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ABSTRACT

Gomes, Guilherme PhD, Purdue University, December 2019. Hypothesis testing and com-
munity detection on networks with missingness and block structure. Major Professor:
Jennifer Neville.

Statistical analysis of networks has grown rapidly over the last few years with increas-

ing number of applications. Graph-valued data carries additional information of dependen-

cies which opens the possibility of modeling highly complex objects in vast number of

fields such as biology (e.g. brain networks, fungi networks, genes co-expression [1–3]),

chemistry (e.g. molecules fingerprints [4, 5]), psychology (e.g. social networks [6]) and

many others (e.g. citation networks, word co-occurrences, financial systems, anomaly de-

tection [7–10]). While the inclusion of graph structure in the analysis can further help

inference, simple statistical tasks in a network is very complex. For instance, the assump-

tion of exchangeability of the nodes or the edges is quite strong, and it brings issues such

as sparsity, size bias and poor characterization of the generative process of the data [11].

Solutions to these issues include adding specific constraints and assumptions on the data

generation process [12, 13]. In this work, we approach this problem by assuming graphs

are globally sparse but locally dense, which allows exchangeability assumption to hold in

local regions of the graph. We consider problems with two types of locality structure: block

structure (also framed as multiple graphs or population of networks) and unstructured spar-

sity which can be seen as missing data. For the former, we developed a hypothesis testing

framework for weighted aligned graphs; and a spectral clustering method for community

detection on population of non-aligned networks. For the latter, we derive an efficient spec-

tral clustering approach to learn the parameters of the zero inflated stochastic blockmodel.

Overall, we found that incorporating multiple local dense structures leads to a more precise

and powerful local and global inference. This result indicates that this general modeling

scheme allows for exchangeability assumption on the edges to hold while generating more
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realistic graphs. We study theoretical properties of our proposed algorithms, and we evalu-

ate them on synthetic and real-world datasets, we show our models are able to outperform

the baselines on a number of settings.
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1. INTRODUCTION

Interest in the statistical analysis of network1 data has grown rapidly over the last few years

with increasing number of applications. Graph-valued data carries additional information

of dependencies which opens the possibility of modeling highly complex types of prob-

lems in vast number of fields such as biology (e.g. brain networks , fungi networks, genes

co-expression [1–3]), chemistry (e.g. molecules fingerprints [4,5]), psychology (e.g. social

networks [6]) and many others (e.g. citation networks, word co-occurrences, financial sys-

tems, anomaly detection [7–10]). While the inclusion of graph structure in the analysis can

further help inference, simple statistical tasks in a network is very complex. For instance,

the assumption of exchangeability of the nodes or the edges is quite strong, and it brings

issues such as sparsity, size bias, and poor characterization of the generative process of the

data [11]. Solutions to these issues include adding specific constraints and assumptions on

the data generation process [12, 13].

In this dissertation, we consider problems in which graphs are globally sparse but lo-

cally dense, allowing the exchangeability assumption to hold in local regions of the graph.

More specifically, we focus on two relevant directions: population of networks (aka multi-

ple graphs) and unstructured missing data on graphs. On one hand, population of network-

valued data has seen a lot of attention in various areas such as: graph comparison [1–3, 8],

clustering multi-layered (also called multiplex) networks [14–18], and molecule finger-

prints [4]. On the other hand, missing data on graphs has only very recent received attention,

and mostly in community detection tasks [19–21]. In this work, we focus on two main sta-

tistical tasks: 1) hypothesis testing and 2) community detection. For part 1), we develop a

Bayesian hypothesis testing framework for weighted networks. Among some applications,

we use our framework to investigate whether brain connectivity is statistically different

across some pre-defined groups (e.g., creative versus non creative people). In terms of 2),

1We use the terms networks and graphs interchangeably throughout this work.
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we devise a spectral clustering algorithm to assign nodes to communities based on the way

these nodes connect. Our application include multiple graphs and missing data problems.

The broad scope of our methodologies was shown in case studies for social media datasets

(Twitter and Instagram), cross-domain recommendations (MovieLens) and communities on

political blogs (U.S. and France). Next, we describe our overall perspective in more details.

Consider a graph represented by its adjacency matrix A ∈ R|V |×|V | where V is the set

of nodes. Write aij as the interaction between nodes i ∈ V and j ∈ V . The generation

process of aij is given by

aij = Lij × ηij (1.1)

where the local term Lij ∈ {0, 1} and the connectivity strength ηij ∈ R are random vari-

ables defined as

Lij|{Wa}a∈{i,j}, ψ1 ∼ Bern(g({Wa}a∈{i,j}, ψ1)) (1.2)

ηij|{Wa}a∈{i,j}, ψ2 ∼ Dist(f({Wa}a∈{i,j}, ψ2)) (1.3)

Here {Wa}a∈{i,j} represents node-level features (e.g. observed or latent), ψ1 and ψ2 repre-

sent graph-level parameters, Dist is some distribution (e.g. Bernoulli, Binomial, Poisson,

Normal, Zipf), and g(·) and f(·) represents general functions.

[11] showed that any exchangeable edge generative model is fundamentally wrong

since it leads to dense graphs as number of nodes increases, and real-world large graphs

are known to be sparse. The model defined in Eq. (1.1) scheme allows for exchangeability

assumption on the edges to hold while generating more realistic graphs in terms of sparsity

level. Our fundamental assumption is that graphs are locally dense, but globally sparse. For

massive graphs, local parts of the network (which are allowed to be dense) are also very

large which might indicate an violation of the global sparsity assumption. Nevertheless,

this is not an important concern in our applications since local regions are assumed to be

small. At this point, the term local is deliberately ill-defined, and for each part of this work

it will have a different characterization.
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1.1 Contributions and contents

The process described in Eq. (1.1) can be seen as a missing data problem where the

observed graph is subject to a general ‘missingness’ mechanism obfuscating potential in-

teraction between nodes. In summary, the local term Lij acts as a mask on the connectivity

ηij where nodes i and j are only able to connect when Lij = 1. More importantly, both Lij

and ηij depend on node-level {Wa}a∈{i,j} and graph-level ψs parameters. In our applica-

tions, node-level parameter {Wa}a∈{i,j} encompass observed, Ya, and latent, Xa, features.

In terms of graph-level, ψ1 represents global parameters governing the missingness, ϕ, and

ψ2 represents the connectivity parameters, Θ and β. Precisely, we have

Lij|{Ya}a∈{i,j}, {Xa}a∈{i,j},ϕ ∼ Bern
(
gϕ
(
{Ya}a∈{i,j}, {Xa}a∈{i,j}

))
(1.4)

ηij|{Ya}a∈{i,j}, {Xa}a∈{i,j},Θ,β ∼
H∑

h=1

β(h)Dist
(
f
(
X

(h)
Yi

Θ(h)X
T (h)
Yj

))
. (1.5)

Notice that, in our applications, the connectivity ηij is distributed as mixture of H com-

ponents of a given distribution (e.g. Bernoulli, Binomial, Poisson, Normal, Zipf) where

β = [β(1), ..., β(H)] is a vector of mixing probabilities, and f(·) is essentially a link func-

tion that maps the term XYi
ΘXT

Yj
to a suitable support.

We divide our applications based on whether the observed nodes features {Ya}a∈{i,j}
are independent of the local termLij . More specifically, we consider two types of structures

on our applications:

1. L depends on the observed Y that defines a block structure, and we focus on multiple

(sub)graphs problems on Chapters 2 and 3

2. a unstructured setting where L is independent of node features which defines a zero

inflated weights on Chapter 4.

We can also break our work from the statistical task perspective which is based on whether

the connectivity ηij depends (or not) on observed nodes features {Ya}a∈{i,j}. For ηij ̸⊥

⊥ {Ya}a∈{i,j}, we work on hypothesis testing problems on Chapter 2, and for ηij ⊥⊥
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{Ya}a∈{i,j} we worked on community detection on Chapters 3 and 4. Table 1.1 summa-

rizes our applications by data structure and statistical tasks.

Table 1.1.: Types of applications considered divided by data structure and statistical tasks

Connectivity structure Local structure Statistical task
ηij ⊥⊥ {Ya}a∈{i,j} Lij ⊥⊥ {Ya}a∈{i,j}

Chapter 2 7 7 Hypothesis testing
Chapter 3 3 7 Community detection
Chapter 4 3 3 Community detection

1.1.1 Block structure (multiple graphs)

In this case, we work with multiple graphs (aka population of networks) where each

graph is assumed to be a block on a larger graph. For illustration purpose, consider a set

of villages represented by social graphs where nodes represent individuals in a village and

there are multiple edges for each pair of nodes representing different types of relationships

between them (e.g. church, work, family). Although the people are different in each village

and the sizes of villages vary, personal characteristics may impact the propensity of having

some type of relationship, e.g. a younger individual is more willing to connect with other

younger individuals, or an influential person such as a priest might be expected to have

more ties. Here, the local structure is define as follows:

Lij|{Ya}a∈{i,j} ∼ Bern (g (Zi, Zj))

:= IZi=Zj

(1.6)

where Ya = [Za, la] with Za indicating which graph (block) node a belongs (e.g. village

membership of person a), and la ∈ L indicating the label of node a (e.g. person ID, name)

and L is the set of labels. For the village example, there are two main ways to frame this

setting as a multiple graph perspective: 1) fix an edge type and each village is a graph, or

2) fix a village and each type of edge is a graph. In 1), each person is one node (i.e. V = L)

which implies that the connectivity ηij is independent of the observed label la since la = a
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is simply an ID. In 2) , each person has multiple nodes associated with it (i.e. V ̸= L)

which implies that the connectivity ηij is not independent of the observed label la. Thus,

we further divide the multiple graph applications based on how the labels la are defined.

Aligned graphs

We call aligned graphs settings where there is an one-to-one mapping of labels across

graphs and labels are unique within graphs. In this case, fΘ(·) ̸⊥⊥ la =⇒ ηij ̸⊥⊥

{Ya}a∈{i,j}. These can also be seen as a single multiplex graph (e.g., multi-view graphs

[14–18, 22, 23]) or edges varying over time (e.g., dynamic networks [24–28]).

On Chapter 2, we examine inference issues on weighted aligned graphs, more specif-

ically hypothesis testing on population of the networks. We propose a hypothesis testing

framework for weighted graphs using a Bayesian approach. Here, Ya = [Za, la, yZa ] where

Za is the graph membership of node a, la ∈ L is the label (e.g. a brain region in a brain

network, a word in a word co-occurrence graph), and yZa indicates graph Za population

membership. In the village example, fixing one village and working with multiple types

of edges, la defines a person and Za defines an edge type. Moreover, η is distributed as

a non binary random variables (e.g., Poisson, Binomial) associated with the link function

f(·); the global connectivity Θ is the identity in this case; and the local mechanism L is

defined in Eq. (1.6). For a population ofN graphs where each graph has |L| nodes, the data

generating process is given by

ηij|{Ya}a∈{i,j}, {Xa}a∈{i,j},β ∼
H∑

h=1

β(h)
yZi

Poisson
(
exp

(
X

(h)
li

X
(h)T
lj

))
(1.7)

where X(h)
a is a 1×R low dimension latent feature representation of node a in component

h and R ≪ |L|. The hypothesis testing method was build based on the distribution of

the mixing probabilities across populations. Moreover, we propose an admixture model

to deal with conditional hypothesis testing when a group information is also available, in

other words we propose an hierarchical scheme to deal with conditional hypothesis testing.



6

We show how this proposed methods performed compared to the alternatives in synthetic

data and real world applications.

Non-aligned graphs

Unlike aligned graphs, in non-aligned graph settings, there is no known mapping of the

nodes across the graphs (i.e. la = a). Therefore fΘ(·) ⊥⊥ la =⇒ ηij ⊥⊥ {Ya}a∈{i,j}. In

general, the label has no specific meaning (e.g. ID of a person in a given village), and even

if it does have a meaning there is no assumption of being unique within graphs (e.g. atom

in a molecule). Typical examples include molecules, road networks, village networks.

On Chapter 3, we focus on the problem of community detection across a set of non-

aligned graphs of varying size. Here, Ya = [Za, la] where Za is graph membership of node

a, la = a; η is the Bernoulli distribution and f(·) is the identity; and we assume there is

only one mixture component (i.e. H = 1 =⇒ β = 1). In this case, the connectivity is

governed by a well known community based model called stochastic blockmodel [29, 30].

Precisely, Θ is a K ×K matrix of connectivities where K is the number of communities

and the cell Θ[k, l] represents the connectivity between communities k and l. The data

generating process is given by

ηij|{Xa}a∈{i,j},Θ ∼ Bern
(
XiΘXT

j

)
(1.8)

where Xa is a 1×K latent one hot vector where Xa[k] = 1 if node a belongs to community

k. We show that using pooled information across graphs and jointly estimating local and

global structures is crucial to gain a precise understanding of heterogeneous networks. Our

model outperforms current two-step approaches. Our algorithm is fast, efficient, robust, and

has very few probabilistic assumptions. Next, we describe an unstructured L mechanism.
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1.1.2 No structure (zero inflated)

In this case, the local mechanism is independent of any node feature, i.e. Lij ⊥⊥(
{Ya}a∈{i,j}, {Xa}a∈{i,j}

)
. For instance, consider an observed user-item bipartite inter-

action matrix (e.g. buyer-product, reader-article, listener-podcast) which interactions are

subject to an environment (e.g., Amazon, Google news,iTunes podcasts) allowing user i to

only connect to exposed products. Also, assume the environment does not know any spe-

cific attributes of user i, only connecting behavior. Here, the connectivity between nodes

subject to a general ‘missingness’ mechanism which is independent of observed node fea-

ture, i.e.

Lij|{Xa}a∈{i,j},ϕ ∼ Bern (ϕij) (1.9)

where ϕij := g({Xa}a∈{i,j},ϕ) is the probability that nodes i and j are local to each other.

This is a sparsity perspective that has recent received attention specially in community

detection tasks [19–21]. In these works, there is an additional structure assumption on

ϕij for all pair of nodes i and j (e.g. ϕij = ϕ, ϕij = νiνj). On Chapter 4, we relax

these assumptions by allowing ϕij ̸= ϕi′j′ for any i, j, i′, j′ ∈ V . Overall, we consider the

following generative process

ηij|{Xa}a∈{i,j},Θ ∼ Dist
(
XiΘXT

j

)
(1.10)

Notice that Eq. (1.10) is very similar to Eq. (1.8) where the main differences are: the

local term Lij (defined in Eq. (1.9)), and the distribution of the connectivity ηij which, in

this case, can be any distribution. We propose two inference schemes based on spectral

clustering: self-similar and ego-nets. The former focus on settings where L is observed

and the later is used when there is no knowledge about L.

In summary, on Chapter 2, we devised a Bayesian hypothesis testing framework for

weighted networks, we tested whether creative people are statistically different than non-

creative in terms of their brain connectivity. On Chapter 3, we worked with multiple graphs,

we showed that using pooled information across graphs and jointly estimating local and
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global structures is crucial to gain a precise understanding of heterogeneous networks. This

inference scheme is specially useful in cross domain recommendation tasks. On Chapter 4,

we focused on missing data problems on graphs, we devised a self-similar pre-processing

step which reduces the overall noise and allows for more precise community detection

inference. Finally on Chapter 5, we summarize and conclude our contribution, and discuss

directions on future work.
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2. ALIGNED GRAPHS

2.1 Introduction

Some important applications on multiple graph domain are only possible when graphs are

aligned. Precisely, aligned graphs are defined as a set of graphs where there is a known

one-to-one mapping of labels across graphs and labels are unique within graphs. We con-

sider the problem of graph-based hypothesis testing, which tests whether two sets of graph-

valued observation samples are drawn from the same distribution based on edge probabil-

ities. This is a topic of growing interest [31–34]; however, there are only a few studies

where the observations are weighted graphs. In this work, we address this gap, consider-

ing the problem of hypothesis-testing for replicated weighted graph-valued data. This is

a challenging problem, since the average and atypical behavior of a sample of networks is

difficult to characterize.

Figure 2.1 illustrates two example domains with populations of weighted graphs. The

top row illustrates the word co-occurrence networks of two Twitter users in Brazil, one that

is pro-government and one that is anti-government. Here the entity corresponds to a user on

social media, the nodes in the graph are vocabulary words, and the edges weights reflect co-

occurrences of words in the posts of the users. The bottom row illustrates brain connectivity

networks of two individuals, one female and one male. Here the entity corresponds to

an individual, the nodes in the graph are brain regions, and the edges weights represent

functional connectivity strength as measured by functional magnetic resonance imaging

(fMRI). In both cases, we would like to investigate how populations and entities differ.

Example question include whether brain activity differs with respect to sex or whether

word usage differs with respect to political views.

