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ABSTRACT

Arora, Viplove Ph.D., Purdue University, December 2019. A Generalized Framework
for Representing Complex Networks. Major Professor: Mario Ventresca.

Complex systems are often characterized by a large collection of components in-

teracting in nontrivial ways. Self-organization among these individual components

often leads to emergence of a macroscopic structure that is neither completely regu-

lar nor completely random. In order to understand what we observe at a macroscopic

scale, conceptual, mathematical, and computational tools are required for modeling

and analyzing these interactions. A principled approach to understand these complex

systems (and the processes that give rise to them) is to formulate generative models

and infer their parameters from given data that is typically stored in the form of

networks (or graphs). The increasing availability of network data from a wide vari-

ety of sources, such as the Internet, online social networks, collaboration networks,

biological networks, etc., has fueled the rapid development of network science.

A variety of generative models have been designed to synthesize networks having

specific properties (such as power law degree distributions, small-worldness, etc.),

but the structural richness of real-world network data calls for researchers to posit

new models that are capable of keeping pace with the empirical observations about

the topological properties of real networks. The mechanistic approach to modeling

networks aims to identify putative mechanisms that can explain the dependence,

diversity, and heterogeneity in the interactions responsible for creating the topology

of an observed network. A successful mechanistic model can highlight the principles

by which a network is organized and potentially uncover the mechanisms by which

it grows and develops. While it is difficult to intuit appropriate mechanisms for

network formation, machine learning and evolutionary algorithms can be used to
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automatically infer appropriate network generation mechanisms from the observed

network structure.

Building on these philosophical foundations and a series of (not new) observations

based on first principles, we extrapolate an action-based framework that creates a

compact probabilistic model for synthesizing real-world networks. Our action-based

perspective assumes that the generative process is composed of two main components:

(1) a set of actions that expresses link formation potential using different strategies

capturing the collective behavior of nodes, and (2) an algorithmic environment that

provides opportunities for nodes to create links. Optimization and machine learning

methods are used to learn an appropriate low-dimensional action-based representation

for an observed network in the form of a row stochastic matrix, which can subsequently

be used for simulating the system at various scales. We also show that in addition

to being practically relevant, the proposed model is relatively exchangeable up to

relabeling of the node-types.

Such a model can facilitate handling many of the challenges of understanding real

data, including accounting for noise and missing values, and connecting theory with

data by providing interpretable results. To demonstrate the practicality of the action-

based model, we decided to utilize the model within domain-specific contexts. We

used the model as a centralized approach for designing resilient supply chain networks

while incorporating appropriate constraints, a rare feature of most network models.

Similarly, a new variant of the action-based model was used for understanding the

relationship between the structural organization of human brains and the cognitive

ability of subjects. Finally, our analysis of the ability of state-of-the-art network mod-

els to replicate the expected topological variations in network populations highlighted

the need for rethinking the way we evaluate the goodness-of-fit of new and existing

network models, thus exposing significant gaps in the literature.
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1. INTRODUCTION

Many real-world systems can be understood as complex systems1 comprising of a

number of individual components interacting in a nontrivial fashion [1, 2]. Self-

organization among these individual components often leads to emergence of a macro-

scopic structure that is neither completely regular nor completely random. While the

study of complex systems has multiple historical roots, there are two core concepts

that are common across almost all subareas of complex systems: emergence and self-

organization [3]. The action-based approach proposed in this dissertation employs the

twin concepts of self-organization and emergence as the basis for interactions between

nodes, thus leading to synthesis of realistic networks.

These natural and artificial systems can be described/represented as networks

composed of sets of nodes and edges that represent system elements and their in-

teractions, respectively. Networks have become a useful tool for studying complex

systems because the network representation provides a way of consistently discard-

ing some details, while still being able to see how the whole system hangs together.

Research in network science has provided transformative perspectives, models and

methods in diverse application domains such as computer science, sociology, chem-

istry, biology, anthropology, psychology, geography, history and engineering [1,2,4,5].

In particular, the increasing availability of high throughput network data from a wide

variety of sources such as the Internet, online social networks, citation and collabora-

tion networks, biological networks (brain connectivity, protein-protein interactions),

etc. have fueled a great deal of interest in the analysis and modeling of networks.

The development of data-based mathematical models to study these networks has

provided fresh perspectives towards our understanding of complex systems, thus giv-

1see https://complexityexplained.github.io/ for an introduction to some key ideas about com-
plex systems.

https://complexityexplained.github.io/
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ing rise to network science [2, 6–8]. Research in network science can be partitioned

into two broad categories: (i) finding and measuring key statistical features, such as

degree distributions, clustering and path lengths, that can be used to analyze the

structure and behavior of networked systems, and (ii) formulating statistical models

that can answer questions related to emergence of these properties in real-world net-

works. The two research directions are closely related because to develop new models

capable of explaining the structural features of real-world networks, we must first

be able to say what those features are and hence empirical data are essential. But,

adequate theoretical models are equally essential if the significance of any particular

empirical finding is to be correctly understood. Just as in traditional science, where

theory and experiment continually stimulate one another, the science of networks is

being built on the twin foundations of empirical observation and modeling [9].

1.1 Statistical network modeling

The theme of this research falls in the second category, where the aim is to develop

a generative network model capable of providing a mechanistic description of the

interaction processes that can be algorithmically implemented to synthesize networks

exhibiting the diverse structural features observed in real-world networks. Generative

modeling provides a quantitative approach that allows researchers to infer complicated

hidden structural patterns in existing data and generate synthetic data sets whose

structure is statistically similar to real data. Repeated execution of the stochastic

algorithms of generative network models can produce a set of networks that replicate

some statistical features observed in empirical data, but are otherwise random [1].

The importance of network models can be highlighted by their utility [10,11]:

simulation to evaluate sensitivity of network functionality to parameterization,

abnormality detection for finding subnetworks that are unexpected, extrapo-

lation to synthesize larger networks for predicting future network topology, sam-

pling to synthesize smaller representative networks to decrease computation time,
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compression to the network generator parameters and obtain an algorithmic de-

scription, control to influence nodes to achieve a desired outcome of the topology,

anonymization of a private network to synthesize a similar network for public avail-

ability, null-modeling to assess whether certain network properties are expressed,

and structural analysis to reveal characteristics of the system being studied. Con-

sequently, researchers have invested resources into constructing generative network

models that are representative of the real-world phenomena being studied [12,13].

Observed Network G∗

Algorithm Network Model
1: Input: Network G∗ and parameters θ
2: procedure SynthesizeNetwork
3: · · ·
4: return G̃

1

null modeling
extrapolation
compression
insight from θ

fit/learn

Figure 1.1. A network model consists of an algorithmic procedure that
is parameterized using the observed network G∗ as an input. The pa-
rameterized model can then be used to synthesize multiple networks, and
subsequently contribute to our understanding of the network G∗ in various
ways.

These generative models attempt to identify a common set of laws and principles

that can explain the structure and evolution of the networks, and the underlying

system it represents [2, 14]. The set of laws and principles can therefore shed light

on predicting implicit characteristics and future development of the system. For in-

stance, a brain network model that explains the development of brain structure can

help make early diagnosis of brain disease. Consequently, a goal of network mod-

eling is to solve the problem of decoding how the observed structure of a network

supports its perceived/desired function [15]. Due to this, a long-standing question

in the network science community has concerned the existence of a general model
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capable of generating synthetic networks that are statistically representative of real

networks. Traditionally, generative models have been formulated to use a single em-

pirical observation G∗ of the true system as the input to an algorithmic procedure,

whose parameters are best fit to synthesize networks statistically similar to G∗ (see

Figure 1.1 for a pictorial description). Note that it is far from guaranteed that best fit

parameterization of the algorithm will yield a satisfactory generative model because

the model itself might not be a good candidate for representing the observed data.

Nevertheless, there are an infinite number of models that can be formulated for a

given network observation [16].

Just like for any other type of structured data, two prominent paradigms exists for

the modeling of network data, commonly referred to as the statistical (phenomenolog-

ical) approach and the mechanistic approach [17]. The statistical approach hypothe-

sizes relationships between the variables in the data set, where the relationship seeks

only to best describe the data. This approach focuses on developing probabilistic

models that specify the likelihood of observing a given network. The class of latent

space models [18] and exponential random graphs [19] are prime examples of this

approach. These models seek to exploit the statistical relationships and correlations

within the data to make predictions about the structure. The mechanistic approach,

on the other hand, relies on our scientific understanding of causal mechanisms and

domain-specific microscopic mechanistic rules to grow or evolve the network over

time. The small-world [13] and Barabási-Albert models [12] fall into this category.

Such models are typically used for forward simulation, which can be achieved by

constructing simplified mathematical formulations for the hypothesized mechanistic

rules and processes governing the creation of observed data. Due to this, mechanistic

models are better suited for incorporating domain knowledge, and to study effects of

interventions (such as changes to specific mechanisms). Irrespective of the paradigm,

a network model can be defined as follows:

Definition 1.1 (Network Model [20,21]) A network model is a collection

{Pθ(G), G ∈ G : θ ∈ Θ}, (1.1)
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where G is an ensemble of possible networks, Pθ is a probability distribution on G,

and θ are parameters of the model ranging over possible values in Θ.

The pursuit for a unifying network model, one that can represent several previous

(classes of) models found in the literature, has led to the discovery of many generative

models capable of synthesizing networks with specific properties. The roots of network

generators can be traced to random graphs [22–25], which assume a constant number

of nodes and uniform probability on the existence of each link in the network. These

generators are typically not capable of consistently reproducing phenomena observed

in the real-world. Erdős and Rényi recognized this shortcoming of their model and

stated “Of course, if one aims at describing a real situation, one should replace the

hypothesis of equiprobability of all connection by some more realistic hypothesis. It

seems plausible that by considering the random growth of more complicated structures

one could obtain fairly reasonable models of more complex real growth processes” [23].

It is clear that no networks seen in nature or technology are completely random, that

is, mechanisms beyond randomness shape their evolution [26].

The discovery of widely observed network topological characteristics, such as, scal-

ing in degree distributions [12], high clustering [13, 27], degree correlations [28–30],

motifs [31], and communities [32–34], have been used as a springboard to create a wide

variety of network models. For example, researchers have proposed methods for syn-

thesizing networks that exhibit a specific subset of (typically 1-3) characteristics, with

parameters that could be adjusted to better reflect a given network. These approaches

focus on controlling network growth or permitting non-uniform link existence and re-

sult in generators capable of reproducing behaviors such as small-worldness [13,35–39]

(i.e. a node can reach other nodes in a small number of steps) and scale-free degree

distributions [12, 40–42] (i.e., the probability P (k) ≈ k−α, for degree k with usually

α ∈ (2, 3)). Some contemporary variants of random graphs are capable of exactly

reproducing arbitrary degree distributions [43–48].

To achieve desirable network properties, most of the existing models either make

assumptions biased by system-specific observations that are not plausible across do-
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mains, or focus on replicating a few predefined topological features, such as degree

distribution and clustering, at the expense of other potentially more important char-

acteristics. Without any indication that they are either necessary or sufficient as de-

scriptors for the actual network data, these summary quantities can often be highly

misleading [5]. Further, even when a model is capable of consistently reproducing a

set of target properties, it might fail to capture the naturally occurring stochasticity in

those properties [49]. A fundamental challenge thus is to adequately incorporate our

understanding of such workings into generative network models that are nevertheless

still at least computationally, if not also analytically, tractable [20].

Motivated by these observations, a number of machine learning approaches have

been proposed as well. The goal is to learn network generator parameterization from

given network observation(s) by maximizing the probability of synthesizing networks

with similar global characteristics. Some examples include exponential random graphs

[50–52], latent space models [18], and stochastic Kronecker graphs [11,53–55]. While

successful, each approach is biased by beliefs their human designer had about the

nature of observed networks and the manner that real-world networks evolve. That

is, while the algorithms have some degree of freedom, they are inherently constrained

by an underlying (rigid) algorithm and consequently are only capable of synthesizing

networks exhibiting pre-defined topological features.

The aforementioned generators were devised by a strategy that focuses on develop-

ing algorithms capable of replicating a subset (of typically no more than three) topo-

logical network properties. Ideally, a small subset of topological properties would be

sufficient to ensure the realism of synthesized networks with respect to the real-world

phenomena being modeled. Unfortunately, this set of network properties is unknown

and whether such a set even exists is also unknown. Additionally, designing mech-

anisms and models that lead to useful synthetic networks is further complicated by

the stochastic local interactions and nonlinear behavior inherent in complex systems.

Consequently, recent investigations have been proposed to automate the discovery of

network generators for arbitrary global characteristics and phenomena [56–59]. Such
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techniques hold significant promise due to their ability to circumvent much of the te-

dium and creative limitations faced by humans when designing a network generator.

In order to learn a particular generative model using network data, we must also

choose a learning paradigm that defines the relationship between an observed network

and the various parameters of the model. As the research on network modeling

moves beyond simple models for network structure, the tools of statistical inference

have played an important role in the development of more realistic network models.

Statistical inference in the context of network models typically consists of estimation

of model parameters θ from an observed network G∗. While most network models

make philosophically different modeling choices based on their empirically-motivated

goals, differences might even stem from their choices about how to learn from data.

Sophisticated network models make hypothesis about processes that create varied

structural patterns, and statistical inference can prove to be an effective tool for

understanding network data and testing assumptions of these models. The increasing

interest in such problems has motivated researchers to organize symposiums for the

Statistical Inference of Network Models2 to promote cross-pollination of ideas and

interdisciplinary interactions.

In conclusion, despite ongoing efforts, network scientists have been unsuccessful

in producing a coherent theoretical framework that can simultaneously account for

discoveries like power law degree distributions, small world effect, heterogeneity and

clustering in networks. Hence, new generators must be continuously developed in

order to keep pace with the demand for network models exhibiting more and differ-

ent local and global characteristics. Moreover, the process of scouring literature for

potentially useful generators, properly configuring them and then deciding the one(s)

that best represent the particular phenomena under study is a daunting task. In-

deed, despite the plethora of generative models in literature, a robust framework for

inferring plausible network generative models from an arbitrary network observation

remains elusive [10, 11,60–65].

2see http://danlarremore.com/sinm2019/

http://danlarremore.com/sinm2019/
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1.2 Problem statement

Network analysis can be seen as the language to quantify the interactions be-

tween the components of a networked system. These interactions can be hard to

observe over time, which has lead to observation of these networks in the form of

one-time snapshots, and consequently research on generative models for explaining

the single underlying observation [66]. The goal of this research is to identify putative

mechanisms that can be used to synthesize networks resembling the key topological

properties of real networks and provide intuitive explanations behind the processes

believed to have generated these properties. In order to maximize utility, the frame-

work should be robust to the number and type of global network characteristics that

are to be modeled, in addition to yielding easily interpretable generators. The compu-

tation time required to design the generator must also not be burdensome. To achieve

these goals, we closely examine a few critical aspects related to network modeling,

and the possibility of using simple mechanistic rules for link formation as a general

principle determining the topology of complex networks. A framework motivated by

existing observations and arguments of complex system formation is then extrapo-

lated by utilizing a set of link formation decision process (actions) within a synthesis

algorithm.

Before outlining the research questions, we would first like to define the scope of

our research. Although we make some simplifying assumptions to define a restrictive

scope, it does not imply that the utility of the proposed framework is restricted to

the particular problems considered in this research.

• It is assumed that all of the target and synthesized networks are simple graphs,

i.e., undirected with no self loops and multi-edges. The networks considered

for experiments were also unweighted. We briefly consider the case of directed

networks, but only in the context of supply chain networks in Chapter 5.

• The research problems we consider in this dissertation focus on parameterizing

a network model based on a single network snapshot. For this reason, the pro-
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posed approach can be categorized to be a ‘static’ (or pseudo-dynamic) model

that aims to describe networks and their topology at a given time instant by

sharing desirable properties with the network under consideration.

• Although most real-world networks provide additional information in the form

of metadata associated with nodes or edges, the model does not utilize this

information as a part of the generative process. This is not a limitation of

the model as specific mechanistic rules that use this information can be added

based on the application being considered. To demonstrate this, we consider

the specific case of spatially embedded networks in Chapter 6 to develop models

that utilize the spatial embedding in different ways.

• An important feature of most real-world networks is the existence of commu-

nity structures [67]. In its current state, the model does not explicitly model

communities in networks, making it an important direction for future research.

As highlighted in [68], a ‘good’ network model is one that is estimable from data

and provides a reasonable representation of the underlying network generative process,

while making theoretically plausible assumptions about the type of effects that might

have produced the data. Such a model should also be amenable to examination of

other competing effects that might provide better explanations of the data. With

this definition and the previously stated assumptions in mind, the research questions

considered in this dissertation are:

1. Can a framework be extrapolated from existing observations and arguments of

complex system formation that uses simple mechanistic rules for link formation

in networks? A mechanistic rule is a simplified mathematical formulation that

emulates the process a node uses to evaluate its preference for linking with other

nodes.

2. Is it possible to combine a set of general-purpose mechanistic rules in an algo-

rithmic framework, which under suitable parametrization can be used to model
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networks originating from a wide range of applications? If such a framework

exists, assessment of the strength of association between the observed network

topology and the mechanistic rules can provide parameter estimates for the

proposed generative model.

3. Can such a model strike a balance between computational tractability, empirical

properties and theoretical considerations? One common way of overcoming these

trade-offs is to find an invariant for the data generating process. Exchangeability

in network models can help us in addressing these issues.

4. A distinctive feature of mechanistic models is that they lend explainability to

the data being modeled. Thus, one would expect that parameters of the fitted

model can provide insights about the topology and the processes that might have

created the observed network. Further, despite the diverse application domains

where these networks arise, can the same mechanistic rules be used to explain

the similarities and differences between the underlying systems?

5. In most applications, the observed network can be regarded as a sample from

a set of possible networks originating from some (unknown) stochastic process.

A natural question is if a network model can learn the topological variability

of the (unknown) stochastic process using a single sample network? This can

have huge implications on the development and evaluation of current and future

generative network models.

1.3 Research philosophy

René Descartes and Issac Newton are often credited for laying the scientific foun-

dations for a collection of beliefs now called the Mechanistic Philosophy. They

believed that the workings of a system can be determined by the mechanical inter-

action of inanimate objects obeying universal mathematical laws of cause and effect.

These beliefs led to the notion of mechanistic modeling, where hypothetical processes
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are described based on our beliefs about what is happening in the system, even though

we cannot directly observe these processes. Developing a mechanistic understanding

of complex systems forms the cornerstone of my research philosophy. I feel data-driven

mechanistic models could provide a unique perspective towards our understanding of

the underlying, shared patterns observed across different complex systems as the in-

ferences drawn from such models are based on causality of input-output relationships

instead of correlations.

A mechanistic model, if successful, can provide algorithmic explanations that can

help us better understand the organizing principles and processes that drive the forma-

tion of an observed system. Such models can serve several different purposes en route

to establishing a mechanistic explanation, thus furthering our current understanding

of the systems they represent. This makes the mechanistic modeling approach an

ideal choice for understanding network formation as a single snapshot of the network

provides us with limited information about the system being observed.

Most fundamental ideas in network science are based on data and meticulous ob-

servations by simultaneously looking at the World Wide Web and genetic networks,

Internet and social systems. This makes us wonder if we can use these observations

to take apart a complex system and try to intuit network formation principles that

translate into simple yet successful generative models. While it is difficult to intuit

appropriate mechanisms for network formation, machine learning and evolutionary

algorithms can be used to automatically infer appropriate network generation mech-

anisms from the observed network structure. Eventually, the choices we make while

modeling, that is, how we ‘look at’ and ‘think about’ data, will be critical to deter-

mining the usefulness of inferences drawn from the model. The essence of our research

philosophy is captured by the Boxian trope: “All models are wrong, but some are

useful” [69], and we firmly believe that developing a mechanistic understanding can

lead to ‘useful’ models.
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1.4 Overview of the dissertation

After defining the scope of this dissertation in Chapter 1, we provide an introduc-

tion to various network models in Chapter 2, while making important observations

about link formation mechanism and processes, which subsequently leads to the ex-

trapolation of our action-based framework. Additionally, we also discuss literature on

some key topological features observed in real-world networks and briefly introduce

the problem of comparing networks in Chapter 2 as they are crucial aspects that need

to be examined for the development of a network model. In Chapter 3, we begin by

introducing the main contribution of this dissertation, the action-based framework.

We also explore some fundamental theoretical features that underline our framework.

The action-based approach employs the twin concepts of self-organization and emer-

gence as the basis for interactions between nodes, thus leading to synthesis of realistic

networks.

Following the general description of the action-based framework, we show how

it can be used to learn a compact probabilistic model of network formation using a

mixture of link creation mechanisms in Chapter 4. Statistical comparison to exist-

ing network generators is performed and results show that the performance of our

approach is comparable to the current state-of-the-art methods on a variety of net-

work measures, while also yielding easily interpretable generators. Our experimental

evaluations provide evidence that the action-based model is equally applicable to

biological, technological, and social systems.

An advantage of mechanistic models is the ease with which one can incorporate

domain knowledge. Since the modeler is in control of the mechanisms to include,

one can encode relevant domain knowledge of known or hypothesized interaction pro-

cesses between actors in the system as mechanistic rules. Along these lines, Chapter 5

considers the application of the action-based model to directed networks, particularly

for the case of supply chain networks. The application is motivated by the need for

a centralized approach for designing realistic supply chains that may quickly recover
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from disruptions. The ability to adapt and recover from adverse circumstances is an-

other important feature of complex systems. In Chapter 5, we test the ability of the

action-based approach to synthesize robust and resilient supply chain networks, while

specifically focusing on the aspect of topological resilience and capturing the hetero-

geneous roles of different firms in a supply chain by incorporating domain specific

constraints.

In Chapters 3 and 4, we assumed that a node can use an action to interact with any

node in the network. In most real-world networks, a node can only observe a subset of

nodes that it can interact with. To incorporate this feature in our model, we proposed

the concept of node visibility, wherein the probability of interaction between nodes

depends on their attributes. In Chapter 6 we consider the specific case of spatially

embedded structural brain networks to test the idea of node visibility in a continuous

space. This led to a generalized version of the action-based model that utilizes spatial

embedding of networks to learn better models. We found that the model sheds light on

our understanding of the relationship between the structural organization of human

brains and the cognitive ability of subjects.

Building on our findings in the previous chapters, Chapter 7 explores an alter-

native approach for evaluating generative network models and highlights that most

network models fail to capture the naturally occurring variability observed in network

populations. Our findings highlight the need for rethinking the way we evaluate the

goodness-of-fit of new and existing network models, thus exposing significant gaps in

the generative network modeling literature. We also use this evaluation technique to

test if the action-based model can reproduce the topological variability of a network

sampled from a known population. Chapter 8 concludes the dissertation and provides

some directions for future research.
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2. BACKGROUND

A number of well-known network models are essentially static in nature, i.e., the aim is

to explain the existence of the observed network structure based on a single snapshot

of the network. The statistical/algorithmic procedure of these generators focuses

on synthesizing networks exhibiting certain local and global network statistics, with

the goal of recreating a small set of the important properties observed in real-world

networks. Some of these models also have a generative interpretation that allows us

to think about their use in a dynamic, evolutionary setting [5].

We begin this Chapter with an introduction of well-known link formation mecha-

nisms in Section 2.1 and also discuss relevant network properties that can be used to

inspire potential link formation mechanisms. In Section 2.2, we review the literature

on network models, specifically focusing on generators that consider the problem of

modeling the generative process based on a single network observation. While dis-

cussing these link formation mechanisms and network models, we also make a series

of (not new) observations based on first principles, leading to the extrapolation of an

action-based perspective for modeling and synthesizing complex networks. Finally,

we also briefly introduce the problem of evaluating network models (Section 2.3) as

it is directly related to the network modeling problem.

2.1 Mechanisms for link formation

Early investigations of potential mechanisms for generating and evolving networks

were limited to building models that reproduce stylized facts (for example heteroge-

neous node degrees, small-worldness, etc.) of real-world networks [70]. Networks are

generally seen as structural representations of systems that emerge from local inter-

actions of simpler components (nodes) [71]. Thus, modeling networks by observing



15

the dynamic interactions among nodes that leads to the creation of links in a net-

work may provide a useful perspective for understanding the processes that create

a network. Identifying the link creation mechanisms that lead to observed network

structures is a fundamental question that is still not well understood [72]. A link

creation mechanism can be some pre-defined notion that a node uses to evaluate its

preference for interacting with other nodes1. Understanding drivers for link creation

can potentially reveal the local phenomena responsible for the emergence of network

properties observed at the global level.

Observation 2.1 Stochastic local interactions give rise to emergent global struc-

ture.

In this section, we review models and mechanisms that can be used to describe

processes capable of synthesizing networks emulating some of the well-known proper-

ties observed in real-world network. The networks synthesized by these mechanisms

can potentially give insights into the emergence of a variety of topological properties

observed in real-world networks.

2.1.1 Erdős-Rényi random graph

The most basic graph generator is the random graph model, popularly known

as the Erdős-Rényi-Gilbert model [22–25]. Erdős and Rényi defined two different

random graph ensembles Gn,p and Gn,m. In Gn,p, a graph with n nodes is generated

by independently adding an edge between each pair of nodes with probability p, while

Gn,m uniformly at random picks m distinct pairs of nodes to be connected by an edge.

The random graph model has been subjected to significant theoretical analysis leading

to definitions of giant component, percolation, phase transitions, etc. [23, 73].

Many properties of the random graph model are exactly solvable in the asymptotic

limit when n→∞. The degrees of node can be shown to follow a Poisson distribution

1It should be noted that such mechanisms can also be used to for emulating higher-order interactions
such as subgraphs, hyperedges, etc.
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with parameter z = p(n−1), where n is the number of nodes and z is the mean degree.

The random graph model synthesizes networks that show the small-world effect [74],

but other properties of real-world networks, such as high clustering coefficients and

community structure, are not observed. Also, the Poisson degree distribution is not

observed in real-world networks. See [75, Chapter 3] for a more comprehensive de-

scription of properties of real-world networks that cannot be explained by the random

graph model.

Observation 2.2 Although the random graph model cannot describe real-world

observations, it serves as a good baseline to test hypothesis such as: are the net-

works synthesized by a model better than a random graph?

2.1.2 Small-world effect and model

High clustering and small-worldness [13,35–37,39] are properties that are observed

in most real-world networks. To synthesize networks with high clustering coefficient,

Watts and Strogatz developed the small-world model [13] as an alternative to the

random graph. The basic idea is to create shortcuts in a regular lattice of n nodes by

rewiring existing links. The rewiring procedure involves iterating through each edge

in turn and, with probability p, moving one end of that edge to a new location chosen

uniformly at random from the lattice, while avoiding double or self-edges. Changing

the value of p from 0 to 1 allows the small-world model to interpolate between a

regular lattice and a random graph (see Figure 2.1). In early 2000s, the model had

deep implications for our understanding of dynamic behavior and phase transitions in

real-world phenomena ranging from contagion processes to information diffusion [76].

Though the paper by Watts and Strogatz served as a pedestal for network science

as a multidisciplinary field [76], the model has a basic drawback that it synthesizes

networks whose degree distribution does not match most real-world networks.
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Observation 2.3 Real-world networks lie somewhere between completely random

and regular lattice-like structures.

Figure 2.1. The random rewiring procedure of the Watts-Strogatz model
interpolates between a regular ring lattice and a random network, without
altering the number of vertices or edges in the graph. Figure from [13].

2.1.3 Heavy-tailed degree distributions

Most real-world networks are known to exhibit heavy-tailed degree distributions,

that is there are few nodes that are connected to a lot of other nodes and most nodes

have low degrees. Network scientists have often attributed the existence of heavy

tailed degree distributions to the scale-freeness of the vertex connectivities2 [12,40–42]

(i.e., the probability P (k) ≈ k−α, for degree k with usually α ∈ (2, 3)). Barabási

and Albert [12] proposed a preferential attachment mechanism to explain the scale-

freeness observed in real-world networks. The network generation algorithm begins

with n0 (connected or unconnected) nodes at time t = 0, and at each subsequent

time step, a new node is added with m ≤ n0 edges. The probability that the new

node is connected to an existing node is proportional to the degree of the latter. In

2although there have been some recent interesting discussions about the observation of scale-freeness
or power law degree distributions in real-world networks, see [77–79].
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other words, the new node picks m nodes from the existing network according to the

multinomial distribution:

pi =
ki∑
j kj

where ki denotes the degree of node i. The Barabási-Albert (BA) model results

in a network with a power-law degree distribution whose exponent is empirically

determined to be γ = 2.9± 0.1 [5].

Observation 2.4 Rich-gets-richer attachment is among the most powerful drivers

for link formation in networks [26], hence serving as the baseline for many net-

work models.

The trio of network models introduced above can be seen as the basis for much of

the future work on generative network modeling. There have been multiple extensions

and generalizations of these models with varying goals such as synthesizing networks

with scale-free degree distribution and adjustable clustering coefficients [80] or scale-

free networks with clustering and communities [81]. The interested reader is directed

to [1, 4, 5, 10,20,75,82] for more details.

2.1.4 Homophily

Nodes in a network, especially in the context of social interactions, are typically

associated with a set of sociodemographic, behavioral and interpersonal character-

istics. These nodes tend to form connections with other nodes possessing similar

characteristics [27]. This phenomena is explained by the principle of homophily (or

homogeneity), which states that a contact between similar elements (nodes) occurs

at a higher rate than among dissimilar ones [27]. Using the random graph as the null

model, a network is said to be homophilic when the number of interactions between

nodes with different characteristics are significantly lower than the baseline level that

would be expected under a uniform random assortment reflecting groups’ population

share [83] (see Figure 2.2).
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Figure 2.2. Proportion of cross (dotted) edges in the network is 0.2 (3
out of 15), while under a random assignment the expected proportion is
2pq = 0.48, where p and q are the proportion of white and black nodes
respectively. This suggests that homophily may be present in the network.

Homophily can also be observed as a structural effect, where nodes with more

common neighbors are more likely to connect with each other. Thus, the source of

homophily in a network can generally be attributed to the interplay between selection

and social influence [84, Chapter-4], where selection accounts for the tendency of peo-

ple to form friendships based on attributes determined at birth, and social influence

refers to behaviors that people modify to align their interests with friends.

The correlations between characteristics (node degree, attributes, geographic lo-

cation, etc.) of adjacent nodes in a network is known as assortative mixing [28]. The

level of assortativity (or disassortativity) can have profound effects on the topological

structure of a network, particularly when considered at the local level [85].

The prevalence of homophily in social networks has been well studied in the econo-

metric literature on strategic network formation [83,86,87], which necessitates the de-

velopment of models that can help us understand the processes that lead to homophily.

Consequently, [88] proposed a network model that uses the idea of homophily to ex-

plain the data patterns observed in social networks, such as transitivity (a friend of
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a friend is a friend), balance (the enemy of my friend is an enemy) and the existence

of cohesive subgroups of nodes (communities).

Homophily can also be observed as a structural effect, where nodes with more

common neighbors are more likely to connect with each other. Structural diversity

[89] on the other hand emphasizes the importance of connectivity between common

neighbors. Observations using structural diversity for link prediction show that it

may lead to violation of the principle of structural homophily i.e., not only does the

number of common neighbors but also the sub-graph of the common neighbors plays

a role in link formation [89]. This implies the possibility of using structural diversity

as a mechanism driving the formation of local structures.

Observation 2.5 Using homophily in network structure together with node-

attribute information can potentially enhance the capabilities of a network model

by devising a link formation mechanism that optimizes the contribution of differ-

ent mechanisms towards the formation of the observed network topology.

2.1.5 Hierarchy

A property commonly observed in real-world networks is the existence of hier-

archical organization among nodes, such that small groups of nodes organize in a

hierarchical manner into increasingly larger groups [90]. Herbert Simon [91] proposed

the concept of hierarchy, stating that most living and artificial complex systems are

organized at multiple levels, creating a hierarchy of systems and subsystems. Hier-

archy in a complex system can thus be represented as a tree of relationships, where

closely related pairs of vertices have lowest common ancestors that are lower in the

tree than those of more distantly related pairs [92, 93]. Hierarchical organization in

real-world complex networks was first observed in the internet [94] and metabolic

networks [95].

