model

learns the mapping between the input feature (velocity, acceleration, separation dis-

tance) and the output feature, which is a label (warning or no-warning). The training

and testing of the input variable and the ground truth (labels) were performed on

the different data sizes (varied percent wise). The classification predictions or the
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output can be categorically divided into the label (classes) and the probability based

prediction. For the SVM classifier the wrong predictions were further divided into

the false positive and false negative. A false positive defines that, the prediction is

related to the collision warning but in real, it is a false alarm or false warning, a false

negative means that the prediction is for the no-collision warning case but in real, it

is a collision warning scenario [38], [43]. This is further shown in the Table 3.1.

Table 3.1.: Table representation of Confusion Matrix for SVM classification

Prediction

Label (Ground Truth)

No Warning Warning

No Threat True Negative False Negative

Threat False Positive True Positive

The neural net classifier accuracy ranges around 95-96% with the crash and col-

lision data [7] while the svm classifier ranges around 93-94%. The Figure 3.6, Table

2 shows the accuracy (percentage) of the other classifier and regression model with

respect to the training and testing percent. Among all, the neural network classifier

gave the best accuracy and prediction. It is very apparent that for small size of train-

ing and testing dataset the accuracy is very high, although the comparable factor lies

around the 60-90% of the trained dataset. As mentioned earlier, the RTMaps em-

bedded framework consists of several software module, which can be used to collect

the sensor data. The Figure 8 shows the proposed model based RTMaps diagram,

designed for the collision warning system. The can-frame component module is used

to acquire the sensor data which is then further processed from the radar specific

component module which splits the can bus information into: radar sensed dynamic

parameters such as acceleration, separation distance, velocity, yaw angle, using the

radar specific can bus splitter module. These parameter or sensed inputs is further



19

Table 3.2.: Output of Testing Accuracy vs Training size

Clf/ Per 10 30 60 90

SVM 0.964 0.96 0.955 0.931

SGD 0.923 0.89 0.909 0.922

DT 0.958 0.948 0.939 0.90

LR 0.596 0.799 0.685 0.84

NN CLF 0.959 0.97 0.968 0.94

CAMP LR 0.964 0.954 0.943 0.91

passed through the classifier algorithm which then based on the supervised learning

classifies the scenario into warning or no-warning situation [38], [43].

Fig. 3.5.: Precision score for Classification and Regression approach on Testing Set
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Fig. 3.6.: Accuracy curve on testing set for Regression and Classification method

3.6 Conclusion

This chapter discussed the application of forward collision avoidance system us-

ing the machine learning approaches. The proposed FCW system is designed in the

RTMaps framework, which is a multimodal platform capable of processing multiple

sensors in real time when incorporated with an Autonomous embedded platform such

as Bluebox. The proposed solution can be divided into two sets: First, a Radar model

implemented from the RTMaps component library, which is capable of acquiring the

real-time radar sensed values and Second, a machine learning algorithm implemented

in the python module of the RTMaps components shown in Figure 6.8. The several

machine learning algorithm used for classification approach were decision tree, sup-

port vector machine and neural net based classification, which on the basis of the

input values from the radar classifies and predict the warning or no-warning to the

driver.
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4. INSTANTANEOUS SEGMENTATION ON LIDAR

POINT CLOUDS

Related to autonomous vehicle the semantic segmentation can be defined as acquiring

the images or frames from the camera, or the point clouds from the lidar to observe

and interpret the object at the pixel and point level and thus symbolize each of these

label into substantial categories or classes such as traffic signs, lane, vehicle, pedes-

trians as shown in Figure 1. In deep learning techniques convolution neural network

has achieved exceptional results for pixel based semantic segmentation. The first

significant paper [39] on the image segmentation based the fully convolution neural

network introduced the idea of replacing the fully connected layers by the convolution

layer. The paper also contains the use of interpolation layer in the architecture, which

determines that size of output (segmented image) is the same as the size of input.

Another popular technique in the CNN involved use of deconvolution layer [49] for

semantic segmentation, these deconvolution layer identifies the classes pixel-wise and

finally predict the segmentation mask for these identified classes.

Another popular technique derived from traditionally used methods is the combi-

nation of deep convolutional neural network with the conditional random field [42],

which reduces the imperfect localization of the feature for very precise and accurate

object segmentation. For the 3d point cloud based deep learning Frustum-Pointnet

[33] architecture is presented by Qi et al., which is capable of simultaneous seg-

mentation and 3d bounding box prediction across the object. The execution of the

architecture is based on three steps, which are: frustum proposal, Segmentation and

finally the bounding box estimation, this is discussed in detail in Section III. Another

framework, PointFusion [34] is proposed by Xu et al., which utilizes the Pointnet and

ResNet [36] architecture for passing the frustum and 2D object detector respectively.