There has been recent work on graph-based hypothesis testing (see [35] for a good

survey). However, much of the work has focused on one-sample tests comparing a single



10

foradilma

foraptnaovaitergolpe

dilm
afica

que

im
pe

ac
hm

en
t

lu
la

na
ca

de
ia

di
lm

a

br
as

ilfor
alu

la

golpemay

oconscientepara
com
vaitchauquerida

povo

mais
democracia

impeachmentja
april

lula

pra

foracunha

por

foratemer

contra

lavajato

dos

isso

ser

tem

rua
um

a
todos

vam
os

esta
fora

ter
dia

continuar
esse

dilm
abr

presso
quem

com
o

essa
senado m

as
foi ag

or
a

go
ve

rn
o

pe
lo

te
m

er
pa

co
cu

nh
a

pe
la

vi
lla

m
ar

co
vi

lla

fo
ra

co
m

un
is

m
o

na
s

qu
er

tu
do

ru
as

lu
ta

ai
nd

a
bl

og
do

vil
la

se
m

go
lpi

sta
s

de
fe

sa
va

ite
rlu

ta

sim
se

u

hoje

olha

so
bre

sto
pco

upinbrazil

so
sc

oupinbrazil

nos
dire

itos

votoimpresso

somostodosmoro

meu
sociais

ela
fala
sua
elite
uneoficial

brasileiro

presidente

diz
favor
ezequiasns
legalidade
motivo
voto foradilma

forapt

naovaitergolpe

dilmafica

queim
peachm

ent

lulanacadeia

dilm
a

brasil

foralula

golpe

m
ay

oc
on

sc
ie

nt
epa

raco
m

va
i

tc
ha

uq
ue

rid
a

po
vo

m
ais

de
moc

ra
cia

april

lula
praforacunha

porgolpenao

foratemer

contra

lavajato

dos
isso

ser

golpismodamidiaglobogolpista

tem

rua
uma

todos
vam

os

esta
fora
ter

dia

continuar
esse

dilm
abr

presso
quem
com

o
essa

senado
m

as
foi

agora
governo

pelo
tem

er pa
co

cu
nh

a
pe

la

na
s

qu
er

tu
do

ru
as

lu
ta

ai
nd

a
se

m
go

lp
en

un
ca

m
ai

s

go
lp

is
ta

s
de

fe
sa

va
ite

rlu
ta

sim
se

u
ho

je

olh
a

so
bre

sto
pco

upinbrazil

so
sc

oupinbrazil

nos

dire
itos

meu

sociais

ela
fala

sua

elite

uneoficial

brasileiro
presidente

diz
favor
legalidade

motivo
voto

(A) (B)

(C) (D)

Figure 2.1.: Top row: word connectivity networks for two Brazilian Twitter users, (A)
from the pro-government side and (B) from the anti-government side. Bottom row: brain
connectivity network for two individuals, (C) female and (D) male.

graph to a null model (e.g., [36]). Work focusing on populations of graphs has received con-

siderably less attention and falls into one of two categories: that of [3], which introduces a

geometric characterization of the network using the so-called Fréchet mean, and that of [2],

who proposed a Bayesian latent-variable model for unweighted graphs. We focus on the lat-

ter, which allows us to bring the powerful machinery of probabilistic hierarchical modeling

to the table, allowing noisiness and missingness, and providing interpretable confidence

scores. Unfortunately, existing work along this second direction is limited to modeling

binary graphs, so that in practice, a threshold must be used to transform counts or contin-

uous weights to 0/1 values. Such a thresholding operation discards valuable information

about the strength of the edge-weights, and can also exhibit sensitivity towards the choice

of threshold. Too small a threshold can result in a graph that is too dense, and too large,

too sparse. Often, there does not even exist a single appropriate threshold across the entire

graph.
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In this chapter, we address the issues of previous work and develop a hypothesis testing

framework that facilitates testing over graphs populations with edge-weights, which can

follow any parametric distribution. Specifically, we propose a Bayesian hypothesis testing

framework that uses a mixture of latent space models for weighted networks to test for

population-differences. Our framework is capable of population-level, entity-specific as

well as edge-specific hypothesis testing. We consider testing in two broad scenarios:

1. When all observations from the same population follow the same distribution, we

can ask: Are the population distributions identical?

2. When all entities from the same population follow the same distribution, we can ask:

Are the population distributions identical? Now, every entity has an associated set of

graph-valued observations which are identically distributed, but are not exchangeable

across entities.

Observe the first case is equivalent to the second when each entity has only one associated

graph; however the latter allows heterogeneity among entities in the same population. For

instance an entity in a population that is politically conservative might frame an issue they

discuss from an economic perspective, while another entity in a population that is politi-

cally liberal might focus on the social aspects of the same issue. [37] proposed a strongly

parametric time-varying framework to handle this important situation, our approach is sig-

nificantly more flexible.

We apply our testing framework to problems from the types of domains summarized

in Figure 2.1. First, we look at word co-occurrence network data from Twitter (on the po-

litical crisis in Brazil), as well as Instagram (on side effects of Adderall and Ritalin usage

for Attention Deficit Hyperactivity Disorder [38]). In both datasets, we investigate how

populations and entities differ based on the way they communicate—specially in the man-

ner in which the usage of pairs of key words differs between groups. Standard methods

such as unigram mixture models, latent Dirichlet allocation (LDA) [39] or N-gram lan-

guage models [40], which are based just on word-frequency, do not capture the kind of

contextual information we are interested in. While these methods can identify words that
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‘belong’ to different groups, in our scenario there is a strong overlap in key words across

groups, and such models will fail to differentiate between groups which share common

themes and vocabularies. Second, we used functional magnetic resonance imaging (fMRI)

data, to investigate how brain activity differs across populations like sex, age and person-

ality traits like extroversion, conscientiousness and creativity. In both tasks, we show that

graph-structure as well as graph weights are crucial to performance, and that we outper-

form baselines like latent Dirichlet allocation (LDA) [39], N-gram language models [40],

as well as thresholding methods like [2].

Contributions: Our contribution is a multi-level statistical hypothesis testing framework

for populations of weighted networks, concerning both the overall graph distributions, as

well as two types of local hypotheses: entity-specific and edge-specific. The latter are

important since a population might have networks, or a network edges, that are statisti-

cally different, and that might escape detection by a global test. Our hierarchical Bayesian

mixed membership model allows statistical information to be shared across groups, increas-

ing accuracy of hypothesis tests without loss of statistical power. This allows practitioners

to evaluate anomalies in a principled manner, using statistical significance. Notably, our

framework is more robust than previous methods developed for binary graphs, which re-

quire thresholding of weighted data before application.

2.2 The model

We are given a set A of undirected graphs, with graphAnt belonging to entity n at index

t (refered to as ‘time’). Here n ∈ [1, ..., N ] and t ∈ [1, ..., Tn], with Ant[i, j] giving the link

strength between vertices i and j of entity n at time t (i, j ∈ [1, ..., V ]). We also observe

population information yn ∈ [1, ..., G] for each entity. For instance, each network might

represent word co-occurrences in a user’s social media messages over some time period,

while the population might indicate whether the user’s political leanings are ‘Liberal’ or

‘Conservative’.
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Underlying our testing framework is a probabilistic model which we now outline. We

assume each observation Ant comes from one of H clusters or mixture components, with

cluster h having parameter θ(h). Each cluster has a distribution over graphs which we write

as F (θ(h)) (we specify θ(h) and F in the next paragraph). Clusters and cluster parameters

are shared across populations, however each population y has its own Dirichlet-distributed

probability over clusters, βy. At a high-level ours is a Bayesian hypothesis-testing approach

which tests whether the βy’s are identical across populations. For the case of two popula-

tions, we place equal a priori probability on the null hypothesis H0 : β1 = β2 and the

alternative H1 : β1 ̸= β2. Using the machinery of Bayesian inference, we evaluate the

posterior probabilities of the two hypotheses given observations, and reject the null if its

probability P (H0|−) is less than some specified threshold (e.g., 0.05 or 0.1).

We now describe the cluster-specific distribution over graphs, F (θ(h)). For cluster h,

θ(h) is a V × V matrix, whose (ij)th element parametrizes the probability of the weight

on the edge between nodes i and j. In our applications, we looked at count-valued edges,

and so assumed F
(
θ(h)

)
to be Binomial or Poisson distributed with parameter θ(h)[i, j] on

edge (i, j). We define θ(h) = f
(
S(h)

)
where f(·) is some link function (e.g. the logistic

or exponential function to ensure nonnegativity), and constrain S using a low-rank factor-

ization scheme S(h) = X(h)X(h)T . Here X(h) ∈ R|V |×R and R ≪ |V |, so that X(h)
v gives

the location of node v in some low-dimension space, and S(h) is the proximity of all nodes.

The number of parameters thus grows linearly, rather than quadratically with the number

of vertices. In equations, we expand the upper plates in Figure 2.2(a) and (b), to get

θ(h) = f(X(h)X(h)T ), X(h)
v ∼ NR (0, I) , v = 1 . . . , V (2.1)
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Each population y has a distribution over clusters βy. With prior probability half, the null

hypothesis is true (we indicate this with the variable T ), in which case all populations have

the same distribution β. Otherwise, each population g has its own distribution, βg. Thus,

T ∼ Bern(1/2) (2.2)

If T = 0 : β1 = . . . ,= βG ∼ Dir(α, ..., α)

Else: βg
iid∼ Dir(α, ..., α) for g = 1 . . . G.

Now, consider the case where each entity has only a single associated graph. Then the

nth entity (belonging to population Yn) has a graph An distributed as

Cn|Yn ∼ βYn An|Cn ∼ F
(
θ(Cn)

)
(2.3)

HereCn refers to the latent variable that identifies the cluster membership of entity n, which

depends on the population entity n is drawn from.

For the case where we have multiple network observations per entity, we add a layer

to this hierarchical model. Now, each entity n has their own distribution over clusters πn

centered around the population distribution:

πn ∼ Dir(βYn). (2.4)

The graph t of this entity is independently distributed as

Cnt|Yn ∼ πn, Ant|Cnt ∼ F
(
θ(Cnt)

)
(2.5)

Figure (2.2) summarizes our generative process for both cases.
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2.2.1 Model Inference

We are given a set of network observations A, each written as Ant where n indexes

entities and t, ‘time’. For each Ant, we are also given a population assignment Yn ∈ {1, 2}.

Since we observe the population memberships Y and the networks A, the inferential

task is to learn Cnt, πn, βy and θ(h). In the next section, we will use these variables

as statistics in our hypothesis tests. For notational convenience, we will refer to a link

between an arbitrary pair of nodes i and j with l, so that we can write An[i, j] as An[l].

We also represent the weighted matrix with its vectorized lower triangular component

L(An) = (L(Ant)1, ...,L(Ant)V (V−1)/2). For the general model specified above, we carry

out posterior inference via a Gibbs sampler, whose individual updates we outline next:

1. Sample the cluster indicator for each graph.

This comes from the multinomial:

P (Cnt = h|−) =
πnh

βh
∏

l P
(
L(Ant)l = al|θ(h)l

)
∑H

m=1 πnmβm
∏

l P
(
L(Ant)l = al|θ(m)

l

)

where l ∈ [1, ..., V (V − 1)/2] and al|θ(h)l ∼
[
F (θ(h))

]
l
.

2. Sample the mixing probabilities for each entity n.

With mn a vector of cluster assignment counts of graphs of entity n

πn ∼ Dir(βYn +mn)

3. Sample the locations of the nodes for each cluster.

With a Gaussian prior over the locations Xn, and the weight-distribution parametrized

after transforming through a link function f , this is a straightforward exercise in

sampling from the posterior of a Gaussian with a nonlinear link function. Standard

techniques exist to do this [41, 42], though we followed a recent idea involving the

Polya-Gamma data-augmentation scheme [43].
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4. Sample the testing indicator T ∼ Bern(P (H1)|−). Since T is the test-statistic cen-

tral to our methodology, we discuss this in a bit more detail in the next section. The

update rule is given by Equation 2.7.

5. Sample the mixing probabilities for each population y.

If T = 0 then for all y, βy = β ∼ Dir(α+n1, ..., α+nH) where nh is the number of

graphs in cluster h. If T = 1 then βy ∼ Dir(α+ n1y, ..., α+ nHy) for each y, where

niy counts the number of graphs from population y in cluster i.

2.3 Weighted-network comparison tests

For simplicity, we focus on the case where we have only two populations (G = 2).

Under our formulation, the problem of hypothesis testing amounts to testing whether the

population-level cluster assignment probabilities β1 and β2 are significantly different under

the posterior. We elaborate on this below.

AnCn

θ(h)

β

Yn

H

Ny

G

(A)

AntCnt

θ(h)

πn

β

Yn

H

Tn

Ny

G

(B)

Figure 2.2.: The graphical models are given by (A) fixed and (B) with time-varying struc-
tures.
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2.3.1 Population-level network comparison test

This task involves comparing the posterior probabilities of the two hypotheses, H0 :

β1 = β2 vs H1 : β1 ̸= β2. Since H0 being true amounts to T = 1, our MCMC esti-

mate of the probability equals the fraction of MCMC iterations where T = 1. We first

describe how our Gibbs sampler updates this variable (step 4 of our Gibbs sampler). At

any MCMC iteration, let my be the vector of cluster assignment counts for population y,

with component c giving the number of observations from population y assigned to cluster

c: my =
(∑

n;yn=y

∑
t ICnt=1, ...,

∑
n;yn=y

∑
t ICnt=H

)
. We write m = m1 + m2 (for

the two populations in G, i.e., 1 and 2). Then, under the two hypotheses, these counts are

distributed as
H0 :m1,m2

iid∼ Mult(β),

β ∼ Dirichlet(α)

H1 :m1 ∼ Mult(β1) and m2 ∼ Mult(β2)

β1,β2 ∼ Dirichlet(α)

(2.6)

Marginalizing out the β′s, and recalling that both hypotheses have the same prior probabil-

ity, we can specify the posterior

P (H1|−) =
P (m1|α)P (m2|α)

P (m|α) + P (m1|α)P (m2|α)

From the Dirichlet-multinomial conjugacy, we can write down the marginal probabilities

of the observations, giving

P (H1|−) =
∏2

y=1
B(α+my)

B(α)

B(α+m)
B(α)

+
∏2

y=1
B(α+my)

B(α)

(2.7)

where B(·) is the multivariate beta function B(x) =
∏q

i=1
Γ(xi)

Γ(
∑q

i=1 xi)
. Every Gibbs iteration

samples T from this, with the posterior probability of the alternative hypothesis, P (H1|−),

being the fraction of MCMC samples where T equals 1. If the estimate from Equation (2.7)

is larger than a specified threshold (e.g., 0.95), we reject the null hypothesis and conclude
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that the populations are significantly different. We can use this network comparison (NC)

test for both models in Figure 2.2. When we use the (fixed) model in 2.2a, we will refer to

it as NC-F and when we use the (mixed-membership) model in 2.2b, we will refer to it as

NC-M.

2.3.2 Entity-specific comparison test

This task refers to do following hypothesis test: Hn1n2
0 : πn1 = πn2 Vs Hn1n2

1 : πn1 ̸=

πn2 for any two users n1 and n2. Estimating this from our posterior samples is straight-

forward. Assuming multiple networks per entity, let m̃n be a vector of counts for entity

n, giving the number of observations assigned to each cluster. As mentioned earlier, the

entity-specific distribution over clusters follows the distribution πn ∼ Dir(β). Following

the earlier logic, Equation 2.8 gives the posterior probability two given entities have differ-

ent cluster assignment probabilities:

P (Hn1n2
1 |−) =

∏2
i=1

B(β+m̃ni )

B(β)

B(β+m̃)
B(β)

+
∏2

i=1

B(β+m̃ni )

B(β)

(2.8)

It is important to note that Equation 2.8 allows pairwise comparisons across populations,

and therefore it is possible to have significantly similar entities from different populations

and significantly different entities in the same population.

2.3.3 Edge-specific comparison test

This task refers to the following hypothesis test for an edge l = (i, j),H l
0 : θ1[l] = θ2[l]

vs H l
1 : θ1[l] ̸= θ2[l]. For the edge application we use an adjusted version of Cramer’s V-

statistic proposed by [10] given by Equation 2.9:

p2l =
2∑

y=1

pY
∑
al

P (L(A)l = al|θ̄yl)− P (L(A)l = al|θ̄l)
P (L(A)l = al|θ̄l)

(2.9)
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where pY is the sample size proportion of each population, θ̄y =
∑N

n=1

∑H
h=1 βyhθ

(h)Iyn=y,

and θ̄ =
∑2

y=1
θ̄y
2

. If pl ≈ 1 then there is evidence that edge weights differ across the

populations.

2.4 Related work

Graph-based hypothesis testing and anomaly detection are topics of growing interest

with diverse applications (see e.g., [35]). Many applications of hypothesis testing in net-

work analysis focus on subgraphs within a larger graph (e.g., [44]), or one-sample tests

comparing a single graph to a null model (e.g., [36]).

Work on populations of graphs can be divided on two areas: dynamic networks, in

which one graph is replicated over time [45], [46] and [47]; and exchangeable graph

modeling in which each graph is considered to be one observation for a single entity

(see [2, 3, 9, 32] and [4]).

This chapter generalizes work from the latter category by allowing within-population

heterogeneity, with each entity having multiple graphs with similar statistical properties.

Both [3] and [32] deal with geometric characterizations of networks, and while their ap-

proaches are mathematically elegant, they are substantially less flexible than our work. [4]

take a convolution neural network approach for non-aligned graphs, where there is no

known mapping between nodes in each graph. This, coupled with the fact that their method

requires the presense of node features, makes it unsuitable for our applications.

Most closely related to ours is the method presented in [2]. This method, which we

will refer to DD, is a special case of our framework, where there is no within population

variation, and where network edges are binary. For count or continuous-valued data, one

might consider thresholding the edge weights of each entity and then applying the DD

method. However this discards valuable information about the strength of the edge-weights,

introduces sensitivity to threshold-level, and can reduce statistical power. Our method

offers the ability to flexibly model such edge-weight information without any significant

additional computational complexity. In particular, the computational time complexity of
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Figure 2.3.: Type I error and statistical power curves for the synthetic (left) and twitter
(right) data for increasing sample sizes

both our method and DD isO(NHR|V |2) per iteration. HereN is the number of networks,

H is the number of clusters, R is the dimensionality of the low rank approximation, and

|V | is the number of nodes in each graph. In practice, H and R are small constants that do

not grow with the data. In our experiments we compare with DD for different thresholds.

2.5 Experiments

In order to assess the efficacy of our method, we divided our analysis into four parts:

statistical power and type-I error analyses, population-level hypothesis tests, edge-specific

hypothesis tests, and additional exploratory analysis.

We start with statistical power and type-I error analyses, the most important measures

of assessing hypothesis tests. We investigate the efficacy of our (and competing) methods

for varying sample sizes when the ground truth in known. We show that when the data

are generated from a known two-population setup, our hypothesis testing framework pro-

duces significantly more accurate results and has lower variance, with respect to type-I

error and statistical power, compared to a number of other baselines. We show that for

time-varying data, the mixed membership extension of our model is essential for reliable

inference. We also study the sensitivity of the method of [2] (which requires unweighted

graphs) to threshold settings, for population-level hypothesis tests. We show that for het-
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erogeneous data, the hypothesis-test decisions are highly sensitive to threshold choice. We

study the edge-specific hypothesis tests qualitatively, by visualizing the estimated model

structure for each approach. We end by describing some additional insights that that our

method gleans from the data. We start by describing the datasets.

