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ABSTRACT

Ahangardarabi, Mohsen PhD, Purdue University, December 2019. New Approaches
to Voice Conversion Using Statistical Mapping Functions. Major Professor: Mark
J.T. Smith.

VOICE conversion (VC) is the process whereby the speech signal of one speaker

(source) is transformed into the the voice of another speaker (target). Voice con-

version can be used in many applications, example of which includes text to speech;

speaker recognition; noise reduction in speech; neutral speech to emotional speech

conversion; movie, animation, and music industry applications. The features trans-

formed in VC systems are typically the parameters characterizing the speech and

speaker individuality, including the fundamental frequency, spectral envelope, ape-

riodicity, and phoneme duration. Among these, the spectral envelope is one of the

most significant characteristics of the speaker identity. In this thesis, we propose four

new approaches for spectral conversion: Mixture Density Network (MDN); Dynamic

Multi-band Random Forest (DMRF); State Space Model (SSM) employing the Gaus-

sian Mixture Model (GMM) for state-vector sequence conversion (SSM-GMM); and

Sub-band Deep Gaussian Processes (SDGP). These new conversion methods were

developed for both speech and singing applications. Experimental results show that

the new methods have performance advantages over the conventional methods both

subjectively and objectively.
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1. INTRODUCTION

VOICE conversion (VC) is the process whereby the speech of a speaker (denoted

as the source) is modified to sound like the voice of speaker (denoted as target).

Voice conversion techniques are of interset in many applications, such as text to

speech [1], [2]; speech-to-speech translation [3]; speaker recognition [4]; cross-language

rap singing [5]; neutral speech to emotional speech conversion [6]; noise reduction in

speech [7]; mapping between articularity movements and the acoustic spectrum [8];

converting alaryngeal speech to natural speech [9], and movie, animation and music

industry applications. The features to be transformed by VC systems are typically pa-

rameters characterizing the speech and speaker individuality, and include fundamental

frequency, spectral envelope, aperiodicity, and phoneme duration. Among these, the

spectral envelope is one of the most significant characteristics of the speaker identity.

Arguably, the first major research results in the field of voice conversion were

published by Childers et al. in 1985 [10]. In the training stage of their method, the

average lengths of source and target speaker vocal tracts are obtained by calculating

the formant frequencies from training sentences. Then, the ratio of the average length

of the vocal tracts is calculated. In the test phase, linear predictive coding (LPC)

coefficients of the source speaker for a new frame are converted to LPC coefficients

of the target speaker using the ratio that was calculated in the training stage. Their

method marked the beginning of modern voice conversion. However, because of using

a global transformation function for the whole acoustical space, the converted speech

with this method was not of high quality and its similarity to the target speaker was

reletively poor. After this work, voice conversion was introduced as a new field of

speech processing and since then great advances have been made. In 1988, Abe et

al. [11] proposed using vector quantization (VQ) to cluster the acoustical space. In

their method, for each region of the source speaker’s acoustical space, an equivalent
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vector from the target speaker’s acoustical space is obtained. Unlike [10], in their

method, the conversion function is a local conversion function. The main deficiency

of this approach is that it limits the source and target speakers’ acoustical space to

a discrete set of code-words, which causes it to produce low quality converted voices.

In 1992, Valbret et al. [12] alleviated the spectral discontinuity of the target speaker’s

acoustical space by combining VQ with linear multivariate regression (LMR), but they

did not address the discontinuity of the source speaker’s acoustical space. They also

proposed another voice conversion method by combining VQ and dynamic frequency

warping (DFW) which, in spite of the higher quality conversion, does not offer enough

similarity to the target speaker. In 1996, Stylianou et al. [13] [14] made a major

advance in voice conversion by combining Gaussian mixture models (GMM) and

LMR. The success of their method lies in applying the GMM for soft clustering of the

source speaker’s acoustical space, efficiently reducing the discontinuity of the source

speaker’s acoustical space. In 1998, Kain et al. [1] modified the method of Stylianou

proposing a method known as joint density GMM (JDGMM), which they reported

to be more stable.

Although the classical GMM-based methods [13], [14], [1] are effective and prac-

tical, they have three main problems. The first is low model complexity that results

in over-smoothing, which deteriorates the naturalness of converted speech. It seems

that increasing the number of Gaussian components can reduce over-smoothing, but

then the second problem, known as over-fitting, appears. Hence we see a trade-off

between over-fitting and over-smoothing. The third problem originates from time-

independent mapping, because each frame is converted independently from its previ-

ous and subsequent frames. This deficiency is called temporal discontinuity. In [15],

Toda et al. introdouced a method based on maximum likelihood estimation (MLE),

in which both the static and dynamic spectral features are used to resolve the time-

independent mapping problem of the GMM-based methods. Moreover, they proposed

to modify the global variance (GV) of the converted utterance to compensate for the

over-smoothing problem. In 2007, Erro et al. [16], [17] combined JDGMM [1] with fre-
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quency warping, proposing a method called weighted frequency warping (WFW). This

method efficiently reduces the over-smoothing problem of JDGMM [15]. Five years

later, Erro et al. [18], [19] devised a method called bilinear frequency warping plus

amplitude scaling (BFW+AS), which is a parametric version of the WFW method.

They reported that this approach outperformed the well-known MLE method [15] in

terms of speech quality but was weaker in terms of individuality conversion. Desai et

al. [20] argued that the vocal tract conversion model between two speakers is not a

linear process and therefore they employed an artificial neural network (ANN), which

is a nonlinear mapping function. In their paper [20], they reported that the ANN-

based method resulted in similar or improved performance compared to the MLE

method.

With the rapid extension of VC systems, proposing a new method to solve the

over-fitting problem with limited training data is a popular topic. In 2010, Helander

et al. [21] combined the classical GMM-based method of [14] with the partial least

squares regression (PLS) to address the over-fitting problem. This method outper-

forms the classical GMM-based methods of [14], [1] with limited training data. In

2012, Helander et al. [22] devised a new method called dynamic kernel partial least

squares regression (DKPLS) which is a non-linear kernel based method employing

kernel concatenation of consecutive frames to address the temporal discontinuity.

In [22], they showed that the DKPLS method outperforms the MLE method [15]

given limited training data. Yet another method for solving the temporal disconti-

nuity problem was proposed in [23], which is based on a State Space Model (SSM).

This method models the frame dependency over time by a first order Markov process

in which, unlike the HMM [24], the transition between two consecutive state-vectors

is continuous, enhancing the modelling capability of spectral trajectories. However,

the SSM-based VC imposes three main limitations: assuming the state-vector order

(K) to be smaller than the feature-vector order (P), tying the state-vector sequence

of the source speaker to that of the target, and the over-smoothing problem. In 2011,

Pilkington et al. [25] used Gaussian Process (GP) to solve the over-fitting problem.
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They showed that their method outperforms the MLE method [15]. The main disad-

vantages of their approach are the huge computational cost and over-smoothing. In

2016, Xu et al. [26] proposed a new approach to employ the GP in voice conversion,

addressing the computational cost. They address the over-smoothing problem by use

post-filtering the output of GP using the GV method.

In this thesis, we propose four new approaches for spectral conversion: Mixture

Density Network (MDN); Dynamic Multi-band Random Forest (DMRF); State Space

Model employing GMM for state-vector sequence conversion (SSM-GMM); and Sub-

band Deep Gaussian Process (SDGP). Each is briefly described in the reminder of this

chapter. The MDN is a statistical model in which the GMM parameters are obtained

usinging an Artificial Neural Network (ANN). The nonlinear construction of the ANN

allows for a more accurate conversion model. For application to the VC, the MDN

is incorporated using the Minimum Mean Squared Error (MMSE) measure. As this

approach shares similarity with the Joint Density GMM (JDGMM) approach [1], de-

gredation associated with the over-smoothing and temporal discontinuity are present.

To address this, we incorporate the MDN into the MLE-GV system [15]. Subjective

and objective evaluations show improvements over the MLE-GV and JDGMM-GV

approaches [27].

The second approach is the Dynamic Multi-band Random Forest (DMRF). Ran-

dom forest (RF) [28] is an ensemble of trees such that each tree depends on the

values of a random vector that is sampled independently with the same distribution

for all trees in the forest. The random forest model aims to reduce the correlation

between trees, and so the prediction variance by averaging and injecting random-

ness into growing the trees. This property helps random forest to be robust to the

over-fitting problem, motivating its use for VC systems with limited training data.

Another desired characteristic of the random forest is that approximately one-third

of the samples are not used in the training, which are called out-of-bag samples [28].

These samples are employed to optimize the parameters of the random forest based

on the MSE criterion in training. The proposed random forest-based VC system still
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suffers from the temporal discontinuity because of its frame-based nature. So, we

propose to concatenate the source spectral features with those of the adjacent frames

and employ it as the input of the random forest. Moreover, we propose to train two

random forest models between the source and the multi-band target spectral features.

To address the spectral discontinuity, we select the bands with overlap and combine

them, in the conversion phase, using a Kaiser window. Both subjective and objective

evaluations show that the proposed DMRF-GV method outperforms the proposed

RF-GV and the GP-GV [26] methods.

The third proposed approach is the State Space Model employing GMM for state-

vector sequence conversion (SSM-GMM). The SSM addresses the time discontinuity

problem by considering the inter-dependency between consecutive frames. We first

argue that the state-vector sequence carries both the speech and speaker informa-

tion and thus tying the source state-vector sequence to that of the target speaker is

not an optimal approach. Therefore, we propose to train two SSMs for source and

target speakers, then train a GMM model with full covariance matrices for the joint

combination of source and target state-vector sequence. This approach embed the

dynamics of the target speech into the mapping function. Both subjective and ob-

jective evaluations show that the proposed SSM-GMM-GV method outperforms the

SSM-GV [29] and the GP-GV [26] methods.

The fourth proposed approach is to employ a Sub-band Deep Gaussian Process

(SDGP) in the voice conversion system. The DGP is a multilayer hierarchical general-

ization of the Gaussian process [60], [61], [62]. To apply the DGP to voice conversion,

we propose to filter the speech data using the Kaiser filters as a sub-band structure and

find a DGP model for each of the low-pass and high-pass channels. In the conversion

phase, we propose to use a modified center clipping method as a post-processing step

to address both low and high amplitude high frequency components. Both subjective

and objective evaluations show the superior performance of the proposed SDGP-GV

method compared to the proposed DGP-GV and the GP-GV [26] methods.
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2. BACKGROUND

In this chapter, we first explain how voice conversion systems work, then detail the

operations of analysis/synthesis, feature extraction, and time alignment. The chapter

concludes with a description of experimental evaluation methods.

2.1 Voice Conversion Systems

Voice conversion (VC) is the method by which an utterance from one person (a

source speaker) is converted into the voice of another person (a target speaker). Voice

 

1 

Voice conversion

Fig. 2.1.: Voice conversion illustration.

conversion systems typically have two main phases: a training phase and a conversion

phase. The training phase usually consists of an analysis step and a manipulation

step, while the conversion phase usually includes analysis, manipulation, and synthesis

operations.

Figure 2.2 shows a block diagram of a voice conversion system. In the training

phase, parallel databases of source and target speakers are first analyzed to extract

parametric features associated with the spectrum, pitch, and aperiodic characteristics.

The spectrum is typically represented by spectral features such as Mel Cepstral Co-
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Fig. 2.2.: Block diagram of VC System.

efficients (MCCs), Mel Frequency Cepstral Coefficients (MFCCs), and Line Spectral

Frequencies (LSFs), while the pitch is characterized by a time-varying fundamental

frequency (F0). An aperiodic feature is also employed to further capture how the

spectrum varies over time with frequency. Next, the length of source and target spec-

tral features are aligned using Dynamic Time Warping (DTW). Finally, a mapping

function between the aligned source and target spectral features is estimated.

In the conversion phase, the speech of the source speaker speech is first analyzed.

Then the spectral features are extracted from the spectrum. Converted spectral

features are obtained by employing the mapping function, estimated in the training

stage. Similarly, the pitch is converted too and employed along with the converted
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spectrum to reconstruct the converted speech. In the next section, we detail the

analysis/synthesis system and the spectral features used in this thesis.

2.2 STRAIGHT Analysis/Synthesis System

There are many algorithms that have been developed for parametric analysis/synthesis.