These all mentioned deep learning has resulted in remarkable improvement for the
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Fig. 4.1.: Image Semantic Segmentation [42].

semantic image segmentation. However, the achieved high accuracy is a counterfeit

with respect to its implementation on the autonomous embedded system. The pri-

mary objective of this paper is to propose an efficient framework implemented on the

autonomous embedded platform which solves the problem of classification or object

detection based on the semantic segmentation from the 3D lidar data by integrating

supervised learning and deep learning of the local and global feature vector map from

the 3d point clouds. As mentioned, the proposed method utilizes the predicted 3d

bounding box across the object and performing segmentation on the point features.
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Fig. 4.2.: Vehicle classification with small CNN.

Algorithms such as RANSAC [40] which is based on plane extraction from 3d

point cloud were successful, however it required high computational power thus mak-

ing them difficult for embedded system deployment. Recent research shows that 3d

point cloud contains ample amount of the local features which can be extracted suc-

cessfully, using convolutional neural network [47], [48]. The Squeezeseg [47] is based

on the squeezenet [50] and is capable of real-time segmentation (as shown in figure

2) with the inclusion of traditional technique: conditional random field to improve

the performance of the segmentation mask. Similarly, the PointSeg architecture is

also based on squeezenet, however with an addition of transforming the raw 3d point

cloud data into a a spherical image and then passing the transformed data to the

architecture. This transformed data contains global and local feature, which can be

extracted by the CNN. The CNN architecture comprised of the fire layer, squeeze

reweighting layer and enlargement layer.
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4.1 3D Point cloud Segmentation

The 3d point cloud segmentation is based on the classification and localization of

the points in the 3d plane. The point or pixel wise depth related information of the

object present in the region can be represented in the form of point cloud in the 3d

coordinate. A 3d frustum of the region can be obtained in the form of the projection

matrix. If the camera is integrated with lidar, then the deep learning algorithm

requires the image with depth or the lidar point cloud as an input, and outputs the

3D segmentation for the present objects in the line of sight. The integrated camera

provides the 2d image region and the lidar provides the point cloud through which a

frustum can be proposed which acts as plane to look for the local and global feature

of the present objects in that frustum.

Proposed Model

The proposed model utilizes the frustum point cloud as an input and performs the

binary classification for the points available in the 3d plane, thus predicting whether a

particular point belong to the object, the output is in the form of the probability score.

The proposed model includes an additional feature (Figure 6) exploiting the global

feature from the lidar and output feature of the image from the ResNet architecture.

As shown in Figure 6 the lidar global feature vector is passed as an input to a fully

connected network with five layer, which outputs the centroid position of the 3D

bounding box across the object which is binary classified on the previous step. Also,

the global feature from Lidar is also connected as an input to the image feature

vector, which is then passed to the another fully connected network with five layers

that outputs the value corresponding to the position estimation of 3D bounding box

(length, width, height and angle). The image feature comprising of 2D bounding box

described above, is the output of the 2D object detection or classification from the

ResNet architecture.
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Instance Segmentation Pointnet

The Instance Segmentation pointnet is the main building block of the architecture

that uses the extracted frustum point cloud as an input and provides two classification

scores for each of the n input points as an output. As mentioned previously, the output

score is the measure of the predicted probability, which describes if the related point

belongs to the chosen object. This network is a modified or upgraded version of

Pointnet [31]. Very likely to the 2d image segmentation the feature or the points

from another object may overlap with another object, in this case the predicted 3D

bounding box for each object plays a vital role as it separates them. The network

architecture is schematically illustrated in Figure 3.

T-Net

This T-Net proposes the centroid position (x,y,z) of the object from the point

cloud, for the 3D bounding box position. The input to T-net is the object point

cloud but it only utilizes the 3D coordinate points of the each given points. The

block diagram is shown in Figure 5.

4.2 Implementation

The model is implemented in Python programming language using the PyTorch

framework [41], [73] and the point cloud library as the modules can be easily imple-

mented in autonomous embedded platform using Arm Ubuntu OS. In the architec-

ture, the multilayer perceptron layers are implemented using the convolution module

(nn.Conv1d) from pytorch. The points in the frustum point-cloud which lies in-

side the labelled 3D bounding boxes is recognized as the part of the object. This

is the similar approach followed in Frustum-pointnet [33] to use the ground truths

for the Instance segmentation block. For accessing the Image feature vector ResNet

architecture comprising of 34 layers is implemented with torchvision [41], [73]. The
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ResNet architecture uses pre-trained model for the initialization of the weights. The

pre-trained model inputs image of size (224, 224) with 3 channel.