The relevance of hierarchy for synthesizing realistic networks was shown by [90],

where properties like scale-freeness and high clustering emerge as a consequence of
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hierarchical organization within small groups of nodes. This led to the notion that the

presence of hierarchy in networks can be identified by checking if clustering coefficient

C of a node with degree k is inversely proportional to its degree, i.e. C(k) ∝ k−β,

where β is referred to as the hierarchical exponent [90]. Multiple measures or algo-

rithms capable of characterizing the hierarchical structure of complex networks have

been proposed in the literature [93, 96–99]. Hierarchy has also been seen as a cen-

tral organizing principle of complex networks, capable of offering insight into many

network phenomena [93]. An example highlighting the importance of hierarchy is

provided by [100], where it was shown that topological abnormalities in people with

schizophrenia led to a reduction in the hierarchical organization of the structural

brain networks.

Due to the pervasive nature of hierarchical organization in real-world networks,

network models have been proposed to exploit this feature of complex networks.

Hierarchical network models are usually derived in an iterative way by replicating

the initial cluster of the network according to a certain rule. Applying this rule

repetitively produces a network yielding a similar structure at several different orders

of magnitude.

Observation 2.6 Self-similarity across scales in a network can be efficaciously

generated using a hierarchical network generation procedure.

2.1.6 Other link formation mechanisms

A well known observation from real-world networks states that nodes in a network

might be more likely to connect with important or popular nodes, and the percep-

tion of popularity can be a consequence of different underlying processes like fitness,

centrality, optimization, etc. [101]. This principle is known as preferential attach-

ment [12], and is commonly described as the reason behind emergence of scaling in

networks. Another related observation is the existence of fractal structures in net-

works, which has been attributed to the repulsion between hubs (nodes with high
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degrees) [102]. These mechanisms can be potential candidates for link creation, and

can be coupled with other mechanisms like similarity [101], or triadic closure [103]

and degree correlations [104], etc. for creating more realistic network models.

It is worthwhile to note that linking mechanisms based on inverse versions of the

properties described in Section 2.1 are also possible. For example food webs, techno-

logical and biological networks show disassortative mixing patterns [28]. Many unique

properties of complex networks are due to heterogeneity, making its measurement and

analysis important to understand the topology of complex networks [105].

Observation 2.7 There exist multiple, potentially domain specific, motivational

drivers governing link formation and most network generators are constructed to

exploit only one driver.

2.2 Network generation models

This section discusses models for synthesizing networks with a given set of nodes,

and some algorithm for sampling from the distribution Pθ(G) (see Definition 1.1),

depending on the desired properties of a given (single) network observation. We are

particularly interested in empirically grounded network models that can be param-

eterized to synthesize networks exhibiting different properties. It has been recently

pointed out that, contrary to previous claims, the empirical laws that generative

models aim to emulate are not always supported by real data [5]. Ideally we would

like:

1. A network generation model that can be parameterized to synthesize networks

where many properties that are also found in real networks naturally emerge.

2. The model parameter estimation should be fast and scalable, so that we can

accurately generate extremely large networks.

3. The resulting set of parameters should generate realistic-looking networks that

match the statistical properties of the target, real networks.
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4. The learnt or fitted model should provide some statistical explanation regarding

the topology of the observed network.

5. The observations of the model based on data can be projected to the unseen

structure.

2.2.1 Inhomogeneous random graphs

As discussed earlier, the Erdős-Rényi model assumes nodes are homogeneous with

respect to how they connect to other nodes. While that assumption cannot reproduce

empirically observed properties, it motivated a general class of models of inhomoge-

neous random graphs that can be visualized as attempts at making the random graph

model more realistic. Fitting the Erdős-Rényi model to a given network observation

essentially fixes the parameter p and thus the average degree of the network. The

obvious next step is to define models that sample networks from an ensemble con-

sisting of networks with the same degree distribution as the given network observa-

tion [43–48,106,107].

Configuration model

The configuration model [44,106] fixes the number of nodes with a specific degree

(the degree distribution of the observed network or node degrees sampled from an

arbitrary distribution can be used as input), and uniformly samples networks with the

given degree sequence. The aim of the configuration model is to construct a network

with n nodes, where node i has degree ki. One way of doing this is by creating ki

outgoing stubs from each node i, followed by a uniformly random matching of two

stubs to create an edge (see Figure 2.3 for a visual description). It must be noted

that the procedure described here can lead to creation of networks with self-loops and

multi-edges. Alternative procedures have been proposed that can sample networks

without self-loops and multi-edges [108].
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Figure 2.3. The figure shows an example of the stub matching procedure
of the configuration model. The picture on the left has vertices with stubs
providing a graphical description of the degree sequence. On the right, a
random matching of the stubs creates the network.

Chung-Lu model

The Chung-Lu model [47, 48] is a generalization of the Configuration Model. In

this model a vertex i is assigned a degree di from the given degree distribution and

an edge is placed between the vertex pair (i, j) with probability proportional to didj,

i.e. the probability that an edge exists between nodes i and j is given by:

Pij =
didj∑
k dk

. (2.1)

It should be noted that maxi d
2
i ≤

∑
j dj to ensure that Pij ≤ 1 ∀i, j. This

model has the disadvantage that the final degree sequence is not precisely equal to

the desired degree sequence (it matches the degree sequence in expectation), but it has

some significant calculational advantages that make the derivation of rigorous results

easier [4]. The Chung-Lu model is often used as the baseline for comparison owing to

its simplicity and ability to synthesize fairly realistic networks [109]. Unfortunately,

the Chung-Lu model synthesizes networks with low clustering coefficients making it

unsuitable for most real-world applications
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dk-random graphs

In [110] it was observed that fixing some structural properties in a network model

to those observed in the given network can lead to the appearance of other statistical

properties as a direct consequence. These observations follow from earlier research

on the dk-series [111], which is a converging series of basic interdependent degree and

subgraph-based properties that characterize the local network structure at an increas-

ing level of detail, and define a corresponding series of null models or random graph

ensembles [110]. Consequently, dk-graphs [110] model networks as random ensem-

bles, where ensemble size is controlled using dk-distributions. dk-random graphs for

d = 0, 1, 2 correspond to the random graph model [22], configuration model [44, 106]

and random graphs with a given joint degree distribution [112], respectively.

In [110], dk-random graphs rely on ergodic edge-swapping operations to sample

networks from the ensemble defined using the chosen dk-distributions. The lack of

an edge-swapping operation that is ergodic for 3k-distributions leads to the creation

of 2.1k− and 2.5k−targeting rewiring, where the moves preserve the 2k-distribution,

but each move is accepted with probability p designed to drive the graph closer to a

target value of average clustering c̄(2.1k) or degree-dependent clustering c̄(k)(2.5k).

Experimental results [110, 113, 114] have shown that the networks synthesized by

dk-random graphs have very low dissimilarity to most real-world networks. Despite

this fact, the limited inferential capabilities and inability to perform tasks such as

compression, extrapolation, etc. limit the utility of dk-random graphs. We also show

in Chapter 7 that dk-random graphs tend to overfit the given network observation

instead of capturing the variability of the “true” generative process. We also note

that there have been some promising recent developments in algorithms for sampling

undirected networks with exact joint degree distribution along with other properties

such as node attributes, clustering and number of connected components [115].
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2.2.2 Exponential random graphs

One of the most popular statistical network models in the social science literature

are the exponential random graph models (ERGM) [50–52]. ERGMs are a family

of statistical models for network data that assume the existence of links in networks

follows exponential distribution parameterized by some network statistics of interest

[19,116]. These models are built on the notion of conditional dependence, which states

that the existence of links in a network is shaped by the presence or absence of other

links (and possibly node-level attributes) [19]. These dependence assumptions claim

that the probability of an edge is conditionally dependent on the local structure,

and influential configurations can help decode the structure of networks. ERGMs

represent probability distributions over networks with an exponential linear model

that uses feature counts of local graph properties ,for example, edges, triangles, paths,

etc., considered relevant by the modeler:

P(Y = G∗|θ) =
1

Z
exp(θTφ(G∗)), (2.2)

where (i) φ(G∗) are feature counts of G∗ of the target/observed network; (ii) θ are

parameters to be learned; and (iii) Z is a normalizing constant. The generality of the

exponential distribution makes it an ideal candidate for representing the conditional

probability distribution between different local graph properties φ(G∗). Further, there

is theoretical evidence supporting the exponential form as it can be derived from first

principles using maximum entropy arguments [117].

Generating an exponential random graph consists of the following steps [19]: (i)

assume that the existence of each edge is a random variable; (ii) a dependence hypoth-

esis is proposed that embodies the local processes assumed to generate the network;

(iii) network configurations (e.g. triangles, 2-stars) get parameter values based on the

dependency hypothesis; (iv) use homogeneity or other constraints to reduce number of

parameters; (v) model parameters are estimated and interpreted from the observed

network data to get a statistical model for the network. Though ERGMs are the
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most widely used models for social networks, they are plagued with the degeneracy

problem [118] (i.e., the probability distribution is biased towards empty and complete

networks), whereas real-world networks are sparse. Another issue is that they may

not always be consistent under sampling [119].

Observation 2.8 The dependence assumptions and the inherent flexibility of

ERGMs makes them a plausible technique for network modeling, but the absence

of a consistent parameter estimation framework along with problems related to

choice of features inhibits potential applications.

2.2.3 Hierarchical network models

As discussed in Section 2.1.5, the hierarchical organization in real-world networks

has inspired a number of hierarchical network models, such as Kronecker product

models [11, 120], generalized graph products models [121], multiscale network gener-

ation [49], recursive matrix model [122], and Corona graphs [123, 124]. Hierarchical

network models are usually derived in an iterative way by replicating the initial cluster

of the network according to a certain rule, which may be deterministic or stochastic.

Here, we describe the recursive algorithm of one such model, namely Kronecker

product graph models (KPGMs) [11, 53–55] and its variants [120, 125]. The main

intuition behind Kronecker graphs is to create self-similar graphs by taking Kronecker

product of a b×b initiator adjacency matrix, where typically b = 2 or 3. The Kronecker

product of two matrices is given by:

A⊗B =


a1,1B a1,2B · · · a1,mB

a2,1B a2,2B · · · a2,mB
...

. . .
...

an,1B an,2B · · · an,mB


Given a b× b initiator matrix Θ, where each entry of the matrix is a probability,

taking K − 1 Kronecker products of Θ with itself will result in a bK × bK matrix P.
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Networks can then be synthesized by treating an edge between nodes i and j as a

Bernoulli random variable with p = Pi,j (see Figure 2.4 for a pictorial representation).

This process of synthesizing networks can be seen as a realization of P, and is denoted

as R(·). The recursion of Kronecker graphs can be written as:

P = PK(Θ, K) =

PK(Θ, K − 1)⊗Θ K > 1

Θ K = 1

(2.3)

where K refers to KPGM. For a given real-world network G∗, the initiator matrix

Θ can be estimated by maximizing the likelihood of synthesizing G∗ using Θ. Al-

though Kronecker graphs are mathematically tractable and synthesize networks with

heavy-tailed degree distributions, the resulting networks tend to have a lot of isolated

nodes [126]. Also, KPGMs synthesize networks with clustering coefficients that are

much smaller than what is produced in real data [127,128].

An extension of KPGMs was proposed in [120,125] with the goal of tackling these

shortcomings and increasing variability in the synthesized networks. The proposed

model ties the parameters by sampling the probability matrix before each Kronecker

multiplication. Tied KPGM have the following recursive form:

P = PT (Θ, K) =

R(PT (Θ, K − 1))⊗Θ K > 1

Θ K = 1

(2.4)

where T refers to tied KPGM. The model can be generalized by adding an ad-

ditional parameter l ≤ K such that the first l Kronecker multiplications are inde-

pendent, and ties are introduced when K > l. Mixed KPGMs (M) can be defined

recursively as

P = PM(Θ, K, l) =

R(PM(Θ, K − 1, l))⊗Θ K > l

PK(Θ, l) K = l

(2.5)
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K = 1 K = 2 K = 3

KPGM

⊗ → ⊗
→

R(·)−−→

tied KPGM

R(·)−−→ ⊗ → R(·)−−→
⊗

→
R(·)−−→

mixed KPGM

⊗ → R(·)−−→
⊗

→
R(·)−−→

1

Figure 2.4. Kronecker product models for K = 3 and b = 2: For each
model we show the recursive construction of P. For tied and mixed
KPGM, a realization of the probability matrix R(P) is also shown at
appropriate steps. l = 2 is used for mixed KPGMs.

2.2.4 Latent space models

For many real-world systems such as transportation, power grids, brains, human

contact, etc., space is relevant and topology alone does not contain all the information.

An important consequence when nodes are embedded in a space is that there is

a cost associated with the length of edges, which in turn has dramatic effects on

the topological structure of these networks [129]. This motivated the creation of

latent space models [18], where each node i ∈ V can be represented as a point

zi in a “low dimensional” space, say Rk. The probability of existence of an edge

is determined by the distance among the corresponding pair of nodes in the low-

dimensional space, d(zi, zj), and by the values of a number of covariates measured on

each node individually.
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Formally, let xij = 1 if there is an edge from node i to node j in the observed

network, and 0 otherwise. The probability of there being an edge from node i to

node j in a latent space model is then P(xij|zi, zj,yij, θ), where zk is the position

of node k in the latent space for k ∈ V , yij is some covariate information, and θ

represents additional parameters. We assume conditional independence between edge

probabilities, so that

P(X|Z,Y, θ) =
∏
i 6=j

P(yij|zi, zj,xij, θ), (2.6)

where Y = {yij} are observed characteristics which are potentially pair-specific

and vector-valued and θ and Z are parameters and positions to be estimated. See [130]

for a review of statistical inference for the class of random dot product graphs [131],

which is a more tractable version of the latent space models.

Fitting a latent space model to a given network observation involves solving the

inverse problem of inferring the latent positions in a Euclidean space and the effects of

observed covariates, which is typically solved using MCMC sampling [18]. [64] states

that by relaxing the continuous space assumption and allowing edge probabilities to be

determined by a generic function of those attributes, most generative network models

can be seen as special cases of the latent space models. Spatial models have been

extended in a number of directions to include treatment of transitivity, homophily on

node-specific attributes, clustering, and heterogeneity of nodes, see [129, Section 4]

for a review.

Other variants of latent space models embed networks in a hyperbolic space [132],

where nodes are placed in a hidden hyperbolic metric and links are established ac-

cording to their hyperbolic distance [133]. One of the most famous models using the

hyperbolic space is the popularity versus similarity model [101]. Recent research on

hyperbolic random graphs [133–135] have shown the potential utility of these meth-

ods to synthesize realistic network topologies and existence of efficient algorithms to

infer the hyperbolic embedding of nodes.
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Despite wide-spread usage, these models have two main drawbacks: (i) synthesized

networks tend to be assortative, which might not be a reasonable assumption as many

biological, technological, and economic networks show disassortativity [64], and (ii)

scalability issues need to be addressed as inferring the coordinates to map a real

network to its latent geometry remains a challenging inverse problem [5].

2.2.5 Stochastic block models

An important artifact of real-world networks is the existence of meso-scale struc-

tures (commonly referred to as communities or blocks) [136–139], where nodes are

grouped based on their distinctive interaction patterns. Consequently, methods for

finding [67,140] and modeling these structures have been a topic of significant interest

in network science. One of the most popular models for modeling these structures are

the Stochastic Block Models (SBM), which can be seen as a categorical/discretized

version of the latent space models described in Section 2.2.4. In its simplest form, a

blockmodel [141–143] is a model of network data that relies on the intuitive notion

of structural equivalence: two nodes are defined to be structurally equivalent if their

connectivity with similar nodes is similar [5].

The generative process of the SBM consists of two parts: (i) each node i is assigned

a community label bi, (ii) edge is inserted between nodes i and j with probability wbibj ,

where W = {wbibj} is a matrix representing the probability of an edge between nodes

i and j belonging to community bi and bj, respectively. In this form, SBMs can

be treated as a mixture of random graphs. To incorporate more features, such as

degree distributions [144], multiple community memberships [145], etc. in the SBM,

extensions and variants have been proposed, see [146, Section 2] for a recent review.

2.2.6 Automatic discovery of generators

Apart from the aforementioned models, alternative computation models have also

been explored. For instance, cellular automata can model network evolution by ap-
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plying local agent rules derived by observing collective real-world behavior [147–149].

While robust, these local rules can be very tedious and difficult to derive from an ob-

servation of network evolution, especially for nontrivial systems. Others have focused

on automating the discovery of network generators, and are briefly discussed below.

Genetic programming

Recent work on network modeling has focused on automating the discovery of

network generators for arbitrary global characteristics and phenomena [56,150]. Such

techniques hold significant promise due to their ability to circumvent much of the

tedium and creative limitations faced by humans when designing a network generator.

In particular, the framework of [56] utilizes genetic programming (GP), which is a

technique that uses evolutionary algorithms to evolve computer programs capable

of performing a predefined task, to evolve a plausible algorithmic description of a

user-defined target network. The GP based model proposed in [56] creates trees that

consist of three branches at the root such that each branch is evaluated once per

program execution: (i) initialize the set of nodes, (ii) grow network by adding edges

among nodes initialized in step (i), and (iii) finalize network by removing and/or

rewiring edges created in step (ii).

The GP based approach suffers from some drawbacks: (i) the evolutionary search

is computationally expensive and scales poorly with network size, (ii) it can discover

complicated generators, which can be difficult to analyze mathematically. [58] pro-

posed to relax some restrictions on basic algorithmic structure of the GP framework

that helped alleviate some of the aforementioned drawbacks, but was not tested for

real-world networks.

Symbolic regression

Following the footsteps of the genetic programming based approach described

above, an approach based on symbolic regression was recently developed with the
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goal of automatically detecting realistic network models from empirical data [57,59].

The basic idea is to learn a function w(i, j) that assigns a weight wij to a set of edges

defined using a random sample S3, which in turn is used to obtain the probability

of an edge between nodes i and j (see Figure 2.5 for a pictorial representation).

The computational problem of learning the function w(i, j) is solved using symbolic

regression, where a network model is represented as tree-based computer programs

using mathematical expressions that best fit a given network observation.

Figure 2.5. Synthesis of a network using a given tree-based representation
of the generator obtained using symbolic regression. Figure from [57]. In
the top right corner, we see a tree-based representation of the function
w(i, j) = 4− exp(4− 2d), where d is the undirected distance between two
nodes. Dotted edges in the bottom left graph correspond to the random
sample S. This process of adding new edges is repeated until we reach a
termination criteria, such as the desired number of edges.

Observation 2.9 Most existing network models are rigidly defined, which limits

their ability to synthesize realistic topologies.

3A random sample is used instead of the complete set of edges to reduce computation.
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In summary, most existing models either make assumptions biased by system-

specific observations that are not plausible across domains, or focus on replicating a

few predefined topological features, such as degree distribution and clustering, at the

expense of other potentially more important characteristics. Even when a model is

capable of consistently reproducing a set of target properties, it might fail to capture

naturally occurring stochasticity in those properties [49]. Hence, new generators

must be continuously developed manually in order to keep pace with the demand

for network models exhibiting more and different local and global characteristics.

Moreover, the process of scouring literature for potentially useful generators, properly

configuring them and then deciding the one(s) that best represent the particular

phenomena under study is a daunting task. Consequently, there is a high priority

need for robust network generators [10,11,61–63,151].

2.3 Evaluating network models

The problem of evaluating different generators can be approached using two prin-

cipled criteria: (i) selecting the most plausible model in terms of its posterior prob-

ability; (ii) selecting the model with the highest predictive performance. While we

expect both these methodologies to choose the same model, recent research [16] has

shown that this is not the case. Thus, an important aspect of network modeling is

to evaluate the suitability of a given model by comparing the synthesized networks

with the observed network.

The roots of network comparison can be traced to the graph isomorphism prob-

lem [152], leading to the implicit usage of the notion of network dissimilarity. The

standard approach to model selection is using 1-3 user defined network topological

characteristics that might reflect the general structure of real-world networks. Re-

cent observations have highlighted the need to consider multiple global characteristics

when comparing networks [61–63,110,113,151,153–156]. Ideally, a subset of network

properties would be sufficient to capture this dissimilarity, but unfortunately, this set
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of network properties is unknown (and may not exist). The development of methods

for the comparison of networks is an active area of research and in recent years many

new methods have been introduced (see [157–159] for reviews and netrd for imple-

mentation of methods to compare two networks), which generally take the following

form:

Definition 2.1 (Dissimilarity Measure) Given two networks G1 ∈ G1 and G2 ∈
G2, a (bivariate) network dissimilarity measure d(G1, G2) is a mapping d : G1×G2 → R

from sets of graphs to a real number.

These approaches can also be utilized within a network model for parameter esti-

mation. Hence, robust and well-founded network dissimilarity measures are vital for

the development of generative network models. It is important that a dissimilarity

measure captures and adequately quantifies topological differences among networks.

A good dissimilarity measure should have the ability to recognize the different roles

of links and nodes, considering disconnections and other structural conditions [113].

Here, we provide a short introduction to some of these network comparison techniques.

The network morphospace [160] provides a coarse-grained approach for classify-

ing and mapping network architectures according to a set of network-level structural

characteristics. The network morphospace can be transformed to a network dissim-

ilarity space (DG∗ ⊂ Rd), where networks are placed based on their dissimilarity to

the single observed network G∗ ∈ G with respect to a variety of dissimilarity measures

(see Definition 2.1), as illustrated in [161]. The utility of such a network dissimilarity

space relies heavily on the choice of dissimilarity measures used for network compar-

ison. Network science provides numerous quantitative tools to measure and classify

different patterns of local and global network architectures across disparate types of

systems. Any dissimilarity measure that defines a real-valued distance akin to the one

in Definition 2.1, which goes to zero for a pair of isomorphic networks, can be used

in the dissimilarity space. A set of node-level measures that could prove particularly

useful for the network dissimilarity space is provided by the dk-series [110,111], which

https://netrd.readthedocs.io/en/latest/distance.html
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is a systematic series of properties (Y0, Y1, . . . ) of network structure defined in a way

such that each Yi provides more detailed information about the network structure and

Yn fully characterizes a network with n nodes. The first three terms in the dk-series

(Y = degrees + correlations + clustering) have been shown to be capable of almost

fully defining local and global organization of most real-world networks that do not

exhibit community structure [110].

Machine learning has also been used to find the best set of network properties for

such a network dissimilarity space [156,162]. A genetic programming based technique

was also used within a meta-analysis framework [155, 163] for the same purpose.

Similarly, [153] investigated six spectral graph metrics with the aim of evaluating their

suitability as summary statistics for network data. NetSimile [164] provides a way of

extracting a small number of descriptive, numerical features from a network. Though

these methods can help us in choosing an appropriate set of properties and generally

rely on computationally inexpensive local features, the findings can be biased towards

the networks that were used during their empirical validation. Thus, we need more

theoretically grounded ways such as the dk-series to choose the set of properties.

Efforts have also been made at using information-theoretic measures for evalu-

ating the dissimilarity of networks [165, 166]. These measures have also been used

for parameter estimation of simple network generators. Other metrics utilizing the

Laplacian [167] or its spectrum [168] have also been proposed to measure the goodness-

of-fit for network models. Measures using subgraph counts for comparing networks

have also been proposed, for example [169] generalized the idea of degree distribu-

tions to a set of small, connected, non-isomorphic subgraphs called graphlets, which

lead to the creation of graphlet degree distribution agreement [61, 170] as a measure

for network comparison. Other graphlet-based measures include relative graphlet

frequency distribution [169] and graphlet correlation distance [63]. Netdis [171] is an-

other approach that creates two-step-ego-networks and compares the counts of these

graphlets. It should be noted that the graphlet-based measures were developed for

biological applications and have high computational costs.
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A popular technique for measuring the similarity between a pair of networks is

the graph edit distance (GED) [172]. The principle idea of GED is to define graph

edit operations such as insertions or deletions of edges/nodes etc., along with certain

edit costs associated with these operations. Based on these operations, the graph

edit distance of two given graphs is the minimum cost associated with a series of edit

operations. GED is a flexible error-tolerant measure that has been applied to many

practical problems, but it has several problems: (i) few robust algorithms exist that

can efficiently and accurately compute GED for all kinds of graphs, and (ii) the user

needs to define the cost of edit operations.

The D-measure of [113] quantifies network dissimilarity by evaluating the differ-

ence between distance probability distributions of networks. The authors perform

thorough empirical validation of the measure and show applications in multiple con-

texts while pointing out that it has computational problems when dealing with sparse

networks. Geometric network comparison [173] is a statistical approach to network

comparison that approximates networks as probability distributions on negatively

curved manifolds. The approach is non-parametric and model-based, but fails when

networks being compared are not hyperbolic.

Empirical experiments have also been performed to rank various measures [157].

They found that there is correlation between different network similarity methods and

some complex network similarity methods can be closely approximated by much sim-

pler methods. In general, most of these network measures are validated by performing

classification of networks coming from different domains (or generators), which does

not immediately imply that they are a sound choice for evaluating network models.

To be useful in the context of evaluating the suitability of a network model, these

methods need to: (i) account for the inherent stochasticity of the generators, (ii)

devise a way of selecting the simplest model that also has high predictive power, and

(iii) be valid for networks with or without communities. Consequently, developing

model-based approaches for hypothesis testing in networks such as [174] might prove

to be a fruitful endeavor. Similarly, there has been recent work on mapping networks
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into natural Euclidean spaces for conventional hypothesis testing [175], which can

help us determine if two groups of networks are significantly different in statistics.

Bayesian methods can also be used for selecting a model M that is most likely to

have generated a network G∗ by computing the posterior probability as follows [16]:

P(M|G∗) =
P(G∗|M)P(M)

P(G∗)
. (2.7)
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3. ACTION-BASED NETWORK MODEL

As described in Chapters 1 and 2, generative modeling of networks has been a topic

attracting researchers from across disciplines such as physics, engineering, computer

science, statistics, and social sciences. The pursuit for a unifying network model has

lead to the discovery of a lot of generative models that adopt either the statistical

(phenomenological) or mechanistic philosophy [17] for describing the observed net-

work data. The statistical approach focuses on developing probabilistic models that

specify the likelihood of observing a given network. The class of latent space mod-

els [18] and exponential random graphs [19] are prime examples of this approach.

These models seek to exploit the statistical relationships and correlations within the

data to make predictions about the structure. The mechanistic approach, on the

other hand, relies on our scientific understanding of causal mechanisms and domain-

specific microscopic mechanistic rules to grow or evolve the network over time. The

small-world [13] and preferential attachment models [12] fall into this category. Such

models are typically used for forward simulation, which can be achieved by construct-

ing simplified mathematical formulations for the hypothesized mechanistic rules and

processes governing the creation of observed data. Due to this, mechanistic models

are better suited for incorporating domain knowledge, and to study effects of inter-

ventions (such as changes to specific mechanisms).

The importance of developing a mechanistic understanding has been a topic of

central interest in our quest to comprehend the intricacies of social [176] and biological

[177] systems. The driving force behind the popularity of mechanistic frameworks is

that they are devised to explain the significant processes driving a phenomenon, such

as spread of information, interactions between individuals, etc. While it is well-

known that mechanistic models are difficult to estimate, the understanding provided
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by the underlying processes enables us to answer questions about “how possibly,

how plausibly, or how actually things work” [178, 21]. The ability of mechanisms to

uncover underlying processes of a system can thus facilitate: (i) development of proof-

of-concept models [178], (ii) extrapolating beyond the observed conditions [179], and

(iii) studying the behavior of a system under various interventions [180].

Building on these philosophical foundations, we approached the problem of mod-

eling complex systems (represented in the form of a single-layer network) through a

mechanistic network model. The fundamental idea is to use the observations out-

lined in Chapter 2, such as small-worldness [13], preferential attachment [12], ho-

mophily [27], etc., as mechanisms/process responsible for interactions between vari-

ous nodes in a network. These processes when combined with the observation that

complex networks naturally form through stochastic local node interactions [71], led

to the creation of the action-based framework for modeling networks [114]. Motivated

by existing observations and arguments of complex system formation, a framework is

then extrapolated by utilizing a set of link formation decision process (actions) within

an algorithmic environment to synthesize networks. The proposed framework led to

the development of a novel action-based model (ABM) that uses a generative algo-

rithm extrapolated from first principles to synthesize networks that are statistically

similar to the observed network(s) [114,181]. The action-based model provides a com-

pact probabilistic description of network formation using a mixture of link creation

mechanisms (actions).

Developing a computational solution using the ABM presented three significant

challenges: (i) intuiting general-purpose mechanisms/actions that can depict inter-

action processes in real-world systems, (ii) developing a theoretically sound forward

operator that provides nodes with the opportunities to create links, thus simulating

emergence of a macroscopic structure from individual interactions, and (iii) solving

the inverse problem of learning model parameters using given (often only one) net-

work observation(s). We discuss the first two challenges in this Chapter, while also
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reviewing some theoretical aspects that are relevant for the development of a sound

network model in Sections 3.1–3.3.

3.1 Statistical units for network data

The term statistical unit refers to the unit of observation or measurement for

which data are collected or derived. It is therefore the basic element considered when

tabulating statistical data. For example, the number of nodes in a network (as a

unit of measurement) or the number of connections per node (as a unit of analysis).

Notice that a critical feature of statistical units is their relationship to the outcome

of a statistical process because the units serve as the building blocks that a model

uses to generate/synthesize data. A good statistical unit will be (i) unambiguously

defined, (ii) easy to ascertain, (iii) suitable to the question being investigated, and

(iv) have stable value.

In the context of network modeling, the given network is typically partially ob-

served, although often assumed otherwise for simplicity. The network data G can be

defined as a function G : U 7→ R mapping a set of statistical units U (e.g., nodes,

edges, paths) into a response space R (e.g., the union of the neighborhoods of each

node, a list of all connected node pairs, sequence of vertices in each path) [60]. In

network modeling, the implicit units are the basic entities from which network struc-

ture is constructed, and they are determined by the theoretical context of the model.

Therefore, a network modeling framework can be defined as a combination of the

data generating modelMθ with parameters θ, and a sampling mechanism or synthe-

sis process Πn used to generate a network with n units [182].

Observation 3.1 The choice of statistical unit reflects assumptions concerning

how the network model represents network data and synthesizes new instances.

The specification of statistical units is crucial for drawing meaningful inferences

from a network model as it has direct implications on the theoretical properties of the
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modeling process [182, 183]. We discuss these properties, projectivity and exchange-

ability, in the following sections.

3.2 Projectivity

A typical setting in modeling networks involves learning models for the unobserved

(population) using the observed (data) network. The data in this case consists of

a sampled sub-network, which is used to estimate parameters for the population.

This innately assumes that the model is consistent under sampling [119], that is, it

defines a projective family. In context of a network models, the sampling mechanism

or synthesis process Πn should provide a way to project the predictions from the

observed network data to a larger sample [184]. Projectivity is the property of a

model that provides us with a context in which inferences from the model can be

interpreted beyond the observed data. A statistical network model is deemed to be

projective when the same parameters can be used for both the whole network and

any of its sub-networks [119].

Definition 3.1 (Projective Network Model [119,185]) A network modelMθ is

projective when A ⊂ B ∈ U implies that PA,θ can be recovered by marginalization over

PB,θ, for all θ ∈ Θ

ΠB,A(PA,θ) = PB,θ, (3.1)

where PA,θ represents the probability distribution of the model with observed units

A ∈ U and parameters θ ∈ Θ.

That is, the synthesis process ΠB,A can be used to project the model from a smaller

set of units to a larger one using the same parameter setting. Thus, the choice of

the process used to synthesize or sample networks from a model can have significant

ramifications on the kind of inferences that can be drawn from the model. For a

generative model, projectivity in the synthesis process can ensure that the generating

mechanism provides a reasonable justification for the observed network and how the

network is expected to evolve if more units were observed [186].
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3.3 Exchangeability

Another approach for establishing the connection between observed (data) and

unobserved (population) is through the study of invariance principles for structured

data [186]. Investigating symmetry through invariance principles has been a common

topic in classical statistics, for example, the i.i.d. assumption in sequences of random

variables provides a way of linking the sample with the population, whereas station-

arity in time-series analysis can help us establish relationship between observations

across time. For network models, the principle of exchangeability plays a central role

in establishing this symmetry. Exchangeability implies that the probability of observ-

ing a particular sequence of random variables does not depend on the order of the

elements in the sequence, making it an assumption on the data source rather than

the data [187]. We will begin with an introduction to exchangeability for an infinite

sequence of random variables, and thereafter focus on data in the form of graphs.

Theorem 3.1 (de Finetti [188]) An infinite sequence (X1, X2, . . . ) of random vari-

ables is exchangeable if the joint distribution is invariant under any (finite) permuta-

tion of indices σ : N→ N

(X1, X2, . . . )
d
= (Xσ(1), Xσ(2), . . . ), (3.2)

where
d
= signifies equality in distribution.