2.5.1 Datasets

We generated synthetic weighted network data for two settings, the entity-homogeneous

version from Figure 2.2a (NC-F, where each entity is represented by one graph) and the

entity-heterogeneous version from Figure 2.2b (NC-M, where each entity is represented by

multiple graphs). We also applied our framework to three real-world applications: a Twitter

dataset from the political crisis in Brazil, two datasets about drugs usage on Instagram, and

fMRI recordings of brains of human subjects.

Synthetic data (Homogeneous): We generate synthetic data from two populations whose

underlying weight probability matrices θ overlap around the middle set of nodes, but where

population 1 has an elevated pattern of weight values for the first set of nodes, and popula-

tion 2 in the final set. Figure A.1 in Appendix A.1 shows this structure. We simulated 200

entities per population, with 100 nodes for each network. Given the structure, the weights

of the edges were distributed according to a multivariate Zipf distribution [48]. See Ap-

pendix section A.1 for more details.

Synthetic data (Heteromogeneous): Using the same population structure as above, we

also construct a time-varying dataset where each individual has four time points, resulting

in four different graphs per entity. In this case, we have 50 entities and 100 nodes for each

network. Given the dependency structure, the weights for each entity at each time point

were distributed according to a multivariate Zipf distribution. Figure A.2 in Appendix A.1

shows these structures. We use this dataset to compare the behavior of the NC-F and NC-M

models under different scenarios.

Real data:
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Twitter: Brazil has recently faced the worst economic/political crisis of its republic years.

People were largely split into two sides: one who argued for the impeachment of the now

former president, Dilma Rousseff, and the opposition who claimed that the process was a

government coup. We crawled public Twitter posts from April 6th to May 31st 2016, using

hashtags from both sides to collect tweets. The resulting dataset consists of 7, 447 users

(entities), 4, 233 for the proposition and 3, 214 for opposition. In order to have appropri-

ate data for the heterogeneous setting, we also split the dataset into time intervals, with

each user having a network for every two weeks of tweets. We call this dataset “Twitter

time”. In this dataset, consisting of users with at least 15 days of tweets, we have a total

of 2, 098 users, 1, 255 for proposition and 843 for opposition. Figure 2.1 shows sample co-

occurrence networks from the two sides: Proposition and Opposition. Each edge-weight

indicates the number of tweets of a user n containing two words (nodes) in a time interval

t.

Instagram: We collected public Instagram comments with hashtags referring to the two

most common drugs to treat ADHD (Adderall and Ritalin) and Depression (Prozac and

Zoloft). These medications all have additional uses (and consequently symptoms), for

instance, Adderall is known for loss of appetite, and as an aid for academic performance.

Our dataset consists of 65 users with 44, 408 posts for #adderall, 21 with 17, 466 for #ritalin,

111 with 129, 405 for #prozac, and 35 with 29, 357 for #zoloft.

fMRI brain images: Functional magnetic resonance imaging (fMRI) captures activity in

the brain by measuring blood flow from one region of the brain to another. We used the

MRN-111 dataset1 which consists of functional magnetic resonance images (fMRI) for

114 subjects (entities). As in [49] we used a total of 68 brain regions, 34 from the left

hemisphere and 34 from the right. Nodes represent brain regions, and weights, white matter

density across nodes. We compare brain activity across characteristics like Sex (Male vs

Female), and personality traits like creative level (≤ 90 vs ≥ 111), extroversion (≤ 30

vs ≥ 35). Values for creative level (CCI) and extroversion are given from a psychometric

scale determined by the corresponding scientific literature, those thresholds were chosen

1http://openconnecto.me/data/public/MR/

http://openconnecto.me/data/public/MR/
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to illustrate a clear LowVsHigh setting. Figure 2.1 shows sample brain networks of the

MRN111 dataset for female and male individuals. We observe significant variability in

these weights, suggesting that thresholding can lead to loss of information.

2.5.2 Baselines

We compared our NC-F and NC-M methods with the following baselines:

1. LDA (topic modeling) [39]: This treats each entity as a document made up of ‘topics’

(each corresponding to a distribution over word-count patterns).

2. N-gram language model [40]: We use observed bigrams frequencies to estimate co-

occurrence probabilities.

3. DD network model [2]: As stated previously, DD forms a special instance of our

more general framework for unweighted networks. In order to apply DD, we need

first threshold the weighted network observations. We do so using the following

criterion [50]:

pij =
co-occurances between words i and j

min (counts of words i and j)

Then An[i, j] = 1 if pij>threshold for a chosen threshold level.

Since N-gram and LDA do not directly allow us to estimate P (H1), we use a Kolmogorov-

Smirnov test on the words distribution to perform an overall hypothesis test between popu-

lations for the N-gram model, and a chi-square test for topic assignments across populations

for LDA.

2.5.3 Hyperparameters tunning

DD and our method require setting the number of clusters H , the dimensionality of

the low-rank factorization R, the Dirichlet concentration parameters α for β, and the prior

probability of P (H1). For our experiments, we fixed H = 15, R = 10, α = 1/H and

P (H1) = 0.5. We found that H = 15 was more than enough clusters for all instances,
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larger numbers resulting in empty clusters. Most of our experiments focus on settings

with count-valued weights, and in the case of word co-occurrences, the weight between

words i and j is bounded by the smaller of the number of occurrences of the two words i

and j. For this setting, we therefore used the logit link and the binomial likelihood. On

the other hand, the Brain dataset has count-valued weights with unbounded support, and

we used Exponential link and the Poisson likelihood. Our results were fairly robust to

hyperparameters settings. For our MCMC algorithm, we observed good mixing properties,

and used 1300 Gibbs samples with an extra 200 burn-in samples.

For LDA and N-Gram, we used settings following implementations from [51] and [52],

respectively.

2.5.4 Results

Type-I error and statistical power: Type-I errors or false positives arise when a model

incorrectly marks two populations as different when actually the null hypothesis is true,

i.e., P (H1|H1is false). Ideally, type-I error rates should be 0.05 or less. Statistical

power shows if the models can correctly determine when the populations are different,

and P (H1|H1 is true) should be close to 1. Measuring these quantities requires access to

ground truth. For the Brazil dataset, the disparity of political tendencies between oppo-

sition and proposition is clear enough that we treat it as ground truth (For the other real

datasets, we do not have ground truth available).

We consider four sample sizes for the synthetic data: 50, 100, 200 and 300. For the

twitter data, we consider three sample sizes: 105 (∼5%), 420 (∼20%) and 1049 (∼50%).

For DD which requires thresholding, we used four different threshold-levels, 0, 25%, 50%

and 75%. For all methods, we compute P (H1|−) under different settings. In order to

estimate variance P (H1|−), we generated 20 datasets for each sample size.

Figure 2.3 presents the Type-I error (i.e., P (H1|H1is false)) and power curves (i.e.,

P (H1|H1is true)) for increasing sample sizes for each method for synthetic data (left) and

real world data (right). Each data point shown is the mean of the 20 trials for the respective
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sample size, we also present the range of 5% to 95% percentiles. We see that NC-F has

the best overall performance both when H1 is true and for H1 false in the homogeneous

scenario. N-gram has the worst performance overall so we do not consider this baseline in

the real data. LDA have a good overall power, however it performs poorly as far as Type

I error goes, with the largest variance. Further, LDA is not able to capture probabilistic

structure underlying the data (we discuss this later). DD’s performance is not so good

for Type I error in the synthetic data, but it is good overall for power. This is not the

case for the real data though, where power is poor and varies significantly with threshold.

This sensitivity to threshold-level confirms the original motivation for this work. NC-M

outperformed all other methods for the heterogeneous data, and NC-F was the second best

even though it does not account for heterogeneity. This is due to the fact that our method

accounts for the weight distributions, and thus can handle overdispersed counts relatively

well.

We also investigate how the number of active users in the dataset affects the overall

power performance. First, we define “activeness” as a function of number of days a user

tweeted. We created datasets restricting to users with at least 2, 5 and 10 days of tweets.

Thus, we assume that in the dataset with users having at least 10 days of tweets, there are

a significantly larger number of active users than in dataset with a minimum of 2 days of

tweets. Note that we are assessing only statistical power here, therefore we are only looking

to the case that H1 is true, i.e., “PropositionVsOpposition”. Figure 2.4 shows the power

curve for each these datasets. As expected, our method needs fewer observations to find

statistical difference between populations with more active users in the dataset, in other

words NC-F has the ability to differentiate between populations easier as the proportion of

active users increases. DD does not improve with larger sample size which suggests DD

loses the ability to determine whether populations differ in a higher heterogeneous setting.

Population-level hypothesis test: In the previous results, we had a glimpse of the sensi-

bility of threshold choice in terms of decision making on the hypothesis testing procedure.

Here, we aim to analyze this further. We estimate the posterior probability of H1 for all

observations of all the datasets. We compare our results with DD for 10 different thresh-
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portion of active users

old levels (0, 10%, 20%, ..., 90%). Note that NC-F and NC-M do not vary with threshold

level. Here, in addition to the Twitter data, we include results testing the fMRI dataset—

comparing populations based on the creative index (CCI). [2] found a significant difference

in Brain connectivity between non creative individuals (CCI ≤ 90) vs creative subjects

(CCI ≥ 111). In their tests, the graphs were thresholded at 0.

Figure 2.5(left) shows DD represented as red solid squares, NC-F and NC-M as blue

and green lines, respectively. Again, DD exhibits sensitivity to the threshold choice making

inferences unreliable. For instance, if we consider testing whether populations Proposition

and Opposition are significantly different and use a 60% threshold for Twitter time, we

would reject the null, since the posterior of P (H1) ≈ 1. However, if we slightly change the

threshold level to 50%, P (H1) ≈ 0.5 meaning that there is not enough evidence to support

that they are statistically different and we accept the null. The same behavior can be seen on

the fMRI dataset where the threshold at 0 is statistical significant for LowVsHigh, however

it is not for any other threshold. Overall, we found that our methods NC-M and NC-F are

more reliable, since they avoid the need for practitioners to make sensitive preprocessing

choices.

Edge-specific level hypothesis test: Another important task is that of retrieving the struc-

ture of the co-occurrences probabilities. For better visualization, we generated a version

of the synthetic homogeneous with 20 nodes, and we look at differences between true and
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predicted edge probability matrices for both populations, i.e. we compute the estimated

difference θ̄1 − θ̄2 for each model and compared with the ground truth. In Figure 2.6, we

see that our proposed framework accurately recovers the structure of the ground truth. The

DD0 also retrieves the structure of population 1, however it performs poorly for population

2. This is related to the sensitivity of results to the threshold-level, suggesting this needs to

be chosen carefully across different scenarios. Our models NC-F and NC-M both do not

require such hand-tuning, and further exploit values of the pre-thresholded counts for more

accurate inference. Unsurprisingly, all the other models fail to correctly learn the structure

used to simulate the data.

For the Twitter and Instagram datasets, we looked at each edge, and identified those

that are different using a 0.1 significance level. Figure 2.7 shows that the NC-F model was

able to capture a clear pattern of significantly different use of words among populations for

the Brazil dataset, as opposed to the other modeling schemes which look almost random.
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For the Instagram drug data, the edge-specific hypothesis testing matrix structure is much

more significant compared with the Twitter case. One reason for this is that there is a group

of Ritalin users that are German, and their words differ from others.

NC−F DD20 DD80 N−gram

Ground truth DD0 DD50 LDA

Figure 2.6.: Edge-specific probabilities difference

NC−F DD0 NC−F DD0

Figure 2.7.: Edge-specific tests for Twitter (left) and Instagram (right).

Exploratory analysis: Here, we show some additional insights that our methods are

capable of capturing. One interesting fact of the Brazil political scenario is that many

high frequency words were extensively used across both populations, examples being “im-

peachmentja” (impeachment now), “lavajato” (carwash), “golpenao” (no coup), “direitos”

(rights). However, using the probability structure θ̄ estimated from our framework, we can

make some interesting insights about how the two sides frame the issues differently. Figure

2.8 plots the difference of the link probability for each high frequency word used in conjunc-

tion (co-occurrence) with all other words, across the two sides—if the value is larger than

zero then it is a ‘proposition expression’, otherwise it is an ‘opposition expression’. For

instance, “lavajato” is the name of the investigation and if it is used with “motivo” (motive)

is a proposition statement where if it is used with “luta” (fight) then it is a clear opposition
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one. From Figure 2.8 it is clear that the two sides use sets of words (e.g., phrases) quite

differently.
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Figure 2.8.: Swing words: differences in edge probabilities for example high frequency
terms.

Figure 2.5(right) presents additional results for the Instagram and fMRI datasets. In

this case, we look again to the behavior of P (H1|−) across threshold levels. It is important

to highlight that we do not have a ground truth information to compare our findings with,

however it is an additional set of results to explore the assessment of significant difference

between two populations, and to note the lack of robustness of DD wrt threshold choice.

2.6 Conclusion

This chapter presents the first steps towards routine and systematic hypothesis testing

on populations of weighted networks. Our statistical framework applies both to settings

where entities from each population have single graphs associated with them, as well as

settings where each entity has associated a set of graphs (we call these without and with

within-population heterogeneity). Through a flexible and general clustering mechanism for

replicated weighted networks, our framework offers a powerful and accurate hypothesis

testing at three levels: population-level, entity-specific and edge-specific. We applied our

model to study communication behavior on real social media data (Instagram and Twitter),

as well as for brain connectivity data. We saw that by not relying on a a user-specified

threshold, our proposed method offers robustness over the methodology of [2], besides

outperforming other baselines like LDA, N-gram language models.
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3. NON-ALIGNED GRAPHS

3.1 Introduction

As discussed before, much of the work on networks has focused on the analysis of a

single large graph and in the area of community detection and clustering is not different.

Some efforts have moved beyond this to consider multiple graphs scenarios with include

multi-view clustering [22], multi-layer community detection [14–18,23], and temporal clus-

tering [24]. These assume the graphs are aligned, with a known mapping between nodes

in each graph. The multiple graphs provide different information about the same set of

nodes. Applications are time-evolving [37, 45–47] as well as independent graph observa-

tions [2, 3, 8, 9]. Such methods are not applicable to non-aligned graphs, from fields like

biology (e.g., fungi networks, protein networks) and social media (e.g., social networks,

word co-occurrences). Here, graph instances are often drawn from the same population,

with limited or no correspondence between the nodes across graphs (the nodes have similar

behavior but represent different entities). While one could cluster graphs separately, pool-

ing information across graphs can improve estimation, particularly for sparse or imbalanced

graphs.

In this chapter, we focus on the problem of community detection across a set of non-

aligned graphs of varying size. We are given a set ofN graphs, Ω = {A1, . . . ,AN}, where

the nth graph is represented by its adjacency matrix An ∈ {0, 1}|Vn|×|Vn| where Vn is the

set of nodes. We do not require Vn to be shared across different graphs, however we assume

they belong to a common set of K communities. Our goal is to identify these K commu-

nities. For instance, consider villages represented by social graphs where nodes represent

individuals in a village and edges represent relationships between them. Although the peo-

ple are different in each village and the sizes of villages vary, personal characteristics may

impact the propensity of having some type of relationship, e.g. a younger individual is
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more willing to connect with other younger individuals, or an influential person such as a

priest might have more ties. Indeed, there are a vast number of factors, both observed and

latent, shared among people across villages, that might influence relationship and commu-

nity formation.

Our approach builds on the popular stochastic block model (SBM). SBMs have been

studied extensively for single graph domains [53–55], and have been highly effective on

real world problems [56, 57]. A simple extension to our setting separately estimates the

SBM parameters per graph, and then attempt to find a correspondence between the es-

timated probability structures to determine a single global community structure. We call

this Isolated SBM and show it is only accurate when each community is well represented in

each graph. Moreover, the process of aligning the estimated probabilities can haveO(NK!)

complexity, which is only feasible when K is very small.

We propose a joint SBM model to estimate the joint connectivity structure among the

communities in each graph, while allowing the number and sizes of clusters to vary across

graphs. To estimate the parameters of the model, we relate the individual graph adjacency

matrix eigendecompositions to the decomposition of the whole dataset Ω, and then de-

rive an efficient joint spectral clustering approach. Our learning algorithm has complexity

O(|V |K) per iteration where |V | is total number of nodes across graphs, and does not need

the O(NK!) alignment step of Isolated SBM. We evaluate our Joint SBM on synthetic

and real data, and show it is able to more accurately recover the community structure than

a number of baselines, particularly when graphs are highly heterogeneous. We defer all

proofs to the appendix B.

3.2 Joint SBM for multiple graphs, and spectral clustering

The stochastic blockmodel (SBM) [29, 30] for a single graph A with K communities,

is defined by a (|Vn|×K) membership matrix X , and a connectivity matrix Θ ∈ [0, 1]K×K .

Here X[i, k] = 1 if node i belongs to community k, and is 0 otherwise. Θ[k, l] = θkl is the
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edge-probability between nodes from communities k and l. Then, a graph represented by

adjacency matrix A is generated as

aij ∼ Bern(XiΘXT
j ) if i < j. (3.1)

Note that aij = aji ∀i, j, and since we do not consider self-edges, aii = 0 ∀i. In settings

with a single graph, theoretical properties like consistency and goodness-of-fit are well

understood, and efficient polynomial-time algorithms with theoretical guarantees have been

proposed for learning and inference. However, there is little work for the case of multiple

graphs.

3.2.1 Multi-graph joint SBM

To address this, we consider an extension of the SBM in Eq.(3.1). Our model does not

require vertices to be aligned across graphs, nor does it require different graphs to have the

same number of vertices. Vertices from all graphs belong to one of shared set of groups,

with membership of graph n represented by a membership matrix Xn. Edge-probabilities

between nodes are determined by a global connectivity matrix Θ shared by all graphs.

For notational convenience, we will refer to the set of stacked Xn matrices as the full

membership matrix X , with Xni one-hot membership vector of the i-th node of graph n.