Loss Function

The loss function for the proposed model can be described as follows:

l = lisp + (lt−net + lbox−center + 0.1lcorner + lbox−size + lclf )

here lisp is the log loss corresponding to the output of Instance Segmentation

pointnet, lt-net corresponds to the log loss for the 3D box centroid in the T-Net,

lbox-center corresponds to the log loss of the 3D box center for the added model into

the existing frustum-pointnet architecture, lcorner is corner loss of the bounding box,

lbox-size corresponds to the predicted box size regression, lclf corresponds to the log

loss of the classification output.

Data Augmentation

One of the most important factor to consider during the training of an architecture

is the right learning of the point clouds, which corresponds to how accurately an

architectures predicted the value correctly matching to the ground truth values. This

situation generally occurs when the architecture or model learns the noise feature

instead of the signal features. For the proposed model the overfitting is avoided by

randomly rotating the labelled data from 3D bounding box and points in the frustum

point cloud, by the angle uniformly sampled around the camera’s Y-axis, and for the

frustum point cloud it is augmented by random sampling a subset of points in the

frustum point cloud.

Optimizer

For optimization of the proposed model, the Adam optimizer is used. The adam

optimizer follows an adaptive learning rate by using the first and second order moment
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of the gradient to update the weights. The starting learning rate of 0.001 is chosen

as random value along with the batch size of 32 frustum point clouds. After every

50 epochs the learning rate is reduced by half of the previous value. The loss is

calculated for the complete validation set on the completion of an epoch, the training

is stopped once the validation loss shows constant values without major change for

80-100 epochs.

Fig. 4.6.: Validation accuracy curve on KITTI dataset

4.3 Results

The proposed model is trained with CITYscapes, KITTI train and test dataset

[3] and evaluated on KITTI val dataset. This section presents the results for the

trained and tested data. It can be seen from Table I that the proposed model with

the Frustum PointNet implementation has performance close to the baseline model.

Figure 9 shows the predicted segmentation of the vehicle class along with the enclosed

3D bounding boxes from the lidar point cloud, Segmentation from the image point

of view and finally the original view from the camera view. Figure 10 and Figure
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11 shows the validation accuracy and precision score for the KITTI dataset. After

250 - 310 epochs the architecture outputs constant accuracy and precision score with

minor change, and relatively does not change after 350-390 epochs. The proposed

model performs well in most of the scenarios, however when the view point is on the

turning or edges of the scenario it predicts false bounding boxes thus mixed classes

for the segmentation, because of the false angle assumption. The results with respect

to the KITTI dataset are shown in Table I.

Table 4.1.: Comparison of baseline and proposed model on KITTI dataset

Method Precision Recall

Frustum-Pointnet 76.4 90.92

Proposed Frustum-Pointnet - KITTI 74.80 91.83

Proposed Frustum-Pointnet - KITTI (50%) 81.76 92.86

Fig. 4.7.: Validation precision score curve on KITTI dataset
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As mentioned in previous section, the RTMaps embedded framework consists of

several software module, which can be used to collect the sensor data. The Figure

4 shows the proposed model based RTMaps diagram, using Lidar and camera as

an input and processing it through the proposed architecture for the segmentation

and the 3D bounding box prediction across the object. For the general use of the

proposed model the lidar module shown in Figure 4 can be replaced with any CAN-

Frame supported lidar module [5] available. If the CAN-Frame component module is

used to acquire the sensor data then it can be further processed from the company

specific lidar module which splits the can bus information into: desired parameters

such as raw point clouds or x, y, z dimensions and yaw angle, using the vendor specific

lidar can bus splitter module. These parameter or sensed inputs is further passed

through the proposed algorithm which then based on the input scenario predicts the

3D bounding boxes.

Fig. 4.8.: Proposed model for Lidar and Camera fused Segmentation with Bounding

Box estimation
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4.4 Conclusion

This paper proposes an approach to combine the sensed inputs from the Lidar

and camera and then process them through Frustum-pointnet architecture with the

purpose of Segmentation of object present in the line of sight. Here we propose

the Segmentation of the identified point cloud on the basis of defined classes and

finally the prediction of 3D bounding boxes across the detected object from the point

clouds frustum. The proposed detection model is designed in the RTMaps frame-

work, to avail the functionality of real-time detection. The proposed method can be

divided into two parts: first, a Lidar and camera based model implemented from the

RTMaps component library which is capable of acquiring the real-time sensor values

and Secondly, a deep learning algorithm implemented in the python module of the

RTMaps components as shown in Figure 4, which on the basis of the input values

from the lidar and camera classifies, segment and predict the bounding boxes on the

detected vehicle.
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Fig. 4.9.: Segmentation and the 3D bounding boxes estimation on the KITTI dataset
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5. 3D BOUNDING BOX DETECTION ON LIDAR POINT