Such representation theorems for exchangeable random structures can help us

choose the appropriate class of statistical models for a given type of structured data

[187]. Further, these theorems can have huge implications on statistical inference

for data, because the elements Xi can be regarded as (conditionally) independent

samples originating from an unknown distribution, and thus the data can be used to

extract information about the value of the parameters of the population.

Before thinking about exchangeability for data in the form of networks, we need

to ponder on the following question: what is the corresponding sequence of random

variables for data in the form of networks? As described in Section 3.1, choosing
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the sequence leads to an implicit choice of a statistical unit for network data [60],

one that is typically overlooked by most network models. Once a unit is chosen, a

network model is exchangeable if it assigns equal probability to any two networks

that are equivalent up to the relabeling of the units [186]. In terms of network

models, exchangeability means that the generative process of synthesizing networks

does not depend on the order in which we observe data [64]. Overall, exchangeability

in network models implicitly provides a way of asserting that the statistical units

observed in the data are representative of the population.

Exchangeability of relational data has been the subject of numerous research stud-

ies [187, 189–196] and is not the focus of this Chapter. In the following sections, we

briefly describe some of the recent notions of exchangeability that have been investi-

gated in the statistical network analysis literature.

3.3.1 Vertex exchangeability

The famous Adlous-Hoover theorem for random arrays [189, 190] leads to the

notion of vertex exchageability, a characteristic property of the network models that

assume nodes as statistical units. In what follows, we assume that X is a symmetric

binary matrix representation of an undirected network G, where Xij = 1 implies that

there is an edge between nodes i and j.

Definition 3.2 (Vertex Exchangeability) A random array (Xij) is (jointly) ex-

changeable if

(Xij)
d
= (Xσ(i)σ(j)) (3.3)

for simultaneous permutations σ of rows and columns of X.

The Aldous–Hoover theorem is often referred to as the analogue of de Finetti’s

theorem (Theorem 3.1) for exchangeable arrays.
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Theorem 3.2 (Aldous–Hoover [189,190]) A random array (Xij) is vertex ex-

changeable iff there exists a measurable function F : [0, 1]3 → X such that

(Xij)
d
= (F (Ui, Uj, Uij)), (3.4)

where the U ’s are i.i.d. uniform random variables.

For undirected random graphs, the representation in Equation 3.4 can be simpli-

fied by assuming that the function F is symmetric in its first two arguments. This

leads to the notion of a graphon process, which has traditionally been used to study

the limits of graph sequences in the statistics literature [192,197].

Definition 3.3 (Graphon process [197]) A random symmetric function W : [0, 1]2 →
[0, 1] that by construction satisfies

F (Ui, Uj, Uij) =

1 if Uij < W (Ui, Uj)

0 otherwise,

(3.5)

can be used to sample vertex exchangeable graphs.

The Aldous–Hoover theorem brings out an important relationship between graphons

and vertex exchangeability. Graphons characterize the subclass of vertex exchange-

able networks where any two non-overlapping subgraphs are independent. This limits

the graphon model (or vertex exchangeable random graphs) to synthesize networks

that are either dense or empty with probability 1. This contradicts empirical obser-

vations that most real-world networks are sparse. Sparsity means that the number

of edges in a network grow sub-quadratically as a function of the number of vertices.

Another implication of the graphon model is the assumption that the observed ver-

tices are representative of the population of all vertices and thus the population is

homogeneous, which again is untrue for most real-world data. Based on this, [60]

points out that much of the confusion in network modeling can be attributed to the

fact that most generative models innocuously assume nodes as fundamental units for

network datasets.
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Various attempts have been made to circumvent the limitations of the graphon

model [65, 195, 198, 199]. A particularly interesting approach is the one adopted by

Caron and Fox [195] (later generalized as a graphex in [65]), where networks are

treated as exchangeable point processes in [0,∞)2. The model introduces hetero-

geneity in the network generation process by using a sociability parameter w = {wi}
for each node. This modification allows the model to synthesize networks that are

sparse and follow power law degree distributions. The graphs are exchangeable in

the sense that every observation of the network over a time period of length t ≥ 0 is

representative of every other observation of the network over a period of length t.

3.3.2 Relational exchangeability

Networks can also be constructed by sampling interactions among sets of individ-

uals in the population. Under such a setting, interactions or relations between nodes

(for example, edges, hyperedges, paths, etc.) act as statistical units for the network

model. Such a model assumes that the sampled relations are representative of the

population of relations. This leads to the notion of relational exchangeability [194],

which is a generalized version of edge exchangeability [183, 200, 201]. Here we focus

on the simple case of edge exchangeability, where the sequence of random variables

Yi = (si, ti) is the edge between nodes si and ti. Network creation is modeled as

arrival of edges, and edge exchangeability implies that the distribution of a random

edge-labeled graph is invariant under arbitrary relabeling of its edges. For S ⊂ N, let

ES denote the set of all edge-labeled networks with edges labeled in S.

Definition 3.4 (Edge Exchangeability [183]) A random edge-labeled graph X ∈
ES is edge exchangeable if Xσ d

= X for all permutations σ : S → S.

Three different papers have provided alternative methods for sampling edge ex-

changeable graphs using graph frequency models [200], interaction propensity pro-

cesses [183], and a mixture of Dirichlet network distributions [201]. In each case,

the models are theoretically capable of synthesizing sparse networks, but their ability
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to synthesize real-world networks remains questionable and needs to be subjected to

empirical validation.

3.3.3 Relative exchangeability

Network data observed from real-world applications typically contains information

in the form of metadata that is more than just the structural interactions between

the nodes in the population. This metadata typically exists as node attributes, and

is seen as the primary source of inhomogeneity in the connection patterns of the

nodes [27]. Vertex exchangeability assumes that this heterogeneity is inconsequential

to the structure of the network. But, a random permutation of nodes without ac-

counting for the node attributes would result in a network whose probability of being

synthesized by a stochastic process might not be the same as that of the observed

network [184, 187]. Given that the interaction between nodes is highly dependent

on node attributes, it is crucial to account for this source of heterogeneity in our

exchangeable models for networks.

The simplest example of a network model that utilizes this heterogeneity is the

stochastic block model [141–143] (see Section 2.2.5 for details), where the nodes are

partitioned into non-overlapping communities. The SBMs are a special case of the

more general class of relatively exchangeable network models [182,202]. Relative ex-

changeability refines vertex exchangeability by expressing the distributional symme-

tries of a network in terms of another (fixed) structure Z that is meant to capture the

heterogeneity in the population [186]. The basic assumption behind relative exchange-

ability is that the structure of the data is sufficient for describing the heterogeneity

in the population.

Definition 3.5 (Relative Exchangeability [182,202]) A random network X is

relatively exchangeable with respect to a (fixed) structure Z if

X|S d
= X|σS for all permutations σ : S → S such that Z|σS = Z|S, (3.6)
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where X|σS and Z|σS are relabeling of X|S and Z|S according to σ with the domain

restricted to the set S ⊂ N.

The discussions above necessitates the careful choice of statistical units for network

models as it is the foundational assumption about the data modeling process. Various

undiscovered components of a network can be selected as units depending on the

application at hand, but the revelation of a unit that can be utilized to model a wide

variety of network data can have widespread implications on the subject of network

analysis. Further, the choice of statistical unit affects the inferential capabilities of a

network model as it serves as the starting point for the representation of a network

and the corresponding theoretical properties of the model.

3.4 The action-based framework

Building on the observation that networks naturally form through stochastic pro-

cesses of node interactions, we propose an action-based model (ABM) that uses a

generative algorithm extrapolated from first principles to synthesize networks that

are statistically similar to the observed network(s). In the action-based model, we

assume that the macroscopic structure of a network emerges from structured micro-

scopic interactions between individual nodes. That is, we assume that the structure

of the network emerges from local mechanisms of node interactions, while the nodes

themselves are oblivious of the global network topology, resulting in the synthesis

of non-trivial network structures. The action-based approach draws inspiration from

cellular automata, where simple mechanisms can combine to recreate properties of a

living system, such as self-replication, adaptability, robustness and evolution [203].

The action-based approach for efficiently inferring accurate and compact models

of complex systems builds on the two core concepts of complex systems: emergence

and self-organization. Emergence is a phenomena observed in complex systems, where

the macroscopic properties of the system cannot be completely explained by simple

microscopic properties of the individuals, that is, “the whole is greater that the sum
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of its parts” [3]. The action-based approach uses diverse mechanisms of interactions

between components to facilitate the emergence of non-trivial network structures

and behaviours at large scale. In a complex system, individual components interact

and self-organize in multiple ways over time without the existence of any central

authority [204]. In the action-based approach, the synthesis algorithm provides nodes

with opportunities to interact and create edges as the structure evolves over time.

Real-world networks exhibit a wide variety of intricate non-trivial topological fea-

tures that do not occur in completely regular or completely random networks. These

topological features can be attributed to the heterogeneity, diversity and dependence

in the structural connectivities of the nodes. It seems unlikely that such complex in-

teractions can be captured by a simple or single process of interaction among nodes,

but one could potentially list a finite number of decision processes or mechanistic

rules that work in conjunction to create the resulting structure [84]. The question

then is how do we emulate these decision processes, and how these decision processes

can be combined to synthesize non-trivial network structures.

One way could be to define a probability distribution on a finite set of distinct

decision processes (hereafter referred to as actions) and use them to model the in-

teractions between nodes. For example, the exact reason for interaction between two

specific nodes may not be known, but potential reasons for the interaction can be enu-

merated and assigned a corresponding probability. Given an appropriate probabilistic

model it seems reasonable to presume that it should then be possible to synthesize a

variety of topologies. The fundamental idea behind the action-based framework is to

define a unifying network generative process, which follows from observations by [205]

who note that there must exist an assembling algorithm to combine various actions to

synthesize a variety of network structures. Identifying such an assembling algorithm

can help us distinguish between network properties that are responsible for network

growth from those that emerge as byproducts of the network generation process.

Our action-based perspective assumes that the generative process is composed

of two main components: (i) general-purpose mechanisms/actions that can depict
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interaction processes in real-world systems, and (ii) a theoretically sound forward

operator that provides nodes with the opportunities to create links, thus simulating

emergence of a macroscopic structure from individual interactions. We discuss these

two components in Sections 3.4.1 and 3.4.2, respectively.

3.4.1 Actions

Consider a network G = (V,E) containing n nodes that may or may not have any

links between them. Let there exist a finite action set A = {a1, . . . , ak} containing

k node actions, each representing a single decision process for node vi ∈ V to create

a link (vi, vj) to any node vj ∈ V . Without domain specific knowledge actions for

choosing vj can be based on network topological characteristics, for example a set of

four actions could hypothetically be:

A =



a1 = probabilistically select vj based on its degree,

a2 = select a second neighbor vj uniformly at random,

a3 = select vj as node having highest Jaccard similarity to vi,

a4 = do not make a link.


The novel concept presented herein builds upon the assumption that nodes create,

rewire or delete edges by probabilistically choosing from a set of actions, thus giving

rise to a global network structure. In this context, actions are similar to updating rules

in cellular automata, whereby simple spatial neighborhood rules are used to evaluate

the next state of a cell. Cellular automata are capable of universal computation using

these rules, and very simple deterministic systems can create unpredictable complex

behavior [204]. Similarly, it is conjectured that by combining simple actions and

carefully choosing corresponding probabilities, we can evolve networks by simulating

their stochastic local interactions.

Actions for removing, rewiring, or adding multiple edges can be easily added to

the framework while following the guidelines given below:
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• Adding, removing, rewiring edges should be based on some mechanistic expla-

nation of an observed phenomena. Actions can be inspired from some real-world

phenomena for forming connections or based on some common criteria based

on an application to particular domains.

• A node should only have the ability to change its local structure.

• An action should attempt to provide insights into the topological patterns that

exist in the target network.

Node-type as statistical unit

Let P(a = al) be the probability that action al ∈ A is chosen by a node, implying

that nodes are homogeneous with respect to their probability of choosing actions to

create links. However, actors in real-world networks are heterogeneous with respect

to their strategies for creating links, thereby rendering this assumption unlikely to be

true. Hence, P(a = al) must be conditioned on the type of node, where the probability

distribution over actions sufficiently differs between any two node-types, and every

node is classified as being one and only one of the types. That is, let P(T = t) be

a column vector storing the probability of a node being of type t = 1, . . . , d � |V |.
An action matrix M = [P(A|T )] can be used to define an action-based network

generative process for a given set of nodes V . The action matrix M could be user-

defined, learned from multiple network observations, or optimized/estimated from

even a single network observation [114].

Definition 3.6 (Action Space) Given action set A = {a1, . . . , ak}, the action space

A is the set {P1(A|T ),P2(A|T ), . . . } of all probability distributions over A.

Then, a node-type t : {1, 2, . . . } 7→ A can be represented as a map from a positive

integer to the action space A. If the action set A has k actions, then A is a k − 1

dimensional hyper-plane in Rk such that for M ∈ A∑k
i=1 Mi = 1, Mi ≥ 0 ∀i = 1, . . . , k. (3.7)
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Definition 3.7 (node-type) Given action set A = {a1, . . . , ak} and distributions

P1(A) and P2(A). If d(P1(A),P2(A)) ≥ ε then the node-type t(P1(A)) 6= t(P2(A)),

for some appropriate statistical distance measure d (e.g., Kullback-Leibler divergence,

Kolmogorov-Smirnov statistic, etc.).

In other words, node-type corresponds to a probability distribution over a pre-

defined finite action set A, consisting of decision process for link formation. The choice

of actions can be based on the network being modeled, which is discussed in Chapters

4–6. Definition 3.7 ensures an injective map of a node-type to the action space A,

hence making it a “good” statistical unit based on the characteristics described in

Section 3.1.

When compared with node as a statistical unit, node-type contains much more

information about the data modeling process, while also providing an intuitive repre-

sentation for networks data. This enhances the potential inferential capabilities of the

action-based model. These benefits come at the cost of the difficulty of identifying

the number of node-types that are sufficient to model observed data and finding the

corresponding map in the action space. The inverse problem of learning model param-

eters using given (often only one) network observation(s) is the subject of discussion

for the next Chapter.

3.4.2 Synthesis algorithm

An algorithm that takes action matrix M as input is required to synthesize net-

works using the action-based model. A forward operator F (·) in case of the action-

based model is a generative algorithm F (M, V,m, ξ) that can be used to synthesize

networks containing n nodes and m edges using an action matrix M, where ξ signifies

the stochasticity in the generative process. As demonstrated in Figure 3.1, the gen-

erative algorithm synthesizes networks by first creating the set of desired nodes, and

then probabilistically assigning a node-type t to each node according to P(T = t).

Monte Carlo simulation is then performed using the probabilities of node actions from
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P(a = al|t). For example, a model of a simple preferential attachment network will

contain a single node-type that has a sufficiently high probability for the action of

creating connections to nodes based on degree. Repeated sampling from P(a = al)

will yield a preferential attachment network, as desired. Increasingly complicated

topological properties will emerge with increased number of node-types and variety

of actions.

a1 a2 a3 a4 P̄

0.1 0.4 0.2 0.3 0.6

0.2 0.1 0.45 0.25 0.4

(a) Example action matrix with

two node-types, blue and green.

F (·)

(b) Pictorial description of the action-based approach using the action matrix

shown above.

Figure 3.1. The action matrix shown in Figure 3.1a consists of two node-
types, blue and green. On the left side of Figure 3.1b, each node in the
network is assigned a node-type according to P̄ = P(T = t), following
which the synthesis algorithm F (·) is used to provide an opportunity for
nodes to create links, and thus synthesize a network.

Importantly, the synthesis algorithm allows the network modeler to easily inte-

grate domain specific rules or constraints by implementing a problem specific set of
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node actions. We consider the applications of our action-based approach to supply

chain networks in Chapter 5 and structural brain networks in Chapter 6, showing

how the approach can incorporate domain specific rules to provide useful insights

by synthesizing networks that closely resemble the structural organization of these

systems. Moreover, the modeler may wish to ensure a specific network backbone,

which can be easily accommodated by defining the initial topology before executing

the Monte Carlo simulation. Termination conditions for the synthesis algorithm are

user defined, e.g., certain number of edges created or topological characteristics have

satisfactorily emerged.

As discussed in Sections 3.2 and 3.3, the theoretical properties of a network

model depend on the sampling mechanism or synthesis process used to generate

the network. The synthesis algorithm for ABM produces a sequence of networks

(G0, G1, G2, . . . , GK), where G0 is the base starting network with the entire set of

nodes and GK is the network obtained upon termination of F (·). The choice of an

appropriate forward operator F (·) will ensure the projectivity of the network model.

To ensure this, we assume that the growth of the network Gk at iteration 0 < k < K

during the construction depends only on the the network Gk−1. Further, node-types

are independent and identically distributed (i.i.d.) according to P(T = t), and do not

depend on the number of the nodes in the network. This allows easy projection of a

model trained on a smaller network to a larger network (see Appendix A for related

experiments).

In context of exchangeability, using node-type as the statistical unit introduces

heterogeneity in the network synthesis process of ABM. While it might not be possible

to write a closed-form expression for the probability P(X = x) of a random network

X, we can use the forward operator F (·) to show that under appropriate assumptions

for the synthesis algorithm, a relatively exchangeable assignment of the node-types

will synthesize isomorphic networks. The forward operator F (M, V,m, ξ) allows us to

sample networks from P(X = x|M, V,m), and fixing the sequence of random variates

(or sample path) ξ = ξ1 will lead to synthesis of the exact same network upon repeated
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sampling. Showing that F (M, V σ,m, ξ1) will produce that exact same network for

a relatively exchangeable permutation σ : V → V of the node-types will imply that

P(X = x|M, V,m) = P(X = xσ|M, V σ,m), where xσ is the network obtained after

the permutation of node-types.

Let C : V → t assign each node in V to a unique node-type t = 1, . . . , d. For

a random permutation σ : V → V , if two nodes i and j with C(i) 6= C(j) are

interchanged by σ (assuming that there are more than one node-types), the networks

synthesized by F (M, V,m, ξ1) and F (M, V σ,m, ξ1) will not be isomorphic as the

nodes i and j will choose different actions (because two node-types will be sufficiently

distinct, see Definition 3.7), hence creating different edges. This means that ABM

with more than one node-type is not vertex exchangeable. For a random permutation

σ that preserves the node-type assignment, that is, σ : V → V for which C(σ(i)) =

C(i) ∀i = 1, . . . n, the networks synthesized using F (M, V,m, ξ1) and F (M, V σ,m, ξ1)

will be isomorphic. This leads to the following theorem:

Theorem 3.3 A random network X synthesized using the action-based model using

forward operator F (M, V,m, ξ), action matrix M, and node-type assignment C is

relatively exchangeable with respect to the node-type assignment C.

Proof Assume that fixing the sample path ξ1 in the forward operator F (M, V,m, ξ1)

produces a network x using node-type assignment C. Let V σ be some arbitrary

relabeling of the nodes leading to a node-type assignment satisfying

C(σ(i)) = C(i) ∀i = 1, . . . n for some random permutation σ : V → V, (3.8)

that is, the permutation σ preserves the node-type assignments. Using the forward

operator F (M, V σ,m, ξ1) on the relabelled set of nodes with the same sample path

ξ1 produces network xσ. By fixing the sample path ξ1, the probability of existence

of an edge Xij in a random network synthesized using F (·, ξ1) depends only on the

node-type assignment C. The restriction on σ specified in Equation 3.8 ensures that

the node-type assignment for x and xσ are identical, and so is the probability of every
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edge. Thus, controlling all sources of randomness by fixing the sample paths, along

with the equivalence in node-type assignments ensures that the networks x and xσ

are isomorphic, and hence X is relatively exchangeable with respect to the node-type

assignment C.

It should be noted that if an action ai is based on some node attribute φ of the

initial network G0, then the model will be relatively exchangeable with respect to

a fixed structure Z = (C, φ) that contains both the node-type assignments and the

node attributes. Thus, to ensure exchangeability for a model with actions based on

topological network characteristics such as the ones listed in Section 3.4.1, G0 needs

to be an empty network. To summarize, the synthesis algorithm: (i) provides an

algorithmic environment for nodes to self-organize and grow the network over time,

(ii) specifies a termination criteria, and (iii) ensures exchangeability of the model.

Finally, we would like to point out that the action-based model can be seen as

an interaction propensity process [186, p. 161], where the probability of interaction

between two nodes i and j, given by pij, depends on two separate terms. It is widely

accepted that the interactions in networks originate from some sort of dependence

among the nodes, and thus there is a need to model interaction propensity using

a conditional probability. This is a feature of the action-based model, where the

synthesis algorithm first chooses the node i with probability pi for creating an edge,

following which i chooses to interact with j with probability pj|i that depends on

the chosen action. Actions provide a natural way of defining pj|i that can help us

incorporate dependence between vertices on either end of an edge1.

1this has been listed as an open research problem in a recent book on Statistical Network Analysis
[186, p. 169].



57

4. EMPIRICAL EVALUATION OF THE ACTION-BASED

APPROACH

Complex networks can model a wide range of complex systems in nature and society,

and many algorithms (network generators) capable of synthesizing networks with few

and very specific structural characteristics (degree distribution, average path length,

etc.) have been developed, see Section 2.2 for a review. However, there remains a

significant lack of generators capable of synthesizing networks with strong resemblance

to those observed in the real-world, which can subsequently be used as a null model, or

to perform tasks such as extrapolation, compression and control. In this Chapter, we

show that the action-based framework described in Chapter 3 can be used to learn

a compact probabilistic model for a given target/observed network G∗, which can

then be used to synthesize networks of arbitrary size. This is achieved by solving the

inverse problem of learning model parameters using given (often only one) network

observation(s) [206].

The goal in this Chapter is to devise a robust algorithmic framework for learning a

compressed model of a given target network, and to show that the resulting generator

is capable of synthesizing, with high probability, statistically similar networks to the

given network. In order to maximize utility, the framework should be robust to

the number and type of global network characteristics that are to be modeled, in

addition to yielding easily interpretable generators. The computation time required to

design the generator must also not be burdensome. We begin with an introduction of

Statistical inference of generative network models, following which we provide specific

details about our implementation of the action-based model. Statistical comparison to

existing network generators is performed and results show that the performance of our

approach is comparable to the current state-of-the-art methods on a variety of network
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measures, while also yielding easily interpretable generators [114, 181]. Additionally,

the action-based approach described herein allows the user to consider an arbitrarily

large set of structural characteristics during the generator design process. Using

experimental evaluations, we provide evidence that the proposed approach is equally

applicable to biological, technological, and social systems.

4.1 Statistical inference of generative network models

Statistical inference of generative network models involves estimating parameters

of the model that best fit the given data. The most widely used approach for es-

timating model parameters is to maximize the likelihood of the observed data. For

network models such as latent space models, exponential random graphs, Kronecker

graphs, etc., the goal is to tune parameters θθθ such that the likelihood of generating

the observed network G∗ is maximized. Ultimately, the goal is to estimate network

model parameters that maximize the algorithm’s ability to synthesize networks that

are statistically representative of G∗. As previously described in Chapter 3, it is not

possible to compute the likelihoods for mechanistic models as we need to consider all

the possible paths to generate any one particular network realization, which leads to

a combinatorial explosion save for the most trivial settings [17]. Fortunately, mecha-

nistic models are easy to forward simulate, and the algorithmic procedure can be used

to draw samples of networks using the model. Thus we can rely on likelihood-free ap-

proaches, where we first need to define a set of network properties (Y = {Y1, · · · , Yk})
to be matched, then define a quality-of-fit measure Q(G|G∗, Y,X) (see Section 2.3

for a brief review) to quantify (dis)similarity and finally optimize the generator pa-

rameters θθθ over the feasible domain D. Assuming that Q is a measure of network

dissimilarity, the problem of estimating model parameters can be written into the

following optimization problem:
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minimize E [Q(G|G∗, Y, θθθ)]

subject to θθθ ∈ D,
(4.1)

Here, we assume that minimizing the expectation E [Q(G|G∗, Y, θθθ)] (taken over

the set of synthesized networks to account for stochastic variations in the network

model) can be used as a proxy for maximizing the likelihood.

A network comparison technique evaluating Q(G|G∗, Y, θθθ) should ensure that the

difference betweenG andG∗ should not exceed what is expected from mere population

variability or stochastic fluctuations [173]. The set of global network properties Y

consists of measures that contain information about the topological characteristics of

a network. One would expect that matching these global properties will allow the

model to synthesize networks that are topologically representative of the structure of

the target network.

While the formulation in Equation 4.1 can be useful for training network models,

it suffers from a huge flaw because synthesizing isomorphic graphs is the optimal

solution for this problem. Synthesizing isomorphic graphs is an undesirable solution

because the goal here is not to exactly reproduce the target network but rather learn a

model that can synthesize networks statistically similar to one another and the target

network i.e. variation is expected/desired (this aspect is explored further in Chapter

7). One way to address this is to define a threshold γ for E [Q(G|G∗, Y, θθθ)] such that

when the networks G and G∗ are sufficiently similar (i.e. E [Q(G|G∗, Y, θθθ)] ≤ γ), the

Q value should default to zero. Setting an acceptable threshold γ on Q can help us find

good generators for a target network. Also, because network generators are stochastic

algorithms, it is unlikely that the networks synthesized for a fixed parameters setting

will be isomorphic to each other or the target network.

4.2 Action-based model: Implementation

Recent publications [101,207] have shed some light on the emergence of power law

degree distributions in networks, showing that the interplay between popularity and
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similarity plays a key role in the organization and evolution of scale-free networks.

Building on these results, the action-based model defines actions corresponding to

different mechanisms of evaluating popularity and (dis)similarity. Actions are used

to define local pairwise interaction between nodes to make local topological changes

in a network by repeatedly and probabilistically choosing from a pre-defined set of

actions, thereby creating a global network structure. A synthesis algorithm F (M, ·)
can then be used to synthesize networks containing n nodes using the learned action

matrix M, leading to action-based network generators (ABNG). For a given target

network, M is determined by solving an inverse problem. A pictorial representation

of this procedure can be seen in Figure 4.1.

Figure 4.1. A procedure for determining action matrix M: Algorithm S1
probabilistically adds the required number of edges using ABNG-PA(1).
Algorithm S2 compares a set of synthesized networks to the target using
the user-defined structural characteristics in order to determine the repre-
sentativeness of action matrix M. Algorithm S3 perturbs M and retains
a set of best-fit solutions. The process repeats until a termination criteria
(e.g., number of iterations) is satisfied.
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More specifically, consider a target network G∗ = (V,E) with nt = |V | nodes

and mt = |E| edges. Let the action set A = {a1, . . . , ak} contain k node actions.

Each action provides a well-defined strategy for selecting the other end vj of edge

(vi, vj), for instance using preferential attachment, node similarity, node dissimilarity,

etc. Let Pi be a probability distribution over the k actions that can be made by

node vi ∈ V . If nodes vi′ , vi ∈ V choose actions using the same distribution, there

will exist q ≤ n distinct probability distributions over actions, and each P1, . . . , Pq

will correspond to a unique node-type. For P ∗q×k = [Pi], we define the Action Matrix

Mq×(k+1) = [P ∗|P̄ ], as a condensed representation containing all distinct Pi, and

probability vector P̄q×1 containing probability of choosing actions according to Pi.

For a finite set Y of user-chosen network characteristics, the problem of determining

M can be formulated as:

minimize E [Q(G|G∗, Y,M)]

subject to
∑k

j=1Mij = 1 ∀i = 1, · · · , q∑q
i=1Mij = 1 j = k + 1

Mij ≥ 0 ∀i = 1, . . . , q and ∀j = 1, . . . , k + 1

(4.2)

where Q(G|G∗, Y,M) is a measure to quantify the dissimilarity between a synthesized

network G = F (M, ·) and target G∗ based on network characteristics Y .

4.2.1 Synthesizing networks

As highlighted in Figure 4.1, an algorithm that takes action matrix M as input

is required to synthesize networks using the action-based approach. The principle

follows from observations by [205] who note that there must exist an assembling

algorithm to combine various local mechanisms that lead to the emergence of dif-

ferent complex network structures. A synthesis algorithm F (M, ·) uses an action

matrix M and the local interaction mechanism of actions to synthesize networks.

The action-based framework permits the use of different synthesis algorithms with
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the options of adding, deleting or rewiring edges (or a combination thereof). Table

4.1 briefly describes four possible algorithms and their respective complexities for

synthesizing a network. The complexity of each algorithm is given in terms of action

calls, which gives the expected number of times an action will be evaluated during

network synthesis. We assume that the synthesis algorithm F (M, ·) terminates when

the synthesized network has the same number of edges as the target network. For the

algorithms listed below, we also assume that the node set is created in the beginning

(i.e., no nodes are added during the synthesis process) and only edges are altered

using various actions. When unspecified, it is assumed that at each time step in the

synthesis algorithm, all nodes simultaneously update their state by making changes

to their edge set. Detailed description of each algorithm is given below:

Table 4.1.
Synthesis algorithms for ABNG: ρ is the probability an edge will be added
by a given action matrix, and ms is the number of edges in the starting
network.

Synthesis Algorithm Description Action calls

ABNG-PA(·) Addition of edges to a starting network with ms � mt
1
ρ
(mt −ms)

ABNG-D(·) Deletion of edges from a starting network with mt � ms
1
ρ
(ms −mt)

ABNG-R Rewiring of all edges in the target network 2mt

ABNG-C Degree sequence preserving addition of edges to an empty network 1
ρ
mt

• ABNG-PA(·): This synthesis algorithm corresponds to addition of edges to a

starting network. It follows from preferential attachment algorithms, where new

edges are added in each time step. The parameter in ABNG-PA(·) denotes the

number of action-based queries to each node for addition of an edge. The current

implementation uses ABNG-PA(1) as the synthesis algorithm i.e. each node is

queried for addition of a single edge in a time step. Clearly, the computational

complexity of this algorithm is proportional to the number of edges that need

to be added to the starting network.
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• ABNG-D(·): This synthesis algorithm modifies ABNG-PA(·) by deleting edges

from a starting network having more edges than the target. Again, the input

parameter denotes the number of edge deletion queries in each time step during

network synthesis. The computational complexity of this algorithm is propor-

tional to the number of edges that need to be deleted from the starting network.

• ABNG-R: Another local operation that actions can perform is rewiring i.e.

changing one end of an already existing edge. The rewiring technique is used

in dk-random graphs [110] to sample from the entire ensemble of networks. In

context of ABNG, ABNG-R starts with the original target network and rewires

its edges using actions. Every edge of each node is queried for an action-based

rewiring resulting in a total of 2mt action calls.

• ABNG-C: ABNG-C corresponds to a degree sequence preserving extension of

ABNG-PA. It can be seen as a constrained version ABNG-PA where the degree

sequence of the target network is preserved. Each node i can add edge (vi, vj)

under the condition that the degree sequence is not violated. Joint degree

distribution preserving synthesis algorithms is also a possibility. It can be seen

that starting from a network with no edges, this synthesis algorithm needs to

add mt edges leading to computational complexity directly proportional to mt.

It should be noted that the computational complexity of a synthesis algorithm

can be upper-bounded by considering the complexity of the most expensive action in

the action set. Also, as highlighted in Table 4.1, the computational complexity of a

synthesis algorithm depends on the action matrix being used as input or ρ, which is

the probability an edge will be added by a given action matrix.

4.2.2 Evaluating generator suitability

A research question directly related to network modeling is that of accessing the

goodness-of-fit or evaluating the suitability of a model. As seen in Equation 4.2, a
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measureQ is required to compare a networkG synthesized using the generator and the

target network G∗. Recent observations have highlighted the need to consider multiple

global characteristics when comparing networks [61–63,110,113,151,153–156]. Ideally,

a subset of network properties would be sufficient to capture this dissimilarity, but

unfortunately, this set of network properties is unknown (and may not exist). To

tackle this problem, ABNG optimizes the action matrix to minimize Q for a flexible

set of user-defined properties Y . Thus, the problem of learning an action-based model

is formulated as a multi-objective simulation optimization problem (see [208] for an

introduction to the multi-objective simulation optimization).