In this thesis, we employ the STRAIGHT analysis/synthesis system proposed by

Kawahara in 1997 [33]. STRAIGHT, short for Speech Transformation and Represen-

tation using Adaptive Interpolation of weiGHTed spectrum [33], is based on Mixed

Excitation Linear Prediction (MELP) [34]. In MELP-based systems, the excitation

signal is a mixture of a pulse train and white noise. Kawahara proposed a new fea-

ture called aperiodicity [35] to define the mixture of pulse train and white noise in

the excitation construction. The aperiodicity feature is the difference between the

upper and lower envelope of the spectrum, depicted in figure 2.3. To convert the

aperiodicity profile, the average is stored in 5 frequency bands (0-1, 1-2, 2-4, 4-6, and

6-8 kHz) as shown in figure 2.4.

Upper envelope:Periodic components 

Lower envelope: Noise components
Aperiodic

component

0

-40

40

0

80

2 4 6 8
Frequency [kHz]

Power
[dB]

Fig. 2.3.: Illustration of extraction of aperiodicity from the spectrum [36] c©2006 IEEE.
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Fig. 2.4.: Illustration of the aperiodicity map used in the STRAIGHT algorithm and its five frequency

bands [37]

The STRAIGHT algorithm smooths the spectrum both in time and frequency

and alleviates pulse train effects. Figure 2.5 shows a comparison of the DFT and the

STRAIGHT spectrum for the stable part of the vowel e, where smoothing effects of

the STRAIGHT algorithm are evident. In the next section, we detail the spectral

features extracted from the spectrum used in this thesis.

2.3 Spectral Features

Two popular parametric models used in speech processing are all-pole and cepstral

representations. Linear Predictive Coding (LPC) [38] the classical all-pole model

widely used in signal processing. It turns out that the polynomial nature of the

LPC representation is inherently entangled and thus is not the best for linking one

vocal tract spectrum to another. A more effective approach is to use Line Spectral

Frequencies (LSFs) [39], which equivalently characterize the all-pole model and work

better in voice conversion systems. Despite several attractive characteristics of LSFs

such as explicit representation of formants, formant bandwidths and formant center
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Fig. 2.5.: Comparison of DFT and the STRAIGHT spectrum for a frame of speech.

frequencies, LSFs are not optimal for spectrum representation because they are not

matched to the human auditory system [37]. To address this issue, Mel-scaled cepstral

features can be used. In 1994, Tokuda et al. proposed Mel-Generalized cepstral

Coefficient (MGC) [40], which allows for a continuous transition from all-pole to

cepstral representation based on a single parameter. The construct assumes that

spectrum can be modeled by M+1 MGCs as follows:

H(ejω) =





(
1 + γ

M∑
m=0

cα,γ(m)e−jβα(ω)m
)1/γ

, 0 < |γ| ≤ 1

exp
M∑
m=0

cα,γ(m)e−jβα(ω)m, γ = 0

(2.1)

where βα(ω) = tan−1 (1−α2) sinω
(1+α2) cosω−2α is the warped frequency scale and cα,γ is the MGC,

controlled by parameters α and γ. In this thesis, we use Mel-Cepstral Coefficient

(MCC), obtained when βα(ω) is equal to the Mel scale, dictated by the value of α.

With 16,000 and 44,100 Hz sampling frequencies, MCCs are obtained when α = 0.42

and α = 0.59, respectively.

Figure 2.6 shows the comparison between the original, and the STRAIGHT spec-

trogram (analyzed and resynthesized by the STRAIGHT algorithm), and the MCC
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spectrogram (where MCC features are extracted from the STRAIGHT spectrum and

resynthesized using the STRAIGHT algorithm). As can be seen, the reconstructed

spectrums are very close to the original one. In the next sections, we discuss the time

alignment of source and target spectral features and evaluation methods.

Fig. 2.6.: Comparison between the original, the STRAIGHT, and the MCC spectrograms.

2.4 Time alignment of database

To find a mapping function between source and target speakers, the samples

involved must have the same length. However, it is unlikely that utterances spoken by

two different speakers will have the same length, so Dynamic Time Warping (DTW)

[37] is used to align the training source data with those of the target speaker. DTW

can be applied in voice conversion to time align the sentences or phonemes between the

two speakers. The phoneme-based DTW is more accurate, but it requires phoneme

labels, which make the training procedure more complex. In this thesis, we employ a

sentence-based DTW algorithm.

Figure 2.7 shows an example of source and target time alignment using the DTW

and how the selection process works. Suppose the source and target feature sequences
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Source	
Frames	
	
	
	
	
	
	
Target	
Frames	 y1	 y2	 y3	 y4	 y5	 y6	

x1	 x2	 x3	 x4	 x5	 x6	 x7	

y7	 y8	

Fig. 2.7.: An example of time aligning source and target sequences.

are X = {x1, x2, x3, x4, x5, x6, x7} and Y = {y1, y2, y3, y4, y5, y6, y7, y8}, respectively.

As can be seen, the third target frame (y3) is not aligned with any frames of the

source speaker, and since the fourth and fifth source frames (x4 and x5) are both

matched with fifth target frame (y5), x5 is not included in the aligned sequence

(the same happens to y7). Therefore, the source and target aligned sequences are

{x1, x2, x3, x4, x6, x7} and {y1, y2, y4, y5, y6, y8}, respectively.

2.5 Evaluation methods

Evaluating the performance of a voice conversion system is generally done by

using objective measures which can be calculated numerically and by subjective test-

ing. In this thesis, we employ a Mel cepstral distortion as the objective evaluation

function. For subjective evaluation, we employ preference scores, and Mean Opinion

Scores (MOS) to assess the quality of the conversion. These evaluation methods are

explained in detail in the next subsections.

2.5.1 Objective Evaluation

The objective evaluation results in a preference score obtained from a numerical

computation, generally representing the distortion between time aligned converted

and target features, where the formula is a function of the feature used. In this
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thesis, we employ the Mel Cepstral Distortion (MCD) to compare the converted

samples numerically. The MCD between the converted and target vectors [2] is given

by

MCD [dB] =
10

ln10

√√√√2
24∑

p=1

(y(p)− ŷ(p))2, (2.2)

where ŷ(p) is the pth MCCs of the converted speaker, and y(p) is the pth MCCs of

the target speaker.

2.5.2 Subjective Evaluation

Subjective evaluation methods attempt to assess speech quality or speaker indi-

viduality. For the quality preference tests employed in this work, evaluators compared

the quality of sets of converted samples. The samples were presented in pairs and

evaluators selected the samples they judged to have the highest quality. For the iden-

tity preference score tests, the same evaluators and converted pairs were used, except

a target speaker sample was included along with each pair. For each set, the evalu-

ators chose the converted sample they felt was closest to the target speaker in terms

of identity. We also evaluated the speech quality and speaker individuality using

MOS which is a common practice for performance evaluation of more than two voice

conversion systems. In the quality MOS tests, listeners were asked to score (1=bad,

2=poor, 3=fair, 4=good, 5=excellent) converted outputs played in random order.

For the identity MOS test, the listeners were asked to score the closeness of converted

samples to the target sample in terms of speaker individuality on a scale from 1 to 5

(1=different, 2=slightly different, 3=neutral, 4=similar, 5=definitely identical).
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3. VOICE CONVERSION BASED ON A MIXTURE

DENSITY NETWORK

In this chapter 1, we discuss Mixture Density Network (MDN) as a statistical model,

and how we modify the MDN to be employed as a mapping function in voice conver-

sion systems. Experimental evaluations are included at the end.

3.1 Mixture density network

The Mixture Density Network (MDN) [41], [42] is a combination of an Artificial

Neural network (ANN) [20] and a Gaussian Mixture Model (GMM) [1], and can be

described in the following way. Suppose that the conditional pdf of the predicted

variable (y) in terms of the predictor variable (x) is a GMM of the form

p (y |x) =
M∑

m=1

αm (x)N (y;µm (x) ,Σm (x)), (3.1)

whereM , αm, µm, and Σm are the number of mixture components, mixing coefficients,

mean vectors, and covariance matrices, respectively. One way of estimating these

parameters is to employ the EM algorithm as described in [1]. An alternative, which

we have adopted is the MDN, where the GMM parameters are obtained from an ANN

[41]. As explained in [41], covariance matrices Σm(x) are assumed to be isotropic,

i.e. Σm(x) = σ2
m(x)I. So, each covariance matrix can be described by one parameter

(σ2
m(x)). Figure 3.1 shows the structure of the MDN. After estimating αm, µm, and

Σm by the MDN, p (y |x) can be easily obtained from Eq (4.1). Suppose that the

number of mixture components is M and the predicted value (y) is of dimension D.

In this case, the ANN has M output unit activations of aαm, M output unit activations

1The work reflected in this chapter was published in [27], c©2017 IEEE, and is hereby acknowledged
in accordance with IEEE copyright policy.
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Fig. 3.1.: Schematic diagram of the MDN [43] c©2006 IEEE.

of aσm, and M × D output unit activations of aµm. Thus the total number of ANN

outputs is M × (D + 2). The mixing coefficients must satisfy the constraint

M∑

m=1

αm (x) = 1, 0 ≤ αm (x) ≤ 1. (3.2)

To satisfy (4.2), mixing coefficients are written as a softmax function in the output

unit activations given by

αm (x) =
exp (aαm)
M∑
l=1

exp (aαl )

. (3.3)

To satisfy the non-negativity constraint of the variance parameter, an exponential

function with output unit activations is used, σm (x) = exp (aσm) . Since there is

no constraint on the mean vectors, they can be directly represented by output unit

activations, µm (x) = aµm. The parameters of the ANN can be estimated by minimizing

the objective function

E (W) =
N∑

t=1

Et (W) =

−
N∑

t=1

ln

{
M∑

m=1

αm (xt,W)N
(
yt;µm (xt,W) , σm

2 (xt,W)
)
}
, (3.4)
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where N is the total number of training data samples and W indicates the parameters

of the ANN including the bias terms and weight matrix of the hidden layer. In order

to minimize the objective function using gradient-based algorithms, the derivative of

E(W) with respect to W is computed using a back-propagation algorithm [42]. The

first step is to obtain the posterior probability of the mth component, γm,t (y |x), from

the conditional pdf p (y |x), which can be expressed as

γm,t (y |x) =
αm (xt)N (yt;µm (xt) , σ

2
m (xt))

M∑
l=1

αl (xt)N (yt;µl (xt) , σ2
l (xt))

. (3.5)

If the dth component of yt, µm, and aµm are represented respectively by ytd, µmd, and

aµmd, the derivatives of the objective function with respect to output unit activations

are

∂Et
∂aαm

= αm − γm,t, (3.6)

∂Et
∂aµmd

= γm,t

{
µmd − ytd

σ2
m

}
, (3.7)

∂Et
∂aσm

= −γm,t
{
‖yt − µm‖2

σm3
− 1

σm

}
. (3.8)

3.2 The proposed method

In this section, we detail the two proposed methods of applying the MDN as a

mapping function in voice conversion systems.

3.2.1 Incorporation of MMSE into MDN

One way to apply the MDN in voice conversion is to incorporate the MMSE

criterion into the MDN. In MMSE-based regression, the estimate of the predicted

parameter ŷt from the predictor parameter xt is computed as

ŷt = E [yt |xt ] =

∫
p (yt |xt )ytdyt. (3.9)
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Applying (4.1) to (4.9), the following formula is derived

ŷt =
M∑

m=1

αm (xt)µm (xt) . (3.10)

By comparing Eq. (4.10) with the regression formula of the JDGMM method [1],

we realize the similarity between these two mapping functions. Although αm(xt) and

µm(xt) are estimated by an ANN instead of the EM algorithm, it is expected that the

proposed method suffers from over-smoothing and temporal discontinuity issues like

the JDGMM. To overcome these two deficiencies, we propose to combine the MDN

method with the MLE-GV approach [15], which is explained next.

3.2.2 Combining the MDN with the MLE-GV

To combine the MDN method with the MLE-GV method [15], both static and

dynamic features are used. Assume that the time sequence of the source and target

feature vectors are

X = [XT
1 ,X

T
2 , . . . ,X

T
t , . . . ,X

T
T ]T , (3.11)

Y = [YT
1 ,Y

T
2 , . . . ,Y

T
t , . . . ,Y

T
T ]T , (3.12)

where the source and target feature vectors at time instant t are Xt = [xTt ,∆xTt ]T ,Yt =

[yTt ,∆yTt ]T .