CLOUDS AND VIDEO FRAMES

5.1 Introduction

Localization, Object classification and detection are perception related tasks. Ob-

ject detection can be further divided into 2D detection or 3D, based on cameras,

RGB-D cameras or Lidar respectively. Deep learning based 2D object detection in-

volves drawing of bounding boxes (x, y) around the detected objects in an image or

video frame, whereas the 3D detection involves drawing of three dimensional bound-

ing box (x, y, z) on an object, therefore estimating the exact position of the object

in the 3D plane. Figure 1 shows an example of expected 3D bounding boxes on the

Lidar point cloud and the similar bounding boxes on an image [57]. Deep learning

has been widely accepted as an esteemed technique for image-based computer vision

because of the development of the state of the art convolutional neural network based

architectures [32]. The previous techniques or approach remains the pre-processing of

the 3D point clouds data and adopting them into the data structure required for the

existing deep learning algorithms, thus providing an output based on the algorithm

[36]. Recent researches have proposed to process the Lidar point clouds directly on

deep neural network without converting them to any representations. For example,

[34], [36] proposed different form of deep net architectures, called as Pointnets and

Frustum Pointnets respectively. These deep learning architectures have shown higher

performance and have proved as benchmark for 3D perception based detection such

as object classification and semantic segmentation. Pointnets architecture [31] pro-

posed by Qi et al. is capable of both classification and semantic segmentation of

3d point clouds by learning the local and global feature vector from the raw point

clouds. Zhou et al. presented VoxelNet [34], a deep learning architecture detecting
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Fig. 5.1.: 3D Vehicle Detection on Lidar Point Clouds and Camera Images [57]

3D bounding boxes based on reading of Lidar Point clouds, here the lidar point clouds

were divided into 3D voxel spaced equally. The architecture successfully detects and

gives high performance for the car, cyclist and pedestrians. The most prominent 3D

object detector Frustum-Pointnet [33] is presented by Qi et al., which predicts the

bounding box on an object based on instance segmentation and the bounding box

estimation. A similar method Pointfusion [34] is proposed by Xu et al. which utilizes

the Pointnet [31] and ResNet [41] architecture for estimating the frustum and a 2D

object detector respectively [60].
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5.2 2D object Detection

The 2D object detection in an autonomous vehicles are primarily based on the

single or multiple cameras connected to sense the environment or surrounding of the

car. The 2D object detection architecture or algorithm requires the raw image as an

input, and outputs the bounding box with the class or label of the detected object

as shown in figure 2. In 2D object detection the bounding box is an axis-aligned

rectangle, which is almost an exact fit on the position of the multiple objects or

classes in that image, here the bounding box can be parameterized as (xmin, xmax,

ymin, ymax) where (xmin, ymin) are the pixel coordinates of the bottom-left bounding

box corner, and (xmax, ymax) are the pixel coordinates of the top-right corner. An

example of the ground truth 2D bounding boxes from the KITTI dataset [57] is

shown in Figure 2, in which the bounding boxes correspond to the class i.e. car,

traffic light or motorcyclist. Recent State-of-art 2D object detector is based on the

approach where the image is processed on the convolution neural network, extracting

the feature map of the entire image. The selected object regions are passed onto these

extracted feature map, and mapped onto the region feature vector, which on the basis

of the class scores predicts the type of object and proposes the bounding box onto it

[60].

5.3 3D Object Detection

The 3D object detection can be based on the RGB-D cameras, radars, lidar or

combination of such sensors. Here the deep learning algorithm requires the image

with depth information or the lidar point cloud as an input, and outputs the 3D

bounding box for the present objects in the line of sight. A 3D bounding box is very

close to cubical shape covering the objects region on the sensors line of sight. For

automotive applications, a 3D bounding box can be parameterized as (x, y, z, l, w, h,

θ). Here the (x, y, z) is the 3D coordinates of the bounding box center, the (l, w, h) is

length, width and height respectively of the bounding box, and θ is the yaw angle of
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the bounding box. An example of the ground truth 3D bounding boxes for the vehicle

detection application is shown in Figure 1 from the KITTI dataset [3], where the boxes

are visualized both in the Lidar point cloud along with the respective camera image.

Most of the statistical or deep learning related algorithms for 3D object detection is

however trained and evaluated on the KITTI dataset [57], which contains images and

lidar point clouds collected from the forward facing stereo camera and velodyne Lidar

[60].

Fig. 5.2.: 2D object detection on traffic related data [source: xsens]

As mentioned earlier the Frustum Pointnet architecture comprises of three pri-

mary steps: frustum proposal, instance segmentation and bounding box estimation.

