
ON CYBER-PHYSICAL FORENSICS, ATTACKS, AND DEFENSES

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Rohit Bhatia

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2019

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Dongyan Xu, Chair

Department of Computer Science

Dr. Dave (Jing) Tian

Department of Computer Science

Dr. Zeynel Berkay Celik

Department of Computer Science

Dr. Sonia Fahmy

Department of Computer Science

Approved by:

Dr. Clifton W. Bingham by Monica M. Shively

Head of the Departmental Graduate Program

iii

To my parents.

iv

ACKNOWLEDGMENTS

First of all, I would like to thank my advisor, Professor Dongyan Xu, for provid-

ing me guidance and support during my time at Purdue. His tireless and constant

efforts towards research have taught me the value of hard work and perseverance.

He has also provided me with invaluable experience regarding identifying research

problems in various domains, evaluating different solutions, and reviewing the work

of other researchers. Most importantly of all, he has also taught me the importance

of communication and delivering our contributions to fellow researchers.

I would also like to thank Professor Sonia Fahmy, Professor Berkay Celik, and

Professor Dave Tian for serving in my final exam committee. Their invaluable com-

ments have helped improve this dissertation. I would also like to thank Professor

Xiangyu Zhang, Professor Mathias Payer, Professor Byoungyoung Lee, and Professor

Berkay Celik for their insights and contributions in our research collaborations.

I owe special thanks to Dr. Vireshwar Kumar for being a supportive mentor and

collaborator, and motivating me to put in my best effort. I am also thankful to fellow

members of the FRIENDS lab, both former and current, including Khaled Serag,

Taegyu Kim, Brendan Saltaformaggio, Yonghwi Kwon, and Chunghwan Kim among

many others.

I am grateful to my old and current roommates Sunny Chugh, Avanish Mishra,

Mayank Kakodkar, and Viplove Arora for being my sounding boards and for teaching

me how to cook. I am also grateful for all the friendships I have cultivated at Purdue,

including but not limited to my pseudo-roommate Akash Patil, Rohil Jain, Anamika

Shreevastava, Vibhav Bisht, and Akash Kumar. I cherish the time we spent together

and hope to spend more in the future.

Last but not the least, I owe special thanks to my parents for providing support

through difficult times. I am also grateful to my sister Sneha and brother-in-law Nitin

v

for their constant encouragement. I am also thankful to my nephews Siddhaant and

Ayansh for being a constant source of happiness in my life.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

ABSTRACT . xii

1 INTRODUCTION . 1
1.1 Dissertation Statement . 1
1.2 Contributions . 2
1.3 Dissertation Components . 3

1.3.1 Timeliner . 3
1.3.2 DUET . 4
1.3.3 CANDID . 4

1.4 Dissertation Organization . 5

2 “TIPPEDOFF BY YOURMEMORYALLOCATOR”: DEVICE-WIDE USER
ACTIVITY SEQUENCING FROM ANDROID MEMORY IMAGES 6
2.1 Background . 9

2.1.1 Memory Allocator Design . 9
2.1.2 Identifying an Activity Launch from Allocations 11
2.1.3 Inferring Temporal Ordering from Spatial Ordering 13

2.2 Timeliner Design . 15
2.2.1 Identifying Residual Data Structures 15
2.2.2 Building the Transition Graph 18
2.2.3 Reconstructing the Global Ordering for Activities 21

2.3 Timeliner Evaluation . 26
2.3.1 Garbage Collection . 27
2.3.2 Micro-Benchmarks . 33
2.3.3 Design Generality . 36
2.3.4 Case Study: Spyware Attack Investigation 38
2.3.5 Case Study: Military Espionage 40
2.3.6 Case Study: Distracted Driving 43
2.3.7 Case Study: Kidnapping Investigation 44

2.4 Discussion . 45
2.5 Summary . 46

3 “ONE ANDONEMAKE ELEVEN”: ACCOMPLICE-ASSISTEDMASQUER-
ADE ATTACK ON CAN . 47

vii

Page
3.1 Background . 50
3.2 Duet Overview . 54
3.3 Detailed Design of Duet . 56

3.3.1 Voltage Fingerprint Manipulation 56
3.3.2 Persistent Victim Bus-off . 62
3.3.3 Voltage Fingerprint-Based Impersonation 65

3.4 Analysis of Stealth of Duet against VIDS 65
3.5 Implementation Details . 69
3.6 Evaluation of Duet . 71

3.6.1 Feasibility of Voltage Corruption 71
3.6.2 Stealth in Stage 1 of Duet against VIDS 73
3.6.3 Stealth in Stage 3 of Duet against VIDS 74
3.6.4 Swiftness-Persistence of Stage 2 of Duet 75

3.7 Proposed Defense: RaID . 77
3.8 CAN Traffic Analysis . 81

3.8.1 Experimental Vehicles . 82
3.8.2 Non-Experimental Vehicles . 84

3.9 Victim Recovery Timing . 85
3.10 Details of VIDS . 86
3.11 Stealth Against MIDS . 88
3.12 Potential Defenses against Duet . 91
3.13 Discussion . 93
3.14 Summary . 94

4 CANDID: PROTECTING CONTROLLER AREA NETWORKVIA INTRA-
NETWORK DIALECTING . 95
4.1 Background . 98
4.2 Motivation . 100
4.3 Policies and Dialects . 102
4.4 CANDID Architecture . 104
4.5 Design of CANDID . 106

4.5.1 ECU State Tracking . 106
4.5.2 Interrupt Service Routines . 111

4.6 Implementation . 112
4.7 Evaluation . 114

4.7.1 General Evaluation . 114
4.7.2 Case Studies . 117

5 RELATED WORK . 128
5.1 Timeliner . 128
5.2 Controller Area Network . 130

6 CONCLUSION . 132

viii

REFERENCES . 134

ix

LIST OF TABLES

Table Page

2.1 List of Some Applications and a Few Example Activities. 24

2.2 Recovery by Timeliner under Garbage Collection. 30

2.3 Timeline Reconstruction for Micro-Benchmark Experiments across Differ-
ent Devices. 31

2.4 Experiment Sets for Micro-Benchmarks. 32

2.5 Results for Case Studies on Motorola G3. 41

2.6 Timelines Recovered in Case Studies. 41

3.1 Effectiveness of Duet against existing VIDS. 54

3.2 Common characteristics of CAN traffic (each number is a message count). 55

3.3 Message timing accuracy in Duet. 72

3.4 Mapping of attacks into the three-stage attack strategy, and performance
of existing VIDS against them. 80

3.5 Message periodicity in experimental vehicles. 83

3.6 Message periodicity in non-experimental vehicles. 84

3.7 Messages belonging to three ECUs on Cruze: Bus-1. 89

3.8 Computation cost (in µs) for MAC schemes. 91

x

LIST OF FIGURES

Figure Page

2.1 Spatial Layout of Allocations in RosAlloc. 10

2.2 Example Residual Data Structures Generated During Activity Launch. . . 11

2.3 Sample Size Distribution for Residual Data Structures. 13

2.4 Prune Erroneous Edges from Transition Graph. 19

2.5 Deriving the Global Ordering from the Transition Graph. 22

2.6 Duration Between Garbage Collection Events Across Three Devices Dur-
ing Active and Idle Usage. 28

2.7 mozjemalloc Design and Simulated Results. 37

2.8 Recovered Transition Graph for Spyware Attack. 39

3.1 Standard and extended frame formats in CAN. 50

3.2 Error handling mechanism in CAN. 51

3.3 Overview of a Duet attack where the Telematics Control Unit (TCU)
and Vehicle Communication Interface Module (VCIM), compromised us-
ing their wireless interface, collaborate to masquerade the Engine Control
Unit and evade the VIDS. 53

3.4 Example of voltage corruption in an ECU’s frame. 56

3.5 Voltage fingerprint manipulation (Stage 1 of Duet). 57

3.6 Single instance of persistent victim bus-off (Stage 2 of Duet). 59

3.7 Roles alternation in consecutive instances of Duet. 61

3.8 Voltage fingerprint-based impersonation (Stage 3). 62

3.9 Voltage distribution observed by VIDS when the attacker corrupts 2 bytes
of payload of victim/accomplice. 66

3.10 Experimental setup within a real vehicle. 70

3.11 Cumulative number of messages with the given PREP. 71

3.12 Viden’s classification accuracy during Stage 1 of Duet. 71

xi

Figure Page

3.13 Scission’s classification accuracy during Stage 1 of Duet. 71

3.14 Duet’s success rate against Viden on different platforms. 72

3.15 Duet’s success rate against Scission on different platforms. 72

3.16 Duet’s success rate against Scission with different ML algorithms. 72

3.17 TEC of the victim under OBA and Duet. 76

3.18 Length of PREP in the CAN messages of the experimental vehicles. 82

3.19 Length of PREP in the CAN messages of non-experimental vehicles. 83

3.20 Effect of Duet on the features utilized in Scission. 87

3.21 ROC curves for Muter-MIDS against Duet. 87

3.22 ROC curves for Song-MIDS against Duet. 87

4.1 CAN message format. 98

4.2 Overview of CAN. 99

4.3 ID sequence. 100

4.4 Overview of CANDID architecture with a single policy dialect. 103

4.5 CANDID enables dialect application via ECU state tracking. 107

4.6 Jitter Distribution for an ID (0x0C1) on Chevrolet Cruze (Bus1). 115

4.7 Jitter Standard Deviation by Periodicity on Impala (Bus3). 116

4.8 Jitter Distribution for an ID (0x0C1) on Chevrolet Cruze (Bus1) for Case
Study: Compromised Existing ECU. 118

4.9 Jitter Standard Deviation by Periodicity on Impala (Bus3) for Case Study:
Compromised Existing ECU. 119

4.10 Jitter Standard Deviation on different buses for Case Study: Compromised
Existing ECU. 120

4.11 Jitter Distribution for an ID (0x0C1) on Chevrolet Cruze (Bus1) for Case
Study: External ECU. 123

4.12 Jitter Standard Deviation by Periodicity on Impala (Bus3) for Case Study:
External ECU. 124

4.13 Jitter Standard Deviation on different buses for Case Study: External ECU.125

xii

ABSTRACT

Bhatia, Rohit Ph.D. Student, Purdue University, December 2019. On Cyber-Physical
Forensics, Attacks, and Defenses. Major Professor: Dongyan Xu.

Cyber-physical systems, through various sensors and actuators, are used to handle

interactions of the cyber-world with the physical-world. Conventionally, the temporal

component of the physical-world has been used only for estimating real-time dead-

lines and responsiveness of control-loop algorithms. However, there are various other

applications where the relationship of the temporal component and the cyber-world

are of interest. An example is the ability to reconstruct a sequence of past temporal

activities from the current state of the cyber-world, which is of obvious interest to

cyber-forensic investigators. Another example is the ability to control the temporal

components in broadcast communication networks, which leads to new attack and

defense capabilities. These relationships have not been explored traditionally.

To address this gap, this dissertation proposes three systems that cast light on

the effect of temporal component of the physical-world on the cyber-world. First,

we present Timeliner, a smartphone cyber-forensics technique that recovers past ac-

tions from a single static memory image. Following that, we present work on CAN

(Controller Area Network), a broadcast communication network used in automotive

applications. We show in DUET that the ability to control communication temporally

allows two compromised ECUs, an attacker and an accomplice, to stealthily suppress

and impersonate a victim ECU, even in the presence of a voltage-based intrusion

detection system. In CANDID, we show that the ability to temporally control CAN

communication opens up new defensive capabilities that make the CAN much more

secure.

xiii

The evaluation results show that Timeliner is very accurate and can reveal past

evidence (up to an hour) of user actions across various applications on Android de-

vices. The results also show that DUET is highly effective at impersonating victim

ECUs while evading both message-based and voltage-based intrusion detection sys-

tems, irrespective of the features and the training algorithms used. Finally, CANDID

is able to provide new defensive capabilities to CAN environments with reasonable

communication and computational overheads.

1

1 INTRODUCTION

1.1 Dissertation Statement

Systems such as those used in vehicles, aircrafts, healthcare, smart-cities, manufac-

turing, and many other applications often involve the computer algorithms controlling

and reacting to the various components of the physical world. Such systems, called

cyber-physical systems, have extensive models for interactions between the control

algorithm and the physical-world through actuators and sensors. However, the anal-

ysis of temporal component of the physical-world is restricted to calculating real-time

deadlines of actuator messages and responsiveness of the control-loop algorithms to

sensor inputs. The temporal component of the physical-world is however of interest

in various other applications. One such application is identifying a sequence of past

actions for cyber-forensic investigators, which can be inferred from the cyber-world

if the temporal sequence of past actions from the physical-world is captured in the

cyber-world’s memory. Another application is in broadcast communication networks

such as Controller Area Network (CAN), where temporal control of communication

can open new capabilities.

Just like forensic investigators retracing a criminal’s steps in the real world, cyber-

forensic investigators also seek to recreate a criminal’s past actions on their digital

devices. Traditional approach of timeline reconstruction involves manually recovering

application-specific evidence [1–3]. This approach neither includes the vast variety

of smartphone applications, nor the inter-application order of the criminal’s past ac-

tions. Further, such a sequence is unlikely to be stored explicitly on a smartphone,

and is disabled by various smartphone manufacturers [4]. As a result, reconstruc-

tion of a criminal’s past actions remains an open challenge, which can be addressed

2

by exploring the relationship between temporal sequence of the past actions to the

smartphone memory.

Controller Area Network (CAN) bus is a broadcast communication bus used in ve-

hicles. Researchers [5–14] have shown that the increasingly internet-connected ECUs

of modern vehicles are susceptible to compromise by malicious adversaries. As these

compromised ECUs have access to the CAN bus, the adversary is able to control

various critical functions [8, 9, 13–15] of the vehicle. A variety of defenses have been

proposed, from costly and impractical cryptographic solutions [16, 17] to the more

practical intrusion detection systems [11, 18–23]. Voltage-based intrusion detection

system (VIDS) in particular have been shown highly effective in detecting compro-

mised ECUs masquerading as another, and are considered state-of-the-art. This dis-

sertation however shows that controlling the transmission time of CAN messages

introduces new capabilities, which allow (1) an attacker to evade VIDS, and also (2)

enables the CAN bus to have stronger defenses.

1.2 Contributions

The work explores how temporal aspect of certain systems affects the cyber com-

ponents of those system. The work particularly focuses on smartphone forensics,

CAN bus attacks, and CAN bus defenses. The contributions of this dissertation can

be summarized as follows:

• Timeliner [24] is a smartphone memory forensics technique for automatically re-

constructing the sequence of past actions performed by a criminal. Timeliner is

able to accurately recover and reorder actions taken over different applications,

even if the applications were terminated.

• DUET is a stealthy and advanced ECU masquerade attack. DUET allows two

ECUs, an attacker and an accomplice, to suppress and masquerade as a victim

ECU, all while evading detection from voltage and message based intrusion

detection systems.

3

• RAID is an effective defense against DUET. RAID is lightweight and can be

run complementary to existing IDS.

• CANDID provides a software-only solution to allow programmatic modifications

of various components of CAN messages. These programmatic modifications

can be performed efficiently within the resource-constrained ECUs, and enables

new defensive capabilities.

1.3 Dissertation Components

1.3.1 Timeliner

An essential forensic capability is to infer the sequence of actions performed by

a suspect in the commission of a crime. Unfortunately, for cyber investigations,

user activity timeline reconstruction remains an open research challenge, currently

requiring manual identification of datable artifacts/logs and heuristic-based temporal

inference. We propose a memory forensics capability to address this challenge. We

present Timeliner, a forensics technique capable of automatically inferring the time-

line of user actions on an Android device across all apps, from a single memory image

acquired from the device. Timeliner is inspired by the observation that Android app

Activity launches leave behind key self-identifying data structures. More importantly,

this collection of data structures can be temporally ordered, owing to the predictable

manner in which they were allocated and distributed in memory. Based on these

observations, Timeliner is designed to (1) identify and recover these residual data

structures, (2) infer the user-induced transitions between their corresponding Activ-

ities, and (3) reconstruct the device-wide, cross-app Activity timeline. Timeliner is

designed to leverage the memory image of Android’s centralized ActivityManager ser-

vice. Hence, it is able to sequence Activity launches across all apps — even those

which have terminated. Our evaluation shows that Timeliner can reveal substantial

evidence (up to an hour) across a variety of apps on different Android platforms.

4

1.3.2 DUET

The controller area network (CAN) is widely adopted in modern automobiles to

enable communications among in-vehicle electronic control units (ECUs). Lacking

mainstream network security capabilities due to resource constraints, the CAN bus

is susceptible to a variety of attacks launched by malicious compromised ECUs. A

common type of attack is the ECU masquerade attack, where a compromised ECU

impersonates an uncompromised victim ECU and spoofs the latter’s CAN messages.

A cost-effective defense against such attacks is the CAN bus voltage-based intrusion

detection system (VIDS) which have been proved effective in detecting masquerade

attacks that each involve a single attacker ECU. We present a novel masquerade attack

strategy called DUET, which involves a duo of “attacker” and “accomplice” ECUs

working together to manipulate, silence and then impersonate a victim ECU while

evading state-of-the-art VIDS. DUET follows a three-stage strategy while leveraging

two new attack tactics that exploit fundamental deficiencies of the CAN protocol. Our

evaluation of DUET on real CAN buses (including three in two real cars) demonstrates

high stealth, swiftness, and success rate of DUET. Finally, we propose a lightweight,

effective defense that prevents DUET with negligible computation and reasonable

communication overheads.

1.3.3 CANDID

A modern automobile is equipped with a variety of electronic control units (ECUs)

which communicate over a controller area network (CAN) to enable safety-critical

functions such as adaptive cruise control. Unfortunately, lack of any fundamental

security mechanism in CAN makes it vulnerable to a variety of attacks including

denial-of-service, replay and masquerade attacks. Some of the vital challenges in

thwarting such attacks include deploying an effective defense on resource-constrained

ECUs and ensuring backward-compatibility of CAN messages while satisfying their

stringent latency constraints. To spur the development of innovative solutions for

5

addressing these challenges, we propose CANDID, a software-only solution which

provides novel tools for dynamically modifying messages while being compliant to

the CAN protocol. CANDID can be utilized to implement a dialect (spoken by

ECUs) which comprises of a suite of policies for mitigating security vulnerabilities.

We present specific case studies to illustrate how such dialects practically defend

CAN against the known attacks in the existing literature. Results obtained through

extensive experiments on our testbed and two real cars validate that CANDID readily

enables the deployment of dialects in existing ECUs with minimal computation and

communication overhead.

1.4 Dissertation Organization

The dissertation is organized as follows:

• Chapter 1 describes the need to understand the relationship between the tem-

poral component of the physical-world, and the cyber-world. It then presents

the various components of this dissertation, their research problems, and the

techniques used in our solutions.

• Chapter 2 provides the details for Timeliner, our memory forensics work.

• Chapter 3 describes DUET, our novel ECU masquerade attack. It also includes

RAID, the lightweight and effective defense against DUET.

• Chapter 4 covers CANDID, our software-only solution to enact policies allowing

dynamic modification of CAN messages.

• Chapter 5 describes the various research efforts that are closely related to our

contributions, and provides key differentiating features.

• Chapter 6 concludes this dissertation.

6

2 “TIPPED OFF BY YOUR MEMORY ALLOCATOR”: DEVICE-WIDE USER

ACTIVITY SEQUENCING FROM ANDROID MEMORY IMAGES

One of the critical steps in a forensic investigation is deriving a timeline of a suspect’s

activities. As described in [25], this task “involves evaluating the context of a scene

and the physical evidence found there in an effort to identify what occurred and in

what order it occurred.” In the physical world, this is often modeled as inferring

causal and temporal relations between events involving the suspect(s) and victim(s).

In cyber investigations inferring a suspect’s temporal sequence of activities on

his/her mobile device remains a challenging problem. Currently, investigators must

manually coalesce datable (often modifiable) forms of application-specific evidence:

e.g., call/message databases [1,2] or web browsing logs [3] saved on a mobile device’s

SD-card. Since no semantic links readily exist between these evidence sources, the

activity timelines reconstructed in this way are often heuristic and incomplete at best.

Further, while Android captures coarse-grained information about user actions, major

Android phone manufacturers routinely disable these features [4].

To illustrate this challenge, consider the variety of mobile apps utilized in the

commission of even a simple espionage crime: Upon receiving a go-ahead call from

a conspirator, the criminal uses his smartphone camera to take photographs of sen-

sitive documents and forwards them via a secure messaging app to the conspirator.

Being wary of his safety, the criminal immediately deletes the photographs and ter-

minates the messaging app. Finally, the criminal opens his banking app to verify the

payment from his conspirator in his account. Each of these actions alone does not

suggest a pattern of espionage, but the causal relationship between the various user

actions (derived from their temporal ordering) indicates the commission of the crime.

Unfortunately, in order to reconstruct the temporal sequence of these actions, investi-

gators currently have to perform three manual steps: (1) recover application-specific

7

evidence from the confiscated device, (2) infer temporal ordering relations among

the user actions, and (3) derive a global timeline to reveal the causal relationships

between user actions.

In this paper, we will show how Android memory forensics — performed on a single

memory image without temporal logs — can achieve high-accuracy user/app action

sequencing. Through an in-depth analysis of mobile app activity handling within An-

droid, we have identified a set of application-independent in-memory artifacts which

represent state and display changes across all applications. These artifacts, aptly

named Activities, are generated and managed by the Android subsystem (specifically

the ActivityManagerService) — putting them out of the reach of any app’s execution

and making their recovery and interpretation generic with regard to the app/user

actions they represent. Further, each Activity launch that an app performs is unique

and leaves behind a signature, namely a collection of residual data structures that are

indicative of a specific user action on the device.

Leveraging the power of app-generic Activities, we then turn our attention to the

automatic, device-wide temporal sequencing of app Activities. Again, we glean clues

from the Android subsystem’s in-memory artifacts. By modeling the operation of the

Android memory allocator, we found that these residual data structures are allocated

memory locations (called “slots”) in a sequentially increasing ordering. Put simply:

if it is possible to recover the spatial ordering of these slots for a sequence of historic

Activities, then we can perform inference of the specific temporal ordering of those

Activities.

Inspired by these findings, we develop Timeliner, a memory forensics technique

which automatically performs inference of an Android device user’s past actions from

Activities across different apps (even those which have terminated) found in one mem-

ory image. The development of Timeliner overcomes a number of challenges during

the identification and subsequent temporal sequencing of Activities: (1) Frequent

allocation and garbage collection (GC) induces fragmentation in memory, causing

consecutive allocations to become non-contiguous, making identification and segre-

8

gation of allocations into Activity launches difficult. (2) In a fragmented memory,

identification of spatial ordering among the Activity-identifying residual data struc-

tures is also challenging. (3) Android’s memory allocator utilizes thread-local buffers

for small allocations, spreading some residual data structures across several mem-

ory locations, making the spatial ordering potentially ambiguous. (4) Long temporal

gaps between Activity launches can lead to spatial gaps between their residual data

structures, requiring Timeliner to join multiple separated spatial orderings.

To address these challenges, Timeliner works in three stages. First, Timeliner iden-

tifies and recovers all residual data structures (several hundred per Activity launch)

from a subject Android memory image (Section 2.2.1). This step is akin to an in-

vestigator first identifying as many crime-related events as possible. Next, like an

investigator finding causal relationships between the crime-related events, Timeliner

uses spatial ordering of the recovered Activity launches to infer transitions between

pairs of Activities (Section 2.2.2). Lastly, similar to an investigator reconstructing

the expected timeline, Timeliner orders the pairwise transitions to derive the global

ordering of Activities (Section 2.2.2). Note that Timeliner does not compete with

forensic tools that recover evidence based on content [26–29], but instead complements

them by providing contextual meaning to the evidence they recover by establishing a

device-wide, inter-app temporal sequence of user actions.

We have evaluated Timeliner, using micro-benchmarks and recreations of real

criminal investigations, across multiple commercially available Android phones and a

wide range of applications covering messaging, voice calls, banking, email, file man-

agement, and video streaming. Our results show that Timeliner is highly accurate

(our case studies recover as many as 18 prior device-wide Activities) and provides con-

vincing evidence to investigators through the reconstructed timelines of user actions.

We also show that the techniques behind Timeliner are neither limited to the Android

platform (by applying Timeliner to the jemalloc allocator) nor to only user-actions

(by applying Timeliner to inter-application interactions called Broadcasts).

9

2.1 Background

Activity is the fundamental abstraction for a user action provided by the Android

framework. In particular, an Activity is described as a “single, focused thing that the

user can do” in the Android developer documentation [30]. To showcase how each

Activity within an app models such a “single, focused thing,” Table 2.1 in Section 2.3

lists a number of Activities we encountered during our evaluation. As a user interacts

with their device (e.g., clicking a button on the UI or receiving a call), the Activity

corresponding to each action will be “launched”.

Timeliner aims to reconstruct the temporal sequence of recent Activity launches

that occurred on a subject device. To identify the launch of a specific Activity from

an input memory image, Timeliner locates and recovers the unique data structures

left behind from the execution of the Activity launch’s logic. Then, to reconstruct

the sequence of these Activity launches, Timeliner infers their temporal ordering from

the data structures’ spatial ordering (their allocation pattern in memory). We now

discuss the enabling principles for these techniques.

2.1.1 Memory Allocator Design

Android’s memory allocator is a “Run” of “Slots” allocator (named RosAlloc),

where slots are individual memory locations for object allocations and a run is a list

of slots of the same size. Like other Run of Slots allocators (e.g. phkmalloc, jemalloc),

allocation is handled through a per-run bitmap. Each thread in a process manages

its own thread-local runs for smaller slots, along with shared runs for larger slots. As

an example, Figure 2.1 shows a few sample thread-local and shared runs of different

sizes for two threads.

An allocation request is first assigned to the run whose slots best fit the requested

size. A slot is chosen from this run based on a “first-available” algorithm which

assigns it to the first empty slot picked from the bitmap, and subsequently the object

is instantiated at this location. When the run is completely filled, a new run is used,

10

80
Bytes

96
Bytes

Runs (Thread1)

Transition Graph

Activity2

Activity3

Activity1

80
Bytes

96
Bytes

Runs (Thread2)
304

Bytes
320

Bytes

Runs (Shared)

Activity4

Global Ordering

Figure 2.1.: Spatial Layout of Allocations in RosAlloc.

with a similar “first-available” algorithm choosing the run with the lowest address.

These algorithms are deliberately designed to reduce fragmentation, preferring low

addresses for allocations.

The implication of these “first-available” algorithms is as follows: If an allocation

a (immediately) temporally precedes an allocation b of the same size, then a will be

assigned a slot preceding b. Put simply, allocations that have a temporal ordering

will be assigned memory locations that have a corresponding spatial ordering. This

property is key to Timeliner, which attempts to solve the reverse problem: Identify the

original temporal ordering of the allocations from their spatial ordering in a memory

image.

11

Intent
Activity
Record

Resolve
Info

Activity
Info

Package
Name

Package
Name

Component
Name

public int startActivity(..,intent,..)

Parcel

 ri = new ResolveInfo(mResolveInfo)r = new ActivityRecord(..,intent,..)

ri.activityInfo = new
ActivityInfo(ri.activityInfo);

new ComponentName(
aInfo.packageName, aInfo.name)

Component
Name

componentName = _intent.getComponent()

Root Data
Structures

Non Root
Residues

Figure 2.2.: Example Residual Data Structures Generated During Activity Launch.

2.1.2 Identifying an Activity Launch from Allocations

As an Activity is launched, the transition from the previous Activity to the newly

launched Activity is centrally handled by the ActivityManagerService. As such, the

ActivityManagerService receives several RPCs (Remote Procedure Calls) when an

Activity launch takes place. While executing the RPCs, the ActivityManagerService

will allocate several key data structure “clusters” (i.e., a network of interconnected

data structures), hereinafter referred to as the residual data structures of an Activity.

An example of this can be seen in Figure 2.2, where a specific Activity’s Intent object

is allocated as an RPC argument which links to other objects that are allocated

through routine execution.

12

An important property of these residual data structures is that they are highly

inter-connected. As the objects in residual data structures are allocated during the

same Activity launch, they share a number of field values and are interconnected via

pointers. This is highlighted in Figure 2.2, where the ActivityRecord, Intent, and

ResolveInfo objects are required to share references (both directly and through their

fields). There is another required value equivalence between the PackageName fields

of ActivityRecord and ResolveInfo objects.

Another key property of these residual data structures is that they are organized as

trees rooted at application-generic objects. This is noticeable in Figure 2.2, where the

ActivityRecord, Intent, and ResolveInfo (application-generic) objects can be utilized

to identify (and traverse) the entirety of the residual data structures. We call these

top-most, application-generic data structures root data structures, and Timeliner

utilizes 14 different root data structures to identify the residual data structures that

are leftover from each Activity launch.

As shown in the sample size distribution in Figure 2.3, residual data structures are

mostly composed of a large number of small allocations in thread-local runs, and a

small number of large allocations in shared runs. Both types of allocations provide the

spatial information utilized by Timeliner. While being limited to thread-local runs,

the large number of allocations ensures that these allocations are spread out over

several runs across various threads. Similarly, while fewer in number, the allocations

in shared runs provide more robust spatial ordering. In this way, while RosAlloc’s

implementation includes both thread-local and shared runs, Timeliner’s design is not

dependent on it. We demonstrate this by extending Timeliner to another memory

allocator (jemalloc) during our evaluation — which utilizes only thread-local runs.

Lastly, note that the lifespan of residual data structures is dependent on the

Activity they represent. Further, the Activities belonging to the current Activity

stack survive garbage collection. However, even those that survive get diminished in

number. This is because many objects in the residual data structures are utilized only

temporarily during Activity launch execution, making them candidates for garbage

13

0 50 100 150 200 250 300 350 400 450
Size (in bytes)

0

20

40

60

80

100

120

N
u

m
b

e
r

o
f

O
b

je
c
ts

Figure 2.3.: Sample Size Distribution for Residual Data Structures.

collection. Despite their reduced numbers, these diminished residual data structures

are still recoverable and identifiable (i.e., they reveal the original Activity’s name).

This allows Timeliner to identify Activities that occurred before the last garbage

collection, which we call garbage collected Activities.

2.1.3 Inferring Temporal Ordering from Spatial Ordering

As described above, each Activity launch generates residual data structures, pro-

duced through the execution of the launch logic. Figure 2.1 provides an example of

the allocations from four Activity launches, where all slots of the same color repre-

sent the residual data structures of a single Activity launch. The most important

property to note from the layout of the residual data structures is that they are of

14

varying allocation sizes and therefore occupy slots in multiple runs, both thread-local

and shared.

In Section 2.1.1 we described how within a single run the temporal ordering of

allocations results in a corresponding spatial ordering. This is the first step to inferring

the temporal ordering of the residual data structures from two Activity launches —

enabling Timeliner to solve for the above principle (temporal ordering leads to spatial

ordering) in reverse. Timeliner applies the above principle across multiple runs and

recovers the temporal ordering for a pair of Activity launches, which we refer to as

the transition between two Activities. Timeliner models the transitions as a directed

edge starting from a node for the former Activity and directed towards a node for

the latter. The nodes and edges for all Activities recovered from a memory image are

organized into a transition graph. Figure 2.1 includes an illustration of the transitions

between various pairs of Activities.

A timeline of Activities that satisfies the transition graph should satisfy each edge

individually, i.e. for every transition u → v, from Activity u to Activity v, u should

occur before v in the timeline. This ordering, known as the topological ordering of a

graph, allows Timeliner to solve for the timeline by topologically sorting the transition

graph.

Unfortunately, within individual runs, fragmentation of memory (i.e., a new allo-

cation fills a slot before an existing allocation) can mislead Timeliner’s reconstruction.

This will result in an erroneous edge originating from one Activity and pointing to

another. Handling these misleading (i.e., incorrect) transitions will require Timeliner

to prune such edges from the transition graph. Figure 2.4 describes two examples of

such pruning.

Notice also that Timeliner’s transition graph can entirely miss edges which should

exist. This can happen in two ways: (1) If the current set of runs becomes filled, then

the spatial ordering information inferred from those runs (i.e., one transition between

two Activities) is lost. As a result, the transition graph is partitioned into several

connected components, the temporal orderings of which are termed local orderings.