In the training procedure, a MDN is first trained with the new joint feature vectors

as

P (Y|X, λ) =
M∑

m=1

αm (X)N
(
Y;µm (X) , σ2

m (X)
)
, (3.13)

where λ is the parameter set of the MDN including mixing coefficients, mean vectors,

and variances, estimated using the ANN algorithm. Next, the Global Variance (GV)

of the target static feature vectors are calculated as [15]

υ (y) = [υ (1) , υ (2) , . . . , υ (d) , . . . , υ (D)]T , (3.14)

υ (d) =
1

T

T∑

t=1

(yt (d)− ȳ (d))2, (3.15)
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ȳ (d) =
1

T

T∑

t=1

yt (d), (3.16)

where υ(y), υ(d), yt(d) and ȳ(d) indicate the computed GVs of each utterance, the

variance of each dimension, the dth component of the target static feature vector, and

the average of the target static feature vector over time, respectively. Then a single

Gaussian model λ(υ) with mean vector µ(υ) and covariance matrix Σ(υ) is trained for

the GVs as

P (υ (y) |λ(υ)) = N
(
υ (υ(y)) ;µ(υ),Σ(υ)

)
. (3.17)

In the conversion procedure, the converted feature vector is obtained by maximiz-

ing the likelihood function,

P (Y|X, λ, λ(υ)) = P (Y|X, λ)ωP (υ (y) |λ(υ)), (3.18)

P (Y|X, λ) =
∑

m

P (Y|X, λ,m)P (m|X, λ), (3.19)

where ω is a constant weight to make the two likelihood functions balanced and m =

[m1,m2, . . . ,mT ] is a mixture component sequence. Since the frames are assumed to

be independent, Eq (3.19) is represented as

P (Y|X, λ) =
T∏

t=1

M∑

m=1

P (Yt|Xt, λ,m)P (m|Xt, λ), (3.20)

where the probability that Xt belongs to the mth Gaussian component is given by

P (m |Xt, λ) = αm (X) , (3.21)

and the mean vector is represented by

µ
(Y |X)
m,t = µm (X) , (3.22)

and the covariance matrix of the mth Gaussian component is given by

Σ(Y |X)
m = σ2

m (X) I. (3.23)

To obtain the optimum Y given X, i.e. converting the whole sentence instead of

frame-based conversion, we maximize P (Y|X). The time sequences of dynamic (Y)

and static (y) feature vectors of target speakers are related by
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Fig. 3.2.: Relationship between a sequence of static feature vectors and that of the dynamic feature

vectors.

Y = Wy, (3.24)

where the relationship between a sequence of the static feature vectors and dynamic

feature vectors is shown in Figure 3.2. Therefore, the optimum sequence ŷ using the

MDN-GV method is given by

ŷ = arg maxP (Wy|X, λ)ωP (υ (y) |λ(υ)), (3.25)

where

P (Wy|X, λ) ≈ P (Wy|X, λ, m̂)P (m̂|X, λ), (3.26)

and where m̂ = arg maxP (m|X) = [m̂1, m̂2, . . . , m̂T ] indicates the mixture sequence

with maximum probability. Therefore, the optimum sequence of spectral feature

vectors can be expressed as

ŷ = arg max(P (Wy|X, λ, m̂)P (m̂|X, λ))ωP (υ (y) |λ(υ)). (3.27)

To obtain the optimum sequence of spectral feature vectors, we solve Eq (3.27) using

the conjugate gradient algorithm.
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3.3 Experimental evaluations

In this section, we first explain the experimental setup, used throughout the thesis.

We optimize the two parameters in the MDN, i.e. the number of mixture components

(M) and the number of hidden units with respect to the Mel Cepstral Distortion

(MCD) between the target and converted feature vectors for a validation set. Next,

we compare the proposed MDN method against the MLE-GV [15] and JDGMM-

GV [1] methods both objectively and subjectively.

3.3.1 Experiment setup

The CMU ARTIC database [45], sampled at 16 kHz was employed as the database.

We chose four speakers including two male speakers, “bdl” and “rms,” and two female

speakers, “clb” and “slt.” Then, we created parallel training data by random selection

from a set of 20 sentences and also selected 10 sentences from the remaining data as

a test set. To extract speaker characteristics such as spectrum and pitch and also

reconstruct the converted speech, the STRAIGHT analysis/synthesis method [44]

was used, with a frame shift of five ms. The method of [40] was used to extract

the Mel-Cepstral Coefficient (MCC) features from the STRAIGHT spectrum. To

align the MCCs of source and target speakers, the dynamic time warping algorithm

was used and the MCC order was set to 24 for all methods. The optimum number

of hidden units in the MDN method and the number of mixture components (M)

of MDN, MLE and JDGMM methods for the 20 training sentences based on the

MCD criterion are 400, 64, 64 and 32, respectively. In the proposed MDN method, a

two layer feedforward ANN is used, where the hidden units use the tanh activation

function. In order to obtain the parameters of the ANN in the proposed method, the

scaled conjugate gradient algorithm with 100 iterations is used [46]. To address the



21

over-smoothing issue of the JDGMM approach, the GV algorithm was employed [2].

The pitch frequency is converted as

f̃ yt =
σy

σx
(fxt − µx) + µy, (3.28)

where fxt and f̃ yt are the source and converted log-scale pitch frequencies at time

instant t; µx and µy are the means of log-scaled pitch frequencies for the source and

target speakers obtained from the training procedure; and σx and σy are the standard

deviations of the log-scaled pitch frequencies.

3.3.2 Experimental results

In this section, we first present the optimization results of the two parameters of

the MDN method using MCD criterion. Then, the MCD comparison of the proposed

MDN, MLE, and JDGMM as a function of number of training sentences is shown

and we finally compare the proposed MDN method against the MLE-GV and the

JDGMM-GV using preference test scores.
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Fig. 3.3.: The MCD of the proposed MDN method as a function of number of hidden units for three

different M (32, 64, 128).
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Figure 3.3 shows the average MCD of the proposed method in terms of number of

hidden units for three mixture components (32, 64, 128) using 20 training sentences

and 30 validation sentences. As can be seen, the optimum number of hidden units

and number of mixture components are 400 and 64, respectively.
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Fig. 3.4.: The MCD comparison of the proposed MDN, MLE, and JDGMM as a function of number

of training sentences.

Figure 3.4 shows the average MCD comparison among the proposed MDN, MLE,

and JDGMM for different numbers of training sentences. Note that the optimum

parameters are used for each method. Figure 3.4 shows that the proposed MDN

method has a lower MCD compared to the MLE [15] and JDGMM [1] methods. In

the MLE method, one scalar weighting coefficient, two mean vectors of dimension

2D, two 2D×2D diagonal covariance matrices and one 2D×2D diagonal cross covari-

ance matrix are estimated for each Gaussian component (i.e. 10D+1 parameters in

total), where D is the feature dimension, while the total number of estimated Gaus-

sian parameters for MDN is 2D+2 (one scalar mixing coefficient, one mean vector

of dimension 2D and one scalar variance). So, if D=24 and M=64 (the optimum

number of Gaussian components for 20 training sentences), the MLE-GV estimates

15,7424 parameters using the EM algorithm, while the MDN estimates 3200 Gaus-

sian parameters using the ANN, which is a nonlinear mapping function. The MDN
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method achieves a more accurate Gaussian mapping function by using the nonlinear

capability of the ANN, which results in a lower MCD.
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Fig. 3.5.: Preference test scores for JDGMM-GV and proposed MDN-GV methods.

Figure 3.5 shows the superior performance of the proposed MDN-GV method

compared with the JDGMM-GV method in terms of speech quality and speaker

identity. Figure 3.6 shows the speech quality and speaker identity comparison of the
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Fig. 3.6.: Preference test scores for MLE-GV and proposed MDN-GV methods.

proposed MDN-GV method against the MLE-GV. As shown, the proposed MDN-GV

outperforms the MLE-GV in both the speech quality and speaker individuality.



25

4. VOICE CONVERSION BASED ON A RANDOM

FOREST MODEL

In this chapter, we discuss the properties of random forest as a statistical model, and

how we apply it into voice conversion systems. Experimental evaluations are included

at the end.

4.1 Tree Structural mapping functions

In this section, three fundamental concepts associated with the random forest

model (i.e. bootstrap, bagging and regression trees) are described along with the

relationships between them. Then the combination of three mentioned concepts is

explained following by an explanation of the random forest model.

4.1.1 Bootstrap

The bootstrap is a way of assessing a parameter estimation, sampled from the

training data [47]. Suppose that the training set is as

Z = (z1, z2, ..., zN), zi = (xi,yi). (4.1)

To construct a bootstrap dataset, N samples are randomly drawn from the training

set with replacement. If this procedure is repeated B times, B bootstrap datasets

would be available, where the bth bootstrap dataset is represented as Z∗b, with the

same size as the training set. Note that the ith observation of the training set can

appear multiple times in the bth bootstrap dataset or not at all. The left-out samples

are known as out-of-bag samples, or OOB data [48]. Since the probability that the

ith observation of the training set (zi) does not appear in each sampling is
(
1− 1

N

)
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and the N samplings are independent, the probability that zi does not appear in N

samplings is [47]

Pr
{
zi /∈ Z∗b

}
=

(
1− 1

N

)N
≈ e−1 = 0.368. (4.2)

This means that 36.8% of the training data are OOB samples, which are utilized for

cross-validation and parameter tuning [49].

4.1.2 Bagging

Bootstrap aggregation, also known as Bagging proposed by Breiman in [51], aims

to reduce the prediction variance. Suppose a regression model, f̂ (x), is fitted to the

training set (Z) to predict y from x. In bagging regression, a regression model, f̂ ∗b (x),

is fitted to each bootstrap dataset Z∗b, b = 1, 2, ..., B and the bagging estimate is the

average of obtained regression models given by [51]

f̂bag (x) =
1

B

B∑

b=1

f̂ ∗b (x). (4.3)

Since bagging involves averaging, it reduces the estimation variance and also keeps

the estimation bias unchanged [47]. To reduce the estimation bias, one can employ a

low bias regression model in the bagging method such as regression trees [47].

4.1.3 Regression tree

In regression trees, the feature space is divided into rectangular regions, in which a

constant is fitted in each region. Suppose that the training set contains N observations

and the ith observation consists of P inputs xi = (xi1, xi2, ..., xiP ) and a response

yi. Also, suppose the feature space is partitioned into M regions which we denote

R1, R2, ..., RM and the response is predicted as a constant in each region [47], i.e.

f (x) =
M∑

m=1

cmI (x ∈ Rm) , (4.4)
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where I is the indicator of the data. If
∑

(yt − f(xi))
2 is considered as the criterion,

the constant ĉm is derived as [47]

ĉm = ave (yi|xi ∈ Rm) , (4.5)

where ave indicates the average function. Since finding the best binary partition

based on a sum of squares minimization is computationally impractical, the following

algorithm is employed. First, consider all the training data and suppose that the

first binary partitioning utilizes a splitting variable j and split point s, in which the

following half-planes are derived

R1 (j, s) = {x|xj ≤ s} , R2 (j, s) = {x|xj > s} . (4.6)

Splitting variables and split points need to be determined in each step of space

partitioning. So, the optimum j and s are obtained by performing the minimization

[47]

min
j,s


min

c1

∑

xi∈R1(j,s)

(yi − c1)2 + min
c2

∑

xi∈R2(j,s)

(yi − c2)2

 . (4.7)

Then for any choice of j and s, the inner minimization is solved by

ĉ1 = ave (yi|xi ∈ R1 (j, s)) , ĉ2 = ave (yi|xi ∈ R2 (j, s)) . (4.8)

For each splitting variable j, the split points can be obtained by using all the training

data in Eq. (4.7). Then the training data is partitioned into the two resulting regions

employing the obtained splitting variable and split point. Finally, this algorithm is

repeated on all of the resulting regions.

Determining how large a tree should be grown is a problem, because a very large

tree might result in overfitting, and a small tree might not capture the details. To

address this issue, one strategy is to split tree nodes until the mean square error

becomes less than a threshold. This approach seems to be too naive, because a split

that might be considered as a worthless one might lead to a valuable split below it [47].
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The preferred strategy is that a large tree is grown until the amount of training data

present in output nodes reaches a minimum size (nodesize), then the large tree is

pruned employing cost-complexity pruning [50].