At the frustum proposal step, the 2D proposed region is extruded to extract the cor-

responding 3D frustum proposal, which contains the entire points of the lidar point

cloud, that lies inside the 2D region when it is projected onto the image plane. This

frustum proposal point cloud is then passed to the instance segmentation step, where
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the PointNet segmentation network carries out the binary classification for each point,

thus predicting if the point is actual part or feature of the detected object. All true

classified points are then passed to the bounding box estimation step, which utilizes

the density of these points to estimate the position of the 3D bounding boxes. To

estimate the center of the bounding box, the model regresses the residuals related to

the segmented point cloud centroid. For the 3d bounding box dimensions and heading

angle, a classification-regression hybrid based approach inspired by Mousavian et al.

[37] is used.

Fig. 5.3.: Instance Segmentation pointnet

Fig. 5.4.: Proposed model for Bluebox 2.0 in the RTMaps framework for Real time

Detection



39

Proposed Model

The model proposed in this paper uses Frustum Pointnet [33] as the base model.

The model contains the Segmentation-Pointnet, Regressed PointNet (T-net), and an

additional feature based on the inputs from the camera for the frustum proposal

based on the known camera projection matrix. The proposed model uses extracted

features from the image, for the position estimation of the 3D bounding boxes. The

proposed model adds another block (Figure 6) exploiting the global feature from the

lidar and output feature vector of the image from the ResNet architecture. As shown

in Figure 6 the lidar global feature vector is passed as an input to a fully connected

network with three layer which outputs the centroid position of the 3D bounding box

w.r.t the center Position estimated by T-net. The same lidar global feature is also

connected as an input to the image feature vector, which is then passed to the another

fully connected network with three layers that outputs the value corresponding to the

position estimation of 3D bounding box (length, width, height and angle). The image

feature comprising of 2D bounding box described above, is the output of the 2D object

detection or classification from the ResNet architecture [60].

Instance Segmentation Pointnet

The Instance Segmentation pointnet uses the extracted frustum point-cloud as an

input and calculates the classification scores for each of the n input points estimating

how probable they belong to the class or object considered for the case or scenario.

The output classification-score is the measure of the predicted probability for a class

among k different classes. For detection of multiple class in a scenario, this network

utilizes the feedback from the 2-D detector: ResNet architecture (Figure 4) for ac-

curate segmentation as it reduces the task of finding similar point cloud densities or

feature, matching the object considered in the scenario. The output from this net-

work combines the global and local feature of the point clouds and segment it on the

basis of category containing predefined maps or vector, for previously mentioned k
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different classes. This network can be considered as a modified or upgraded version

of Pointnet [60]. The network architecture is schematically illustrated in Figure 3.

T-Net

The input to T-net or Regressed Pointnet architecture (as shown in Figure 5)is

the object point cloud but it only utilizes the 3D coordinate points of the each given

points. The regressed pointnet uses the segmented point clouds from the previous

step and proposes the centroid position (x, y, z) for the chosen point cloud, for the

3D bounding box position. The estimation of the center of the object is performed

here and transformation of the bounding boxes is performed to convert the estimated

center into origin. The bounding box estimation network (as shown in Figure 6) is

based on the regressed pointnet architecture and is similar to T-net with a difference

in the last layer where the outputs are bounding boxes on the segmented objects with

variables: center, size and yaw angle (cx, cy, cz, l, w, h, θ). For the final prediction

of the center and coordinate of the 3D bounding box, the outputs from the bounding

box estimation network (bound-box-est-net) and T-net architecture is combined to

calculate the absolute center on the segmented point cloud as described below.

C = Ct−net + Cbound−box−est−net

Fig. 5.5.: T-net architecture
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5.4 Implementation

The proposed model is implemented in Python using the PyTorch framework

[41], [57] as it is also available for the autonomous embedded platform using Ubuntu

OS for arm devices. The multilayer perceptron is implemented using convolution

module (nn.Conv1d) from pytorch. The points in the frustum point-cloud which lies

inside the labelled 3D bounding boxes is recognized as the part of the object. This

is the similar approach followed in Frustum-pointnet [33] to use the ground truths

for the Instance segmentation block. For accessing the Image feature vector ResNet

architecture comprising of 34 layers is implemented with torchvision [41], [57]. The

ResNet architecture uses pre-trained model for the initialization of the weights. The

pre-trained model inputs image of size (224, 224) with 3 channel [60].