The overall generative process assuming K blocks/communities is

anij ∼ Bern(XniΘXT
nj) if i < j (3.2)

where again, anij is ij-th cell of the adjacency matrix An. Note that Xn is a (|Vn| × K)

binary matrix, and Θ is aK ×K matrix of probabilities. This model can easily be extended

to edges with weights (replacing the Bernoulli distribution with some other distribution) or

to include covariates (e.g. through another layer of coefficients relating covariates with

membership or edge probabilities).
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3.2.2 Spectral clustering for a single graph

First, we recall the spectral clustering method for SBMs for a single graph An [54,

58]. Let Pn refer to the edge probability matrix of graph n under an SBM, where Pn =

XnΘXT
n (Eq.(3.1)). Since we do not consider self-loops, E[An] = Pn − diag(Pn). Write

the eigendecomposition of Pn as Pn = UnDnU
T
n . Here, Un is a (|Vn| × K) matrix of

eigenvectors related to the K largest absolute eigenvalues and Dn is a K × K diagonal

matrix with the K non-zero eigenvalues of Pn. Let |Gnk| be the number of nodes that

belong to cluster k, and ∆n =
(
XT

nXn

)1/2 define a K × K diagonal matrix with entries√
|Gnk|. Letting ZnD̃nZ

T
n be the eigendecomposition of ∆nΘ∆n,

UnDnU
T
n = Pn = XnΘXT

n = Xn∆
−1
n ∆nΘ∆n∆

−1
n XT

n

= Xn∆
−1
n ZnD̃nZ

T
n∆

−1
n XT

n . (3.3)

Since Dn and D̃n are diagonal, and Xn∆
−1
n Zn is orthonormal, Dn = D̃n, Un =

Xn∆
−1
n Zn. In practice, we use the observed adjacency matrix An as a proxy for Pn,

and replace Un with Ûn calculated from the eigendecomposition An = ÛnD̂nÛ
T
n . Fi-

nally we note that each row of Xn has only one non-zero element, indicating which group

that node belongs to. Thus, as in [54], we can use k-means clustering to recover Xn and

Wn = ∆−1
n Zn from Ûn:

(
X̂n, Ŵn

)
= argmin

Xn∈M|Vn|,K ,Wn∈RK×K

∥XnWn − Ûn∥2F (3.4)

Given
(
X̂n, Ŵn

)
, we can estimate Θ as:

Θ̂n =Ŝn + ∆̂−2
n

[
Ik − ∆̂−2

n

]−1

diag
(
Ŝn

)
(3.5)

where Ŝn = ∆̂−2
n X̂T

nAnX̂n∆̂
−2
n and ∆̂2

n = X̂T
n X̂n. See Appendix B.3 for details of

derivation.
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3.2.3 Naive spectral clustering for multiple graphs

Given multiple unaligned graphs, the procedure above can be applied to each graph,

returning a set of Xn’s and Θn’s, one for each graph. The complexity of this is O(Nϕ +

|V |K), where ϕ is the cost of eigendecomposition on a single graph (typically O(|E|) for

sparse graphs [59,60]). This does not recognize that Θ is shared across all graphs, and esti-

mating a global Θ from the individual Θns requires an alignment step. Searching over all

permutations for the best alignment has cost O(NK!) and is a two-stage procedure that re-

sults in loss of statistical efficiency, especially in settings with heterogenerous, imbalanced

graphs. We refer to this approach as Isolated SBM. We propose a novel algorithm to get

around these issues by understanding how each graph relates to the global structure.

3.2.4 Joint spectral clustering for multiple graphs

Let |V | =
∑

n |Vn|, where |Vn| is the number of nodes in An. Consider the |V | ×

|V | block diagonal matrix A representing all adjacency matrices, and define an associated

probability matrix P:

A =



A1 . . . 0 . . . 0
... . . . ...

...
...

0 . . . An . . . 0
...

...
... . . . ...

0 . . . 0 . . . AN


,P =



P1 . . . P1n . . . P1N

... . . . ...
...

...

Pn1 . . . Pn . . . PnN

...
...

... . . . ...

PN1 . . . PNn . . . PN


. (3.6)

Write the membership-probability decomposition of P as P = XΘXT , here, X is

the stacked |V | × K matrix of the Xn’s for all graphs, and Θ a K × K matrix of edge-

probabilities among groups. Note that i ̸= j, Pij includes edge-probabilities between nodes
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in different graphs, something we cannot observe. As before, define ∆ =
(
XTX

)1/2, and

the eigendecomposition of P gives

UDUT = P = XΘXT = X∆−1∆Θ∆∆−1XT

= X∆−1ZD̃ZT∆−1XT , (3.7)

with ZD̃ZT corresponding to the eigendecomposition of ∆Θ∆. Similar to the single graph

case

D = D̃, U = X∆−1Z, (3.8)

Note that D is still a K ×K diagonal matrix. Let Un∗ = Xn∗∆
−1Z refer to the subset of

U corresponding to the nodes in graph n, and define Xn∗ similarly. Note that Xn∗ = Xn,

though Un∗ differs from Un of Eq. (3.3). By selecting the decomposition related to graph

n, we have,

Pn = (P)n,n =
(
UDUT

)
n,n

= Un∗DUT
n∗. (3.9)

From Eq.(3.3), Un∗DUT
n∗ = UnDnU

T
n . Let Qn := UnDn

Un∗DUT
n∗ = QnU

T
n

Un∗DUT
n∗Un = QnU

T
nUn

Un∗D(Xn∗∆
−1Z)TXn∆

−1
n Zn = Qn

Un∗DZT∆−1XT
n∗Xn∆

−1
n Zn = Qn

Un∗DZT∆−1∆2
n∆

−1
n Zn = Qn (3.10)

Un∗D = QnZ
T
n∆

−1
n ∆Z = Xn∗W (3.11)
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where W := ∆−1ZD. By contrast for the single graph, UnDn = Qn = Xn∆
−1
n ZnDn

(Eq.(3.3)). If we have the middle term in Eq. (3.11) from data, we can solve for joint

community assignments:

(
X̂, Ŵ

)
= argmin

X∈M|V |,K ,W∈RK×K

N∑
n

∥XnW −QnZ
T
n∆

−1
n ∆Z∥2F (3.12)

While we can estimate Qn from the data, Qn = UnDn, we cannot estimate Zn or Z

trivially. Instead, we will optimize an upper bound of a transformation of Eq.(3.12).

Lemma 3.2.1 Eq. (3.12) is equivalent to

argmin
X∈M|V |,K
W∈RK×K

N∑
n=1

∥an(Xn,W ) + bn(Xn)∥2F ,where (3.13)

an(Xn,W ) := (XnW −Q∗
n)Z

T∆−1∆nZn

bn(Xn) := Q∗
n

(
ZT∆−1∆nZn −

√
|Vn|
|V |

IK

)
Q∗

n := Qn

√
|V ||Vn|.

Next we derive a bound for Eq. (3.13) using the triangle inequality and sub-multiplicative

norm property. Let |M | be the element-wise absolute values of matrix M . Then

Lemma 3.2.2 With

γn =
∥∥Z∆−1∆nZ

T
n

∥∥2
F
= tr

(
∆2

n∆
−2
)
=

K∑
m=1

|Gnm|
|G·m|

,
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1

2
∥an(Xn,W ) + bn(Xn)∥2F ≤

≤ ∥XnW−Q∗
n∥

2
F γn +

∥∥∥|Q∗
n|
(
∆−1∆n +

√
|Vn|/|V |

)∥∥∥2
F

:= ãn(Xn,W ) + b̃n(Xn) := ηn(Xn,W )

(3.14)

We can optimize the bound on Eq. (3.13):

(
X̂, Ŵ

)
= argmin

X∈M|V |,K ,W∈RK×K

N∑
n

ηn(Xn,W ) (3.15)

The terms ãn(·) and b̃n(·) are weighted sums of squares of Qn. However, we center each

Qn at the global weighted mean W in ãn(·). The term γn controls the importance of the

global parameter W in each graph. Thus, γn downweights the effect of W in small graphs

and in graphs with highly underrepresented communities. Intuitively, the term ãn(·) is

assigning nodes to clusters assuming ZT
n∆

−1
n ∆Z =

√
|V |/|Vn|IK , and b̃n(·) accounts for

the distance between a given graph and the global distribution of nodes over clusters.

Optimization: We optimize Eq.(3.15) using a heuristic inspired by Lloyd’s algorithm for

k-means. This involves iterating two steps: (1) compute the means W given observations

in each cluster X; (2) assign observations to clusters X given means W :

1. Compute the means: We update W by minimizing ηn(Xn,W ) for a given X , i.e.∑N
n ∇W

ηn(Xn,W ) = 0. Note that the b̃n does not involve W so it is dropped:

N∑
n

2XT
n (XnŴ −Q∗

n)γn = 0

=⇒ Ŵ = [
N∑
n

XT
nXnγn]

−1

N∑
n

XT
nQ

∗
nγn (3.16)
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2. Assign nodes to communities: We assign each node to the cluster that minimizes

Eq. (3.15). Accordingly, define ωni(k) as the distance of node i to cluster k:

ωni(k) = ∥Wk −Q∗
ni∥

2 tr
(
∆̃2

ni(k)
)

+
∥∥∥|Q∗

ni|
(
∆̃ni(k) +

√
|Vn|/|V |IK

)∥∥∥2 (3.17)

Wk is the k-th row of W and ∆̃ni(k)) is the value of ∆−1∆n if node i is placed in

cluster k. Precisely, say node i is currently in cluster l, then we have

∆̃ni(k) =
[
(∆2 − diag(Hl) + diag(Hk))

]−1/2×

×
[
(∆2

n − diag(Hl) + diag(Hk))
]1/2 (3.18)

where Hl is a size K one-hot vector at position l. Then Xni = argmink ωni(k).

Algorithm: The complexity is O(Nϕ + |V |K). Recall that ϕ refers to the complexity

of eigen decomposition on a single graph. Note that our derived objective does not require

decomposition of the full graph A, instead decomposing each individual graph and then

using the results to jointly estimate X and W. In addition, the extraO(NK!) for alignment

in the Isolated SBM is not needed here. Given the cluster assignments X , we can easily

estimate the cluster edge probabilities Θ (see Eq.(3.5)). Algorithm 1 outlines the overall

procedure for learning the Joint SBM . Table 3.1 compares its computational complexity to

various baselines. We also include results on asymptotic properties of the estimates for the

global parameter, Θ̂, and the membership matrix, X̂ in B.5.

3.3 Comparing Joint SBM to Isolated SBM

Both Joint SBM and Isolated SBM use the eigendecompositions of the individual N

graphs, and are closely related. The biggest difference is the ZT
n∆

−1
n ∆Z term in the def-

inition of ãn(Xn,W) (Eq. (3.14)), which, intuitively, normalizes each individual graph

eigenvector based on the distribution of nodes over the clusters in the graph. If the graphs
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are balanced, i.e., they have roughly the same proportion of nodes over clusters, then

ZT
n∆

−1
n ∆Z ≈

√
|Vn|−1|V | which does not depend on the cluster sizes. Lemma 3.3.1

formalizes this.

Lemma 3.3.1 Let the pair (X,Θ) represent a joint-SBM with K communities for N

graphs, where X is the stacked membership matrix over the N graphs and Θ is full

rank. Assume the graphs are balanced in expectation in terms of communities, i.e., as-

sume the same distribution of cluster membership for all graphs: Xni
iid∼ Mult(ζ) for all

n ∈ [1, ..., N ] and i ∈ [1, ..., |Vn|]. Then, E
[
ZT

n∆
−1
n ∆Z

]
=
√
|Vn|−1|V |.

When Lemma 3.3.1 is true, we have: E [ηn(Xn,W )] = ∥XnW −Q∗
n∥

2
F

|Vn|K
|V | +

∥∥∥2 |Q∗
n|
√

|Vn|
|V |

∥∥∥2
F
.

Now, in expectation, the RHS of Eq.(3.15) depends only on ãn(Xn,W ), since b̃n(·) no

longer depends on Xn. If the graphs are also of the same size, then for each graph, the ob-

jective function of Joint SBM is equivalent to that of Isolated SBM. Lemma 3.3.2 formalizes

this.

Lemma 3.3.2 Let the pair (X,Θ) represent a joint-SBM with K communities for N

graphs. If the sizes of the graphs are equal, i.e., |Vn| = |V |/N and the graphs are

balanced in expectation in terms of communities, i.e., they have the same distribution of

cluster membership Xni
iid∼ Mult(ζ) for all n ∈ [1, ..., N ] and i ∈ [1, ..., |Vn|]. Then,

E[ηn(Xn,W )] ∝ ∥XnWn − Ûn∥2F .

Lemma 3.3.2 illustrates the setting when clustering the nodes of each graph individually

(Isolated) and jointly have the same solution (i.e., based on optimizing Qn). However, this

is only true with respect to the node assignments for each individual graph. If we look

to the global assignments, the Isolated and the Joint model are expected to be the same

only up to permutations of the community labels. Thus, for a good global clustering result,

the Isolated model needs an extra O(NK!) step to realign the estimated Xns, which can

also introduce additional error. If the data does not have graphs of the same size or the

distribution of clusters varies across graphs, then the Isolated model will likely miss some

blocks on each graph. Our joint method avoids these issues by pooling information across

the graphs to improve estimation. Next, we illustrate this effect using a toy example.
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3.3.1 Toy data example

As an example to illustrate the effect of ZT
n∆

−1
n ∆Z on the individual eigendecomposi-

tion, consider three graphs, where each graph is a village, nodes represent individuals and

edges represent relationships between them. Assume that individuals are clustered in four

different blocks based on their personalities, which reflects how they form relationships.

Figure 3.1(left) shows the connectivity matrix based on those personalities. Also, consider

that each village has its own distribution of people over the clusters, as shown, for instance,

in Figure 3.1 (right).

0.9 0.1 0.1 0.01

0.1 0.8 0.5 0.01

0.1 0.5 0.5 0.01

0.01 0.01 0.01 0.1

1 2 3 4 Village1 Village2 Village3

1

2

3

4

Figure 3.1.: Toy data connectivity matrix
(left) and distribution of blocks per vil-
lage (right).
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Figure 3.2.: Original and transformed
eigenvectors

Now, using the adjacency matrix eigendecomposition for each village An = ÛnD̂nÛ
T
n ,

we have Q̂n = ÛnD̂n as a proxy for Qn. Since ÛnD̂nÛ
T
n = T̂nD̂nT̂

T
n for Tn = −Un, we

consider |Q̂n| instead. Figure 3.2 (left) shows the two largest absolute eigenvectors of each

adjacency matrix. Each block has a different center of mass depending on which village

(graph) it is in. This is due the fact that villages have completely different distribution

of nodes over the blocks. Therefore, sharing information across villages is fundamental

not only to assign underrepresented nodes to the correct block, but also to map the blocks

across villages. Using our proposed transformation given in Equation (3.11), we obtain

the results shown on Figure 3.2 (right). We re-scale and rotate the eigenvectors in order to

have an embedding of the nodes that is closer to the global eigendecomposition. Therefore,

using any clustering algorithm one can correctly recover the membership for nodes across

the three villages.
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3.4 Related work

Community detection in graphs has seen a lot of recent attention. We focus on exten-

sions to multiple graphs, emphasizing two relevant directions: heterogeneity across com-

munities and nonaligned graphs. For the former, [57] propose a degree corrected SBM to

account for heterogeneity inside a community, though [61] showed that this fails to retrieve

true communities in a high heterogeneous setting. [62] introduce a normalized Laplacian

form that account for high heterogeneous scenarios, however this comes at a high compu-

tational cost.

There is also a large literature that focus on clustering multi-layered (also called multi-

plex) networks [14–18]. Our work is in a different domain, specifically, we are interested

in multiple exchangeable graphs, with no mapping (or alignment) either known or possible,

among nodes across graphs. Multi-layered methods explore observed dependencies (e.g.,

shared nodes) across graphs.

More generally, methodology for multiple graphs can be divided into geometric [3,

8, 33] and model-based [2, 4] approaches. The first approach seeks to characterize graphs

topologically and explore hyperspace measures. [3] introduces a geometric characterization

of the network using the so-called Fréchet mean while their approaces are mathematically

elegant, they are substantially less flexible than our work. The second approach aims to

embed graph to a lower dimension space without oversimplifying the problem by making

use of latent models. [1,2] proposed a mixture of latent space model to perform hypothesis

testing on population of binary and weighted aligned graphs, respectively. On the other

hand, [4] worked with non-aligned graphs, Xni ̸= Xn′i, modeling node features condi-

tioned on its neighbors. They provided a convolutional neural network approach which is

invariant to node permutation. However, unlike us, their method assumes knowledge of

node features Xni. Overall, the closest work to our model is from [63] where a Bayesian

nonparametric inference method (IRM) for the scenario specified in Lemma 3.3.1 is used

to make cross domain recommendation in bipartite graphs. Aside from being a sampling-
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based inference method, their method assumes balanced communities, and we show in our

experiments that as heteregeneity increases the accuracy of their method decreases.

3.5 Experiments

3.5.1 Synthetic data

We generate data using the following generative process:

πn|α ∼ Dir (K, 1/αK) ,

Xni|πn ∼ Mult(πn),

anij|Xni,Xnj, (θkl)
K,K
k=1,l=1

ind∼Bern(XniΘ.X
T
nj).

(3.19)

Unless specified, we use K = 6. We vary hyperparameters including N (number of

graphs), |Vn| (individual graph sizes), and α (cluster-size heterogeneity). Recall α ≈ 0

corresponds to a homogeneous setting (similar π across graphs), and that α increases the

cluster-heterogeneity.

Experiments design: We assess community retrieval performance, and global Θ estima-

tion for each model. We design two sets of experiments, one for each assessment objective:

1. Community retrieval X̂n:

(a) FixedN = 1000 and α=1. We generate datasets for varying |Vn|=[25, 50, 100, 200].

(b) Fixed N = 100 and |Vn| = 200. We generate datasets for varying values of

α ∈ [0.1, 2];

(c) Fixed N = 200, |Vn| = 500 and α = 1. We assess performance as runtime

increases.

(d) Fixed K = 2, π = [1/2, 1/2], N = 2 and |V1| = 500. We assess performance

for varying |V2| = [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000].