15

Luckily, as the runs are chosen just like slots, i.e. with a “first-available” algorithm,

the different local orderings can be joined later based on the spatial ordering of their

runs into a single global ordering. (2) If two successive Activities do not share a

common run, then there is no evidence of the transition between them. In this case,

an ambiguity exists in their spatial ordering, and hence temporal ordering, leading

to multiple possible timelines for those Activities. Hence, Timeliner needs to find

all the topological orderings for the given transition graph. An example is shown in

Figure 2.1, where there are two possible timelines.

2.2 Timeliner Design

Timeliner operates on only a single memory image from an Android device. From

this memory image, Timeliner isolates and inspects the ActivityManagerService pro-

cess’s dynamic memory allocation space. Note that because Timeliner only relies

on generic framework defined objects like Activities, Timeliner has no application-

specific requirements in its design or implementation. Further, Timeliner’s operation

is entirely automated with no supervision required from an investigator — allowing

it to be immediately deployable in practical investigations. In the remainder of this

section, we will present the three phases of Timeliner’s design.

2.2.1 Identifying Residual Data Structures

As Section 2.1.2 introduced, highly-interconnected sets of objects called residual

data structures are left over from the execution of past Activity launches. Therefore,

Timeliner must first recover objects and segregate them into residual data structures.

This procedure is shown in Algorithm 1. As a running example, we shall recall the

structures shown in Figure 2.2 throughout this section.

Timeliner first scans the input memory image to identify all objects previously al-

located by the ActivityManagerService, whether still active or deallocated but waiting

for garbage collection (“dead objects”). This step is accomplished with the help of the

16

Algorithm 1 Segregating Residual Data Structures.
Input: Object List O, RootClass List Roots

Output: ResidueObjectSet List Residues
. Identify and Add the Root Data Structures

Object List rootObjs← ∅

for Object o ∈ O do

if o.class ∈ Roots then

rootObjs← rootObj ∪ o

. Segregate into different partial ResidueSets

ResidueObjectSet List PartialResidues← ∅

for Object rootObj ∈ rootObjs do

ResidueObjectSet newResSet← rootObj

. Match each root to identified partial ResidueSets

for ResidueObjectSet resSet ∈ PartialResidues do

for Object singleRes ∈ resSet do

if MATCH(rootObj, singleRes) then

. Merge partial residueSets for the same Activity

newResSet← newResSet ∪ resSet

PartialResidues← PartialResidues− resSet

break

. Add the new partial residueSet back to PartialResidues

PartialResidues← PartialResidues ∪ newResSet

. Recurse to get ResidueSets

ResidueObjectSet List Residues← ∅

for ResidueObjectSet resSet ∈ PartialResidues do

ResideObjectSet fullResSet← RECURSE(resSet)

Residues← Residues ∪ fullResSet

runtime type information included in the managed runtime of Android (ART), which

includes type information for objects and their fields. These are included in every

process’s memory space, so Timeliner can recover them directly. Note that Timeliner

also recovers dead objects since Android’s memory management is automatic and

slots remain allocated until a garbage collection event. This list of recovered objects

is given as the input to Algorithm 1.

17

Next, Timeliner parses this list of objects and identifies the root data structures.

Defined in Section 2.1.2, these data structures are crucial for the identification of

residual data structures (the “fingerprints” left by Activity launches). In Figure 2.2,

we can see that the Intent, ActivityRecord, and ResolveInfo objects are three instances

of such root data structures. An important point to note is that these root data

structures are highly inter-connected, and as such, they can be used to segregate the

recovered objects into distinct residual data structures.

This is exactly the approach used in Timeliner, as explained in Algorithm 1, the

list of root data structures is segregated into distinct partial residual data struc-

tures. Note that these resultant residual data structures (named ResidueSets in

Algorithm 1) are called partial, as they do not (yet) include the various non-root

residual data structures reachable from the recovered instances of root data struc-

tures.

This segregation is affected by the “MATCH” function, which contains predefined

application-generic relationships between the root data structures. In Figure 2.2,

Intent and ActivityRecord are matched by their predefined ComponentName field

values, and also a direct pointer from ActivityRecord to Intent. Further, Resolve-

Info is linked to Intent via their predefined PackageName and ComponentName field

values. Timeliner also leverages value equivalence in the PackageName fields of the

ResolveInfo and ActivityRecord objects.

With these segregated partial residual data structures, Timeliner then recursively

adds fields of the root objects that link non-root residual data structures from each

Activity launch. This is represented in Algorithm 1 as the “RECURSE” function.

When applied to the case presented in Figure 2.2, this would add any additional

data structures reachable from the Intent, ActivityRecord, and ResolveInfo objects,

leading to a full set of residual data structures (which represent an individual Activity

launch).

18

After this step, Timeliner has obtained a list of Activities (whose launches create

distinct residual data structures) and now needs to establish their temporal ordering.

In the next section, Timeliner shall build a transition graph for these Activities.

2.2.2 Building the Transition Graph

As discussed in Section 2.1.3, two Activities are said to have a transition if they

have a corresponding temporal ordering. Simply put, an Activity e has a transition

to an Activity f if e is launched before f .

As noted in Section 2.1.1, the residual data structures are assigned slots spread

across several runs. Further, recall from Section 2.1.3, that a single run can give

misleading information due to fragmentation, and thus Timeliner utilizes multiple

runs to infer transitions between two Activities, say Activity e and Activity f .

We define an Activity e as a set of pairs, where each pair consists of a run and

a list of corresponding slots occupied by residual data structures of the Activity e.

This can be represented as:

e = {(r, s) | r ∈ Runs ∧

s = {i | r[i] ∈ Residue(e)}}
(2.1)

where r is a Run and s is the list of indices of occupied slots for Activity e. The

“Residue” function represents the residual data structures allocated during the launch

of Activity e, which were identified in the previous section.

Identifying Transitions. An Activity e will have a transition to an Activity f

if (1) they share runs where all allocations of e precede all allocations of f and (2)

they do not share a run where the opposite ordering occurs, that is, any allocation

of e succeeds any allocation of f . With these properties in mind, we define the

following two functions, allPrecede and anySucceed, counting the common runs that

have all allocations of e preceding allocations of f and those with any allocation of e

succeeding allocations of f , respectively.

19

Garbage Collected
Activities

A B

C D

H I

A B

C D

H I

Min-Cut

4

3 3

5

3

1

Weighted Undirected
Transition Graph

Prune

A B

C D E

A B

C D E

Prune

Figure 2.4.: Prune Erroneous Edges from Transition Graph.

allPrecede(e, f) = |{r | (r,m) ∈ e ∧ (r, n) ∈ f ∧

max (m) < min (n)}|

anySucceed(e, f) = |{r | (r,m) ∈ e ∧ (r, n) ∈ f ∧

max (m) > min (n)}|

(2.2)

where e and f are Activities, r is a common run, and m and n are lists of slots in

the common run r. There exists a transition between e and f if allPrecede(e,f) is

positive and anySucceed(e,f) is equal to zero. Timeliner organizes these Activities as

nodes and transitions as edges in a graph, called the transition graph.

Assigning Weights to Transitions. The higher the number of shared runs

between two Activities (while maintaining the correct ordering), the higher the con-

20

fidence in the transition, as the odds of coincidentally sharing runs decreases expo-

nentially with the number of shared runs. Hence, if a transition exists, we assign

the transition from Activity e to Activity f a weight equal to the number of shared

runs between the two Activities. Note that the number of common runs is equal to

allPrecede(e,f) + anySucceed(e,f), however as anySucceed(e,f) is equal to zero for

a transition, the weight a transition is assigned is equal to allPrecede(e,f).

Pruning the Transition Graph. As noted in Section 2.1.3, due to fragmentation,

it is possible for a new allocation to fill up a slot before a pre-existing allocation. This

means that an erroneous spatial ordering exists from the new allocation to the pre-

existing one, and this implies a transition edge from a new Activity to a much older

one. Clearly, this erroneous edge in our transition graph can lead to a wrong temporal

ordering and must be pruned.

To handle such erroneous transitions, we use the observation that while it is

possible for a new Activity to reuse a run and share it with an older Activity, it is

improbable for them to share two runs, and unlikely to share three. Hence, we assume

a maximum weight of two for such edges. Further, such an erroneous edge can be

classified as one of the following two cases:

1. Transition between two connected components: The edge connects two

connected components, which contain legitimate transitions and are highly

inter-connected. In other words, such an edge serves as the minimum cut in

the graph, and as discussed above, is limited to a maximum weight of two. An

example can be seen in the top half of Figure 2.4, where there is an erroneous

edge pointing from node H to node C, serving as the minimum cut between

the two sub-graphs. Pruning the graph in the example leads to two connected

components, one with nodes {A,B,C,D} and the other with nodes {H, I}.

To implement this, Timeliner utilizes a min-cut algorithm (Stoer-Wagner [31])

on the corresponding undirected version of the transition graph, running the al-

gorithm for each connected component, as explained in Algorithm 2. Assuming

21

that there are n Activities and hence O(n2) edges, the time complexity of the

algorithm is O(n3).

2. Transition in the same connected component: The edge connects two

nodes in the same connected component, creating a cycle. Note that this can

only happen if a garbage collection event happens between the Activities covered

in the transition subgraph, allowing a new Activity to re-use a run used by an

older Activity.

Timeliner utilizes this property to remove the erroneous edge, pointing from an

Activity launched after the garbage collection event, to an Activity launched

before. As noted in Section 2.1.2, the Activities that occurred before the last

garbage collection event, called garbage collected Activities, can be identified by

their diminished residual data structures. An example can be seen in Figure 2.4,

with the erroneous edge pointing from node E to node A removed from the

transition graph. The complexity of this algorithm is linear with respect to the

number of edges.

In the next section, Timeliner utilizes this pruned transition graph and recon-

structs the device-wide sequence of Activities, which we call the timeline.

2.2.3 Reconstructing the Global Ordering for Activities

Before we describe the procedure of finding the temporal ordering, it is important

to prove the existence of one. As discussed in Section 2.1.3, Timeliner solves for the

topological ordering for a given transition graph. It is a known property of directed

graphs that a topological ordering exists if and only if it is acyclic. While it is

obvious that a graph with a cycle cannot be topologically ordered, it can also be

proven that a depth first search in an acyclic graph (where a node is processed after

its children are processed) leads to a reverse topological ordering. Hence, proving the

existence of a topological ordering is equivalent to proving that the directed graph

22

A

CB

BC

D

A

CB

BC

D

E

F

G

Local Orderings Global Ordering

E

F

G

Topological
Sort Join

H

Garbage
Collected
Activities

A B

C D

Connected
Components

Transition Graph

E F

G

H I
I

Figure 2.5.: Deriving the Global Ordering from the Transition Graph.

is acyclic. In Timeliner’s transition graph, because of the “first-available” memory

allocator algorithm, cycles can only be erroneous. Therefore, the acyclic property of

the transition graph is guaranteed by the pruning described in Section 2.2.2.

Local Orderings. Given a list of Activities recovered in Section 2.2.1, Timeliner

topologically orders the transition graph from Section 2.2.2 to establish various local

orderings of Activity launches. However, as discussed in Section 2.1.3, there are

possible ambiguities in the temporal orderings of Activities, causing multiple possible

timelines. An example can be seen in Figure 2.5, with the local ordering of nodes

{A,B,C,D} having two possible solutions. To effectively compute all the solutions,

Timeliner performs a depth-first search with backtracking. The complexity of this

algorithm is O(numTimelines*n2), assuming n Activities and numTimelines solutions

of temporal orderings.

23

Algorithm 2 Reconstruct the Global Ordering.
Input: Graph Transitions

Output: Graph Timeline
. Remove Erroneous Edges - O(n3)

GraphList Components← Transitionscomponents

for Graph g ∈ Components do

(cutSize, cutEdges)←min-cut(undirected(g))

if cutSize < 3 then

Transitions← Transitions− cutEdges

if HasCycle(g) then

for Transition (e→ f) ∈ g do

if not IsGarbageCollected(Residue(e)) then

if IsGarbageCollected(Residue(f)) then

g ← g − (e→ f)

. Topologically Sort into Local Orderings - O(numTimelines*n2)

GraphList LocalOrderings← ∅

GraphList Components← Transitionscomponents

for Graph g ∈ Components do

LocalOrderings← LocalOrderings ∪ topological-sort(g)

. Identify Joinable Local Orderings - O(n)

GraphList JoinableOrderings← ∅

for Graph g ∈ LocalOrderings do

Activity a← g.lastActivity()

if not IsGarbageCollected(Residue(a)) then

JoinableOrderings← JoinableOrderings ∪ g

. Join Local Orderings into Global Ordering - O(n)

Graph Timeline← ∅

JoinableOrderings.lastActivity().sort()

for Graph g ∈ JoinableOrderings do

Timeline.append(g)

24

Ta
bl
e
2.
1.
:
Li
st

of
So

m
e
A
pp

lic
at
io
ns

an
d
a
Fe

w
E
xa

m
pl
e
A
ct
iv
it
ie
s.

A
pp

lic
a-

ti
on

A
ct
iv
it
ie
s

W
ha

ts
A
pp

H
om

eA
ct
iv
it
y

C
on

ve
rs
at
io
n

V
oi
pA

ct
iv
it
y

R
ec
or
dA

ud
io

C
am

er
aA

ct
iv
it
y

M
ed

ia
G
al
le
ry

P
ro
fil
eA

ct
iv
it
y

V
oi
ce
M
es
sa
gi
ng

W
eC

ha
t

La
un

ch
er
U
I

C
ha

tt
in
gU

I
A
lb
um

P
re
vi
ew

U
I

V
id
eo
A
ct
iv
it
y

Se
le
ct
C
on

ta
ct
U
I

C
on

ta
ct
In
fo
U
I

G
ro
up

C
ar
dS

el
ec
tU

I
N
ea
rb
yF

ri
en
ds
In
tr
oU

I

Si
gn

al
C
on

ve
rs
at
io
nL

is
tA

ct
iv
it
y

C
on

ve
rs
at
io
nA

ct
iv
it
y

R
ed
P
ho

ne
N
ew

C
on

ve
rs
at
io
nA

ct
iv
it
y

G
ro
up

C
re
at
eA

ct
iv
it
y

C
on

ta
ct
Se
le
ct
io
nA

ct
iv
it
y

Sh
ar
eA

ct
iv
it
y

Sm
sS
en
dT

oA
ct
iv
it
y

Sk
yp

e
H
ub

A
ct
iv
it
y

P
re
C
al
lA
ct
iv
it
y

C
on

ta
ct
D
ir
ec
to
ry
Se
ar
ch

C
on

ta
ct
P
ro
fil
eA

ct
iv
it
y

C
on

ta
ct
E
di
tA

ct
iv
it
y

C
on

ta
ct
D
et
ai
l

C
on

ta
ct
A
dd

N
um

be
r

A
dd

P
ar
ti
ci
pa

nt
sA

ct
iv
it
y

M
es
sa
gi
ng

C
on

ve
rs
at
io
nL

is
tA

ct
iv
it
y

C
on

ve
rs
at
io
nA

ct
iv
it
y

W
id
ge
tR

ep
ly
A
ct
iv
it
y

P
eo
pl
eA

nd
O
pt
io
ns
A
ct
iv
it
y

A
pp

lic
at
io
nS

et
ti
ng

sA
ct
iv
it
y

Sh
ar
eI
nt
en
tA

ct
iv
it
y

W
id
ge
tP

ic
kC

on
ve
rs
at
io
n

V
id
eo
Sh

ar
eA

ct
iv
it
y

D
ia
le
r

In
C
al
lA
ct
iv
it
y

C
al
lL
og
A
ct
iv
it
y

C
al
lD

et
ai
lA

ct
iv
it
y

P
eo
pl
eA

ct
iv
it
y

Q
ui
ck
C
on

ta
ct
A
ct
iv
it
y

B
lo
ck
ed
N
um

be
rs
A
ct
iv
it
y

Im
po

rt
V
C
ar
d

C
al
lS
ub

je
ct
D
ia
lo
g

C
ha

se
A
cc
ou

nt
sA

ct
iv
it
y

B
ill
P
ay
A
dd

St
ar
tA

ct
iv
it
y

B
ill
P
ay
A
dd

V
er
ify

A
ct
iv
it
y

B
ill
P
ay
H
is
to
ry
A
ct
iv
it
y

Q
ui
ck
P
ay

C
ho

os
eR

ec
ip
ie
nt

T
ra
ns
fe
rA

ct
iv
it
y

Q
ui
ck
D
ep

os
it
St
ar
tA

ct
iv
it
y

F
in
dB

ra
nc
hA

ct
iv
it
y

G
m
ai
l

C
on

ve
rs
at
io
nL

is
tA

ct
iv
it
y

C
om

po
se
A
ct
iv
it
yG

m
ai
l

A
cc
ou

nt
Se
tu
pF

in
al
A
ct
iv
it
y

G
m
ai
lP
re
fe
re
nc
eA

ct
iv
it
y

Fa
ce
bo

ok
Sp

la
sh
Sc
re
en
A
ct
iv
it
y

P
ic
ke
rL

au
nc
he
rA

ct
iv
it
y

C
om

po
se
rA

ct
iv
it
y

F
bM

ai
nT

ab
A
ct
iv
it
y

F
ile

B
ro
w
se
r

F
ile
B
ro
w
se
rA

ct
iv
it
y

T
as
kP

ro
gr
es
sA

ct
iv
it
y

F
ile
C
on

ve
rt
er
A
ct
iv
it
y

H
tt
pS

er
ve
rA

ct
iv
it
y

N
et
fli
x

H
om

eA
ct
iv
it
y

Se
ar
ch
A
ct
iv
it
y

Sh
ow

D
et
ai
ls
A
ct
iv
it
y

P
la
ye
rA

ct
iv
it
y

25

Joinable Local Orderings. As described in Section 2.1.1, Timeliner uses the

property that runs are allocated via a “first-available” algorithm. This implies that,

just like allocation slots, the runs for different local orderings are spatially ordered.

However, this spatially-increasing ordering does not always hold true, because of

garbage collection events. A garbage collection event frees up low memory runs

that are used by future Activities, causing a backward jump in the spatial ordering.

Hence, Timeliner only joins those local orderings whose last Activities occur after

the last garbage collection event. Such joinable local orderings can be distinguished

by identifying garbage collected Activities as discussed in Section 2.1.2. An example

can be seen in Figure 2.5, where the two local orderings with nodes {A,B,C,D} and

{E,F,G} are joinable, even though node A is a garbage collected Activity. Note that

while garbage collection makes it difficult to order garbage collected Activities, it does

not entirely prohibit it. For example, a local ordering that includes Activities that

span a garbage collection event, from both before and after the event, is a joinable

local ordering.

Global Ordering. To join multiple joinable local orderings into a single global

ordering, Timeliner first identifies the Activities that were launched after the last

garbage collection, as explained in Section 2.1.2. Then Timeliner joins the local

orderings which end with these Activities, following the spatial ordering of the runs

that hold their allocations, yielding the global ordering. For example, in Figure 2.5,

we see that the local orderings with nodes {A,B,C,D} and {E,F,G} are joined

into a global ordering. The joining of local orderings into a global ordering has a

complexity linear with respect to the number of Activities.

The resultant global ordering is returned by Timeliner to the investigators as the

device-wide sequence of user actions.

26

2.3 Timeliner Evaluation

Timeliner is implemented as a plugin for the AOSP (Android Open Source Project)

and executes within an Android emulator, utilizing ART’s runtime environment to

identify crucial data structures for the memory allocator. Timeliner also reuses ART’s

various libraries to automatically parse and process the definitions of the residual data

structures stored in the input memory image.

Setup. Timeliner is evaluated across 3 commercially available smartphones (Sam-

sung Galaxy S4, LG G3 and Motorola Moto G3) using a variety of different appli-

cations. These include messaging apps such as WhatsApp, WeChat, Signal (widely

renowned for security), each vendor’s Messaging app, voice and video telephony apps

like the vendors’ Dialer apps and Skype. We also include email applications such

as Gmail, the Chase Banking personal banking app, a video streaming app (Net-

flix), a social network app (Facebook), and various utility apps such as File Browser,

Downloads, PDFReader, Camera, and Google Maps.

Table 2.1 lists a small subset of the Activities that are present in some different

apps that we used in our evaluation. As Table 2.1 shows, the names of these Activi-

ties are very descriptive of the user actions they represent. For example, even within

sophisticated apps like Signal, we can see Activities such as ConversationListActivity

and ConversationActivity which describe viewing a list of past conversations versus

clicking into a single conversation. Representing the action of making a voice/video

call, we see the VoipActivity in WhatsApp, VideoActivity in WeChat, RedPhone

(making a secure phone call) in Signal, PreCallActivity in Skype, and InCallActivity

in Dialer. Even fine-grained app-specific actions can be captured, such as Com-

poseActivityGmail for composing an email, BillPayAddStartActivity for initiating a

bill payment, and QuickDepositStartActivity for starting a check deposit. These vivid

descriptions are due to the fact that Activities serve as intuitive abstractions for user

actions.

27

However, the most important information for a criminal investigator is not just

isolated user actions but the complex sequencing of Activities. For example, a File-

BrowserActivity followed by a TaskProgressActivity(delete) showcases that the user

deleted a file. This interplay of activities can be used to develop the timeline of

a crime: For example, a user first takes a photograph with the CameraLauncher

Activity in the camera app, followed by sharing the photo via WhatsApp’s Chooser-

Activity(share) and ImagePreview activities. Finally, the user opens the photo via

the FileBrowserActivity and deletes it with the TaskProgressActivity(delete) Activ-

ity. This semantically-meaningful series of user actions can be essential for quickly

focusing a developing criminal investigation.

2.3.1 Garbage Collection

Garbage collection events can clear the allocations of Activities that are not alive

(on the Activity stack) and hence do not have a reference towards them, causing

limited evidence recovery. Further, garbage collection can also break the spatially-

increasing ordering (due to the “first-available” algorithms) by causing a jump from

high to low memory addresses as those runs become available. Hence, garbage collec-

tion events lead to (1) loss of evidence and (2) partial loss of spatial ordering for the

remaining evidence in memory. However, note that while garbage collection makes it

difficult to order garbage collected Activities, they can still be ordered if they are a

part of some joinable local ordering.

To understand the limitations on Timeliner due to garbage collection, we begin

the evaluation of Timeliner by evaluating (1) the frequency of garbage collection and

(2) Timeliner’s recovery after garbage collection events.

We first evaluate garbage collection frequency across different devices and under

different usage conditions, while aiming to measure the time duration between differ-

ent garbage collection events. To do so, we instrumented and measured the frequency

of garbage collection on the ActivityManagerService process (the subject of Time-

28

0 20 40 60 80 100 120 140
Time (minutes)

0

5

10

15

20

#
 A

ct
iv

iti
es

Active usage

0 20 40 60 80 100 120 140
Time (minutes)

0

5

10

15

20 Idle device

Moto
LG
Samsung
GC Event

Figure 2.6.: Duration Between Garbage Collection Events Across Three Devices Dur-

ing Active and Idle Usage.

liner’s reconstruction). Note that this is a service provided by the Android frame-

work, which is largely unaffected by the processing done in any application. Hence,

while certain applications are quite memory intensive (causing heavy workload of

allocations), the frequent garbage collections are limited to their own processes.

This garbage collection profiling was carried out under two different conditions:

(1) the phone was left idle and (2) the phone underwent constant user activity. For

this purpose, we first installed all the applications listed in Table 2.1 on the three

devices. For the idle case, we turned the device’s screen off and left the phone idle.

However, due to the presence of events raised by various background services (e.g.,

29

the AlarmManager service) the memory usage of the ActivityManager process slowly

increases with time. For the active usage case, we repeatedly followed the sequence

of Activities shown in Set A listed in Table 2.3, raising a new Activity every two to

three minutes.

Figure 2.6 presents our profiling results across the three devices under each usage

condition, with Activities raised since last garbage collection event shown for each

device. In the active usage case, garbage collection events were triggered periodically

after 41-50 minutes (that followed raising 14 to 18 Activities). Interestingly, even after

repeated triggering of the garbage collection events, this period remained roughly the

same. This suggests a stable heap size and memory usage pattern. In the idle case,

garbage collection events were triggered after 98 to 113 minutes, again due to the

slower increase in memory usage within the ActivityManagerService process when

the device is idle.

To further confirm Timeliner’s recovery under garbage collection, we profiled

garbage collection events and Activity launches on the Motorola device. During this

time, we captured memory snapshots every 10 minutes (as any one of those could be

the one taken when investigators confiscate the device) and use Timeliner to recover

the Activities in the memory image. The results are detailed in Table 2.2.

As expected, we can see that the Activities recovered by Timeliner include the set

of Activities launched since the last garbage collection event. Timeliner also recovered

Activities that survived garbage collection. Out of these Activities that survived the

garbage collection event, a few of them also get ordered as they were part of a joinable

local ordering. Note that there are two garbage collection events because of memory

allocation requests (GC_FOR_ALLOC) at 44 and 82 minutes, respectively.

In a criminal investigation, a device’s past usage will blend both idle and active

periods, but in either case this is an ample time window to capture the details of a

crime carried out on a smartphone.

30

Table 2.2.: Recovery by Timeliner under Garbage Collection.

Time

(min-

utes)

Total

Activi-

ties

Activi-

ties

Since

GC

Activi-

ties

Recov-

ered

Activi-

ties

Ordered

0 1 0 1 0

10 8 7 8 7

20 11 10 11 10

30 15 14 15 14

40 17 16 17 16

GC_FOR_ALLOC at t = 44 minutes

50 23 6 8 7

60 28 11 13 12

70 31 14 16 15

80 34 17 19 18

GC_FOR_ALLOC at t = 82 minutes

90 41 7 10 8

100 46 12 15 13

110 50 16 19 17

31

Table 2.3.: Timeline Reconstruction for Micro-Benchmark Experiments across Dif-

ferent Devices.

Device

Experi-

ment

Set

Activity

Count

Dura-

tion

(Min-

utes)

Activi-

ties

Recov-

ered

Activi-

ties

Ordered

Root

Struc-

tures

Residual

Struc-

tures

Local

Order-

ings

Number

of

Time-

lines

Kendall-

Tau

Distance

Samsung S4

Set A 15 39 17 16 91 6526 4 1 0

Set B 13 37 14 14 77 5584 2 1 0

Set C 16 51 18 16 95 6218 5 1 0

Set D 12 22 13 12 65 4881 4 1 0

Set E 13 34 15 14 81 5079 3 1 0

Set F 15 45 16 15 86 6049 5 1 0

LG G3

Set G 14 38 16 15 85 5427 5 1 0

Set H 16 42 18 16 94 6395 4 1 0

Set A 15 33 17 16 92 6241 4 1 0

Set I 14 28 16 14 83 5280 5 1 0

Set J 15 37 16 16 97 6429 3 1 0

Set B 13 28 15 14 78 5227 3 1 0

Moto G3

Set G 14 35 15 14 83 5016 4 1 0

Set D 12 28 15 13 70 4589 3 1 0

Set C 15 57 16 15 88 5782 5 1 0

Set I 14 39 16 14 87 5296 4 1 0

Set A 15 41 17 16 85 5721 5 1 0

Set H 14 48 15 14 83 5192 3 1 0

32

Ta
bl
e
2.
4.
:
E
xp

er
im

en
t
Se
ts

fo
r
M
ic
ro
-B

en
ch
m
ar
ks
.

E
xp

er
im

en
t

Se
t

Se
qu

en
ce

of
A

ct
iv

it
ie

s
(R

an
do

m
ly

C
ho

se
n

fo
r

M
ic

ro
-B

en
ch

m
ar

ks
)

Se
t
A

La
un

ch
er
→

W
ha

ts
A
pp

{
C
on

ve
rs
at
io
n
→

H
om

eA
ct
iv
ity
→

C
on

ve
rs
at
io
n
→

V
oi
pA

ct
iv
ity
→

C
on

ve
rs
at
io
n
→

C
am

er
aA

ct
iv
ity
→

C
on

ve
rs
at
io
n
}
→

La
un

ch
er
→

G
m
ai
l{

C
on

ve
ra
st
io
nL

is
tA

ct
iv
ity
→

C
om

po
se
A
ct
iv
ity

G
m
ai
l}
→

La
un

ch
er
→

D
ow

nl
oa
ds
{
F
ile
sA

ct
iv
ity
→

Sh
ar
eA

ct
iv
ity

}
→

La
un

ch
er

Se
t
B

La
un

ch
er
→

Sk
yp

e{
H
ub

A
ct
iv
ity
→

C
on

ta
ct
D
ir
ec
to
ry
Se
ar
ch
→

C
on

ta
ct
P
ro
fil
eA

ct
iv
ity
→

C
on

ta
ct
E
di
tA

ct
iv
ity

}
→

La
un

ch
er
→

D
ia
le
r{

C
al
lL
og
A
ct
iv
ity
→

C
al
lD

et
ai
lA
ct
iv
ity
→

P
eo
pl
eA

ct
iv
ity
→

In
C
al
lA
ct
iv
ity

}
→

La
un

ch
er
→

N
et
fli
x{

H
om

eA
ct
iv
ity
→

P
la
ye
rA

ct
iv
ity

}

Se
t
C

La
un

ch
er
→

W
eC

ha
t{

La
un

ch
er
U
I
→

C
ha

tt
in
gU

I
→

V
id
eo
A
ct
iv
ity
→

Se
le
ct
C
on

ta
ct
U
I
→

Si
ng

le
C
ha

tI
nf
oU

I
→

C
on

ta
ct
In
fo
U
I
}
→

La
un

ch
er
→

Si
gn

al
{
C
on

ve
rs
at
io
nL

is
t
→

C
on

ve
rs
at
io
n
→

G
ro
up

C
re
at
e
}
→

La
un

ch
er
→

Si
gn

al
{
G
ro
up

C
re
at
e
→

C
on

ta
ct
Se
le
ct
io
n
}
→

La
un

ch
er
→

G
m
ai
l{

C
on

ve
rs
at
io
nL

is
t
→

G
m
ai
lP
re
fe
re
nc
e
}
→

La
un

ch
er

Se
t
D

La
un

ch
er
→

M
es
sa
gi
ng

{
C
on

ve
rs
at
io
nL

is
t
→

C
on

ve
rs
at
io
n
}
→

La
un

ch
er
→

M
es
sa
gi
ng

{
C
on

ve
rs
at
io
n
→

P
eo
pl
eA

nd
O
pt
io
ns

}
→

D
ia
le
r{

In
C
al
lA
ct
iv
ity

}
→

La
un

ch
er
→

C
ha

se
{
A
cc
ou

nt
sA

ct
iv
ity
→

B
ill
P
ay

A
dd

St
ar
tA

ct
iv
ity
→

B
ill
P
ay

A
dd

V
er
ify

A
ct
iv
ity

}
→

La
un

ch
er

Se
t
E

La
un

ch
er
→

N
et
fli
x{

H
om

eA
ct
iv
ity
→

Se
ar
ch
A
ct
iv
ity
→

Sh
ow

D
et
ai
ls
A
ct
iv
ity
→

P
la
ye
rA

ct
iv
ity

}
→

La
un

ch
er
→

W
ha

ts
A
pp

{
H
om

eA
ct
iv
ity
→

G
ro
up

M
em

be
rS
el
ec
to
r
→

N
ew

G
ro
up
→

C
on

ve
rs
at
io
n
}
→

La
un

ch
er
→

D
ow

nl
oa
ds
{
F
ile
sA

ct
iv
ity

}
→

La
un

ch
er

Se
t
F

La
un

ch
er
→

Si
gn

al
{
C
on

ve
rs
at
io
nL

is
tA

ct
iv
ity
→

C
on

ve
rs
at
io
nA

ct
iv
ity
→

D
oc
um

en
ts
A
ct
iv
ity
→

R
ed
P
ho

ne
}
→

La
un

ch
er
→

Sk
yp

e{
H
ub

A
ct
iv
ity
→

P
re
C
al
lA
ct
iv
ity
→

H
ub

A
ct
iv
ity
→

C
on

ta
ct
P
ro
fil
eA

ct
iv
ity

}
→

La
un

ch
er
→

C
ha

se
{
A
cc
ou

nt
sA

ct
iv
ity
→

B
ill
P
ay

H
is
to
ry
A
ct
iv
ity
→

Q
ui
ck
P
ay
To

do
Li
st
A
ct
iv
ity

}
→

La
un

ch
er

Se
t
G

La
un

ch
er
→

G
m
ai
l{

C
on

ve
ra
st
io
nL

is
tA

ct
iv
ity
→

C
om

po
se
A
ct
iv
ity

G
m
ai
l}
→

La
un

ch
er
→

D
ia
le
r{

C
al
lL
og
A
ct
iv
ity
→

P
eo
pl
eA

ct
iv
ity

}
→

La
un

ch
er
→

D
ia
le
r{

P
eo
pl
eA

ct
iv
ity
→

B
lo
ck
ed
N
um

be
rs
A
ct
iv
ity
→

In
C
al
lA
ct
iv
ity

}
→

La
un

ch
er
→

D
ow

nl
oa
ds
{
F
ile
sA

ct
iv
ity
→

U
pl
oa
dA

ct
iv
ity

}
→

La
un

ch
er

Se
t
H

La
un

ch
er
→

C
ha

se
{
H
om

eA
ct
iv
ity
→

A
cc
ou

nt
sA

ct
iv
ity
→

A
le
rt
sH

is
to
ry
A
ct
iv
ity
→

F
in
dB

ra
nc
hA

ct
iv
ity
→

Lo
ca
ti
on

In
fo
A
ct
iv
ity
→

A
cc
ou

nt
sA

ct
iv
ity

}
→

La
un

ch
er
→

D
ia
le
r{

C
al
lL
og
A
ct
iv
ity
→

C
al
lD

et
ai
lA
ct
iv
ity
→

P
eo
pl
eA

ct
iv
ity

}
→

La
un

ch
er
→

W
ha

ts
A
pp

{
H
om

eA
ct
iv
ity
→

C
on

ve
rs
at
io
n
→

V
oi
pA

ct
iv
ity
→

C
am

er
aA

ct
iv
ity

}

Se
t
I

La
un

ch
er
→

Sk
yp

e{
H
ub

A
ct
iv
ity
→

P
re
C
al
lA
ct
iv
ity
→

C
on

ta
ct
P
ro
fil
eA

ct
iv
ity

}
→

La
un

ch
er
→

Si
gn

al
{
C
on

ve
rs
at
io
nL

is
tA

ct
iv
ity
→

C
on

ve
rs
at
io
nA

ct
iv
ity
→

R
ed
P
ho

ne
→

N
ew

C
on

ve
rs
at
io
nA

ct
iv
ity
→

C
on

ve
rs
at
io
nA

ct
iv
ity
→

D
oc
um

en
ts
A
ct
iv
ity

}
→

La
un

ch
er
→

G
m
ai
l{

C
on

ve
rs
at
io
nL

is
tA

ct
iv
ity
→

G
m
ai
lP
re
fe
re
nc
eA

ct
iv
ity

}

Se
t
J

La
un

ch
er
→

W
ha

ts
A
pp

{
H
om

eA
ct
iv
ity
→

G
ro
up

M
em

be
rS
el
ec
to
r
→

N
ew

G
ro
up
→

C
on

ve
rs
at
io
n
}
→

La
un

ch
er
→

Sk
yp

e{
H
ub

A
ct
iv
ity
→

C
on

ta
ct
D
ir
ec
to
ry
Se
ar
ch
→

C
on

ta
ct
P
ro
fil
e
→

C
on

ta
ct
E
di
t
}
→

La
un

ch
er
→

N
et
fli
x{

H
om

eA
ct
iv
ity
→

Se
ar
ch
A
ct
iv
ity

}
→

La
un

ch
er
→

N
et
fli
x{

Se
ar
ch
A
ct
iv
ity
→

Sh
ow

D
et
ai
ls
A
ct
iv
ity
→

P
la
ye
rA

ct
iv
ity

}

33

2.3.2 Micro-Benchmarks

To evaluate Timeliner’s reconstruction capability, this section presents micro-

benchmark results measured during Timeliner’s recovery across a variety of memory

images. For this recovery, the authors interacted with the sets of Activities described

in Table 2.1. The activities in the applications were launched following one of ten

random sequences, the exact sequences of launches are detailed in Sets A through

J in Table 2.3. We performed six experiments on each of the three devices, each

experiment using a different activity sequence taken from the defined ten random

sequences. Each Activity in a sequence is started and left on the screen for a varying

amount of time, around two to three minutes. To mitigate the effect of garbage col-

lection on these micro-benchmarks, we initiated a garbage collection before starting

each experiment. Memory images were captured by a custom handler invoked at the

next garbage collection event, implemented by instrumenting the internal garbage

collection event handler.