Fig. 5.6.: Bounding box Estimation diagram

Loss Function

The loss function for the proposed model can be described as follows:

l = lisp + (lt−net + lbox−center + 0.1lcorner + lbox−size + lclf )

here lisp is the log loss corresponding to the output of Instance Segmentation

pointnet, lt-net corresponds to the log loss for the 3D box centroid in the T-Net,

lbox-center corresponds to the log loss of the 3D box center for the added model into
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the existing frustum-pointnet architecture, lcorner is corner loss of the bounding box,

lbox-size corresponds to the predicted box size regression, lclf corresponds to the log

loss of the classification output [60].

Fig. 5.7.: Proposed Lidar and Camera fused bounding box estimation

Dataset and Training

As mentioned in the previous section the 3d object detection KITTI dataset [57]

is used for training and validation of the architecture. The dataset consists of ap-

proximately 7400 training sets and 7500 testing sets. Here each set consists of sample

images from forward facing camera and 3d point cloud using Velodyne Lidar. The

training set are labelled for 2d and 3d ground truth with rectangle bounding boxes

containing min and max values in x, y for classes such as cars, pedestrian, cyclist and

the (x, y, z, l, w, h, θ) respectively. For this paper the training and validation ratio

is chosen randomly with a split of 70% - 30% which amounts to approx 5100 sets for

training approx 2000 sets for testing. The proposed model is initially trained on a
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Ubuntu OS desktop pc with intel i7 processor comprising of 32 GB ram and nvidia

GTX 1080 GPU and is finally deployed on NXP Bluebox (an autonomous embedded

system) as described in the next section [60].

Data Augmentation

One of the most important factor to consider during the training of an architecture

is the goodness of fit, which corresponds to how accurately an architectures predicted

value matches to the ground truth values. This situation generally occurs when the

architecture or model learns the noise feature instead of the signal features. For the

proposed model the over-fitting is avoided by randomly rotating the labelled data

from 3D bounding box and points in the frustum point cloud, by the angle uniformly

sampled around the camera’s Y-axis.

Optimizer

For optimization of the proposed model, the Adam optimizer is used. The adam

optimizer follows an adaptive learning rate by using the first and second order moment

of the gradient to update the weights. The starting learning rate of 0.0001 is chosen

as random value along with the batch size of 32 frustum point clouds. After every

60 epochs the learning rate is reduced by half of the previous value. The loss is

calculated for the complete validation set on the completion of an epoch, the training

is stopped once the validation loss shows constant values without major change for

60-100 epochs [60].

5.5 Results

The proposed model as mentioned in section III and IV is trained with KITTI

train and KITTI test dataset [57] and evaluated on KITTI val dataset. This section

presents the results for the trained and tested data. As shown in Table I, the proposed
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method for Frustum PointNet implementation has performance close to the baseline

model. Figure 9 shows the predicted 3D bounding boxes from the lidar point cloud,

3D bounding boxes from the image point of view and finally the 2D bounding boxes

on the detected vehicle. Figure 10 and Figure 11 shows the validation accuracy

and precision score for the KITTI dataset. After 350 - 370 epochs the architecture

outputs constant accuracy and precision score with minor change, and relatively does

not change after 570-590 epochs. The proposed model performs well in most of the

scenarios, however when the view point is at the curve of the street scenario, it predicts

false bounding boxes, because of the false angle assumption [60]. The results with

respect to the KITTI dataset are shown in Table I.

Fig. 5.8.: Validation precision score curve on KITTI dataset

As mentioned earlier the training of the architecture is done on desktop pc which

results in generation of Pytorch model file. For the real-time deployment this file is

transferred to bluebox and is reloaded using the RTMaps python packages for testing
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with the point cloud and images from KITTI dataset [60]. The real-time scenario can

be tested using the Lidar and camera sensor as per the model proposed in Figure 4.

Fig. 5.9.: Validation accuracy curve on KITTI dataset

The lidar module shown in Figure 4 can be replaced with any CAN-Frame sup-

ported lidar module [5] available, to use the proposed model as a generic one, in that

case the CAN bus component is used to establish the connection with the sensor

and then the acquired inputs can be processed using the vendor specific lidar module

(as shown in Figure 4) which further splits the CAN frame information into desired

parameters such as: raw point clouds or x, y, z dimensions and yaw angle. These

parameter or sensed inputs is further passed through the proposed algorithm which

then based on the input scenario predicts the 3D bounding boxes [60].
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Fig. 5.10.: Output from the 3D bounding boxes predicted on the KITTI dataset
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Table 5.1.: Object detection of class car on the KITTI test dataset

Method Easy Moderate hard

Frustum-Pointnet 83.76 70.92 63.65

Proposed Frustum-Pointnet - KITTI 79.80 65.83 62.71

Proposed Frustum-Pointnet - KITTI (50%) 84.76 69.78 74.57
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5.6 Conclusion