4.1.4 Bagging tree

As mentioned previously, bagging attempts to reduce the variance of an estimation

by averaging unbiased and noisy models. Trees are approximately low bias methods,

capturing the important structure in data if grown deep enough [47]. So, Breiman

proposed to combine the bagging method and the regression tree to form what is

known, as bagging tree [51]. In bagging trees, a regression tree is fitted to each

bootstrap dataset (Z∗b, b = 1, 2, ..., B) and the output is the average of these regression

trees. The bagging tree has two main weakness: First, the bias of B generated trees

are the same as that of each individual tree, because the generated trees are identically

distributed (i.d.) [51]. Second, the variance of the average of B trees (i.d. random

variables) is

ρσ2 +
1− ρ
B

σ2, (4.9)

where σ2 and ρ indicate the variance of each tree and the correlation between trees,

respectively. As B increases, the first term will be dominant, and the correlation

between present trees bounds the privilege of averaging. To reduce the correlation

between trees, and the prediction variance, the random forest is introduced, which

will be described in the next section.

4.1.5 Random Forest

Breiman proposed the random forest in [28] to reduce the variance of bagging Eq.

(4.9) by decreasing the correlation coefficient which is achieved by random pickup of

the input variables in growing trees. In growing a tree for each bootstrap dataset,

before each binary split, mtry ≤ P of the input variables are randomly selected as
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candidates of splitting variables. This random selection of splitting variables in each

splitting reduces the correlation between trees and so reduces the estimation variance

Eq. (4.9). Note that in bagging tree , all input variables in all splittings are candidates

(mtry = P ). Then, the best split is chosen among the mtry randomly selected splitting

variables. Finally, after growing B regression trees {T (x; Θb)}B1 using the mentioned

approach, the random forest regression is given by

f̂Brf (x) =
1

B

B∑

b=1

T (x; Θb), (4.10)

where Θb defines the bth random forest tree including split variables, each node cut-

points, and terminal-node values. It is suggested that

1) After growing the trees in the random forest, pruning is not used [28].

2) To keep the bias low, the trees are grown to maximum depth [52].

4.2 The Proposed Method

To apply the Random Forest (RF) model in voice conversion, in the training

phase, we first align the spectral features of the source and target speakers using the

DTW algorithm [53]. Then, we train a RF model on the aligned spectral features. In

the conversion phase, we obtain the converted spectral features by applying the RF

model, obtained in the training phase, to the source spectral features. The proposed

RF method suffers from the temporal discontinuity problem because of its frame-based

nature, so we propose to concatenate the source spectral features of the previous and

next frames. In this way, the spectral features of adjacent frames are augment the

current frame. From now on, we call this method Dynamic Random Forest (DRF).

Figure 4.1 shows a comparison between the MCC trajectories of the converted speech

for 10 training sentences with the proposed RF method and with the proposed DRF in

tracking the target trajectory. As can be seen, augmenting the source spectral features

by those of the adjacent frames considers the temporal continuity, and helps the

DRF method to effectively track the target trajectory compared to RF. Moreover, we
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Fig. 1: Spectral feature trajectory of target and converted speech with the proposed DRF and the MLE [8].
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Fig. 2: The MSE of OOB samples in training as a function of number of
trees.

optimum number of randomly pick-up splitting variables is
eight, which is the default value in our application.

Fig. 4 shows the MSE of OOB samples in training for
the DRF method as a function of mtry . Note that since the
input dimension of the DRF method is 3P , in our application
72, mtry varies from 1 to 72. As can be seen, the optimum
number of randomly pick-up splitting variables is 12, which
is half of the default value in our application. So, we suggest,
as [20], to try the default value, half of the default, and twice
the default value of the mtry for the proposed methods, and
select the best based on the MSE of the OOB samples in
training.
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Fig. 3: The MSE of OOB samples in training for the RF method as a
function of randomly pick-up splitting variables.

To compare the proposed method with MLE [8] and
JDGMM [6] objectively, we use the MCD criterion as

MCD [dB] =
10

ln10

vuut2
24X

p=1

(y(p) � by(p))2, (12)

where by(p) and y(p) are the pth MCC of the converted and
target speaker, respectively.

Fig. 5 demonstrates the comparison of the MCD of the
proposed RF and DRF with those of the MLE [8] and the
JDGMM [6] as a function of number of training sentences.

Fig. 4.1.: Spectral feature trajectory of target and converted speech with the proposed DRF and

the proposed RF.

propose to use multiple bands for target spectral features and obtain different mapping

functions between source spectral features and the multi-band target spectral features.

To address the spectral discontinuity, we select the bands with overlap and combine

them, in the conversion phase, using the Kaiser window as depicted in Fig. 4.2. From

now on, we call this method Dynamic Multi-band Random Forest (DMRF).

4.3 Experimental evaluations

As is typical for performance comparison in this field, we performed objective and

subjective evaluations. For objective evaluations, the parameters of the random forest

are optimized by employing the MSE of the out-of-bag samples, or OOB data, in the

training step. For subjective evaluations, we compare the proposed DMRF-GV and

RF-GV methods to the Gaussian Process (GP) method [26].
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Fig. 4.2.: The Block diagram of the proposed DMRF method.

4.3.1 Experiment Setup

The CMU ARCTIC database [45] sampled at 16 kHz was used for the evalua-

tion. Four speakers were selected: two male speakers, denoted “bdl” and “rms”; and

two female speakers, denoted “clb” and “slt”. For the subjective evaluations, we

constructed a parallel training database by randomly selecting a set of 10 sentences.

Besides, twenty additional sentences were used as test sentences for all evaluations.

The STRAIGHT algorithm [44] with frame length of 40 ms and frame shift of 5

ms was used as the analysis/synthesis system. The feature-vector (MCC) order for

all methods was set to 24. To convert pitch frequency in the conversion phase, the

method described in [2] were employed.
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4.3.2 Objective Evaluations

The random forest has three parameters which are described below.

1) The minimum node size (nodesize). In [28], Breiman suggested setting the

default value for regression at five. We adopted this recommendation.

2) The number of trees in the forest (B). we compared predictions made by the

forest with those made by a subset of the forest. When the subset worked as well as

the full forest based on the MSE of OOB samples in training, we used that number as

the optimum number of trees [48]. The MSE of OOB samples in the training phase

is given by [48]

MSEp = 1
NOOB

NOOB∑
i=1

(yp,i − ŷ
OOB

p,i )
2

MSE = 1
P

P∑
p=1

MSEp,
(4.11)

where MSEp is the MSE of the pth dimension, yp,i is the ith observation of the pth

dimension of target spectral feature, and ŷ
OOB

p,i is the average prediction of the OOB

samples for the ith observation from all trees. NOOB and P indicate the number of

OOB samples in the training and the feature-vector order. Figure 4.3 shows the MSEIEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING 5
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Fig. 2: The MSE of OOB samples in training for the RF method as a
function of randomly pick-up splitting variables.

optimum number of randomly pick-up splitting variables is
eight, which is the default value in our application.

Fig. 2 shows the MSE of OOB samples in training for
the DRF method as a function of mtry . Note that since the
input dimension of the DRF method is 3P , in our application
72, mtry varies from 1 to 72. As can be seen, the optimum
number of randomly pick-up splitting variables is 12, which
is half of the default value in our application. So, we suggest,
as [20], to try the default value, half of the default, and twice
the default value for the proposed methods, and select the
best based on the MSE of the OOB samples in training.

To compare the proposed method with MLE [8] and
JDGMMD [6] objectively, we use the MCD criterion as

MCD [dB] =
10

ln10

vuut2

24X

p=1

(y(p) � by(p))2, (13)

where by(p) and y(p) are the pth MCC of the converted and
target speaker, respectively.

Fig. ?? demonstrates the comparison of the MCD of the

0 10 20 30 40 50 60 70 80
5

5.5

6

6.5

7

7.5

8
x 10−3

mtry

M
SE

Fig. 3: The MSE of OOB samples in training for the DRF method as a
function of randomly pick-up splitting variables.

proposed RF and DRF with those of the MLE [8] and the
JDGMMD [6] as a function of number of training sentences.
Note that all methods utilized the optimum parameter which
is obtained based on the MCD for the MLE and the JDG-
MMD and based on the MSE for the RF and the DRF. As can
be seen, our proposed DRF method outperforms the proposed
RF, the MLE and also the JDGMMD.

C. Subjective Evaluations
We compare the four following methods Subjectively:

1- RF (proposed): A random forest method, where the
optimum B, nodesize and mtry are 200, five and eight,
respectively.

2- DRF (previous): As RF, but each spectral-feature is
concatenated with adjacent frames

3- JDGMMD: A Joint Density Gaussian Mixture Model
with diagonal covariance matrix, where the optimum number
of mixture components is [6].

4- MLE: A maximum likelihood parameter trajectory
method, where the optimum number of mixture components
is [8].

To compare the quality of converted speech for two VC
methods, we employ speech quality preference test, in which
10 naive person select the superior converted speech by
considering the speech quality for all conversion pairs of
speakers (bdl, rms, clb, slt). To compare the identity of
converted speech, we utilize speaker individuality preference
test, in which the same conversion pairs are chosen and 10
naive person are asked to select converted speeches sounded
more similar to those of the target speaker.

In the MOS test, the three voice conversion methods (SSM,
ML-GV, SSM-GV) are evaluated for four selected conversion
pairs (bdl-rms, clb-slt, bdl-slt, slt-bdl) and 10 naive persons

Fig. 4.3.: The MSE of OOB samples in training phase as a function of number of trees.

of OOB samples in training as a function of the number of trees (B) in the forest for
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10 training sentences. The values of nodesize and mtry are constant and were set to

five and eight, respectively. As can be seen, the optimum number of trees is 150.

3) The number of randomly pick-up splitting variables (mtry). The default value

is bp/3c. However, we compared predictions for different values of mtry based on the

MSE of the OOB samples in training. The values of nodesize and B are constant and

were set to five and 150, respectively.
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function of randomly pick-up splitting variables.

optimum number of randomly pick-up splitting variables is
eight, which is the default value in our application.

Fig. 2 shows the MSE of OOB samples in training for
the DRF method as a function of mtry . Note that since the
input dimension of the DRF method is 3P , in our application
72, mtry varies from 1 to 72. As can be seen, the optimum
number of randomly pick-up splitting variables is 12, which
is half of the default value in our application. So, we suggest,
as [20], to try the default value, half of the default, and twice
the default value for the proposed methods, and select the
best based on the MSE of the OOB samples in training.

To compare the proposed method with MLE [8] and
JDGMMD [6] objectively, we use the MCD criterion as

MCD [dB] =
10

ln10

vuut2
24X

p=1

(y(p) � by(p))2, (13)

where by(p) and y(p) are the pth MCC of the converted and
target speaker, respectively.

Fig. ?? demonstrates the comparison of the MCD of the
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Fig. 3: The MSE of OOB samples in training for the DRF method as a
function of randomly pick-up splitting variables.

proposed RF and DRF with those of the MLE [8] and the
JDGMMD [6] as a function of number of training sentences.
Note that all methods utilized the optimum parameter which
is obtained based on the MCD for the MLE and the JDG-
MMD and based on the MSE for the RF and the DRF. As can
be seen, our proposed DRF method outperforms the proposed
RF, the MLE and also the JDGMMD.

C. Subjective Evaluations
We compare the four following methods Subjectively:

1- RF (proposed): A random forest method, where the
optimum B, nodesize and mtry are 200, five and eight,
respectively.

2- DRF (previous): As RF, but each spectral-feature is
concatenated with adjacent frames

3- JDGMMD: A Joint Density Gaussian Mixture Model
with diagonal covariance matrix, where the optimum number
of mixture components is [6].

4- MLE: A maximum likelihood parameter trajectory
method, where the optimum number of mixture components
is [8].

To compare the quality of converted speech for two VC
methods, we employ speech quality preference test, in which
10 naive person select the superior converted speech by
considering the speech quality for all conversion pairs of
speakers (bdl, rms, clb, slt). To compare the identity of
converted speech, we utilize speaker individuality preference
test, in which the same conversion pairs are chosen and 10
naive person are asked to select converted speeches sounded
more similar to those of the target speaker.

In the MOS test, the three voice conversion methods (SSM,
ML-GV, SSM-GV) are evaluated for four selected conversion
pairs (bdl-rms, clb-slt, bdl-slt, slt-bdl) and 10 naive persons

Fig. 4.4.: The MSE of OOB samples in training phase for the RF method as a function of randomly

pick-up splitting variables.

Figure 4.4 shows the MSE of OOB samples in training for the RF method as a

function of mtry. As can be seen, the optimum number of randomly pick-up splitting

variables is eight, which was used as the default value in our application.