To verify the accuracy of Timeliner’s recovery, we compared the reconstructed

timeline with the original list of Activities. The ground truth about Activity launches

was captured by profiling the ActivityManagerService process. We stored the ad-

dresses of the allocated Activity-launch related data structures along with the origi-

nal timeline of the activities. The allocated data structures were stored to correctly

identify recovered activities from the original sequence and this timeline was used to

verify Timeliner. Note that Timeliner did not need nor have access to this ground

truth information and reconstructed Activity timelines completely oblivious to our

external measurement.

Table 2.3 provides a summary of the micro-benchmark results from these exper-

iments. The first column shows the device the experiment was run upon and the

experiment set used, followed by Activity Count and Duration of the ground truth

timeline. The fourth and fifth columns list the number of Activities recovered and

the number of Activities ordered by Timeliner. Next two columns present recovery

34

metrics: the total number of roots and residual data structures recovered. The eighth

and the ninth columns show the number of local orderings recovered and the number

of possible timelines in the global ordering and the last column compares the original

ground truth to the recovered timeline (minus Activities not in the ground truth) via

Kendall-Tau distance [32]. Kendall-Tau distance compares two ordered lists and cal-

culates the number of pairwise disagreements between them. This is a good measure

for a timeline as the more displaced an activity is from its correct position, the higher

the Kendall-Tau distance (therefore a minimal distance value is best). Finally, the

exact sequence of Activities in the 10 experiment sets is presented at the bottom of

Table 2.3.

First, from Table 2.3, observe that for some cases like Set C in Samsung, Set J in

LG, and Set C and Set H in Motorola, the Activity count in the experiment is less

than the number of Activities in the experiment set. This is because in these cases, a

garbage collection event was triggered before the sequence of Activities was finished.

Hence, a smaller set of Activities is taken from the experiment set. For other cases,

if the sequence was finished without a garbage collection event, one was triggered

manually.

Even though garbage collection is triggered manually in some cases, the workload

in Table 2.3 is quite similar to the one in Section 2.3.1. For example, the number

of Activities in the original timeline varies from 12 to 16 with an average of 14.16

Activities per experiment, similar to what was observed in Section 2.3.1. Similarly,

the time duration varies from 22 to 57 minutes with an average of 37.88 minutes,

again similar to the observed results in Section 2.3.1.

The results of the micro-benchmarks are also quite similar to the results from

Section 2.3.1. For example, just like in Table 2.2, Timeliner recovers more Activities

than the ones that were raised after the last garbage collection event because some

Activities will survive garbage collection. While not all Activities can be ordered

because of loss of spatial and temporal information, some local orderings are joinable.

This allows Timeliner to order more Activities than were in the experiment set. For

35

the micro-benchmarks, Timeliner recovers 13 to 18 Activities with an average of 15.83

Activities per experiment. The global orderings generated by Timeliner contain 12

to 16 Activities with an average of 14.67 Activities per experiment.

Looking at the data structure metrics, we see that Timeliner recovers an average

of 84.44 root data structures per experiment, which equals 5.33 roots per recovered

Activity. Similarly, Timeliner recovers an average of 5607.33 residual data structures

per experiment, which leads to 354.15 residual data structures per recovered Activity.

These averages are roughly constant across the various experiments, implying that

the residual data structures are (roughly) application-generic.

We also compare the metrics across the three devices. On average, the Samsung

device yields 14.33 Activities over 38 minutes, while LG has 14.83 Activities over 34.33

minutes, and Motorola has 14.83 Activities over 41.33 minutes. We also observe that

(per-Activity) the Samsung device yields an average of 369.21 residual data structures,

LG has an average of 357.13 residual data structures, and Motorola an average of

336.12 residual data structures, which follow the earlier observations that there are

roughly similar number of residual data structures per activity even across devices.

The similarity of these results gives us confidence that vendor-customizations rarely

affect both low-level primitives of memory allocation and application-generic residual

data structures.

Finally, we compare the metrics that pertain to ordering, namely local orderings,

number of possible timelines in the global ordering and the Kendall-Tau distance. As

we can see, we get a few local orderings, varying from 2 to 5 for different experiments.

From the other two metrics, it is visible that Timeliner is highly successful in ordering

the Activities. Not only is Timeliner highly precise, with 1 unique timeline in the

global ordering of every experiment, it is also highly accurate with the Kendall-Tau

distance for all the experiments being equal to zero. In other words, Timeliner is able

to perform perfect recovery of the Activity timeline.

The accuracy of Timeliner, while surprising, is intuitive as there are no spatial (and

hence temporal) ambiguities because of the following two properties: (1) application-

36

generic residual data structures contain a large number of objects spread across shared

and thread-local runs, ensuring unambiguous spatial ordering, and (2) a complete

global ordering of the Activities after the last garbage collection event is ensured by

their local orderings being joinable (because of the “first-available” algorithms).

Next, we show that Timeliner’s design is generic and applicable across various

Android versions and even other memory allocators.

2.3.3 Design Generality

While Timeliner is implemented within a specific Android platform, Timeliner’s

design and operation is generic, and Timeliner is immediately applicable across the

newest and most widely used Android versions. The devices in this evaluation all

use different Android platforms: the Samsung running Android 5.0, LG running

Android 5.1, and Android 6.0 running on the Motorola. These versions comprise

61.5% of the current Android devices and represent a wide variety of available Android

smartphones [33].

Timeliner’s generic design is due to a robust set of root data structures used to

identify the residual data structures. The same set of root data structures is highly

efficient because the Activity launch logic is similar across various Android versions.

Further, Timeliner can also be applied to memory allocators other than RosAlloc, as

many other memory allocators also perform “first-available” allocations.

Extension to jemalloc. jemalloc is a memory allocator widely used across prod-

ucts such as Firefox, Cassandra, Redis, among many others [34]. Our investigation

reveals that jemalloc (without thread caching) also utilizes a similar design to RosAl-

loc, with a “first-available” algorithm for memory allocation. In particular, we discuss

the design and extension of Timeliner to mozjemalloc [35], a modified implementation

of jemalloc used across various Mozilla products such as Firefox and Thunderbird.

The following discussion is based on the mozjemalloc version bundled as the default

memory allocator in Firefox 55.0.

37

bins runs

runCurrent

Bin

Run Next runCurrentArena
(Thread local)

Empty Region Filled Region

Red-Black Tree

B

C

A

D E

B

AA

C

B

D E

Transition Graph Global Ordering

Figure 2.7.: mozjemalloc Design and Simulated Results.

The design of mozjemalloc is shown in Figure 2.7, with allocations stored in Re-

gions (slots in RosAlloc) and regions of same size organized in Runs. Runs with

allocations of the same size are placed in bins, and bins are placed in a (thread-local)

Arena. Each bin has a current run to allocate from, with the rest of the runs (that

have free Regions) organized in a red-black tree. The algorithms utilize a bitmap for

“first-available” Region allocation. New runs are also allocated in accordance to a

“first-available” algorithm, utilizing a red-black tree.

To evaluate Timeliner’s recovery on mozjemalloc, we simulate Activity launches

by following the allocation size distribution from Figure 2.3, spread out evenly across

two threads in mozjemalloc. We simulated five Activity launches on mozjemalloc,

which was initialized with five threads, and inferred their transitions with Timeliner—

applying the same spatial-temporal principle from before. Timeliner constructed and

38

topologically sorted a transition graph for the Activities in order to reconstruct the

global ordering shown in Figure 2.7. As the figure illustrates, there was an ambiguity

in the order of Activities, with the two possible timelines shown.

While Timeliner is designed to recover user actions (Activities), it is not limited

to them. We extended Timeliner to recover and order app actions (BroadcastReceiver

callbacks on system events) carried out through Intents and BroadcastRecord objects.

These interactions are lightweight and do not produce the plethora of data structures

created by Activities. As such, we end up with a small number of residual data

structures which are also limited to allocations in the smaller-sized thread-local runs.

This implies that for two Broadcasts, there can be a spatial ambiguity similar to

what was observed in mozjemalloc. Note that as an Activity generates residual data

structures spread across various threads, making it very likely that an Activity and a

Broadcast share several thread-local runs, it enables Timeliner to infer spatial ordering

between an Activity and a Broadcast. The next section demonstrates this in our case

study of a spyware attack investigation.

2.3.4 Case Study: Spyware Attack Investigation

Being the most widely used smartphone platform, Android has increasingly been

targeted by various sophisticated spyware attacks [36,37]. Spyware has recently been

employed by nation states targeting journalists and activists [38] and even by abusive

spouses to monitor their families [39]. Modern spyware are extremely stealthy and

sometimes do not even require physical access for installation, relying on drive-by

downloads and vulnerabilities. These spyware track the victim’s calls, texts, app

usage, and smartphone features such as keyboard inputs, location, microphone, and

camera. In this case study, we examine the capability of Timeliner to recover the

actions of TheOneSpy [40], a commercially available spyware application.

Unknown to the victim (“John”), his smartphone has been infected with TheOne-

Spy. While on his way to a confidential meeting, John receives a text reminder for

39

Communication
Receiver

Conversation
Activity

CallRecorder
Receiver

InCall
Activity

FrontCamera
Activity

Compose
ActivityGmail

VideoTime
Receiver

StopRecording
Receiver

SMS Spying
Service

Call Spying
Service

Camera-Picture
Spying Service

Camera-Video
Spying Service

Microphone-Audio
Spying Service

Figure 2.8.: Recovered Transition Graph for Spyware Attack.

the meeting and an incoming call for the meeting location. During the meeting, John

receives an email for which he initiates a response. However, he notices that the

keyboard has been changed from the default (Android Keyboard) to a custom one,

which is visually differentiable. A quick investigation in the smartphone’s settings

reveals that the custom keyboard is the spyware’s keylogger, and the spyware has ac-

cess permissions for the microphone and camera. To confirm the spyware’s activity,

a memory image is taken and analyzed with Timeliner.

For this case study, we consider only those Activities and Broadcasts that are

relevant to the spyware application. Timeliner recovers 9 Activities/Broadcasts with

26 roots and 1638 residual data structures, with one occurring before the last garbage

collection. Two local orderings are combined to form a single global ordering, with

40

two possible timelines. Note that the Kendall-Tau distance of the two timelines are

0 and 1 — as the ground truth is one of the possible timelines.

The deduced transition graph is shown in Figure 2.8. The two possible timelines

are shown in Table 2.5 starting with a Broadcast receiver CommunicationReceiver

on the spyware and the user opening a text with ConversationActivity. Following

these is another Broadcast receiver CallRecorderReceiver and the user answering the

call with InCallActivity. Next, there are a few spyware Activities/Broadcasts: Front-

CameraActivity, VideoTimeReceiver, and StopRecordingReceiver. Finally, there is a

ComposeActivityGmail Activity as the user replies to the email. While the names are

quite verbose, a quick look at the spyware bytecode confirms that Communication-

Receiver and CallRecorderReceiver are used for spying on incoming texts and calls,

respectively. FrontCameraActivity, VideoTimeReceiver, and StopRecordingReceiver

are used for remotely recording pictures, videos, and audio, respectively. The confir-

mation of the spying activity makes it highly likely that the secrecy of the meeting

had been compromised.

Finally, note that while there is a spatial and hence a temporal ambiguity between

the two Broadcasts, Timeliner still establishes a sufficient evidence of the meeting

being compromised — as the remote video recording and audio recording is contained

between the phone call and the received email. Both timelines are shown in Table 2.5.

Next, we show the application of Timeliner in a few crime scenarios where the

culprit is a human (instead of spyware).

2.3.5 Case Study: Military Espionage

Timeliner is particularly useful in investigating misuse of mobile devices in secured

environments such as a Sensitive Compartmented Information Facility (SCIF) where

personal mobile devices are not allowed and commonly, a locker is provided outside the

SCIF where mobile phones can be secured, or they are left in the employee’s car. Our

case study is motivated by real espionage cases, such as the prosecution of Air Force

41

Table 2.5.: Results for Case Studies on Motorola G3.

Case Study Activity Count

Dura-

tion

(Min-

utes)

Activi-

ties

Recov-

ered

Activi-

ties

Ordered

Root

Struc-

tures

Residual

Struc-

tures

Local

Orderings

Number

of

Timelines

Kendall-

Tau

Distance

Spyware Attack 8 27 9 8 26 1638 3 2 {0,1}

Military Espionage 18 36 19 18 112 7151 5 1 0

Distracted Driving 17 16 18 17 92 6259 3 1 0

Kidnapping

Investigation
18 41 19 18 101 6879 5 1 0

Table 2.6.: Timelines Recovered in Case Studies.

Case Study Recovered Timelines

Spyware Attack

Spyware{ CommunicationReceiver } → Messaging{ Conversation } → Spyware{ CallRecorderReceiver }

→ Dialer{ InCallActivity } → Spyware{ FrontCameraActivity → VideoTimeReceiver →

StopRecordingReceiver } → Gmail{ ComposeActivityGmail }

Spyware{ CommunicationReceiver } → Messaging{ Conversation } → Spyware{ CallRecorderReceiver }

→ Dialer{ InCallActivity } → Spyware{ FrontCameraActivity → StopRecordingReceiver →

VideoTimeReceiver } → Gmail{ ComposeActivityGmail }

Military Espionage

Signal{ RedPhone → ConversationActivity } → Launcher → CameraActivity → ChooserActivity(share)

→ WhatsApp{ ContactPicker → Conversation → ImagePreview → Conversation } → Launcher →

FileBrowser{ FileBrowserActivity → TaskProgressActivity(delete) → FileBrowserActivity } →

Launcher → Messaging{ Conversation } → Launcher → Chase{ HomeActivity → AccountsActivity }

Distracted Driving

Maps{ MapsActivity } → RecentsActivity → Netflix{ HomeActivity → SearchActivity →

MovieDetailsActivity → PlayerActivity } → Launcher → Dialer{ DialContactsActivity → InCallActivity

→ DialContactsActivity } → Launcher → Netflix{ PlayerActivity → MovieDetailsActivity

→ SearchActivity → HomeActivity } → Launcher → RecentsActivity

CameraActivity → Launcher → Skype{ HubActivity → PreCallActivity → HubActivity } → Launcher

Kidnapping → Messaging{ ConversationListActivity → ConversationActivity } → Launcher → Skype{ HubActivity

Investigation → PreCallActivity → HubActivity } → Launcher → Maps{ MapsActivity } → Launcher →

Facebook{ PickerLauncherActivity → ComposerActivity → FbMainTabActivity }

Intelligence Officer Brian Regan [41] or that of Gillette employee Steven Davis [42]

who were prosecuted for stealing classified national documents and corporate secrets

respectively.

Our perpetrator Skip was hired as a defense contractor, working on a classified

project for a federal agency, with routine access to sensitive documents. One day,

after attempting to access classified information unrelated to his job, he checked out

42

of the SCIF and walked around the parking lot of the facility. Alerted to the recent

unauthorized attempts to access classified information, security personnel followed

Skip into the parking lot, where they determined that he was carrying a mobile

phone.

The security personnel use Timeliner to determine the timeline of Skip’s recent

actions. As it turns out, Skip received a secure call (RedPhone) just before he checked

into the SCIF. After entering the SCIF, he used the Camera app (CameraLauncher)

in his phone to take some photographs. These photographs were then sent over What-

sApp (ChooserActivity(share)) after he exited the SCIF and then summarily deleted

(TaskProgressActivity(delete)). For selling the classified information, he received a de-

posit in his bank account, resulting in a text message (ConversationActivity), which

he verified by opening the Chase Banking app (AccountsActivity). This timeline was

deemed incriminating and Skip was then arrested and charged. As Table 2.5 shows,

Timeliner recovers 19 Activities, 112 roots, and 7151 residual data structures for this

timeline.

This case study demonstrates how important a timeline of user-actions is to an

investigation. A traditional content recovery alone would be extremely limited as the

photographs of the classified documents were deleted by Skip, severely limiting an

investigation relying on content. Timeliner, on the other hand, provides conclusive

proof of photographs being taken, shared, and then deleted.

We acknowledge that federal authorities are currently more likely to have the

expertise and resources to react quickly enough to use Timeliner to retrieve actionable

evidence before the detrimental effects of garbage collection occur, as in Skip’s case

above. However, with proper resources and training, Timeliner is also usable in a

variety of scenarios by local and state authorities. The next case studies explore two

such very important potential uses.

43

2.3.6 Case Study: Distracted Driving

In this case study we consider the problem of distracted driving. Specifically, using

a smartphone while driving, which accounts for roughly 18% [43] of all injury-inducing

automotive crashes. This situation is becoming so severe, that akin to a breathalyzer

test, the state of New York is considering a Textalyzer law [44]. This law shall allow

a police officer to conduct on-the-spot forensic analysis of a smartphone to determine

if a driver was distracted while driving. Traditional techniques focus only on app-

specific events, limited mostly to text/call/email/browsing logs [45]. On the other

hand, Timeliner’s app-agnostic capabilities work without temporal logs and provide

much stronger proof of a driver’s suspected distraction while driving.

We base this case on an accident involving a Tesla vehicle [46] where the driver

was determined to be watching a movie after putting the car into the AutoPilot mode,

which would clearly be classified as distracted driving. In our case study, the driver

called roadside assistance after an accident. The police arrive a few minutes later and

notice the “recent apps” screen on the driver’s smartphone. Suspecting termination

of an application they image the smartphone memory.

Table 2.5 shows that Timeliner recovered all 17 Activities that the driver used

during the course of this case study via recovering three local orderings with 92 root

and 6259 residual data structures. In the reconstructed timeline, investigators can

see that the driver was first running the MapsActivity in Google Maps. At some

point, the driver started Netflix with HomeActivity, followed by SearchActivity and

MovieDetailsActivity, and finally playing a video with the PlayerActivity. Then the

driver goes to the Dialer app and places a phone call, which was identified as the call to

roadside assistance using call logs. After the call, the driver restarts the Netflix app,

but backs out of all activities and finally terminates the app from the RecentsActivity.

The timeline confirms that the Netflix video was playing before the call to roadside

assistance (and hence before the accident) was placed, but was terminated afterwards

to hide the incriminating actions. Timeliner’s ability to generate a timeline to pre-

44

cisely capture user actions across several applications — even in the face of deliberate

app termination to hide evidence — is essential in this case. Timeliner is able to recon-

struct the evidence solely from the phone’s memory and termination of applications

by the user does not hinder the recovery of actionable evidence.

2.3.7 Case Study: Kidnapping Investigation

Mobile phone investigations have aided in the apprehension of numerous criminals,

and being a memory forensics technique, Timeliner can be used to quickly focus

an investigation. We base this case study loosely on the real kidnapping/murder

investigation detailed in [47]. Described as a “kidnapping gone wrong”, the victim

was bound using duct tape, and unfortunately she died from asphyxiation before a

fake “rescue” the kidnapper had planned could take place.

In our case study, the kidnapper (“Kyle”) and an accomplice (“Fred”) force the

victim (“Sally”) into a pickup truck. A passerby (who identified Sally) quickly informs

the police and the police identify Kyle as matching the description of the kidnapper.

Kyle, located by the police at his residence, claimed he did not leave his house and

showed his recent social media uploads (a photo at home) as proof.

A field-investigation of his phone, with the aid of Timeliner, reveals his actions in

the recent past (shown in Table 2.5). Timeliner recovers 19 Activities with 101 roots

and 6879 residual data structures. Joining three of the local orderings, Timeliner is

able to precisely and accurately recover the timeline. The timeline shows that Kyle

took the “alibi” photo with CameraLauncher, but did not post it immediately. Instead,

he used the Skype app to call a person (PreCallActivity), then message Sally over

text (ConversationListActivity and ConversationActivity), followed by another call

via Skype. Then he used Google Maps (MapsActivity) to navigate and then finally

posts the “alibi” photo to Facebook (PickerLauncherActivity and ComposerActivity).

The police identify the Skype call recipient as Fred via Skype logs and obtain clearance

45

to deploy Stingrays (“IMSI catcher” devices) against Fred’s number. This allows them

to rapidly find both Sally and Fred in a nearby wooded area.

This case study demonstrates how Timeliner complements the traditional content

recovery forensics. While the accomplice is identified by Skype logs on the smart-

phone, and the message recipient is identified as Sally with messaging logs, Timeliner

provides the incriminating evidence of fake “alibi” photograph being taken before the

Skype calls, which raises suspicion and provides enough proof to deploy Stingrays.

2.4 Discussion

As Timeliner relies on the observation that a temporal ordering in allocations

produces a spatial ordering, any attempt by a device owner or an app to hide their

actions must attack either the recovery of residual data structures or change the

allocator’s deterministic behavior.

However, as Timeliner focuses on only the ActivityManagerService process, sep-

arate from the apps, erasing evidence by modifying records or running garbage col-

lection is not possible for even the most technically advanced criminals or privacy

sensitive app developers. The only way a device owner may affect the ActivityMan-

agerService is to flash a custom “Timeliner-aware” Android runtime system onto their

device — which is both technically difficult (modifying Android’s internals) and risky

(may “brick” the device).

One way an app developer can avoid Timeliner’s recovery is by not utilizing Activ-

ities, and building their own functionality to emulate Android’s Activity stack (e.g.,

by intercepting back keypresses). However, this is a prohibitively cumbersome process

for most app developers and has only been implemented in a few apps including cer-

tain web browsers and gaming apps due to strict performance requirements. Further,

this also prevents an apps’ interaction with other apps, for example – File Browser

can directly share a file with the Gmail app (using an Intent for the ComposeActivity)

but not with the gmail website opened on the Chrome browser app.

46

2.5 Summary

Targeting the problem of re-sequencing an Android device user’s past actions,

we present Timeliner, a memory forensics technique that reconstructs a timeline of

Activities across all apps (including those which have terminated) that were performed

on the device. Starting from the set of data structures left in a memory image by past

Activity launches, Timeliner infers Activity transitions based on the relative memory

layout of those data structures. Our results show that Timeliner is highly accurate

in reconstructing past activities of a user. Moreover, we show through a suite of case

studies that Timeliner is applicable to a variety of crime investigation scenarios.

47

3 “ONE AND ONE MAKE ELEVEN”: ACCOMPLICE-ASSISTED

MASQUERADE ATTACK ON CAN

The controller area network (CAN) is a wired broadcast network widely utilized in

modern automobiles and other automatic control systems to enable real-time com-

munication among electronic control units (ECUs). As automobiles become more

connected, various attack surfaces for adversaries [6–8, 10, 13, 14] have opened up,

allowing compromise of in-vehicle ECUs. After gaining foothold in an ECU, the at-

tacker can carry out a variety of attacks [8, 9, 13–15] over the CAN bus, which lacks

mainstream network security capabilities due to resource constraints. In particular,

a compromised ECU (e.g., Telematics Control Unit) may impersonate a benign ECU

(e.g., Engine Control Unit) that cannot be directly compromised, and forge the lat-

ter’s CAN messages to disrupt safety-critical functions (e.g., engine speed). We call

such attacks ECU masquerade attacks.

To defend against ECU masquerade attacks, various CAN intrusion detection

systems (IDS) have been proposed to detect malicious/compromised ECUs on an au-

tomobile CAN [21]. The IDS approach is the dominant CAN defense because an IDS

runs as an independent entity on the CAN bus and does not burden the resource-

constrained ECUs/network with non-trivial computation/communication overhead.

Traditional message (anomaly)-based IDS (MIDS) [11,22,23] utilize features such as

message frequency and payload values to identify anomalies on CAN. Modern state-

of-the-art CAN IDS leverage physical characteristics of ECUs, such as clock-skew

(CIDS [21]) and voltage (VIDS [18–20, 48]), to determine if a message is generated

by a legitimate ECU. While MIDS and CIDS have been shown vulnerable to per-

sistent attackers [21, 49], VIDS have been proved highly effective in detecting ECU

masquerade attacks, due to the robustness and non-imitability of an ECU’s voltage

fingerprint. Particularly, VIDS equipped with high-frequency voltage sampling, virtu-

48

ally put the CAN traffic under a “microscope” for high-resolution voltage monitoring

and attacker detection. As such, they are being actively researched by the automotive

industry, e.g., the VIDS called Scission [18] has been developed by Bosch that is also

the developer of the CAN standard [50].

In this paper, we present a novel masquerade attack strategy called Duet which

evades the state-of-the-art VIDS. As its name indicates, Duet involves a duo of

“attacker” and “accomplice” ECUs, which work together to manipulate, silence and

then impersonate a victim ECU. Different from the “lone wolf” style (i.e., by a single

attacker ECU) of existing masquerade attacks, the duo assist each other to evade

VIDS detection. Duet follows a three-stage attack strategy, which includes volt-

age fingerprint manipulation, persistent victim bus-off, and voltage fingerprint-based

impersonation. In each stage, either the attacker ECU (or “attacker” for short) or

accomplice ECU (accomplice) plays the primary attacking role whereas the other one

covers up their activities from VIDS.

Duet first performs voltage fingerprint manipulation (Stage 1) in which the at-

tacker, with the help of the accomplice, transmits simultaneously with the victim

and stealthily corrupts the voltage fingerprints of the victim’s messages. In the pro-

cess, by gradually poisoning its training set, Duet tricks the VIDS into learning a

distorted fingerprint of “victim + attacker”. Thereafter, whenever spoofed messages

need to be sent, Duet performs persistent victim bus-off (Stage 2) in which the duo

induce transmission errors in the victim’s messages and force the victim to stop all

its transmissions on the CAN bus. Finally, Duet performs voltage fingerprint-based

impersonation (Stage 3) in which the accomplice sends the spoofed messages while

the attacker corrupts their voltage fingerprints. Duet ensures that the VIDS classi-

fies the distorted fingerprint of “accomplice + attacker” as the distorted fingerprint of

“victim + attacker”. Hence, execution of the three Duet stages leads to a stealthy,

advanced persistent threat (APT)-style masquerade attack.

Duet employs two new attack tactics that exploit fundamental deficiencies of the

CAN protocol: (1) Voltage corruption enables the attacker to transmit simultane-

49

ously with the victim and accomplice, and corrupt their voltage samples in Stages 1

and 3 of Duet, respectively. This tactic exploits the periodicity of CAN messages,

the predictability of CAN message content and the “one-shot transmission mode” of

CAN controllers. (2) Passive error regeneration exploits a flaw in the error handling

mechanism of CAN, allowing regeneration of an error by blocking the transmission

for the original error. This tactic causes a flash flood of errors which stealthily and

swiftly silences the victim in Stage 2 of Duet.

We highlight that Duet exploits common deficiencies of the CAN protocol and

characteristics of the CAN traffic. Hence Duet can be launched against any automo-

bile employing the CAN bus. Also, in Stage 1 of Duet, the attacker superimposes its

attack message over the victim’s message and distorts the victim’s voltage samples.

This enables Duet to successfully evade all state-of-the-art (training-based) VIDS,

irrespective of the features and classification algorithms used in them. Furthermore,

state-of-the-art defenses against training set poisoning [51,52] cannot prevent Duet.

To safeguard against Duet, we propose an efficient defense, called Randomized

Identifier Defense (RaID). Breaking away from the “attack vs. IDS” arms race,

RaID takes a simple, orthogonal approach by randomizing a part of the CAN mes-

sage identifier (ID). RaID ensures that the attacker in Duet will either win or lose

the arbitration while transmitting on the bus, and will not be able to transmit si-

multaneously with the victim. As a result, the attacker cannot corrupt the victim’s

voltage fingerprint or cause errors in the victim’s transmission, which prevents (not

just detects) Duet. In this way, RaID equips ECUs with the necessary tool to make

the existing VIDS effective against APT-style attacks.