This paper proposes an approach to combine the sensed inputs from the Lidar

and camera and then process them through Frustum-pointnet architecture with the

purpose of predicting 3D bounding boxes on the detected vehicles. The proposed

detection model is designed in the RTMaps frame-work, to avail the functionality

of real-time detection. The proposed method can be divided into two parts: first,

a Lidar and camera based model implemented from the RTMaps component library

which is capable of acquiring the real-time sensor values and Secondly, a deep learning

algorithm implemented in the python module of the RTMaps components shown in

Figure 4, which on the basis of the input values from the lidar and camera classifies

and predict the bounding boxes on the detected vehicle.
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6. HARDWARE DEPLOYMENT OF THE MODEL ON

BLUEBOX USING RTMAPS

One of the primary purpose of this thesis is to develop deep neural network based

applications and deploy the proposed models on the autonomous embedded platform

such as Bluebox. In the previous chapters, the proposed model for Forward collision

warning and 3D Object detection is discussed. This chapter focuses on hardware

deployment of the model. The model is initially trained using an Intel i7 processor,

32 GB RAM and GTX 1080 GPU by Nvidia using the PyTorch Framework.

Fig. 6.1.: Overview of Hardware deployment (BlueBox 2.0 and RTMaps).

RTMaps provides supports for deploying deep learning architectures. PyTorch

framework can be installed on RTMaps desktop studio and RTMaps runtime studio.

For this thesis, the software enablement on the LS2084A and S32V234 SoC is deployed
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using the Linux board support package, which is built using the Yocto framework. The

LS2084A and S32V234 SoC are installed with Ubuntu 16.04 LTS which is a complete,

developer-supported system and contains the complete kernel source code, compilers,

toolchains, with ROS kinetic and Docker package. The deployment overview is shown

in Figure 6.1

6.1 NXP BlueBox

The major challenge in porting an algorithm on the vision system is to optimally

map it to various units of the system in order to achieve an overall boost in the perfor-

mance. This requires detailed knowledge of the individual processors, their capabil-

ities, and limitations. For example, APEX processors are highly parallel computing

units, with Single Instruction Multiple Data (SIMD) architecture, and can handle

data level parallelism quite well. One of the significant requirements of this thesis is

to analyze the capability of NXP Bluebox 2.0 (BLBX2) as an autonomous embedded

system for the real-time applications. Bluebox is one of the development platforms de-

signed for the advanced driver assistance system feature for the autonomous vehicles.

The bluebox development platform is an integrated package for automated driving

and is comprised of three independent systems on chip (SoCs: S32V234, LS2084A,

S32R274) [62], [63].

The BLBX2 operates on the independent embedded Linux OS for both the S32V

and LS2 processors, the S32R typically runs bare-metal code or an RTOS. BlueBox

as shown in the Figure 6.2 functions as the central computing unit (as a brain) of the

system thus providing the capability to control the car through actions based on the

inputs collected from the surrounding. This section details the information related to

the components incorporated within the bluebox [62], [63].



51

Fig. 6.2.: Architecture of Bluebox 2.0 and Sense Think and Act model[Pic Courtesy

NXP].

6.1.1 S32V234

The S32V234 is a vision-based processor designed for computationally intensive

application related to vision and image processing. The processor comprises of Im-

age Signal Processor (ISP) available on all MIPI-CSI camera inputs, providing the

functionality of image conditioning allowing to integrate multiple cameras. It also

contains APEX-2 vision accelerators and 3D GPU designed to accelerate computer

vision functions such as object detection, recognition, surround view, machine learn-

ing and sensor fusion applications. It also contains four ARM Cortex-A53 core, an

ARM M4 core designed for embedded related applications [62], [63].

The processor can be operated on software such as: Linux Board support Packages

(BSP), the Linux OS (Ubuntu 16.04 LTS) and NXP vision SDK. The Processor boots

up from the SD card interface available at the front panel of the bluebox. A complete

overview of the S32V234 Processor is shown in Figure 6.3 and 6.4.
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Fig. 6.3.: Architecture of BlBX2 [Pic Courtesy NXP].

Fig. 6.4.: Architecture of S32V234 vision processor [Pic Courtesy NXP].

6.1.2 LS2084A

The LS2 processor in the BLBX2 is designed as a general-purpose high-performance

computing platform. The processor consists of eight ARM cortex-A72 cores, 10Gb
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Ethernet ports, supports a high total capacity of DDR4 memory, and features a PCIe

expansion slot for any additional hardware such as GPUs or FPGAs, thus making it

especially suitable for applications that demand high performance or high computa-

tion, or support for multiple concurrent threads with low latency [62], [63].