4.3 Methods

As shown in Figure 4.1, the action-based approach is composed of three algo-

rithms, with the tasks of (1) network synthesis, (2) comparison to target network and

(3) optimization of the action matrix. The algorithms used in the current implemen-

tation are briefly described here. ABNG-PA(1) is used for network synthesis and it

is outlined in detail using Algorithm 1. In this implementation, a starting sparse net-

work is required to synthesize networks using ABNG-PA(1) because some actions can

potentially become undefined due of lack of any network characteristics. We create

this by randomly sampling 0.7× nt edges from G∗ (see Section 4.8.5 for experiments

on varying the starting network). Alternative approaches to synthesizing networks

from M may further improve observed results by allowing deletion and rewiring of

edges and therefore capturing different types of local interactions between nodes or

allowing construction from an empty starting network.

A multi-objective approach was utilized to evaluate the ability of ABNG to ac-

curately model the desired characteristics of the target network. Consider a set

Y = {Y1, Y2, · · · , YN} of scale-independent global network properties of interest. For

each synthesized network, a 2-sample Kolmogorov-Smirnov statistic is used for each Yi

to quantify difference in distribution from the target, although alternative approaches
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Algorithm 1 ABNG-PA(1)

1: Input: Action matrix M, starting network G = (V ′, E ′), target network G∗ =

(V,E) and a set A of k actions

2: Pi = P ∗[z, :] wp P̄z, z ≤ q {assign a node-type using P̄}
3: while |E ′| < |E|, for every node vi in G do

4: Ē = ∅ {initiate an empty set of edges}
5: for vi ∈ V ′ do

6: choose al for vi wp P ∗il l = 1, · · · , k {choose an action}
7: j = al(V |i) {choose the other end of the edge}
8: Ē = Ē ∪ (i, j)

9: end for

10: E ′ = E ′ ∪ Ē {add edges to the network}
11: end while

12: return G

such as KL-divergence or entropy-based measures are possible. More specifically, the

d statistic for each pair of synthesized and target networks can be straightforwardly

calculated and the mean used as an approximation for the objective function Yi.

Further details are outlined in Algorithm 2.

Algorithm 2 Network Comparison

1: Input: A set of synthesized networks G = {G1, · · · , Gn}, target network G∗, and

set Y

2: for all Gj ∈ G do

3: for all Yi(Gj) ∈ Y do

4: di = supx∈R |Fi,G∗(x)− Fi,Gj
(x)| {Fi,G is cumulative distribution}

5: end for

6: end for

7: return (E(d1), · · · ,E(dN)) {E(d) is an estimation of the expected value.}
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To quantify network structural dissimilarity, the GP system developed in [56]

was used in a meta-analysis in [155] to evaluate six network centrality measures.

Results indicated that of the examined centrality measures, the degree distribution,

betweenness centrality, and PageRank were the most effective for quantifying the

(dis)similarity between the target and the synthesized networks. We use these three

measures; however, the framework allows for any user-desired measures, and they are

added during our experimental evaluations when necessary.

Given a synthesis algorithm F (·) and set Y , the next goal is to estimate an action

matrix based on its average case performance as defined by the optimization problem

in Equation 4.2. To solve this multi-objective search problem, we implement Pareto

Simulated Annealing (PSA) [209], as it is known to be a useful metaheuristic capable

of global optimization in a large search space in a fixed amount of time. Addition-

ally, only one evaluation of the objective function is required at each iteration when

compared with population-based algorithms, which require an evaluation for each

member of the population. In our experiments, we used other multi-objective opti-

mization algorithms such as NSGA-II [210], MOPBnB [206], and multiple-gradient

descent [211], but found PSA to be the most effective one.

The implementation of ABNG begins with the assumption that each node has the

same probability distribution over actions. In other words, we assume that all nodes

are initially homogeneous with respect to their preference over actions. This implies

that all rows in P are identical and the action matrix has dimensions 1×(k+1) (P̄ = 1

in this case). Additional rows are dynamically added to M during the optimization as

discussed in Section 4.7. PSA explores the solution space by increasing (or decreasing)

randomly chosen individual elements of the action matrix, while accepting worse

solutions with a probability decreasing exponentially with the number of iterations.
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4.4 Results

Six human-designed network generators and 19 real-world networks (see Table

B.1) were selected to evaluate the efficacy of the action-based approach. Human-

devised network generators were selected for historical significance and the distinct

global network properties that they model. Another benefit of using these generators

is that they are designed to be simple (i.e., nodes use a single strategy for forming

edges) and the simplicity should be reflected in their respective action-based models.

In all experiments PageRank, degree distribution and betweenness were utilized as

the global network characteristics as suggested in [163], although the approach is

indifferent to this choice. Local transitivity was added as an objective for networks

having more complicated structures. The 2-sample Kolmogorov-Smirnov statistic is

used to quantify difference in distribution of these properties between the synthesized

and target networks.

4.4.1 Modeling networks synthesized by human-devised generators

To test the ability of ABNG to replicate distinct global network properties such

as scale-free degree distributions, small-world effect etc, the generator was tested

using target networks with ≈ 100 nodes and ≈ 500 edges synthesized using Erdős-

Rényi [22], power law [46], small world [13], Barabási-Albert [12], Forest Fire [212]

and stochastic block models [143]. Having ground-truth network models allows for

controlled experimental comparison across network size (number of nodes), as well as

direct comparison of the action matrix to the logic of the generator that synthesized

the example target network.

Solutions obtained for Erdős-Rényi, power law, small world and Barabási-Albert

models all resulted in a 1× (k + 1) action matrix M (P̄ = 1 in this case). An action

matrix corresponding to the solution closest to the origin (based on 1-norm) was

chosen as the model for each network, and is shown in Table 4.2. Only one node-
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Figure 4.2. Results obtained from optimized models of human-devised
generators. Network properties that were used for optimization are un-
derlined. The plots show KS test d-statistic with the outer circle showing
value of 1 (maximum possible value). The lower the value, better is the
synthesized network. Each gray line corresponds to a network synthe-
sized using the target generator. Each blue line corresponds a network
synthesized using an optimized action matrix.

type was discovered, implying a homogeneous strategy when forming edges, which is

consistent with these network generator algorithms.

The forest fire and block model networks, shown in Figure 4.2, required two-row

action matrices, indicating the existence of two node-types (see Table 4.2). In Figure

4.2, network properties Y considered in the optimization process are underlined, oth-

ers are provided for context and not expected to be near optimal. Lines closer to the

origin imply a lower dissimilarity between target and synthesized networks and are

thus more desirable. These results suggest that the synthesis algorithm ABNG-PA(1)
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Table 4.2.
The table shows optimized action matrices for networks synthesized by
human-devised generators. The following actions were used: Preferen-
tial attachment on - average neighbor degree (PAND), degree (PAD),
PageRank (PAPR) and betweenness (PAB); Triadic closure (TC); Inverse
log-weighted (SLW) and Jaccard similarities (SJ); and No action (NA).

Network↓ |Action→ PAND PAD PAPR PAB TC SLW SJ NA P̄

Erdős-Rényi 0.669 0 0.149 0 0.006 0.007 0.169 0 1

Power Law 0 0.227 0 0.178 0.023 0.076 0 0.496 1

Small World 0.328 0.011 0.023 0 0 0.020 0.618 0 1

Barabási-Albert 0.132 0 0.038 0.560 0.019 0.225 0.026 0 1

Forest Fire 0 0.008 0 0.016 0 0.549 0.051 0.376 0.767

0 0 0.041 0.547 0.029 0.019 0.216 0.148 0.233

Stochastic Block 0 0.101 0.322 0 0.207 0 0.035 0.335 0.284

0.090 0.02 0.063 0.102 0.113 0.079 0.363 0.170 0.716

is capable of modeling the actual network generator using only one target network

observation.

Figure 4.3 compares the degree distribution of networks synthesized using ABNG

with Erdős-Rényi and Barabási-Albert as target networks. The distributions labeled

as ABNG are the averaged statistics of 100 synthesized networks. Standard deviation

bars capture the range of 90% of the synthesized networks and show that the average

degree in the synthesized networks is representative of the target network.

A particularly interesting outcome was obtained when considering the target net-

work synthesized using the stochastic block model generator. In this instance, the

target network contained two communities (30 and 70 nodes, respectively) and the

resulting 2-row action matrix had P̄1 ≈ 0.7 and P̄2 ≈ 0.3 (the corresponding action

matrix is shown in Table 4.2). Thus, ABNG was able to accurately infer the existence

of two communities and their approximate size in the network. The ability to detect

communities in a network is an interesting observation requiring further analysis.



70

✵ ✺ ✶✵ ✶✺

�
✁�
�

�
✁�
✂

�
✁✄
�

�
✁✄
✂

�
✁☎
�

�
✁☎
✂

❉✆✝✞✆✆ ✟✠✡☛✞✠☞✉☛✠✌✍

✎✏✑✒✏✏✱ ✓

❋
✔❛
✕
✖✗
✘
✙
✘
✚
✙
✘
✛
✜
✢
✣
✗✖
✤
✛
✜
✥
✔✜
✜
✦

❊✒✧★✩✪✫✏✬②✭

❆✮✯✰

✲ ✳✲ ✷✲ ✸✲ ✹✲

✴
✻✴
✴

✴
✻✴
✼

✴
✻✽
✴

✴
✻✽
✼

✴
✻✾
✴

✴
✻✾
✼

✴
✻✿
✴

❀❁❂❃❁❁ ❄❅❇❈❃❅●❍❈❅■❏

❑▲▼◆▲▲❖ P

◗
❘❙
❚
❯❱
❲
❳
❲
❨
❳
❲
❩
❬
❭
❪
❱❯
❫
❩
❬
❴
❘❬
❬
❵

❜❝◆❝❞❝❡❢❣❤✐❞▲◆t

❤❜❥❦

Figure 4.3. Comparing degree distributions of networks synthesized using
ABNG with the target network. The deviation bars capture the range of
90% of the synthesized networks, while the line for ABNG is the mean of
100 synthesized networks.

Predicting network growth

In order to determine whether a true network generator can be discovered, an

experiment is conducted where a known generator synthesizes a network and multiple

network snapshots during its growth are recorded. One of the snapshots is selected

as a target network for ABNG, and the goal is to ascertain whether all snapshots

can be accurately synthesized using the action-based model for the target. Certain

assumptions were made for the target network growth: (i) the networks grow linearly

with time such that nodes are added one at a time, and (ii) the network is constructed

using a consistent strategy where the action matrix is static. In order to accomplish

this an action matrix is used to synthesize a network Gt at time t as learned from the

target model, and then the synthesis algorithm iterates to predict the structure of

graph Gt+t1 and Gt−t2 at time t+ t1 and t− t2, respectively. If effective, this provides

evidence that ABNG-PA(1) can be utilized to predict past or future structures of

growing real-world networks only using the action matrix obtained from the present

network.



71

✵�✵✁

✵�✂✵

✵�✂✁

✵�✄✵

●☎♦✇✆✝ ♦✞ ✟✠☎✠✡✠☛☞✌✍✎✡✏☎✆ t✏✆✇♦☎✑ ✒☛☞✓✔ ✍✟t●

❞
✕
✖
❛
✗✘
✙

♣✚✛✜ ♣✢✣✤✥✦✜✥✧★ ❧✣✚✢★✣✤ ❢✩✜✩✢✣ ♣✢✣✤✥✦✜✥✧★

✪✫✪✬

✪✫✭✪

✪✫✭✬

✪✫✮✪

✪✫✮✬

✯✰✱✲✳✴ ✱✶ ✷✱✰✸✹✳ ✷✺✰✸ ✻✸✳✲✱✰✼ ✽✹✺✾✿ ❀❁✻✯

❂
❃
❄
❅
❆❇
❈

❉❊❋❍ ❉■❏❑▲▼❍▲◆❖ P❏❊■❖❏❑ ◗❘❍❘■❏ ❉■❏❑▲▼❍▲◆❖

❇�✁✂��❡❡�✄✄

P❛☎�✆❛❡✝

❉�☎✞��

Figure 4.4. Comparison of results between the actual and the inferred
networks. KS test d-values used for optimization are shown on the y-axis.
Line in the middle of each box is for the median value, points show outliers
and whiskers represent minimum and maximum values. Similar median d-
values (and associated variation) for various network properties of different
networks shows that predicted networks are statistically representative of
the target networks.

Target networks were synthesized using the Barabási-Albert and forest fire models

because they grow networks by adding nodes in a manner that satisfies the aforemen-

tioned assumptions. In both cases, a target network was grown to t = 500 (i.e.,

n = 500) where snapshots of the network at t = 100 and t = 200 were recorded. The

target network corresponded to the snapshot at t = 200 and the resulting optimized

action matrix was used to synthesize networks at t = 100 and t = 500, respectively.

Figure 4.4 provides a comparison between synthesized networks in the three temporal

circumstances. The variation and mean of the predicted networks for different net-

work statistics is statistically similar to the learned network. Each plot was generated

from 100 synthesized networks.

4.4.2 Modeling real world networks

Complex systems observed in the real-world typically do not have corresponding

complex networks that are well modeled by existing standard network generators.

Figure 4.5 presents a summary of the results, featuring heat maps for five of these
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networks (other results can be found in Section 4.8.2), as well as a visual compari-

son of the target network with the network synthesized using ABNG. Four popular

network models, namely Chung-Lu [47,48], ERGM [52], synthetic network generator

(Synt) [57] and dk-random graphs [110] whose parameters were best fit to the respec-

tive target networks to ensure fair comparison are also included in the heat maps.

The comparison is conducted based on 5 metrics of dissimilarity, namely: 2-sample

Kolmogorov-Smirnov distance based on betweenness, PageRank and local transitiv-

ity; D-measure introduced in [113]; and the spectral measure of [168] (this measure

was rescaled to lie between 0 and 1 as explained in Section 4.8.3). The generators

synthesize 100 networks, and the mean values are recorded in the heat maps. Further

experimental results are outlined in Section 4.8.2. Note that ERGM is not used in the

comparison for the US power grid, protein and social networks because it produced

errors while synthesizing networks for these cases. Also, the spectral measure is not

used for the US power grid and protein networks because of high computation time.

Heat maps of Figure 4.5 show that dk-random graphs are the best generator on all

measures for each network except power grid, where ABNG is better on two proper-

ties. ABNG provides a competitive alternative to dk-random graphs by consistently

synthesizing networks having lower or equal dissimilarity to the target, when com-

pared with other generators and some dk-random graph variants.

An action matrix corresponding to the solution closest to the origin (based on 1-

norm) obtained for each of these five real-world networks is shown in Table 4.3. This

can help the user in making some conclusions about the structure of these networks.

A common observation is that “no action” tends to have high probability for real-

world networks. A possible conclusion here is that only a few nodes add edges in a

time step and lead to a power law degree distribution in the network (it can be seen in

Table 4.2 that among the human-devised generators, power law network had a high

probability for “no action”). For the five networks considered here, we can draw the

following conclusions:
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Figure 4.5. Overview of results for five real-world networks: A visualiza-
tion of the target network together with the network synthesized using
ABNG. Each generator synthesizes 100 networks, and the mean dissimi-
larity values are recorded in the heat maps. The lower the value, better
is the synthesized network.
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• Human Brain: Triadic closure and selective triadic closure are the most dom-

inant actions. This is expected as brain networks tend to have very high clus-

tering coefficients [100]. Although triadic closure is the dominant action, some

nodes (corresponding to first row of action matrix shown in Table 4.3) show

preferential attachment mechanisms also. This implies that regions of the brain

interact with regions having some structural similarity or those that are highly

connected.

• US Airports: The action-based model obtained has two types of nodes using

completely different strategies. The nodes in the first category prefer not to

form any connections, while those in the second category connect to nodes

based on betweenness i.e. they are more likely to connect to nodes that lie in

shortest paths. In the context of airport connectivity, there is a high probability

of connecting to “hub” airports.

• US Power Grid: The action-based model obtained for the power grid net-

work highlights connection preference to “important” nodes specifically based

on PageRank, i.e. with nodes of higher quality and quantity of links.

• Human Protein: The action-based model for protein interaction shows exis-

tence of two types of nodes, one using “no action” with high probability and

the other that use preferential attachment mechanisms based on degree and be-

tweenness. Loosely speaking, proteins either prefer not to interact, or otherwise

interact with popular nodes with higher probability.

• Social Network: Again, the action-based model shows existence of two types

of nodes, one using “no action” with high probability and the other that use

preferential attachment mechanism based on betweenness. Interestingly, the

two node-types exist in equal proportions in this network. This leads us to the

conclusion that people either tend to interact with popular individuals or not

interact at all in this social network.
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Table 4.3.
The table shows optimized action matrices for five different real-world
networks. The following actions were used: Preferential attachment on -
average neighbor degree (PAND), degree (PAD), PageRank (PAPR) and
betweenness (PAB); Triadic closure (TC); Inverse log-weighted (SLW) and
Jaccard similarities (SJ); and No action (NA).

Network↓ |Action→ PAND PAD PAPR PAB TC SLW SJ NA P̄

Human Brain 0 0.016 0.337 0.043 0.195 0.213 0.127 0.069 0.215

0 0 0 0 0 0.044 0.378 0.578 0.785

US Airports 0 0 0 0.061 0 0.046 0 0.893 0.804

0 0.013 0.008 0.956 0.001 0 0 0.022 0.196

US Power Grid 0 0 0.597 0.182 0 0.005 0.146 0.070 1

Human Protein 0 0 0 0.282 0 0.009 0.002 0.707 0.723

0 0.255 0.004 0.724 0.008 0.009 0 0 0.277

Social Network 0 0 0 0.331 0 0 0 0.669 0.516

0 0.142 0.036 0.803 0 0.015 0 0.004 0.484

4.5 Discussion

Action-based network generators provide a flexible framework for reproducing

complex structure of networks exhibiting different global/structural statistics by for-

mulating network generation as an optimization problem. The approach consists of

three distinct parts: (i) network synthesis using algorithm F (·), (ii) computation of

dissimilarity using a user-defined set of measures Y , and (iii) an optimization tech-

nique to learn parameters M for a given target network. Experiments have provided

evidence that ABNG can capture different network structural properties observed in

a wide variety of networks, but further experimentation is required in the context of

networks having various types of community structure. Improved approaches at one

or more parts of the action-based framework may provide effective solutions to these

challenges.
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The current synthesis algorithm uses the coarsest network characteristic, the av-

erage degree, leading to a search over a large set of networks. This can be modified

by adding additional constraints of synthesizing networks having the same degree

sequence [107] or joint degree distribution [112]. dk-random graphs [110, 113] have

shown that adding these local constraints enhances the capability of a generator to

capture the target network. This can also be observed from the low dissimilarity val-

ues of the Chung-Lu model for the Social Network, where the synthesized networks

were able to reproduce different global characteristics by just matching the expected

degree. This coincides with observations of [110] that global network properties of the

synthesized networks are consequences of copying only a few specific characteristics

of the target. Further, it is plausible that many network characteristics are generally

correlated and network structure itself may bring out or obfuscate specific correlated

characteristics, even if the correlated characteristics aren’t specified as part of the

original algorithm goal. The ability to capture certain characteristics might also be

completely coincidental as a result of the target network structure.

It should be noted that local transitivity corresponds to the 3k-constraint for

dk-random graphs, and adding it as an objective provides a way to circumvent the

issue of non-existence of sampling from 3k-random graphs. Consequently, adding local

transitivity to the set of network properties Y leads to discovery of better action-based

models for real-world networks. Similarly, adding modularity as an objective could

lead to preservation of cluster organization in networks with community structure.

[113] have shown the existence of tree-like structures in the Power Grid network and

used specialized generators to model this network. Figure 4.5 shows that ABNG

and dk-random random graphs don’t adjust well for such networks (especially on

the D-measure), but adding specialized actions can provide a potential solution to

this problem, although it comes at the extra cost of optimizing the action matrix.

Finally, using more sophisticated optimization or likelihood estimation techniques for

discovering the action matrix can improve the ability of the ABNG framework to

reproduce networks similar to the target.
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A strength of the action-based approach lies in its ability to provide a compact

representation for networks having many nodes, and can yield insights into the struc-

ture of these networks. Preliminary experiments in Section 4.8.4 discuss the scaling

of ABNG-PA(1) synthesis algorithm with the number of nodes. Practically, ABNG

is an appealing option when the user desires to perform tasks such as compression

and extrapolation. It should be noted that the scalability of the optimization of M

depends on the computational requirements of the optimization algorithm, action set,

and objectives. ABNG can be particularly useful if the user has some domain specific

knowledge about potential actions or network properties for the target network under

consideration.

An important factor influencing the capability of ABNG is the choice of actions.

In the implementation discussed in this chapter, actions belonging to four differ-

ent categories were used (preferential attachment, triadic closure, similarity and no

action), but utility of actions based on disassortativity or using node features in

annotated networks needs to be explored in future research. In general, any local

non-random strategy is a potential candidate for an action. In specific contexts, do-

main specific information can be used (e.g., to ensure constraints on potential node

pairings). Existence of a compact set of actions capturing various mechanisms of local

interactions among nodes is central to the action-based approach and can potentially

provide crucial answers to the relationship between structure, function and dynamics

of real-world networks.

4.6 A worked example

In the synthesis algorithm used in this Chapter, nodes synchronously add edges in

discrete time steps. For example, as depicted in Figure 4.6, at t = 0 we start with a

sparse starting network and actions for each node are evaluated based on the network

given at t = 0, followed by creation of new networks at t = 1, which is them used for

evaluation of edges to be added at t = 2 and so on. Also, addition of a new edge by a
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node is independent of other nodes, and only depends on the outcome of a finite set of

actions. To better understand the working of ABNG, let us consider a simple example.

Consider a starting network G0 (shown in Figure 4.6a) at t = 0 with adjacency matrix

A0, an action matrix M = [0.7 0.3], and ABNG with two hypothetical actions a1

and a2. We compute matrices A1
0 and A2

0, where the A1
0[i, j] corresponds to the

probability that node i connects to node j using action a1. The networks synthesized

by ABNG (at t = 1) can be sampled using A1 = 0.7A1
0 + 0.3A2

0 + A0, where each

element of A1 corresponds to the probability of existence of an edge.

A0 =



0 1 1 0 0

1 0 0 0 0

1 0 0 1 0

0 0 1 0 0

0 0 0 0 0



A1
0 =



0 0.167 0.333 0.167 0

0.333 0 0.333 0.167 0

0.333 0.167 0 0.167 0

0.333 0.167 0.333 0 0

0.333 0.167 0.333 0.167 0


A2

0 =



0 0 0 0 1

0 0 1 0 0

0 0 0 0 1

1 0 0 0 0

0 0 0 0 0


Three networks synthesized using A1 are shown in Figure 4.6b. The networks

synthesized at t = 1 can now be used as starting networks for t = 2. We gain several

key insights from this example:

• The actions a1 and a2 belong to two different categories of actions, namely

probabilistic and deterministic. In a deterministic action, a node vi selects

another node vj to create an edge, whereas in a probabilistic action there exist

probabilities of connecting to different nodes.

• For the rows of A1
0, it can be seen that the sum is < 1. This means it is feasible

that a node might not create an edge even after choosing an action.
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• It can be clearly seen that the condition for no multi-edges or self loops is

enforced. All corresponding entries have zeros in A1
0 and A2

0.

• It should be noted that the matrices must remain symmetric in case of undi-

rected networks.
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(a) Starting network G0.
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(b) Three networks synthesized at t = 1 as explained in the example above.

Figure 4.6. Network synthesis process of ABNG: It must be noted that
the networks shown here have different edges.
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4.7 Proposed implementation

4.7.1 Assumptions

Before going into further details of the optimization algorithm, we list the simpli-

fying assumptions in the current implementation of ABNG:

1. Input network types: It is assumed that all of the target and synthesized net-

works are simple graphs, i.e undirected with no self edges. The networks con-

sidered for experiments were also unweighted and unlabelled. This does not

imply that ABNG is not applicable to such networks.

2. Network objectives: No community-specific objectives were considered, although

communities are likely in real-world networks. If needed, special objectives

can be added to the optimization framework to synthesize networks with more

specific community structure.

3. Starting network: The current implementation of ABNG needs a starting net-

work with n nodes as input. Furthermore, this starting network cannot be

empty because some actions can potentially become undefined due to the lack

of any network characteristics. For example, an action based on preferential

attachment according to degree of a node would essentially be equivalent to

randomly selecting a node in case of an empty network because each node will

have a degree of 0. To tackle these issues, we create G0, a sparse starting

network, as input.

4. Fitness: As seen in Algorithm 1, even though the network is built over multiple

iterations per node, ABNG does not evaluate characteristics for these interim

networks, i.e., network comparison is performed only after termination of the

synthesis algorithm.

5. Types of actions: As discussed in Section 4.3, the synthesis algorithm in the

current implementation is restricted to adding edges only. This is a reason-
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able assumption because we only consider static target networks, which can be

synthesized using this restricted subset of actions.

6. Stopping criteria: The network synthesis process of Algorithm 1 is terminated

when the number of edges in the network being synthesized is equal to the

number of edges in the target network.

7. Linear network growth: Due to a single target network being given as input,

linear network growth (i.e., one node and/or edge is added to the network at

each iteration) is imposed.

8. Static action probabilities: We also assume that the generative process is sta-

ble, i.e., the probabilities do not change during network synthesis. This is a

reasonable assumption as the goal is to model the generative process based on

a single snapshot of the input network.

4.7.2 The action set

An action for a node vi builds edges, all of which have vi as one endpoint. An

action provides a well-defined strategy for selecting the other end vj of edge (vi, vj).

This implies that the actions in ABM can only allow local topological changes in the

network as a node is assumed to only build edges to other nodes but cannot create

edges between other nodes. Every action for node vi returns another node vj with

probability p̂ji to form edge (vi, vj):

a(V |i) : vi → (vi, vj) w.p. p̂ji , (4.3)

where an edge (vi, vj) is inserted into G by vi. This approach also enables an action

(and hence ABM) to insert edges that can be directed, weighted, self edges, etc. In

the current implementation, the actions are limited to adding a single undirected

edge.
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A question that is central to a successful implementation of ABNG is: How many

actions should be included in the action set? There is no direct answer for such a

question, however, having too many actions will increase the number of parameters

(size of the action matrix) and hence make solving the optimization problem more

difficult and time-consuming. This might even lead to degenerate actions and con-

sequently complicate the generator. Actions form an integral part of ABNG. They

collectively serve as the mechanisms responsible for network synthesis. Hence, choos-

ing a holistic or sufficient set of actions is crucial for implementing ABNG. The current

implementation of ABNG uses eight actions belonging to four different categories:

• Preferential attachment using network centrality measures - This is

analogous to the Barabási-Albert Model [12], which uses node degree as an

action to connect to different nodes. Using this action, a node connects to

important nodes with higher probability, where importance is calculated using

network centrality measures. We use degree (PAD), average neighbor degree

(PAND), PageRank (PAPR) and betweenness (PAB) as centrality measures for

four different actions. An important property of this set of actions is that p̂ is

the same for all the nodes.

• Triadic closure - This action (TC) connects a node to another node that is

a neighbor of its neighbor. It captures the phenomenon: a friend of my friend

is also my friend. Also, triangles form a commonly encountered structure in

real-world networks [1]. In case a node has multiple second neighbors, each one

has an equal probability of getting selected.

• Similarity-based actions - These provide a basis for nodes to connect to

similar nodes, another phenomenon observed in most real-world networks [1].

Inverse log-weighted (SLW) and Jaccard similarity (SJ) measures are used in

this implementation.

• There is another action (NA) that does not connect the current node to any

other node. As we can see from Algorithm 1, ABNG visits every node in the
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network to form new edges, and this action exempts a node vi from making a

connection, i.e. p̂i = 0.

For an undirected network G = (V,E), the Big-Oh for the actions used in the

current implementation are:

1. Preferential attachment on neighbor degree - O(|V |(|V |+ |E|))

2. Preferential attachment on node degree - O(|V |+ |E|)

3. Preferential attachment on PageRank - O(|V |2) for dense and O(|E|) or O(k|V |)
for sparse, where k is the average degree

4. Preferential attachment on node betweenness - O(|V ||E|)

5. Triadic closure - O(|V |+ |E|)

6. Inverse-log weighted similarity - O(|V |2kmax), where kmax is the maximum de-

gree

7. Jaccard similarity - O(|V |2kmax), where kmax is the maximum degree

8. No action - O(1)

4.7.3 Optimizing the action matrix

Pareto Simulated Annealing [209] is the multi-objective analog of simulated an-

nealing. It provides a procedure to search for a set of solutions to a multi-objective

combinatorial optimization problem. Due to multiple objectives in the problem for-

mulation, more than one efficient solution can exist. Let D be the set of feasible so-

lutions following the constraints defined in the optimization problem in Equation 4.2.

For a solution M, B(M) ⊆ D is the neighborhood of solution M obtained by chang-

ing the probability of only one action at a time, i.e. only one element of the matrix

M is increased (or decreased) in a single iteration of PSA (while keeping the solution
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Algorithm 3 Pareto Simulated Annealing

1: Input: M0 ∈ D : q × (k + 1) action matrix

2: S ← ∅, z = 1

3: while z ≤ iter do

4: α = e−β×z {β is some constant}
5: M ∈ B(Mz−1) {find an action matrix in the neighborhood of the current

solution}
6: G← ABNG(M) {Algorithm 1}
7: while S ⊀ M do

8: S ⊆ S ∪M {update set of efficient solutions}
9: Mz−1 ←M

10: M ∈ B(Mz−1) {update the same element of M as in line 5}
11: G← ABNG(M) {Algorithm 1}
12: end while

13: Mz ←M w.p. α

14: Mz ←Mz−1 w.p. 1− α
15: Sz ← S

16: if z = iter & no change in S for 100 iterations then

17: return S

18: else

19: iter = iter + 100

20: end if

21: z = z + 1

22: end while

23: return G

feasible as defined in the constraints in Equation 4.2). Our implementation of PSA

(see Algorithm 3) starts with an action matrix M0 generated uniformly at random

from D to prevent any bias due to a starting point. A new solution Mz ∈ B(Mz−1) is
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generated using the procedure shown in Algorithm 3, where B(Mz−1) ⊆ D is the set

of feasible solutions that can be reached from Mz−1 by making a simple move that

can only increase (or decrease) the value of one element of Mz−1, while maintaining

the feasibility of the solution.

Owing to the multi-objective nature of the problem, we need to maintain a set

S of potentially efficient solutions. A solution M ∈ D is efficient (Pareto-optimal) if

there is no M′ ∈ D such that ∀j Yj(M′) ≤ Yj(M) and Yj(M
′) < Yj(M) for at least

one j. S is updated with Mz if it is not Pareto dominated1 by the solutions in S.

The algorithm repeatedly increases (or decreases) the value of the same element of

Mz while it continues to be non-dominated by the current set of potentially efficient

solutions (Algorithm 3 lines 7-12). This is particularly useful for optimizing the action

matrix because it was observed that nodes tend to connect based on simple decisions

leading to solutions where a subset of actions have high probability, whereas other

actions might have zero or near-zero probability (see Tables 4.2 and 4.3). Finally, if

Mz is not added to the Pareto front, the algorithm moves to the new solution with

probability α that decays exponentially with the number of iterations, otherwise it

returns to the previous solution Mz−1.

The optimization procedure could terminate at a local optima or some other non-

optimal stationary point. To help overcome this issue, we use multiple starting points

for the optimization process, i.e. the procedure starts with more than one M0.

In the current implementation, we attempt to find the most simple generator

(in terms of how nodes make decisions for connecting to other nodes) for the target

network. In terms of the action matrix, the simplest generator can be obtained when

all nodes have a common mechanism (same probability distribution over actions) for

forming edges, and hence M is assumed to have dimensions 1 × (k + 1). This is

followed by dynamically adding more node-types (or rows in the action matrix) to

the current solutions. In the algorithm implementation, once a Pareto front (or a set

1Pareto dominance is defined in the same way as Pareto optimality, the only difference being that
M′ ∈ S, i.e. the new solution, is compared to the current set of potentially efficient solutions.



86

of potentially efficient solutions) S is found for M : 1 × (k + 1), a solution is picked

at random from S and a new row (generated at random from D) is added to M,

making it a 2 × (k + 1) action matrix and so on. For initialization, P̄ containing

the probability of choosing rows in M is generated uniformly at random. For a

q× (k+ 1), q > 1 action matrix, we assume that only the newly added qth row and P̄

need to be optimized because the remaining rows have been optimized for the target

network in previous steps. In other words, this procedure of adding new rows to M

implies that the previous rows contain information about how nodes selected actions

when their choices were restricted and adding new rows will provide them with more

choices. P̄ allows nodes to choose among various rows, which may change when new

rows are added and hence needs to be considered in the optimization framework.