2. Global Θ̂:
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(a) Fixed α=1. N=[50, 200, 400, 600, 800, 1000]. For eachN , |Vn|=[25, 50, 200, 500].

Appendix B.2.1 includes additional experiments evaluating cluster retrieval for varying

graph sizes.

Baselines: We evaluate our joint spectral clustering algorithm (JointSpec), and compare

against:

• IsoSpec: separately running spectral SBM on the individual graphs and then aligning.

We used the Blockmodels R package [64].

• node2vec [65]: embeds the nodes into a low-dimensional vector space, clusters

the embeddings, and then aligns. We used a Python implementation [65].

• ReMatch [63]: an IRM-based approach to do cross domain recommendation using

bipartite graphs. This is a sampling version of Lemma 3.3.1.

For IsoSpec and node2vec, which are nonaligned, we consider two re-alignment proce-

dures:

• perm: (1) fix a pivot connectivity, Θpivot, of the graph with the largest the number

of nodes in each community, (2) search a permutation of Θn that best approximates

Θpivot for each graph, then (3) re-order the connectivity matrix and membership ac-

cordingly.

• km: (1) cluster the centersWn across graphs, then (2) re-order the connectivity matrix

and membership accordingly.

Evaluation: We measured performance using cluster retrieval performance measures

(CRPMs) and Standardized Square Error (SSE). For the CRPMs, we used Normalized

Mutual Information (NMI), Adjusted Rand Index (ARI), and 1−misclustering rate (MCR).

We measure individual graph CRPMs as well as the overall CRPMs across all graphs, in

each case, comparing the estimated membership X̂n with the ground truth Xn. To mea-

sure the quality of the estimated connectivity matrix Θ, we used the standardized square

error, the square error normalized by the true variance. Thus, SSE =
∑K

k

∑K
l

(θ̂kl−θkl)
2

θkl(1−θkl)
.
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We normalize the square error by the true variance because very high (or very low) edge

probabilities have lower variances and need to be up-weighted accordingly. For good Θ

estimates, we expect this to be close to zero.

Results for community retrieval X̂n, fixed α = 1: Figure 3.3(left) shows the CRPMs

curves for increasing number of nodes (top row: individual CRPMs, and bottom row: over-

all CRPMs). For individual CRPMs, each data point records the median over the graphs

and the shaded region shows the interquartile range. We see that JointSpec outperformed

IsoSpec , node2vec and ReMatch for both overall and individual CRPMs. That the

overall CRPMs for IsoSpec and node2vec is poor is unsurprising, given the two-stage

alignment procedure involved. Interestingly however, they perform poorly on the individ-

ual CRPMs as well. This indicates that the use of only local information is not enough to

accurately assign nodes to clusters, and that it is important to pool statistical information

across graphs. ReMatch is a Bayesian nonparametric model that creates more commu-

nities as the graphs become more heterogeneous. Unlike NMI, ARI and 1−MCR capture

the fact that ReMatch is assigning nodes to very large number of communities (> 50 on

average). Fig. B.1 in Appendix B.2.1 shows results for datasets with N = [50, 200, 600].

Overall, the results are similar to Fig. 3.3(left). See Appendix B.2.2 for a qualitative assess-

ment of the connectivity matrix.

Runtime analysis: Figure 3.4(left) shows log-performance against runtime for each method

and each measure. All runs were on a Macbook Pro 2.3 GHz Intel Core i7, 8gb 1600 MHz

DDR3. JointSpec clearly outperforms the baselines, taking much less time to converge to

a good solution. Moreover, we compare the asymptotic complexity of our algorithm with

some baselines in Table 3.1. Overall, JointSpec has the best scalability for increasing K,

N and |Vn|. See Appendix B.2.1 for experiments using α = .1, 2.

Results for community retrieval X̂n, fixed N =100 and |Vn|=200: Here, we evaluate

cluster retrieval performance as the cluster sizes became more heterogeneous (e.g. α in-

creases). Figure 3.3(right) shows the CRPMs curves. The results suggest that IsoSpec(perm)
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100 and 200). (Right) Fixed N = 100 and |Vn| = 200: CRPMs curves for increasing het-
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Table 3.1.: Asymptotic computational complexity for each method

Inference method Algorithm step
Initialization Community assignment Re-alignment

IsoPerm O
(
K
∑N

n |Vn|2
)

O (|V |K)* O (NK!)

IsoKM O
(
K
∑N

n |Vn|2
)

O (|V |K)* O (NK2)*

JointSpec O
(
K
∑N

n |Vn|2
)

O (|V |K)* 0

ReMatch O
(
K
∑N

n |Vn|2
)

O
(
K
∑N

n |Vn|2
)

* 0

* per iteration/sample.
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and JointSpec have similar performance when the graphs are balanced in terms of distribu-

tion of nodes over communities (low values of α). However, the CRPMs curves diverge

as α increases and for more heterogeneous settings (unbalanced graphs), the Joint model

outperforms IsoSpec node2vec and ReMatch by a large amount, both for overall and

individual cluster retrieval performance. ReMatch increases the number of communities

as the graphs becomes more heterogeneous, ARI and 1−MCR capture this.

Results for community retrieval X̂n, fixedN=2: We consider a simplified connectivity

matrix Θ = [[.9, .1], [.1, .5]] in order to focus the assessment of varying graphs sizes. The

results in Fig.3.5 shows JointSpec and IsoSpec (overlapping in Fig 3.5) performances are

not affected by varying graph sizes when community proportions are the same, as oppose

to ReMatch. We also investigated more complex settings where the individual graph

sizes are sampled from an overdispersed negative binomial distribution. The results are

in Appendix B.2.1 and it coincides with what is shown in Fig.3.5. Overall, we found that

varying α had more impact on cluster retrieval performance than varying the spread of

graph sizes.

Results for global Θ̂: Figure 3.4(Right) shows the standardized square error (SSE) for

the Θ estimates (lower values mean better estimates of the true Θ). Again, JointSpec

outperforms IsoSpec and node2vec in all scenarios. Even when each graph does not

have many nodes (e.g. |Vn| = 25), statistical pooling allows JointSpec to achieve good

performance that is comparable with settings with larger nodes. These results also illustrate

the consistency of our estimation scheme, with decreasing error as the number of samples

increases. We do not compare with ReMatch , which produces a connectivity matrix

significantly larger than K.

3.5.2 Real world data

Karnataka village dataset Available at https://goo.gl/Vw66H4, this consists of

a household census of 75 villages in Karnataka, India. Each village is a graph, each person

https://goo.gl/Vw66H4
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Figure 3.5.: Fixed N = 2, |V1| = 500, K = 2 and π = [1/2, 1/2]: CRPMs for increasing
|V2| of each method.

is a node, and edges represent if one person went to another’s house or vice versa. Overall,

we have 75 graphs with size from 354 to 1773 nodes. As ground truth is unknown, we can-

not assess the performance of the models precisely. To quantitatively measure performance,

we cluster religion, caste and mother-tongue and compare with the communities assigned

using each model. We expect these demographic variables are related to the connectivity

behavior of individuals. We consider a conservative setting of six communities (K = 6)

for all models. Table 3.2 shows the NMIs and ARI computed in this setting, we can see

that JointSpec has a larger NMI and ARI than the baselines.

MovieLens dataset This data consists of a bipartite graph of 943 users and 1682 movies,

with 100k ratings. We aim to assess cross-domain recommendation using the learned mod-

els. While MovieLens is a single domain, we use it to simulate multiple domains (e.g.,

Netflix, Amazon Prime, and Hulu) by sampling a collection of graphs. Specifically, we

sample a set of users and movies to create a single subgraph. Each subgraph is sampled

from the full set of data so a user may appear in multiple subgraphs. We fix N = 5 and

learn the models from the set of sampled subgraphs. We consider two scenarios: 1) ho-

mogeneous where each graph has the same number of users (171) and movies (841), and

2) heterogeneous where the size of graphs vary (users: 30-460, movies: 32-820). Any

user/movie pair that is not added to a subgraph sample is held out for the test set. For each

model, we estimate the connectivity matrix from the sampled subgraphs and use it to com-

pute the probability of ratings in the test set (i.e., whether a user has rated a movie or not)

as a proxy for cross-domain recommendations. Table 3.2 reports prediction performance
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in terms of area under the ROC curve (AUC) and precision-recall (PR). The results show

that JointSpec is more precise and outperforms the baselines for both the homogeneous and

heterogeneous scenarios. Note that AUC and PR performance for the Isolated SBM and

node2vec is equivalent to random guessing.

Table 3.2.: Overall CRPMs (NMI and ARI) for village dataset and cross domain recom-
mendation performance for MovieLens dataset.

Model
Village dataset MovieLens dataset

NMI ARI Homogeneous Heterogeneous
AUC PR AUC PR

JointSpec 0.043 0.034 0.867 0.781 0.608 0.594
ReMatch 0.00 0.00 0.832 0.760 0.556 0.546
IsoSpec(km) 0.018 −0.007 0.469 0.458 0.469 0.458
IsoSpec(perm) 0.018 0.016 0.469 0.458 0.469 0.458
node2vec(km) 0.004 0.003 0.469 0.458 0.469 0.458
node2vec(perm) 0.008 0.003 0.469 0.458 0.469 0.458

Table 3.3.: Top 3 words assigned to communities by each model (pro and against govern-
ment)

K
JointSpec IsoSpec

Pro Against Pro Against

1
naovaitergolpe foradilma naovaitergolpe foradilma
golpe forapt golpe forapt
dilmafica dilma foradilma dilma

2
hora janaiva turno arte
galera compartilhar venceu objetos
democralica faltam anavilarino apropriou

3
sociais mito rua rua
coxinha elite april coxinha
naonaors compartilhar continuar elite

4
vai lulanacadeia dilmafica impeachment
brasil lula dilma brasil
povo vai forapt lulanacadeia

Twitter We collected tweets from April 6th to May 31st 2016 from hashtags of 7382

users from both sides of the political crisis in Brazil, where one side was for the impeach-

ment of the former president, Dilma Rousseff, and the other described the process as a
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coup. We constructed word co-occurrence graphs by forming edge-links between words

which were co-tweeted more than 20% of the time for a given user. Thus, networks rep-

resent users and nodes represent words, with sizes varying from 25 to 1039 nodes. Here,

we used four communities (K = 4), and we show in Table 3.3 the top three words as-

signed to communities by the JointSpec and IsoSpec models differ significantly. We color

words based on whether it is more pro government (red), against (blue) or neutral (black).

For JointSpec, we see that community 1 has important key arguments per side such as “nao-

vaitergolpe” (no coup) and “foradilma”(resign dilma). We also see that community 2 seems

to have some stopwords such as “hora”(time) and “compartilhar” (share), and community

3 consist of aggressive and pejorative terms each side uses against the other like “elite” and

“coxinha”. For IsoSpec, the words do not seem to reflect a clear pattern.

3.6 Conclusion

We consider the problem of multiple graph community detection, and proposed a novel

spectral clustering algorithm to solve this task. Our results show that we need to jointly per-

form stochastic block model decompositions in order to be able to estimate a reliable global

structure. We compared our method with Isolated SBM, node2vec, and a Bayesian com-

munity detection method for multiple bipartite graphs called ReMatch. Our method out-

performed the baselines on global measures (overall CRPMs and SSE of the connectivity

matrices), but interestingly also on local measures (individual CRPMs). This demonstrates

that our method is more accurately able to assign nodes to clusters regardless of the choice

of re-alignment procedure. Overall, the other methods do not pool global information in

the inference step which indicates that they can only be used in homogeneous scenarios.



50

4. GRAPHS WITH ZERO INFLATED EDGE-WEIGHTS

4.1 Introduction

Community detection and collaborative filtering on networks has received a lot of at-

tention in the last several years. In terms of highly sparse graphs, the main perspectives are:

preferential attachment [66], degree corrected stochastic blockmodel (DCSBM) [57, 67],

exchangeable sparse graphs [12, 28]. In this chapter, we explore a different angle, fo-

cusing on graph settings where there is a ‘missingness’ mechanism obfuscating poten-

tial interaction between nodes. This perspective has recent received attention specially

in [19–21] where the general generative process of interactions between nodes i and j for

all i, j ∈ V × V , where V is the set of nodes, is given by

Xi ∼ Multi(π) Lij|ϕij ∼ Bern(ϕij)

B[i, j] := bij|Xi, Xj,µ ∼ η
(
XiµX

′
j

)
A[i, j] := aij = Lijbij

(4.1)

where A ∈ Rn×n, where n = |V |, is the observed adjacency matrix with n nodes, µ is the

K × K connectivity matrix, Xi and Xj are the one-hot vector (1 × K) representing the

cluster membership of nodes i and j, respectively, and η represents some distribution (e.g.

Poisson, Normal, Bernoulli, Zipf, and so on).

This process can lead to very challenging inference schemes. Spectral clustering, for

instance, assumes that the observed adjacency matrix A is a good proxy for the mean

connectivity P ∈ Rn×n (i.e., E[A] = P ). This means in cases where there is missing

values in the observed adjacency matrix the overall bias between A and P can be very

large leading the great inaccuracies. Proposed solutions to this issue use either k-means

regularization ( [19]) or a Bayesian framework [20, 21]. In both cases, there are specific

distribution assumptions and structures on the missing mechanism in order to facilitate the
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inference scheme. [19] proved consistency and of the connectivity estimation for when

ϕij = ϕ for all i and j. In this work, we aim to efficiently and accurately assign nodes

to cluster, and, also, relax the assumption of structured ϕij . We also aim to tackle a more

general problem: the zero inflated case de facto. Precisely, integrating out L from Eq. (4.1),

we have

aij|Xi, Xj,µ, ϕij ∼ ZeroInfη
(
XiµX

′
j, ϕij

)
(4.2)

This problem has been studied in a Bayesian perspective at [21]. They used a variational

inference for binary data, their inference scheme included some structure assumptions on

ϕij . We focus on spectral clustering methods which have been proven to be very intuitive,

efficient and accurate [54]. Most importantly, spectral clustering requires less parametric

assumptions. In this work, we propose two inference schemes based on spectral clustering

to deal with Zero inflated settings: self-similar and ego-nets. The former focus on settings

where the missing mechanism is known L and the later is used when there is no knowledge

about L.

Our proposed methods outperforms the baselines in terms of cluster retrieval and con-

nectivity matrix estimation in synthetic data settings. We also compare our inference

schemes with the baselines in two real-world datasets: U.S. and France Political blogs.

U.S. political blogs dataset is commonly used in DCSBM works, we included the France

version introduced at [68]. We also included in Appendix C.7 a clicks on news articles

experiment. This was introduced at [69] and it is based on clicks on news article of the

largest Brazilian news portal, and we show that without using specific knowledge of the

news articles our inference scheme was able to correctly predict users clicking behavior,

comparable to more advance recommender methods that uses additional covariates.

4.2 Background

We first review the complete case SBM, and how inference is carried-out via spectral

clustering.
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4.2.1 Complete data blockmodel (SBM)

Consider an interaction data A (adjacency matrix) with n nodes, and an underlying

community-based model that governs connectivity intensity between nodes i and j. Pre-

cisely, we define µij := µkl as the interaction intensity rate between nodes i and j in

clusters k, l ∈ [0, ..., K], respectively. We also define π = [π1, ..., πK ] as the K dimension

vector where the k-th element represents the probability of node i to be in cluster k. Write

X as the n×K matrix of stacked membership vectors where Xi and Xj are the rows i and

j representing the one-hot vector (1 ×K) of the cluster memberships, respectively. Thus,

A ∼ SBM (µ,π) is given by

Xi ∼ Multi(π)

A[i, j] := aij|Xi, Xj,µ ∼ η
(
XiµX

′
j

) (4.3)

where η is some random variable (e.g., Gaussian, Bernoulli, Poisson, Binomial, Zipf, so

on). Next, we describe how in order to estimate X and µ. Inference on Eq.(4.3) can

be carried-out with different perspectives and assumptions, the most common ones are:

likelihood [57, 70, 71], Bayesian [14, 72], and spectral clustering [54, 62]. Both likelihood

and Bayesian approaches needs a full distributional assumption on the data (e.g., π, µ),

estimation of the parameters are done either using EM or MCMC. In this work we focus

on spectral clustering since it is the family of models with the least number of conditions

where the main assumption is E [A] = XµXT − diag(XµXT ). For more details, see

Section 3.2.2.

4.2.2 Degree corrected SBM (DCSBM)

The degree Corrected Stochastic blockmodel (DCSBM) [57] is an extension of the

regular SBM which allows nodes to have heterogeneous degree within community, i.e., it
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allows nodes to have a specific heterogeneity parameter that also affects the connectivity.

Formally, we generate A ∼ DCSBM
(
µ,π, {ϕij}(ij)∈V×V

)
as

Xi ∼ Multi(π)

A[i, j] := aij|Xi, Xj,µ, ϕij ∼ η
(
ϕijXiµX

′
j

) (4.4)

This is a highly flexible approach and it has been proposed many different inference schemes.

The main difficulty is related to identifiability, thus some additional constraints are needed

in order to perform inference.

4.2.3 Spectral clustering

Now, we recall the spectral clustering method for SBMs [54, 58]. Let P refer to the

edge probability matrix of the graph under an SBM, where P = XΘXT . Let UDUT be

the eigendecomposition of P , we have

UDUT = P = XµXT = X∆−1∆µ∆∆−1XT (4.5)

= X∆−1HD̃HT∆−1XT

where ∆ =
(
XTX

)1/2 define a K ×K diagonal matrix with entries
√
|Gk| and Gk is the

number of nodes in cluster k. Since D and D̃ are both diagonal, and X∆−1 and H are

both orthonormal,

D = D̃, U = X∆−1H . (4.6)

In summary, we use the observed adjacency matrix A as a proxy for P , and replace U in

Eqs. (4.5) and (4.6) with Û calculated from the eigendecomposition A = ÛD̂ÛT . The

memberships are given by solving for the following optimization problem:

(
X̂, Ŵ

)
=argmin

X∈Mn,K

W∈RK×K

∥XW − Û∥2F (4.7)
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For the case of DCSBM, it is clear that as within community heterogeneity increases,

using A as a proxy for P becomes a problem. In fact, [54] proposed an efficient al-

gorithm to perform community detection on Degree Corrected SBM with few assump-

tions (and constraints). They assumed ϕij = νiνj and E[A] = P − diag(P ) where

P = diag(ν)XµXTdiag(ν) = X̃HDHT X̃T , and HDHT is the eigendecomposition

of ν̃µν̃ and ν̃i :=
∑K

k=1
νi∑K

m=1 ν
2
m

. Under their assumptions, the rows have K distintic

directions, instead of having K distinct values. Using this fact, they proposed a spherical

(normalize rows) K-median algorithm to cluster the rows of theK largest eigenvectors of P .