We have evaluated Duet and RaID in real CAN environments, which include our

own testbed with ECU prototypes and CAN buses in two cars. Our evaluation shows

that after corrupting voltage samples corresponding to only two bytes of the victim’s

payload, Duet demonstrates an impersonation success rate of at least 76% against the

VIDS which analyzes the fingerprint of each message [18] and 95% against the VIDS

which analyzes the cumulative fingerprint of eight messages [20]. Our evaluation of

50

ID DLC DATA CRC EOF IFSSOF ACKRTR IDE RES

Figure 3.1.: Standard and extended frame formats in CAN.

RaID shows that it prevents Duet while incurring negligible computation overhead,

and no more than an increase of 13% in bus load and 50 µs in message delays during

the training mode of VIDS.

We summarize our main contributions as follows.

• We propose Duet as a three-stage masquerade attack strategy through which

a duo of attacker and accomplice evade CAN VIDS by exploiting novel tactics.

• Our analytical and evaluation results illustrate that Duet is effective against

all state-of-the-art VIDS irrespective of features and classification algorithms

utilized in them.

• We advocate the development of cost-effective defenses that break away from

the “attack vs. IDS” arms race, and propose RaID, an efficient and effective

defense, for complementing VIDS and preventing Duet.

3.1 Background

Data Transmission. In CAN, the bits 1 and 0 are called recessive and dominant

bits, respectively. CAN employs a twisted wire pair called CAN high (CAN-H) and

CAN low (CAN-L) so that the recessive (1) and dominant (0) bits are represented by

the differential (between CAN-H and CAN-L) voltages of 0 V and 2 V, respectively.

We note that the transmission of a recessive bit (with 0 V) effectively remains trans-

parent to other ECUs and the CAN bus. When multiple ECUs transmit their bits

concurrently, the resultant bit is equal to the logical AND of the transmitted bits and

the voltages on the CAN-H and CAN-L correspond to the resultant bit [50].

51

Error-
Active

Error-
Passive

Bus-off

TEC > 127

TEC 127

TEC > 255

128x11
recessive bits
or ECU reset

ECU CAN Frame
Error

Frame

Flag Delim

Flag Delim

0 1 1 1

0 1 1 0

Active Error Frame

6 Bits
Dominant

8 Bits
Recessive

6 Bits
Recessive

8 Bits
Recessive

Passive Error Frame

0 - Dominant
1 - Recessive

Bit-Error

TEC + 8

ECU

CAN Bus

Figure 3.2.: Error handling mechanism in CAN.

CAN messages are transmitted in either the standard or extended frame format

(Figure 3.1). We note that an ECU can transmit different messages with different

formats on the same bus. While a frame in the standard format is identified by an

11-bit ID-A field, a frame in the extended format is identified by a 29-bit ID which

is composed of two fields: an 11-bit ID-A field and an 18-bit ID-B field. In both

formats, the length of the data field can be from zero to eight bytes as indicated in

the data length code in the control (CTL) field.

Arbitration. The CAN protocol employs a robust arbitration procedure among

ECUs, which allows only one ECU to transmit the message payload (the data field)

on the bus. Each ECU starts transmitting on the bus by synchronizing with the

start-of-frame (SOF) field. For the ID fields, each ECU sends an ID bit on the

bus, and then reads it back from the bus. If an ECU reads a dominant bit while it

transmitted a recessive bit, it loses the arbitration, and stops transmitting. Since each

of the messages transmitted by ECUs is allotted a unique ID, only one ECU wins the

arbitration and continues to transmit the following fields including the control and

data fields.

Error Handling. Communications on CAN may be corrupted due to many factors

such as software/hardware faults and electromagnetic interference from other ECUs

52

or nearby devices. During any transmission other than the arbitration field, a bit-

error occurs when the transmitted bit is not equal to the resultant bit on the bus

(Figure 3.2). To tolerate such errors, CAN employs a unique error handling mecha-

nism: Each ECU maintains a transmit error counter (TEC). While an error detected

during transmission increases the TEC by eight, a successful transmission decreases

the TEC by one.

Based on the TEC value, the ECU enters one of the three states: error-active,

error-passive and bus-off (Figure 3.2). The ECU transitions from error-active to error-

passive state when its TEC goes beyond 127, from error-passive to bus-off state when

its TEC exceeds 255, and from bus-off to error-active either on ECU reset or on

observing 128 instances of 11 recessive bits. In the bus-off state, the ECU cannot

transmit/receive any data. As such, the ECU causing the fault is stopped from

continuously corrupting the communication.

When a bit-error occurs during transmission (Figure 3.2), the ECU will behave

differently in the error-active and error-passive states: The error-active ECU will

transmit an active error frame consisting of six dominant bits and eight recessive bits.

The error-passive ECU will transmit a passive error frame consisting of 14 recessive

bits. Also, for successive transmissions in the error-passive state, an ECU is required

to have an 8-bit suspend transmission field in addition to the regular 3-bit inter-frame

spacing (IFS) shown in Figure 3.1.

Simultaneous Transmission and Preceded ID. A simultaneous transmission

comprises of two or more concurrently transmitted messages which continue to over-

lap beyond their arbitration fields. Cho and Shin [53] showed that an attacker can

deliberately perform simultaneous transmission with a victim if the attacker synchro-

nizes its SOF field and utilizes the same message ID as a victim message. To achieve

synchronization, a preceded ID is employed [53], which is a message injected right

before the periodic transmission of a target message. The preceded ID message forces

any other message to wait for the completion of its transmission. This way, although

the victim and attacker may generate their messages at slightly different times, when

53

Attacker Accomplice Victim Attacker Accomplice Victim Attacker Accomplice VictimAttacker Accomplice Victim

Engine
Control

TCU VCIM

CAN Bus

Uncompromised
Vehicle

Stage 1
Voltage Fingerprint

Manipulation

Engine
Control

VCIM

TCU

Engine
Control

VCIM

TCU

Corrupted
CAN Frames

Engine
Control

TCU VCIM
Engine
Control

TCU VCIM
Engine
Control

TCU VCIM

Engine
Control

VCIM

TCU

Impersonated
CAN Frames

Stage 2
Persistent Victim

Bus-off

Stage 3
Voltage Fingerprint

Based Impersonation

Section 4.1 Section 4.2 Section 4.3

Engine
Control

TCU VCIM

Compromised
Vehicle

Engine
Control

VCIM

TCU
Engine
Control

VCIM

TCU

Decision
Boundary

VIDS

Feature 2

Fe
at

u
re

 1

VIDS VIDS VIDS VIDS

Fe
at

u
re

 1

Feature 2 Feature 2 Feature 2 Feature 2

Fe
at

u
re

 1

Fe
at

u
re

 1

Fe
at

u
re

 1

Figure 3.3.: Overview of a Duet attack where the Telematics Control Unit (TCU) and

Vehicle Communication Interface Module (VCIM), compromised using their wireless

interface, collaborate to masquerade the Engine Control Unit and evade the VIDS.

the preceded ID message is transmitted, they will start transmitting the SOF fields

of their messages right after the IFS field of the preceded ID.

VIDS. VIDS [18–20, 48] extract features from measured message voltage charac-

teristics of each ECU during transmission of CAN messages and learn a supervised

model to infer the message source. Due to the robustness and non-imitability of an

ECU’s voltage characteristics, VIDS have been shown highly effective in detecting

compromised, unmonitored, and newly added ECUs on a CAN. However, the mes-

sage voltage characteristics and hence the ECU fingerprints vary with time due to

aging effects, changing environmental/workload factors, and firmware updates [20].

For instance, the VIDS presented in [48] is robust to fingerprint variations up to only

6°C fluctuations in ambient temperature, while another VIDS [19] yields poor predic-

tions beyond 10°C temperature differences. Since such variations may happen within

a few hours/days [54], the model must be adapted accordingly. Hence, VIDS utilize

online learning [20], incremental learning [19,48], or periodic model retraining [18] to

update the model.

54

Table 3.1.: Effectiveness of Duet against existing VIDS.

VIDS
Sampling

Frequency

Number of

Features

Anomaly

Detection

Vulnerable to

Duet

Viden (2017) [20] 50 KS/s 6 per 8 messages X

VoltageIDS (2018) [19] 2.5 GS/s 64 per message X

Scission (2018) [18] 20 MS/s 48 per message X

SIMPLE (2019) [48] 500 KS/s 32 per message X

3.2 Duet Overview

VIDS provide the state-of-the-art defense against existing ECU masquerade at-

tacks. In this paper, we describe Duet, a novel masquerade attack which evades

detection from all existing VIDS as illustrated in Table 3.1. Duet is carried out

in a stealthy, multi-stage fashion based on an APT-style strategy. It involves two

compromised ECUs – attacker and accomplice – with the goal of impersonating an

uncompromised victim ECU (victim) without being detected. To achieve this, the duo

work together to distort the voltage fingerprint of the victim in Stage 1 (Section 3.3.1),

knock the victim off the bus in Stage 2 (Section 3.3.2), and then impersonate the vic-

tim using its distorted voltage fingerprint in Stage 3 (Section 3.3.3), all under the

watch of VIDS as illustrated in Figure 3.3.

Characteristics of CAN Traffic. Duet exploits three common characteristics

of vehicular CAN traffic: (1) static IDs, (2) message periodicity, and (3) predictable

payload-prefix (PREP), which is the predictable set of bits representing constants,

counters, and multi-valued numbers after the arbitration fields of CAN messages

(Figure 3.1). We confirm these characteristics using the CAN traffic from five vehicles

(of four different brands). Table 3.2 summarizes our findings, with detailed results

in Section 3.8. We have also validated the prevalence of these characteristics in other

modern vehicles using the reverse engineered data available at [55].

Attack Tactics. Duet is enabled by two novel attack tactics leveraged in its three

attack stages.

55

Table 3.2.: Common characteristics of CAN traffic (each number is a message count).

2011

Chevrolet

Impala

2011

Chevrolet

Cruze

(Bus-1)

2011

Chevrolet

Cruze

(Bus-2)

2012

Toyota

Camry

2012

Honda

Civic

2010

Dodge

Ram

Total messages 50 88 27 42 45 55

Periodic 50 88 27 42 45 51

PREP ≥ 1 byte 49 83 25 42 42 50

Tactic 1: Voltage Corruption. We discover that when the attacker is in the error-

passive state and performs simultaneous transmission with an ECU, it will successfully

corrupt the ECU’s voltage samples, without leaving a trace on the bus. The attacker

exploits this tactic to corrupt the voltage fingerprint of the victim during voltage

fingerprint manipulation (Stage 1 of Duet) and that of the accomplice during voltage

fingerprint-based impersonation (Stage 3). This enables the Duet duo to evade VIDS

while impersonating the victim.

Tactic 2: Passive Error Regeneration. We discover a flaw in the CAN protocol

regarding the victim’s TEC increase. If the attacker blocks the transmission of a

victim’s passive error frame, the victim will regenerate another passive error frame

and raise its TEC. Duet exploits this flaw to stealthily and swiftly push the victim

into the bus-off state in Stage 2.

Attack Model. We assume that the adversary behind Duet makes a one-time

reverse engineering effort to infer all CAN messages, patterns in their payloads, and

their source ECUs in the target vehicle or in a vehicle with the same make and model

as shown in [55–57]. We also follow the attack model in prior art [18, 20, 21, 53]

and assume that the adversary behind Duet is capable of achieving arbitrary code

execution on at least two ECUs of a vehicle CAN. Previous works have demonstrated

the compromise of ECU(s) through various remote and physical attacks [9–11]. Other

works showed APT-style stealthy compromise of multiple ECUs, and their persistence

over reboots and ECU firmware flashing/updates [6–8, 13, 14]. A compromised ECU

can read and inject messages on the bus through its CAN controller. Since the

56

0 1000 2000 3000 4000 5000

Sample

0

0.5

1

1.5

2

2.5

D
if
fe

re
n

ti
a

l
v
o

lt
a

g
e

CTL CRC ACKID-A DATA

Voltage Corruption
Bit-error

Figure 3.4.: Example of voltage corruption in an ECU’s frame.

controller is implemented in hardware, the compromised ECU is still subject to the

CAN transmission mechanisms and protocol specifications. We point out that not

all ECUs are directly compromisable [8], making the masquerade attack valuable to

adversaries. Finally, we let the compromised ECUs utilize their own periodic messages

to indicate the transitions between different attack stages of Duet.

3.3 Detailed Design of Duet

3.3.1 Voltage Fingerprint Manipulation

The first stage of Duet, voltage fingerprint manipulation, is carried out by the

attacker and accomplice to stealthily distort the voltage fingerprint of the victim

ECU. We point out that Duet is the first effort in training set poisoning on the

CAN bus. While the machine learning (ML)-based IDS [58, 59] including those used

in automotive control systems [60] are susceptible to data poisoning attacks, Duet

faces two CAN-specific challenges. First, voltage samples generated by the victim

cannot be directly controlled by the attacker. Second, the attacker/accomplice cannot

57

Attacker Victim ID

Victim Victim ID

Passive
Error

CAN Bus Preceded ID

TEC + 8

Accomplice Preceded ID

Error-Passive

Voltage
Corruption

 Victim ID

Figure 3.5.: Voltage fingerprint manipulation (Stage 1 of Duet).

modify its own voltage fingerprint [18]. To address these challenges, we introduce the

Voltage Corruption tactic that enables the attacker to poison the training data with

the help of an accomplice.

Tactic 1: Voltage Corruption. We observe a unique behavior when an attacker

in error-passive state performs simultaneous transmission with an ECU (during which

the attacker transmits the same bits as the ECU) until a specific bit location, where

the attacker and the ECU transmit the recessive bit and dominant bit, respectively. At

that location in the attacker’s frame, a bit-error occurs which terminates the attacker’s

transmission. Since the resultant bit is dominant, the ECU does not observe the

bit-error and continues transmission. Before the bit-error, the attacker’s transmission

overlaps with the ECU’s without hindering it; whereas, after the bit-error, the attacker

waits until the end of the ECU’s transmission and then transmits a passive error

frame. Since this error frame consists of only recessive bits, it is transparent to the

ECU and leaves no trace on the bus. An example illustrating the impact of voltage

corruption on the differential voltage on CAN is shown in Figure 3.4: The error-

passive attacker transmits simultaneously with an ECU, and causes a bit-error after

two bytes of data payload. It is clear in Figure 3.4 that voltage values (resulting from

58

the overlap between the attacker’s and ECU’s transmissions) of the corrupted bits

before the bit-error are higher than voltage values (of the benign bits corresponding

to the ECU only) after the bit-error.

In Stage 1 of Duet, the attacker utilizes the voltage corruption tactic on the vic-

tim and distorts the victim’s voltage fingerprint. Specifically, as shown in Figure 3.5,

the accomplice first assists the attacker to attain the error-passive state. Then the

attacker and accomplice independently estimate the time-of-transmission of the vic-

tim’s message by exploiting its periodic behavior. The accomplice injects a preceded

ID frame right before the transmission of the victim’s message to help the attacker

synchronize with the victim’s transmission. The error-passive attacker utilizes the

victim’s ID in its attack message and transmits its attack message simultaneously

with the victim’s message. This corrupts the victim’s voltage samples. Since VIDS

learn the victim’s fingerprint from the training set of (now corrupted) voltage mea-

surements, the distorted fingerprint of the simultaneous transmission of “victim +

attacker” is mistaken for the victim’s fingerprint by VIDS.

59

A
tt

ac
ke

r
V

ic
ti

m
 ID

V
ic

ti
m

V
ic

ti
m

 ID

A
ct

iv
e

Er
ro

r

C
A

N
 B

u
s

P
re

ce
d

ed
 ID

-1

TE
C

 =
 8

A
cc

o
m

p
lic

e

P
re

ce
d

ed
 ID

-1

A
ct

iv
e

Er
ro

r

TE
C

 =
 8

V
ic

ti
m

 ID
A

ct
iv

e
Er

ro
r1
6

co
n

se
cu

ti
ve

 e
rr

o
rs

..

.

..

.

..

.

V
ic

ti
m

 ID

V
ic

ti
m

 ID

V
ic

ti
m

 ID

P
as

si
ve

Er

ro
r

TE
C

 +
 8

P
as

si
ve

Er

ro
r

TE
C

 +
 8

P
as

si
ve

Er

ro
r

TE
C

 +
 8

P
as

si
ve

 E
rr

o
r

R
e

ge
n

e
ra

ti
o

n

V
ic

ti
m

 ID

V
ic

ti
m

 ID

TE
C

 =
 1

36

TE
C

 =
 1

36

TE
C

 =
 8

A
ct

iv
e

Er
ro

r

P
as

si
ve

Er

ro
r

P
as

si
ve

Er

ro
r

V
ic

ti
m

 ID
A

ct
iv

e
Er

ro
r

V
ic

ti
m

 ID

P
re

ce
d

ed
 ID

-2

P
re

ce
d

ed
 ID

-2

V
ic

ti
m

 ID
A

ct
iv

e
Er

ro
r

TE
C

 =
 1

28

V
ic

ti
m

 ID
A

ct
iv

e
Er

ro
r

TE
C

 =
 1

28

V
ic

ti
m

 ID
A

ct
iv

e
Er

ro
r

V
ic

ti
m

 ID
A

ct
iv

e
Er

ro
r

F
ig
ur
e
3.
6.
:
Si
ng

le
in
st
an

ce
of

pe
rs
is
te
nt

vi
ct
im

bu
s-
off

(S
ta
ge

2
of

D
u
et

).

60

Fingerprint Manipulation. To manipulate the distorted victim’s fingerprint, the

attacker can control the bits corrupted in the victim’s message. The CAN traffic from

the five cars we profiled (Section 3.8) reveals an interesting observation that makes

this feasible: The content after the arbitration field associated with a given message ID

contain a predictable payload-prefix (PREP) of bits representing constants, counters,

and multi-valued numbers which can be reliably predicted in advance. Since the

payload length for a specific message ID remains the same, the PREP consists of at

least six constant bits of the control field. With offline reverse-engineering of PREP

in the victim’s payload, the attacker can readily identify additional PREP bits in the

data field. Then the attacker can utilize a selected portion of the same PREP in its

attack message and enforce the bit-error at any desired location.

Manipulation Rate and Stealth. Stage 1 of Duet has a critical objective: cor-

rupting the PREP bits of the victim’s messages in the training set without raising a

VIDS alarm. This objective can be effectively fulfilled if messages utilized for training

VIDS can be identified, e.g. when they contain distinct IDs, such as those in [19].

However, a VIDS might be trained silently (without any observable indication on the

bus) with regular CAN messages; thus, identifying the training set messages can be

impractical. In such cases, manipulating victim’s fingerprint is a particularly difficult

endeavor because a significant corruption in messages not used for training would

clearly be detected as an attack. To address these challenges, Duet exploits the

fact that a VIDS requires online, incremental or periodic retraining to account for

changing environmental and weather conditions [54]. Therein Duet manipulates all

victim’s messages and sets the manipulation rate lower than the retraining frequency

of VIDS, where the manipulation rate is defined as the frequency of increasing the

number of corrupted bits from zero to the desired bits in PREP. In fact, Duet in-

creases the corruption one bit at a time and tricks VIDS into learning an increasingly

manipulated fingerprint of victim without raising an alarm (Section 3.6.2).

Further, without special precaution, voltage corruption by the attacker will exhibit

an anomaly which can be detected by VIDS: The attacker ECU’s CAN controller

61

Bus-off

Attacker

Assist
Bus-off

Victim

CAN Bus

Accomplice

Victim ID Victim ID

Lead
Bus-off

Lead
Bus-off

Assist
Bus-off

Accomplice

Attacker
Time victim recovery

Assist victim impersonation

Reset TEC
Lead victim impersonation

Figure 3.7.: Roles alternation in consecutive instances of Duet.

attempts to retransmit after encountering the bit-error during voltage corruption.

This leads to the retransmission of the attack message which contains the victim’s ID

with the attacker’s fingerprint. Duet eliminates this anomaly by exploiting a feature

called one-shot transmission mode, available in all the popular CAN controllers [61,

62]. In this mode, the attacker attempts to transmit the attack message only once,

and does not retransmit even after encountering the bit-error. Hence, the attacker

evades detection while performing voltage corruption.

Accomplice’s Role. The accomplice is vital for helping the attacker transition to

error-passive state. Further, in the error-passive state, the attacker needs an extra

8-bit suspend transmission field between successive transmissions. This hinders the

ability of the attacker to transmit the preceded ID frame to synchronize with the

victim as well as perform voltage corruption of the victim’s message. Hence, the

accomplice must help the attacker with its preceded ID frame.

62

Bus-off

Accomplice

Victim ID

Preceded ID

Victim

 Victim ID

Passive
Error

CAN Bus Preceded ID

TEC + 8

Attacker

Error-Passive

Voltage
Corruption

 Victim ID

Figure 3.8.: Voltage fingerprint-based impersonation (Stage 3).

3.3.2 Persistent Victim Bus-off

After Stage 1, Duet needs to do one more stunt at run-time, before impersonating

the victim: shun the victim from the CAN bus. In Stage 2, Duet exploits CAN’s

error-handling mechanism (Section 3.1) and persistently imposes the bus-off state on

the victim. Specifically, as shown in Figure 3.6, the attacker (in error-active state)

first injects a preceded ID frame before the transmission of the victim’s message

to enable synchronization with the victim. The attacker then transmits its attack

message simultaneously with the victim, which causes bit-error at the location where

their transmitted bits are different. Both the victim and attacker encounter this

active error, and hence they ceaselessly attempt to retransmit, which causes more

errors propelling both of them to error-passive state [53].

Now the accomplice joins the action with a preceded ID frame and then forces a

bit-error which further increases TECs of the victim and attacker. The accomplice’s

action is necessary to ensure that the attacker has a high TEC (>127) and remains

in error-passive state for Stage 3 of Duet. Then the attacker sends another attack

message with a dominant bit while the victim transmits a recessive bit. Upon this bit-

63

error, the victim raises a passive error, but the attacker completes the transmission of

its attack message. Thereafter, to transition the error-passive victim to bus-off state,

we introduce the novel tactic called passive error regeneration.

Tactic 2: Passive Error Regeneration. We discover and exploit a critical CAN

protocol flaw that allows the attacker to stealthily and swiftly increment an error-

passive victim’s TEC. When a victim in error-passive state encounters a bit-error, it

attempts to transmit a passive error frame. Since this frame consists of 14 consecutive

recessive bits, it can only be successfully transmitted in a 14-bit interval where no

dominant bit is transmitted. The CAN protocol assumes that the victim should be

able to find such an interval to transmit its 14 recessive bits, before the start of the

next message. However, the attacker and accomplice in Duet nullify this assumption.

As per the CAN protocol, the number of recessive bits between two consecutive frames

comprises of the 1-bit ACK delimiter, 7-bit end-of-frame (EOF) field, 3-bit inter-frame

space (IFS), and a variable (≥ 0) bus-idle period. By transmitting two frames back-

to-back, the number of recessive bits between two frames can be reduced to just 11

(which corresponds to zero bus-idle period). This results in transmission failure of

the victim’s 14-bit passive error frame. Hence, the passive error frame’s transmission

itself encounters a bit-error due to the dominant SOF bit of the next frame, causing

the victim to increase its TEC and generate a new passive error frame.

In Duet, the attacker and accomplice exploit this CAN protocol flaw for enforcing

such self-defeating behavior of the victim repeatedly to swiftly push the victim from

error-passive to bus-off state. As the error-passive victim attempts to transmit its

passive error frame, the attacker and the accomplice clutter the CAN bus with benign

traffic of their own, along with other benign traffic on the bus, causing regeneration

of passive error frames – until the victim enters bus-off state. We highlight that the

regeneration of passive error frames results in quick increase of the victim’s TEC

without any significant effort by the attacker/accomplice and without any observable

anomaly on the bus. This concludes an instance of the persistent victim bus-off.

64

Attacker-Accomplice Role Alternation. After pushed to the bus-off state, the

victim remains in that state for only a short period of time (128 instances of 11 reces-

sive bits or ECU reset). Hence, the victim must be “bus’ed-off” again. To re-bus-off

the victim, one of the Duet duo must measure the time of the victim’s recovery

either by counting the sequences of 11 recessive bits as described in Section 3.9 or

by waiting for ECU reset. Since the attacker’s TEC was just increased as a result of

the previous bus-off instance, it must reset its TEC and cannot lead the next attack.

Therefore, as shown in Figure 3.7, the accomplice times the victim’s recovery and

leads the next instance of bus-off as the attacker, whereas the original attacker takes

on the accomplice’s role. To further mitigate the inherent uncertainty in timing the

victim’s recovery, Duet allows the victim to transmit one buffered message. This

provides an error margin of one frame in the timing procedure and enables the Duet

duo to re-bus-off the victim by precisely attacking the victim’s next message, which

immediately follows the buffered message. Hence, the role alternation and timing

procedure ensures that the victim remains in the bus-off state persistently.

Stealth. Without any provision, the 16 active errors (shown in Figure 3.6) will

occur at exactly the same bit location. Such “identical bit-error locations” can serve

as an anomaly to detect simultaneous transmission by multiple ECUs. Hence, similar

to Stage 1, the attacker utilizes the one-shot transmission mode to prevent retrans-

mission of the same attack message. While enqueueing a new attack message for

simultaneous transmission, the attacker randomizes the bit-error locations among the

bits in PREP to invalidate the anomaly. Hence, the CAN under Duet’s Stage 2

behaves the same as if it is experiencing short, transient errors, which are common

during normal vehicle operations due to physical factors such as electromagnetic in-

terference (e.g., sudden braking can lead to 12 consecutive active error frames [63])

or bus termination (e.g., resistance changes with temperature or aging [64]). As a

result, these errors will not be reported by VIDS.

65

3.3.3 Voltage Fingerprint-Based Impersonation

With the victim in bus-off state, the duo inject forged messages to impersonate

the victim in Stage 3. Duet succeeds if receiver ECUs accept these messages without

VIDS raising any alarm. To achieve this, the attacker, which is in error-passive state

at the end of Stage 2, utilizes the voltage corruption tactic (Tactic 1 in Section 3.3.1)

on the accomplice. As shown in Figure 3.8, the attacker and accomplice synchronize

using the preceded ID frame transmitted by the accomplice. Then, the accomplice

injects a (forged) victim’s message, and the attacker transmits simultaneously cor-

rupting the accomplice’s voltage samples. Hence, VIDS record the distorted finger-

print of the simultaneous transmission of “accomplice + attacker”. Also, similar to

Stage 1. the attacker prevents retransmission of its attack message by using the one-

shot transmission mode, and regulates the length of the superposition of its attack

message and the accomplice’s forged message.

Stealth. Recall that in Stage 1 of Duet, VIDS have been tricked into believing

that the victim’s fingerprint is that of simultaneous transmission by “victim + at-

tacker”. Since the features corresponding to the two distorted fingerprints (“victim +

attacker” and “accomplice + attacker”) are generated by the superposition of features

of two ECUs, they are significantly different from the features of any single ECU

currently on the bus. Therefore, Duet succeeds to stealthily impersonate the (ma-

nipulated) fingerprint of the victim by ensuring that the fingerprint of simultaneous

transmission by “accomplice + attacker” is classified as that of “victim + attacker”

by VIDS. The formal and empirical analysis of Duet’s success rate are presented in

Section 3.4 and Section 3.6.3, respectively.

3.4 Analysis of Stealth of Duet against VIDS

Voltage Distribution. Figure 3.9 illustrates the distinct characteristics of the

voltage samples (corresponding to dominant bits) in an individual transmission (by

the victim, attacker, or accomplice) and a simultaneous transmission (by the “victim

66

1.8 1.9 2 2.1 2.2 2.3 2.4

Differential voltage (V)

0

0.005

0.01

0.015

0.02

0.025

K
e
rn

e
l
d
e
n
s
it
y

Victim

Attacker

Accomplice

Victim+Attacker

Accomplice+Attacker

Benign

samples

Corrupted

samples

Figure 3.9.: Voltage distribution observed by VIDS when the attacker corrupts 2 bytes

of payload of victim/accomplice.

+ attacker” or “accomplice + attacker”). On one hand, voltage samples of an indi-

vidual transmission closely fit a unimodal Gaussian distribution which is consistent

with the findings in prior art [20]. On the other hand, we discover that voltage sam-

ples in a simultaneous transmission follow a bimodal Gaussian distribution. This is

because in a simultaneous transmission, the voltage corruption (which is limited by

PREP) results in two sets of voltage samples in a CAN frame: corrupted and benign

samples, such that corrupted samples have higher voltage values than benign samples

(Figure 3.4).

Root Cause for Successful Impersonation. In Figure 3.9, we observe that

bimodal distributions of any two simultaneous transmissions are statistically “closer”

to each other than a unimodal distribution of any individual transmission. In other

words, the values of features (such as mean and standard deviation of samples) of a

simultaneous transmission are closer to those of another simultaneous transmission

than those of an individual transmission. Hence, VIDS (which utilize a multitude of

such features to identify the source) are likely to misclassify a simultaneous transmis-

sion as another simultaneous transmission. Exploiting this fundamental shortcoming

67

of VIDS, Duet utilizes a simultaneous transmission (“victim + attacker”) to create a

manipulated fingerprint of the victim, and then impersonates the fingerprint with an-

other simultaneous transmission (“accomplice + attacker”). Note that each individual

feature of the resultant “victim + attacker” and “accomplice + attacker” transmis-

sion after voltage corruption does not need to be identical for the two fingerprints.

VIDS can be evaded if the fingerprint (which is the combination of all features) of

“accomplice + attacker” lies within the decision boundaries learned for the “victim +

attacker” as illustrated in an example shown in Section 3.10.

Formal Model for Duet. We now discuss the stealth of Duet against VIDS by

formally defining a metric called success rate, which quantifies the ability of Duet to

get an impersonated message to evade VIDS. Also, we describe various parameters

controlled by the attacker and accomplice, and model the objective of Duet as an

optimization problem.

VIDS. We first define a VIDS and its functionality. Let the training data be

represented as Do = {(xi, yi)}Ni=1, where xi ∈ Rq represents a fingerprint/vector of

q features, yi ∈ [1, C] represents the class, C represents the total number of classes,

and N represents the number of samples utilized for training. In the training mode,

the VIDS classifier learns the model θo = argminθ∈Θ Ot(Do, θ), where Θ represents

the hypothesis space, and Ot represents the objective function of the classifier in the

training mode. During the operation mode, for a given vector of features x∗ and the

model θo, the classifier outputs y∗ = argmaxc∈[1,C] Od(c | x∗, θo), where Od represents

the objective function of the classifier in the operation mode. Further, the VIDS

employs a function (denoted by F) to raise an alarm for an unknown (i.e., significantly

distinct from previously observed) fingerprint during the training/operation mode.

Let the VIDS raise an alarm for a fingerprint x∗, if F(x∗) > τ , where τ represents

the detection threshold.

Attack Success. We now formally define the “success” of Duet. Let the class of

the victim be yv, the space of the feature vectors corresponding to the simultaneous

transmission of the victim and attacker be Xv+a, and the space of the feature vectors

68

corresponding to the simultaneous transmission of the accomplice and attacker be

Xa+a. In Stage 1, Duet makes the VIDS record a manipulated training set (denoted

byDm) which includes the samples (xv̂, yv), such that xv̂ ∈ Xv+a. The classifier learns

the manipulated model (denoted by θm) using this training set in Stage 1. When the

manipulated model is utilized by the VIDS in Stage 3, Duet succeeds if the classifier

outputs yv given the input xâ ∈ Xa+a.

Success Rate. The success rate of Duet is limited by four factors. First, Duet

needs to ensure that the function of the VIDS to detect unknown fingerprint does not

raise an alarm for the distorted fingerprint of the simultaneous transmission employed

during Stages 1 and 3. Second, the length of PREP in the victim’s message (denoted

by L) limits the number of bits that can be corrupted by Duet in each frame of

victim. The third and fourth factors are the message timing accuracy of the victim’s

message at the accomplice (denoted by pacc), and that of the accomplice’s message

at the attacker (denoted by patt). Recall that during Stage 1 of Duet (Figure 3.5),

the accomplice estimates the time of transmission of the victim, and the attacker

follows the preceded ID frame transmitted by the accomplice. Hence, the values

of pacc and patt determine the number of successfully corrupted messages of victim.