Though this procedure might restrict the search space for the action matrix, it

suffices to provide some insights about the applicability and ability of the action-based

approach to synthesize networks. As described in Section 4.3, each row of the action

matrix reflects the mixed strategies used by nodes for making connections, and the

aim is to find the minimum number of such rows that corresponds to the smallest

parameter space capable of synthesizing the target network using ABNG. More rows

are added to the action matrix until at least one of the following criteria are met:

• The newly added qth row has probability close to zero in the converged solutions,

i.e. P̄q ≈ 0. This implies that the network structure can be explained equally

well using a smaller action matrix. A threshold value of 0.05 is used in the

present implementation.

• The newly added qth row is similar to one of the previous rows i.e., M(q, :) ∼
M(b, :), 1 ≤ b ≤ q − 1. Similarity between two rows can be defined using any

vector similarity measure. This implies that the two strategies are practically

equivalent. In case such an event occurs during optimization, the P̄ values for

both the rows are added (and assigned to the initial row) and the copy row is

deleted i.e. M(q, :) is deleted and P̄b = P̄b + P̄q.
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• Solutions from a smaller action matrix strictly dominate the new solutions, i.e.

S(Mb×(k+1)) � S(Mq×(k+1)), 1 ≤ b ≤ q − 1. This means adding new rows does

not improve the quality of the synthesized networks for the given set of actions.

The modified version of Pareto Simulated Annealing used here also incorporates

an adaptable number of maximum iterations (Algorithm 3 lines 16-20). After every

100 iterations, the previous 100 solutions are checked for improvement in any of the

objectives. If Sz 6= Sz−100, 100 more iterations are allowed, otherwise the process

is terminated at a maximum of 1000 iterations. The strategy resulted from the

peculiar behavior of the optimization process that can be observed in Figure 4.13,

where convergence of solutions is observed before reaching the maximum number of

iterations. This adaptable approach aids the algorithm in identifying potential local

optima and consequently stopping the optimization process.

4.8 Additional results

4.8.1 Comparing action matrices with multiple rows
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Figure 4.7. Improvement using 2-rows: This box plot highlights the effect
of adding additional rows to the action matrix. For the networks shown
here, adding a second row to the action matrix produced solutions that
Pareto dominated the solutions from a 1-row action matrix. Each box
plot shows statistics from 100 networks generated using ABNG.
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Figure 4.7 compares results obtained from optimized 1-row, 2-row and 3-row action

matrices for the forest fire model and the real-world network of co-appearances of

characters in Victor Hugo’s novel “Les Miserables”. Adding a second row to the action

matrix improved the solution quality, but adding a third row did not improve the

quality of the synthesized networks with respect to the objectives taken into account

here. In other words, the 2-row solutions Pareto dominated the 1-row solutions, while

the 3-row solutions lead to a quality-of-fit that was equivalent to the 2-row solutions

and hence showed no improvement. Also, the 3-row solutions had P̄2 ≈ 0, which

implies that there were only two distinct nodes-types.

4.8.2 ABNG for real networks

19 real-world networks were also considered for empirical evaluation of ABNG and

details are shown in the table B.1. Radar plots for the networks synthesized using ac-

tion matrices obtained as solutions for these real-world networks can be seen in Figure

4.8. Real-world networks will likely not be simply described like the human-devised

models in the previous experiments, i.e., the action matrix will have more rows. The

estimated action matrices can potentially provide insights about the structure of these

networks like, how many types of nodes exist in the network, how they weigh actions

to form edges etc. Description of the action-based model for five of these networks

can be seen in Section 4.4. Figure 4.8 also compares the result of ABNG with some

other network generators, namely Chung-Lu [47, 48] and ERGM [52], which were fit

to the target network. From the comparison it can be concluded that:

• Networks synthesized using ABNG show the most resemblance to the target

networks when evaluated based on the network properties considered here.

• Unlike other models, the output parameters obtained using ABNG (action ma-

trices) can provide a compact representation of structure of the target networks.



89

Word Adjacencies
Betweenness

PageRank

Degree Distribution

Local Clustering

Eigenvector Centrality

Closeness

0 0.2 0.4 0.6 0.8 1

Political Books

Betweenness

PageRank

Degree Distribution

Local Clustering

Eigenvector Centrality

Closeness

0 0.2 0.4 0.6 0.8 1

Co−appearances
Betweenness

PageRank

Degree Distribution

Local Clustering

Eigenvector Centrality

Closeness

0 0.2 0.4 0.6 0.8 1

Jazz Collaborations

Betweenness

PageRank

Degree Distribution

Local Clustering

Eigenvector Centrality

Closeness

0 0.2 0.4 0.6 0.8 1

Football Games

Betweenness

PageRank

Degree Distribution

Local Clustering

Eigenvector Centrality

Closeness

0 0.2 0.4 0.6 0.8 1

Network of Dolphins
Betweenness

PageRank

Degree Distribution

Local Clustering

Eigenvector Centrality

Closeness

0 0.2 0.4 0.6 0.8 1

Brain (corr=0.7)
Betweenness

PageRank

Degree Distribution

Local Clustering

Eigenvector Centrality

Closeness

0 0.2 0.4 0.6 0.8 1

Brain (corr=0.6)
Betweenness

PageRank

Degree Distribution

Local Clustering

Eigenvector Centrality

Closeness

0 0.2 0.4 0.6 0.8 1

Brain (corr=0.55)
Betweenness

PageRank

Degree Distribution

Local Clustering

Eigenvector Centrality

Closeness

0 0.2 0.4 0.6 0.8 1

Biogrid FRET
Betweenness

PageRank

Degree Distribution

Local Clustering

Eigenvector Centrality

Closeness

0 0.2 0.4 0.6 0.8 1

Biogrid Far Western
Betweenness

PageRank

Degree Distribution

Local Clustering

Eigenvector Centrality

Closeness

0 0.2 0.4 0.6 0.8 1

Biogrid Dosage Lethality
Betweenness

PageRank

Degree Distribution

Local Clustering

Eigenvector Centrality

Closeness

0 0.2 0.4 0.6 0.8 1

Figure 4.8. Results obtained from the optimized ABNG models for the
real-world networks considered here. Network properties that were used
for optimization are underlined in the radar plot. The plots show KS test
d-statistic with the outer circle showing value of 1 (maximum possible
value). The lower the value, better is the synthesized network. Figure
continues on next page.
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Figure 4.8. Results obtained from the optimized ABNG models for the
real-world networks considered here. Network properties that were used
for optimization are underlined in the radar plot. The plots show KS test
d-statistic with the outer circle showing value of 1 (maximum possible
value). The lower the value, better is the synthesized network.

4.8.3 Spectral goodness of fit

A new statistic to evaluate how well a network generator explains the structure of

the pattern of ties in the target network was proposed in [168]. The current version

of the Spectral Goodness of Fit (SGOF) statistic is limited to only unlabeled and

undirected networks, which matches with the type of networks synthesized using
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ABNG. Because of its simplicity, we use SGOF as a proxy measure for goodness-of-

fit for the synthesized networks and do not consider it in the optimization process of

ABNG.

The approach calculates the Euclidean Spectral Distance ( ¯ESDG∗,G = ||λ̂G∗ −
λ̂G||), where λ̂G

∗
and λ̂G are the normalized spectra (of the Laplacian) of networks

G∗ and G. The spectral goodness of fit (SGOF) can be then obtained by:

SGOF = 1−
¯ESDG∗,G

¯ESDG∗,N
(4.4)

where N is the null model. For SGOF calculations, the Erdős-Rényi model is

used as the null model. The SGOF measures the amount of observed structure (G∗)

explained by a fitted model ({G1, G2, · · · }), expressed as a percent improvement over

a null model, where structure means deviation from randomness [168].

SGOF is bounded above by one, which means that the network generator (or fitted

model) exactly describes the target network. Similarly, an SGOF of zero means that

synthesized networks are only as good as the random networks, whereas a negative

value signifies that the null model is a better approximation of the target network as

compared to networks synthesized using the network generator. Figures 4.9 and 4.10

show the SGOF values obtained from 100 networks synthesized using ABNG for both

human-devised and real-world networks. The networks for ABNG are synthesized

using the action matrix corresponding to the point closest (based on 1-norm distance)

to the origin in the Pareto front. Note that SGOF values close to zero are observed

for the Erdős-Rényi network because it is itself used as the null model.

To maintain consistency of using a dissimilarity metric ranging between 0 and 1,

we transform the obtained SGOF value by using the function y = 1 − 2x−1, where

y gives us the transformed dissimilarity and x is the SGOF value obtained using

Equation 4.4. This transformation is used in the heat maps of Table 4.5.
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Figure 4.9. Spectral Goodness of Fit for human-devised generators: The
plot compares SGOF values for networks synthesized using ABNG and
the target model. Each box plot corresponds to SGOF values obtained
from comparing 100 synthesized networks with the target network. It can
be seen that for most cases ABNG performs as well as the target model.

4.8.4 Scaling with network size

An experiment was also performed to get empirical insights about scalability of the

synthesis algorithm described in Algorithm 1. As described in Section 4.2.1, the com-

plexity of any given synthesis algorithm depends on the input action matrix together

with the size of the network. To understand the relation between network synthesis

time and size of the network (number of nodes), an experiment was performed where

each trial used a different action matrix and the size of the network was increased.

Also, the mean degree of the networks was kept constant (d̄ = 6) as the number of

nodes in the network was varied. Mean degree of 6 was chosen based on observations

of mean degree of real-world networks shown in Table B.1. Results shown in Fig-

ure 4.11 provide preliminary insights that network synthesis time scales quadratically

with number of nodes in the network. The fitted quadratic model predicts that a



93

−0.5

0.0

0.5

Spectral Goodness of Fit for real−world networks

S
G

o
F

P
ro

te
in

 1
p
h

p

P
ro

te
in

 1
q
o

p

W
o
rd

 A
d
ja

c
e

n
c
ie

s

F
R

E
T

F
a
r 

W
e
s
te

rn

D
o
s
a
g

e
 L

e
th

a
lit

y

B
ra

in
 (

c
o

r=
0
.7

)

B
ra

in
 (

c
o

r=
0
.6

)

B
ra

in
 (

c
o

r=
0
.5

5
)

D
o
lp

h
in

s

F
o

o
tb

a
ll

J
a
z
z

C
o
−

a
p

p
e
a

ra
n
c
e
s

P
o

lit
ic

a
l 
B

o
o
k
s

Figure 4.10. Spectral Goodness of Fit for real-world networks: SGOF
values obtained for different real-world networks synthesized using ABNG.
Each box plot corresponds to SGOF values obtained from comparing 100
synthesized networks with the target network.

network with 100,000 nodes and d̄ = 6 will require around 1 hour for synthesis. For

network of each size, 20 networks were synthesized parallely using ABNG-PA(1) and

the total CPU time was recorded. The plot shows mean times for each network size

and action matrix. The system used consisted of 10-core Intel Xeon-E5 CPUs with a

frequency of 2.60GHz.

4.8.5 Starting network variations

In the experiments conducted so far, it is assumed that the starting network is

obtained by sampling 0.7×n edges from the target network. In this section, different

proportion of links are sampled from the target network to see how ABNG performs

when provided with different starting networks. For this, we consider four different

target networks and five different fraction of links, as shown in Figure 4.12. The

synthesized networks are evaluated based on five network measures and corresponding
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of nodes. All networks have a mean degree of 6 and networks with 100,
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heat maps are shown in Figure 4.12. For each target network, the solution closest

to the origin was chosen as the action-based model to synthesize 20 networks and

average values for each measure are recorded in the heat maps. The heat maps show

that the quality of the synthesized networks does not depend much on the fraction of

links in the starting network. Only when the fraction of links in the starting network

is 0.25 ∗ n, a consistent drop in quality is observed for each target network.

In earlier experiments, a fixed starting network was used for synthesis throughout

the optimization process. While varying the fraction of links in the starting network,

we also relaxed the assumption of using a fixed starting network and sampled a

different starting network each time the algorithm was used to synthesize a network.

Results indicate that ABNG can synthesize networks having similar quality-of-fit
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Figure 4.12. Starting network variation: Each generator synthesizes 20
networks, and the mean dissimilarity values for different measures are
recorded in the heat maps. The lower the value, better is the synthesized
network.

when the assumption of a fixed starting network is relaxed, hence providing evidence

about the robustness of the action-based approach.

4.8.6 Analyzing the action matrix

Here, the evolution of the action matrix and the objectives during the PSA itera-

tions are examined to get a better understanding of the process of learning an action

matrix in ABNG. Figure 4.13 illustrates two representative examples of evolution of

solutions for 1-row and 2-row action matrices when using PSA for optimization in

ABNG. The optimization process shows typical characteristics observed in evolution-

ary multi-objective optimization algorithms, where a lot of improvement is seen in the

objective space in the first few iterations and the solutions seem to converge in the



96

later iterations. Also, it can be seen that the best solutions are found before reaching

the maximum number of iterations and can be observed when the curves become flat

in Figure 4.13.
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(a) Iteration plot for a 1-row action matrix.

0 200 400 600 800 1000

0
.0

0
.1

0
.2

0
.3

0
.4

Iteration

O
b

je
c
ti
ve

 d
−

va
lu

e
s

Betweenness

PageRank

Degree

1−row

2−row

(b) Iteration plot for both a 1-row limit and 2-row

limit of the action matrix for a network synthe-
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Figure 4.13. Iteration plots for ABNG action matrix optimization using
PSA: The plots show evolution of specific objectives versus the number of
PSA iterations. Each line depicts averaged results over 5 restarts for PSA.
Error bars show the minimum and maximum values obtained in different
iterations of PSA.

Examining different solutions obtained for the same target network leads to an

interesting observation. Table 4.4 shows the cosine similarity of 5 different Pareto

optimal action matrices (M1−M5) for the Barabási-Albert model. As is evident, the

solutions are very similar because of the high cosine similarity values (the difference

is likely to be because of the granularity of the optimization approach), and hence

ABNG identifies similar underlying mechanism of network formation each time it

optimizes the action matrix for a target network. It shows that ABNG consistently

finds the same solutions for a target network. Figures 4.14 and 4.15 show different

examples for the evolution of a 1 × 8 action matrix. Figure 4.15a shows a plot

when the optimization process starts with a randomly generated starting point, while
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Evolution of Action Matrix − Forest Fire Model
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Figure 4.14. Example action matrix evolution: This shows the evolution
of an action matrix versus number of iterations of PSA for a network
synthesized using the forest fire model.
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Figure 4.15. Action Matrix evolution: This shows the evolution of an
action matrix versus number of iterations of PSA for the Barabási-Albert
model.

Figure 4.15b shows the evolution of action matrix when the starting solution had

equal probability for each action. Similar to Figure 4.13, the solutions stabilize after

certain number of iterations. Also, some actions have very high probability in the

final solutions while others might have zero probability. Though the results shown
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in Figures 4.13-4.15 are for a few particular networks, they are representative of the

other networks that have been considered in this Chapter and hence capture the

behavior of ABNG.

Action Matrix M1 M2 M3 M4 M5

M1 1.000 0.996 0.976 0.982 0.985

M2 0.996 1.000 0.988 0.992 0.996

M3 0.976 0.988 1.000 0.999 0.993

M4 0.982 0.992 0.999 1.000 0.997

M5 0.985 0.996 0.993 0.997 1.000

Table 4.4.
The table shows cosine similarity of five different optimal solutions for the
Barabási-Albert model.
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Figure 4.16. A 3D plot is presented to characterize the Pareto front ob-
tained by ABNG optimization process. The plot shows how different
solutions (in terms of action matrix size) are spread out in the objective
space.
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To visualize the diversity of the solutions based on the size of the action matrix, a

3D plot (Figure 4.16) is shown for the three objectives used in the optimization process

for the brain network with correlation threshold of 0.7. The example is representative

of the distribution of Pareto optimal points obtained when ABNG is optimized for a

target network. It is observed that the solutions are more spread out (or scattered)

for smaller action matrices (1-row and 2-row) and the solutions seem to be more

concentrated at a particular region when considering larger action matrices.

4.8.7 Sensitivity analysis of the action matrix

Another set of experiments involved performing a sensitivity analysis of the action

matrices obtained from the optimization process. This helps us understand how

the uncertainty in the output of ABNG can be apportioned to different sources of

uncertainty in the action matrix. Two types of analysis were done:

1. Change one-variable-at-a-time (OAT), i.e. independently changing the prob-

ability of each action by 10%. This captures change in the output due to a

change in probability of using a single action and provides evidence for the sta-

bility of the outcome. Radar plots for the four different target networks with

an optimized 1×8 action matrix are shown in Figure 4.17. It is clear that there

is very little variation in the synthesized network properties especially for the

properties considered in the optimization framework (underlined in the plot).

This is evident from the radar plots as the lines corresponding to change in

probability of different actions overlap each other.

Sensitivity of the action matrix was also tested for a 2-row action matrix ob-

tained for the forest fire model network. In this scenario, the same approach

was used to separately perturb the first row, second row and P̄ associated with

the action matrix. Again, the radar plots of Figure 4.18 provide evidence for

the stability of the outcome even in the case of a bigger action matrix.
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Sensitivity: Erdos−Renyi Model
Betweenness

PageRank

Degree Distribution Eigenvector Centrality

Closeness

0 0.05 0.1 0.15 0.2 0.25

Original

PAND

PAD

PAPR

PAB

TC

SLW

SJ

NA

Sensitivity: Power Law Model
Betweenness

PageRank

Degree Distribution Eigenvector Centrality

Closeness

0 0.05 0.1 0.15 0.2 0.25 0.3

Original

PAND

PAD

PAPR

PAB

TC

SLW

SJ

NA

Sensitivity: Small World Model
Betweenness

PageRank

Degree Distribution Eigenvector Centrality

Closeness

0 0.1 0.2 0.3 0.4

Original

PAND

PAD

PAPR

PAB

TC

SLW

SJ

NA

Sensitivity: Barabasi−Albert Model
Betweenness

PageRank

Degree Distribution Eigenvector Centrality

Closeness

0 0.05 0.1 0.15 0.2 0.25

Original

PAND

PAD

PAPR

PAB

TC

SLW

SJ

NA

Figure 4.17. Sensitivity Analysis: The plots show KS test d-statistic for
different network properties. Network properties that were used as objec-
tives for optimization are underlined. Each line corresponds to average
of 20 networks synthesized using a 1-row action matrix perturbed using
OAT approach.

2. The one-at-a-time (OAT) approach does not fully explore the input space since

it does not take into account the simultaneous variation of input variables.

This means that the OAT approach cannot detect the presence of interactions

between input variables. Instead, the second test varies the probabilities of

all the actions simultaneously. Radar plots for this version of the sensitivity

analysis can be seen in Figure 4.19 and 4.20 for the 1-row and 2-rows cases

respectively. For each network, the test is performed five times with distinct

variations in the action matrix. Clearly, even using this method there is a lot
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(a) Sensitivity Analysis for the first row.
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(b) Sensitivity Analysis for the second row.
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(c) Sensitivity Analysis for P̄ .

Figure 4.18. Sensitivity Analysis: The plots show KS test d-statistic for
different network properties. Network properties that were used as objec-
tives for optimization are underlined. Each line corresponds to average of
20 networks synthesized using a OAT perturbed action matrix.

of overlap in the synthesized network properties for the different variations of

the action matrix, especially for the properties considered as objectives for the

optimization. The same is true for the case of a 2-row action matrix considered

in Figure 4.20.

Results for both the cases reflected the robustness of the solutions obtained by

showing that making small perturbations to the action matrix had little effect on

the output of the synthesized networks. This provides preliminary evidence for the
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Figure 4.19. Sensitivity Analysis: The plots show KS test d-statistic for
different network properties. Network properties that were used as objec-
tives for optimization are underlined. Each line corresponds to average of
20 networks synthesized using a simultaneously perturbed action matrix.

continuity in mapping the action matrix to the objective space and that the quality

of the synthesized target networks is robust to small changes in parameters.
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(b) Sensitivity Analysis for

the second row.
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(c) Sensitivity Analysis for P̄ .

Figure 4.20. Sensitivity Analysis: The plots show KS test d-statistic for
different network properties. Network properties that were used as objec-
tives for optimization are underlined. Each line corresponds to average of
20 networks synthesized using a simultaneously perturbed action matrix
where.
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5. MODELING TOPOLOGICALLY RESILIENT SUPPLY

CHAIN NETWORKS

The ubiquity of supply chains along with their increasingly interconnected structure

has ignited interest in studying supply chain networks through the lens of complex

adaptive systems. A particularly important characteristic of supply chains is the de-

sirable goal of sustaining their operation when exposed to unexpected perturbations.

Applied network science methods can be used to analyze topological properties of

supply chains and propose models for their growth. Network models focusing on the

critical aspect of supply chain resilience may provide insights into the design of supply

networks that may quickly recover from disruptions. This is vital for understanding

both static and dynamic structures of complex supply networks, and enabling man-

agement to make informed decisions and prioritizing particular operations.

In this chapter, we propose an action-based perspective for creating a compact

probabilistic model for a given real-world supply chain network. The mechanistic na-

ture of our model makes it easy to incorporate domain knowledge. Since the modeler

is in control of the mechanisms to include, one is able to encode relevant domain

knowledge of known or hypothesized interactions between actors in the system as

mechanistic rules. The action-based model for supply chains consists of a set of rules

(actions) that a firm may use to connect with other firms, such that the synthesized

networks are topologically resilient. The ability to adapt and recover from adverse

circumstances is another important feature of complex systems. Consequently, we

test the ability of the action-based approach to synthesize resilient supply chain net-

works, while specifically focusing on the aspect of topological resilience and capturing

the heterogeneous roles of different firms in a supply chain by incorporating domain

specific constraints [213, 214]. Results analyzing the resilience of networks subjected
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to node disruptions show that networks synthesized using the proposed model can

generally outperform its real-world counterpart.

5.1 Introduction

Present day supply chain networks (SCNs) are profoundly interconnected struc-

tures that emerge from a largely downstream exchange of goods between firms (man-

ufacturers, distributors, retailers, etc.) that are involved in creating a set of final

products. Connections are formed or removed as firms use information from a local

neighborhood to increase the value they derive from the supply chain without any

knowledge of the interconnection structure of the whole supply network. That is,

the network itself emerges through the local decisions of firms [215]. Despite this

realization, most industrial operations are still built upon overly simplified (often

highly linear) models [216]. Other gaps were identified in [217] that suggest a focus

on supply chain structure, dynamics and design strategy. Subsequently, there might

be a tremendous unlocked potential in supply network efficiency that can be achieved

through a complex systems/networks perspective [218,219]. Additionally, three other

major challenges have been identified as critical to the study of supply chains through

the lens of complex networks [220]: (i) researchers ability to comprehend the complex

interactive nature of supply chain formation is limited, especially as the network size

increases, (ii) effective metrics for the dynamic nature of supply chain evolution are

lacking, and (iii) developing theories to support supply chain design principles in the

presence of network adaptation is nontrivial.

Utilizing the knowledge of network science to study supply chain networks was

first suggested in [218], where various recommendations for future research directions

on bridging the two research areas were laid out. Subsequent examinations of supply

chain networks through the lens of network science have primarily focused on analyz-

ing topological characteristics of supply chains and providing summary statistics for

describing particular features. This is particularly useful since analysis of topologi-
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cal characteristics of the interconnection structure of firms in a supply chain enables

managers to reflect on various aspects of the supply chain. For instance, [221, 222]

investigated automobile manufacturer supply networks with the aim of understanding

the implications of using well known social network measures in the context of supply

chains. Similarly, [223] examined the network of automotive firms in southern Italy

and discovered high local clustering, while [224] had very similar observations for the

Guangzhou automotive network. Though an assortment of comparative investiga-

tions have been performed in other industry settings revealing fascinating properties

of the networks themselves, consensus on a standard approach for designing supply

networks remains generally elusive [217].

While these surveys of real-world supply networks and their reported summary

statistics provide insights into predominant characteristics of supply chains, they pro-

vide limited insight into the mechanisms by which these networks grow and evolve.

A major reason for this stagnation has been a lack of availability of real-world sup-

ply network data to study, leading to a significant need for generators (algorithms

for creating networks with specific topological properties) capable of synthesizing re-

alistic supply networks that can be utilized to derive deeper insight into their best

design principles. The ability of a network generator to synthesize networks with

similar underlying summary statistics can help us understand the result of natural

and deliberate perturbations on the overall functionality of the supply chain.

We reviewed the literature on network models in Chapter 2, and found that most

of the models have limited utility for synthesizing supply chain networks due to the

absence of mechanisms to incorporate real-world supply chain constraints. These

methods have been shown to be highly unlikely to synthesize networks that share a

strong structural resemblance to actual supply networks and are woefully insufficient

to study the intricate nature of supply chains, therefore being unsuitable for discov-

ering new design principles [217,221]. Incorporating constraints on nodes (i.e., firms)

is generally outside the capabilities of most existing network generators, which is why
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most existing studies have concentrated on general analyses with limited insight into

new design principles [217].

A particularly important characteristic of dynamic supply chains is the desirable

goal of sustaining their operation when exposed to unexpected disruptions. The goal

of supply chain robustness is to sustain operation during such disruptions, whereas

the goal of supply chain resilience focuses on designing systems that quickly recover

from these disruptions. It is suggested that the definition of resilience and robustness

should be established in parallel with the definition of disruption, and [225] shows how

some of the important research in supply chains have accomplished this. Robustness

and resilience are often used interchangeably in the literature, but in either case

the impact fo designing SCNs while accounting for disruptions in the network may

be significant. For instance, according to a 2017 report by the Business Continuity

Institute [226] 75% of businesses experience at least one supply chain disruption every

12 months (although they suggest the value is likely higher due to underreporting),

22% report cumulative losses of at least $1 million over this time, with 34% reporting

at least $270,000. Additionally, 55% reported a loss in productivity, 34% reported

that their service was impaired, and 32% reported a loss in revenue. These trends

have led to a shift in focus of research from supply chain efficiency to supply chain

resilience [225].

Recent work [227] has suggested that topological resilience should be assessed

when designing supply chains to ensure sustainable value creation. Robustness and

resilience have thus become important areas of study (for simplicity we refer to both

as resilience). While [228] was the first to use topology of SCNs for studying resilience,

subsequent papers like [229, 230] provide supply chain design insights by examining

resilience against both random and targeted attacks. Numerous specialized mea-

sures of resilience have also been proposed for supply chains [231], but most analyses

concentrate on empirical studies from a centralized context. Outside of the supply

chain network community, resilience has also attracted significant attention (see for

example [232]). A resilient supply chain should rapidly and effectively respond to
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perturbations such as supply or demand fluctuations, or to complete or partial failure

of a subset of firms. However, being a complex system, adaptation to changes in

the supply chain cannot be dictated by those overseeing or relying upon it. Instead,

structural resilience should exist as an outcome of the local linking decisions of various

firms within a supply chain without explicit awareness of the overall structure.

A significant amount of research examining complex network models for supply

chain networks has focused on using straightforward and conventional strategies as

models for SCN evolution. To understand these network models, we first need to

introduce two concepts that are essential ingredients of any such approach: (i) each

firm belongs to a unique tier, which corresponds to its distance (number of hops in

the networks) from the consumer in the final supply chain with a restriction that

supply-demand relations occur only between firms in adjacent tiers, and (ii) every

firm has a fixed role in the network, i.e. it is a supplier, manufacturer, consumer

etc. Most supply chain models categorize nodes based on their tiers and roles, and

then use these attributes to define attachment rules, for example [228, 230] use a

heterogeneous preferential linking mechanism that varies based on the role of the

firm, [233] proposes an agent-based model that uses firm role and demands to form

links, [234,235] use a restricted preferential attachment mechanism based on firm tiers.

Others have used more complicated linking mechanisms such as, local selection and

preferential attachment [229, 236], random, preferential attachment and similarity

[237], and fitness based attachment [238]. Though these models incorporate basic

features for modeling SCNs, their simple attachment mechanisms cannot replicate

the topology of real-world SCNs, as their capabilities are restricted to synthesizing

networks that reproduce a few characteristics like power law degree distributions.

Further, only a few of these models focus on creating resilient SCN topologies, without

providing any insights into supply chain design principles. Thus, there is still a

significant gap in developing a generalizable network growth model that can generate

topologies mimicking real-world SCNs [239,240].
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The underlying goal of this research is to define an adequately robust procedure

that can synthesize networks exhibiting structural properties observed in real-world

SCNs. A network generator is considered to be synthesizing realistic networks if a

topological comparison between the synthesized and real networks is, with high like-

lihood, statistically similar across a subset of user-desired topological characteristics.

In this way, the objective isn’t to exactly replicate the topology of a given real-world

network because there is no utility in synthesizing isomorphic networks as it provides

no additional insights. Further, given the input is a single SCN observation, strong

assumptions about the dynamical growth of the network need to be made, and the

network generator needs to be robust to any such assumptions. Finally, the param-

eters of the optimized network generator should ideally provide additional insights

into the local decisions of the firms that might have lead to creation of the observed

network topology.

5.1.1 Main contributions

We focus on modeling of supply chain networks by utilizing the action-based

framework [114] for learning a compact probabilistic model for a given material flow

SCN. The proposed framework can learn a compact model using a single observation

of a real-world supply network and the obtained parameters can be used to synthesize,

with high probability, statistically similar networks to a given supply network. We

utilize tier information to impose linking constraints among firms, while preserving

the tiered structure of the target SCN. The modified network generator that cap-

tures critical real-world constraints concerning rules by which firms exchange goods

is described in Section 5.2. The novel framework is then used for modeling and syn-

thesizing 10 realistic SCNs in Section 5.3. The applicability of the framework for

modeling real-world supply networks is tested, and the resilience of the synthesized

networks is analyzed by subjecting them to random and targeted node disruptions.

The probabilistic model can also be used to infer growth mechanisms of real-world
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SCNs by examining the optimized parameters. Finally, Section 5.4 concludes the

chapter with some conclusions and directions for future research.

5.2 Action-based model for SCNs

The problem of discovering a network generator can be posed as a non-linear

inverse problem having the form Y (G∗) ` F (M, ξ) (i.e. F (M, ξ) can be inferred from

Y (G∗)). The target network G∗ and set of p user-desired network structural properties

Y (G∗) = {Y (G∗), . . . , Yp(G
∗)} of interest are given as input to the system. Therefore,

the goal is to infer M under the assumption that network formation is performed by

the forward operator F . Here, F is an algorithm capable of synthesizing networks

based on a random process ξ ∈ Ξ that can be used to obtain a finite set of networks

by repeated simulation of F (M, ξ).

[241] considered network generation as an optimization-based reverse-engineering

problem and concluded that a “good” forward model should consider both the struc-

ture and function of the network (although a procedure to accomplish the task was not

given). The forward operator of the action-based model assumes that networks emerge

through local interaction among nodes that make linking decisions while completely

ignoring the global network topology. This assumption is particularly appropriate for

modeling supply chain networks because its overall structure can be understood as a

self-organizing system that consists of various entities engaging in localized decision

making [240]. We thus propose to incorporate domain specific rules and constraints in

our action-based approach so that it can be used as a centralized approach for design-

ing robust and resilient SCNs. In the next few sections, we provide details regarding

changes that need to be made in the model previously described in Chapters 3 and 4

in order to deal with the intricacies of modeling realistic supply chain networks.
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5.2.1 Action set for SCNs

While empirical studies have highlighted that it is highly unlikely that a real-world

SCN might have evolved through a single linking mechanism, it is possible to conceive

growth and design principles from the global properties of existing SCNs [240]. The

action-based framework provides a platform for probabilistically aggregating various

local linking mechanisms using a generative algorithm. Each action in ABNG serves

as a single linking mechanism, which when combined with an appropriate synthesis

algorithm F (·) can synthesize networks exhibiting varying topological characteristics.

In the context of SCNs, an action is a decision process that a firm uses to select firms

that it should supply its materials to. The supply chain literature provides a rich

source for potential decision processes [217, 221, 230, 237, 242, 243], while providing

insights regarding how to choose a set of actions that may lead to construction of

topologically resilient SCNs. The idea is to carefully choose actions for network

synthesis at the micro level such that the resilience of the whole supply network

gets mirrored at the macro level. The reason behind this choice is that creation of

resilient structures is an expected outcome of the local linking between nodes rather

than a goal of the participating firms (a firm is more likely to focus on its operational

efficiency). The ability to adapt and recover their previous functionality from adverse

circumstances is an important property of complex adaptive systems, and the setup

considered in this Chapter will allow us to evaluate the action-based model’s ability

to design such systems.