Their method assumes a rank one on the structure of the node heterogeneity ϕij = νiνj , and

they also indirectly assumes that the connectivity matrix µ is modular (i.e., high connectiv-

ity within community and very low across communities) since the matrix X̃H is orthogonal

(i.e., equals the eigenvector matrix of P ) only if heterogeneity ν is within community.

Next, we describe a pre-processing step that can further reduce the variance in A and

improve cluster retrieval.

4.3 Self-similar spectral clustering

The use of A as a proxy for P is usually an issue when A becomes highly heteroge-

neous [61]. The heterogeneity may be due withing community heterogeneity (studied in

DCSBM), large variance on the elements of A, small sample size, large inflation of zeros

and so on. In real-world settings, we usually have a combination of different sources of

heterogeneity. We aim to reduce the overall noise by performing spectral clustering on a

pre-estimator of P where each element has lower variance than the same element in A.

In genetic statistics there is large literature focusing on improving genetic models by

using self-similarity matrices [73–76]. Those are two-stage approaches by first computing

similarities , and then perform clustering or other analysis on the data. In our case, we focus

on SBMs and we define a two-step approach that reduces the overall variance by using the
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data to estimate P (where Pij = E[aij]). Our proposed estimator for the interactions of

nodes i and j is given by

P̂ij :=
(
1TW

\i
j 1
)−1

1TW
\i
j ai∗ (4.8)

where W
\i
j = diag

(
{ωaj}a∈V \i}

)
and ωaj indicates similarity strength of nodes a and j.

In words, each element of our estimator P̂ is a weighted mean of the rows in the adjacency

matrix A where we scale the interactions by a similarity measure.

Intuitively, for a given interaction aij there are (plenty) of similar interactions that node

i (or j) has with other nodes. Thus, we aim to estimate the expected value of aij by aver-

aging nodes that behave similarly to node j (or i). Lemma 4.3.1 shows that if we choose

the similarity measure to be the correlation of the connectivity then P̂ij is unbiased and

converges to P almost surely.

Lemma 4.3.1 Let A be a SBM generated from Eq. (4.3). Write V as the set of nodes

and |V | = n. For convenience, let η represents the normal distribution where µ is a fixed

K ×K matrix of the means, and Σ is a fixed K ×K matrix of variances. Write µkl and

σ2
kl as the elements k and l in the matrices µ and Σ, respectively. Let π be the distribution

of nodes over clusters where π[k] = πk > 0 ∀k = 1, ..., K, and Xi and Xj be the one-hot

vector (1 ×K) of the cluster memberships of nodes i and j, respectively. Moreover, write

Gk as the set of nodes in cluster k, and assume i ∈ Gk and j ∈ Gl. Thus, we re-write

Eq. (4.8) as

P̂ij :=
(
1TW

\i
j 1
)−1

1TW
\i
j ai∗ =

∑
u∈V \i ρjuaiu∑
u∈V \i ρju

(4.9)

where ρab is the correlation of the connectivity between nodes a and b for any a, b ∈ V .

Hence,

E
[
P̂ij

]
= µkl (4.10)

P̂ij
a.s.→

n→∞
µkl = Pij (4.11)
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where a.s.→ denotes strong convergence.

See proof in Appendix C.1. While we do not observe X and consequently we cannot

compute W \i
j , we can efficiently estimate it. Generally, the choice of Ŵ \i

j depends on spe-

cific goals and available information. Here, we propose to estimate the correlation of nodes

j and u, ρju in Eq. (4.9) using the correlation coefficient of the connectivity information.

P̂ ∗
ij := âi·(j) :=

(
1TŴ

\i
j 1
)−1

1TŴ
\i
j ai∗ =

∑
u∈V \i ρ̂juaiu∑
u∈V \i ρ̂ju

(4.12)

Lemma 4.3.2 shows that, as oppose to aij , âi·(j) is (weakly)consistent to Pij .

Lemma 4.3.2 Let A be a SBM generated from Eq. (4.3) where the conditions of Lemma

4.3.1 hold. Hence, define

Ŵ
\i
j := diag

(
{ρ̂ju}a∈V \i}

)
(4.13)

where ρ̂ju =
Ĉov (aj∗, au∗)√

V̂ ar(aj∗)

√
V̂ ar(au∗)

(4.14)

Thus, for âi·(j) defined in Eq. (4.12), we have

âi·(j)
P→

n→∞
µkl = Pij (4.15)

where P→ denotes convergence in probability.

See appendix C.2 for proof. Write ρ̂∗aj as a general estimator of ρju = IXu=Xj
in

W
\i
j = diag

(
{ρju}a∈V \i}

)
. Thus, if one proves that ρ̂∗ju converges in probability to ρju,

then the result of Lemma 4.3.2 follows. We emphasize that the correlation coefficient

estimator Ŵ \i
j in Eq. (4.13) is one out of many options to use for the similarity measure.

However, not all the options for similarity guarantee convergence in probability of âi·(j)

to the true Pij . For instance, one can estimate ρju as ρ̂stacked
ju = IX̂u=X̂j

where X̂u and X̂j

are the estimated cluster memberships of nodes a and j using spectral clustering. This is
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a two-stage clustering process, but in this case ρ̂stacked
ju is not consistent to the true ρju as n

increases. Lemma 4.3.3 formalizes this statement.

Lemma 4.3.3 Let A be a SBM generated from Eq. (4.3) where the conditions of Lemma

4.3.1 hold. Define

ρ̂stacked
ju = IX̂u=X̂j

(4.16)

where X̂u and X̂j are the estimated cluster memberships of nodes a and j using spectral

clustering described in Section 4.2.3. Thus,

ρ̂stacked
ju

P

̸→
n→∞

ρju. (4.17)

See appendix C.3 for proof. In practice, the use of external covariates to estimate the

similarities can further reduce the noise in A.

We define the self-similar estimator of P as P̂ ∗ where P̂ ∗[i, j] = âi·(j), and we il-

lustrate its behavior by performing a simple experiment. We compared the regular spectral

clustering (reg_spec), the self-similar using Eq. (4.16) (self_stacked), the DCSBM

(dc_spec) and the proposed self-similar using Eq. (4.14) (self_similar_spec). See

Appendix C.4 for setup details on this experiment. Figure 4.1 shows the cluster retrieval

performance (ARI) for increasing sample size N in low and high V ar(aij) settings. Each

data point is the mean and the band represents the 95% confidence interval of 30 samples.

In high variance settings the self-similar is significantly better than the traditional spec-

tral clustering regardless of the sample size. Nonetheless, for low variance settings, the

performances are not statistically different as graph size increases.

4.3.1 Limitations

While P̂ ∗ (weakly)consistent P and A it is not, it is not advised to use it in some

settings. Mainly, estimating the correlation coefficient of all pair of nodes is computation-

ally costly (at least O(n2.73) in speed up procedures for matrix multiplications). Thus, the
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Figure 4.1.: Restuls for cluster retrieval performance (ARI) for complete data in low vari-
ance (left) and high variance (right) settings. X-axis represents increasing graph size.

self-similar should not be used in settings where communities connectivities are highly

separable and there is not much heterogeneity of any source. Nonetheless, in zero inflated

settings (described next), one can further reduce the computational cost by utilizing the fact

that the matrix is sparse. Moreover, we discuss on the next section how this self-similar

procedure compare to other approaches when there is a missing mechanism obfuscating

potential interaction between nodes.

4.4 Zero inflated blockmodel (ZinfSBM)

Graph sparsity has been studied in different perspectives, e.g. exchangeable sparsity

[12,28], preferential attachment [66], and most common degree corrected SBM (DCSBM)

[54,57]. In these works, the sparsity is mostly due to naturally caused phenomena (random

sparsity), such as time, geographic locations, and so on. Here, we consider a broader

view of this problem by seen as a zero inflated setting where there is missing mechanism

governing the unseen interactions. The generative process shown in Eq. (4.1) might be

Missing-at-Random (MAR) (i.e., Lij ⊥⊥ (Xi, Xj)), or it can be targeted Missing-Not-at-

Random (MNAR) (i.e., Lij ⊥̸⊥ (Xi, Xj)) such as in recommender systems where some

users cannot see other users or products based on their connectivity behavior. In this work,

we focus on the former. The missing mechanism, L, can be seen as an opportunity indicator
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matrix which means that for Lij = 1 nodes i and j had the opportunity to connect. We

called the whole process, zero inflated stochastic blockmodel (ZinfSBM).

4.4.1 ZinfSBM vs DCSBM

The ZinfSBM is fundamentally different than degree corrected SBM. Precisely, the

DCSBM allows nodes to have heterogeneous degree given their community. The main

issue is that DCSBM does not consider a missing mechanism governing the lack of in-

teraction, i.e., it assumes that statistical inference based only on the complete data gives

unbiased estimates of the true full inference. That being said, ZinfSBM and DCSBM co-

incides for the case when η is Bernoulli, but this is not the case for any other distributions.

For instance, when η is the Poisson distribution, we have the following likelihood function

for each model

fZinfSBM (A) =
∏
i ̸=j

(1− ϕt
ij) + ϕt

ij

e−µijµ
aij(t)
ij

aij(t)!
(4.18)

fDCSBM (A) =
∏
i ̸=j

e−µijϕ
t
ij(µijϕ

t
ij)

aij(t)

aij(t)!
(4.19)

Equations (4.18) and (4.19) shows the likelihood difference between models which the

difference is clear. All in all, DCSBM incorporates an overdispersion correction, but not

necessary deals with overall sparsity (e.g., missing inflation). We need to use a different

approach, specially for non binary data.

4.4.2 Observed missing mechanism Z

From Eq.(4.1), we have

A = L⊙B ⇒ B −B ⊙ (J −L) = A

B = A+B ⊙ (J −L)
(4.20)
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where ⊙ represents element-wise multiplication between matrices, E[B] = P − diag(P ),

and J is a n × n matrix of ones. Recall that we aim to perform spectral clustering on P ,

but the opportunity matrix L masks values in B which makes the eigenvectors matrix of

A (used in spectral clustering) very noisy.

Write E[aij] = µkl and V ar(aij) = σkl for a given pair of nodes i and j where i ∈ Gk,

j ∈ Gl and Lij = 0. Thus, one could impute aij using the membership matrix, i.e.,

āG·· =

∑
a∈V

∑
b∈V aabLabIa∈Gk

Ib∈Gl∑
a∈V

∑
b∈V LabIa∈Gk

Ib∈Gl

(4.21)

E
[
āG··
]
= µkl (4.22)

This is an unbiased estimator, but not useful in practice since we assumes knowledge of

community membership of the nodes. A two-step approach where we estimate a member-

ship matrix X̂ and apply Eq. (4.21) might be consistent (despite not being unbiased), but

defeats the purpose of performing spectral clustering.

Now, consider the mean square error (MSE) measure which accounts for both variance

and bias. If we do not impute any value in aij , we have the following MSE:

MSEµkl
(aij) = Var(aij) + Bias(aij, µkl)

2 = 0 + µ2
kl (4.23)

While the variance is 0 (since Lij = 0), the square bias is as large as the expected con-

nectivity strength which can make the overall MSE very large. We can reduce the MSE

by imputing values in A systematically. Notice that, however, even with the knowledge of

the missing mechanism L, it is highly challenging to perform the spectral clustering on a

imputed A. Next, we describe potential imputation methods and their limitations.
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Global mean: Impute the overall interaction mean of the complete data, i.e.

ā·· =

∑
a∈V

∑
b∈V aabLab∑

a∈V
∑

b∈V Lab

(4.24)

E [ā··] = E
[
E
[∑

a∈V
∑

b∈V aabLab∑
a∈V

∑
b∈V Lab

] ∣∣X] (4.25)

=
K∑
k

K∑
l

πkπlµkl = µ̄·· (4.26)

where πk and πl are the population proportion of nodes in cluster k and l, respectively.

Moreover,

V ar(ā··) =
∑
k

∑
l

πkπl(σ
2
kl + µkl)

2 − µ̄2
·· = σ2 (4.27)

Hence, the MSE of ā·· is given by:

MSEµkl
(ā··) = σ2 + (µ̄·· − µkl)

2 (4.28)

As oppose to Eq. (4.28), the MSE defined here is not sensible for large values of |µkl|.

However, Eq. (4.36) is highly dependent of the distribution of nodes over clusters π, i.e. if

πl and πk are under represented in A then the bias term can be very large. One alternative

is to focus on mean to rows related to nodes i and j.

Mean of means: Impute the mean of rows in A related to nodes i and j , i.e.

āij·· =
āi· + āj·

2
(4.29)

where āiji· =
∑

b∈V aibLib∑
b∈V Lib

(4.30)

(4.31)
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Thus,

E
[
āij··
]
=

K∑
l

πlµkl = µ̄k· (4.32)

V ar
(
āij··
)
=
V ar (āi·) + V ar (āj·)

2
=
σ2
k + σ2

l

2
(4.33)

where σ2
k =

K∑
l

πl(σkl + µkl)
2 − µ̄2

k· (4.34)

(4.35)

Hence,

MSEµkl

(
āij··
)
=
σ2
k + σ2

l

2
+

(
µ̄k· + µ̄l·

2
− µkl

)2

(4.36)

Using only nodes i and j to compute the means, āij·· , it reduces the effect of under repre-

sented communities in A comparing to ā·· then the bias term can be very large. Next, we

show how we can reduce the bias term.

Self-similar: This estimator was described in section 4.3. It is similar to the mean of

means, but instead of giving every interaction in each row the same weight, we aim to

up-weight interactions which are closer to the one that we want to estimate. Also, the self-

similar approach is not an actual imputation method, since we also ’impute’ seen values

aiming to reduce overall noise. Precisely,

āw·· =
âi·(j) + âj·(i)

2
(4.37)

where âi·(j) and âi·(j) are defined in Eq (4.12). This estimator can significantly reduces

the MSE. For n→∞, (4.21) and (4.37) coincides. Consequently ,

E [āi·(j)] = E [āj·(i)] = µkl (4.38)

MSEµkl
(āw·· ) = σ2

kl (4.39)
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We called this procedure self-similar spectral clustering since Wj is capturing global de-

pendencies without having to estimate the memberships.

[19] method: [19] has an interesting approach which they proposed to scale the observed

values by a factor p̂, i.e. perform spectral clustering on A∗ := A/p̂ where p̂ = |L|0
n2 and

|L|0 counts the number of non zero elements in L. In this case, the MSEs are given by:

E
[
âGao
ij |Lij = 1

]
= µkl

(
2n2

∥L∥0

)
(4.40)

E
[
âGao
ij |Lij = 0

]
= 0 (4.41)

MSEµkl

(
âGao
ij |Lij = 1

)
=

= σ2
kl

(
2n2

∥L∥0

)2

+ µ2
kl

[
1−

(
2n2

∥L∥0

)]2
(4.42)

MSEµkl

(
âGao
ij |Lij = 0

)
= 0 + µ2

kl (4.43)

This method has the potential to reduce the overall MSE, however it assumes all the inter-

actions have the same probability of being missing. As we have in Eq. (4.1), we aim to

relax this constraint.

We included a summary table (Table C.1) of each method and their main limitation in

Appendix C.5 . Overall, the MSE values does not guarantee good (or bad) cluster retrieval

performance in spectral clustering settings. The MSE is measuring the distance between

the matrix used in the spectral clustering (e.g. A, imputed A, self-similar A) and the true

P . That being said, it our experiments section we showed that most of these methods

outperform regular spectral clustering for the various different Zero inflated settings. Next,

we described our second proposed method for retrieving communities focus for cases when

the missing mechanism is unknown.

4.4.3 Unobserved missing mechanism Z

When the missing mechanism L is unknown, and depending on the connectivity dis-

tribution, there is an additional layer of complexity since there are two types of zeros in
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the data. In this scenario, [21] proposed a variational inference method to tackle the Bi-

nary case. In their work, they propose different sampling schemes depending on assumed

structure of the missing mechanism. Here, we aim to relax specific assumptions of the

structure of L, and we focus on areas of the graph where it is highly likely that Lij = 1, i.e.

nodes ’know’ the existence of each other. Using ideas from Chapter 3, define the Ego-net

Ai := AN (i)∗ to be the induced adjacency matrix generated by one hop of node i where

N (i) is the set of nodes on the neighborhood of i. Now, define a supra-adjacency matrix

A∗

A∗ :=


A1 . . . 0

... . . . ...

0 . . . An

P ∗ =


P1 . . . P1n

... . . . ...