Also, in Stage 3 of Duet (Figure 3.8), the attacker follows the preceded ID frame

transmitted by the accomplice, and hence the value of patt determines the number of

successfully corrupted (and forged) messages of the accomplice.

Optimization Problem. The attacker in Duet can control two parameters to

enhance its success rate: (1) It can corrupt lv bits of each of the victim’s messages

during Stage 1. (2) It can corrupt la bits in each of the messages of the accomplice

during Stage 3. As such, the problem of finding the best values of lv and la to

maximize the probability (denoted by Pr) of Duet’s success rate can be defined as:

argmax
lv ,la∈[0,L]

Pr

(
yv = argmaxc∈[1,C] Od(c | xâ, θm)

pacc, patt,xv̂ ∈ Xv+a,xâ ∈ Xa+a

)
,

s.t. θm = argmin
θ∈Θ

Ot(Dm, θ), F(xv̂) ≤ τ, F(xâ) ≤ τ.

69

3.5 Implementation Details

Duet Implementation. Duet is written in 1400 lines of C++ code. Utilizing

only 950 bytes of memory, and 13 KB of flash storage, Duet is lightweight and can

be easily deployed in existing ECUs. The Duet code and an attack demo (on a real

car) can be accessed at https://github.com/CAN-Bus-Duet/CAN-Bus-Duet.

VIDS Implementation. We evaluate the stealth of Duet against two represen-

tative state-of-the-art VIDS: (1) Viden [20] with online learning and (2) Scission [18]

with periodic retraining. The voltage samples for Viden and Scission are collected by

sampling the CAN bus at 50 kS/s and 20 MS/s, respectively. Viden computes three

features (50th, 75th, and 90th percentiles) using samples corresponding to CAN-H,

and three features (10th, 25th, and 50th percentiles) using samples corresponding to

CAN-L. Using differential voltage values, Scission computes 24 features (e.g., mean,

variance, skewness, and kurtosis) in the time domain, and 24 features in the frequency

domain. While Viden utilizes a random forest classifier, Scission employs a logistic

regression-based classifier to identify the source of a message. We also consider mod-

ified versions of Scission by replacing the logistic regression with other mainstream

ML algorithms including support vector machine (SVM), naive Bayes, and random

forest classifiers. More details about these VIDS are presented in Section 3.10.

Evaluation Platforms. We evaluate Duet through comprehensive experiments

on our lab testbed and two real vehicles.

Lab Testbed. We set up a CAN bus testbed with 10 nodes. Each node is an

ECU based on an Arduino UNO board with a 16 MHz Microchip and a SeeedStudio

CAN shield with a MCP2515 CAN controller. Two of those nodes play the attacker

and accomplice ECUs, one plays the victim targeted by Duet, and the remaining six

nodes represent other uncompromised ECUs. The VIDS (i.e., Viden and Scission)

run in a laptop connected to the bus. The voltage samples for Viden and Scission are

collected by an uncompromised node and the Tektronix DPO2014 oscilloscope (with

200 MHz bandwidth and 8 bits vertical resolution), respectively. The standard CAN

https://github.com/CAN-Bus-Duet/CAN-Bus-Duet

70

Figure 3.10.: Experimental setup within a real vehicle.

bus speed of 500 kbps is set in the testbed. We follow the benchmark proposed in [65]

to generate a total of 60 message with different sizes and periodicity for these nodes,

resulting in 50% bus load. We remove the built-in resistances in CAN shields, and

terminate the bus with a 120 Ω resistance at each end. We utilize a stub resistance

of 2.4 kΩ for connecting the oscilloscope to the bus.

Impala. The 2011 Chevrolet Impala car contains a CAN bus operating at

500 kbps with four ECUs. The CAN bus traffic comprises of 50 messages result-

ing in 35% bus load. The experimental setup in the Impala is shown in Figure 3.10.

Through a customized OBD connector, we connect the vehicular CAN bus to two

external ECUs acting as the attacker and accomplice. We also connect another ECU

and the oscilloscope for recording voltage samples for Viden and Scission, respectively.

With a CAN USB adapter (USB2CAN), a laptop is used for recording the bus traffic.

Cruze. The 2013 Chevrolet Cruze car contains two CAN buses operating at

500 kbps: Bus-1 supports six ECUs which transmit 88 messages resulting in 61% bus

load and Bus-2 supports three ECUs which transmit 27 messages resulting in 34% bus

71

0 1 2 3 4 5 6 7 8 9

Length of PREP (bytes)

0

20

40

60

80

100

N
u

m
b

e
r

o
f

m
e

s
s
a

g
e

s Impala

Cruze: Bus-1

Cruze: Bus-2

Figure 3.11.: Cumulative

number of messages with

the given PREP.

5 10 15 20 25

Corrupted bits (validation)

5

10

15

20

25C
o
rr

u
p
te

d
 b

it
s
 (

tr
a
in

in
g
)

0.2

0.4

0.6

0.8

1

Figure 3.12.: Viden’s

classification accuracy

during Stage 1 of Duet.

5 10 15 20 25

Corrupted bits (validation)

5

10

15

20

25C
o

rr
u

p
te

d
 b

it
s
 (

tr
a

in
in

g
)

0.6

0.7

0.8

0.9

Figure 3.13.: Scission’s

classification accuracy

during Stage 1 of Duet.

load. To record the traffic and voltage samples, we utilize a setup similar to the one

shown in Figure 3.10.

3.6 Evaluation of Duet

We first analyze the characteristics of CAN messages which enable the voltage

corruption tactic. We then evaluate Duet using four criteria to demonstrate its

effectiveness as a masquerade attack: (1) stealth during manipulation, (2) stealth

during impersonation, (3) swiftness which measures the time required to initialize

impersonation, and (4) persistence which measures the duration of successful imper-

sonation.

3.6.1 Feasibility of Voltage Corruption

Duet’s voltage corruption is feasible only if the attacker is able to transmit simul-

taneously with the victim’s messages beyond their arbitration fields. This condition is

readily satisfied by real-world vehicles due to the predictable message timing (due to

periodicity) of CAN messages and the existence of PREP in those messages. The gen-

erality of these conditions are confirmed by profiling the CAN traffic in five cars (de-

tails in Table 3.2 and Section 3.8), and utilizing publicly available reverse-engineering

results for recent cars [55]. The generality of PREP is also corroborated by studies

of CAN traffic in the existing literature. For example, the researchers in [66] found

72

0 0.75 1 2 3

Length of PREP (bytes)

0

20

40

60

80

100

S
u

c
c
e

s
s
 r

a
te

 (
%

)
Testbed

Impala

Cruze: Bus-1

Cruze: Bus-2

Figure 3.14.: Duet’s suc-

cess rate against Viden on

different platforms.

0 0.75 1 2 3

Length of PREP (bytes)

0

20

40

60

80

100

S
u

c
c
e

s
s
 r

a
te

 (
%

)

Testbed

Impala

Cruze: Bus-1

Cruze: Bus-2

Figure 3.15.: Duet’s suc-

cess rate against Scission

on different platforms.

0 0.75 1 2 3

Length of PREP (bytes)

0

20

40

60

80

100

S
u

c
c
e

s
s
 r

a
te

 (
%

)

Logistic Regression

SVM

Naive Bayes

Random Forest

Figure 3.16.: Duet’s suc-

cess rate against Scission

with different ML algo-

rithms.

Table 3.3.: Message timing accuracy in Duet.

Platform Messages Busload pacc patt

Lab Testbed 60 50% 87% 92%

Impala 50 35% 81% 89%

Cruze: Bus-1 88 61% 60% 85%

Cruze: Bus-2 27 34% 80% 90%

that out of 456 total bytes of payload across all CAN messages in a 2012 Ford Focus,

338 bytes belonged to predictable categories (i.e, constants, counters and multi-valued

numbers), and only 118 bytes belonged to unpredictable categories (i.e., sensor read-

ings and unclassified bits). Here, we validate these results through our analysis of the

traffic on the three CAN buses in the two experimental cars. For each bus, the data

was collected for 15 minutes in the stationary car, and for another 15 minutes in the

moving car.

Predictable Message Timing. Table 3.3 presents the average values of timing

accuracy of the victim’s message at the accomplice (pacc) and the accomplice’s message

at the attacker (patt), in all four evaluation platforms. Due to the highest busload

in the Cruze: Bus-1, its pacc and patt are the lowest among the platforms. We also

observe that although the testbed experiments were conducted with higher busload

than Cruze: Bus-2 and Impala, its pacc and patt are higher. This is attributed to

73

the larger jitter in message transmission by real ECUs compared with that by ECU

prototypes in our testbed. We note that the factors affecting the timing accuracy,

which include the number of CAN messages, busload, and message periodicities are

independent of the control state of the car, i.e., they do not change while the car is

moving or is stationary.

PREP. We calculate the length of PREP in a CAN message as follows. For each

bit location after the arbitration field in the message, we calculate the conditional

entropy, i.e., the randomness in the current bit given the bits (at the same location

in the message) in the previous 16 messages. We consider the bit to be predictable if

the conditional entropy is less than 0.01. We note that while the conditional entropy

is one for a randomly generated bit, it is equal to zero for the bit which remains

constant in all messages. The length of PREP is given by the number of bits from

the first bit in the control field to the first unpredictable bit with conditional entropy

more than 0.01. Figure 3.11 presents the cumulative number of messages containing

different lengths of PREP on the CAN buses of our experimental vehicles. For ex-

ample, out of 88 messages on Cruze: Bus-1, 75 messages have at least two bytes of

PREP. This means that the attacker can readily continue to transmit simultaneously

with one of these 75 messages until two bytes after the arbitration field.

3.6.2 Stealth in Stage 1 of Duet against VIDS

Figures 3.12 and 3.13 present the classification accuracy of Viden and Scission,

respectively, for different number of corrupted bits in the victim’s messages utilized for

the training set (y-axis) and those utilized for the validation set (x-axis). These results

depict that Duet can effectively trick VIDS into correctly classifying the validation

set’s messages with slightly more corrupted bits after VIDS learn the model from

the corrupted training set’s messages. Therefore, Duet evades VIDS by enhancing

the voltage corruption at a manipulation rate lower than the retraining frequency.

In other words, Duet takes downward steps of one bit from the upper-left corner

74

and stays just above the diagonal in these figures so that both VIDS fail to detect

the Duet’s attempts of manipulating the victim’s fingerprint. We note that the fine

control over the number of corrupted bits in the victim’s messages enables Duet to

stealthily carry out the fingerprint manipulation.

Further, Duet deliberately does not corrupt all the victim’s messages so that

VIDS inherently learn from both corrupted and uncorrupted victim’s messages in the

training set. This way, as shown in Figures 3.12 and 3.13, the victim’s uncorrupted

messages (missed by Duet due to message timing inaccuracies shown in Table 3.3)

in the validation set are correctly classified by VIDS, and will not cause any alarm.

These results validate that Duet successfully makes VIDS learn the manipulated

fingerprint slowly but stealthily and effectively.

3.6.3 Stealth in Stage 3 of Duet against VIDS

Success Rate. Figures 3.14 and 3.15 present the per-message success rates of Duet

against Viden and Scission in the four CAN platforms, respectively. We observe that

with larger PREP, the distorted fingerprints of the simultaneous transmissions are

more distinct from the fingerprints of individual transmissions, leading to higher suc-

cess rate. The success rate against Viden reaches more than 75% with the corruption

of only control bits (i.e., PREP = 0.75 byte), and 95% with just three bytes of PREP

(Figure 3.14). Similarly, the success rate against Scission reaches more than 50%

by corrupting only control bits, and 76% with three bytes of PREP (Figure 3.15).

We also observe similar performance of Duet against different ML algorithms (for

Scission) as illustrated in Figure 3.16.

Limitation. Duet fails whenever the attacker and accomplice fail to transmit

simultaneously in Stage 3 due to imperfect timing (Table 3.3). Hence, Duet’s lower

success rate on the real cars, in comparison with the testbed, can be attributed to the

lower timing accuracy due to higher busload and tranmission jitter. On one hand,

the highest success rate against Viden reaches 100% since Viden makes its decision by

75

taking an aggregate of samples received over eight messages. On the other hand, the

highest success rate against Scission is limited by the value of patt shown in Table 3.3

as Scission detects the source of each message individually. Nevertheless, the success

rates of Duet against VIDS (shown in Figures 3.14 and 3.15) render them ineffective

for all practical purposes, specifically in safety-critical applications.

Evading VIDS Alarm. Although Duet’s per-message success rate against a VIDS

may not be 100%, Duet can still evade it successfully. This is because a real-world

VIDS must consider encountering messages that are corrupted by electromagnetic

interference and temperature changes, and must minimize the resultant false alarms.

For example, Scission employs a mechanism with an alarm counter which is incre-

mented by four for each suspicious (wrongly classified) message and decremented by

one for each trustworthy (correctly classified) message, raising an alarm if the alarm

counter exceeds 200. Such a mechanism of alarm-raising over aggregate traffic makes

it even easier for Duet to evade Scission, as any per-message success rate of more

than 80% would keep the alarm counter near its expected value of zero. As a result,

Duet does not cause any alarm on three of the evaluated platforms, and even on the

fourth one (Cruze: Bus-1), Scission will raise an alarm only after an average of 1000(
≈ 200

(1−0.76)·4−0.76·1

)
spoofed messages with three bytes of PREP (Figure 3.15). For a

brake control message with a 10 ms period, this translates into a sizable 10 seconds

of alarm delay, which is sufficient to accomplish malicious activities, such as disabling

brakes to cause an accident [8].

3.6.4 Swiftness-Persistence of Stage 2 of Duet

We now evaluate Duet under two more criteria – swiftness and persistence. While

swiftness refers to the speed of the attack in bus’ing-off the victim, persistence refers

to the ability to persistently stop the victim’s transmission when it is being im-

personated. We highlight our contributions by comparing Duet with the original

76

0 100 200 300 400

Time (ms)

0

100

200

300

T
E

C

DUET OBA

 OBA

 DUET

Figure 3.17.: TEC of the victim under OBA and Duet.

bus-off attack (OBA) which represents the state-of-the-art technique for victim sup-

pression [53].

Swiftness. The OBA consists of two phases, the first one to transition the victim

to the error-passive state with TEC > 127, and the second for transitioning to the

bus-off state. The first phase is instantaneous and finishes within a few milliseconds.

However, in the second phase, the attacker is able to target only one victim’s trans-

mission at a time thereby increasing the victim’s TEC by seven. As a result, OBA

takes 18 transmission periods and is extremely slow to bus-off the victim. For ex-

ample, considering the victim’s message with 10 ms periodicity, OBA takes 180 ms

time to bus-off the victim in our testbed (Figure 3.17). In contrast, Duet can bus-off

the victim by attacking a single transmission. In Stage 2, Duet induces 16 active

errors initially like the first phase in OBA, but then utilizes the novel passive error

regeneration tactic to swiftly push the victim to the bus-off state. The victim’s TEC

is instantly raised to 256 within 5 ms as shown in Figure 3.17.

Persistence. We measure persistence by the percentage of time the victim is

successfully suppressed, i.e., either in the bus-off state or being actively prevented

from transmission. Recall that the recovery of a victim ECU from the bus-off state

77

can happen through one of the two methods: (1) after observing 128 instances of

11 recessive bits, or (2) ECU-reset which takes a constant amount of time. While

our testbed follows the first method which happens quickly (∼10 ms), the vehicles

implement the much longer ECU-reset which takes 150 ms on Cruze: Bus-1, 60 ms

on Cruze: Bus-2, and 100 ms on the Impala CAN bus. In both methods, when the

victim recovers from the bus-off state, it transmits the buffered messages and then

starts its regular communication.

We compare OBA and Duet under both recovery methods for a message with a

10 ms period. Although OBA does not explicitly address victim recovery, we assume

that OBA suppresses the victim again when it recovers. While OBA takes a long

time to bus-off the victim (180 ms) and allows the victim ample time (175 ms) to

perform regular communications, Duet only allows the transmission of one buffered

message (0.25 ms) and then pushes the victim to the bus-off state again. In the

first recovery method, OBA suppresses the victim for 15 ms (10 ms bus-off and 5 ms

suppressed transmission), achieving only 15
15+175

= 7.9% persistence. Although Duet

also suppresses the victim for 15 ms, it achieves a much higher persistence of 15
15+0.25

=

98.4%. Similarly, in the second recovery method, OBA achieves persistence of 47.0%,

27.1% and 37.5%, but Duet achieves much higher persistence of 99.8%, 99.6% and

99.8% on the Cruze: Bus-1, Cruze: Bus-2, and the Impala CAN bus, respectively.

3.7 Proposed Defense: RaID

Duet is a powerful masqueraded attack which not only evades existing VIDS, but

also evades message (anomaly)-based IDS (MIDS) as demonstrated in Section 3.11.

It might be possible however to augment the existing IDS to build a Duet-aware IDS.

For example, a VIDS may be modified to record fine-grained changes in the voltage

values within message bits, and use it to detect the voltage corruption in Duet. Yet,

since Duet is effective even with the corruption of only a few bits, the modified VIDS

must find a tedious balance between detecting Duet and avoiding false alarms. We

78

discuss some other defenses against Duet in Section 3.12. However, we go beyond

the “attack vs. IDS” arms race to address the root cause that makes Duet feasible,

and develop an effective defense which also prevents other potential attacks.

Duet exploits a major deficiency of the CAN protocol: Each message on CAN is

allotted a unique identifier (ID) which remains the same for its lifetime. This static

nature of the ID enables priority scheduling and deterministic latency for messages

on the bus. It also ensures robust arbitration on simultaneous transmissions of two

different messages by two ECUs. However, from the adversary’s perspective, this

means that the same ID is set in the arbitration field of all periodic messages. Such

predictability allows the attacker to perform simultaneous transmission with the vic-

tim using the same ID. Given the attacker’s unrestricted maneuverability during the

transmission of control and data fields of the victim’s message, Duet succeeds in

masquerading the victim.

We propose a novel lightweight defense called Randomized Identifier Defense

(RaID) which mitigates the aforementioned deficiency of CAN. Different from (and

orthogonal to) IDS, RaID prevents Duet by restricting the attacker’s fundamental

ability to transmit simultaneously with the victim.

RaID Design. The high-speed CANs in vehicles typically utilize the standard

frame format (Section 3.8). Under RaID, every ECU on such a CAN upgrades its

standard frames to extended frames (Figure 3.1) during VIDS retraining or on occur-

rence of a transmission error. The 11-bit ID-A field of the standard frame is mapped

to the ID-A field of the extended frame. Then, the ID-B field of the extended frame

is set as an 18-bit nonce, generated using a cryptographically secure pseudo-random

bit generator (PRBG) [67]. At a receiver ECU, while the ID-A field is utilized for the

identification of messages, the bits in the ID-B field are discarded. This way, RaID

ensures that the sender randomizes the arbitration fields of its messages, which pre-

vents any simultaneous transmission.

RaID Evaluation. We now analyze and evaluate RaID’s effectiveness against

Duet and its impact on CAN.

79

Effect on Voltage Fingerprint Manipulation. In Stage 1 of Duet, the attacker

needs to predict the arbitration field (which includes ID-A and ID-B fields) of the

victim’s message utilized for VIDS retraining. With RaID’s 18-bit randomness in the

ID-B field, the probability that the attacker can find a collision between its guess and

the complete arbitration field of the victim’s message is 2−18. Thus, the probability

of successfully manipulating the voltage fingerprint of any victim during the training

mode of a VIDS, which learns the fingerprint over N messages, is 2−18·N . This prob-

ability is negligibly small for a large N . For instance, RaID reduces the success rate

of Duet against Scission (with N = 200) to zero percent (from at least 76%) on all

evaluation platforms.

Effect on Persistent Victim Bus-off. In Stage 2 of Duet, the attacker induces

consecutive active errors in an attempt to bus-off the victim. With RaID, upon de-

tecting a transmission error, the victim first upgrades the frame of the re-transmitted

message from the standard to the extended format, and then switches back to com-

municate with the standard frame format after successfully transmitting the message.

Therefore, to successfully push the victim to the error-passive state and employ the

tactic of passive error regeneration, the attacker must correctly guess the nonce in the

ID-B field for at least eigth times, leading to a very low success rate of 2−144. Hence,

RaID prevents the victim suppression carried out by Duet.

80

Ta
bl
e
3.
4.
:
M
ap

pi
ng

of
at
ta
ck
s
in
to

th
e
th
re
e-
st
ag

e
at
ta
ck

st
ra
te
gy
,a

nd
pe

rf
or
m
an

ce
of

ex
is
ti
ng

V
ID

S
ag

ai
ns
t
th
em

.

A
tt
ac
ks

A
tt
ac
k
S
ta
ge
s

V
ID

S
D
ef
en

se
F
in
ge
rp
ri
nt

M
an

ip
u
la
ti
on

V
ic
ti
m

S
u
p
p
re
ss
io
n

V
ic
ti
m

Im
p
er
so
n
at
io
n

M
es
sa
ge

Im
pe

rs
on

at
io
n
[6
–1

0,
13

,1
4]

N
/A

U
ni
fie
d
D
ia
gn

os
ti
c
Se
rv
ic
es

U
ni
fie
d
D
ia
gn

os
ti
c
Se
rv
ic
es

D
et
ec
te
d

C
ho

et
al
.[
53

]
N
/A

O
ri
gi
na

lb
us
-o
ff

N
/A

D
et
ec
te
d

Sa
go

ng
et

al
.[
49

]
N
/A

N
/A

C
lo
ck

sk
ew

im
pe

rs
on

at
io
n

D
et
ec
te
d

D
u
et

V
ol
ta
ge

m
an

ip
ul
at
io
n

P
er
si
st
en
t
bu

s-
off

V
ol
ta
ge

im
pe

rs
on

at
io
n

U
nd

et
ec
te
d

81

Computation Overhead. The implementation of RaID on a commodity ECU will

incur some computation cost in generating the pseudo-random nonce. We estimate

this cost with the running time of the built-in PRBG in the Arduino UNO board [68],

a single invocation of which is able to generate 32 random bits in 50 µs. We note

that PRBG can be executed during the ECU idle time, and the results can be stored

and used when needed (i.e., during VIDS retraining and on transmission errors).

Hence, RaID effectively produces negligible computation overhead during message

transmission.

Communication Overhead. Since a standard frame is shorter than its extended

version, RaID suffers communication overhead during VIDS retraining. This in-

creases the bus-load which we measure via simulation, based on real traffic traces

collected from the three CAN buses in our vehicles. RaID increases the load of the

three buses by 13% (61% to 74%, for Cruze: Bus-1), 7% (34% to 41%, for Cruze:

Bus-2), and 7% (35% to 42%, for Impala CAN bus) respectively. RaID also increases

the end-to-end message latency by 50 µs (25 bit-periods on a 500 kbps CAN bus)

which is in an acceptable range of the general automotive deadline tolerances [69].

3.8 CAN Traffic Analysis

Duet exploits three key characteristics of CAN messages: (1) static identifiers,

(2) periodic messages, and (3) predictable message content. In automobiles, messages

(with information related to engine, brake, steering and other critical equipments) are

exclusively transmitted on the high-speed CAN bus in the standard format. Conven-

tionally, each particular type of message always contains the same ID. This charac-

teristic is motivated by the safety-critical requirement of providing robust message

arbitration and minimizing the worst-case delay (with theoretical guarantees) in the

communication of messages [69]. Further, the messages on the CAN are periodic be-

cause the fine granularity of periodic message communication is required for making

safety-critical collaborative decisions (e.g., control of accelerator, brake and steering)

82

0 10 20 30 40 50

Message number

0

2

4

6

8

10

L
e

n
g

th
 o

f
P

R
E

P
 (

b
y
te

)

(a) 2011 Chevrolet Impala.

0 10 20 30 40 50 60 70 80

Message number

0

2

4

6

8

10

L
e

n
g

th
 o

f
P

R
E

P
 (

b
y
te

)

(b) 2013 Chevrolet Cruze:

Bus-1.

0 5 10 15 20 25

Message number

0

2

4

6

8

10

L
e

n
g

th
 o

f
P

R
E

P
 (

b
y
te

)

(c) 2013 Chevrolet Cruze:

Bus-2.

Figure 3.18.: Length of PREP in the CAN messages of the experimental vehicles.

in the vehicles. Hence, the next time-of-transmission of a periodic message can be

readily estimated by knowing the current time-of-transmission of the message on the

bus. The third key characteristic is the existence of PREP in the CAN messages which

makes the voltage corruption tactic in Duet feasible. We validate these character-

istics by analyzing the CAN traffic in two experimental and three non-experimental

vehicles.

3.8.1 Experimental Vehicles

We have performed extensive experiments on the CAN buses of two vehicles:

2011 Chevrolet Impala and 2013 Chevrolet Cruze. We note that while the non-

periodic messages (e.g., door lock/unlock) are usually communicated on the low-speed

secondary CAN bus or local interconnect network, most of the safety-critical messages

(e.g., brakes, steering, and engine speed) are communicated periodically on the high-

speed primary CAN bus. We record and analyze the CAN traffic by connecting our

experimental setup (Figure 3.10) to the primary CAN buses of these vehicles using

their OBD II ports. While we could access only one primary CAN bus in the Impala,

two CAN buses are accessible in the Cruze. The traffic traces from these vehicles are

available at [70].

While there are 50 messages on the Impala CAN bus, there are 88 messages

on the Bus-1 and 27 messages on the Bus-2 in the Cruze. All messages in these

83

Table 3.5.: Message periodicity in experimental vehicles.

2011 Chevrolet Impala (50 messages)

Period (ms) 9 10 12.5 18 25 30

No. of messages 3 1 4 4 4 3

Period (ms) 50 100 250 500
1000 5000

No. of messages 4 9 3 3 11 1

2013 Chevrolet Cruze: Bus-1 (88 messages)

Period (ms) 10 12.5 20 25 50 100

No. of messages 6 10 6 14 8 16

Period (ms) 250 500
1000 5000

No. of messages 4 6 17 1

2013 Chevrolet Cruze: Bus-2 (27 messages)

Period (ms) 10 20 50 100

No. of messages 10 5 2 10

0 5 10 15 20 25 30 35 40

Message number

0

2

4

6

8

10

L
e

n
g

th
 o

f
P

R
E

P
 (

b
y
te

)

(a) 2012 Toyota Camry.

0 10 20 30 40

Message number

0

2

4

6

8

10

L
e

n
g

th
 o

f
P

R
E

P
 (

b
y
te

)

(b) 2012 Honda Civic.

0 10 20 30 40 50

Message number

0

2

4

6

8

10

L
e

n
g

th
 o

f
P

R
E

P
 (

b
y
te

)

(c) 2010 Dodge Ram.

Figure 3.19.: Length of PREP in the CAN messages of non-experimental vehicles.

three CAN buses are transmitted in the standard frame format with static identifiers.

Also, all message in these two vehicles are periodic with their periodicity presented

in Table 3.5. Further, each message with a specific ID is transmitted with the same

length of the message payload, which means that the bits in the control field remain

84

Table 3.6.: Message periodicity in non-experimental vehicles.

2012 Toyota Camry (42 messages)

Period (ms) 10 20 30 100 200 300

No. of messages 4 3 5 1 2 2

Period (ms) 500
1000 2000 5000

No. of messages 3 20 1 1

2012 Honda Civic (45 messages)

Period (ms) 10 20 40 100 200 300

No. of messages 11 7 6 11 2 8

2010 Dodge Ram (51 messages)

Period (ms) 10 20 50 60 100 200

No. of messages 3 17 1 1 11 1

Period (ms) 300 500
1000 2000

No. of messages 3 3 7 4

the same. Additionally, we observe the message payloads contain constants, counters

and predictable contents. Figure 3.18 presents the length of PREP for messages on

the three buses. We observe that most of the messages on these CAN buses have at

least one byte of PREP.

3.8.2 Non-Experimental Vehicles

We also analyze the CAN traffic data (published at [71] by other independent

researchers) of three other vehicles: 2012 Toyota Camry, 2012 Honda Civic, and

2010 Dodge Ram. For the convenience of readers, these traces of CAN traffic are also

made available at [70]. While the Camry has 42 messages on its CAN bus, there are

85

Algorithm 3: Victim recovery timing.

. Get time at bus-off, in number of bit-periods

busOffTime T0 ← getCurrentT ime()

timeSpentReceivingFrames Tf ← 0

numReceivedFrames Nf ← 0

num11bitSequences Ns ← 0

. Recovery at 128 instances of 11 recessive bits

while Ns < 128 do

if CAN.availableFrame() then

CANFrame frame← CAN.readFrame()

Nf ← Nf + 1

. Transmission time for received CAN frame

Tf ← Tf + transmissionT ime(frame)
. Each received frame also provides 11 recessive bits

Ns ← getCurrentT ime()−T0−Tf

11 +Nf

45 messages in the Civic. All the message in the Camry and Civic are periodic with

their respective periodicity shown in Table 3.6. In the Ram, we observe 51 periodic

messages and 4 non-periodic messages. Also, each message in these three vehicles is

transmitted in the standard frame format. Further, Figure 3.19 illustrates the dis-

tribution of lengths of PREP in the CAN messages of the three non-experimental

vehicles. We observe that most of the messages have at least one byte of PREP. Ad-

ditionally, when compared with the Civic, the Camry and the Ram have significantly

higher number of messages in which all data bits can be readily predicted resulting

in the PREP of 8.75 bytes.

3.9 Victim Recovery Timing

To re-bus-off the victim, the Duet duo must measure the time of the victim’s

recovery by counting the sequences of 11 recessive bits as described in Algorithm 3.

86

3.10 Details of VIDS

We evaluate Duet against two state-of-the-art VIDS: (1) Viden [20] and (2) Scis-

sion [18], which have practical fingerprinting technique that can be implemented on

a device less powerful (and costly) than an oscilloscope. We do not evaluate Volt-

ageIDS [19] as it requires a high sampling frequency of 2.5 GS/s, making it impractical

for commodity vehicles. Further, we do not evaluate SIMPLE [48] since it fundamen-

tally employs a subset of features employed in Scission.

Viden. We follow the details provided in [20] to implement Viden. Due to the

low sampling rate of 50 KS/s in Viden and the need to relate the samples back to

the message ID in real-time, the number of measured voltage samples per message is

limited to eight samples total, four for CAN-H and four for CAN-L. Viden employs

three features for CAN-H (50th, 75th, and 90th percentiles of CAN-H samples) and

another three features for CAN-L (10th, 25th, and 50th percentiles of CAN-L samples).

Each of the three features in CAN-H or CAN-L is calculated over at least 30 voltage

samples. Hence, one set of the six features is obtained over eight messages. During

the training mode, we record CAN-H and CAN-L voltage samples corresponding to

1600 messages transmitted by each ECU. We compute the thresholds (corresponding

to CAN-H and CAN-L) to exclude the samples corresponding to the acknowledge-

ment. For each ECU, we then compute 200 sets of the six features. We finally train a

200-tree random forest classifier with these six features. During the operation mode,

we collect the voltage samples of eight messages on the CAN bus, compute the six

features from those samples and classify their source using the trained model.

Scission. We follow the details provided in [18] to implement Scission. During

the training mode, we record differential voltage samples corresponding to 200 mes-

sages transmitted by each ECU. Using the samples in each message, we compute the

24 time-domain features and another 24 frequency-domain features for each message.

We then obtain the standardized values for each of the features. We pre-process the

features to find the 18 most significant features by utilizing the Relief-F algorithm.

87

0 2 4 6 8 10 12 14 16 18

Features

-2

-1

0

1

2

3

M
e
a
n
 o

f
s
ta

n
d
a
rd

iz
e
d
 v

a
lu

e
s

Victim + Att

ECU-2

ECU-3

Attacker

Accomplice

Acc + Att

Figure 3.20.: Effect of

Duet on the features uti-

lized in Scission.

10
-2

10
-1

10
0

10
1

False Positive (%)

10
-2

10
0

10
2

T
ru

e
 P

o
s
it
iv

e
 (

%
)

Testbed

Impala

Cruze: Bus-1

Cruze: Bus-2

Figure 3.21.: ROC curves

for Muter-MIDS against

Duet.