Figure 4.5 shows the MSE of OOB samples in training for the DRF method as

a function of mtry. Because the input dimension of the DRF method is 3P , in our

application 72, mtry varies from 1 to 72. As can be seen, the optimum number of

randomly pick-up splitting variables is 12, which is half of the default value in our

application. So, as suggested in [48], we tried the default value, half the default value,

and twice the default value for the proposed methods, and selected the best based on

the MSE of the OOB samples in training.
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Fig. 2: The MSE of OOB samples in training for the RF method as a
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optimum number of randomly pick-up splitting variables is
eight, which is the default value in our application.

Fig. 2 shows the MSE of OOB samples in training for
the DRF method as a function of mtry . Note that since the
input dimension of the DRF method is 3P , in our application
72, mtry varies from 1 to 72. As can be seen, the optimum
number of randomly pick-up splitting variables is 12, which
is half of the default value in our application. So, we suggest,
as [20], to try the default value, half of the default, and twice
the default value for the proposed methods, and select the
best based on the MSE of the OOB samples in training.

To compare the proposed method with MLE [8] and
JDGMMD [6] objectively, we use the MCD criterion as

MCD [dB] =
10

ln10

vuut2
24X

p=1

(y(p) � by(p))2, (13)

where by(p) and y(p) are the pth MCC of the converted and
target speaker, respectively.

Fig. ?? demonstrates the comparison of the MCD of the
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Fig. 3: The MSE of OOB samples in training for the DRF method as a
function of randomly pick-up splitting variables.

proposed RF and DRF with those of the MLE [8] and the
JDGMMD [6] as a function of number of training sentences.
Note that all methods utilized the optimum parameter which
is obtained based on the MCD for the MLE and the JDG-
MMD and based on the MSE for the RF and the DRF. As can
be seen, our proposed DRF method outperforms the proposed
RF, the MLE and also the JDGMMD.

C. Subjective Evaluations
We compare the four following methods Subjectively:

1- RF (proposed): A random forest method, where the
optimum B, nodesize and mtry are 200, five and eight,
respectively.

2- DRF (previous): As RF, but each spectral-feature is
concatenated with adjacent frames

3- JDGMMD: A Joint Density Gaussian Mixture Model
with diagonal covariance matrix, where the optimum number
of mixture components is [6].

4- MLE: A maximum likelihood parameter trajectory
method, where the optimum number of mixture components
is [8].

To compare the quality of converted speech for two VC
methods, we employ speech quality preference test, in which
10 naive person select the superior converted speech by
considering the speech quality for all conversion pairs of
speakers (bdl, rms, clb, slt). To compare the identity of
converted speech, we utilize speaker individuality preference
test, in which the same conversion pairs are chosen and 10
naive person are asked to select converted speeches sounded
more similar to those of the target speaker.

In the MOS test, the three voice conversion methods (SSM,
ML-GV, SSM-GV) are evaluated for four selected conversion
pairs (bdl-rms, clb-slt, bdl-slt, slt-bdl) and 10 naive persons

Fig. 4.5.: The MSE of OOB samples in training phase for the DRF method as a function of randomly

pick-up splitting variables.

We used the MCD criterion to optimize the target spectral features division and

overlaps using 10 training sentences. To do that, we considered the four structures:

1) A DMRF model with two bands and overlap of five, centered at 10, i.e.HMin = 8

and LMax = 12, denoted as DMRF1.

2) A DMRF model with two bands and overlap of five, centered at 15, i.e.HMin =

13 and LMax = 17, denoted as DMRF2.

3) A DMRF model with two bands and overlap of nine, centered at 15, i.e.HMin =

11 and LMax = 19, denoted as DMRF3.

4) A DMRF model with two bands and overlap of five, centered at 20, i.e.HMin =

18 and LMax = 22, denoted as DMRF4.
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Table 4.1.: The MCD comparison between the four DMRF structures .

DMRF1 DMRF2 DMRF3 DMRF4

MCD (dB) 5.43 5.09 5.16 5.28

Table 4.1 shows the MCD comparison for four structures described above. As can

be seen, the DMRF with two bands with overlap of five centered at 15 is the optimum

model. Moreover, we compare objectively the proposed DMRF and the RF methods

with the Gaussian Process (GP) method [26].
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Fig. 4.6.: The MCD comparison of the proposed DMRF, the RF, and the GP method as a function

of number of training sentences.

Figure 4.6 demonstrates the MCD comparison of the proposed RF and the DMRF

with the GP [26] on 30 evaluation sentences as a function of number of training

sentences. Note that all methods used the optimum parameter which is obtained

based on the MCD for the GP and based on the MSE for the RF and the DMRF.

As can be seen, our proposed DMRF method outperforms the proposed RF, and the

GP.
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4.3.3 Subjective Evaluations

We compared subjectively the three following methods:

1) RF-GV (proposed): A random forest method, where the optimum B, nodesize

and mtry are 150, five and eight, respectively. The GV approach is employed as a

post processing step.

2) DMRF-GV (proposed): As RF, but two random forest models between the

augmented source and the multi-band target spectral features are estimated.

3) GP-GV: A Gaussian process method wih using the GV as a post processing

step [26].

We conducted Two subjective Mean Opinion Score (MOS) tests including speech

quality and speaker individuality tests, as described in 4.7. In both subjective evalu-

ations, 10 listeners were participated to score the 20 test sentences of each methods.

The average score of these three methods with 95% confidence interval are shown in

Figure 4.7. As depicted, the proposed DMRF-GV method achieves the highest score.
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Fig. 4.7.: MOS tests for the GP-GV, the proposed RF-GV and the proposed DMRF-GV methods.
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5. VOICE CONVERSION BASED ON A STATE SPACE

MODEL EMPLOYING GMM FOR STATE-VECTOR

SEQUENCE CONVERSION

In this chapter 1, we first review the fundamental of the Gaussian Mixture Model

(GMM) and the State Space Model (SSM), then discuss how we modify the SSM

to be employed as a mapping function in voice conversion systems. Experimental

evaluations are included at the end.

5.1 Conventional mapping functions

5.1.1 Gaussian Mixture Model

Consider xt and yt as the P-dimensional spectral features for source and target

speakers, respectively. The joint combination of these time-aligned spectral features

(zt = [xTt , yTt ]T ) is modelled by the following posterior probability [1]

P (zt|λ(z)) =
M∑

m=1

αmN (zt;µ
(z)
m ,Σ(z)

m ), (5.1)

, where m, M and αm indicate the mixture component index, number of mixture com-

ponents and the corresponding weight of the mth mixture component, respectively.

λ(z) is the GMM model consisting of weights, mean vectors and covariance matrices

for each mixture component. The estimated mean vector and the covariance matrices

are

µ(z)
m =


 µ

(x)
m

µ
(y)
m


 ,Σ(z)

m =


 Σ(xx)

m Σ(xy)
m

Σ(yx)
m Σ(yy)

m


 (5.2)

1some of the background discussion presented in this chapter was published in [29], c©2013 IEEE.
Passages of text are included in this chapter in accordance with IEEE copyright policy.
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where µ
(x)
m , Σ(xx)

m , µ
(y)
m and Σ(yy)

m are the mth mixture component mean vectors and

covariance matrices for the source and target speakers. Similarly, Σ(xy)
m and Σ(yx)

m are

the mth mixture component of source and target cross-covariance matrices.

Employing the MMSE criterion, the spectral feature is estimated as [1]

ŷt = E(yt|xt) =

∫
P (yt|xt,λ(z))ytdyt, (5.3)

where

P (yt|xt,λ(z)) =
M∑

m=1

P (m|xt,λ(z))P (yt|xt,m,λ(z)), (5.4)

and

P (m|xt,λ(z)) =
αmN (xt;µ

(x)
m ,Σ(xx)

m )
∑M

k=1 αkN (xt;µ
(x)
k ,Σ

(xx)
k )

(5.5)

P (yt|xt,m,λ(z)) = N (yt;µ
(y|xt)
m,t ,Σ(y|xt)

m ). (5.6)

Also, the conditional mean vector (µ
(y|xt)
m ) and covariance matrix (Σ(y|xt)

m ) are obtained

as

µ
(y|xt)
m,t = µy

m + Σ(yx)
m Σ(xx)

m

−1
(xt − µ(x)

m ), (5.7)

Σ(y|xt)
m = Σ(yy)

m −Σ(yx)
m Σ(xx)

m

−1
Σ(xy)
m . (5.8)

Consequently, Eq. (5.3) may be expressed as

ŷt =
M∑

m=1

P (m|xt,λ(z))µ
(y|xt)
m,t . (5.9)

5.1.2 State Space Model

The state space model, also referred to as a Linear Dynamical System (LDS)

(which can be utilized in both stationary and non-stationary settings) provides a

recursive solution for the linear optimum problem. Since each updated estimate is

obtained from the previous estimate and new data, it provides a recursive solution that

only needs to store the previous estimate. The SSM considers the inter-dependency

between consecutive frames employing the two following equations

ht = A ht−1 + wt, (5.10)
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xt = B ht + vt, (5.11)

where ht is a hidden K×1 state-vector, and K is the state-vector order. The state-

vector is the minimum essential set of parameters for describing the dynamical system

behavior and is generated by a first order Markov process (Eq. (5.10)), known as

the transition equation. xt is a P×1 spectral feature generated by a linear process

utilizing the current state-vector. Eq. (5.11) is known as the measurement equation.

A and B are K×K and P×K matrices representing the transition of the previous

state-vector to the current one and the conversion of current state-vector to the

observation, respectively. wt (state noise) and vt (observation noise) are zero-mean

random noises of dimensions K×1 and P×1 with covariance matrices Q and R of

dimension K×K and P×P , respectively. In the SSM, wt and vt are assumed to be

uncorrelated with each other and also with the initial state-vector. The initial state-

vector is presumed to have a normal distribution [56]. As a result, the state-vectors

are normally-distributed for all time instants.

The state-vector sequence (H = {ht|t = 1, 2, ..., N}) and the model parameters

(θ = {A,B,Q,R}) must be estimated. For estimation, the model parameters are

divided into two groups. First, θcom = {A,Q}, which models the transition between

adjacent state-vectors is assumed to be common between the two speakers. Second,

θdif = {B,R}, which indicates the speaker characteristics is assumed to be estimated

for each speaker. However, in the following sections, we demonstrate that this type

of grouping is not correct and propose an alternative.

Estimation of the SSM model parameters

In order to estimate the parameters of the SSM, the EM algorithm is employed. It

consists of two procedures, the E-step and the M-step. In the E-step, the conditional

expectations and covariances of state-vectors are estimated via the Kalman filtering

and smoothing algorithm [54]. In the M-step, model parameters are calculated by

using conditional expectation and covariance of the state-vector estimated in the
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previous E-step procedure. The EM algorithm alternates between the E-step and

the M-step until the difference between the two consecutive log-likelihoods is smaller

than a determined threshold or the number of iterations exceeds a specified number.

To obtain the following equations, the partial derivative of the log-likelihood is

taken with respect to each of the model parameters, and then equated to zero in the

M-step [54], [57]

Â = (
N∑

t=2

E{ht hTt−1}).(
N∑

t=2

E{ht−1 hTt−1})
−1
, (5.12)

Q̂ =
1

N − 1

N∑

t=2

E{(ht − Â ht−1)(ht − Â ht−1)
T}, (5.13)

B̂ = (
N∑

t=1

E{xt ht
T}).(

N∑

t=1

E{ht ht
T})−1, (5.14)

R̂ =
1

N

N∑

t=1

E{(xt − B̂ ht)(xt − B̂ ht)
T}. (5.15)

Note that X = {x1,x2, ...,xN} is observed, so only E{ht}, E{ht hTt }, E{ht hTt−1}
must be estimated in the E-step.