In addition to being suitable for high-performance computing, the LS2 is also a

convenient platform to develop the ARMV8 code. The LS2 is connected to a Lite-On

Automotive Solid State Drive via SATA, to provide large memory size for software

installation, it also consists of SD card interface which allows the processor to run:

Linux Board Support Packages (BSP), the Linux OS (Ubuntu 16.04 LTS) as OS.

Fig. 6.5.: Architecture of LS2084A Processor[Pic Courtesy NXP].

6.2 Real-Time Multisensor applications (RTMaps)

RTMaps is designed for the development of multimodal based applications, thus

providing the feature of incorporating multiple sensors such as camera, lidar, and
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Fig. 6.6.: System overview of NXP BlueBox 2.0 BLBX2.

radar. It has been tested for processing and fusing the data streams in the real-

time or even in the post-processing scenarios. The software architecture consists of

several independent modules that can be used for different situations and circum-

stances. RTMaps is an asynchronous, high-performance platform to design a mul-

tistory framework and prototype sensor fusion algorithm. RTMaps has of several

modules: RTMaps Runtime Engine, RTMaps Studio, RTMaps Component Library

and RTMaps SDK [37].

6.2.1 RTMaps Runtime Engine

The Runtime Engine is an easily deployable, multi-threaded, highly optimized

module designed in a context to be integrable with third-party applications. Ac-

countable for all base services such as component registration, buffer management,

time stamping threading, and priorities.
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6.2.2 RTMaps Component Library

It consists of the software module, which is easily interfaceable with the automotive

and other related sensors and packages such as Python, C++, Simulink models, and

3-d viewers, etc. responsible for the development of an application.

6.2.3 RTMaps Studio

It is the graphical modeling environment with the functionality of programming

using Python packages. The development interface is available for the Windows and

Linux based platforms. Applications are developed by using the modules and packages

available from the RTMaps Component library.

6.2.4 RTMaps Embedded

It is a framework which comprises of the component library and the runtime engine

with the capability of running on an embedded x86 or ARM capable platform such as

NXP Bluebox, Raspberry Pi, DSpace MicroAutobox, etc. For this thesis the RTMaps

embedded v4.5.3 platform is tested with NXP Bluebox, it is used independently on the

Bluebox, and with the RTMaps remote studio operating on a computer thus providing

the graphical interface for the development and testing purposes. The connection

between the Computer running RTMaps Remote studio and the Embedded platform

can be accessed via a static TCP/IP as shown in Figure 6.7.
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6.3 Hardware Implementation

Figure 6.7 shows the process of hardware deployment of the generated model using

RTMaps and BlueBox 2.0. Training is carried at the desktop PC on PyTorch frame-

work and after the successful implementation of 3d object detection algorithms, a final

deploy-able model is generated. RTMaps desktop studio is used to load the model

parameters. TCP/IP connection is established between RTMaps desktop studio and

RTMaps runtime studio using RTMaps runtime engine. Finally, the performance of

the model is evaluated using the BlueBox 2.0.

To evaluate the performance of the model, the video frames of the testing model

are generated using the point cloud library in python to visualise the 3d object detec-

tion in form of lidar frames and camera output. Images shown in the result section

of object detection and segmentation is part of this process.

Fig. 6.7.: Hardware deployment of the model using the RTMaps and BlueBox 2.0
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7. SUMMARY

Ample amount of research has been carried out in the field of Perception (detection

and classification) using image or video frames based on deep neural networks. The

major contributions of this thesis can be summarized as follows:

1. Forward Collision Warning System based on ANN Classifier.

2. Instance Segmentation on Lidar Point Clouds using KITTI dataset.

3. 3-D Object detection on Lidar Point clouds and Camera and it’s implementation

on the Autonomous Embedded System.

The FCW proposed Neural Network model achieves 87% accuracy on the 100-car

naturalistic data and outperforms the other tested models such as: Decision Tree, Lin-

ear Regression, Logistic Regression, Stochastic Gradient Descent and Support vector

machine classifier, with reference to the hardware deployment the proposed model can

use the on-board inbuilt radar micro controller S32R274 or the CAN-FRAME con-

nections at LS2084 for connecting the radar sensor and acquiring the required values

through the RTMaps framework and processing it through the proposed algorithm

as mentioned in the Chapter 4.

Similarly, the Object Detection model utilizes the point cloud libraries and camera

frames for the 3d object detection without the conversion or transformation of the

point cloud data. Previous Baseline or state of the art models required conversion

or transformation of raw data before processing it on the deep learning architec-

ture for training and testing, however the proposed model uses the raw point cloud

data for proposing the 3d bounding box with the purpose of object detection for an

autonomous embedded target platform (BlueBox 2.0).
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