10
-2

10
-1

10
0

10
1

False Positive (%)

10
-2

10
0

10
2

T
ru

e
 P

o
s
it
iv

e
 (

%
)

Testbed

Impala

Cruze: Bus-1

Cruze: Bus-2

Figure 3.22.: ROC curves

for Song-MIDS against

Duet.

We finally train a multinomial logistic regression model with the 18 features. During

the operation mode, we record voltage samples of a message on the CAN bus, com-

pute the 18 features of the message and classify the source of the message using the

trained model.

Illustrative Experiment. We illustrate the stealth of Duet by presenting the

results of an experiment with Scission. In this experiment, we launch Duet on one

of the three ECUs in the Cruze: Bus-2 using our experiment setup (Figure 3.10).

We then record the values of the 18 features employed in Scission corresponding to

the victim ECU, the two remaining benign ECUs, the attacker and the accomplice.

Figure 3.20 presents the mean of the standardized values of the features utilized in

Scission where the length of PREP is three bytes. We observe that the values corre-

sponding to “victim + attacker” (recorded during the training mode) and “accomplice

+ attacker” (recorded during the operation mode) are significantly different from

values corresponding to other ECUs. Hence, after Scission learns the manipulated

fingerprint of the victim by utilizing the features of “victim + attacker” in the train-

ing mode, it classifies the fingerprint of “accomplice + attacker” as that of the victim

during the operation mode.

88

3.11 Stealth Against MIDS

Potential Anomalies. Unlike existing attacks [6,8,9,13,53], Duet evades MIDS

presented in prior art [11, 22, 23, 66, 72] by employing novel strategies, specifically

the passive error regeneration tactic and the one-shot transmission mode. Some

MIDS [66,72] watch for inconsistencies in payloads of CAN messages. However, Duet

strategically evades them by persistently suppressing all but one transmission from

the victim (Section 3.3.2) and replacing them with forged messages. MIDS [11,22,23]

which detect message injection by noticing an increased frequency of messages also

fail to detect Duet as neither the attacker nor the accomplice inject any extraneous

message on the bus. Further, Duet does not cause any inconsistency in features

related to CAN protocol and CAN frame format [22]. In fact, the Duet duo carry

out their malicious activity while adhering to the CAN protocol.

In terms of CAN bus traffic, the only anomalous behavior revealed by the Duet

duo is the change in transmission time of their own messages. Hence, only MIDS which

examine the fine-grained inter-message transmission time, like Muter-MIDS [22] and

Song-MIDS [23], can potentially detect Duet. To evade such MIDS, Duet needs to

conceal two potential anomalies in the timing of messages: (1) preceded ID frames

enabling simultaneous transmissions in the three stages of Duet, and (2) the clut-

ter traffic blocking the transmission of the victim’s passive error frame in Stage 2.

The accomplice requires one preceded ID frame in each of the three stages, while

the attacker requires only one preceded ID frame in Stage 2. For these preceded ID

frames, the attacker and accomplice can delay/expedite any of their benign messages

(recall these are compromised ECUs) with the same periodicity. In Stage 2, a total

of 14 messages are required as clutter traffic. The attacker and accomplice can again

delay/expedite any of their benign messages to clutter the bus. Further, regular mes-

sages from other ECUs also act as clutter traffic. Optimal solutions (with minimum

anomalies on the bus) of these problems are required for evading MIDS. We note that

89

Table 3.7.: Messages belonging to three ECUs on Cruze: Bus-1.

ECUs

Period (ms) Victim Attacker Accomplice

10 0 5 0

12.5 7 0 2

20 0 5 0

25 2 0 5

50 4 6 0

100 2 4 0

250 3 1 0

500 3 0 1

1000 0 5 1

5000 0 1 0

such solutions can be easily found offline by reverse engineering the same/similar type

of vehicle. Below we present a concrete example of selecting such clutter traffic.

Illustrative Experiment. We present the periodicity of messages transmitted

by three ECUs on Cruze: Bus-1 in Table 3.7. We assign those ECUs the roles of

the victim, the attacker and the accomplice, and explore the potential messages that

could be utilized in Duet for evading MIDS. Let VIDS utilize one of the victim’s

message with 12.5 ms period for training. In that case, one of the two messages of

the accomplice with periods of 12.5 ms can be selected as the preceded ID frame

during Stage 1 of Duet without alerting MIDS. In Stage 2 of Duet, let the attacker

target one of the victim’s messages with period of 12.5 ms. Note that after one

instance of bus-off, the victim will remain in sleep for 150 ms. In this case, one of

the 11 messages of the attacker with periods of 10 ms and 50 ms can be selected

as the preceded ID-1 frame (Figure 3.6) to synchronize with the victim’s message.

Also, one of the seven accomplice’s messages with periods 12.5 ms and 25 ms can be

utilized as the preceded ID-2 frame. Further, the attacker and accomplice can utilize

90

23 messages with lower periods than 50 ms to fill the traffic on the bus to block the

transmission of the victim’s passive error frame. Thereafter, in Stage 3 of Duet,

the accomplice transmits the messages belonging to the victim at desirable instances

of time. This means that similar to Stage 1 of Duet, the accomplice can select

appropriate preceded ID frames among its messages which do not raise an alarm at

MIDS.

Implementation. We evaluate Duet against two state-of-the-art MIDS: (1) Muter

et al. [22] (Muter-MIDS) and (2) Song et al. [23] (Song-MIDS). Muter-MIDS employs

a binary test to check whether the inter-message transmission time corresponding to

a received CAN message lies within the defined upper and lower bounds. Then it

accumulates the number of such anomalies (failed tests) over a specified period of

an inspection window. Song-MIDS records an anomaly if it detects two back-to-back

messages (with zero bus-idle period) over a similar inspection window. Both MIDS

raise an alarm when the number of anomalies recorded over the inspection window

exceeds a detection threshold. In our evaluation of Muter-MIDS, we set the upper

bound as µ+ 2σ and lower bound as µ− 2σ, where µ and σ represent the mean and

standard deviation of inter-message transmission times, respectively. We also utilize

an inspection window of 0.5 s. The two MIDS run in a laptop connected to the bus.

Evaluation Results. We present the performance of Muter-MIDS and Song-MIDS

against Duet in Figures 3.21 and 3.22, respectively. In these figures, receiver operat-

ing characteristic (ROC) curves are generated by modifying the detection thresholds

employed by MIDS. Here, a true positive refers to the event in which MIDS success-

fully detect Duet, and a false positive refers to the event in which MIDS raise a false

alarm for an attack after inspecting benign CAN traffic. Our results illustrate that

for both Muter-MIDS and Song-MIDS, the true positive rate is less than 1% (i.e., the

success rate of Duet in evading MIDS is more than 99%) at 0.01% false positive rate

(which translates to one false alarm per 1.5 hours). Duet comfortably stays below

MIDS’s radar since the clutter traffic is required only when the victim recovers from

91

Table 3.8.: Computation cost (in µs) for MAC schemes.

Algorithm
Hashing cost

(per byte)

Finalization cost

(per operation)

Total cost

(8-byte data)

SHA512 130.42 16938.76 17982.06

SHA256 44.75 2895.89 3253.89

SHA3_512 112.82 8116.07 9018.63

SHA3_256 60.13 8099.97 8581.01

Blake2b 73.34 9397.35 9984.07

Blake2s 20.40 1317.48 1480.68

GHASH 74.68 9.1 606.54

Poly1305 24.67 463 857.56

AES128 (CBC-MAC) - - 488

AES192 (CBC-MAC) - - 588

AES256 (CBC-MAC) - - 688

the bus-off state. In fact, for a MIDS to be deployable in a real car, it will need to

have a much lower false positive rate which will imply higher success rate for Duet.

3.12 Potential Defenses against Duet

Message Authentication Code (MAC). Conventionally, a cryptographic MAC

is utilized to defend against masquerade attacks. To explore the feasibility of a

MAC scheme in CAN, we utilize the Arduino UNO board to evaluate multiple MAC

schemes [73]. Our evaluation includes the hash-based schemes as well as the block

cipher-based schemes. For the hash algorithms, the total computation cost is the

sum of hashing cost and finalization cost. For each hash algorithm, although the

hashing cost increases with the length of the message data, the finalization cost is

fixed per operation of the algorithm, regardless of the number of data bytes. We

consider a CAN message with eight data bytes to calculate the total computation

cost of generating a MAC with each algorithm. We present our results in Table 3.8.

92

We note that a MAC scheme requires a secure key agreement protocol and counter

synchronization mechanism among ECUs which are difficult to perform on the resource-

constrained CAN [16, 73]. Unlike the MAC scheme, the ECUs in RaID do not

need to share any key to generate the nonce. Further, the generation and verifi-

cation of the authentication code requires the resource-constrained ECUs to per-

form computationally-intensive cryptographic operations. For example, computing

the hash-based MAC on an Arduino Uno with SHA256 and SHA3_256 takes 3.25 ms

and 8.58 ms, respectively (Table 3.8). Furthermore, the communication overhead

(>0.25 ms) of MAC on the bandwidth-limited CAN bus is non-trivial [74]. This

means that the end-to-end message latency in a MAC scheme is significantly higher

than that in RaID. Hence, we assert that a VIDS complemented with RaID is

a more practical solution than a MAC scheme for protecting the CAN bus against

masquerade attacks.

Transmission Time Randomization. The simultaneous transmission of the

victim and attacker in Stage 1 of Duet might be deemed preventable by randomizing

the transmission time of the victim. However, the accomplice may readily counter

such a defense and re-enable the simultaneous transmission by employing multiple

(instead of just one) preceded ID frames. Moreover, transmission time randomization

adversely affects the priority scheduling of messages on CAN, and may result in

significantly degraded worst-case real-time responsiveness of the system [69]. RaID

does not suffer from such adverse effects since the message priority is preserved by

mapping the bits of the ID-A field in the standard frame to those in the extended

frame.

Message (Anomaly)-Based Defense. Another solution that a MIDS might

implement is to record the number of bit-errors on the bus and track the victim’s

TEC to detect when a victim is suppressed. However, unlike RaID, such a defense

will only detect the victim suppression and cannot prevent it.

93

3.13 Discussion

Relevance. Prior efforts [8–10] have illustrated various techniques for compromising

in-vehicle ECUs. We build upon these efforts and present a powerful ECU masquerade

attack, Duet, which follows an APT-style CAN attack strategy and evades any

training-based VIDS by poisoning its training set.

Generalisability. The various CAN characteristics leveraged by Duet are native

in all CAN buses, e.g., the periodicity of CAN messages and predictability of message

contents are commonly observed, as confirmed by our study of CAN traffic from

five different vehicles (Table 3.2). Finally, the flaws that enable our tactics are also

fundamental to the CAN protocol and not specific to any vehicle model/maker.

Secure VIDS Retraining. To provide a secure training mode for VIDS, Kneib

et al. propose to utilize message authentication along with other existing defenses

against training set poisoning attacks [18]. We note that Duet will successfully ma-

nipulate the fingerprint of the victim’s messages with authentication since the attacker

can still corrupt voltage samples in the payload. Also, existing defenses against poi-

soning attacks utilize techniques to remove outliers in the training samples [51, 52].

Since Duet can poison a significant portion (>50%) of the training samples (as

presented in Table 3.3), the poisoned samples are no longer outliers and cannot be

eliminated by the such defenses. We do acknowledge that the encryption of the pay-

load may limit the length of the PREP to 0.75 byte, i.e., only the bits in the control

field. As shown in Figures 3.14 and 3.15, this may lower the success rate of Duet,

but cannot completely prevent Duet.

Retraining Frequency. In Stage 1, Duet increases the number of corrupted bits

(from zero to the desired bits) in the victim’s messages at a rate slower than the

retraining frequency of VIDS. As such, on one hand, Stage 1 of Duet will quickly

conclude against an online training-based VIDS, e.g, within a few seconds against

Viden [20] which learns from each message. On the other hand, it will take a relatively

longer time to conclude against a periodic learning-based VIDS, e.g., within a few days

94

against Scission [18] which may have a daily training schedule. Nevertheless, Duet

tricks VIDS into learning an increasingly manipulated fingerprint of the victim and

ensures that the fingerprint is manipulated stealthily (Section 3.6.2). We point out

that such “low-and-slow” nature of Duet is aligned with other in-vehicle APTs [75].

3.14 Summary

We have presented Duet, a stealthy, multi-stage ECU masquerade attack strategy

that successfully evades state-of-the-art VIDS defenses. Through evaluation results

from real CAN buses and ECUs, we demonstrate the power of the “attacker + ac-

complice” duo – in comparison with existing “lone-attacker” attacks – in distorting

the victim’s voltage fingerprint (which is considered “immutable” in prior research),

suppressing the victim, and impersonating the victim for message spoofing. All these

attack stages are enabled by generic attack tactics. By proposing the RaID defense

against Duet, we advocate the development of orthogonal (to IDS), cost-effective

defenses that break away from the “attack vs. IDS” arms race.

95

4 CANDID: PROTECTING CONTROLLER AREA NETWORK VIA

INTRA-NETWORK DIALECTING

The state-of-the-art automobiles are equipped with hundreds of sensors and actuators

which are administered by electronic control units (ECUs) including brake, engine and

steering control units. These ECUs employ the controller area network (CAN) pro-

tocol for real-time communication and coordination while performing safety-critical

automotive functions such as adaptive cruise control and lane keeping assist. Al-

though CAN has been designed to be robust against electromagnetic interference and

random errors, it has very little, if any, protection against malicious attacks (e.g.,

issuing a malevolent command to an actuator, reporting a wrong sensor value or

disabling a legitimate ECU) [10].

The lack of even fundamental security countermeasures make CAN vulnerable

to a range of traditional attacks such as denial-of-service, replay, and message injec-

tion [5–12]. These attacks exploit the static message identifier/header, the predictable

message payload, and deterministic transmission time of periodic messages. Through

these attacks, an attacker can easily disrupt/disable legitimate ECUs at will [53,76],

and inject messages to manipulate crucial automotive components, e.g., brake, engine

and steering. Moreover, these attacks can be easily replicated not only to similar ve-

hicles, but also to other automotive systems because of the uniformity provided by

the CAN protocol.

To secure CAN, researchers have proposed to employ data encryption and authen-

tication by utilizing the link layer features [74, 77–79], and additional hardware sup-

port [80, 81]). However, the traditional data encryption and authentication schemes

lead to unacceptable end-to-end latency for messages as they put on additional com-

munication overhead to the bandwidth-constrained CAN bus and computation over-

head to the resource-constrained ECUs. Moreover, to limit the worst-case response

96

time, the existing literature provides no mechanism for encrypting the message iden-

tifier and altering the transmission time of messages. Lightweight defense techniques

utilizing intrusion detection systems (IDS) have also been proposed [11, 21, 82–84].

These IDS are able to detect compromised ECUs injecting malicious messages, or

newly added ECUs on the bus.

However, these defenses have many shortcomings. First, all proposed crypto-

graphic solutions are computationally expensive and impractical for resource-constrained

environments. Second, novel attacks such as bus-off [53] and DUET are still effec-

tive, being able to utilize the static components of CAN messages, such as identifier,

payload, and the IFS (inter-frame space), which is the fixed duration between two

consecutive messages. Third, the homogeneity of CAN configuration across all vehi-

cles of the same make and model and the static nature of various components allows

an attacker to reverse-engineer a single vehicle offline and easily scale any attack.

To solve these shortcomings, we propose CANDID, a protocol dialecting defense.

By modifying various components of CAN messages, CANDID creates a unique

“dialect” for each vehicle. This limits the scalability of any attack to a single vehicle.

Further, by modification of the id and IFS fields, attacks such as bus-off and DUET

are prevented. Any modification of various CAN components is called a policy, and

a dialect contains a list of different policies applied in a deployment. CANDID

provides a software-only solution that can be utilized by manufacturers to provide

unique dialects for each deployment. By providing a modified CANDID-enabled

CAN library, CANDID can be easily used by the manufacturers without modification

to their application code. For deployment, CANDID includes a separate Dialect

Controller ECU which facilitates dialect execution and verifies dialect compliance,

and a Dialect agent on each ECU in the deployment.

While executing a dialect in a deployment, CANDID faces various challenges.

First, to be able to control IFS, CANDID must be able to accurately initiate trans-

mission when the ECU is idle. Second, to be able to apply dynamic modifications

to the CAN messages, CANDID must update a buffered message for transmission

97

whenever a new message is received. Third, modification of various fields such as

identifier and IFS hinders their purpose, which is arbitration and synchronization for

arbitration respectively. Fourth, not all dialects can be implemented in a CAN bus

environment because of resource constraints, and we must identify if a dialect can be

deployed in a particular CAN bus environment.

To solve these challenges, CANDID makes various contributions. First, CANDID

performs ECU state tracking by utilizing features that are available from current off-

the-shelf hardware. Second, to free up identifier from its role of arbitration, we

introduce the concept of utilizing IFS for arbitration, without sacrificing worst-case

deadline guarantees. Third, to enable efficient cryptographic policies, we maintain

and utilize a synchronized stream-cipher. Fourth, we provide a time constraint that

can be used to verify if a dialect can be executed in a particular CAN bus environment.

To evaluate CANDID, we have showcased dialects with various policies over two

different attack models as case studies, against a compromised existing ECU and

an external ECU. The two case studies describe various policies highlighting the

importance of modifying CAN components and the impact of CANDID. Our results

show that CANDID requires minimal computational and communication resources.

Further, the dialects in our case studies do not introduce any extra network traffic,

and impact the inter-message arrival rate with a smaller jitter than which occurs

naturally in a vehicle.

We summarize our main contributions as follows.

• We propose CANDID, a protocol dialecting defense to address various short-

comings in the CAN environment.

• By utilizing ECU state tracking by a Dialect agent, CANDID allows unique

dialects in a CAN bus which can be verified by a Dialect controller.

• CANDID enables new capabilities, such as utilizing IFS for arbitration, and a

synchronized stream cipher for cryptographic solutions.

98

ID DLC DATA CRC EOF IFSSOF ACKRTR IDE RES

Figure 4.1.: CAN message format.

4.1 Background

CAN Frame. CAN messages are communicated in either standard or extended

format as shown in Figure 4.1. While a message in the standard frame format is

identified by an 11-bit identifier in the ID-A field, a message in the extended frame

format is identified by a 29-bit identifier which is composed of two fields: an 11-bit

ID-A field and an 18-bit ID-B field. In both formats, a message carries the payload

in the data field which can be of length from zero to eight bytes as indicated in the

data length code (DLC) field. In CAN, the bit values 1 and 0 are called recessive

and dominant bits, respectively. CAN employs a twisted wire pair called CAN-H and

CAN-L. The recessive and dominant bits are represented by the differential (between

CAN-H and CAN-L) voltages of 0 V and 2 V, respectively.

Protocol Stack. The protocol stack followed by an ECU can be broadly classified

into three components: application, controller and transceiver. After generating the

data for a particular sensor/actuator (e.g., steering status), the application software

assigns an identifier to the message, and then pushes the identifier and the payload

to the transmit buffer in the controller. Thereafter, the CAN controller is responsible

for calculating cyclic redundancy check (CRC) bits, properly formatting the frame

and transmitting the message as per the CAN protocol. Finally, the transceiver is

responsible for setting the bus voltage for transmitting each bit. While receiving

a message, the transceiver reads the bus voltage and decodes it to a bit. After

accumulating a message in the receive-buffer, the controller checks the correctness of

the frame format and the CRC bits. If the controller does not detect any error, the

message identifier and payload are forwarded to the application.

99

Application Code

CAN Controller

CAN Transceiver

Transmit
Buffer

Bus

sendMsg(M)

TX Bit RX Bit

recvMsg(M)

Receive
Buffer

Hardware

Figure 4.2.: Overview of CAN.

ID-Based Arbitration. When the controllers of two ECUs attempt to transmit

their messages (in their transmit-buffers) on the bus at the same time, they employ the

following arbitration procedure which allows only one ECU to transmit its message

on the bus. Each ECU starts transmitting on the bus by synchronizing with the

start-of-frame (SOF) field. For the ID fields, each ECU sends an ID bit on the

bus, and then reads it back from the bus. If an ECU reads a dominant bit while

it transmitted a recessive bit, it loses the arbitration, and stops transmitting. Since

each of the messages transmitted by ECUs is allotted a unique ID, only one ECU

wins the arbitration and continues to transmit the rest of the frame.

100

ID-1 DATA-1ECU-1

ID-2 DATA-2

ID-3 DATA-3

ECU-2

ECU-3

CAN Bus ID-1 DATA-1 ID-3 DATA-3ID-2 DATA-2

(a) MessageSequenceA.

ID-1 DATA-1

ID-2 DATA-2

ID-3 DATA-3

ID-1 DATA-1 ID-3 DATA-3 ID-2 DATA-2

ECU-1

ECU-2

ECU-3

CAN Bus

(b) MessageSequenceB.

Figure 4.3.: ID sequence.

4.2 Motivation

Lack of Stream Cipher-Based Solutions. Many CAN bus nodes are incapable

of supporting cryptographic solutions. According to our measurement study, many

ECUs in control systems are based on low-end microcontrollers (e.g., STMicroelec-

tronics STM8 [85] with 16 MHz frequency and 8 KB RAM) which cannot perform

cryptographic computation and preserve real-time properties. For instance, it takes

the STM8 controller more than 1 ms to encrypt each payload with AES-CTR and

3 ms to authenticate with SHA256. Unfortunately, many systems require the CAN

bus to achieve significantly higher throughput (up to 1 Mbps). CAN message have

real-time constraints, which are defined as the deadlines for receiving messages. For

instance, many car manufacturers require that an ECU can receive a CAN frame,

process it, and respond within a 1 ms window. Due to its resource and real-time con-

straints, ECUs call for more lightweight approaches than traditional cryptographic

solutions for securing the network and consequently the physical system.

Traditional cryptography-based defenses are unaffordable in CAN because of the

resource constraints of low-end ECUs, stringent latency requirements of CAN mes-

sages, and bandwidth-constraints of CAN bus. One lightweight solution that is po-

tentially suitable for CAN is to employ a fast stream cipher (e.g., ChaCha) or a fast

block cipher (e.g., Speck) turned into a stream cipher through cipher feedback mode,

output feedback mode or counter mode. Through such a solution, the ECUs can gen-

101

erate a keystream without waiting for the payload (plaintext), and then the keystream

can be simply XORed with the payload to get the ciphertext. This ensures that the

payload does not suffer from the delay caused in the computation of the keystream.

However, this solution cannot be readily implemented in CAN because ECUs cannot

synchronize and pipeline their messages on the CAN bus. For instance, for two cases

shown in Figure 4.3a and Figure 4.3b, the keystream must be different, and the

payload of the messages with ID-2 and ID-3 must be updated. However, they have

already been pushed in the transmit buffers and will transmit with wrongly encrypted

plaintext.

Modification of Static CAN Components. One of the problems with CAN bus

deployments has been the use of static IDs and payload format. This homogeneity

allows an attacker to reverse-engineer a vehicle and scale an attack to all vehicles

of the same make and model. A software diversification approach of modification of

various CAN components to create a unique protocol dialect for each vehicle would

reduce this scalability. However, modification of various CAN message components

such as ID and IFS faces challenges because of their unique functions.

ID field serves the purpose of arbitration on the CAN bus. Any modification of ID

values that does not preserve the priority order will violate the worst-case response

time guarantees that a real-time system is carefully designed around. However, pre-

serving the priority order for ID values leaves them easily reverse engineered. To solve

this issue, we must decouple priority from the ID field.

Although the CAN standard sets IFS between two consecutive messages to be

exactly 3, we note that the CAN standard is not violated for IFS values to be set

higher. We also note that if two messages with different IFS attempt transmission

together, the one with the lower IFS will transmit first, and will have a higher pri-

ority level. Interestingly, IFS-based arbitration can still provide the same worst-case

deadline guarantees as with ID-based arbitration, as only messages of same and lower

priority levels can transmit before a pending transmission, regardless of the ID val-

ues. Note that this does not require any modification to the CAN hardware, and is

102

perfectly compliant with the CAN protocol. Hence, usage of IFS for arbitration frees

up the ID field for various use cases, while still providing the same deadline guaran-

tees. However, control of the IFS field is not possible with current CAN libraries or

hardware.

4.3 Policies and Dialects

CANDID provides a software-only framework to allow run-time modification of

ID, Data, and IFS fields of the CAN messages. The run-time nature of the modifi-

cations allows them to dynamically change with the traffic on the CAN bus. This is

effected by maintaining a context of the bus as a function of the past CAN bus traffic.

The context can then be utilized for applying modifications on CAN messages. The

context-dependent modification of CAN messages enabled by CANDID allows vari-

ous applications which would not be practical otherwise. For example, per-message

encryption is cost-prohibitive for a CAN environment. However, CANDID enables

efficient symmetric encryption by utilizing a shared synchronous stream cipher. The

stream cipher’s keystream is kept synchronized by utilizing the number of messages

transmitted on the bus (context) as the offset in the shared keystream. We discuss

this application further in Case Study B (Section 4.7.2).

Policies. CANDID defines any modification of various CAN components as a

policy. A policy P consists of five components: {Pc, Pδ, Pα, Pβ, Pt}. Pc is the

context maintained by the policy P , and belongs to the context space C. Pδ is the

context update function which is used to update the context after a message is newly

transmitted on the bus. It is defined as Pδ : M× C → C, taking the transmitted

message in the message space M and the current context Pc as input, and outputs

an updated context value. Pα is the policy encoder function that applies appropriate

modifications on a message. It is defined as Pα :M×C →M, taking an unmodified

message and the current context as the input, and outputs a modified message to be

transmitted on the CAN bus. Pβ, the policy decoder function, is the inverse of Pα.

103

Application Code

CAN Controller

CAN Transceiver

Transmit
Buffer

Bus

sendMsg(M)

TX Bit RX Bit

recvMsg(M)

Receive
Buffer

Hardware

CANDID

Software

Policy P = {Pc, Pδ, Pα, Pβ, Pt}

M’

sendMsg(M’)
Pc

Pα(M, Pc)
Pδ(M’, Pc) M

recvMsg(M’)

Pc

Pβ(M’, Pc)
Pδ(M’, Pc)

Figure 4.4.: Overview of CANDID architecture with a single policy dialect.

104

It is defined as Pα :M×C →M, taking a modified message transmitted on the bus

and the current context as the input, and outputs an unmodified message. Finally,

Pt is the execution time of policy P , counting the time taken by both context update

and policy encoder functions.

Dialects. CANDID can apply multiple policies in a CAN bus environment. A

set of policies applied on a system is called a dialect. A dialect D is represented as

{P (1), P (2), ..., P (n)} where P (i) are different policies to be applied in order, and n is

the number of policies in the dialect. When a dialect D is applied in a CAN bus de-

ployment, all ECUs on the bus must be programmed with CANDID and configured

with the same dialect D. Further, CANDID can apply different dialects to differ-

ent deployments of the same CAN bus environment. For example, two cars of the

same make, model, and year can apply different CAN dialects. This makes reverse-

engineering time intensive and provides a diversification defense to the CAN environ-

ment. Finally, the execution time for a dialect D can be represented as
∑n

i=1 P
(i)
t .

Ensuring the execution time of a dialect is bounded is very important as CAN en-

vironments are resource constrained and cannot apply computationally intensive di-

alects/policies. An example is shown in Figure 4.4, where a dialect consisting of a

single policy is applied on the CAN bus.

4.4 CANDID Architecture

A CAN bus with CANDID consists of CANDID-agents added on each existing

ECU and a separate CANDID-controller ECU. The agents on each ECU are re-

sponsible for applying a dialect to the CANDID deployment, while the controller is

responsible for facilitating the dialect application, and verification of policy compli-

ance.

Agents. The agents are software-only and do not require any modifications in

current ECU hardware. They leverage the functionality described in the CAN spec-

ification and available in off-the-shelf CAN controllers. The agents are available to

105

manufacturers as a CANDID-enabled CAN library to integrate during the firmware

compilation stage. Figure 4.4 shows the architecture for an ECU, where CANDID-

agents provides a transparent layer that sits between the hardware interface of the

CAN controller and the application code. As a result, the current ECU firmware

can be easily recompiled with the CANDID-enabled CAN library and a configured

dialect, and no change is required in the application code of the firmware.

Controller. The controller is a separate ECU on the CAN bus. It serves two

major functions. First, it facilitates the dialect on the CAN bus. The controller

maintains the contexts for different policies for different ECUs. If an ECU needs to

reset, the controller then provides the newly reset ECU the up-to-date context for

various policies. It communicates this information using asymmetric encryption and

public/private key pairs maintained per-ECU, with the public key stored with the

controller, and the private key with the ECU. We note that the controller does not

serve any role during regular dialect application, and is not a performance bottleneck.

The second function the controller serves is to verify the compliance of policies in the

dialect. With maintained policy contexts, the controller is able to verify if certain

policies are being followed. The controller can be utilized as an anomaly detection

system for policies whose violation signals anomalies. We note that not all policies

need to be verified, for example a randomization policy would not need verification.

Deployment. CANDID is available to manufacturers as a CANDID-enabled

CAN library that can be used as a drop-in replacement for the CAN library used

during firmware compilation. The dialect is input as a configuration to the library,

and the resultant firmware binaries contain the CANDID agents configured with the

appropriate dialect. The CANDID controller is also available with its source code,

and can be compiled with the dialect as input configuration. We note that while

CANDID is provided as a source-code only solution which can be easily used by

manufacturers, it can also be deployed in situations where only the firmware binaries

are available. CANDID requires only a few interrupt service routines and the send

106

and receive functions for the CAN bus to be rewritten, and any firmware rewriting

tool can be utilized for this purpose.

Threat Model. CAN bus environments can have attackers with various capabili-

ties. An attacker may remotely or physically compromise existing ECUs on the CAN

bus, or may physically attach their own ECU to the exposed OBD-II port on the

CAN bus. In a compromised existing ECU, the attacker has to follow the CAN pro-

tocol, but has the capability to send arbitrary messages, or read all messages on the

bus. With their own device, the attacker may even violate the CAN protocol. Under

this attack model, we assume that the CANDID-controller is not compromised. This

is relatively easy to ensure as the CANDID-controller’s attack surface is limited to

the CAN bus, it can be physically secured or made hard to access, and the firmware

update process can be cryptographically secured. We do not place any assumptions

on compromised existing ECUs. In those cases, the attacker has full access to all the

maintained policy contexts, and stored cryptographic keys, including the one used

for communication with the CANDID-controller. With this basic threat model, in

Section 4.7.2 and Section 4.7.2, we look at specialized dialects that can be deployed

for specific attack models.

4.5 Design of CANDID

We look at how CANDID implements dialects without requiring specialized hard-

ware. Using current off-the-shelf CAN controllers, CANDID must control the ID,

Data, and IFS fields to implement context-dependent policies.

4.5.1 ECU State Tracking

107

Id
le

A
rb

it
ra

ti
o

n

R
ec

e
p

ti
o

n

Tr
an

sm
is

si
o

n

SO
F

In
te

rr
u

p
t

an
d

 p
en

d
in

g
Tr

an
sm

is
si

o
n

A
rb

it
ra

ti
o

n
 S

u
cc

e
ss

D
et

e
ct

io
n

R
e

ce
iv

e
 In

te
rr

u
p

t

Tr
an

sm
it

 In
te

rr
u

p
t

In
it

ia
te

Tr
an

sm
is

si
o

n
In

it
ia

te
Tr

an
sm

is
si

o
n

 E
m

p
ty

 R
ec

e
iv

e
B

u
ff

er

 F
o

r
P

o
lic

y
P

P
δ
(M

,P
c)

 -
>

P
c

P
α
(M

,P
c)

 -
>

M
 u

p
d

at
e

Tr
an

sm
it

 B
u

ff
er

 E
m

p
ty

 R
ec

e
iv

e
B

u
ff

er

 F
o

r
P

o
lic

y
P

P
δ
(M

,P
c)

 -
>

P
c

P
α
(M

,P
c)

 -
>

M
 u

p
d

at
e

Tr
an

sm
it

 B
u

ff
er

t m
in

R
X

D
u

ra
ti

o
n

t e
m

p
ty

R
X

ΣP
t

t u
p

d
at

eT
X

Ti
m

e
 C

o
n

st
ra

in
t

t a
rb

D
et

ec
t +

 t
e

m
p

ty
R

X
 +

 Σ
P

t
+

t u
p

d
at

eT
X
 <

 t
m

in
R

X
D

u
ra

ti
o

n

F
ig
ur
e
4.
5.
:
C

A
N

D
ID

en
ab

le
s
di
al
ec
t
ap

pl
ic
at
io
n
vi
a
E
C
U

st
at
e
tr
ac
ki
ng

.