P T
1n . . . Pn

 (4.44)

where A∗ and P ∗ are (|V | × |V |) matrices and |V | is the total number of nodes. In this

setting, we know that all interactions aab in each Ai are observed Lab = 1. Using Chapter

3 derivations, we can estimate the membership matrix X∗ by the following optimization

problem (
X̂∗, Ŵ

)
= argmin
X∗∈M|V |,K
W∈RK×K

n∑
i

∥X∗
i W −QiH

T
i ∆

−1
i ∆H∥2F (4.45)

Here, we will use the fact that each node in A is represented by multiple nodes in A∗, thus

we will average the Q values for each node, and use that to cluster the nodes. Write Γ as a

(|V | × n) design matrix where each column represent the incidence of each node on each

graph, thus we define Q̄ := (ΓTΓ)−1ΓTQ. Therefore, we have the following optimization

(
X̂, Ŵ

)
=argmin
X∗∈Mn,K

W∈RK×K

∥XW − Q̄∥2F (4.46)

In real-world settings, there are many sources of heterogeneity and one method cannot

deal with all possible problems. However, as we show in our experiment section for over-

dispersed, high sparsity and/or high variance and unknown missing mechanism, the Ego-

nets spectral clustering is the best option.
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4.5 Related work

Community detection in graphs has seen a lot of recent attention. We focus on exten-

sions to zero inflation settings, emphasizing two relevant directions: heterogeneity across

communities and zero inflated environments. For the former, [57] propose a degree cor-

rected SBM to account for heterogeneity inside a community, though [61] showed that this

fails to retrieve true communities in a high heterogeneous setting. [62] introduce a normal-

ized Laplacian form that account for high heterogeneous scenarios, however this comes at

a high computational cost. For zero inflated environments, the works [19, 21] have focus

on specifying structure for the missing mechanism L understanding the missing mecha-

nism. [19] proposed a spectral clustering framework to when ϕij = ϕ for all i and j and

Lij is known. More recent, [21] relaxed assumption of L knowledge in a variational infer-

ence framework, however their framework is limited to binary data. Here, we used spectral

clustering which reduces the required assumptions with the main goal of retrieving commu-

nities. In the same domain of Zero inflated settings, there has been some interesting work

on biased environment (Missing-not-at-random), but mostly on supervised learning tasks

(e.g. rating-based recommender systems), [77, 78] proposed some procedures to reduce

the effect of the missing mechanism, but it requires the knowledge of ϕij . We focus on

(Missing-at-random) settings.

4.6 Experiments

The experiment section is divided in synthetic data where the community ground-truth

is known, and real-world data (political blogs interaction) where the ground-truth is as-

sumed to be the political affiliation. In Appendix C.7, we included another real-world ex-

periment in which the community detection procedure is used a middle step to a higher level

statistical task (predict click in news articles). Our proposed method outperform commu-

nity detection baselines, and it had comparable performance with a recommender system

model that uses additional covariates (our method only uses clicking behavior).
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Figure 4.2.: Synthetic data results for increasing graph size (100, 500, 1000 and 1500) in
two settings low variance (left) and high variance (right). Each row represent a performance
metric: ARI (top) and NMI (middle) for cluster retrieval assessment, and MSE (bottom) for
P̂ assessment). X-axis represents increasing level of zero inflation.

4.6.1 Synthetic data

Cluster and community detection assessment requires synthetic data evaluation given

real-world ground-truth is never known. In this section, we are mainly interested in evalu-

ating the cluster retrieval performance against other inference schemes in different settings.

In this sense, we generate the interactions of the adjacency matrix A as

ϕ[i, j] := ϕab ∼ Beta(1, β), Lij|ϕ ∼ Bern(ϕij) (4.47)

µ[a, b] := µab ∼ Pareto(1), Xi|π ∼ Multi(π) (4.48)

bij|Xi, Xjλ,µ ∼ Poi
(
λXiµX

T
j

)
(4.49)

where π ∼ Dir(α) and A[i, j] = aij := Lijbij . We included experiments using Gaussian

in the Appendix C.6. Overall, the results are very similar to the Poisson.

Setup: We fixed K = 4, and we generated graphs using the generative process described

in (4.47)- (4.49). We generated 30 graphs for each tuple (β, λ,N), where

• β = {1, 5, 10}: increasing sparsity
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• λ = {1, 5}: increasing connectivity variability

• N = {100, 500, 1000, 1500}: increasing graph size.

Baselines: We compare our proposed self-similar (self_similar_spec) and ego-

net (egoNet_spec) spectral clustering methods described earlier with the following base-

lines:

• Spectral clustering:

– Regular (reg_spec): spectral clustering on the observed A, no imputation in this

case

– Degree corrected [54] (dc_spec): degree corrected spectral clustering on the ob-

served A, no imputation is performed

– Global mean (reg_spec_mean): spectral clustering on A, but imputing the missing

values with the overall mean

– Mean of means (reg_spec_mean2): spectral clustering on A, but imputing the

missing values using the means of means.

• Other methods:

– [19] method (gao_method): this was described in Section 4.4. It assumes ϕij = ϕ

for all i, j ∈ V × V .

– [21] method (chiquet_method): variational inference scheme for binary data

where there some structure assumptions on ϕij . In order to perform inference, we

threshold the adjacency matrices.

– MCMC (reg_mcmc): this is (semi)oracle-based baseline since it uses Eqs. (4.47)-

(4.49) as priors. This gives an unfair advantage in comparison to the other methods,

but it helps to keep track on the difficulty of each scenario. Inference is carried-out via

gibbs sampling .

Evaluation: Our assessment was based on cluster retrieval performance measures (ARI

and NMI) and connectivity quality estimation using Mean Square Error (MSE), MSE =

V −2
∑

i ̸=j∈V (P̂ij − Pij)
2.
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Results

Figure 4.2 shows the results for increasing graph size and different performance mea-

sures (ARI, NMI and log(MSE)). Each data point represent the mean performance for each

setting and the ribbon around represents the estimated 95% confidence intervals. The x-axis

represents values β which indicates increasing sparsity.

Cluster retrieval performance (ARI, NMI): Overall, we see that the degree corrected

has the worst overall performance for cluster retrieval. This was expected since it is solving

a different problem. The chiquet_method has a good performance on a low variance

settings. However, since chiquet_method deals specifically with the Bernoulli case,

it does not perform well on over-dispersed Poisson settings since as the problem becomes

more heterogeneous, thresholding the data becomes very complex. While the overall per-

formance of the imputation methods (reg_spec_mean1-2) is good, our proposed self-

similar (self_similar_spec) outperform them in almost every setting. Moreover, our

second proposed method, the egoNet, has also a very good overall performance compara-

ble with the mean imputation methods without ’knowing’ which of the values are missing.

For cases where the regular spectral clustering performed well (low variance settings), the

egoNet method was not statistically better in terms of performance. However, for high

variance cases, the egoNet outperformed reg_spec.

Connectivity estimation (MSE): Here, we aim to have an overall idea of the quality of

the estimated P , however it does not guarantee good community retrieval performance.

For instance, while gao_method shows the lowest MSE of the estimated P , it had a

poor performance on cluster retrieval. Recall that gao_method method scales the in-

teractions of adjacency matrix based on the amount of missing values, thus the estimated

connectivity matrix P is close to 0. The second lowest MSE was for the self-similar, and

chiquet_method had the highest.
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4.6.2 Real-world data: political blogs (U.S. and France)

These are two very similar datasets from presidential elections in U.S. [79] and France

[68]. In each network, nodes represent blogs, and an edge between blogs a and b represents

that either a or b had referenced the other blog in a post. We aim to retrieve the political

affiliation (community) each blog belongs. The U.S. graph has a collection of 1222 blogs,

and the France has 196 blogs. Moreover, the U.S. is expected to have 2 communities (con-

servatives and liberals), and the France dataset has more granularities with 9 communities.

We assumed L is a N × N matrix of ones (where N is the number of nodes) since L is

unknown.

Results

Table 4.1 shows the ARI and NMI for each method. While the self-similar was outper-

formed by the dc_spec in the US dataset and by chiquet_method in France dataset,

it had the best performance across datasets. The egoNets method had a poor performance

overall since in both settings there is very low between community connectivity.
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Table 4.1.: Cluster retrieval for the political blog datasets

Model
US France

ARI NMI ARI NMI

chiquet_method 0.001 0.000 0.459 0.677

reg_spec 0.080 0.187 0.328 0.549

reg_spec_mean 0.080 0.187 0.017 0.175

reg_spec_mean2 0.080 0.187 0.013 0.148

gao_method 0.065 0.178 0.317 0.514

dc_spec 0.813 0.723 −0.008 0.092

reg_mcmc 0.001 0.000 0.515 0.641

self_similar_spec 0.772 0.686 0.403 0.642

egoNets 0.01 0.190 0.092 0.195

4.7 Conclusion

In this work, we dealt the problem of missing data in stochastic blockmodels. Specif-

ically, we proposed two inference schemes based of spectral clustering: self-similar (re-

quires knowledge of Z) and ego-nets (does not use Z). Our methods requires very low

parametric assumptions, and works specially well in highly heterogeneous settings.



71

5. CONCLUSION AND FUTURE WORK

In this dissertation, we dealt with the problem of missing data where only local regions

of the graph are ’allowed’ to connect, this is defined precisely in Eq.(1.1) where the local

mechanism L characterizes the types of problems. We showed that this process can be

used to define population of networks (multiple graphs) scenarios when there is a a block

structure on the local mechanism (i.e. L = IZi,Zj
), and also zero inflated graphs prob-

lems where the local term is a random variable parametrized by ϕij (i.e. L ∼ Bern(ϕij)).

In terms of multiple graphs, we worked with two main problems: hypothesis testing on

weighted aligned graphs and community detection on non-aligned heterogeneous graphs.

In terms of zero inflated graphs, we focus on the task of detecting communities using spec-

tral clustering.

5.1 Summary of the contributions

Aligned graphs: We devised a Bayesian hypothesis testing framework for weighted net-

works. We used our framework to investigate whether brain connectivity is statistically

different across some pre-defined groups (e.g., creative versus non creative people). Our

framework is highly flexible and powerful. It is capable of dealing with time varying net-

works. The broad scope of our methodology was shown in case studies for social media

datasets (Twitter and Instagram) where each user is a network, nodes are words, and edges

are representative of co-occurrences between words.

Non-aligned graphs: We developed a spectral clustering algorithm to assign nodes to

communities based on the way these nodes connect. We showed that using pooled infor-

mation across graphs and jointly estimating local and global structures is crucial to gain

a precise understanding of heterogeneous networks. Our model outperforms current two-
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step approaches where the first step individually models each graph, and where the second

step estimates the global structure. Our algorithm is fast, efficient, robust, and has very few

probabilistic assumptions.

Zero inflated graphs: We devised a self-similar pre-processing step which reduces the

overall noise and improves inference using spectral clustering. Our method requires very

low parametric assumptions, and works specially well in highly heterogeneous settings.

5.2 Future work

Natural extensions of our work would consider more complicated structures on L in

Eq.(1.1). Some examples are block structure with partial alignment and inference on biased

environments. Next, we describe these potential directions:

5.2.1 Community detection on partially aligned dynamic networks

Given a graphs observed for T time points, G, where each graph is defined as a snapshot

Gt = (Vt, Et, Lt) with Vt being the set of nodes at time t, Et the set of edges, and Lt is the

set of node labels at time t. In this case, Lt ̸= Lt′ , but Lt

∩
Lt′ ̸= ∅ for any t, t′ ∈ {1, ..., T}.

This is a special case of multiple graph (block structure on the local mechanism) which we

have partial alignment information. Thus, newcomers might also have an effect on cluster

membership of nodes that were already present on previous time points. There multiple

ways to approach this, e.g., evolutionary spectral clustering (ESC) [25] and hidden markov

model (HMM) [26,27]. For graphs evolving over time, it is common to fix the connectivity

matrix and let the membership matrix vary over time, i.e. nodes are allowed to change

cluster membership. We aim to allow graphs to vary size over time as well. [26, 27] have

sampling approach based on HMM in which they assume an underlying stationary Markov

chain process associated with the community membership. Formally, Xt is a Markov

chain subject to a transition probability matrix M , thus P (Xt = k|Xt = l) = Mkl. [26]

propose inference using Bayesian non-parametric (IRM) and [27] using variational EM. In
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one hand, ESC presents an easier, somewhat flexible, way of retrieving memberships in a

time-dependent scenario, on the other hand the HMM seems to be more suitable to include

an adversary strategy in the modeling framework. A relevant disadvantage of the HMM

approach is related to its constraint of fixed size graphs, one may suggest to only consider

the nodes that overlap across, but this will most likely lead to a less powerful analysis.

More recently, [28] proposed a Hawkes based approach using completely random measures

(CRM) to model sparsity in dynamic networks. In their work, community detection is

treated as a by-product and it has not been assessed in terms of cluster retrieval performance.

We propose using a joint community detection method based on a version of Eq. 3.12 which

we aim to incorporate a time structure to control serial correlation of the nodes connectivity.

5.2.2 Collaborative filtering on biased environments

In this case, the local mechanism is a function (or a random funcion) of the latent vari-

ables (e.g. Lij ⊥̸⊥ (Xi,Xj)). For instance, consider an observed temporal user-item bipar-

tite interaction data (e.g. buyer-product, reader-article, listener-podcast), D = (t, i, j)k≥1

where (t, i, j) ∈ R+ × I × J and I ∩ J = ∅ and I,J ∈ N∗. Also, assume the interac-

tions are subject to an environment E (e.g., amazon, google news,itunes podcasts) which

means that user i can only connect to exposed products (i.e., users only connect to prod-

ucts they know exist). Let (tk)k≥1 be a sequence of event times with tk ≥ 0, and write

Nij(t) =
∑

k≥1 1tk≤t as the number of events between times 0 and t from node i to node

j. Moreover, assume that E controls the parameter ϕt
ij (e.g., exposure/recommendation

probability of product j to user i), and its main goal is to maximize the number of overall

interactions (up to time T ) by choosing the best ϕt, i.e.,

max
ϕt

∑
i,j

Nij(T ) = max
ϕt

∑
k

I{tk<T} (5.1)

where ϕij is controlled by the recommender system and it is a function of the connec-

tivity of the nodes. Using ideas of the self-similar spectral clustering presented on Chapter
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4, we aim to build a precise inference process of the true connectivity of nodes which is

robust to this highly biased environment.
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A. APPENDIX TO CHAPTER 2

A.1 Synthetic data details

Population 1 Population 2

Words

W
or

ds

Figure A.1.: Structure used to simulate homo-
geneous data

p ∼ Beta(1, λ)

Xn|p
ind∼ Geo(p)

⇒Xn ∼ M(m)Zipf(IV )(0, λ, 1, 1)

(A.1)
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Figure A.2.: Structure used to simulate
heterogeneous data

The synthetic data was generated to have the same construction of the Twitter dataset

set, i.e. a set word co-occurrences networks. In this sense, each node is a word and each

edge is a co-occurrence of two words. Moreover, each pair of words can co-occur at most

the minimum occurrence of each individual word. In other words, say words i and j oc-

curred x and y times, respectively, then the co-occurrence of words i and j is at most

min(x, y). Hence, in order to generate graphs in this setting, we need to have the individ-

ual occurrences of all the words and probability structure for the co-occurrences. Since

Zipf’s law [80] , or discrete Pareto, is almost always used to describe words frequencies,
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we used a multivariate Zipf generating process [48] to generate the individual counts. Equa-

tion A.1 shows how to generate multivariate Zipf’s values, Xn ∈ RV is the vector with all

the individual counts of V words for entity n. In our case, we considered the standard Zipf

where λ = 1.

The structures were arbitrarily chosen to have a clear difference across populations.

Figure A.1 shows the structure used to simulate the homogeneous data used on the exper-

iments section and Figure A.2 shows the structure used to simulate for the heterogeneous

data. Given the individual counts and the probability of each edge, we simulate edge count

using Binomial distribution. Formally, Anij ∼ Bin (min (Xni, Xnj) ,θij), where Anij is

the co-occurrence of words i and j, Xni and Xnj are their individual counts and θij is the

probability of i and j co-occur once.
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B. APPENDIX TO CHAPTER 3

B.1 JointSpec algorithm
B.2 Additional experiments

B.2.1 Additional synthetic data experiments

Cluster retrieval performance experiments for increasing number of graphs Here,

we assess the performance of the inference models for increasing number of graphs (N =

(50, 200, 600, 1000)) and nodes (|Vn| = (25, 50, 100, 200)). The results in Figure B.1 are

in accordance with the ones shown in Figure 3.3(left) where JointSpec outperform all base-

lines, both on individual graph level performance and overall global performance.

Varying graphs sizes Here, we aim to assess cluster retrieval performance in settings

where the graphs have different sizes. We used |Vn|
iid∼ NB(µ, r) to sample the size of

each graph, where µ is the mean and r the dispersion parameter. We fixed µ = 200 and

we vary r ∈ [1, 10]. Lower values of r mean more variability in graph size distribution.

We also consider two main scenario: 1) homogeneous α = 1
K

; and 2) heterogeneous α =

1. Figure B.2 shows the curves for each model in each scenario. For the heterogeneous

scenario it is clear that the JointSpec outperform the baselines. Also, NMI curves look

flat for increasing r on both scenarios (homogeneous and heterogeneous) which suggests

that the distribution of nodes over clusters (controlled by α) is more detrimental for cluster

retrieval than the size of the graphs.

Computational complexity We also performed experiments to assess cluster retrieval

performance over computational runtime. We simulated data using Eq. (3.19) for K = 6, 9,

α = .1, 1, 2 and |Vn| = 500, 800. For ReMatch, we sampled 200 instances of the model.

All runs were on a Macbook Pro 2.3 GHz Intel Core i7, 8gb 1600 MHz DDR3. Figure B.3
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Algorithm 1 JointSpec SBM

Input N adjacency matrices An ∈ {0, 1}|Vn|×|Vn|, number of communities K and toler-
ance ε
for n ∈ [1, ..., N ] do

Compute Ûn ∈ R|Vn|×K , D̂n ∈ RK×K as the leading K eigenvectors and eigenval-
ues of An.

set Q̂∗
n ← |ÛnD̂n|

√
|V |
|Vn|

Initialize X̂n randomly

set ∆̂2
n ← X̂T

n X̂n

end for
compute ∆̂2 ←

∑N
n ∆̂2

n

set loss0 ← 0, loss1 ← 1 and t← 1

while |losst − losst−1| > ε do
update t← t+ 1

for n ∈ [1, ..., N ] do
compute γn ← tr(∆̂2

n∆̂
−2) ▷ Eq. (3.14)

end for
update Ŵ ▷ Eq. (3.16)
for n ∈ [1, ..., N ] do

for i ∈ [1, ..., |Vn|] do
for k ∈ [1, ..., K] do

compute ∆̃ni(k) ▷ Eq. (3.18)
compute ωni(k) ▷ Eq. (3.17)

end for
update X̂ni ← onehot(argmink ωni(k))

end for
compute ∆̂2

n ← X̂T
n X̂n

update ηn(X̂n, Ŵ ) ▷ Eq. (3.14)

end for
compute ∆̂2 ←

∑N
n ∆̂2

n

compute losst ←
∑N

n ηn(X̂n, Ŵ )
end while
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Figure B.1.: Fixed α = 10: Cluster retrieval performance curves for each measure
(ARI,MCR and NMI) for each model for increasing number of nodes and number of graphs.
Top row: median and the interquartile range curves of the individual graphs performance.
Bottom row: overall curves.
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Figure B.2.: NMI curves over r where r is the dispersion parameter in |Vn|
iid∼ NB(µ, r)

for homogeneous (α = 1/K) and heterogeneous (α = 1) scenarios

shows the log runtime for each experiments, we measured cluster retrieval performance

using NMI, ARI and 1−misclustering rate. Looking at Joint SBM, JointSpec takes signifi-

cantly less time to converge to a good measured performance than ReMatch.
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Figure B.3.: Cluster retrieval performance measures (NMI, ARI, 1 - MCR) over number of
operations for different inference methods, for K = 6, and different heterogeneity scenario
α = .1, 1, 2. Showing only the first 50 samples of ReMatch.