Recent research [243, 244] has suggested that existence of power law degree dis-

tributions in supply chain networks has a positive affect on its resilience. Preferen-

tial attachment mechanisms have been shown to synthesize networks that perform

well under random failures and are among the most prominent rules for making

linking decisions, hence making them a perfect candidate for actions for SCN mod-

eling [228, 229, 235, 237]. Preferential attachment also leads to creation of networks

exhibiting power law degree distributions. A variety of preferential attachment mech-
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anisms based on network centrality metrics can potentially lead to creation of a few

different hubs, hence dispersing the influential nodes across the overall supply chain.

Further, networks with power law degree distributions that are formed by fractal

mechanisms show greater resilience against cascading failures as compared to those

obtained from the simple preferential attachment mechanisms.

Consequently, the action set A will include preferentially selecting a node based on

its out-degree, in-degree, vertex betweenness and closeness. These centrality metrics

can induce the creation of a diverse range of hub nodes leading to creation of an

overall resilient network structure. The use of network properties like betweenness and

closeness for preferential linking can be seen as a proxy for more practical information

such as price, performance, and quality that are more relevant in the context of

supply chains [236, 245]. A fractal mechanism based on difference in total degree

(resulting in repulsion between hub nodes) has also been shown to produce resilient

structures [102, 243], and is included as an action. It is possible that a firm does

not prefer one particular firm over another based on the actions described above,

leading to an action corresponding to random selection among the firms satisfying

the tier constraints. An action is also based on connecting with closer nodes1 with

higher probability [229]. Finally a firm might choose to not add an edge, which is

the final action in A. It should be noted that in the presence of no edges in the

network all actions become equivalent to a random action, i.e. randomly selecting a

firm satisfying the tier constraints. This is further explained along with the synthesis

algorithm in Section 5.2.2.

5.2.2 Network synthesis

The synthesis algorithm of ABNG (see Section 4.2.1) allows a network modeler

to easily integrate domain specific rules or constraints by implementing a problem

specific set of node actions (e.g., ways firms could interact with each other). More-

1This action is currently based on shortest distances in the network. If available, node information
about location of firms can also be used.
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over, the modeler may wish to ensure a specific network backbone, which can be

easily accommodated by defining the initial topology before executing the Monte

Carlo simulation. Termination conditions for the synthesis algorithm are user defined,

e.g., certain number of edges created or topological characteristics have satisfactorily

emerged.

Incorporating tier constraints

Supply chain networks are formed from heterogeneous types of nodes, where each

node has a specialized task. Hence, extra care must be taken to appropriately capture

critical real-world constraints concerning the rules firms use to exchange goods. Some

are trivial, while others are context-dependent. Failure to reasonably accommodate

these constraints in the generative process will severely limit its utility to providing

only very general insights into SCN design principles. Previous research has suggested

that SCNs should be modeled as tiered networks, where each tier contains nodes

performing different functional tasks and the constraints of edge formation apply to

the entire set of nodes in a particular tier [220, 230, 242, 243, 246]. As described in

Section 5.1, each firm in a supply chain belongs to a unique tier, which corresponds

to the number of hops from the consumer in the final supply chain. For a network

G = (V,E), the set of nodes can be partitioned into l tiers V = T0 ∪ · · · ∪ Tl−1, such

that for α 6= β, Tα ∩ Tβ = ∅,∀α, β ∈ {0, . . . , l − 1}. Similarly, tiers also introduce

constraints on the possible set of edges, such that a node vi ∈ Tα (α ≥ 1) can only

supply materials to a node vj ∈ Tα−1, i.e. supply-demand relations exist only between

firms in adjacent tiers. Algorithm 4 shows how ABNG is used to synthesize tiered

SCNs for a given action matrix M by restricting the actions to select nodes that

satisfy tier constraints.
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Algorithm 4 Synthesis algorithm F (M, V,m, ξ) for target network G∗ = (V,E)

1: Create a network G = (V ′, E ′) with V ′ = V and E ′ = ∅
2: Using P(T = t), probabilistically assign a node-type t to each vi ∈ V ′

3: while |E ′| < |E| do

4: Select a tier α ∈ {0, . . . , l − 1}, followed by a node vi ∈ Tα
5: Probabilistically select an action al for vi using P(A = al|t)
6: Add edge (vi, vj) to G as determined by al and satisfying vj ∈ Tα−1

7: end while

8: return G

5.2.3 Optimization and determining generator suitability

As seen in Equation (4.2), the problem of finding an action matrix M is framed

as a multiobjective problem. The decision to frame this within a multiobjective

context is based on numerous observations in network science literature arguing that

it is a robust approach to determining generator suitability [61, 63, 153, 163]. To

solve this multi-objective search problem, we implement Pareto Simulated Annealing

(PSA) [209], as it is known to be a useful metaheuristic capable of global optimization

in a large search space in a fixed amount of time.

Choice of objectives

An objective of the current research is to learn the action-based model for a given

SCN, while preserving its resilience properties. Network resilience has emerged as a

critical topic in supply chain research, and a summary of several metrics that may help

understand supply network resilience can be seen in [244]. Recent research [228,229]

has uncovered the importance of network topology in determining resilience of SCNs

under random and targeted disruptions, hence highlighting the importance of con-

sidering it as an essential component of SCN modeling. To preserve the structural

and resilience properties of the real-world SCN, the action-based framework uses the
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2-sample Kolmogorov-Smirnov statistic to quantify difference in distribution of node

level properties between the synthesized and target networks. In the current experi-

ments, node betweenness, in-degree and out-degree are utilized as the global network

characteristics Y (G∗), but the approach is indifferent to the choice of objectives, and

other properties with alternative approaches like KL-divergence or entropy-related

measures can be used to quantify the difference in distributions of network proper-

ties. The choice of objectives is based on the efficacy of these measures to capture the

essential structural features of a network, especially in the the context of our action-

based approach [114]. Further, [244] uses these network properties to understand

supply network resilience in different network structures.

5.3 Results

The approach described in Section 5.2 is used to infer action-based models for each

of the real-world SCNs listed in Table B.2. Additionally, the action-based framework

was also used to synthesize supply networks that reflect the observations of empir-

ical studies, such as power law degree distributions and disassortative mixing. The

inferred probabilistic models are also used to draw conclusions about the individual

local mechanisms that are primarily responsible for link formation in SCNs. The

networks synthesized using the learned models were then subjected to random and

targeted disruptions of nodes, and evaluated against two resilience metrics. This pro-

vides an indirect yet effective way of analyzing the ability of a network to remain

functional under adverse circumstances.

5.3.1 Modeling SCNs

To test the ability of ABNG to replicate distinct global network properties ob-

served in real-world SCNs, the generator was tested using 10 target networks from

the dataset described in Section B.2. The list of SCNs that were considered for mod-

eling is provided in Table B.2 along with eight relevant network level metrics of the
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target networks and the corresponding networks synthesized using ABNG. Figure 5.1

presents a summary of the results, featuring heat maps for the 10 target networks.

The solution closest to the origin (based on 1-norm) was chosen as the action-based

model and was used to synthesize 20 networks each. The mean dissimilarity values are

recorded in the heat maps by comparing the 2-sample Kolmogorov-Smirnov statistic

value for betweenness, in-degree and out-degree between the target and synthesized

networks (these were used as objectives during the optimization). Additionally, we

also provide mean values of absolute deviation of the average path length, network

centralization and network heterogeneity between the target and synthesized networks

(see [240,244] for details and definitions of these properties and their relevance in the

context of supply chains).

As seen in Figure B.1, the target networks might impose strict constraints on how

nodes in two tiers are connected, for example the green and blue nodes in the supply

chain of Computer Peripheral Equipment have a one-to-one mapping. The constraints

imposed by such specialized sub-structures might lead to synthesis of disconnected

networks using ABNG. Synthesis of SCNs that are not fully connected is not a desir-

able outcome. To deal with this issue, a clean-up phase was devised to ensure every

node participating in the supply chain is connected to the synthesized SCN. If the

algorithmic procedure described in Algorithm 4 synthesizes a disconnected network,

the clean-up phase is initiated to create a connected supply chain by randomly con-

necting a disconnected node to a node that is already a part of the overall supply

chain, while adhering to tier constraints described in Section 5.2.2. The networks

obtained after the clean-up phase are then subjected to further analysis.

An action matrix corresponding to the solution closest to the origin (based on

1-norm) obtained for three of the real-world SCNs is shown in Table 5.1. This can

help the user in making some conclusions about the structure of these networks and

the propensity with which each action is used to form links. ABNG was also used to

synthesize an artificial SCN where the objective was to match the statistical properties

observed in most empirical studies, i.e. in and out degree distributions with power
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Figure 5.1. Results of measures for the 10 SCNs modeled using ABNG.
The solution closest to the origin (based on 1-norm) was chosen as the
action-based model.

law coefficients α = 2 and disassortative mixing among nodes (see Figure 5.2 for a

visual of the synthesized network). The action matrices obtained for each of these

networks have some similarities, but with subtle differences. It can be seen that most

of the SCNs have a corresponding action-based model consisting of nodes belonging

to only two or three different node-types, i.e. most of the firms use similar local

mechanisms to form links. A common observation is that “no action” tends to have

high probability. A possible conclusion here is that only a few nodes add edges in a

time step, leading to a power law degree distribution in the network. Further, most

networks use preferential attachment on in-degree, degree difference and betweenness

as dominant mechanisms for forming links. This provides evidence that firms that get

more supplies tend to attract more connections, firms tend to link disassortatively and

try to connect with nodes in shortest paths. The SCN on computer storage devices is

an exception where nodes tend to link based on closeness and out-degree with higher
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Table 5.1.
The table shows optimized action matrix for a few SCNs. The following
actions were used: Preferential attachment on: out-degree (PAOD), in-
degree (PAID), degree difference (PADD), betweenness (PAB), closeness
(PAC); Random selection (Rand); Inverse shortest distance (InvSD); and
No action (NA).

Network ↓ | Action→ PAOD PAID PADD PAB PAC Rand InvSD NA P(T = t)

Perfumes, Cosmetics, and 0.000 0.174 0.015 0.108 0.037 0.076 0.158 0.432 0.188

Other Toilet Preparations 0.007 0.249 0.179 0.074 0.000 0.008 0.000 0.483 0.812

0.077 0.032 0.009 0.373 0.026 0.000 0.000 0.483 0.508

Power-Driven Handtools 0.053 0.193 0.236 0.223 0.096 0.021 0.178 0.000 0.091

0.018 0.000 0.000 0.094 0.023 0.010 0.000 0.855 0.401

0.266 0.000 0.388 0.024 0.082 0.089 0.000 0.151 0.203

Computer Storage Devices 0.226 0.017 0.143 0.116 0.167 0.017 0.314 0.000 0.186

0.205 0.000 0.208 0.169 0.229 0.123 0.066 0.000 0.611

Artificial SCN 0.020 0.001 0.000 0.183 0.000 0.000 0.000 0.796 0.851

0.132 0.156 0.251 0.091 0.132 0.071 0.108 0.059 0.149

probability. It should be noted that the action based on distances does not get a

high probability because the current version uses distance as number of hops in the

network. If geographical location is available in the dataset, this action is likely to

have much higher probability.

5.3.2 Resilience analysis

The supply chain literature emphasizes that specific measures are required for

evaluating topological resilience of SCNs by incorporating the role of various nodes

in the network. Analytical measures of resilience commonly used in the network

science literature [247, 248] are unable to account for node heterogeneity, which is

a critical aspect in SCN modeling. For example, [229, 249] point out that in the

context of SCNs, the distance between two supply nodes or two demand nodes are

not as important as that between a supply and a demand node. To tackle this issue,

researchers rely on simulation based metrics to analyze topological resilience through
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Figure 5.2. A visual representation of the tiered structure of artificial SCN
synthesized using ABNG replicating basic SCN properties of power law
degree distributions and disassortative mixing. The network consists of
1000 nodes (100, 200, 500, 200 nodes in tiers 0, 1 ,2, 3 respectively) and
7000 edges

customized metrics. The usual approach consists of simulating random or targeted

disruptions by removing nodes from the network. [240] provides an outline of the

methodological framework that is typically used for analysis of topological resilience

of SCNs. This procedure consists of sequentially repeating the following steps:(i)

simulate node removal, and (ii) measure the relevant resilience metrics. This can

provide general insights into the topological aspects of SCN resilience.

To incorporate the heterogeneous roles of firms for resilience analysis in SCN, the

set of nodes V can be divided into supply (VS) and demand (VD) nodes. We assume

that the final consumers are the demand nodes (VD = T0), and every other node

is a supply node (VS = V \VD). For a network to be resilient, the most important

requirement is to ensure that the demand nodes have access to at least one supply

node. Supply availability rate measures the percentage of demand nodes that have

access to supply nodes, hence providing an estimate of whether the demand nodes

have access to supplies for maintaining normal operations. As shown in Equation 5.1,
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Figure 5.3. Resilience analysis: SCN of semiconductors and related de-
vices

the supply availability rate SA can be calculated as the ratio of number of consumers

that still have access to a supplier to the total number of consumers.

SA =
|V ′D|
|VD|

, where V ′D = {vi ∈ VD|∃vj ∈ VS : ∃ path between vi and vj} (5.1)

The second measure, size of the functional network, corresponds to the number

of nodes in the largest connected component that has at least one supply node, thus

serving as a measure of supply network connectivity. For calculating the size of the

largest functional network, we first need to find the largest connected component

that satisfies the required conditions. Let Vsub be the set of nodes in the remaining

functional network, then a node in Vsub should satisfy the following requirements:

(i) ∀vi, vj ∈ Vsub : ∃ path between vi and vj, and (ii) ∃vk ∈ Vsub : vk ∈ VS (5.2)
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Figure 5.4. Resilience analysis: SCN of power-driven handtools

Figure 5.5. Resilience analysis: SCN of computer storage devices
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Once a set of measures for evaluating topological resilience of a network have been

decided, the sequential procedure described earlier can be used to perform analysis on

a network. In this research, we simulate random disruptions by randomly removing a

supply node from the network, and targeted disruptions remove a supply node with

the highest total degree (sum of in and out degree). Though we perform degree-

based targeted disruptions, variations that use different centrality measures can also

be used.

Figure 5.6. Resilience analysis: SCN of electromedical and electrothera-
peutic apparatus

Figures 5.3-5.7 show the effect of random and targeted removal of nodes from the

synthesized and real-world networks on supply availability and size of the functional

network under disruptions. The ABNG-synthesized network corresponds to those

created by the modeling procedure described in this chapter (followed by the clean-

up phase, if required). Each blue line corresponds to the average resilience values

of 20 synthesized networks, with the highlighted region capturing the networks lying

between the 5th and 95th quantile. It is interesting to note that average resilience of
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the networks synthesized using our approach are generally comparable to or better

than the considered real-world networks under both disruption scenarios. [239] ana-

lyzed the SCNs that we use as target networks and concluded that the networks show

high structural resilience. This implies that the actions used in this research can be

used to make informed decisions leading to design of resilient supply networks as the

synthesized networks have resilience comparable to the target networks.

Figure 5.7. Resilience analysis: SCN of farm machinery and equipment

The artificial SCN shown in Figure 5.2 was also subjected to resilience analysis,

and the results can be seen in Figure 5.8. It should be noted that because there were

no constraints from a target network, the synthesized networks are fully connected.

Another important observation is that there is very little variation (small highlighted

portion in Figure 5.8) because of the absence of real-world constraints on the network

structure.

Overall, the proposed model is capable of synthesizing networks that are struc-

turally similar to real-world SCNs only by utilizing a few global network properties

in form of objective functions Y (G∗), and also incorporating context-dependent con-
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Figure 5.8. Artificial supply network

straints on link formation between firms in different tiers. The ability of the synthe-

sized networks to retain functionality under disruption demonstrates that the micro

level linking decisions (actions) of individual firms can be used in a probabilistic

manner to synthesize topologically resilient network structures. Using the informa-

tion from node level actions and corresponding probabilities can provide network

designers with a better understanding of supply chain dynamics, and hence make

informed decisions regarding designing systems that can retain functionality under

disruptions.

5.4 Conclusions and future work

The objective of this research was to investigate the possibility of using a net-

work model to synthesize resilient supply networks capable of structurally replicating

a given real-world supply chain. The framework incorporates essential features of

SCNs like node heterogeneity by using tier information and allowing different mech-
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anisms to connect with firms. The results indicate that decisions by firms at the

micro level can lead to creation of networks that exhibit topological resilience, hence

providing insights into network design principles. The framework can be extended to

capture dynamics of such networks by adding features such as arrival of new nodes and

rewiring of existing edges. Information regarding node demands and incorporating

tighter constraints on demand fulfillment can make the model more representative

of real-world SCNs, but the unavailability of material flow data might hinder the

progress in this direction. Availability of demand data will also lead to synthesis of

connected networks by ensuring that individual demands are satisfied. Firm fitness

(generally evaluated using profit or loss) is seen as an important driving mechanism

for supply chain evolution [250, 251] and can be included as an additional action in

future research, and also used as a metric for addition and removal of firms/nodes in

the network. This can effectively capture the dynamics of supply chains and how the

evolution of the network effects its resilience.
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6. ACTION-BASED MODELS FOR STRUCTURAL

BRAIN NETWORKS

Recent developments in network neuroscience have highlighted the importance of

developing techniques for analysis and modeling of brain networks. A particularly

powerful approach for studying complex neural systems is to formulate generative

models that use wiring rules to synthesize networks resembling the topology of a

given connectome. Successful models can highlight the principles by which a network

is organized (identify structural features that arise from wiring rules versus those that

emerge) and potentially uncover the mechanisms by which it grows and develops.

Previous research [252,253] has shown that such models can validate the effectiveness

of spatial embedding and other (non-spatial) wiring rules in shaping the network

topology of the human connectome.

In this Chapter, we propose variants of the action-based model [114] that combine

a variety of generative factors capable of explaining the topology of the human connec-

tome. We cross-validate our models by evaluating their ability to explain between-

subject variability. Our analysis provides evidence that geometric constraints are

vital for connectivity between brain regions, and an action-based model relying on

both topological and geometric properties can account for between-subject variability

in structural network properties. Further, we test correlations between parameters

of subject-optimized models and various measures of cognitive ability and find that

higher cognitive ability is associated with an individual’s tendency to form long-range

or non-local connections.
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6.1 Introduction

The network of connections between neural elements of the human brain, often

referred to as the human connectome [254,255], creates an intricate and complicated

structural network [256, 257]. The human connectome is an anatomical network,

where nodes consist of neural elements (neurons or brain regions), and edges cor-

respond to physical connections (synapses or axonal projections) between different

neural elements. The network map of the human connectome can be used to de-

scribe, explain or predict the behavior of the physical network it represents [258]. In

the past decade, network neuroscience has highlighted the importance of developing a

wide variety of techniques for analysis and modeling of brain networks [100,259–263].

Topological analysis based on various network measures has provided evidence for

the non-random topology of the connectome, and has aided our understanding of the

organization of the human brain [247,264].

Early application of networks in neuroscience mainly focused on gathering sum-

mary quantities trying to find common features describing the organization of most

biological neural networks [265], see [247] for a review. These summary quantities

have been used to detect functional integration (shorter path lengths and efficiency)

and segregation (high transitivity and presence of clusters) in the brain. The im-

portance of individual brain regions and pathways can be computed using centrality

metrics, such as betweenness, closeness, etc. Eventually, these measures have been

useful for topological analysis and characterizing structural patterns observed in the

network representation of the brain.

An alternative approach for studying complex neural systems is to formulate gen-

erative models that use wiring rules to synthesize networks resembling the topology

of a given connectome [265] (see Figure 6.1 for a pictorial description). Successful

models can highlight the principles by which a network is organized (identify struc-

tural features that arise from wiring rules versus those that emerge) and potentially

uncover the mechanisms by which it grows and develops [258]. For example, the
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Observed Network G∗

Algorithm Network Model
1: Input: Network G∗ and parameters θ
2: procedure SynthesizeNetwork
3: · · ·
4: return G̃

1

fit/learn

θθθ ⇒ insights

Figure 6.1. A generative network model uses a network representation of
the as an input to learn parameters θθθ, which can then be used for draw
insights about the topology of the network G∗.

spatial embedding of the brain, along with the economical wiring constraints that

arise from this embedding play a vital role in crucial network characteristics, such as

efficient network communication and information processing [264]. Previous research

has shown that generative models can validate the effectiveness of spatial embedding

and other (non-spatial) wiring rules in shaping the network topology of the human

connectome [252, 253]. Such models can also provide insights into potential mecha-

nisms that give rise to functionally important network attributes [160]. In addition

to providing explanations for the wiring rules and processes of network formation,

generative models for brain networks have the following advantages [265]:

1. They can compress our descriptions of the network representation of the brain

and highlight potential regularities in their organization.

2. The ability to provide a compact description of the wiring rules enables these

models to make out-of-sample predictions about unobserved network data.
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3. Under appropriate assumptions, these generative models can uncover network

mechanisms responsible for the structural organization of the brain.

While early work on generative modeling of the human brain (using resting state

functional connectivity [252] or the connectome [253]) utilized at most one or two

generative factors for predicting the topology, there has been growing interest in

developing generative models that incorporate multiple rules for the probability of

connections between regions of the brain [266, 267]. This is an assumption that is

foundational to the action-based approach, where links are created using a combina-

tion of several pre-defined actions/rules whose probabilities are optimized for a given

input network.

The choice of input network is particularly critical for generative modeling of

the human connectome as the network should typify the complex structure of the

entire set of brain networks [266–268]. In this Chapter, we use the structural brain

networks of 100 unrelated subjects from the HCP dataset [269] to create a group

representative median network G∗. This network is used to train four generative

models: (i) null model based only on geometric distances, (ii) action-based model

from Chapter 4, (iii) a variant of (ii) with an additional action based on geometric

distances, and (iv) action-based model with visibility, where wiring rules use both

topological and geometric properties to create edges. Each model is cross-validated

by evaluating their ability to explain between-subject variability when trained on a

single group representative network G∗. Finally, we also learn action-based models

and its geometric counterpart, ABNG (vis), for each subject to study correlations

between measures of cognitive ability and model parameters.

6.2 Methods

As in previous Chapters, for each of the generative models (briefly described in

Sections 6.2.1-6.2.4), we formulate the problem of determining parameters θθθ as a

multi-objective optimization problem:
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minimize E [Q(G|G∗, Y, θθθ)]

subject to θθθ ∈ D,
(6.1)

where G is a network synthesized by a generative model with parameters θθθ in

the feasible domain D, and Q(G|G∗, Y, θθθ) is a measure to quantify the dissimilarity

between a synthesized network G and the group representative network G∗ based on

a user-defined set of network characteristics Y . We minimize the expectation of Q to

account for the stochasticity in the networks synthesized by a generative model.

Recent observations have highlighted the need to consider multiple global char-

acteristics when comparing networks [61–63, 110, 114]. For our experiments, we use

the first three terms of the dk-series [110] (i.e., Y = degrees + correlations + clus-

tering/transitivity) as they have been shown to almost fully define local and global

organization of most real-world networks. The 2-sample Kolmogorov-Smirnov D-

statistic is used to quantify difference in distribution of these properties between G

and G∗. As the resulting problem is multi-objective in nature, we obtain a set of

Pareto efficient solutions after solving the optimization problem described in Equa-

tion 6.1. For each of the models, the solution closest to the origin, i.e. the one with

lowest sum of objectives based on 1-norm, was chosen as the representative parameter

setting.

6.2.1 Null model

The most basic model we consider in our experiments assumes that the probability

of connection Pij between nodes vi and vj is a function of the Euclidean distance dij

between them

Pij ∝ exp(−ηdij). (6.2)

This model assumes that the topology of the connectome can be attributed to

minimization of the wiring cost, and the parameter η ≥ 0 can be optimized (as
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formulated in Equation 6.1) to determine the degree of cost penalization. NSGA-

II [210] was used to solve the optimization problem for the null model, which resulted

in η ≈ 0.73 as the most representative solution. As illustrated in Figure 6.5, networks

synthesized using the estimated parameter setting for the null model were unable to

match the between-subject variability in the topological properties.

6.2.2 Action-based model

The second model we consider for our experiments is the action-based model in-

troduced in Chapter 4. The action set used in our experiments consists of K = 8

actions, which are listed in Table 6.1 along with the representative action matrix. It

should be noted that the estimated action matrix contains only three actions that

have a probability greater than 0.05, implying that multiple mechanisms play a dom-

inant role in the organization of the connectome. Further, the results in Figure 6.5

shows that while ABNG can characterize the between-subject variability in degree

and assortativity, it fails to capture the clustering distributions.

6.2.3 Action-based model with distance

The importance of minimizing wiring cost necessitates an action that uses the

spatial embedding of the connectome to create links between two nodes. To utilize

this additional geometric information, an action is added to the model described in the

Chapter 4, where a node vi probabilistically selects vj based on Euclidean distance.

This new variant, ABNG (dist), uses the optimal cost penalization learnt in the null

model (η ≈ 0.73) to create an action based on geometric distance between nodes, as

described in Equation 6.2. As in previous Chapters, the action matrix is optimized

using PSA and the learnt model is used to synthesize networks. As seen in Figure 6.5,

ABNG (dist) outperforms ABNG in capturing the distribution of properties with the

help of the additional action that is chosen with probability 0.197 in the representative

action matrix (see Table 6.1).
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Input Network

ααα1 ααα2

ABNG

ααα3

ABNG (dis)

Degree and distance distri-

bution of the input network

ABNG (vis)
50 most likely edges

from the four models

× exp(−ηdij)

Figure 6.2. Pictorial explanation of how the different generative models
work using a toy example. Given the input network, different models use
or combine various rules to determine the probability of a new edge. In this
toy example, ABNG uses two action: (i) preferential attachment based
on degree, and (ii) inverse log-weighted similarity, which leads to output
matrices ααα1 and ααα2 shown in the black rectangle labelled ABNG. ABNG
(dist) also uses an action based on geometric distances shown in matrix ααα3.
The null model uses only ααα3 to determine probability of a new edge, while
ABNG (dist) combines the output of all three actions enclosed in the red
rectangle. Finally, ABNG (vis) determines the probability of an edge by
multiplying the output of actions in ABNG with a distance penalty term
exp(−ηdij). To highlight the differences between the four models, we show
output networks with 50 most likely edges. The following parameters were
used: ABNG M = [0.4, 0.6], ABNG (dis) M = [0.3, 0.3, 0.4], ABNG (vis)
η = 0.5, null model η = 1.
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6.2.4 Action-based model with visibility

Previous research on generative models for the brain have highlighted the effec-

tiveness of combining a distance based penalty with non-geometric rules to infer the

probability of connection between different regions of the brain [252, 253]. This is

a phenomena observed in many spatially embedded networks that have evolved to

optimize similar functional requirements – high efficiency of information transfer be-

tween nodes at low connection cost – or to attain ideal balance between functional

segregation and integration [100].

We propose the intuitive concept of restricted node visibility (or visibility in gen-

eral), which assumes that when a node decides to create a link, the probability of

creating a link is determined by a combination of actions and external factors in-

trinsic to the nodes. For example, in networks that exist in the Euclidean space

(structural brain networks, transportation networks, etc.), a visibility function can

be defined using node locations (distance in terms of node attributes can also be used

as an input for defining visibility, but only after careful exploration of their relation-

ship with network structure). In the context of ABNG, visibility can be seen as a way

of skewing an action such that a node is more likely to connect with particular sets

of nodes, consequently leading to the formation of communities. The idea has some

similarity to network models that infer an embedding of nodes based on topology and

use it to synthesize networks, see Section 2.2.4 for a review of these models.

To combine the effect of multiple non-geometric actions with a distance-based

penalty, we propose the action-based model with visibility, where the probability of

an edge between two nodes is proportional to the output of an action (αij) scaled by

the geometric distance between the nodes:

Pij ∝ αij × exp(−ηdij). (6.3)

The overall idea is that the likelihood of an edge between a pair of nodes depends

on a combination of their topological properties and geometric distance. We would
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a1 a2 a3 P̄

0.25 0.4 0.35 0.6

0.35 0.2 0.45 0.4

(a) Example action matrix

with two node-types, blue

and green.

F (·)

(b) Pictorial description of how the action-based model with visibility is

used to synthesize networks using the action matrix shown above.

Figure 6.3. Pictorial description of the action-based model with visibility:
The probability that the green colored node connects to other nodes is
based on distance to other nodes and actions. The visibility of each node
with respect to the green node is depicted by its size.

like to point out that by setting η = 0 in Equation 6.3 we can recover the original

model proposed in Chapter 3, thus making the action-based model with visibility a

generalized version of the action-based model. The process of learning such a model

consists of two steps: (i) learn an action-based model, and (ii) estimate the visibility

parameter η for the model learnt in step (i). In our experiments, we used the action

matrix optimized for ABNG followed by optimization of the visibility parameter using

NSGA-II [210] to learn ABNG (vis) parameters (η = 0.11) for the group representative
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network G∗. The results in Figure 6.5 shows that ABNG (vis) is the best model among

the ones considered here.

6.3 Experiments and results

To access the validity and effectiveness of the generative models proposed in Sec-

tion 6.2, we designed a few different experiments, as outlined in Figure 6.4. The

first step is to create a group representative median network G∗ using the measure-

ments of structural organization of the brains of the 100 unrelated subjects in the

HCP dataset [269]. This is a crucial step as the models discussed in Section 6.2,

similar to most models in the literature, are designed to learn parameters using a sin-

gle input network. Thus, creating an input network that can capture the structural

regularities of a cohort of subjects can facilitate the learning of better models. Pre-

vious research [266–268] has highlighted the importance of choosing a representative

network for the parameterization of generative models for the brain.

Once the median network is constructed, it can be used as the input to learn

parameters for each of the models. The parameterized models are then used to syn-

thesize networks and their ability to capture the between-subject variability can be

evaluated. While the group representative network G∗ can capture the structural

regularities of the cohort of subjects, it is expected that there will be subtle distinct

features that are important for interpreting the difference between individuals [270].

The next step is to parameterize the models separately for each subject, and test

if the fitted parameters can provide insights that can discern these individual dif-

ferences. Structural brain networks are quantitative measurements of white matter

micro-structure, whose integrity is crucial for healthy cognitive function [271]. Con-

sequently, we decided to use our best model, ABNG (vis), for understanding the

relationship between the structural organization of human brains and the cognitive

ability of subjects.
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Subject 1

Subject 2
...

Subject 100

Data
Null Model

ABNG

ABNG (dist)

ABNG (vis)

M1

M2
...

M100

η̄1

η̄2
...

η̄100

Cognitive

ability

Network Models

median

network

subject

level

ABNG

ABNG (vis) insight

Figure 6.4. The structural brain networks of 100 unrelated subjects from
the HCP dataset [269] are used to create a group representative median
network G∗. This network is used to train four models described in Section
6.2. Each model is cross-validated by evaluating their ability to explain
between-subject variability when trained on G∗ (see Figure 6.5). We also
learn action-based models M and its geometric counterpart ABNG (vis)
for each subject to study correlations between measures of cognitive ability
and mean model parameters η̄ (see results in Figure 6.8).

6.3.1 Model cross-validation

Models fitted using Equation 6.1 should be able to synthesize networks that repli-

cate some properties of the group representative network G∗. For a model to be useful,

it needs to be cross-validated, for example, by using the best-fitting parameters from

a model to synthesize networks that provides good estimates for the topological prop-

erties of a second network that was not involved in the model-fitting process. Such

a procedure can help us ensure that the generative model is identifying wiring rules

and not overfitting the observed data [265]. In our evaluation of the network models,

we test their ability to reproduce the topological variability across subjects, and the
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results are presented in Figure 6.5. The goodness-of-fit of the different variants of

the action-based approach can be compared with the null model, thus showing that

the proposed models performs better than a simple model based on geometric wiring

rules. Figure 6.5 comprises of three different plots:

2-D KS distance

Null model: 1

ABNG: 0.72

ABNG (dist): 0.57

ABNG (vis): 0.45

2-D KS distance

Null model: 0.92

ABNG: 0.97

ABNG (dist): 0.77

ABNG (vis): 0.43

2-D KS distance

Null model: 0.96

ABNG: 0.97

ABNG (dist): 0.66

ABNG (vis): 0.38
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Figure 6.5. Empirical evaluation of the ability of the aforementioned net-
work models to capture the between-subject variability using the group
representative network G∗ as the input.