This E-step is decomposed into two procedures: forward recursion and backward

recursion. The forward recursion, also known as Kalman filtering, is further divided

into two steps: a time update and a measurement update. The time update equations,

also known as predictor equations, obtain prior estimates of the mean vector and co-

variance matrix of the state-vector for the next time instant before the measurements

are considered. This step is described by the following equations [55], [58],

ĥt|t−1 = Â ĥt−1|t−1, (5.16)

Σt,t|t−1 = Â Σt−1,t−1|t−1 Â
T

+ Q̂. (5.17)

The measurement update equations, also known as corrector equations, obtain

posterior estimates of the mean vector and covariance matrix of the state-vector by
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incorporating the observed feature-vector up to the current time instant, into the

prior estimates as

Ft = Σt,t|t−1 B̂
T

(B̂ Σt,t|t−1 B̂
T

+ R̂)
−1
, (5.18)

ĥt|t = ĥt|t−1 + Ft (xt − B̂ ĥt|t−1), (5.19)

Σt,t|t = (I− Ft B̂) Σt,t|t−1, (5.20)

Σt,t−1|t = (I− Ft B̂)Â Σt−1,t−1|t−1, (5.21)

where ĥt|t−1 and Σt,t|t−1 are the prior estimates of the mean vector and covariance

matrix of the state-vector, respectively. Similarly, ĥt|t and Σt,t|t are the posterior

estimates of the mean and covariance of the state-vector, respectively. Σt,t−1|t is

the posterior estimate of the cross-covariance matrix of the state-vector. Eq. (5.18)

defines a parameter (Ft), known as the forward Kalman gain which connects the

parameters of Eq. (5.11) to those of Eq. (5.10). This gain is employed to obtain the

posterior estimates of the mean and covariance matrix of the state-vector.

In the Kalman smoothing, the mean vector and covariance matrix of the state-

vector at time t are estimated given the observations for all time instants. Since the

smoother uses more observations than the forward Kalman filtering for its estimation,

the precision of its estimate is preferred to that of the forward Kalman filtering.

Smoothers are generally divided into three groups: fixed-interval smoothers, fixed-

point smoothers and fixed-lag smoothers [59]. Among these, we employ the fixed-

interval smoothers in our application because of its superior estimate of the state-

vector sequence for offline processing. This backward recursion is described by the

following equations [55],

Gt = Σt−1,t−1|t−1 Â
T

Σ−1t,t|t−1, (5.22)

ĥt−1|N = ĥt−1|t−1 + Gt(ĥt|N − ĥt|t−1), (5.23)

Σt−1,t−1|N = Σt−1,t−1|t−1 + Gt(Σt,t|N −Σt,t|t−1)G
T
t , (5.24)

Σt,t−1|N = Σt,t−1|t + (Σt,t|N −Σt,t|t)Σ
−1
t,t|t Σt,t−1|t. (5.25)
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The backward Kalman gain (Gt) is defined in Eq. (5.22), connecting the poste-

rior covariance matrix of the state-vector at the previous time instant to the prior

covariance matrix state-vector at the current time instant. This gain also connects

the forward and backward estimates of the mean vector and covariance matrix of the

state-vector as defined in Eq. (5.23 - 5.25).

Finally, the desired parameters of the M-step are derived as

E{ht} = ĥt|N , (5.26)

E{ht ht
T} = Σt,t|N − ĥt|N ĥ

T

t|N , (5.27)

E{ht hTt−1} = Σt,t−1|N − ĥt−1|N ĥ
T

t−1|N . (5.28)

Therefore, the EM algorithm used for SSM may be summarized in the following

four steps:

Step 1: Initialize the model parameters θ(0), set the maximum number of itera-

tions (itermax) and threshold (η), and calculate the initial likelihood (L(0)).

Step 2: (E-step) Increase the iteration number by one and compute E{ht},
E{ht ht

T}, E{ht hTt−1} for t = 1, 2, ..., N by using the Kalman Filtering and Smooth-

ing algorithm (Eqs. (5.16-5.28)).

Step 3: (M-step) Re-estimate the model parameters θ(i) = {A(i),Q(i),B(i),R(i)}
using the estimated expectations from Step 2 (Eqs. (5.12-5.15)) and update the like-

lihood (L(i)) using the new estimated model parameters.

Step 4: If |L(i) − L(i−1)|< η, or i > itermax, stop, else go to Step 2.

Voice conversion based on a state space model

The SSM was applied for the first time in voice conversion in 2009 [23]. Since then,

many papers have appeared to further investigate this topic such as [54], [55]. This



44

method has two major phases: training and conversion. In the training phase, the

source and target spectral features are first time aligned using the DTW, resulting in

X = {x1,x2, ...,xN} and Y = {y1,y2, ...,yN}, respectively. Then the model parame-

ters (θ̂
x

= {Âx
, B̂

x
, Q̂

x
, R̂

x}) and state-vector sequence (Ĥ
x

= {ĥx

1|N , ĥ
x

2|N , ..., ĥ
x

1|N})
for the source speaker are estimated using the EM algorithm. Next the target state-

vector sequence are assumed to be the same as the source , i.e. Ĥ
x

= Ĥ
y

and therefore

the parameters in Eq. (5.10) are tied, i.e. θ̂
x

com = θ̂
y

com = {Â, Q̂}. Finally, the re-

maining model parameters for the target speaker θ̂
y

dif = {B̂y
, R̂

y} are obtained using

Eqs. (5.14 - 5.15). In the conversion phase, the state-vector sequence for the source

speaker (Ŝ
x

= {ŝx1|N , ŝx2|N , ..., ŝx1|N}) is estimated using the source model parameters

θ̂
x

(estimated in the training phase) in the E-step of the EM algorithm. Finally, the

converted spectral feature is obtained as

ŷt = B̂
y
ŝxt . (5.29)

In the next section, we explain the limitations of the SSM-based voice conversion and

then describe our proposed method.

5.2 The Proposed Method

In previous SSM-based voice conversion systems [23], [54], [29], the state-vector

sequence (H) and model parameters (θ = {A,B,Q,R}) are estimated for the source

speaker in the training procedure, but for the target speaker, it is assumed that the

state-vector sequence and θcom = {A,Q} are the same as those of the source speaker.

The reason behind this tying is the assumption that the state-vector sequence only

carries the information related to the speech signal.

To better understand the information carried by the state-vector sequence, we

conducted an identification test. In this experiment, we train two identification sys-

tems for each speaker: one based on the spectral feature and the other based on the

state-vector sequence, as shown in Fig. 5.1. In the test step as depicted in Fig. 5.2,

the MCCs are first extracted. Then the Log Likelihood (LLMCC) for each speaker



45

is calculated and the maximum is selected as the identified speaker. Similarly, the

state-vector sequence for each speaker are estimated using the extracted MCCs. Next

the Log Likelihood (LLstate) for each speaker is calculated, and the maximum is con-

sidered as the identified speaker. To evaluate this systems, a 10-fold cross validation

Speech
Database

SSM

GMM for
 MCC

Analysis & 
Feature

Extraction

GMM for 
State-vector
Sequence

Test

Sentence

SSM Model 

Speaker 1

SSM Model 

Speaker 2

SSM Model 

Speaker M

MGC

extraction

Speaker 1 States

GMM Model 

Speaker 2 States

GMM Model 

Speaker M States

GMM Model 

Speaker 1 MGCs

GMM Model 

Speaker 2 MGCs

GMM Model 

Speaker M MGCs

GMM Model 

M
ax

M
ax

Fig. 5.1.: Block diagram of the proposed training speaker identification system.
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Fig. 5.2.: Block diagram of the proposed test speaker identification system.

using 10 training sentences and 90 evaluation sentences is employed for four speakers;

two male speakers, bdl and rms ; and two female speakers, clb and slt. The results
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with 95% confidence interval is shown in the table 5.1. As can be seen, the GMM

model for state-vector sequence performs as good as the GMM model for spectral

features.

Table 5.1.: Identification rate for each speaker with 95% confidence interval using the GMM with

16 diagonal mixture components.

bdl rms slt clb

DecisionMCC 100± 0.00% 100± 0.00% 100± 0.00% 100± 0.00%

DecisionState 100± 0.00% 100± 0.00% 100± 0.00% 99.9± 1.58%

The state-vector sequence tying results in two deficiencies:

1- Ignoring the dynamics of the target speech utterances.

2- Embedding the source speaker identity in the transitions matrix of the target

speaker (By), which supposedly should have represented the target speaker only.

To analyze the first issue, we train two SSMs independently for the source and

target speakers in the training step and calculate the converted spectral features by

multiplying By and the state-vector sequence of source speaker in conversion step

(SSM-INDEP in Table 5.2). To show the accuracy of the converted spectral features,

the MCD between the converted and target spectral features is calculated. Table

5.2 shows that if there is no connection between the state-vector sequence in the

conversion step and By, the results are not objectively desirable. So, another rea-

son behind tying is relating the source state-vector sequence of the test procedure to

By. To consider this connection and also address the two problems resulting from

tying the state-vector sequence, we propose to transfer the source speaker information

({Ax,Qx} and Hx) into the target speaker SSM model instead of random initializa-

tion in the training phase and convert the state-vector sequence of the source speaker

using GMM in the conversion phase as detailed in the next section. The MCD scores
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in table 5.2 show that this SSM-GMM approach not only leads to a valid conversion

compared to the SSM-INDEP, but also decreases the distortion (compared to the

SSM), resulting in an increase in the identity of the converted speech signal.

Table 5.2.: The MCD comparison with 10 training sentences.

SSM-INDEP SSM SSM-GMM

MCD (dB) 8.82 5.5 5.3

5.2.1 State-vector conversion of the SSM-based VC

As described in previous section, the state-vector sequence includes both the

speech and speaker information which leads us to convert the source state-vector

sequence to that of the target speaker. To do that, we first train a SSM for the

source speaker, resulting in θ̂
x

= {Âx
, B̂

x
, Q̂

x
, R̂

x} and Ĥ
x

= {ĥx

1 , ĥ
x

2 , ..., ĥ
x

N}.
Then we transfer the source speaker information ({Âx

, Q̂
x} and Ĥx) into the target

speaker SSM model instead of random initialization and estimate the model param-

eters θ̂
y

= {Ây
, B̂

y
, Q̂

y
, R̂

y} and state-vector sequence Ĥ
y

= {ĥy

1 , ŷ
y
2 , ..., ŷ

y
N} for

target speaker. Next, we estimate a GMM model (λ(z)) for the joint combination of

source and target state-vector sequence including the corresponding weight of the mth

mixture component (αm), the mean vector (µ
(y|x)
m ) and covariance matrix (Σ(y|x)

m ).

In the conversion phase, we first estimate the state-vector sequence (Sx = {sx1|N , sx2|N , ..., sx1|N})
using source speaker model parameter (θ̂

x
) in the E-step of the EM algorithm. Then,

we convert the estimated state-vector sequence Sx using the GMM model (estimated

in the training phase) in Eq. (5.9) as

ŝct =
M∑

m=1

P (m|sxt ,λ(z))µ
(hy
t |hx

t )
m,t . (5.30)
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Finally, we calculate the converted spectral features using the converted state-vector

sequence (ŝct) and the target model parameter (θ̂
y
) as

ŷt = B̂
y

ŝct . (5.31)

The training and conversion procedures of the proposed method are depicted in

Fig. 5.3. To solve the over-smoothing deficiency of the SSM, we employ the global
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Fig. 5.3.: Block diagram of the proposed method.

variance modification as a post-processing step. Because different state sequences of

each speaker are highly correlated with each other and also with those of the other

speaker (as shown in fig. 5.4), we employ the GMM mapping function with full

covariance matrices (Σ(xx)
m , Σ(xy)

m ,Σ(yx)
m , Σ(yy)

m ) in our application.

To show the dependency of the state-vector sequence on the speaker and the

speech signal, we trained two SSMs independently for each of the source and target

speakers with the same training speech utterances. Three dimensions of the state-

vector sequence (labeled here as state sequences) for the source and target speakers

are plotted in Fig. 5.5. As can be seen, when the training sentences are the same and

the speakers are different, the state sequences of the SSMs are different which means

they also depend on the speakers.
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Fig. 5.4.: The scatter plot of the state sequences for 10 training sentences.
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Fig. 5.5.: Examples of the source, target and converted state sequences with 10 training sentences.

In Fig. 5.5, the state sequences of source, target and converted speech are depicted.

As can be seen, the converted state sequences are closer to those of the target speaker

than the source speaker. To quantify the differences between source, target and

converted state sequences, we define a normalized distortion measure in dB as

d = 10log10(
‖hy − h‖2
‖hy‖2

). (5.32)

When the distortion is measured between the source h and the target hy state se-

quences, we denote it as dxy. Similarly, when the distortion is measured between the

converted h and the target hy state sequences, we denote it as dcy. The results of
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these measures for the examples of Fig. 5.5 are depicted in table 5.3, which verifies

that converting the state-vector narrows the gap between the source and the target

state-vector sequences.

Table 5.3.: The results of the distortion between target, source and converted state sequences for

Fig. 5.5.