108

Application of a dialect in CANDID faces some challenges. Firstly, for IFS to

be controlled, CANDID must accurately track the completion of message commu-

nication on the bus, and then programmatically initiate a transmission to achieve a

desired value of IFS. Both these actions must be carried out with high accuracy. Sec-

ondly, upon reception of a message, CANDID must update the contexts of various

policies and reapply policies with updated contexts on any buffered message. This

requires CANDID to accurately track when a message is being received, and perform

the time-sensitive dialect application. These two reasons, (1) controlling IFS and (2)

reapplying dialect, requires CANDID to perform careful tracking of the state of an

ECU.

ECU States. An ECU can be in one of the four states– transmission, reception,

arbitration and idle. The ECU remains in the idle state until there is a message to

be transmitted/received. From the idle state, the ECU moves to the reception state

when another ECU starts transmitting a message on the bus and the ECU has no

transmission buffered in the CAN controller. When the ECU has got a message to

transmit, it moves from the idle state to the arbitration state. If the ECU wins the

arbitration, it moves to the transmission state and starts transmitting its message;

otherwise, if it loses the arbitration, it moves to the reception state as it receives the

message on the bus. Upon the completion of the message communication, the ECU

moves from the transmission or reception state to the idle state. Figure 4.5 shows the

state machine and its various transitions.

To detect the state machine transitions quickly, and also cause them accurately

when needed, CANDID relies on five features from the standard CAN hardware (con-

troller and transceiver). These features are (1) SOF interrupt, (2) Receive interrupt,

(3) Transmit interrupt, (4) Initiate transmission, and (5) Arbitration success detec-

tion. These features do not require any specialized hardware, and are available from

existing CAN controllers. Figure 4.5 shows how ECU state transitions are detected

with these five features. We now discuss them one by one.

109

SOF (Start-of-frame) Interrupt. To track the transition of an ECU from idle to

reception/arbitration states, CANDID needs to detect when a message has initiated

transmission. There are several ways this can be achieved. One way is to utilize the

RX output pin from the CAN transceiver. As a new message is communicated on

CAN, the RX pin will feature a dominant SOF bit as part of the CANmessage, coming

after a sequence of recessive bits as the bus was idle beforehand. By attaching an

interrupt on the value change of RX pin, CANDID can detect the SOF bit. Another

approach is to utilize a feature from TTCAN (Time Triggered CAN), an extension

of regular CAN, that stores the time when a SOF bit is raised in a register. By

checking modifications in the value of the register, CANDID can detect message

communication on the bus. A third way is to utilize the SOF signal that a few CAN

controllers [61] provide, specifically to support TTCAN implementations. Any of the

three methods can be utilized by CANDID.

Receive Interrupt. An interrupt is provided by CAN controllers on successful

reception of a message. This is needed to track the transition from reception state

to the idle state. There are two methods to detect receive interrupts. First, CAN

controllers provide receive interrupts through the general interrupt pin, and also po-

tentially through a dedicated pin. Second, receive interrupts can also be detected

through the RX output pin of the transceiver. Each message terminates with the

EOF (End-of-frame) sequence with 7 recessive bits, and such a sequence cannot hap-

pen in a non-idle bus otherwise. Both methods for receive interrupt are quick and

accurate, allowing fine and timely control of IFS field.

Transmit Interrupt. Similar to receive interrupt, this interrupt is raised on the

successful transmission of a message. This interrupt signals the transition from the

transmission to the idle state. As like receive interrupts, there are two methods to

detect transmit interrupts. One way is to use one of the CAN controller interrupt

pins, either general or dedicated. Another is to utilize CAN transceiver’s RX pin to

detect the EOF sequence. Again, both methods are quick and accurate, and can be

utilized by CANDID to control IFS.

110

Transmission Initiation. For accurate control of IFS field, one must not only

detect the termination of past communication, but also be able to initiate a new one.

CAN controllers provide the capability to initiate transmission, either through a SPI

(Serial Peripheral Interface) call, or through dedicated pins on the CAN controller.

Both methods are able to control the IFS length programmatically.

Arbitration Success Detection. If the ECU loses arbitration while transmitting

a message, it will reattempt transmission afterwards. However, as a new message has

been communicated on the bus (the one which won the arbitration), the context of

various policies must be updated, and the policies be reapplied. Hence, it is essential

to differentiate success and loss during arbitration. This can be achieved by reading

the CAN transceiver’s RX pins to identify the ID which won the arbitration, and

deduce if the ECU won or lost. Another approach that may be used is to utilize

specific registers from the CAN controller that store success and loss of arbitration.

Time Constraints. CAN bus is a resource constrained environment which does

not afford much computational power. The computational limitations place a hard

limit on the execution time of the dialects during a particular state transition. When

an attempted transmission has lost arbitration, and the ECU is in the reception

state, CANDID must perform a bunch of actions. First, it must clear the receive

buffer (if full) to prevent overflow. CANDID saves the context and the received

message to perform the unapply the dialect later. Second, it must update the context

to account for the message currently being received. And lastly, if a message is

awaiting transmission, it must update the message by applying the dialect with the

new updated context. All these actions must be performed in the reception state.

The time limit can be formulated as:

tarbDetect + temptyRX +
n∑
i=1

P
(i)
t + tupdateTX < tminRXDuration (4.1)

, where tarbDetect is the computational time taken to detect arbitration loss, temptyRX

is the time taken to clear the receive buffer,
∑n

i=1 P
(i)
t is the dialect execution time,

111

tupdateTX is the time taken to push the updated message in the transmit buffer, and

tminRXDuration is the minimum time the ECU will stay in the reception state.

To check if a dialect is feasible for a certain architecture, this time constraint can

be verified offline during the compilation stage. CANDID includes a tool that can

be guarantee the feasibility of a dialect for a certain architecture, and can be easily

used by the manufacturers.

4.5.2 Interrupt Service Routines

As CANDID is enabled by quick state-tracking, it is necessary that the interrupt

service routines are not delayed unnecessarily. To enforce this, CANDID maintains

the various interrupts in strict priority levels. Only interrupts of higher priority are

allowed to interrupt an existing interrupt. This priority hierarchy is kept as SOF

> Receive = Transmit > System/Timer interrupts, i.e. CANDID ensures its own

interrupts are given a higher priority over the timer and other system interrupts. Even

if the target architecture does not support interrupt masks to disable interrupts, such

as the AVR which we implement CANDID upon, we can enforce these priority levels

by selectively enabling and disabling interrupts. For example, we enable interrupts

during all interrupts except SOF interrupt service routine, and disable system/timer

interrupts during receive and transmit interrupt service routines.

Interrupt Safety. Interrupt-safety is also an important consideration owing to the

complexity of the interrupt service routines in CANDID, which requires them to have

access to the CAN hardware, and the various policies and their contexts. However,

as even the non-interrupt code, as well as multiple interrupt service routines share

these resources, we must employ several techniques to keep CANDID interrupt-safe.

Interrupt-safe Data Structures. To reduce the number of shared resources in

CANDID, we utilize interrupt-safe data structures wherever possible. Specifically,

we utilize circular buffers for storing transmit requests and received messages. This

112

allows interrupt-safe appends and removals, which CANDID utilizes to handle the

shared resource safely.

Enabling/Disabling Interrupts. Requirement for atomicity is reduced by disabling

and enabling interrupts, whenever certain variables such as the ECU state need to be

updated. However, as CANDID must not delay any interrupt by a large duration of

time, we ensure that interrupts are disabled for only a few clock cycles.

Delayed Critical Section. Even with the above solutions, CANDID still has

critical sections across multiple interrupt service routines and non-interrupt code that

share resources. For example, both the CAN library’s readMsg function called from

application code and the SOF interrupt service routine will attempt to clear the

receive buffer. Also, one cannot merely delay the interrupt, as CANDID must still

service the time-sensitive parts of the interrupt, such as the check for arbitration loss

in SOF interrupt service routine. To solve this issue, CANDID marks a boolean to

detect critical section execution, and delays the execution of critical sections in the

interrupt service routines. CANDID first executes the time sensitive but non-critical

section of the interrupt service routine, then finishes execution of the critical section

in the non-interrupt code, and finally executes the delayed critical section from the

interrupt service routine.

4.6 Implementation

ECU and Testbed Setup. We implement CANDID on ECUs based on Arduino

Uno utilizing MCP2515 CAN controller and the MCP2551 CAN transceiver. The

ECUs have a 16 MHz processor, 2 KB dynamic memory, and 32 KB program memory.

The SPI communication between the Arduino Uno and the CAN controller utilizes

a 8 MHz clock. The testbed consists of 6 ECUs, each programmed with CANDID.

The ECUs are connected through a high speed CAN bus operating at 500 kbps, which

is the standard for high-speed automotive buses.

113

ECU State Tracking. For the five features, (1) SOF interrupt, (2) Receive

interrupt, (3) Transmit interrupt, (4) Initiate transmission, and (5) Arbitration suc-

cess detection, we utilize features provided by the CAN controller and the CAN

transceiver. We utilize the inbuilt SOF signal in the CAN controller. We also utilize

the dedicated pin for Receive interrupt in the CAN controller. For the transmit in-

terrupt, we utilize the RX output pin from the CAN transceiver to detect the EOF

sequence. Initiation of transmission is carried out through the dedicated pin in the

CAN controller. Finally, arbitration success detection is carried out by reading the

RX pin to identify the ID which won the arbitration. We note that access to these

pins from the controller and transceiver do not increase the attack surface of the bus

and other ECUs, as the controller pins are intended features, and the RX pin from

the transceiver is a read-only pin. Also, while we have utilized these mechanisms for

the five features, CANDID can be implemented via any of the other mechanisms

described in Section 4.5.1.

Time Constraints. We calculate the various constants in Equation 4.1 for our

setup. The computational time taken to detect arbitration loss (tarbDetect), is 16µs.

The time taken to read from and clear the receive buffer comes out to be 14µs. The

time taken to push an updated message is also 14µs. The minimum time an ECU

will stay in the reception state (after arbitration) is at least 38 bit periods. This is

calculated as 15 bit CRC checksum, 7 bit EOF sequence, 4 bit control field, 8 bit

for minimum 1 byte payload, and 4 bit of ACK and various delimiters. Note that a

payload of 0 byte is possible, but not used on any high-speed vehicular CAN buses.

Hence, tminRXDuration is equal to 38 bit periods, which is 76µs for our 500kbps CAN

bus. The equation then simplifies to

n∑
i=1

P
(i)
t < 32µs (4.2)

with
∑n

i=1 P
(i)
t as the dialect execution time.

Evaluation Setup. For evaluation, we emulate the traffic from real vehicles on

our testbed. We utilize three CAN buses, two from 2013 Chevrolet Cruze, and one

114

from a 2011 Chevrolet Impala for our evaluation. The first bus Bus1, is a bus on the

Cruze, also operating at 500 kbps. It consists of 88 messages of varying periodicities

being transmitted by six ECUs, with a 61% bus load. The second bus Bus2, also a

bus on the Cruze, is also operating at 500 kbps. It consists of 27 messages of varying

periodicities being transmitted by three ECUs, with a 34% bus load. The third bus

Bus3, is a bus on the Impala operating at 500 kbps. It consists of 50 messages of

varying periodicities being transmitted by four ECUs, with a 35% bus load. Note

that while we utilize Chevrolet vehicles for our evaluation setup, CANDID is generic

and does not use any characteristic unique to Chevrolet CAN buses.

4.7 Evaluation

4.7.1 General Evaluation

Identity Dialect. We first perform a general evaluation for CANDID with an

identity dialect that does not modify any components, but does perform state track-

ing.

ECU. We find that the resource usage of our ECUs stays small after deploy-

ing them with CANDID. The dynamic memory usage (global variables) increases

0.39 KB (from 0.38 KB to 0.77 KB), and program memory usage increases 3.1 KB

(from 4.6 KB to 7.7 KB) on implementing CANDID. As a result, CANDID easily

fits the resource requirements of such low-end devices.

Bus. The identity dialect does not produce any extra traffic on the bus. In

addition to that, we compare the jitter in our testbeds to the jitter in the real vehicle.

We find in Figure 4.7 that the jitter in our testbed is a fraction of the jitter that

exists in the real vehicle. This is because real vehicle ECUs have other sources of

jitter besides the queuing and arbitration delays.

IFS Control. A novel contribution of CANDID is the ability to control IFS

between CAN messages. In this section, we check the accuracy of IFS control in

CANDID. Our evaluation in setting IFS values in our testbed shows that CANDID

115

1.0 0.5 0.0 0.5 1.0
Jitter

0

1

2

3

4

5

Ke
rn

el
 D

en
sit

y

Real Vehicle
Identity Dialect

Figure 4.6.: Jitter Distribution for an ID (0x0C1) on Chevrolet Cruze (Bus1).

116

9 10 12.5 18 25 30 50
Periodicity (ms)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Jit
te

r S
ta

nd
ar

d
De

vi
at

io
n

Real Vehicle
Identity Dialect

Figure 4.7.: Jitter Standard Deviation by Periodicity on Impala (Bus3).

117

is 100% accurate. This may look counter-intuitive, as the accuracy of IFS control

should be challenged by the clock-skew between different ECUs. As the clocks of

two ECUs are slightly skewed, their estimated length of IFS differs if the bus has

been empty for a long time. However, the clocks of ECUs skew very slowly [21], of

the order of 100 parts per million, i.e. 1 bit period per 10,000 bit periods. This

means that clock-skew will have an impact only for a 10ms idle period, and our real

vehicular buses and hence our testbeds are never idle for that long. Hence, we are

able to control and set IFS to arbitrary values with 100% accuracy.

4.7.2 Case Studies

To evaluate the attack-resilience and implementation overhead of dialects gener-

ated by CANDID, we present the following two case studies – (1) attacker controlling

a compromised ECU on the bus, (2) attacker with direct access (e.g., through the

OBD-II port) to the bus.

118

1.0 0.5 0.0 0.5 1.0
Jitter

0

1

2

3

4

5

Ke
rn

el
 D

en
sit

y

Real Vehicle
Identity Dialect
Size=4, Original IDs
Size=8, Original IDs
Size=4, Dialected IDs

Figure 4.8.: Jitter Distribution for an ID (0x0C1) on Chevrolet Cruze (Bus1) for Case

Study: Compromised Existing ECU.

119

9
10

12
.5

18
25

30
50

Pe
rio

di
cit

y
(m

s)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Jitter Standard Deviation

Re
al

 V
eh

icl
e

Id
en

tit
y

Di
al

ec
t

Si
ze

=4
, O

rig
in

al
 ID

s
Si

ze
=8

, O
rig

in
al

 ID
s

Si
ze

=4
, D

ia
le

ct
ed

 ID
s

F
ig
ur
e
4.
9.
:
Ji
tt
er

St
an

da
rd

D
ev
ia
ti
on

by
P
er
io
di
ci
ty

on
Im

pa
la

(B
us
3)

fo
r
C
as
e
St
ud

y:
C
om

pr
om

is
ed

E
xi
st
in
g
E
C
U
.

120

Bus1 Bus2 Bus3
0.0

0.2

0.4

0.6

0.8

1.0

1.2
Jit

te
r S

ta
nd

ar
d

De
vi

at
io

n
Real Vehicle
Identity Dialect
Size=4, Original IDs
Size=8, Original IDs
Size=4, Dialected IDs

Figure 4.10.: Jitter Standard Deviation on different buses for Case Study: Compro-

mised Existing ECU.

Compromised Existing ECU

An attacker with a compromised ECU on the CAN bus has been repeatedly shown

to be practical [6–8, 10, 13, 14] and able to inject messages and control [8, 9, 13–15]

various vehicular functionality. The attacker can also suppress another ECU from

transmitting, utilizing the bus-off attack [53]. We note that the message injection

and bus-off attacks are successful because of static components of the CAN bus.

While message injection is effective because reverse engineering is easy and scalable

from only one vehicle, the bus-off utilizes the constant IFS (=3) between consecutive

messages to induce errors.

121

To address such an attacker, we look towards randomization policies. While Pay-

load (format) and IFS are easily randomized by CANDID, the ID field faces restric-

tions. As IDs are used for arbitration, the randomization must preserve the priority

order, and can be easily reverse engineered. To address this issue, we show how IFS

can be utilized for arbitration.

Priority Scheduling without ID. CANDID allows us to utilize IFS for priority

scheduling on a CAN bus. We make two observations that enable this, (1) if two

ECUs have messages queued when the bus is busy, the message with the lower IFS

will be able to transmit, and (2) while there are tens of IDs present on a CAN bus,

there are generally only around 5 deadline/priority levels [86, 87]. Also, since IFS

control is very accurate, the IFS-based priority scheduling is also very reliable. This

makes it possible to free ID from the role of arbitration.

Dialect. We deploy a randomization-based dialect on our CAN bus, whose policies

are described below.

IFS-based Priority Scheduling. IFS values are assigned through a policy en-

coder function f that assigns IFS to 5 priority levels. The policy is represented as

{∅,∅, f,∅, 0}, where f(M).ifs ∈ {0, 3, 6, 9, 12}.

ID Randomization. For each ID a ∈ IDspace used on the CAN bus, we assign

a set of possible values IDa ⊂ IDspace. Note that for two distinct ID a and b, IDa

and IDb should be disjoint. Further, IDa and IDb do not need to preserve relative

ordering for priority, making ID-only reverse engineering impossible. The policy is

represented as {∅,∅, f, f−1, 0}, where f(M).id ∈ IDM.id.

Payload Randomization. The policy is represented as {∅,∅, f, f−1, 0}, where

f(M).payload is a static permutation of M.payload.

IFS Randomization. IFS values are also randomized. The policy is represented

as {∅,∅, f,∅, 0}, where f(M).ifs = M.ifs+ r, with r ∈ {0, 1, 2}.

Time Constraint. As the dialect is completely context-independent, it does not

need to update contexts and reapply policies. Hence it satisfies the time constraint.

122

Attack Resilience. By deploying different dialects in different vehicles with ran-

domized Payload (format) and ID values, the scalability of the attack is defeated. By

randomizing IDs (through IFS-based priority scheduling) without maintaining prior-

ity ordering, reverse-engineering within a single vehicle is also made difficult. Finally,

by randomizing IFS values, victim suppression via bus-off is prevented.

Performance. CANDID produces minimal overhead (over the identity dialect) for

the ECU, primarily due to memory and computational requirements for randomizing.

Further, the bus load is also not increased.

Message Delays. The only metric that is affected is the delays in message

transmissions. These occur because CANDID controls IFS by delaying the message

to set its value. We plot the standard deviation in inter-message arrival rates of the

periodic messages (which are all CAN messages) on all buses. Our results show that

the increase in jitter by our dialect is a fraction of the jitter that exists in real vehicles.

123

1.0 0.5 0.0 0.5 1.0
Jitter

0

1

2

3

4

5

Ke
rn

el
 D

en
sit

y

Real Vehicle
Identity Dialect
Size=4, Encrypted IDs
Size=8, Encrypted IDs

Figure 4.11.: Jitter Distribution for an ID (0x0C1) on Chevrolet Cruze (Bus1) for

Case Study: External ECU.

124

9
10

12
.5

18
25

30
50

Pe
rio

di
cit

y
(m

s)

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Jitter Standard Deviation

Re
al

 V
eh

icl
e

Id
en

tit
y

Di
al

ec
t

Si
ze

=4
, E

nc
ry

pt
ed

 ID
s

Si
ze

=8
, E

nc
ry

pt
ed

 ID
s

F
ig
ur
e
4.
12

.:
Ji
tt
er

St
an

da
rd

D
ev
ia
ti
on

by
P
er
io
di
ci
ty

on
Im

pa
la

(B
us
3)

fo
r
C
as
e
St
ud

y:
E
xt
er
na

lE
C
U
.

125

Bus1 Bus2 Bus3
0.0

0.2

0.4

0.6

0.8

1.0

1.2
Jit

te
r S

ta
nd

ar
d

De
vi

at
io

n
Real Vehicle
Identity Dialect
Size=4, Encrypted IDs
Size=8, Encrypted IDs

Figure 4.13.: Jitter Standard Deviation on different buses for Case Study: External

ECU.

External ECU

An attacker with physical access to the vehicle can carry out the “evil maid”

attack, by attaching an external ECU to the bus through the On-Board Diagnostics

(OBD)-II port. The attacker thus skips the difficulty of finding an exploit, has remote

access, and control of a sophisticated ECU on the bus. However, this attacker has

not compromised an existing ECU on the bus, and the ECUs can maintain shared

secrets for cryptographic solutions.

Synchronous Stream Cipher. The primary difficulty of implementing cryp-

tographic solutions [16, 17, 74, 78, 88–91] on CAN has been the overhead, which the

126

resource-constrained ECU cannot meet. However, this is primarily because crypto-

graphic solutions have traditionally been applied per-message, whose fixed cost is then

repeated for each message. Instead, with CANDID, it is possible to have the ECUs

maintain a synchronous stream cipher. This allows the CAN bus to have efficient

symmetric encryption by treating the messages on the bus as the plaintext.

Dialect. We deploy a encryption-based dialect on our CAN bus. The synchronous

stream cipher has the shared keystream K, with the policy-context maintaining the

offset in the keystream. Further, we define a context-update function f(c,m) = c+80,

which increases the offset 80 bit for every message transmission on the bus. We choose

80 bit (10 bytes) as it is enough to encrypt ID (11 bit), encrypt Payload (<64 bit),

and set IFS (0 to 3). The context for different policies are initialized as follows, 0 for

ID, 11 for Payload, and 75 for IFS. The policies are described below.

IFS-based Priority Scheduling. We utilize the same policy from Section 4.7.2.

This frees up the ID for encryption.

ID Encryption. The policy is represented as {c, f, g, g, P (2)
t }, where g(M).id =

M.id⊕K[c : c+ 11] for keystream K, context-update function f , and the decryption

function being the same as the encryption function.

Payload Encryption. The policy is represented as {c, f, g, g, P (3)
t }, where g(M).payload =

M.payload ⊕K[c : c + 64] for keystream K, context-update function f , and the de-

cryption function being the same as the encryption function.

IFS Anomaly Detection. The legitimate ECU sets IFS from the keystream, but

the attacker will set IFS to a random value. This allows us to perform anomaly

detection, as over a large number of attacker’s messages, the probability of detection

increases. The policy is represented as {c, f, g, g−1, P
(4)
t }, where g(M).ifs = M.ifs+

K[c : c+ 5] (mod 3) for keystream K, and context-update function f .

For the evaluation, we consider two stream-ciphers. (1) ChaCha20, which is

adopted in Chrome for TLS [92] and (2) Speck (256 bit key, ECB mode).

Time Constraint. The dialect execution time
∑n

i=1 P
(i)
t in this case is the time

taken to read, store, and xor 10 bytes, along with an update of the policy-context.

127

This comes out to roughly 4µs, which is comfortably below the upper limit set in

Equation 4.2.

Attack Resilience. Through encryption of both ID and Payload, we have made

both reverse-engineering and message injection impossible. Further, any brute force

attempt to find collision will also be quickly detected through the use of anomaly

detection via IFS.

Performance. For the ECU overhead, the program memory usage increases by

0.45 KB, and the dynamic memory usage increases by 0.31 KB for ChaCha20, and

by 0.42 KB for Speck. The computational overhead is increased as the keystream

must be generated in idle time, and comes out to around 150µs for ChaCha20 and

100µs for Speck2. This corresponds to a processor usage of 45%, 27%, and 28% for

ChaCha20, and 30%, 18%, and 18% for Speck2 on our three buses. Also, Just as

before, CANDID does not cause any increase in the busload.

Message Delays. Similar to Section 4.7.2, messages transmissions may be delayed

because of setting IFS values. For this case study too, we plot the standard deviation

in inter-message arrival rates of the periodic messages on all buses. Our results again

show that the overhead introduced by our dialect is a fraction of the jitter that exists

in real vehicles.

128

5 RELATED WORK

5.1 Timeliner

Timeline reconstruction is of interest to both cyber and traditional crime inves-

tigations. This interest is reflected in the wide variety of work done for creating

timelines [93–96], making better tools for editing and visualization [97, 98], and cor-

relating sources together to infer semantics in a timeline [99–101]. However, all these

methods are dependent on various logs and database files that are formatted inde-

pendently by applications making their timeline recovery highly application-specific.

Further, these logs and database files are limited to a small set of events that are

logged. Even widely used commercial tools Oxygen [102] and Cellebrite [103] are

application-specific and are limited to these small sets of events. Further, reliance

on system level logging is untrustworthy as major phone manufacturers turn off An-

droid features that reveal forensic information [4]. Timeliner, on the other hand, is

application-generic and can reliably reconstruct a wider variety of actions into the

timeline from only a single image of volatile memory.

Timeliner is more related to RetroScope [29], a memory forensics technique ca-

pable of reconstructing historical and temporally ordered GUI screens. However,

Timeliner differs from RetroScope in two aspects. First, while RetroScope is limited

to reconstruction for a single running (at the time of memory snapshot) app, Time-

liner works across all apps and can construct a device-wide timeline of app activities

(including terminated apps). Second, RetroScope reconstructs screens, which are ren-

derings of GUI content, while Timeliner reconstructs Activities, which are abstractions

of user actions/events. As such Timeliner and RetroScope perfectly complement each

other, with Timeliner reconstructing the skeleton of a crime story involving multiple

apps and RetroScope re-rendering the activity details within each app.

129

Memory forensics has been applied extensively to the Android platform. Mostly

these applications have focused on recovering raw data structures: app-specific login

credentials, JVM control structures, raw Java objects, text messages, buffered me-

dia content, and a variety of application-specific data [28, 104–109]. Recovery of the

raw data structures is performed via value-based [26, 110–113] (relying on constants

and expected values) or structure-based [114–117] (relying on pointer constraints)

scanning. In particular, SigGraph [118] recovers data structure instances using prob-

abilistic analysis on the whole memory image. On the other hand, data structure

recovery is only the first, preparatory step in Timeliner’s timeline recovery.

Various memory introspection and memory analysis techniques have been used to

determine malware and virus activity by observing kernel data structures [119, 120]

or by identifying data structure signatures for polymorphic viruses [121]. However,

while these techniques either rely on active introspection or recover only live kernel

and virus data structures, Timeliner recovers and orders past app activities, including

activities with no references from live data structures, using only a single memory

image.

A number of recent works have gone beyond merely recovering raw data struc-

tures towards full-utilization of their content. DSCRETE [122] recovers a single data

structure instance and utilizes binary analysis and code reuse to transform it into

a human-understandable form. DEC0DE [27] also operates on a single data struc-

ture at a time, recovering call log entries using a finite state machine. Tools such

as HOWARD [123], REWARDS [124], and TIE [125], infer data structure definitions

in binary programs. DIMSUM [126] utilizes probabilistic inference to identify data

structures without page mapping information. VCR [28] recovers media content us-

ing vendor generic signatures, and GUITAR [127] pieces back together various data

structures to retrieve an application’s GUI. As a new, complementary addition to

the above tool set, Timeliner leverages spatial memory layout information to infer

temporal ordering of user Activities.

130

5.2 Controller Area Network

Attacks. In many existing attacks [6, 8, 9, 13], the attacker injects spurious CAN

messages to control the vehicle without victim suppression, which makes the attack

easily detectable. The conventional approach to victim suppression is to exploit

vehicle’s Unified Diagnostic Services [6, 8, 10, 13] and is hence easily preventable by

restricting the use of diagnostics only in protected environments (e.g., repair shops).

In contrast, Duet does not require vehicle diagnostics and is more flexible. Another

method to suppress a victim is to utilize the bus error-handling mechanism [53].

However, not only is the original bus-off attack detectable by VIDS [19], it is also slow

in suppressing the victim and hence ineffective in stopping the victim’s transmission

persistently. Duet employs the passive error regeneration tactic in Stage 2 to rapidly

and persistently bus-off the victim, all while evading VIDS.

While ECU’s voltage fingerprinting can be utilized to detect all known ECU mas-

querade attacks, existing voltage fingerprint-based impersonation methods (described

in [18–20]) against such VIDS involve a lone attacker changing its own fingerprint

indirectly (heating/cooling ECU). Hence, they are unable to significantly alter the

attacker’s fingerprint or target the victim’s fingerprint. As a result, VIDS are able to

detect such impersonation attempts. In fact, Duet is the first work to successfully

counter VIDS, and does so through a duo of attacker and accomplice ECUs manipu-

lating the victim’s voltage fingerprint and then impersonating the victim. Table 3.4

summarizes the strategy and detectability of various attacks, highlighting the novelty

and stealth of Duet.

Defense. Various cryptographic solutions [16, 17] have been proposed to secure

CAN by encrypting and authenticating message payloads. Unfortunately, crypto-

graphic solutions remain impractical as vehicular CAN employs resource-constrained

ECUs and remains bandwidth-constrained. In contrast, CANDID includes context-

dependent modification of CAN components which enables efficient symmetric cryp-

tography with a shared stream cipher. More practical and deployable CAN defenses

131

favor signature and fingerprint-based IDS, such as MIDS [11, 22, 23], CIDS [21] and

VIDS [18–20,48]). While MIDS and CIDS have been shown vulnerable to imperson-

ation attacks [21,49], VIDS are still considered the state-of-the-art defenses. However,

as shown, VIDS are not effective against Duet. RaID complements existing VIDS

and provides an orthogonal, lightweight, and effective defense that not only prevents

(instead of just detects) Duet, but also – in conjunction with VIDS – detects or

prevents all aforementioned attacks. Unlike RaID, CANDID through its ECU state

tracking and control of IFS enables developers to create new policies for intrusion

detection.

132

6 CONCLUSION

Cyber-physical systems are used to handle the interactions of the physical-world and

the cyber-world. Actuators are used to influence the physical-world from the cyber-

world, with sensors working in the reverse direction. Traditionally, the temporal

component of the physical-world has been restricted to the analysis of deadlines of

the actuator messages and the responsivity of the control-loop algorithm reacting to

the sensor inputs. However, the temporal component on its own interacts with the

cyber-world, and has not been studied.

In this dissertation, we investigate the relationship of the temporal component

of the physical-world with the cyber-world. We first study how temporal order of

actions leaves an impact in the cyber-world, with application in forensics. We next

look at Controller Area Network (CAN), a broadcast communication network, where

the temporal control of messages enables new attack and defense capabilities.

In particular, Timeliner presents an Android memory forensics technique that re-

constructs a timeline of past user-actions from a single static memory image collected

post-crime. By identifying the key set of data structures left in a memory image by

user-actions, Timeliner is able to recover the list of past user-actions. Then, Time-

liner infers the temporal order of user-actions from the spatial order of their memory

allocations. Our results show that Timeliner is highly accurate in reconstructing up

to an hour of past activities

DUET presents an attack capability enabled by the temporal components of mes-

sages by two adversaries, an attacker and an accomplice. DUET is able to stealthily

manipulate the physical-world voltage fingerprint learnt by a voltage-based IDS, per-

sistently suppress the victim, and then impersonate the manipulated fingerprint.

RAID presents a lightweight and efficient defense to DUET, which can complement

existing IDS defenses.

133

CANDID presents defensive capabilities enabled by control of various CAN mes-

sage components, the most important of which is temporal. Through its ECU state

tracking mechanism, CANDID enables new applications such as using inter-frame

space for arbitration, freeing up CAN identifiers for other applications, or enabling

lightweight stream-cipher based symmetric encryption in the resource constrained

CAN bus environment. Our results show that CANDID is able to provide these

capabilities at minimal performance overhead.

In conclusion, this dissertation casts light on the complex relationship between

the temporal component of the physical-world and the cyber-world. As a result,

Timeliner, DUET, and CANDID enable new capabilities for forensics, attack, and

defensive applications.