1. Scatter plots below the diagonal show each synthesized/real network as a point

in a network dissimilarity space, where the coordinates are computed using the

Kolmogorov-Smirnov distance of the associated properties when the network

is compared to the observed network G∗ (the observed network itself is at the

(0, 0) position). Network models (colored triangles) showing higher overlap with

the real brain networks (black dots) are better.

2. In the blocks above the diagonal, we quantify the extent to which a given gen-

erative model is able to reproduce the between-subject variability of topological
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network properties of the 100 subjects using the 2-D KS distance [272] (lower

the better).

3. Plots along the diagonal show the density distributions of the Kolmogorov-

Smirnov distance of the associated properties when the network is compared to

the observed network G∗. Similar density distribution to the real brain networks

(black curves) implies good match in the properties.

Table 6.1.
The table shows optimized action matrices for structural brain networks
without sub-cortical regions. The following actions were used: Prefer-
ential attachment on - average neighbor degree (PAND), degree (PAD),
PageRank (PAPR) and betweenness (PAB); Triadic closure (TC); Inverse
log-weighted (SLW) and Jaccard similarities (SJ); No action (NA); and
Euclidean distance (ED). P̄ corresponds to P(T = t), while η is the opti-
mal distance penalty parameter for each of the models. The parameters
are color coded to match with Figure 6.5: null model is blue, ABNG is
green, ABNG (dist) is yellow, and ABNG (vis) is red.

Triadic closure No action Distance Penalty︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
PAND PAD PAPR PAB TC SLW SJ NA ED P̄ η

0 0.004 0.013 0.091 0 0.492 0.384 0.016 - 1 0.111

0 0 0 0.030 0.731 0 0 0.042 0.197 1 0.731︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
Preferential attachment Similarity Euclidean Distance

The results in Figure 6.5 clearly show that all variants of the action-based approach

outperform the null model. Further, the action-based model with visibility turns out

be the best model, which is in agreement with past observations stating that the

organization of the human brain arises from a combination of wiring rules based on

wiring cost reduction and topological attachment mechanisms [252,253]. In addition

to learning accurate models for data, the parameters of our action-based approach
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can be used to draw conclusions about potential mechanisms for network formation.

The action matrices shown in Table 6.1 suggest that multiple mechanisms might be

at play in the organization of the human brain. The parameters for the action-based

model show that homophilic attachment (action based on similarity of neighborhood)

mechanisms are the most important, but preferential attachment on betweenness is

also crucial. Interestingly, the fitted distance penalty parameter for ABNG (vis) is

smaller than the one obtained for the null model leading to a model that can better

explain the individual variability.

6.3.2 Cognitive ability from structural connectivity

Our analysis so far has mainly been concerned with the ability of generative mod-

els to learn the between-subject variability of various topological properties while

using only a single group representative network as the input. The assumption that

structural brain networks of different subjects are expected to show similar connec-

tivity patterns is pivotal to such an analysis [273]. But there are subtle differences

in the connectivity patterns of different subjects [267, 268], which necessitates the

parameterization of these generative models for the brain networks of each individual

subject. Analyzing the model parameters for individuals can shed some light on the

differences in the structural organization of brains of different subjects by comparing

the estimated parameters of the generative models.

For this purpose, we use our best model, ABNG (vis), which involves first ob-

taining action matrices M1, . . . ,M100 for each subject followed by estimation of the

respective visibility parameters (see Figure 6.4 for a pictorial representation of our

procedure). In the optimization of the action matrix for each subject, we use the

action matrix obtained for the group representative network as the starting solution

(shown in green in Table 6.1), and perform a local search for each subject. After ob-

taining action matrices M1, . . . ,M100 for each subject, we perform multi-dimensional
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Figure 6.6. Multi-dimensional scaling of a single representative action
matrix for 100 subjects, color shows mean visibility parameter η̄).

scaling on the most representative action matrix for each subject to highlight the

variation in the subject-level models, and the results are shown in Figure 6.6.

Although little is known about the organization principles that lead to individual

differences between the connectomes, it is widely believed that these differences are

associated with cognitive functioning [258, 274, 275]. Consequently, a recent topic

of interest in neuroscience has been to uncover how individual differences in the

network architecture leads to differences in general intelligence [275]. General intel-

ligence is typically associated with the ability of an individual to perform a wide

variety of cognitively challenging tasks well, which can be empirically computed as

the first component of the principal component analysis of multiple measures of cogni-

tion [276]. For the HCP dataset [269], general intelligence can be computed using the

following six measures of cognitive ability: (i) fluid intelligence (PMAT24 A CR), (ii)

episodic memory (PicSeq Unadj), (iii) cognitive flexibility (CardSort Unadj), (iv) lan-
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Figure 6.7. Correlation of η̄ with various measures of cognitive ability

guage and vocabulary comprehension (PicVocab Unadj), (v) verbal episodic memory

(IWRD TOT), and (vi) working memory (ListSort Unadj). It seems obvious that

the patterns in the structural connectivity are somehow related to an individuals’

general intelligence. In fact, there has been research supporting that the efficiency

of network topology is positively associated with cognitive ability [277, 278]. The

visibility parameter in ABNG (vis) can serve as a proxy measure for the extent of

functional integration and segregation in the structure of an individuals’ brain, which

plays a pivotal role in the ability of an individual to perform a variety of functional

tasks [279].
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Figure 6.8. The plot shows results for correlation between general intel-
ligence and η̄ (r = −0.318, rM = −0.178, pM = 0.259 and rF = −0.429,
pF = 0.001), where F and M are gender of the subjects.

Figures 6.7 and 6.8 plot the mean visibility parameter η̄ (averaged across the

Pareto front) for an individual against measures of cognitive ability for subjects. In

Figure 6.7, the correlations and p-values are reported for the six different measures of

cognitive ability listed above. Using a significance level of α = 0.05, we can conclude

that the correlation is not insignificant for four of the cognitive ability measures.

Similarly, Figure 6.8 plots the general intelligence as the measure of cognitive ability

and also distinguishes subjects based on their gender. Overall, the plots show that

individuals with lower value of η̄, i.e. showing a tendency to form long-range or non-

local connections, obtain higher scores in the different tests for evaluating cognitive

ability. In Figure 6.8, we also observe differences in the correlation between the two

quantities when the gender of individuals is taken into account.
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6.4 Conclusions

In this Chapter, we explored the ability of the action-based model (and its vari-

ants) to capture the between-subject variability in topological properties of structural

brain networks while using a single group representative network as the input. Though

the action-based model performed better than other generative models proposed in

the literature, it failed to capture the local transitivity of the connectome. To tackle

this issue, we proposed to use the spatial embedding of the brain and introduced

geometric distances between various nodes as an additional factor responsible for the

topology of the connectome. This enabled us to combine multiple topological proper-

ties (in the form of different actions) and their interaction with geometric distances to

create better models for the human brain, something that prior models were unable

to accomplish [252, 253]. Our results show that actions-based models with geomet-

ric constraints using wiring rules based on homophilic attachment and preferential

attachment on betweenness can synthesize networks resembling human connectomes.

While other models such as exponential random graphs [268,280] and the weighted

stochastic block model [281] have also been used for generative modeling of the con-

nectome, they lack interpretability and are incapable of recovering mechanisms and

rules that lead to the formation of an observed network. The action-based model

with visibility outputs an action-matrix that shows the relative importance of various

actions/mechanisms for a particular input network, and the visibility parameter high-

lights the role wiring cost plays in the organization of the connectome, thus providing

a compact representation of the connectome.

The ability of our proposed models to synthesize networks that account for the

topological properties and between-subject variability in these properties raises the

possibility that the models can provide insights into the factors that have shaped the

emergence of specific architectural or performance characteristics [263]. To test this

hypothesis, we use our best model, ABNG (vis), to study differences in estimated pa-

rameters for different individuals and discover that the value of distance penalization
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is significantly correlated with cognitive ability in the form of general intelligence. We

find that the differences in structural connectivity have some association with the the

cognitive ability, specifically with the extent of functional integration and segregation.

An interesting outcome of our experimental analysis is that the correlation is more

pronounced in the female subjects of our dataset, which must be subjected to further

examination using other neuroscience techniques.
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7. QUANTIFYING THE VARIABILITY IN NETWORK

POPULATIONS AND ITS ROLE IN GENERATIVE

MODELS

In an ideal scenario, a generative model should be able to synthesize networks that

are likely to evolve from the ‘true’ process that created the observation, but most

models are not designed to accomplish this task. Due to the scarcity of data in the

form of multiple networks that have evolved from the same process, generative models

are typically formulated to learn parameters from a single network observation, hence

ignoring the natural variability of the ‘true’ process.

In this chapter, we highlight the importance of variability in evaluating generative

models and present a way of quantifying the variability for a finite set of networks.

The evaluation scheme compares the statistical properties of networks in a dissimi-

larity space. Using the dissimilarity space, we evaluate the ability of four generative

models to synthesize networks that capture the variability of the ‘true’ process. Our

empirical analysis quantifying the ability of network models to replicate characteristics

of a population of networks suggests that models aimed at exploring the generative

mechanisms by fitting using a single network fail to capture the variability in the

network population. Our work highlights the need for rethinking the way we evaluate

the goodness-of-fit of new and existing network models and devising models that are

capable of matching the variability of network population when available.

7.1 Introduction

As depicted in Figure 7.1, statistical modeling of networks based on a single obser-

vation assumes that G∗ is somehow representative of the ‘true’ process A∗. Learning
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a model using a single observation that does not reflect the variability in the process

A∗ can potentially bias a model to synthesize networks that over-fit G∗. Such a setup

could restrict the generalizability of the model by failing to synthesize networks that

provide a reliable representation of the ‘true’ process. To understand this, we need

to define the concept of a network population.

Definition 7.1 (Network Population) Let G1(V1, E1) be an arbitrary network that

has non-zero probability of being synthesized using the process A∗. A finite set of k

such realizations GA∗ = {Gi(Vi, Ei)} ∀i = 1, . . . , k is called a network population,

where Vi and Ei are the sets of nodes and edges in Gi.

process A∗ G1(V1, E1)

G2(V2, E2)

...

Gk(Vk, Ek)

Network population GA∗

synthesizes
networks

observed=G∗

learn about

Figure 7.1. Procedure used for evaluating network models: Assuming G∗

is not an outlier, how well do existing network models approximate the
process A*?

To illustrate the variability in networks synthesized using a single known process

A∗, we use the preferential attachment process of Barabási-Albert [12] to synthesize a

population of 100 networks (labelled as “data” in Figure 7.2). The stochasticity in the

generative process of the BA-model leads to the synthesis of networks that show some
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variability in their global network properties (degree assortativity and transitivity

are used in Figure 7.2). As depicted in Figure 7.1, we typically observe a single

network from the population and ideally would like a generative model to be capable

of learning about the original process A∗ using the observation G∗. Consequently, one

network from the population was selected at random as input for training two other

network models, namely dk-random graphs as model 1 and action-based networks

as model 2 (see Section 2.2 for more details), which were then used to synthesize

populations of 100 networks each. Finally, we compare the distribution of degree

assortativity and transitivity in the three populations in Figure 7.2. We observe

that the networks synthesized by model 1 all have exactly the same global network

properties. While there is no variability in these properties, a simple comparison with

the observed network G∗ might lead to a conclusion that the model aptly describes

the underlying process A∗, which can prove to be highly misleading. On the other

hand, the population of networks synthesized by model 2 shows more variability, but

fails to match the network properties of G∗ or the original population.

The inability of network models to synthesize realistic network populations neces-

sitates the evaluation of network models using a well-formulated methodology that

treats the observed network as a sample originating from some unknown process

A∗. Statistical hypothesis testing for goodness-of-fit typically involves measuring the

discrepancy between observed values and the values expected under the model in

question. Similarly, in the context of networks, we would like to evaluate the ability

of a candidate model to approximate the network population GA∗ using a single ob-

served network G∗ (see Figure 7.1 for a pictorial representation). Although in most

cases we do not have a population of independent instances of networks that can be

used to draw a set of samples [282], it has been shown that it is possible to establish a

baseline test set to evaluate the ability of a network model to capture the distribution

of network populations [161]. [283] made a similar observation, where it was shown

that evaluating the complexity of a network model using a single network can be bi-
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Figure 7.2. Distribution of global network properties assortativity and
transitivity in populations of networks synthesized by the Barabási-Albert
model and two other models. The inability of network models to replicate
the distributional properties of the original process A∗ highlights the need
for devising better techniques for training and evaluating models using
network populations.

ased because of the variability in the samples, and therefore introduced a complexity

measure based on network populations.

Even though network science has provided us with numerous methods to compare

pairs of networks (see [158,159] for reviews), comparing network populations has been

a relatively unexplored area. Given the importance of natural variability in generative

processes [161], it is imperative to devise methods that can be used to compare

populations and quantify their variability. Such methods can help researchers in the
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development of models that augment our current understanding of complex networks

and the underlying process they represent.

One way to quantify the information content in a finite population of networks

is to use entropy-based measures to compute the amount of randomness in the pop-

ulation. [284] review the diverse contexts and applications that led to the develop-

ment of various entropy-based measures for graphs/networks. Information-theoretic

metrics have also been used for quantifying the difference between pairs of com-

plex networks [166]. Methods for quantifying the Shannon entropy of canonical and

microcanonical network ensembles have also been proposed [285, 286], which were

subsequently extended to the case of stochastic blockmodels [287]. While closed form

expressions can be obtained for simple null models, achieving the same for a popu-

lation of real-world networks is rather unlikely. Alternatively, data-driven techniques

to quantify the information content and variability in network populations can aid

the rapid development of more explanatory network models that capture the distri-

butional properties of a population.

While the inability of certain network models to reproduce the naturally occur-

ring variability in networks can be attributed to the fact that they sample each edge

independently through Bernoulli distributions [120], there could be other factors con-

tributing to the lack of variability. There are at least two ways of overcoming this

obstacle: (i) systematic development of models that can replicate the distributions

of populations, or (ii) devising techniques that can allow existing models to utilize

additional information from the population.

There has been recent work on mapping networks into natural Euclidean spaces

for conventional hypothesis testing [175], which can help us determine if two groups of

networks are significantly different in statistics. Latent space models (LSM) [18] were

proposed to synthesize networks by mapping the nodes into some low-dimensional

Euclidean space while keeping the relationships. [288] adapted LSMs for multiple

input networks and proposed a joint LSM considering multiple networks in the poste-

rior. In [289], the context was extended to multiple observations drawn from a com-
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mon population, and a non-parametric model was proposed. [290] proposed another

Bayesian model where the probability of an observation is based on the Hamming

distance to the Fréchet mean of the group. Similarly, [291] proposed a hierarchical

modeling framework to learn better models of network populations. Although these

approaches incorporate information about multiple networks to learn better represen-

tations for the population, they fail to explicitly account for the natural variability

in the population.

To recap, an ideal generative model M would exactly correspond to the true

process A∗ that defines the dynamical processes responsible for the observed data G∗.

That is, if A∗ defines a probability distribution PG(A∗) ∀G ∈ GA∗ , then PG(M) and

PG(A∗) would be identical. As stated above, A∗ is usually unknown and the number

of observed networks in the data G∗ are usually small (sometimes only one).

In this chapter, we expand on previous work [161] about the distributional prop-

erties of four competing generative models: Chung-Lu model, dk-random graphs, ex-

ponential random graphs, and action-based network generators (Section 7.2.2 briefly

describes how the model are best-fit to the data). We consider networks drawn from

three known processes and six real-world populations. As described in Figure 7.1,

model parameters are fit using a representative sample G∗ chosen at random. In

Section 7.2, we propose the construction of a dissimilarity space that measures the

distributional properties of network populations with respect to the observed network

G∗. In Section 7.3 the learned models are used to synthesize networks followed by an

investigation of their distributional properties. This evaluation is done by compar-

ing the statistical properties of the synthesized networks with the properties of the

corresponding population of networks1.

1Code available at https://github.com/dlguo/network-variability.

https://github.com/dlguo/network-variability
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7.2 Experimental setup

7.2.1 Dissimilarity space

Evaluation of the distributional properties of a generative model requires a well-

defined methodology that correctly represents the distribution over networks. Al-

though model-based techniques for hypothesis testing of networks has been proposed

in the literature [174, 292, 293], they heavily rely on the choice of a baseline model.

Alternatively, one could build on the concept of a network morphospace [160], which

provides a coarse-grained approach for classifying and mapping network architec-

tures according to a set of network-level structural characteristics. The network mor-

phospace can be transformed to a network dissimilarity space (DG∗ ⊂ Rd), where net-

works are placed based on their dissimilarity to the single observed network G∗ ∈ GA∗
with respect to a variety of dissimilarity measures (see Definition 2.1). The true pro-

cess and network models also have counterpart distributions PDG∗ (A
∗) and PDG∗ (M)

in the network dissimilarity space. In an appropriately defined dissimilarity space,

if PDG∗ (M) sufficiently approximates PDG∗ (A
∗), we might be able to conclude that

model M can synthesize networks that belong to the same population as the observed

network G∗.

The utility of such a network dissimilarity space relies heavily on the choice of dis-

similarity measures used for network comparison. Network science provides numerous

quantitative tools to measure and classify different patterns of local and global net-

work architectures across disparate types of systems. The development of methods

for the pairwise comparison of networks is an active area of research and in recent

years many new methods have been introduced (see [157–159] for reviews).

Any dissimilarity measure that defines a real-valued distance akin to the one in

Definition 2.1, which goes to zero for a pair of isomorphic networks, can be used in

the dissimilarity space. A set of node-level measures that could prove particularly

useful for the network dissimilarity space is provided by the dk-series [110], which is a

systematic series of properties (Y0, Y1, . . . ) of network structure defined in a way such
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that each Yi provides more detailed information about the network structure and Yn

fully characterizes a network with n nodes. [110] have shown that the first three terms

in the dk-series (Y = degrees + correlations + clustering/transitivity) are capable of

almost fully defining local and global organization of most real-world networks that

do not exhibit community structure.

As discussed previously, most generative models are aimed at inferring the gen-

erative process using a single network observation. In our experiments with the dis-

similarity space proposed above, we assume a single network randomly drawn from

the network population serves as the input network G∗ for the generative models.

The rest of the networks in the population are treated as unobserved samples, and

are used to evaluate the performance of models on matching the variability in the

network population. Although Section 7.3 only shows the result for one randomly

drawn G∗, the analysis and conclusion are consistent for different G∗ samples (See

Section 7.4 for further details).

7.2.2 Model fitting

For the Chung-Lu model, we directly used the degree distribution ofG∗ to compute

the probability of a link between two nodes. For ERGMs, the following feature counts

φ(G∗) were used as they are known to be capable of circumventing the degeneracy

problem (see [294,295] for more details): (i) total number of edges, (ii) geometrically

weighted degree distribution, (iii) geometrically weighted dyadwise shared partner

distribution, and (iv) geometrically weighted edgewise shared partner distribution.

We used dk2.5 for sampling from the population of dk-random graphs. For ABNG,

degree distribution, local assortativity [296,297], and local transitivity of the observed

network were used as the set of network properties in the objective function.
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Figure 7.3. Empirical evaluation of the ability of network models to ap-
proximate the ground truth system based on observation of a single net-
work. The Barabási-Albert and Forest Fire models are used as the true
generators.
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7.3 Experimental results

In our experiments to evaluate the distributional properties of generative models,

we propose to use the Kolmogorov-Smirnov statistic for evaluating the dissimilarity

between networks based on node-level properties of degree, correlations and cluster-

ing. To examine the ability of existing generative models to approximate the ground

truth process using a single network observation (assuming it is representative of

the true process with respect to the measures of interest), we propose two different

experiments: (i) a controlled experiment where a known process is used to create

a population of networks, and (ii) set of real-world networks that have most likely

evolved from a common generative process (for example, social interaction networks

of different villages) or generative processes that share the same mechanisms.

7.3.1 Networks without community structure

Figure 7.3 shows the results for the first set of experiments when the Barabási-

Albert [12] and Forest Fire models [212] are used as the true processes A∗. For

the second experiment, we consider the five real-world network populations described

above, with results presented in Figures 7.4, 7.5 and 7.7. Results presented in Figures

7.3-7.7 are composed of three different plots:

1. Scatter plots below the diagonal show each synthesized/real network as a point

in the network dissimilarity space, where the coordinates are computed using

the Kolmogorov-Smirnov distance of the associated properties when the network

is compared to the observed network G∗ (the observed network itself is at the

(0,0) position). Network models (colored triangles) showing higher overlap with

networks originating from the true process (black dots) are better.

2. In the blocks above the diagonal, we evaluate the amount of overlap between

PDG∗ (A
∗) and PDG∗ (M) using the 2-D KS distance [272] (lower the better). This
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quantifies the extent to which a given generative model is able to reproduce the

distributional properties of the population representing the true process.

3. Plots along the diagonal show the density distributions of the Kolmogorov-

Smirnov distance of the associated properties when the network is compared

to the observed network G∗. Similar density distribution to the ground truth

(black curves) implies good match in the properties.

Based on Figures 7.3 and 7.4 we can easily conclude that ABNG consistently

outperforms the other models considered here by replicating the natural variability

of network populations when computed in the dissimilarity space for both the ex-

perimental settings. For the social networks in Indian villages and Travian-Trades

networks, ERGM generates dense graphs (causing spikes to the right in degree KS

plot) because of model degeneracy. The plots also show that dk-random graphs, which

are considered to be the state-of-art, fail to capture the variability of the true gener-

ative process and potentially over-fit the observed network. This leads us to question

the fundamental idea behind dk-random graphs, i.e. whether exactly preserving the

distribution of differently sized subgraphs of a given network leads to a good model

for real-world networks. In fact, in most cases we see that the Chung-Lu model,

by matching the degree distribution in expectation, outperforms dk-random graphs

by synthesizing networks with more variability. These results highlight the need for

evaluating the ability of a generative model to capture the distributional properties

of a network population as comparing only with the observed network might produce

misleading results.

The results in Figures 7.3 and 7.4 suggest that network models, when carefully

designed, can potentially capture the structural variability in network populations

(when evaluated in the dissimilarity space) by using a single network as input. But

when this analysis was extended to more complicated network populations, all net-

work models failed to synthesize populations that resemble the original one, and the

results are presented in Figure 7.5.
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Figure 7.4. Empirical evaluation of the ability of network models to ap-
proximate the ground truth system based on observation of a single net-
work. Two real-world datasets were considered: contact networks, and
social networks in Indian villages.
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Figure 7.5. Empirical evaluation of the ability of network models to
approximate the ground truth system based on observation of a single
network. Two real-world datasets were considered: Travian trades and
structural brain networks.



158

7.3.2 Networks with community structure

Figure 7.6. Empirical evaluation of the ability of network models to ap-
proximate the ground truth system based on observation of a single net-
work. The stochastic block model is used as the true generator, and the
ability of different models to replicate the community structure is tested.

While the network dissimilarity space defined in Section 7.2 works well for net-

works without communities, it will prove ineffective for networks with community

structures, which is a property seen in most real-world networks [140]. In this section,

we extend the network dissimilarity space by adding a fourth dimension to compare

the community structures of two networks. The following procedure was used for

comparing community structures in the extended network dissimilarity space:

1. Compute node memberships using a community detection algorithm (Infomap

community detection algorithm [298] was used in our experiments).
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2. Sort the communities based on sizes, i.e. community 1 is the largest community.

3. Compare the sorted memberships using the normalized mutual information

measure [299].

We also add the microcanonical stochastic block model [300] (referred to as SBM-

fit in the plots) to our set of generative models and evaluate its ability to replicate

the community structure of these networks.

Again, we performed two different experiments to test the validity of our extended

network dissimilarity space: (i) a controlled experiment where the true process is

known, and (ii) set of real-world networks (with communities) that have most likely

evolved from a common generative process. For the first case, we used the standard

version of the stochastic block model [142,143] with 3 communities of different sizes,

and the results can be seen in Figure 7.6. As expected, ABNG performs well on the

original measures, but fails to reproduce the community structure, while the fitted

SBM is the most likely candidate capable of replicating the true process. This is an

expected result as the four original models are not designed to create networks with

communities. Figure 7.7 shows the results for the networks of Autonomous Systems

and Travian messages, where only the fitted SBM was able to capture some of the

features of the true process. Results presented in Figure 7.7 show the inability of the

microcanonical block model to reproduce the local transitivity of the true generative

process, thus creating an exciting direction for future research.

In summary, our empirical analysis in the dissimilarity space has highlighted the

discrepancy between observed network population and synthesized network as well

as the importance of considering distributional properties of network populations

for evaluating generative models of complex networks. This shows that there is an

urgent need to rethink the network modeling problem and create new models that

can reproduce the variability in the structural properties of network populations.
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Figure 7.7. Empirical evaluation of the ability of network models to ap-
proximate the ground truth system based on observation of a single net-
work. The ability of different models to replicate the community struc-
ture of networks of autonomous systems and Travian messages networks
is tested.
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7.4 Supplementary results

7.4.1 Choice of G∗

For all the experiments conducted in Section 4, the single observed network G∗ is

randomly chosen among the networks in dataset. However, the pairwise comparison

relies on the chosen G∗, and arbitrary choice of G∗, e.g. an outlier, could cause

misleading results. In this section, the impact of choice of G∗ on the results presented

in Section 4 are analyzed. In summary, for the 9 datasets except for autonomous

systems, the three tested network metrics are consistent regardless of choice of G∗.

For autonomous systems, the difference of variability between network populations

generated by true process and generative models is more significant than the difference

caused by choice of G∗.

Firstly, we compute the dissimilarity of degree distribution, local assortativity

and local transitivity with respect to all networks {G ∈ GA∗}. Specifically, for each

network Gi we compute the KS statistics Di of the three metrics between G and

rest of the networks in the population, which follows PDG
(A∗) and check if these

distributions are similar. In the context of Figures 4-8 in the main text, we test if the

distributions of black dots are robust to the choice of G∗.

Figure 7.8 shows the KS statistic matrices D(m) of the three network metrics m

on the 9 network populations. Element Dij(m) represents the KS statistic of metric

m between Gi and Gj. Based on the pairwise D statistics, we test if the distributions

are similar for different G∗, i.e. if the rows in D(m) are similar to each other.

Figure 7.9 shows the proportion of all tests that fail to reject the null hypothesis

that the two samples are drawn from the same distribution. For most populations

except autonomous systems, about half of the comparisons show no difference in dis-

similarity distributions. In order to test this hypothesis together for all three metrics,

multivariate (3 variables) two sample tests are performed with a kernel maximum

mean discrepancy (kMMD) test. Similar to the KS test, the null hypothesis is that

the two samples are drawn from the same distribution.
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Figure 7.8. The pairwise KS statistic D and histogram of local assorta-
tivity, degree distribution and local transitivity on 9 network populations.
9 rows represent 9 sets of network population as labeled on the right.
Columns 1, 3, and 5 represent the D statistic matrices of local assorta-
tivity, degree distribution and transitivity, respectively. X and Y axes in
these columns indicate the number of networks in population. Columns
2, 4, and 6 show the histogram of the D statistic for all possible pairs of
networks.
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Figure 7.9. Proportion of non-rejection in KS test with 95% confidence
level. Higher value indicates more pairs of G∗ have same distribution.
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Figure 7.10. Proportion of non-rejection in kMMD test with 95% confi-
dence level. Higher value indicates more pairs of G∗ have same distribu-
tion.



164

Figure 7.10 shows the proportion of non-rejection in kMMD test. All populations

have a non-rejection rate higher than 85% except autonomous systems. However,

rejection in KS test or kMMD test does not revoke the result shown in Section 4

because the difference caused by choice of G∗ is often negligible compared to the

difference between true process and populations generated from generative models.

For instance, the pair of networks in autonomous systems, #7 and #28, have the

largest MMD among all pairs.

The results shown in Figure 7.11 implies that the synthetic networks are consistent

for different G∗, and the difference between ground truth and model simulation is

much larger than the difference caused by different G∗.

7.4.2 ABNG as the true model

Table 7.1.
The table shows action matrices used to test the ability of our action-
based approach to reproduces its own variability. The following actions
were used: Preferential attachment on - average neighbor degree (PAND),
degree (PAD), PageRank (PAPR) and betweenness (PAB); Triadic closure
(TC); Inverse log-weighted (SLW) and Jaccard similarities (SJ); and No
action (NA).

PAND PAD PAPR PAB TC SLW SJ NA P̄

AM1 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 1

AM2 0 0.25 0 0.25 0 0.25 0 0.25 1

AM3 0.226 0.089 0.179 0.176 0.09 0.218 0.004 0.018 1

AM4 0.212 0.095 0.21 0.019 0.181 0.19 0.042 0.051 1

AM5 0.174 0.179 0.152 0.157 0.077 0.154 0.091 0.016 0.618

0.161 0.125 0.153 0.081 0.088 0.161 0.060 0.171 0.382

AM6 0.241 0.058 0.157 0.216 0.012 0.078 0.143 0.095 0.267

0.063 0.274 0.047 0.079 0.064 0.218 0.084 0.171 0.184

0.203 0.166 0.038 0.068 0.037 0.207 0.132 0.148 0.549
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Figure 7.11. Empirical evaluation of the ability of network models to
approximate the ground truth system based on observation of #3 network
(left) and #28 network (right) in autonomous systems dataset.
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The setup proposed in this Chapter raises an important question regarding the

evaluation of network models and how they are trained to learn from a single obser-

vation. This raises some concerns about how we trained our action-based approach

in Chapters 4–6, and used the fitted models to draw conclusions about the under-

lying network. One way of evaluating the validity of these conclusions is to subject

the action-based approach to the analysis proposed in Section 7.2, where an arbi-

trary action matrix is used to synthesize an input network G∗, which is then used

by the learning framework of the action-based approach introduced in Chapter 4 to

parameterize the model. There are two questions one might ask: (i) can the fit-

ted action-based model reproduce the variability in the networks produced using the

original input action matrix, and (ii) can the learning framework recover the original

action matrix using a single input network G∗.

In this section, we perform experiments with the goal of obtaining preliminary

insights into the first question. We synthesized network populations using six different

action matrices (see Table 7.1), randomly chose a network as G∗ and then used it

to learn action-based models. The results for these experiments are shown in Figure

7.12, and it is clear that ABNG can indeed reproduce the variability of the original

population synthesized using a known action matrix.

7.5 Conclusions

Traditional approaches for evaluating the ability of a network model to synthesize

networks exhibiting real-world characteristics have compared the similarity of the

synthesized networks with the observed network. While this approach assumes that

the particular observation is representative of the underlying process that created the

observation, it does not account for the natural variability of the population from

which the original network is sampled. Our empirical experiments have highlighted

the importance of considering network populations for evaluating generative models.

Although it is difficult to obtain data corresponding to network populations, we have
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Figure 7.12. Empirical evaluation of the action-based approach to repro-
duce the variability of a network population synthesized using a know
action matrix. We considered six different action matrices to create the
network populations, and they are listed in Table 7.1.

shown that it is possible to establish a baseline test set to evaluate the ability of

a network model to capture the distribution of network populations. This test set

can then be used for preliminary validation of a network model before it is used for

drawing conclusions about real-world networks.

The need for devising generative models for network populations is raised in this

Chapter as the state-of-the-art network models are unable to replicate the proper-

ties of network populations. Instead of modifying and transforming existing network
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generative models to fit the representative/average network of a network population,

we need to develop models that can extract and quantify the variability existing in

network populations. For example, Bayesian modeling frameworks are being success-

fully used to learn the joint distribution of edges in network population that shares

the same set of vertices [288–290], though the topology of networks is not explicitly

fitted. Future work on the development of unbiased measures of variability in network

populations, accompanied with a quantitative analysis of the effect of network sample

size and power can guide the sampling process of networks from a population and the

development of improved generative network models.
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8. CONCLUSIONS AND FUTURE WORK

Our efforts to develop a generalized representation for complex networks using the

action-based approach has provided insights that can help researchers understand the

principles by which a network is organized and shed some light on the mechanisms

by which it grows and develops. In what follows, we present some conclusions that

highlight the contributions of this work and discuss a few directions for future work.

8.1 Conclusions

We first demonstrated that by embracing the complexity in modern network data

and utilizing the theoretical and empirical observations made by network scientists in

last few decades, a mechanistic model can be extrapolated that provides a unique way

of understanding potential processes (actions) that govern interactions in real-world

networks. This led to the notion of node-type as a statistical unit for network data,

which contains information about the data modeling process, while also providing

an intuitive representation for networks data. Different actions can then be utilized

within a forward operator (synthesis algorithm) that can be parameterized to syn-

thesize networks exhibiting a wide variety of topologies. Given a set of actions, we

found that choosing an appropriate forward operator can lead to creation of a model

that is projective and exchangeable relative to a fixed structure that accounts for the

node-type assignment and any potentially useful node attributes.