4thstate 15thstate 24thstate

dxy 5.63 2.61 3.16

dcy -3.9 -2.64 -1.37

5.3 Experimental evaluations

In the objective evaluations, the state-vector order (K) and the number of mixture

components (M) are optimized by using the MCD between the converted and target

spectral features. Next, we subjectively compare the proposed SSM-GMM-GV to the

GP-GV [26] and the SSM [29].

5.3.1 Experiment Setup

To evaluate the experiments, we used the CMU ARCTIC database [45] sampled

at 16 kHz. Four speakers were chosen consisting of two male speakers, bdl and rms,

and two female speakers, clb and slt. A parallel training database was constructed by

randomly selecting 10 sentences subset. The number of test and evaluation sentences

used were 20 and 30, respectively. To analyze and also synthesize the speech signal,

the STRAIGHT algorithm [44] was used, in which the frame length and frame shift

were set to 40 ms and 5 ms. The spectral features (MCC) order (P) for all methods

was set to 24. To address the over-smoothing of all methods, the GV approach was

used, where the number of conjugate gradient algorithm iterations for maximizing
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the likelihood function of GV was experimentally set to 10. The parameter of the

SSM [29] is the state-vector order (K) and the parameters for the proposed SSM-

GMM are the state-vector order (K) and the number of mixture components (M).

The optimal parameters for the mapping functions are usually determined based on

objective measures such as Mel cepstral distortion. To convert pitch frequency in the

conversion phase, the method of [29] was used.

5.3.2 Objective Evaluations

The optimum parameters (K and M) of the proposed method (SSM-GMM) were

determined by employing the MCD. Figure 5.6 illustrates the average MCD of the
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Fig. 5.6.: The MCD of the proposed SSM-GMM method as a function of state-vector order (K) for

three different M (2, 4, 8).

proposed method in terms of state-vector order (K) with three mixture components

(1, 2, 4) using 10 training sentences. Note that we use the GMM model with full

covariance matrices and to prevent over-fitting, the maximum number of mixture

components was set to 4. As can be seen, the MCD was decreased significantly

for all M when K became greater than the spectral feature order (P=24) and the

optimum parameter set was found to be M=2 and K=30. The average MCD for
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the proposed SSM-GMM, the SSM [29], and the GP [26] as a function of number of

training sentences are shown in Fig. 5.7.
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Fig. 5.7.: The MCD comparison of the proposed SSM-GMM, the SMM, and the GP as a function

of number of training sentences.

As can be seen, the GP method outperforms the SSM-based method with highly

limitted training data because of its robustness to overfitting. The proposed SSM-

GMM method decreases the MCD by approximately 0.2 dB in comparison to the

SMM [29]. This improvement is a consequence of considering the dynamics of the

target speech utterances and also avoiding having the source speaker identity em-

bedded in the transition matrix of the target speaker. The proposed SSM-GMM

outperforms the GP in most cases.

5.3.3 Subjective Evaluations

We performed subjective evaluations to compare the three following methods:

1) SSM-GMM-GV (proposed): A SMM method, where the state-vector order (K)

was set to 30. The state-vector was converted by a GMM with two mixture com-

ponents (M=2) with full covariance matrices, and the GV was employed as a post
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processing step.

2) SSM-GV: A SSM , where the state-vector order (K) equals 50, and the GV was

employed as a post processing step [29].

3) GP-GV: A Gaussian process method using the GV as a post processing step [26].

We conducted two subjective Mean Opinion Score (MOS) tests: speech quality

and speaker individuality. In both subjective evaluations, 10 listeners participated to

score the 20 test sentences for each methods.

Figure 5.8 shows the comparison between the GP-GV [26], the SSM-GV [29], and

the proposed SSM-GMM-GV using 10 training sentences, in terms of speech quality

and speaker individuality. As can be seen, converting the state-vector sequence leads

to an improvement in both the speech quality and speaker individuality. Moreover,

the proposed method outperforms the GP-GV method in presence of limited training

data.



54

M - M M - F Total
0

0.5

1

1.5

2

2.5

3

3.5

M
O

S

GP-GV SSM-GV SSM-GMM-GV

(a) Quality assesment as measured by Mean Opinion Score (MOS).

M - M M - F Total
0

0.5

1

1.5

2

2.5

3

3.5

M
O

S

GP-GV SSM-GV SSM-GMM-GV

(b) Identity assesment as measured by Mean Opinion Score (MOS).

Fig. 5.8.: MOS tests for the GP-GV, the SSM-GV and proposed SSM-GMM-GV methods.
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6. VOICE CONVERSION BASED ON A DEEP

GAUSSIAN PROCESS

Deep Gaussian Processes (DGPs) are multilayer hierarchical generalizations of Gaus-

sian processes (GPs). In a sense, DGPs are analogous to artificial neural networks

with multiple, infinitely wide hidden layers [60], [62]. In a DGP, data are modeled

as the output of a multivariate GP where the inputs are governed by another GP.

Intrestingly, the overall model is a not Gaussian process anymore [61]. In other

words, DGPs can be interpreted as two equivalent Neural Network (NN) architec-

tures: The first being a NN with fixed nonlinearities and the second being a NN with

GP-distributed nonlinearities as depicted in figure 6.1 [63]. In a neural network with

fixed nonlinearities, the activation function of the lth layer units are obtained as

h(l)(x) = σ
(
b(l) +

[
V

(l)

W
(l−1)
]
h

(l−1)

(x)
)
, (6.1)

where σ is the sigmoid nonlinear function, b(l) is the bias vector of the lth layer, V (l)

is the weight matrix of the lth layer, and W (l−1) is the weight matrix connecting the

hidden unit activations and output vector of the lth layer (h(l−1) and f (l−1)). We start

this chapter with the description of the Gaussian process, then explain the Deep

Gaussian Process (DGP), and conclude with how we apply it in voice conversion

systems.

6.1 Gaussian Process

Gaussian Processes (GPs) are nonparametric distributions over continuous func-

tions [62]. Formally, a GP is defined as a collection of random variables where some

finite subset of them has a joint Gaussian distribution [61]. This definition imposes

a consistency requirement or marginalization property as it was often called. More
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1.1 Relating deep neural networks to deep GPs 5

A neural net with fixed activation functions corresponding to a 3-layer deep GP
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Figure 1.2: Two equivalent views of deep GPs as neural networks. Top: A neural network
whose every other layer is a weighted sum of an infinite number of fixed hidden units,
whose weights are initially unknown. Bottom: A neural network with a finite number
of hidden units, each with a di�erent unknown non-parametric activation function. The
activation functions are visualized by draws from 2-dimensional GPs, although their
input dimension will actually be the same as the output dimension of the previous layer.

capacity to learn an appropriate representation will be limited in comparison to more
flexible models such as deep neural networks or deep GPs.

1.1.4 Two network architectures equivalent to deep GPs

There are two equivalent neural network architectures that correspond to deep GPs: one
having fixed nonlinearities, and another having GP-distributed nonlinearities.

Fig. 6.1.: Two equivalent network architectures of a DGP [63].

specifically, the property implies that if the GP specifies (y1, y2) ∼ N(µ,Σ), then it

will also specify y1 ∼ N(µ1,Σ11), where Σ11 is the relevant sub matrix of Σ [65]. In

the traditional inference setting, the goal is to estimate the latent function f = f(x)

for generating output Y ∈ <N×D given input X ∈ <N×Q.

Suppose the output data point yn is generated as [60]

yn = f(xn) + εn, ε ∼ N(0, σnI), (6.2)

where f is drawn from a Gaussian process and ε is independent Gaussian noise. The

mean µ(x) and the covariance function k(x,x
′
) of a real process f(x) are defined as

µ(x) = E[f(x)],

k(x, x
′
) = E[(f(x)− µ(x))(f(x

′
)− µ(x

′
))]. (6.3)
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Thus the Gaussian process may be written as

f(x) ∼ =℘(µ(x), k(x, x
′
)). (6.4)

It is common in practice to let the mean function equal zero by intitially sub-

stracting the empirical mean, resulting in y ∼ =℘(0, k(x, x
′
)) [66]. For the covariance

functions, the squared exponentials (SE) are commonly used [66]

k(x, x
′
) = σ2 exp

(
− 1

2l2

∣∣∣x− x′
∣∣∣
2
)
, (6.5)

where the variance σ2 and length-scale l are often referred to as hyper parameters, and

are obtained from training data. The marginal likelihood, which is the marginalization

over the function value f , is defined as [60]

p(y |X ) =

∫
p(y |f,X )p(f |X )df, (6.6)

where the prior and the factorized Gaussian are p(f |X ) ∼ N(0, K) and p(y |f,X ) ∼
N(f, σ2

nI), respectively. Therefore, the output may be obtained using the conjugate

gradient as given by [60]

ŷ = arg max log p(y|X) =

arg max(−1

2
yT (K + σ2

nI)−1y −−1

2
log
∣∣K + σ2

nI
∣∣− n

2
log 2π). (6.7)

6.2 Deep Gaussian Process

Deep Gaussian Processes (DGPs) use a hierarchical structure of Gaussian pro-

cesses, i.e the GP models the mapping between layers. The DGP is able to exploit

useful properties of GPs such as nonparametric modeling power and well calibrated

predictive uncertainty estimates [62]. For a given training set of N D-dimensional

input and observation pairs (xn, yn), the output of the DGP model for each of the L

layers is represented as

H l =




hl1,1 . . . hl1,Dl
...

. . .
...

hlN,1 · · · hlN,Dl


 , h

l
n,i = f l,i

(
hl−1n

)
, (6.8)
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where Dl is the number of node in layer l, N is the number of training data points,

f(.) is a latent function with GP prior, and hln,i is the output of the ith node in layer

l for nth data point. To decrease the notation complexity, we assume the outputs are

real-valued scalars and the dimension of the layer is equal to one, i.e. Dl ≥ 1 for all

L layers. In practice, the dimension of layers for intermediate and output layers are

greater than one and equal to the output dimension, respectively. Furthermore, a zero

mean independent GP prior is set over the mapping f l for each node in each of the

L layers and an i.i.d Gaussian noise is added at the output of each layer. Therefore,

the probabilistic representation of the DGP model can be written as

p
(
f l|θl

)
= gp

(
f l; 0,Kl

)
, l = 1, ..., L, (6.9)

p
(
hl|f l,hl−1, σ2

l

)
=

N∏

n=1

N
(
hln; f l

(
hl−1n

)
, σ2

l

)
, h0n = xn, (6.10)

p
(
y|fL,hL−1, σ2

L

)
=

N∏

n=1

N
(
yn; fL

(
hL−1n

)
, σ2

L

)
. (6.11)

The computation complexity of the DGP model is O(LN3), which is impractica-

ble in many large-scale datasets application. To decrease the computation complexity

to O(LNM2), the Fully Independent Training Conditional (FITC) approximation is

employed by defining a small set of M pseudo-points (inducing inputs) and their cor-

responding function values (inducing ouputs) for each layer l as zl−1 = (zl−11 , ..., zl−1M )T

and ul = (f l(zl−11 ), ..., (f l(zl−1M ))T , respectively. Furthermore, the location of pseudo-

points z can be chosen by optimising the approximate marginal likelihood to make it

closer to the original model. Therefore, the DGP-FITC model can written as [62]

p
(
ul|θl

)
= N

(
ul; 0,Kul,ul

)
, l = 1, ..., L, (6.12)

p
(
hl|ul,hl−1, σ2

l

)
=

N∏

n=1

N
(
hln; Cl

nu
l,Rl

n

)
, (6.13)

p
(
y|uL,hL−1, σ2

L

)
=

N∏

n=1

N
(
yn; CL

nuL,RL
n

)
, (6.14)
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where Cl
n = Khln,u

lK−1
ul,ul

and RL
n = Khln,h

l
n
− K hln,u

lK−1
ul,ul

Kul,hln
+ σ2

l I. Here the

function outputs index the covariance matrices, i.e. Kul,hln
define the covariance

between ul and hln, with inputs zl−1 and hl−1n , respectively. The output prediction

given a test input using the posterior distribution over inducing outputs can be written

as [62]

p (y∗|x∗,X, y) =

∫
p (u|X, y) p (y∗|u, x∗) du, (6.15)

p (u|X, y) = p (u)
N∏

n=1

p (yn|u,xn). (6.16)

Since the posterior distribution of inducing outputs is analytically intractable for more

than one layer in the DGP model, the following Stochastic Expectation Propagation

(SEP) approximation is used [62]

p
(
{ul}Ll=1|X,y

)
≈ q

(
{ul}Ll=1

)
∝

L∏

l=1

p
(
ul
)
g
(
ul
)N
, (6.17)

where g
(
ul
)

is the tied factor for layer l that can be interpreted as an average data

factor capturing the average effect of a likelihood term on the posterior [62]. For

efficiency, the probabilistic backpropagation approximation [62] is used for moment

computation in SEP. Next, we explain how we apply the DGP in voice conversion

system.