134

REFERENCES

[1] Commonwealth v. Phifer. SJC-11242, (2012).

[2] Nissen v. Pierce County (Majority). Washingotn S. Ct. 90875-3, (2015).

[3] Hamilton v. State. Oklahoma S. Ct. F-2015-529, (2016).

[4] Devices without UsageStats API. http://stackoverflow.com/questions/
32135903/devices-without-apps-using-usage-data-or-android-
settings-usage-access-setting.

[5] Ivan Studnia, Vincent Nicomette, Eric Alata, Yves Deswarte, Mohamed
Kaâniche, and Youssef Laarouchi. Survey on security threats and protection
mechanisms in embedded automotive networks. In Dependable Systems and
Networks Workshop (DSN-W), 2013 43rd Annual IEEE/IFIP Conference on,
pages 1–12. IEEE, 2013.

[6] C. Miller and C. Valasek. Adventures in automotive networks and control units.
Def Con, 21:260–264, 2013.

[7] C. Miller and C. Valasek. A survey of remote automotive attack surfaces. Black
Hat USA, 2014:94, 2014.

[8] C. Miller and C. Valasek. Remote exploitation of an unaltered passenger vehicle.
Black Hat USA, 2015:91, 2015.

[9] K. Koscher, A. Czeskis, F. Roesner, et al. Experimental security analysis of
a modern automobile. In IEEE Symposium on Security and Privacy (S&P),
pages 447–462, 2010.

[10] S. Checkoway, D. Mccoy, B. Kantor, et al. Comprehensive experimental analyses
of automotive attack surfaces. In USENIX Security Symposium, pages 77–92,
2011.

[11] T. Hoppe, S. Kiltz, and J. Dittmann. Security threats to automotive CAN
networks–practical examples and selected short-term countermeasures. Relia-
bility Engineering & System Safety, 96(1):11–25, 2011.

[12] Yelizaveta Burakova, Bill Hass, Leif Millar, and André Weimerskirch. Truck
hacking: An experimental analysis of the sae j1939 standard. In WOOT, 2016.

[13] S. Nie, L. Liu, and Y. Du. Free-fall: Hacking Tesla from wireless to CAN bus.
Briefing, Black Hat USA, 2017.

[14] S. Nie, L. Liu, Y. Du, and W. Zhang. Over-the-air: How we remotely compro-
mised the gateway, BCM, and autopilot ECUs of Tesla cars. Briefing, Black
Hat USA, 2018.

http://stackoverflow.com/questions/32135903/devices-without-apps-using-usage-data-or-android-settings-usage-access-setting
http://stackoverflow.com/questions/32135903/devices-without-apps-using-usage-data-or-android-settings-usage-access-setting
http://stackoverflow.com/questions/32135903/devices-without-apps-using-usage-data-or-android-settings-usage-access-setting

135

[15] S. Woo, H. J. Jo, and D. H. Lee. A practical wireless attack on the connected
car and security protocol for in-vehicle CAN. IEEE Transactions on Intelligent
Transportation Systems, 16(2):993–1006, 2015.

[16] B. Groza and P. Murvay. Security solutions for the controller area network:
Bringing authentication to in-vehicle networks. IEEE Vehicular Technology
Magazine, 13(1):40–47, 2018.

[17] Q. Hu and F. Luo. Review of secure communication approaches for in-vehicle
network. International Journal of Automotive Technology, 19(5):879–894, 2018.

[18] M. Kneib and C. Huth. Scission: Signal characteristic-based sender identi-
fication and intrusion detection in automotive networks. In ACM SIGSAC
Conference on Computer and Communications Security (CCS), pages 787–800,
2018.

[19] W. Choi, K. Joo, H. J. Jo, et al. VoltageIDS: Low-level communication char-
acteristics for automotive intrusion detection system. IEEE Transactions on
Information Forensics and Security, 13(8):2114–2129, 2018.

[20] K.-T. Cho and K. G. Shin. Viden: Attacker identification on in-vehicle net-
works. In ACM SIGSAC Conference on Computer and Communications Secu-
rity (CCS), pages 1109–1123, 2017.

[21] K.-T. Cho and K. G. Shin. Fingerprinting electronic control units for vehicle
intrusion detection. In USENIX Security Symposium, pages 911–927, 2016.

[22] M. Müter, André Groll, and Felix C Freiling. A structured approach to anomaly
detection for in-vehicle networks. In Sixth International Conference on Infor-
mation Assurance and Security (IAS), pages 92–98, 2010.

[23] H. M. Song, H. R. Kim, and H. K. Kim. Intrusion detection system based
on the analysis of time intervals of CAN messages for in-vehicle network. In
International Conference on Information Networking (ICOIN), pages 63–68,
2016.

[24] Rohit Bhatia, Brendan Saltaformaggio, Seung Jei Yang, Aisha I Ali-Gombe,
Xiangyu Zhang, Dongyan Xu, and Golden G Richard III. Tipped off by your
memory allocator: Device-wide user activity sequencing from android memory
images. In Proceedings of Network and Distributed System Security Symposium,
2018.

[25] Ross M Gardner and Tom Bevel. Practical crime scene analysis and reconstruc-
tion. CRC Press, 2009.

[26] The Volatility Foundation. http://www.volatilityfoundation.org/.

[27] Robert Walls, Brian N Levine, and Erik G Learned-Miller. Forensic triage for
mobile phones with DEC0DE. In Proceedings of USENIX Security Symposium,
2011.

[28] Brendan Saltaformaggio, Rohit Bhatia, Zhongshu Gu, Xiangyu Zhang, and
Dongyan Xu. VCR: App-agnostic recovery of photographic evidence from an-
droid device memory images. In Proceedings of ACM Conference on Computer
and Communications Security, 2015.

http://www.volatilityfoundation.org/

136

[29] Brendan Saltaformaggio, Rohit Bhatia, Xiangyu Zhang, Dongyan Xu, and
Golden G Richard III. Screen after previous screens: Spatial-temporal recre-
ation of android app displays from memory images. In Proceedings of USENIX
Security Symposium, 2016.

[30] Activity API Documentation. https://developer.android.com/reference/
android/app/Activity.html.

[31] Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. Journal of
the ACM (JACM), 44(4):585–591, 1997.

[32] Kendall-tau distance. https://en.wikipedia.org/wiki/
Kendall_tau_distance.

[33] Android version market shares. https://fossbytes.com/most-popular-
android-versions-always-updated/.

[34] Jemalloc. https://github.com/jemalloc/jemalloc/wiki/Background.

[35] mozjemalloc. https://github.com/mozilla/gecko-dev/blob/master/
memory/build/mozjemalloc.cpp.

[36] Chrysaor malware. https://android-developers.googleblog.com/2017/04/
an-investigation-of-chrysaor-malware-on.html.

[37] Lipizzan malware. https://android-developers.googleblog.com/2017/07/
from-chrysaor-to-lipizzan-blocking-new.html.

[38] Mexico spyware. https://www.theguardian.com/world/2017/jun/19/
mexico-cellphone-software-spying-journalists-activists.

[39] Domestic spying. http://www.independent.co.uk/news/uk/home-news/
exclusive-abusers-using-spyware-apps-to-monitor-partners-
reaches-epidemic-proportions-9945881.html.

[40] Theonespy. https://www.theonespy.com.

[41] FBI. Brian P. Regan espionage. https://www.fbi.gov/history/famous-
cases/brian-p-regan-espionage, 2001.

[42] Gillette corporate espionage. http://www.fraud-magazine.com/
article.aspx?id=2147483718.

[43] Dangers of distracted driving. https://www.fcc.gov/consumers/guides/
dangers-texting-while-driving.

[44] Textalyzer. http://www.nytimes.com/2016/04/28/science/driving-
texting-safety-textalyzer.html.

[45] Mccann investigations. http://www.mccanninvestigations.com/media/6310/
case_study_texting_and_driving.pdf.

[46] Tesla autopilot accident. https://www.theguardian.com/technology/2016/
jul/01/tesla-driver-killed-autopilot-self-driving-car-harry-
potter.

https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/Activity.html
https://en.wikipedia.org/wiki/Kendall_tau_distance
https://en.wikipedia.org/wiki/Kendall_tau_distance
https://fossbytes.com/most-popular-android-versions-always-updated/
https://fossbytes.com/most-popular-android-versions-always-updated/
https://github.com/jemalloc/jemalloc/wiki/Background
https://github.com/mozilla/gecko-dev/blob/master/memory/build/mozjemalloc.cpp
https://github.com/mozilla/gecko-dev/blob/master/memory/build/mozjemalloc.cpp
https://android-developers.googleblog.com/2017/04/an-investigation-of-chrysaor-malware-on.html
https://android-developers.googleblog.com/2017/04/an-investigation-of-chrysaor-malware-on.html
https://android-developers.googleblog.com/2017/07/from-chrysaor-to-lipizzan-blocking-new.html
https://android-developers.googleblog.com/2017/07/from-chrysaor-to-lipizzan-blocking-new.html
https://www.theguardian.com/world/2017/jun/19/mexico-cellphone-software-spying-journalists-activists
https://www.theguardian.com/world/2017/jun/19/mexico-cellphone-software-spying-journalists-activists
http://www.independent.co.uk/news/uk/home-news/exclusive-abusers-using-spyware-apps-to-monitor-partners-reaches-epidemic-proportions-9945881.html
http://www.independent.co.uk/news/uk/home-news/exclusive-abusers-using-spyware-apps-to-monitor-partners-reaches-epidemic-proportions-9945881.html
http://www.independent.co.uk/news/uk/home-news/exclusive-abusers-using-spyware-apps-to-monitor-partners-reaches-epidemic-proportions-9945881.html
https://www.theonespy.com
https://www.fbi.gov/history/famous-cases/brian-p-regan-espionage
https://www.fbi.gov/history/famous-cases/brian-p-regan-espionage
http://www.fraud-magazine.com/article.aspx?id=2147483718
http://www.fraud-magazine.com/article.aspx?id=2147483718
https://www.fcc.gov/consumers/guides/dangers-texting-while-driving
https://www.fcc.gov/consumers/guides/dangers-texting-while-driving
http://www.nytimes.com/2016/04/28/science/driving-texting-safety-textalyzer.html
http://www.nytimes.com/2016/04/28/science/driving-texting-safety-textalyzer.html
http://www.mccanninvestigations.com/media/6310/case_study_texting_and_driving.pdf
http://www.mccanninvestigations.com/media/6310/case_study_texting_and_driving.pdf
https://www.theguardian.com/technology/2016/jul/01/tesla-driver-killed-autopilot-self-driving-car-harry-potter
https://www.theguardian.com/technology/2016/jul/01/tesla-driver-killed-autopilot-self-driving-car-harry-potter
https://www.theguardian.com/technology/2016/jul/01/tesla-driver-killed-autopilot-self-driving-car-harry-potter

137

[47] Judy Harrison. Death of 15-year-old nichole cable was kidnapping gone wrong,
affidavit says. http://bangordailynews.com/2013/05/29/news/bangor/
death-of-15-year-old-nichole-cable-was-kidnapping-gone-wrong-
affidavit-says/, 2013.

[48] M. Foruhandeh, Y. Man, R. Gerdes, et al. SIMPLE: Single-frame based physical
layer identification for intrusion detection and prevention on in-vehicle networks.
In Annual Computer Security Applications Conference (ACSAC), 2019.

[49] S. U. Sagong, X. Ying, A. Clark, et al. Cloaking the clock: Emulating clock skew
in controller area networks. In Proceedings of the 9th ACM/IEEE International
Conference on Cyber-Physical Systems (ICCPS), pages 32–42, 2018.

[50] R. Bosch. CAN specification - Version 2.0, 1991.

[51] M. Jagielski, A. Oprea, B. Biggio, et al. Manipulating machine learning: Poison-
ing attacks and countermeasures for regression learning. In IEEE Symposium
on Security and Privacy (S&P), pages 19–35, 2018.

[52] S. Mei and X. Zhu. Using machine teaching to identify optimal training-set
attacks on machine learners. In Proceedings of the Twenty-Ninth AAAI Con-
ference on Artificial Intelligence, pages 2871–2877, 2015.

[53] K.-T. Cho and K. G. Shin. Error handling of in-vehicle networks makes them
vulnerable. In ACM SIGSAC Conference on Computer and Communications
Security (CCS), pages 1044–1055, 2016.

[54] Diurnal temperature variation. https://en.wikipedia.org/wiki/
Diurnal_temperature_variation, 2019. [Online; accessed August 1,
2019].

[55] Comma.ai. opendbc: Democratize access to car decoder rings. https:
//github.com/commaai/opendbc, 2019. [Online; accessed August 1, 2019].

[56] M. Marchetti and D. Stabili. READ: Reverse engineering of automotive data
frames. IEEE Transactions on Information Forensics and Security, 14(4):1083–
1097, 2019.

[57] M. D. Pesé, T. Stacer, C. A. Campos, et al. LibreCAN: Automated CAN
message translator. In ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS), pages 2283–2300, 2019.

[58] B. Biggio, B. Nelson, and P. Laskov. Poisoning attacks against support vector
machines. In Proceedings of the 29th International Coference on International
Conference on Machine Learning, pages 1467–1474, 2012.

[59] N. Šrndic and P. Laskov. Practical evasion of a learning-based classifier: A case
study. In Proceedings of the IEEE Symposium on Security and Privacy, pages
197–211, 2014.

[60] J. Petit and S. E. Shladover. Potential cyberattacks on automated vehicles.
IEEE Transactions on Intelligent Transportation Systems, 16(2):546–556, 2014.

[61] Microchip. MCP2515: Stand-alone CAN controller with SPI interface. http:
//ww1.microchip.com/downloads/en/devicedoc/21801e.pdf, 2007. [Online;
accessed August 1, 2019].

http://bangordailynews.com/2013/05/29/news/bangor/death-of-15-year-old-nichole-cable-was-kidnapping-gone-wrong-affidavit-says/
http://bangordailynews.com/2013/05/29/news/bangor/death-of-15-year-old-nichole-cable-was-kidnapping-gone-wrong-affidavit-says/
http://bangordailynews.com/2013/05/29/news/bangor/death-of-15-year-old-nichole-cable-was-kidnapping-gone-wrong-affidavit-says/
https://en.wikipedia.org/wiki/Diurnal_temperature_variation
https://en.wikipedia.org/wiki/Diurnal_temperature_variation
https://github.com/commaai/opendbc
https://github.com/commaai/opendbc
http://ww1.microchip.com/downloads/en/devicedoc/21801e.pdf
http://ww1.microchip.com/downloads/en/devicedoc/21801e.pdf

138

[62] Philips. SJA1000: Stand-alone CAN controller. https://www.nxp.com/docs/
en/data-sheet/SJA1000.pdf, 2000. [Online; accessed August 1, 2019].

[63] M. Pous, A. Atienza, and F. Silva. EMI radiated characterization of an hybrid
bus. In 10th International Symposium on Electromagnetic Compatibility, pages
208–213, 2011.

[64] Vector CANtech, Inc. Common high speed physical layer prob-
lems. https://assets.vector.com/cms/content/know-how/_application-
notes/AN-ANI-1-115_HS_Physical_Layer_Problems.pdf, 2003. [Online; ac-
cessed August 1, 2019].

[65] S. Kramer, D. Ziegenbein, and A. Hamann. Real world automotive benchmarks
for free. In International Workshop on Analysis Tools and Methodologies for
Embedded and Real-time Systems (WATERS), 2015.

[66] M. Markovitz and A. Wool. Field classification, modeling and anomaly detection
in unknown CAN bus networks. Vehicular Communications, 9:43–52, 2017.

[67] P. P. Lopez, E. S. Millan, J. C. V. Lubbe, and L. A. Entrena. Cryptographically
secure pseudo-random bit generator for RFID tags. In International Conference
for Internet Technology and Secured Transactions (ICITST), pages 1–6, 2010.

[68] Arduino. Random function. https://www.arduino.cc/reference/en/
language/functions/random-numbers/random/, 2019. [Online; accessed Au-
gust 1, 2019].

[69] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien. Controller area network
(CAN) schedulability analysis: Refuted, revisited and revised. Real-Time Sys-
tems, 35(3):239–272, 2007.

[70] Anonymous. Duet: Supplementary files. https://github.com/CAN-Bus-Duet/
CAN-Bus-Duet, 2019. [Online; accessed August 1, 2019].

[71] Crash Reconstruction Research Consortium. CAN traffic data. http://
tucrrc.utulsa.edu, 2019. [Online; accessed August 1, 2019].

[72] M. Kang and J. Kang. A novel intrusion detection method using deep neural
network for in-vehicle network security. In IEEE 83rd Vehicular Technology
Conference (VTC Spring), pages 1–5, 2016.

[73] P.-S. Murvay, A. Matei, C. Solomon, and B. Groza. Development of an AU-
TOSAR compliant cryptographic library on state-of-the-art automotive grade
controllers. In IEEE International Conference on Availability, Reliability and
Security (ARES), pages 117–126, 2016.

[74] B. Groza, S. Murvay, A. V. Herrewege, and I. Verbauwhede. LiBrA-CAN: A
lightweight broadcast authentication protocol for controller area networks. In
International Conference on Cryptology and Network Security, pages 185–200.
Springer, 2012.

[75] A. Lima, F. Rocha, M. Völp, and P. E. Veríssimo. Towards safe and secure
autonomous and cooperative vehicle ecosystems. In Proceedings of the 2nd
ACM Workshop on Cyber-Physical Systems Security and Privacy, pages 59–70,
2016.

https://www.nxp.com/docs/en/data-sheet/SJA1000.pdf
https://www.nxp.com/docs/en/data-sheet/SJA1000.pdf
https://assets.vector.com/cms/content/know-how/_application-notes/AN-ANI-1-115_HS_Physical_Layer_Problems.pdf
https://assets.vector.com/cms/content/know-how/_application-notes/AN-ANI-1-115_HS_Physical_Layer_Problems.pdf
https://www.arduino.cc/reference/en/language/functions/random-numbers/random/
https://www.arduino.cc/reference/en/language/functions/random-numbers/random/
https://github.com/CAN-Bus-Duet/CAN-Bus-Duet
https://github.com/CAN-Bus-Duet/CAN-Bus-Duet
http://tucrrc.utulsa.edu
http://tucrrc.utulsa.edu

139

[76] Tsvika Dagan and Avishai Wool. Parrot, a software-only anti-spoofing defense
system for the CAN bus. ESCAR EUROPE, 2016.

[77] AutoSAR Secure Onboard Communication. https://
www.autosar.org/fileadmin/user_upload/standards/classic/4-3/
AUTOSAR_SWS_SecureOnboardCommunication.pdf.

[78] A. Van Herrewege, D. Singelee, and I. Verbauwhede. CANAuth-a simple, back-
ward compatible broadcast authentication protocol for CAN bus. In ECRYPT
Workshop on Lightweight Cryptography, 2011.

[79] Bosch Secure Communication for CAN. http://www.bosch-
semiconductors.com/ip-modules/can-ip-modules/plug-and-secure-
communication-for-can/.

[80] SPC58 Hardware Security Module. www.st.com/resource/en/brochure/
brspc58c.pdf.

[81] Telemaco3 HW Crypto Engine. http://www.st.com/resource/en/
data_brief/sta1195.pdf.

[82] M. Müter and N. Asaj. Entropy-based anomaly detection for in-vehicle net-
works. In IEEE Intelligent Vehicles Symposium (IV), pages 1110–1115, 2011.

[83] Pal-Stefan Murvay and Bogdan Groza. Source identification using signal charac-
teristics in controller area networks. IEEE Signal Processing Letters, 21(4):395–
399, 2014.

[84] Wonsuk Choi, Hyo Jin Jo, Samuel Woo, Ji Young Chun, Jooyoung Park, and
Dong Hoon Lee. Identifying ecus using inimitable characteristics of signals in
controller area networks. arXiv preprint arXiv:1607.00497, 2016.

[85] STM8 Microcontrollers. http://www.st.com/content/st_com/en/products/
microcontrollers/stm8-8-bit-mcus.html?querycriteria=productId=
SC1244.

[86] K. Tindell and A. Burns. Guaranteeing message latencies on control area net-
work (CAN). In International CAN Conference, 1994.

[87] K. Tindell, A. Burns, and A. J. Wellings. Calculating controller area network
(CAN) message response times. Control Engineering Practice, 3(8):1163–1169,
1995.

[88] K. Han, S. D. Potluri, and K. G. Shin. On authentication in a connected vehicle:
Secure integration of mobile devices with vehicular networks. In ACM/IEEE
International Conference on Cyber-Physical Systems (ICCPS), pages 160–169,
2013.

[89] S. Jain and J. Guajardo. Physical layer group key agreement for automotive
controller area networks. In International Conference on Cryptographic Hard-
ware and Embedded Systems (CHES), pages 85–105, 2016.

[90] A. Groll and C. Ruland. Secure and authentic communication on existing in-
vehicle networks. In IEEE Intelligent Vehicles Symposium, pages 1093–1097,
2009.

https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_SecureOnboardCommunication.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_SecureOnboardCommunication.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_SecureOnboardCommunication.pdf
http://www.bosch-semiconductors.com/ip-modules/can-ip-modules/plug-and-secure-communication-for-can/
http://www.bosch-semiconductors.com/ip-modules/can-ip-modules/plug-and-secure-communication-for-can/
http://www.bosch-semiconductors.com/ip-modules/can-ip-modules/plug-and-secure-communication-for-can/
www.st.com/resource/en/brochure/brspc58c.pdf
www.st.com/resource/en/brochure/brspc58c.pdf
http://www.st.com/resource/en/data_brief/sta1195.pdf
http://www.st.com/resource/en/data_brief/sta1195.pdf
http://www.st.com/content/st_com/en/products/microcontrollers/stm8-8-bit-mcus.html?querycriteria=productId=SC1244
http://www.st.com/content/st_com/en/products/microcontrollers/stm8-8-bit-mcus.html?querycriteria=productId=SC1244
http://www.st.com/content/st_com/en/products/microcontrollers/stm8-8-bit-mcus.html?querycriteria=productId=SC1244

140

[91] K. Kang, Y. Baek, S. Lee, and S. H. Son. An attack-resilient source authentica-
tion protocol in controller area network. In ACM/IEEE Symposium on Archi-
tectures for Networking and Communications Systems (ANCS), pages 109–118,
2017.

[92] Speeding up and strengthening https connections for chrome on an-
droid. https://security.googleblog.com/2014/04/speeding-up-and-
strengthening-https.html, 2014. [Online; accessed August 1, 2019].

[93] Yoan Chabot, Aurélie Bertaux, Christophe Nicolle, and Tahar Kechadi. Au-
tomatic timeline construction for computer forensics purposes. In IEEE
Joint Intelligence and Security Informatics Conference (ISI-EISIC 2014), 24-
26 September, the Hague, Netherlands. Institute of Electrical and Electronics
Engineers, 2014.

[94] K Guðjónsson. Mastering the super timeline with log2timeline. SANS Institute,
2010.

[95] Christopher Hargreaves and Jonathan Patterson. An automated timeline re-
construction approach for digital forensic investigations. Digital Investigation,
9:S69–S79, 2012.

[96] Alex Levinson, Bill Stackpole, and Daryl Johnson. Third party application
forensics on apple mobile devices. In System Sciences (HICSS), 2011 44th
Hawaii International Conference on, pages 1–9. IEEE, 2011.

[97] Florian P Buchholz and Courtney Falk. Design and implementation of zeitline:
a forensic timeline editor. In DFRWS, 2005.

[98] Jens Olsson and Martin Boldt. Computer forensic timeline visualization tool.
digital investigation, 6:S78–S87, 2009.

[99] Kevin Chen, Andrew Clark, Olivier De Vel, and George Mohay. Ecf-event
correlation for forensics. 2003.

[100] Bradley Schatz, George Mohay, and Andrew Clark. Rich event representation
for computer forensics. In Proceedings of the Fifth Asia-Pacific Industrial Engi-
neering and Management Systems Conference (APIEMS 2004), volume 2, pages
1–16. Citeseer, 2004.

[101] MNA Khan and Ian Wakeman. Machine learning for post-event timeline recon-
struction. In First Conference on Advances in Computer Security and Forensics
Liverpool, UK, pages 112–121. Citeseer, 2006.

[102] Oxygen Forensic Analyst Timeline. http://www.oxygen-forensic.com/en/
products/oxygen-forensic-detective/analyst/timeline.

[103] Cellebrite UFED. https://www.cellebrite.com/en/solutions/pro-
series/.

[104] Dimitris Apostolopoulos, Giannis Marinakis, Christoforos Ntantogian, and
Christos Xenakis. Discovering authentication credentials in volatile memory
of android mobile devices. In Collaborative, Trusted and Privacy-Aware e/m-
Services. 2013.

https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html
https://security.googleblog.com/2014/04/speeding-up-and-strengthening-https.html
http://www.oxygen-forensic.com/en/products/oxygen-forensic-detective/analyst/timeline
http://www.oxygen-forensic.com/en/products/oxygen-forensic-detective/analyst/timeline
https://www.cellebrite.com/en/solutions/pro-series/
https://www.cellebrite.com/en/solutions/pro-series/

141

[105] 504ENSICS Labs. Dalvik Inspector. http://www.504ensics.com/automated-
volatility-plugin-generation-with-dalvik-inspector/, 2013.

[106] Holger Macht. Live memory forensics on android with volatility. Friedrich-
Alexander University Erlangen-Nuremberg, 2013.

[107] Vrizlynn LL Thing, Kian-Yong Ng, and Ee-Chien Chang. Live memory forensics
of mobile phones. Digital Investigation, 7, 2010.

[108] Christian Hilgers, Holger Macht, Tilo Muller, and Michael Spreitzenbarth. Post-
mortem memory analysis of cold-booted android devices. In Proceedings of IT
Security Incident Management & IT Forensics (IMF), 2014.

[109] Seung Jei Yang, Jung Ho Choi, Ki Bom Kim, Rohit Bhatia, Brendan Saltafor-
maggio, and Dongyan Xu. Live acquisition of main memory data from android
smartphones and smartwatches. Digital Investigation, 23:50–62, 2017.

[110] Andreas Schuster. Searching for processes and threads in microsoft windows
memory dumps. Digital Investigation, 3, 2006.

[111] Nick L Petroni Jr, Aaron Walters, Timothy Fraser, and William A Arbaugh.
FATKit: A framework for the extraction and analysis of digital forensic data
from volatile system memory. Digital Investigation, 3, 2006.

[112] Brendan Dolan-Gavitt, Abhinav Srivastava, Patrick Traynor, and Jonathon
Giffin. Robust signatures for kernel data structures. In Proceedings of ACM
Conference on Computer and Communications Security, 2009.

[113] C Bugcheck. Grepexec: Grepping executive objects from pool memory. In
Proceedings of Digital Forensic Research Workshop, 2006.

[114] Andrew Case, Andrew Cristina, Lodovico Marziale, Golden G Richard, and
Vassil Roussev. FACE: Automated digital evidence discovery and correlation.
Digital Investigation, 5, 2008.

[115] Martim Carbone, Weidong Cui, Long Lu, Wenke Lee, Marcus Peinado, and
Xuxian Jiang. Mapping kernel objects to enable systematic integrity checking.
In Proceedings of ACM Conference on Computer and Communications Security,
2009.

[116] Paul Movall, Ward Nelson, and Shaun Wetzstein. Linux physical memory analy-
sis. In Proceedings of USENIX Annual Technical Conference, FREENIX Track,
2005.

[117] Junyuan Zeng, Yangchun Fu, Kenneth A. Miller, Zhiqiang Lin, Xiangyu Zhang,
and Dongyan Xu. Obfuscation resilient binary code reuse through trace-oriented
programming. In Proceedings of ACM Conference on Computer and Commu-
nications Security, 2013.

[118] Zhiqiang Lin, Junghwan Rhee, Xiangyu Zhang, Dongyan Xu, and Xuxian Jiang.
SigGraph: Brute force scanning of kernel data structure instances using graph-
based signatures. In Proceedings of Network and Distributed System Security
Symposium, 2011.

http://www.504ensics.com/automated-volatility-plugin-generation-with-dalvik-inspector/
http://www.504ensics.com/automated-volatility-plugin-generation-with-dalvik-inspector/

142

[119] Tal Garfinkel, Mendel Rosenblum, et al. A virtual machine introspection based
architecture for intrusion detection. In Proceedings of Network and Distributed
System Security Symposium, 2003.

[120] Nick L Petroni Jr, Timothy Fraser, AAron Walters, and William A Arbaugh.
An architecture for specification-based detection of semantic integrity violations
in kernel dynamic data. In Proceedings of USENIX Security Symposium, 2006.

[121] Anthony Cozzie, Frank Stratton, Hui Xue, and Samuel T King. Digging for
data structures. In Proceedings of Symposium on Operating Systems Design
and Implementation, 2008.

[122] Brendan Saltaformaggio, Zhongshu Gu, Xiangyu Zhang, and Dongyan Xu.
DSCRETE: Automatic rendering of forensic information from memory images
via application logic reuse. In Proceedings of USENIX Security Symposium,
2014.

[123] Asia Slowinska, Traian Stancescu, and Herbert Bos. Howard: A dynamic ex-
cavator for reverse engineering data structures. In Proceedings of Network and
Distributed System Security Symposium, 2011.

[124] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. Automatic reverse engineer-
ing of data structures from binary execution. In Proceedings of Network and
Distributed System Security Symposium, 2010.

[125] JongHyup Lee, Thanassis Avgerinos, and David Brumley. TIE: Principled re-
verse engineering of types in binary programs. In Proceedings of Network and
Distributed System Security Symposium, 2011.

[126] Zhiqiang Lin, Junghwan Rhee, Chao Wu, Xiangyu Zhang, and Dongyan Xu.
DIMSUM: Discovering semantic data of interest from un-mappable memory
with confidence. In Proceedings of Network and Distributed System Security
Symposium, 2012.

[127] Brendan Saltaformaggio, Rohit Bhatia, Zhongshu Gu, Xiangyu Zhang, and
Dongyan Xu. GUITAR: Piecing together android app GUIs from memory im-
ages. In Proceedings of ACM Conference on Computer and Communications
Security, 2015.

	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Dissertation Statement
	Contributions
	Dissertation Components
	Timeliner
	DUET
	CANDID

	Dissertation Organization

	``Tipped Off by Your Memory Allocator'': Device-Wide User Activity Sequencing from Android Memory Images
	Background
	Memory Allocator Design
	Identifying an Activity Launch from Allocations
	Inferring Temporal Ordering from Spatial Ordering

	Timeliner Design
	Identifying Residual Data Structures
	Building the Transition Graph
	Reconstructing the Global Ordering for Activities

	Timeliner Evaluation
	Garbage Collection
	Micro-Benchmarks
	Design Generality
	Case Study: Spyware Attack Investigation
	Case Study: Military Espionage
	Case Study: Distracted Driving
	Case Study: Kidnapping Investigation

	Discussion
	Summary

	``One and One Make Eleven'': Accomplice-Assisted Masquerade Attack on CAN
	Background
	Duet Overview
	Detailed Design of Duet
	Voltage Fingerprint Manipulation
	Persistent Victim Bus-off
	Voltage Fingerprint-Based Impersonation

	Analysis of Stealth of Duet against VIDS
	Implementation Details
	Evaluation of Duet
	Feasibility of Voltage Corruption
	Stealth in Stage 1 of Duet against VIDS
	Stealth in Stage 3 of Duet against VIDS
	Swiftness-Persistence of Stage 2 of Duet

	Proposed Defense: RaID
	CAN Traffic Analysis
	Experimental Vehicles
	Non-Experimental Vehicles

	Victim Recovery Timing
	Details of VIDS
	Stealth Against MIDS
	Potential Defenses against Duet
	Discussion
	Summary

	CANDID: Protecting Controller Area Network via Intra-Network Dialecting
	Background
	Motivation
	Policies and Dialects
	CANDID Architecture
	Design of CANDID
	ECU State Tracking
	Interrupt Service Routines

	Implementation
	Evaluation
	General Evaluation
	Case Studies

	RELATED WORK
	Timeliner
	Controller Area Network

	CONCLUSION
	REFERENCES