To exploit the capabilities of the action-based framework in empirical settings, we

need an approach for estimating model parameters from a single network observation.

Mechanistic models, such as the one proposed in this work, typically have intractable

likelihoods but are easy to forward simulate. Consequently, the problem of estimating

model parameters consists of two parts: (i) computation of dissimilarity using a user-
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defined set of measures, and (ii) an optimization technique to learn parameters for

a given target network. Due to lack of a subset of network properties that can

capture the dissimilarity between networks, we provide the user with the flexibility

of choosing these measures, and thus formulate the problem of parameterizing the

model as a multi-objective optimization problem. Using this formulation, we were

able to learn compressed models for networks synthesized using other models as well

as real-world networks originating in different domains. We further demonstrated

that the representation of a network using the action matrix can yield insights into

the structural organization of these networks.

Following the demonstration of the action-based framework as a successful model

for real-world networks, we decided to explore the possibility of incorporating domain

knowledge under specific application contexts. We first considered the application of

the action-based model to directed networks, particularly for the case of supply chain

networks. Using domain specific constraints and relevant actions, we were able to

devise a centralized approach for designing realistic supply chains that are resilient

under attack. This can facilitate our understanding of critical infrastructure and

help us make informed decisions regarding design of such systems. In Chapter 6, we

concluded that combining actions with spatial information can help us learn better

models for networks where the nodes are embedded in space. We applied this idea

to structural brain networks and found that apart from learning better models that

can capture the between-subject variability, the model parameters can provide useful

insights about the cognitive ability of the subject. The model can also prove beneficial

in other domains, which remains a subject for future research.

During our research on network models, we also realized the importance of ana-

lyzing network populations and the need for incorporating variability in generative

models. Using our data-driven methods for quantifying the variability of network

populations, we concluded that there is a need for devising generative models that

can synthesize realistic network population, that is, a network model should be able

to reproduce desired structural properties and the variability in these properties. In-
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stead of modifying and transforming existing network models to fit a representative

network from the population, we need to develop models that can extract and quantify

the variability that exists in real-world network populations.

Overall, I firmly believe that ABM is a significant contribution in network science,

and published work has statistically demonstrated its state-of-the-art performance,

while also being easy for non-experts to interpret and draw hypotheses about the sys-

tem being modeled. We believe that our research will motivate network scientists to

think about processes governing network formation, thus providing a fresh perspec-

tive for the development of future network models. A few approaches have already

been proposed that draw inspiration from the action-based model, and hopefully our

efforts will inspire other researchers to develop fresh perspectives for understanding

network data. For example, Netmix [301] combines different generative models (in-

stead of actions) using evolutionary algorithms to synthesize networks, while [302]

used random utility theory and discrete choice models (actions are used for making

choices) to provide a framework for synthesizing temporal networks.

8.2 Future work

An important feature of most real-world networks is the existence of community

structures [32, 33, 67, 136]. From a mechanistic perspective, one might be interested

in understanding the processes that lead to formation of communities in real-world

networks. Chapter 6 provided a way of modeling networks embedded in space using

the concept of visibility in a continuous space. An obvious extension is to use the

concept of visibility in discrete spaces using node attributes with the goal of explicitly

modeling community structures. Such an endeavour would require careful examina-

tion of the node attributes and their relationship with the structure of the observed

network.

Our work in Chapter 7 highlighted the lack of variability in populations synthe-

sized by network models. To improve our models, we need to devise techniques that
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can allow existing models to utilize additional information from the population. Re-

cent research has focused on using multiple input networks in Bayesian frameworks to

improve the capability of network models to synthesize realistic populations. While

parameterizing models using multiple networks as input [288–291] can enable exist-

ing models to learn better representation of the population, such techniques fail to

explicitly account for the natural variability in the population. Data-driven tech-

niques to quantify the information content and variability in network populations

can aid the rapid development of more explanatory network models that capture the

distributional properties and variability of network populations.

Accurate measurement of the complexity of a complex system can uncover key

insights about its behavior. Many approaches have been proposed, many that con-

centrate on estimating the complexity of a specific system observation in the form of

a network. The action-based representation of networks provides a way for comput-

ing the generative potential of a system using Shannon-based entropy. Developing a

measure for quantifying the generative entropy of a complex system using the action-

based representation will possess some desirable properties, such as, scale invariance,

and the ability to compare the complexity across different systems. Our preliminary

work on this topic has shown promising results.

The action-based approach can also be visualized as a probabilistic model that

uses a portfolio of link prediction algorithms to learn a representation of networks.

This can prove particularly useful for the problem of estimating the structure of a

network using noisy measurements [303, 304]. Another often overlooked fact about

network data is that most real-world interactions are much more complicated than

simple pairwise interactions–for example, most systems originate from higher-order

interactions between more than two individuals [305,306] (paper co-authorship, com-

munication within a group, etc.). Similarly, it is well known that complex systems

do not work in isolation, and their interconnected and interdependent nature is bet-

ter represented using a multilayer network framework [307–309]. A crucial next step

would be to think of actions as process that can accommodate such higher-order
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interactions, and help us understand the processes and mechanisms that drive the

creation of the corresponding systems.
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[326] Lorenzo Isella, Juliette Stehlé, Alain Barrat, Ciro Cattuto, Jean-Franois Pinton,
and Wouter den Broeck. What’s in a crowd? Analysis of face-to-face behavioral
networks. Journal of theoretical biology, 271(1):166–180, 2011.

[327] Abhijit Banerjee, Arun G Chandrasekhar, Esther Duflo, and Matthew O Jack-
son. The diffusion of microfinance. Science, 341(6144):1236498, 2013.

[328] Alireza Hajibagheri, Kiran Lakkaraju, Gita Sukthankar, Rolf T Wigand, and
Nitin Agarwal. Conflict and communication in massively-multiplayer online
games. In International Conference on Social Computing, Behavioral-Cultural
Modeling, and Prediction, pages 65–74. Springer, 2015.

[329] Route Views. University of oregon route views project, 2000.



APPENDICES



197

APPENDIX A

EXTRAPOLATING THE ACTION-BASED MODEL TO

LARGER NETWORKS

A.1 Introduction

For a given target network, the action-based model learns a model that can explain

the formation of links between various nodes in the target network. It thus might be

possible to use an action-based model optimized for a small target network for syn-

thesizing larger networks. It is reasonable to assume that real-world networks arising

in similar domains might be topologically similar and arise from similar interaction

processes. Under this assumption, an action-based model learnt for a small Facebook

network can be used to predict the topology of a much larger Facebook network. This

way, we can scale the action-based model by training it on small target networks and

using the learnt action matrices to extrapolate the structure to larger networks.

To test the ability of ABNG to extrapolate to larger networks, we decided to test

on two real-world network datasets:

1. Five power networks listed in Table A.1, where the first network, 662-bus, is

used as the target network and the learnt model is used for synthesizing the

other four networks.

2. Sixteen Facebook networks listed in Table A.2, where the first four networks

are separately used as the target networks and the learnt models are used for

synthesizing the other twelve networks. This way we can also compare the

relative performance of using different target networks.

We present some brief results for these experiments in the following section. The

results are promising and warrant further investigations.

A.2 Results

The five small networks (one power and four Facebook) were used as the target

networks, and ABNG was used for learning models using the procedure described in
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Table A.1.
List of power grid networks along with some network properties: number
of vertices n; number of edges m; mean degree z; average path length l;
clustering coefficient c; and degree correlation coefficient r.

Network Name n m z l c r

662-bus 662 1568 4.737 10.2445 0.077 0.319

1138-bus 1138 1458 2.562 12.724 0.093 -0.080

bcspwr10 5300 8271 3.121 20.846 0.094 -0.053

eris1176 1176 8688 14.776 12.059 0.94 0.891

US-Grid 4941 6594 2.669 18.989 0.103 0.003

Table A.2.
List of Facebook networks along with some network properties: number
of vertices n; number of edges m; mean degree z; average path length l;
clustering coefficient c; and degree correlation coefficient r.

Network Name n m z l c r

Caltech36 769 16656 43.319 2.338 0.291 -0.065

Haverford76 1446 59589 82.419 2.228 0.251 0.067

Reed98 962 18812 39.11 2.461 0.221 0.023

Simmons81 1518 32988 43.46 2.57 0.212 -0.062

Brown11 8600 384526 89.425 2.696 0.145 0.069

Carnegie49 6637 249967 75.325 2.738 0.185 0.122

CMU 6621 249959 75.505 2.738 0.185 0.122

Mich67 3748 81903 43.705 2.839 0.194 0.142

MIT 6402 251230 78.485 2.72 0.180 0.120

Pepperdine86 3445 152007 88.248 2.50 0.206 0.056

Rice31 4087 184828 90.447 2.468 0.203 0.065

UC64 6833 155332 45.465 3.015 0.191 0.125

UChicago30 6591 208103 63.148 2.808 0.155 0.018

UMass92 16516 519385 62.895 2.934 0.123 -0.001

USFCA72 2682 65252 48.659 2.691 0.191 0.092

Williams40 2790 112986 80.994 2.416 0.207 0.040
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Chapter 4. Degree distribution (DD), local assortativity (LA), and local transitivity

(LT) were used as the three objectives in the optimization problem. As in previous

Chapters, the action matrix closest to the origin was chosen as the representative

solution for each of the networks and are shown in Table A.3. From the optimized

action matrices we see that as in previous cases ‘no action’ gets a high probability for

all the networks. Preferential attachment on neighbor degree is a dominant action for

the power network. As expected, the social networks use actions based on similarity

with high probability, but some preferential attachment actions are also used. The

Simmons81 network produces a counter-intuitive result as the similarity-based actions

have zero probability.

Table A.3.
The table shows optimized action matrices for the five different real-world
networks that were extrapolated to larger networks. The following actions
were used: Preferential attachment on - average neighbor degree (PAND),
degree (PAD), PageRank (PAPR) and betweenness (PAB); Triadic closure
(TC); Inverse log-weighted (SLW) and Jaccard similarities (SJ); and No
action (NA).

Network↓ |Action→ PAND PAD PAPR PAB TC SLW SJ NA P̄

662-bus 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.98

0.07 0.26 0.17 0.02 0.16 0.05 0.26 0.00 0.02

Caltech36 0.00 0.01 0.00 0.00 0.00 0.49 0.00 0.50 1.00

Haverford76 0.00 0.06 0.06 0.10 0.08 0.22 0.00 0.48 0.58

0.16 0.41 0.08 0.07 0.01 0.20 0.07 0.01 0.42

Reed98 0.00 0.00 0.01 0.00 0.00 0.36 0.00 0.63 0.86

0.00 0.00 0.25 0.25 0.00 0.01 0.46 0.03 0.14

Simmons81 0.00 0.03 0.04 0.34 0.00 0.00 0.00 0.60 1.00

Figures A.1–A.2d summarize the results of our extrapolation experiments. In

each of the heat maps, the action matrices learnt for the target network were used as

models for the larger networks, and the mean dissimilarity values (of 20 synthesized

networks) of the optimization objectives are recorded. To provide a baseline, we also

show the corresponding mean dissimilarity values for the target network and highlight

it using a red box.

It is evident from the global network properties of the power networks listed in

Table A.1 that the topologies are not very similar. Thus, we would expect that ABNG

won’t perform well in these extrapolation experiments, especially for the eris1176
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Figure A.1. An action-based model learnt for the 662-bus network is used
for synthesizing the rest of the power networks listed in Table A.1. The
mean dissimilarity values of the optimization objectives are recorded in
the heat maps for the original network (highlighted in red box) as well as
the extrapolated networks. The lower the value, better is the ability to
extrapolate.

network. Overall, it seems that ABNG does reasonably well for the power networks,

and it would be interesting to compare the performance of the extrapolated networks

with a model that is optimized for the same network.

We now focus on the Facebook networks. The global network properties in Table

A.2 show that most of the networks have similar clustering and degree correlation

coefficients. It seems likely that ABNG should be able to extrapolate from smaller

Facebook networks to larger ones. Our results in Figure A.2 show similar trends.

In all four cases, we see that if ABNG was able to reproduce network properties

in the target network, it was also able to do so when the model was extrapolated to

the larger networks. While these results seem promising, they need to be subjected

to close examination on other measures. In Figures A.2a–A.2c, we see that ABNG is

able to match the degree distribution and local assortativity for all the networks, but

fails to perform well on local transitivity. On the contrary, the Simmons81 network

performs better on local transitivity, and the effect is also seen on the results for

the extrapolated networks. It might be useful to note that the Simmons81 network

produced a radically different action matrix (see Table A.3), which might be a reason
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behind the different results for this particular network, but other possibilities need to

be explored.

Finally, we also provide a 3D visualization of the Pareto optimal solutions for

Simmons81 and two extrapolated networks, Williams40 and Carnegie49, in Figure

A.3. 20 representative Pareto optimal solutions for Simmons81 were chosen and the

action matrices were used to extrapolate to the two larger networks. Each solution

is labelled using a unique number and the corresponding map in the objective space

are shown. Using the plot we can get an idea of the spread of the Pareto optimal

solutions, and how the corresponding solutions behave for the extrapolated networks.

To conclude, our experimental results have highlighted that this is a promising

application of ABNG. This paves the path for using the action-based model for very

large networks by circumventing the problem of optimizing model parameters. Alter-

natively, one can use the solutions for a smaller network to find better solutions for

larger networks.



202

0.16 0.18 0.2 0.2 0.21 0.19 0.19 0.2 0.2 0.18 0.25 0.19 0.17

0.11 0.14 0.21 0.21 0.23 0.18 0.13 0.09 0.21 0.19 0.28 0.1 0.1

0.77 0.85 0.84 0.84 0.67 0.82 0.87 0.9 0.65 0.76 0.72 0.73 0.9

ks(DD)

ks(LA)

ks(LT)

Caltech36 Brown11 Carnegie49 CMU Mich67 MIT Pepperdine86 Rice31 UC64 UChicago30 UMass92 USFCA72 Williams40

Network

M
e

a
s
u

re
s

0.00

0.25

0.50

0.75

1.00

value

(a) Caltech36 social network used for extrapolation.

0.25 0.39 0.32 0.32 0.29 0.33 0.38 0.3 0.29 0.29 0.41 0.34 0.27

0.11 0.45 0.17 0.16 0.17 0.14 0.38 0.11 0.15 0.19 0.46 0.34 0.11

0.98 0.53 0.91 0.91 0.8 0.9 0.59 0.96 0.77 0.86 0.92 0.51 0.96

ks(DD)

ks(LA)

ks(LT)

Haverford76 Brown11 Carnegie49 CMU Mich67 MIT Pepperdine86 Rice31 UC64 UChicago30 UMass92 USFCA72 Williams40

Network

M
e

a
s
u

re
s

0.00

0.25

0.50

0.75

1.00

value

(b) Haverford76 social network used for extrapolation.

0.13 0.14 0.14 0.14 0.12 0.15 0.12 0.11 0.14 0.13 0.26 0.11 0.09

0.07 0.12 0.18 0.19 0.23 0.16 0.12 0.08 0.2 0.11 0.27 0.11 0.09

0.66 0.84 0.84 0.84 0.7 0.81 0.86 0.89 0.68 0.77 0.74 0.74 0.89

ks(DD)

ks(LA)

ks(LT)

Reed98 Brown11 Carnegie49 CMU Mich67 MIT Pepperdine86 Rice31 UC64 UChicago30 UMass92 USFCA72 Williams40

Network

M
e

a
s
u

re
s

0.00

0.25

0.50

0.75

1.00

value

(c) Reed98 social network used for extrapolation.

0.24 0.29 0.28 0.28 0.33 0.29 0.25 0.32 0.35 0.36 0.33 0.32 0.26

0.39 0.42 0.4 0.39 0.51 0.35 0.31 0.39 0.51 0.42 0.41 0.38 0.38

0.19 0.23 0.25 0.34 0.19 0.26 0.33 0.25 0.2 0.27 0.59 0.18 0.2

ks(DD)

ks(LA)

ks(LT)

Simmons81 Brown11 Carnegie49 CMU Mich67 MIT Pepperdine86 Rice31 UC64 UChicago30 UMass92 USFCA72 Williams40

Network

M
e

a
s
u

re
s

0.00

0.25

0.50

0.75

1.00

value

(d) Simmons81 social network used for extrapolation.

Figure A.2. An action-based model is learnt for the four Facebook networks
are used for synthesizing the larger Facebook networks listed in Table A.2.
The mean dissimilarity values of the optimization objectives are recorded
in the heat maps for the original network (highlighted in red box) as well
as the extrapolated networks. The lower the value, better is the ability to
extrapolate.
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Figure A.3. A 3D visual comparison of 20 Pareto optimal solutions for
Simmons81 Facebook network when they were used for extrapolating to
Williams40 and Carnegie49.
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APPENDIX B

DATASETS AND PACKAGES

Some useful websites for downloading network data:

• Network repository: http://networkrepository.com/networks.php

• Index of Complex Networks: https://icon.colorado.edu/

• UCI Network Data Repository: https://networkdata.ics.uci.edu/

• KONECT database: http://konect.cc/networks/

B.1 Data used in Chapter 4

Following real world networks were used: network of word adjacencies [310], US

politics books sold on Amazon [311], a network of co-appearances [312], network of

American football games [313], collaboration network between Jazz musicians [314],

a social network of dolphins [315], brain networks (with different correlation cut-

offs) [269], two protein networks [316], a network of yeast protein interactome [317],

three networks obtained from the Biogrid repository [318], US Airport network [319],

Norwegian boards network [320], human protein interaction network [321], social

network from an online community for students at University of California, Irvine

[322], and a network representation of the topology of the Western States Power Grid

of the United States [13].

The protein networks 1php and 1qop were obtained from the Protein Data Bank

[316]. The pdb files obtained from this database contains information about all atoms

composing a given protein. This can be used to obtain contact maps containing key

relations from the protein structure. The C-alpha atoms were chosen from the pdb

files and a contact map was obtained using a threshold of 8 Å, i.e. if the distance be-

tween two atoms i and j is less than 8 Å, then the undirected link (vi, vj) exists. The

networks Biogrid FRET, Far Western and Dosage Lethality were obtained from the

biogrid database available at [318]. Brain fMRI data was obtained from Human Con-

nectome Project dataset [269]. The parcellation scheme described in [323] was used

to define nodes for network analysis. Correlation matrix for patient 1019436 was used

at correlation cutoffs 0.7, 0.6 (brain 2), and 0.55 (brain 3) to generate the respective

http://networkrepository.com/networks.php
https://icon.colorado.edu/
https://networkdata.ics.uci.edu/
http://konect.cc/networks/
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Table B.1.
List of target networks along with some network properties: number of ver-
tices n; number of edges m; mean degree z; average path length l; clustering
coefficient c; and degree correlation coefficient r.

Network Name n m z l c r

Erdős-Rényi 100 500 10 2.236 0.103 0.041

Power Law 100 500 10 2.225 0.165 -0.089

Small World 100 500 10 2.383 0.275 -0.085

Barabási-Albert 100 485 10 2.208 0.177 -0.102

Forest Fire 100 311 6.22 3.089 0.361 -0.071

Stochastic Block 100 430 8.6 2.700 0.140 0.27

Word Adjacencies 112 425 7.59 2.535 0.157 -0.129

Political Books 105 441 8.4 3.078 0.348 -0.128

Co-appearances 77 254 6.59 2.641 0.499 -0.165

Jazz Collaborations 199 2742 27.56 2.235 0.520 0.02

Football Games 115 616 10.71 2.508 0.407 0.142

Network of Dolphins 62 159 5.13 3.357 0.309 -0.044

Brain (cor=0.7) 129 327 5.07 7.57 0.512 0.552

Brain (cor=0.6) 239 1039 8.69 4.87 0.542 0.577

Brain (cor=0.55) 252 1499 11.89 3.98 0.557 0.574

Biogrid FRET 987 1747 3.54 6.76 0.013 0.40

Biogrid Far Western 622 1073 3.45 5.27 0.010 -0.12

Biogrid Dosage Lethality 994 1780 3.58 3.41 0.002 -0.36

Protein 1php 394 1256 6.38 6.34 0.17 0.286

Protein 1qop 655 2243 6.85 6.82 0.193 0.35

Yeast Protein 426 521 2.45 6.02 0.021 -0.195

US Airports 500 2980 11.92 2.99 0.351 -0.268

Norwegian Boards (Aug. 2011) 854 2745 6.43 6.66 0.624 0.052

Human Protein 4100 13358 6.52 4.06 0.033 -0.216

Social Network 1893 13835 14.62 3.06 0.057 -0.188

US Power Grid 4941 6594 2.669 18.989 0.103 0.003
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networks (largest component of the network was used as the target network). The

Norwegian boards network [320] shows interaction among board members of public

companies in Norway as obtained from the data in August 2011. The human protein

interaction network was obtained from [321] and the largest connected component

was used as the target network. The US Airport network [319] shows connections

between airports (nodes) if there is a direct flight between them.

B.2 Supply chain data

We begin by describing the real-world supply chain dataset that was used in this

research. Supply chain data provided by [324] and analyzed in [239] has been used

to investigate the applicability of the proposed framework on different supply chain

networks. The dataset contains 38 multiechelon supply chains used for inventory

optimization purposes. The supply chains consist of firms with five different roles,

namely, parts (suppliers), manufacturers, transportation, distributors and retailers.

Tier information (the dataset used the term relative depth) is also available, and

different supply chains have between 2 and 10 tiers. The SCNs described in this paper

comprise actual supply chain maps created by either company analysts or consultants.

This makes the dataset a perfect test bed for validating the efficiency and effectiveness

of supply chain models. 10 among the 38 were selected based on network density and

size, and they are listed in Table B.2 along with eight relevant SCN properties. Two of

the SCNs are also shown in Figure B.1 for visual representation. The SCNs shown in

Figure B.1 both posses a tiered structure, but the interconnectedness among various

tiers and the number of nodes in each tier is very different in the two networks.

A key limitation of the SCN dataset is the absence of data on geographical loca-

tions of individual firms. This information was not provided in the original dataset

due to confidentiality reasons. As discussed earlier, geographical location might play

a significant role in linking decisions of firms and its unavailability might significantly

limit our understanding of various structural features. Furthermore, this empirical

study does not explore the dynamic nature of the SCNs since the dataset does not

provide any information pertaining to temporal changes in the SCN topology. Lastly,

the dataset does not provide information regarding amount of material flow between

connected firms. Although specific production capabilities of firms within each tier

are known, no information is available in relation to how much each upstream firm

supplies to the downstream firms. Nevertheless, the size of the dataset, both in terms
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Figure B.1. A visual representation of the tiered structure of the real-
world supply networks obtained from the dataset. The images correspond
to supply chains of Computer Peripheral Equipment (left) and Perfumes,
Cosmetics, and Other Toilet Preparations (right)

of the number of networks available and in terms of number of nodes in each network,

make this a very attractive dataset to study.



208

T
ab

le
B

.2
.

L
is

t
of

re
al

-w
or

ld
S
C

N
s

u
se

d
fo

r
m

o
d
el

in
g

al
on

g
w

it
h

re
le

va
n
t

n
et

w
or

k
p
ro

p
er

ti
es

of
th

e
b

ot
h

th
e

ta
rg

et
G
∗

an
d

sy
n
th

es
iz

ed
G

n
et

w
or

k
s:

to
ta

l
n
u
m

b
er

of
ve

rt
ic

es
n

;
to

ta
l

n
u
m

b
er

of
ed

ge
s
m

;
m

ea
n

d
eg

re
e
k̄
;

av
er

ag
e

p
at

h
le

n
gt

h
(a

p
l)

;
n
et

w
or

k
co

n
n
ec

ti
v
it

y
(N

C
);

n
et

w
or

k
h
et

er
og

en
ei

ty
(N

H
);

fi
tt

ed
p

ow
er

la
w

co
effi

ci
en

ts
fo

r
in

(α
-i

n
)

an
d

ou
t

(α
-o

u
t)

d
eg

re
e

d
is

tr
ib

u
ti

on
s.

ap
l

N
C

N
H

α
-i

n
α

-o
u

t

R
ef

#
S

IC
D

es
cr

ip
ti

on
n

m
k̄

G
∗

G
G
∗

G
G
∗

G
G
∗

G
G
∗

G

13
S

em
ic

on
d

u
ct

or
s

an
d

R
e-

la
te

d
D

ev
ic

es

10
8

45
2

8.
37

1
1

0.
74

0.
59

1.
84

1.
52

2.
43

2.
34

11
.6

1
7.

64

18
C

om
p

u
te

r
P

er
ip

h
er

al

E
q
u

ip
m

en
t

15
4

22
4

2.
91

2.
62

2.
32

0.
06

7
0.

07
4

1.
02

0.
79

3.
02

4.
41

3.
68

5.
96

21
P

er
fu

m
es

,
C

os
m

et
ic

s,
an

d

O
th

er
T

oi
le

t
P

re
p

ar
at

io
n

s

18
6

35
9

3.
86

2.
82

3.
03

0.
08

2
0.

08
7

1.
06

0.
91

5.
44

3.
28

3.
18

3.
46

24
P

ow
er

-D
ri

ve
n

H
an

d
to

ol
s

33
4

12
45

7.
45

2.
70

2.
70

0.
18

0.
43

1.
83

2.
05

2.
07

1.
95

2.
15

5.
19

27
E

le
ct

ro
m

ed
ic

al
an

d
E

le
c-

tr
ot

h
er

ap
eu

ti
c

A
p

p
ar

at
u

s

48
2

94
1

3.
90

1.
96

2.
32

0.
18

0.
42

2.
68

3.
07

2.
66

2.
09

3.
08

3.
36

28
C

om
p

u
te

r
S

to
ra

ge
D

ev
ic

es
57

7
22

62
7.

84
2.

56
2.

48
0.

34
0.

14
2.

47
1.

50
2.

11
2.

40
3.

14
10

.8
8

32
P

er
fu

m
es

,
C

os
m

et
ic

s,
an

d

O
th

er
T

oi
le

t
P

re
p

ar
at

io
n

s

84
4

16
85

3.
99

1.
96

2.
38

0.
07

4
0.

02
7

1.
56

1.
10

2.
42

6.
99

2.
59

4.
36

34
T

el
ep

h
on

e
an

d
T

el
eg

ra
p

h

A
p

p
ar

at
u

s

12
06

40
63

6.
74

1.
07

1.
29

0.
12

0.
33

2.
75

3.
94

2.
88

3.
17

2.
32

7.
43

36
F

ar
m

M
ac

h
in

er
y

an
d

E
q
u

ip
-

m
en

t

14
51

48
12

6.
63

1.
66

1.
77

0.
40

0.
19

2.
68

2.
38

10
.4

7
2.

29
2.

06
5.

37

38
A

ir
cr

af
t

E
n

gi
n

es
an

d
E

n
-

gi
n

e
P

ar
ts

20
25

16
22

5
16

.0
2

2.
38

2.
47

0.
11

0.
10

2.
45

2.
18

2.
86

21
.2

1
1.

9
16

.7
6



209

B.3 Network population data

To examine the ability of existing generative models to approximate the ground

truth process using a single network observation (assuming it is representative of

the true process with respect to the measures of interest), we propose two different

experiments: (i) a controlled experiment where the true process is known, and (ii)

set of real-world networks that have most likely evolved from a common generative

process (for example, social interaction networks of different villages).

Table B.3.
Statistics and network metrics of network populations (standard deviation
in parentheses), where n is the number of nodes in the network and APL
is the averaged shortest path length between all pairs of nodes.

Name Sample Size n Density Transitivity Assortativity APL

Barabási- 100 100 0.098 0.173 -0.082 2.22

Albert (0) (0) (0.0069) (0.036) (0.016)

Forest 100 200 0.058 0.406 -0.032 3.102

Fire (0) (0.017) (0.043) (0.098) (0.401)

SBM 100 150 0.072 0.177 -0.512 2.72

(0) (0.0025) (0.0097) (0.054) (0.0527)

Brain 100 360 (0) 0.032 0.422 0.141 3.73

Networks (0) (0.001) (0.011) (0.042) (0.129)

Contact 69 167.21 0.045 0.470 0.362 4.104

Networks (64.71) (0.012) (0.143) (0.215) (1.091)

Social 43 212.23 0.048 0.198 -0.078 2.77

Networks (53.54) (0.013) (0.037) (0.054) (0.0207)

Travian 30 1144.5 0.0039 0.019 -0.055 4.35

Trades (123.22) (0.00055) (0.003) (0.036) (0.134)

Travian 30 1722.2 0.0026 0.108 -0.513 2.72

Messages (180.76) (0.00023) (0.022) (0.034) (0.244)

Autonomous 100 3196.3 0.001099 0.015 -0.221 3.77

Systems (101.7) (0.000027) (0.0013) (0.004) 0.014

• Barabási-Albert: The Barabási-Albert model [12] was used to synthesize net-

works with each arriving node adding 5 edges using the linear preferential at-

tachment mechanism.
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• Forest Fire: Network populations synthesized using the Forest Fire model [212]

used a forward burning probability p = 0.38.

• Stochastic Block Model (SBM): The Stochastic Block Model was used to syn-

thesize networks with 3 assortative communities of sizes 30, 70 and 50.

• Brain Networks: We used DWI data from the 100 unrelated subjects of the

HCP 900 subjects data release [269] to get the structural brain networks. The

preprocessing of the DWI data to get the corresponding networks is described

in [325]. One network represents the abstracted brain structure of one subject.

Nodes in network represent regions of interest (ROIs) in brain and edges repre-

sent the density of connecting fibers. All networks share the same set of nodes

since brain images of different subjects are regularized into a common template

of ROIs. This data was also used for the experiments outlined in Chapter 6.

• Contact Networks: 69 daily cumulated networks where nodes represent visitors of

the Science Gallery while the edges represent close-range face-to-face proximity

between the concerned persons [326]. Since visitors showing up on different days

are different, the node sets are not fixed for the 69 networks.

• Social Networks in Indian Villages: Data from a survey of social networks in

75 villages in rural southern Karnataka, a state in India [327]. One network

represents the social network of one village. Nodes in the network represent

individuals and edges represent different social interactions.

• Travian Network Datasets: Data collected over 30 days for real-time strategy

game Travian. The message network contains links for messages sent between

players, while the trade network represents trading relations [328].

• Autonomous Systems: The graph of routers comprising the Internet can be

organized into sub-graphs called Autonomous Systems (AS). The dataset [329]

contains 733 daily instances spanning an interval of 785 days from November 8

1997 to January 2 2000. The first 100 networks were used in this study.

Table B.3 shows the statistics and some common network metrics of listed datasets.

First three populations are generated from parameterized network models, and the

the rest six are networks obtained from real-world interactions. Among the real-world

populations, the Travian and contact networks are created from interactions among

different sets of individuals across different days, but the underlying systems that sup-

ports these interactions remains the same. The networks are thus different instances

of interaction processes happening on a fixed system, and can thus be hypothesized to
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have a common generative process. The structural organization of the human brain

is controlled by the human genome, and it is safe to assume that the network repre-

sentation of different individuals belongs to a population. Similarly, it is reasonable

to assume that social interactions between individuals in different villages arise from

similar generative mechanisms. Daily instances of subgraphs of Autonomous Systems

can again be assumed to have a common underlying generative process.

B.4 Packages and implementations

The implementation of ABNG has been done using the igraph package in R.

igraph was also used for synthesizing target networks from other human-devised

network generators (listed in Table B.1) and performing statistical analysis on various

networks. The following other packages and implementations were used:

• The parallel package in R was used to parallelize the implementation wherever

possible.

• The ergm package in R was used to synthesize networks using the exponential

random graph model.

• Networks from the Chung-Lu model were synthesized using the implementation

in the igraph package.

• The spectralGOF package in R was used to compute SGOF values.

• The implementation of dk-random graph generator available at

https://github.com/polcolomer/RandNetGen was used.

• The implementation of the Symbolic regression based approach available at

https://github.com/telmomenezes/synthetic-old/ was used.

• The implementation of the D-measure is available at

https://github.com/tischieber/Quantifying-Network-Structural-Dissimilarities.

• The implementation of NSGA-II in the R package mco was used for parameter

optimization.

• The implementation of the microcanonical SBM in graph-tool is available at

https://graph-tool.skewed.de/.

https://github.com/polcolomer/RandNetGen
https://github.com/telmomenezes/synthetic-old/
https://github.com/tischieber/Quantifying-Network-Structural-Dissimilarities
https://graph-tool.skewed.de/
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