6.3 The proposed Method

To apply the Deep Gaussian Process (DGP) model in voice conversion, in the

training phase, we first align the spectral features of the source and target speakers

using the DTW algorithm [53] resulting in aligned spectral features of dimension

N × D, where N is the number of frames and D is the feature dimension. Next,

we train a DGP model on the aligned spectral features. In the conversion phase,

we obtain the converted spectral features by applying the DGP model, obtained in

the training phase, to the source spectral features. Since the proposed DGP method

is a frame-based statistical model, it suffers from the temporal discontinuity issue.
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Therefore, we propose to augment the spectral feature of adjacent frames to that of

the current frame.

Speaker identity information resides mostly in the spectrum bellow 4KHz, which

motivated us to explore using sub-band processing in the voice conversion as illus-

trated in Fig. 6.2. To do that, in the training phase, we first filter the source and

target speech data using complementary lowpass and highpass filters, followed by

spectral feature extraction. Then we do the time alignment of the lowpass source

spectral features with those of the target speakers and similarly perform alignment

between highpass source and target spectral features. Next we estimate two DGP

mapping functions between lowpass training data and between highpass training data,

resulting in DGP (L) and DGP (H), respectively. In the conversion phase, we filter the

data through the same lowpass and highpass filters, followed by extracting spectral

feature and employing the two estimated DGP models. Next, we synthesize the con-

verted lowpass and highpass spectral features and add the them together to obtain the

converted speech data. From now on, we call this method Sub-band Deep Gaussian

Process (SDGP).

Figure 6.3 shows the comparison between the SDGP converted spectrogram

and the target MCC spectrogram (where MCC features were extracted from the

STRAIGHT spectrum and time aligned with the converted MCC, and resynthesized

using the STRAIGHT algorithm). As shown in Fig. 6.3, the SDGP results in stronger

high frequency energy compared to the target spectrum. While the conversion worked

well in general, high frequency artifacts were audible. To address this, we employed

a modified center clipping post-processor defined by

s(t) =





x(t)− α, x(t) ≥ α

βx(t), |x(t)| < α

x(t) + α, x(t) ≤ −α

, (6.18)

where x(t) is the synthesized highpass signal, α is the clipping threshold, and β is a

constant. In our application, α was set to
√

max(x(t)) and β to 0.3.
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Fig. 6.2.: The block diagram of the proposed sub-band deep Gaussian process.

6.4 Experimental evaluations

In the objective evaluations, the number of layers (L) and the number of nodes in

layers (D) were optimized using the MCD between the converted and target spectral

features. Next, we compared the proposed DGP and SDGP methods to the Gaussian

Process (GP) method [26].



62

Fig. 6.3.: Comparison between the target and converted SDGP spectrograms.

6.4.1 Experiment Setup

To evaluate the experiments, the CMU ARCTIC database [45] sampled at 16

kHz was used. We chose four speakers consisting of two male speakers, bdl and rms,

and two female speakers, clb and slt. A parallel training database was constructed by

randomly selecting a set of 100 sentences.The number of test and evaluation sentences

were 30 and 50, respectively. To analyze and also synthesize the speech signal, the

STRAIGHT algorithm [44] was used, in which the frame length and frame shift were

set to 40 ms and 5 ms. The spectral feature (MCC) order (P) for all methods was

set to 24. To address the over-smoothing issue in all methods, the GV approach was

used, where the number of conjugate gradient iterations was experimentally set to 10.

The GP method didn’t require parameter tuning since it is a non-parametric method.

The optimal parameters for the proposed methods were determined using the MCD.

To convert pitch frequency in the conversion phase, the method described in [2] was

employed.

6.4.2 Objective Evaluations

The optimum parameters (L and D) of the proposed DGP method were deter-

mined by employing the MCD.
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Fig. 6.4.: The MCD of the proposed DGP method as a function of number of nodes in a layer (D)

for two different L (2, 3).

Figure 6.4 illustrates the average MCD of the proposed DGP method in terms of

number of nodes in a layer (D) with two different layer numbers (L) using 100 training

sentences. As can be seen, the optimum parameter set is found as L=2 and D=8.

The average MCD for the proposed DGP method compared to the GP method [26]

as a function of number of training sentences is plotted in Fig. 6.5.
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Fig. 6.5.: The MCD comparison of the proposed DGP method, and the GP method as a function

of number of training sentences.
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As can be seen, the proposed method performs as good as the GP method with

30 training sentences, and outperforms the GP method as the number of training

sentences is increased. This improvement may be attributed to the higher order

modeling capability of the DGP method.

6.4.3 Subjective Evaluations

We performed subjective evaluations to compare the three following methods.

1) DGP-GV (proposed): A DGP method with two layers and 8 nodes in each

layer, and the GV method was employed as a post processing step.

2) SDGP-GV (proposed): A sub-band DGP method with two layers and 8 nodes

for low channel and two layers with 5 nodes for high channel, and the GV method

was employed as a post processing step.

3) GP-GV: A Gaussian process method using the GV as a post processing step [26].

We conducted two subjective Mean Opinion Score (MOS) tests: speech quality

and speaker individuality, as described in 2.5.2. In both subjective evaluations, 10

evaluators were participated.

Figure 6.6 shows the comparison between GP-GV, the proposed DGP-GV, and

the proposed SDGP-GV using 100 training sentences for 30 test sentences, in terms

of speech quality and speaker individuality. As can be seen, the proposed DGP-GV

method outperforms the GP+GV method, while the SDGP-GV method significantly

outperforms both methods, specially in terms of speech quality.
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Fig. 6.6.: MOS tests for the GP-GV, the proposed DGP-GV and the proposed SDGP-GV methods.
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7. SUMMARY REMARKS, CONCLUSIONS, AND

FUTURE WORK

The main focus of this thesis was to investigate new statistical mapping functions

which the parameters are derived from parallel speech data. A challenge is acquiring

enough parallel data to achieve good performance in real world application. In ad-

dition, as mentioned in previous chapters, is addressing the problems of over-fitting,

over-smoothing, and temporal discontinuity.

In this thesis, we have proposed four new approaches for spectral conversion in

voice conversion: Mixture Density Network (MDN); Dynamic Multi-band Random

Forest (DMRF); State Space Model employing GMM for state-vector sequence con-

version (SSM-GMM); and Sub-band Deep Gaussian Process (SDGP). The proposed

MDN method which estimates the GMM parameters using an ANN instead of the

EM algorithm, results in a more accurate mapping function by taking advantage

of nonlinear capability of the ANN method. However, this approach suffers from

the over-smoothing and temporal discontinuity problems. To address these issues,

we used a spectral trajectory mapping function along with dynamic features besides

the static ones and employed global variance modifications. Objective results show

that the proposed MDN method achieves a lower MCD compared with the MLE

and JDGMM methods. Preference test scores indicate that the proposed MDN-GV

method yields better speech quality and closer identity in the converted utterances

compared to the MLE-GV, and the JDGMM-GV.

The proposed random forest method is robust to the over-fitting problem by re-

ducing the prediction variance, while capturing the information accurately. However,

the proposed RF method suffers from the temporal discontinuity problem, which

originates from the frame-based nature of the random forest regression. To address

this, we augmented the source spectral features with those of the previous and next
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frames. In addition, we proposed to estimate two random forest models, in the train-

ing phase, between the source and the multi-band target spectral features, where the

overlapped bands are combined in the conversion phase using a Kaiser window to em-

bed the spectral continuity. Experimental results show the improved performance of

the proposed MDRF method compared to the RF and GP methods in both objective

and subjective evaluations.

As demonstrated earlier, the state-vector sequence is dependent on both the speech

utterance and the speaker identity. The difficulty with tying the state-vector sequence

of the source speaker to that of the target speaker, is that the identity of the source

speaker is embedded into the transition matrix of the target speaker and the dynamics

of target speech utterances are ignored. To address these problems, we proposed to

transfer the SSM of the source speaker into the target model estimation and also esti-

mate a GMM model between the state-vector sequences of source and target speakers

in the training phase. Since different state sequences are highly correlated, we em-

ployed the GMM with full covariance matrices. As demonstrated by experimental

results, the proposed SSM-GMM method significantly outperforms the SSM, and the

GP method in terms of the speech quality and speaker individuality.

As we mentioned earlier, the speaker identity information resides mostly below

fs/4 in the spectrum, where fs is the sampling frequency. This information moti-

vated us to apply the DGP method in a sub-band structure, with complementary

lowpass and highpass Kaiser filters. This proposed approach performs well in the low

frequency spectral region compared to the proposed DGP, but introduces the high

frequency artifacts. To address this issue, we employed a modified center clipping

operator on the synthesized highpass signal as a post-processing step. Experimen-

tal evaluations show the improved performance of the proposed SDGP-GV method

compared to the proposed DGP-GV and the GP-GV methods.

Next we compared the four proposed approaches:
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1) MDN-GV (Chapter 3): A mixture density network with GV post-processing

step.

2) DMRF-GV (Chapter 4): An approach where two random forest models are

estimated between the augmented source and the multi-band target spectral features

with GV post-processing.

3) SSM-GMM-GV (Chapter 5): A state space model, employing a GMM for state-

vector sequence conversion and GV post processing.

4) SDGP-GV (Chapter 6): A sub-band DGP method with GV post processing.

7.0.1 Experiment Setup

The CMU ARCTIC database [45] sampled at 16 kHz was employed as the database

for the evaluations. We selected two speakers including one male speaker, bdl, and

one female speaker, slt. We constructed two parallel training databases by randomly

selecting a set of 10 and 100 sentences. Ten additional sentences were chosen as the

test sentences for all evaluations. The STRAIGHT algorithm [44] with frame length

of 40 ms and frame shift of 5 ms was used as the analysis/synthesis system. The

feature-vector (MCC) order of all methods was set to 24.

7.0.2 Objective Evaluations

We use the MCD criterion to compare objectively the four proposed methods. The

result for 10 and 100 training sentences are shown in Table 7.1. As can be seen, the

DGP method perform poorly with limited training data. However, for 100 training

sentences, the DGP method performs as good as the other methods in terms of the

MCD. The spectrogram comparison of these methods is shown in Fig. 7.1.
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Table 7.1.: The MCD comparison between the four proposed methods using 10 and 100 training

sentences.

MCD MDN DMRF SSM-GMM DGP

10 training sentences 5.08 5.09 5.16 5.55

100 training sentences 4.85 4.81 4.74 4.8

Fig. 7.1.: Comparison between the MDN-GV, the DMRF-GV, the SSM-GMM-GV, the SDGP-GV,

and the target MCC spectrograms.

7.0.3 Subjective Evaluations

We conducted four subjective Mean Opinion Score (MOS) tests including speech

quality and speaker individuality tests using 10 and 100 training sentences. In all

subjective evaluations, 10 listeners participated to score 10 converted samples of all
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methods for the male-to-female (M-F) conversion pair. The average score of these

four methods with 95% confidence interval are shown in Fig. 7.2. As depicted in

Fig. 7.2(a), the proposed DMRF-GV and SSM-GMM-GV methods achieve the highest

score in terms of speech quality, while the proposed MDN-GV performs as good as the

two mentioned methods in terms of speaker individuality with 10 training sentences.

Fig. 7.2(b) shows the superior performance of the proposed SDGP-GV compared to

the other proposed methods in terms of speech quality, while all methods perform

almost the same in terms of speaker identity with 100 training sentences.

7.0.4 Future Work

Much work remains to be done toward creating robust VC systems of high quality.

We suggest the following ideas for consideration in the future.

1) Modify the proposed approaches to be applicable to non-parallel database.

2) Modify the proposed approaches so that the spectrum can be used as the input

instead of the MCC features.

3) Employ the bagging technique with other low-biased mapping functions to reduce

the variance estimation.

4) Explore other ensemble mapping functions for spectral conversion.

5) Explore other complementary filters in the proposed sub-band structure to improve

the quality and identity of converted speeches.
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Fig. 7.2.: MOS tests for the proposed MDN-GV, proposed DMRF-GV, the proposed SSM-GMM-GV

and the proposed SDGP-GV methods.
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