B.2.2 Qualitative connectivity assessment

Figure B.4 shows the true connectivity used to generate the synthetic data. Figure B.5

(top row) shows the estimated connectivity matrix for each approach for the case of 200

graphs, 200 nodes per graph. The JointSpec estimates are the most similar to the true

connectivity and node2vec performs worst.
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Figure B.4.: True connectivity matrix Θ used for synthetic data.
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Figure B.5.: Connectivity matrix estimated (Θ̂) by each approach (columns), for each
dataset (rows).

B.2.3 Additional assessment of Twitter experiments

We also compute the entropy of the community assignment per words across graphs.

We expect the community of the words to be consistent across graphs, therefore a lower

entropy. We found that the Joint model had the lowest entropy overall, Figure B.6 shows

the results. Also, we include a pairwise distribution of the difference of the entropies which

shows that JointSpec had the lowest entropy for the majority of the words.
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B.3 Spectral clustering (single graph): Derivation of Eq.(3.5) and unbiasedness

Recall that the connectivity matrix Θ consists of edge probability for within and be-

tween communities. Now, say θkl is the element of Θ on the kth row l-th column. Thus,

one can estimate θkl by counting the number of edges between communities k and l and di-

viding by the total number of possible edges. For k ̸= l, the total number of possible edges

is the number of nodes in k multiplied by the number of nodes in l. For a adjacency matrix

An, we can generalize the estimation of the connectivity matrix using matrix notation as

Ŝn = [X̂T
n X̂n]

−1X̂T
nAnX̂n[X̂

T
n X̂n]

−1 (B.1)

If assume we know the true membership matrix (i.e. X̂ = Xn), the off-diagonal elements

of Ŝn in Eq. (B.1) above have unbiased estimates, however the diagonal elements (i.e.

the within community probability) are biased. More specifically, the total possible number

of edges for nodes in the same communities is being assumed to have self loops which is

incorrect in this setting, and also the term X̂T
nAnX̂n is double counting the edges within

communities. Formally,

E
[
Ŝn

]
= ∆−2

n

(
XT

nPnXn −XT
n diag (Pn)Xn

)
∆−2

n

= Θ−∆−2
n diag (Θ) (B.2)

Here, we are using the fact that E[An] = Pn − diag (Pn). Furthermore, we can construct

an unbiased estimator for Θ by adding the following term to each diagonal element of Ŝn:

number of edges in cluster k

|Gnk|
(|Gnk|

2

) (B.3)

where |Gnk| is the number of nodes in community k. For all k, we have Eq.(B.3) in matrix

notation as

∆−2
n

[
Ik −∆−2

n

]−1 diag
(
Ŝn

)
(B.4)
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Now, it follows from Eq. (B.2) that

E
[
diag

(
Ŝn

)]
=
[
I−∆−2

n

]
diag(Θ) (B.5)

Using Eqs.(B.1) and (B.4), we get the expression in Eq.(3.5). And using Eq. (B.2) and

(B.5), we have

E
[
Θ̂n

]
= Θ (B.6)

We also have that

Var
(
Θ̂n

)
=


θkl(1−θkl)
|Gnk||Gnl|

, off-diagonal elements

θkk(1−θkk)

(|Gnk|
2 )

, diagonal elements
(B.7)

where |Gnk| is the number of nodes of graph n in cluster k.

B.4 Joint spectral clustering

B.4.1 Proof of Lemma 3.2.1

Proof From Equation (3.11), and since Xn = Xn∗, we have:

0 = XnW −QnZ
T
n∆

−1
n ∆Z

= XnWZT∆−1∆nZn −Qn

= XnWZT∆−1∆nZn −Qn

√
|V |
|Vn|

√
|Vn|
|V |

IK

= XnWZT∆−1∆nZn −Q∗
n

√
|Vn|
|V |

IK ,where Q∗
n = Qn

√
|V |
|Vn|

= XnWZT∆−1∆nZn −Q∗
nZ

T∆−1∆nZn +Q∗
nZ

T∆−1∆nZn −Q∗
n

√
|Vn|
|V |

IK

= (XnW −Q∗
n)Z

T∆−1∆nZn +Q∗
n

(
ZT∆−1∆nZn −

√
|Vn|
|V |

IK

)
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Recall that Qn corresponds to the data from a single graph. Q∗
n is then a weighted

version, based on the relative number of nodes in the graph.

From this we can transform Eq. (3.12) to

argmin
X∈M|V |,K
W∈RK×K

N∑
n=1

∥an(Xn,W ) + bn(Xn)∥2F .

where
an(Xn,W ) := (XnW −Q∗

n)Z
T∆−1∆nZn

bn(Xn) := Q∗
n

(
ZT∆−1∆nZn −

√
|Vn|
|V |

IK

)
□

B.4.2 Proof of Lemma 3.2.2

Proof

1

2
∥an(Xn,W ) + bn(Xn)∥2F ≤ ∥an(Xn,W )∥2F + ∥bn(Xn)∥2F

≤ ∥XnW−Q∗
n∥

2
F

∥∥ZT∆−1∆nZn

∥∥2
F
+ ∥bn(Xn)∥2F

= ∥XnW−Q∗
n∥

2
F γn +

∥∥∥∥∥Q∗
nZ

T∆−1∆nZn −Q∗
n

√
|Vn|
|V |

∥∥∥∥∥
2

F

(See Lemma B.4.1) ≤ ∥XnW−Q∗
n∥

2
F γn +

∥∥∥∥∥|Q∗
n|∆−1∆n + |Q∗

n|

√
|Vn|
|V |

∥∥∥∥∥
2

F

(B.8)

= ∥XnW−Q∗
n∥

2
F γn +

∥∥∥∥∥|Q∗
n|

(
∆−1∆n +

√
|Vn|
|V |

)∥∥∥∥∥
2

F

(B.9)

:= ãn(Xn,W ) + b̃n(Xn) := ηn(Xn,W )

where |M | is element-wise absolute value of elements of matrix M , and
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γn =
∥∥Z∆−1∆nZ

T
n

∥∥2
F
= tr

(
Zn∆n∆

−2∆nZ
T
n

)
= tr

(
∆2

n∆
−2
)
=

K∑
m=1

|Gnm|
|G·m|

. (B.10)

Recall that Gnk is the set of nodes from n that are in cluster k, and G.k is the set of nodes

from all graphs in cluster k.

Lemma B.4.1 The following inequality holds:

∥XnW−Q∗
n∥

2
F γn +

∥∥∥∥∥Q∗
nZ

T∆−1∆nZn −Q∗
n

√
|Vn|
|V |

∥∥∥∥∥
2

F

≤

∥XnW−Q∗
n∥

2
F γn +

∥∥∥∥∥|Q∗
n|∆−1∆n + |Q∗

n|

√
|Vn|
|V |

∥∥∥∥∥
2

F

(B.11)

Proof Eq. B.11 is equivalent to

∥∥∥∥∥Q∗
nZ

T∆−1∆nZn −Q∗
n

√
|Vn|
|V |

∥∥∥∥∥
2

F

≤

∥∥∥∥∥|Q∗
n|∆−1∆n + |Q∗

n|

√
|Vn|
|V |

∥∥∥∥∥
2

F

(B.12)

Rewriting LHS of Eq. (B.12) using trace operator, we have

∥∥∥∥∥Q∗
nZ

T∆−1∆nZn −Q∗
n

√
|Vn|
|V |

∥∥∥∥∥
2

F

= tr
(
∆2

n∆
−2ZQ∗T

n Q∗
nZ

T
)
−

√
|Vn|
|V |

tr
(
ZT

n∆n∆
−1ZQ∗T

n Q∗
n

)
−

√
|Vn|
|V |

tr
(
Q∗T

n Q∗
nZ

T∆−1∆nZn

)
+
|Vn|
|V |

tr
(
Q∗T

n Q∗
n

)
(B.13)

The RHS is given by

∥∥∥∥∥|Q∗
n|∆−1∆n + |Q∗

n|

√
|Vn|
|V |

∥∥∥∥∥
2

F

= tr
(
∆2

n∆
−2|Q∗T

n ||Q∗
n|
)
+
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+ 2

√
|Vn|
|V |

tr
(
∆n∆

−1|Q∗T
n ||Q∗

n|
)
+
|Vn|
|V |

tr
(
|Q∗T

n ||Q∗
n|
)

(B.14)

Notice that,

tr
(
∆2

n∆
−2ZQ∗T

n Q∗
nZ

T
)
≤ tr

(
∆2

n∆
−2|Q∗T

n ||Q∗
n|
)

and (B.15)

|Vn|
|V |

tr
(
Q∗T

n Q∗
n

)
≤ |Vn|
|V |

tr
(
|Q∗T

n ||Q∗
n|
)

(B.16)

The result thus follows.

B.5 Estimation Consistency

B.5.1 Consistency of connectivity matrix

The global parameter Θ is central in order to multi-graph settings, not only summariz-

ing how communities interact, but also allowing information to be pooled across graphs.

Here, we discuss the asymptotic behavior of Θ in multi-graph joint SBM as N → ∞.

We show that the estimator Θ̂ = N−1
∑

n Θ̂n in Eq. (3.5) converge to the global Θ al-

most surely when we know the true membership. Lemma B.5.1 (below) formalizes these

statements.

Lemma B.5.1 Let the pair (X,Θ) parametrize an SBM withK communities forN graphs

where X contains the membership matrix of all graphs stacked and Θ is full rank. Write

ν ≤ minn |Vn|. Now if assume (Ŵ , X̂) is the solution of Eq. 3.12 then Θ̂ converges to Θ

in probability Eq. (B.17). If we also assume X̂n = Xn then Θ̂ converge to Θ almost surely

Eq. (B.18).

lim
ν→∞;N→∞

Θ̂
P→ Θ (B.17)

lim
N→∞

Θ̂
a.s.→ Θ (B.18)
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Proof Eq.(B.17) follows directly from the fact that An converge in probability to Pn for

large |Vn|, Theorem 5.2 [54]. Eq.(B.18) follows from Eq. (B.6), we know that E[Θ̂n] = Θ.

Thus, using Kolmogorov-Khintchine strong law of large numbers, Θ̂ → Θ almost surely

for large N .

□
Eq. (B.18) is only true in the multi-graph joint case. In the isolated setting, we need

to re-align the memberships across graphs which adds an extra layer of complexity. For

instance, assume the re-alignment procedure consists on (1) rank each community on each

graph based on diag(Θn), then (2) re-order the connectivity matrix and membership ac-

cordingly. In this case, V ar(Θ̂) =
∑N

n V ar(Θn) → ∞, unless we assume graph size to

be large, i.e. ν → ∞ where ν ≤ minn |Vn|. Nevertheless, this gives weak consistency at

most. In fact, this is true for any realignment procedure whose performance is a function

of graph size. Figure 3.4(Right) in the Synthetic experiments shows that the Joint model

estimates Θ well even for small graph settings which is not true for Isolated models.

B.5.2 Consistency of membership assignments

We sketch a proof of weak consistency for the membership assignments as follows: 1)

we assume that we observe the Pns instead of the Ans, and 2) then we include the expected

error of using Ans as a proxy for Pns using Theorem 5.2 in [54].

Notice that node assignment depends only on ãn(Xn,W ) for N → ∞ in algorithm

1 since ∆̃ni(k) ≈ C for any k. Therefore, ZT∆−1∆nZn ≈
√
|Vn|/|V |IK . Now, we

incorrectly place node ni ∈ Gk in some cluster l if ωni(k) > ωni(l). Formally, define

the set of misplaced nodes as Sp
k :=

{
ni ∈ Gk :

∥∥∥Ŵk −Q∗
ni

∥∥∥ ≥ minl ̸=k

∥∥∥Ŵk − Ŵl

∥∥∥ /2}
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where (Ŵ , X̂) is the optimal solution of Eq. 3.15 using Pns. Thus, the probability of node

ni ∈ Gk to be misclustered is given by

P (ni ∈ Sp
k) = P

∥∥∥Ŵk −Q∗
ni

∥∥∥2 ≥ minl ̸=k

∥∥∥Ŵk − Ŵl

∥∥∥2
4

 (B.19)

Now, using Equation (3.16), we have

Ŵ =

[
N∑
n

XT
nXnγn

]−1 N∑
n

XT
nQ

∗
nγn (B.20)

Given γn is a monotonically decreasing sequence, and
∑N

n XT
nXnγn → ∞, we can use

the law of large numbers for weighted averages (Theorem 1 of [81]). As N →∞, we have:

Ŵ
P→
[
XTX

]−1
N∑
n

XT
nQ

∗
n →

[
XTX

]−1
N∑
n

XT
n E [Q∗

n] (B.21)

=
[
XTX

]−1
N∑
n

√
|V |/|Vn|XT

n E
[
XnWZT∆−1∆nZn

]
= W

(B.22)

Eq. (B.22) arises from the fact that, for a given data of N graphs, |V | nodes and K

communities, the overall number of nodes over communities is ∆2 = diag(|G1|, ..., |GK |).

Thus,

E[∆2
nΘ∆2

n|∆2] =
|Vn|
|V |

∆2Θ∆2 |Vn|
|V |

(B.23)

E[∆nZnDnZ
′
n∆n|∆2] =

|Vn|
|V |

∆ZDZ ′∆
|Vn|
|V |

(B.24)

E

[√
|Vn|
|V |

Z ′∆−1∆nZnDnZ
′
n∆n∆

−1Z

√
|Vn|
|V |

∣∣∣∣∣∆2

]
=
|Vn|
|V |

D (B.25)
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Since Dn and D are diagonal matrices, B.25 holds if, and only if, the term
√

|Vn|
|V | Z

′∆−1∆nZn

is ortogonal and equals IK . In other words,

E

[√
|Vn|
|V |

Z ′∆−1∆nZnZ
′
n∆n∆

−1Z

√
|Vn|
|V |

∣∣∣∣∣∆2

]
= IK

Thus,

E
[
Z ′∆−1∆nZn

]
= E

[
E
[
Z ′∆−1∆nZn

∣∣∆2
]]

=

√
|Vn|
|V |

IK (B.26)

Going back to Eq. B.19 and using the multivariate version of Chebyshev Inequality

[82, 83], we have

lim
N→∞

P

∥∥∥(Ŵk −Q∗
ni

)∥∥∥2 ≥ minl ̸=k

∥∥∥(Ŵk − Ŵl

)∥∥∥2 ∥Σk∥2F
4λ1 ∥Σk∥2F


= P

(
∥(Wk −Q∗

ni)∥
2 ≥ δ2k ∥Σk∥2F

4 ∥Σk∥2F

)
≤ min

(
1,

4K

δ2k ∥Σk∥2F

)
(B.27)

where δk := minl ̸=k ∥Wk −Wl∥ and Σk is the covariance matrix of cluster k. Also, we

show that

∥Wk −Wl∥2 =
K∑
m

|Gm|(θkm − θlm)2, ∀l ̸= k (B.28)

Thus, expected number of misclustered nodes is, in the worst case,

E

[
K∑
k=1

|Sp
k |

]
=

K∑
k=1

|Gk|min

(
1,

4K

∥Σk∥2F minl ̸=k

∑K
m |Gm|(θkm − θlm)2

)
(B.29)

ForN →∞, Eq. (B.29) is not finite, however the misclustered rate is, i.e., |V |−1E
[∑K

k=1 |S
p
k |
]
<

∞. Thus, using Markov inequality, we have

P

(
K∑
k=1

|Sp
k | ≥ |V |ε

)
≤ (ε|V |)−1E

[
K∑
k=1

|Sp
k |

]
(B.30)
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lim
N→∞

P

(
K∑
k=1

|Sp
k | ≥ |V |ε

)
= 0 (B.31)

Now, using Ans instead of Pns, we have from Theorem 5.2 [54] that, for any r > 0,

P
(
∥An − Pn∥ ≤ C0(r, c0)

√
d
)
≥ 1− |Vn|−r (B.32)

P
(
max

n
∥An − Pn∥ ≤ C0(r, c0)

√
d
)
≥ (1− ν−r)N (B.33)

where d ≥ νmaxkl θkl, d ≥ c0 log ν and c0 > 0, and ν = minn |Vn|.

Also, define ψ := maxn ∥An − Pn∥. Thus,

P

(
K∑
k=1

|Sk| ≤ |V |ε

)
≥ P

((
K∑
k=1

|Sk| ≤ |V |ε

)∩(
ψ ≤ C0(r, c0)

√
d
))

(B.34)

If we further assume ν →∞ and

lim
ν→∞;N→∞

N/ν = 0

We have

lim
ν→∞;N→∞

(1− ν−r)N = 1 (B.35)

Therefore,

|V |−1

K∑
k=1

|Sk|
P−−−−−−−→

ν→∞;N→∞
0 (B.36)

□
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B.6 Comparing Joint SBM and Isolated SBM

B.6.1 Proof of Lemma 3.3.1

Proof For graph n, the vector of counts of nodes in each cluster has expected value

given by E
[∑|Vn|

i Xni

]
= |Vn|ζ. Assuming the same distribution of the nodes over cluster

for all graphs, E
[∑N

n

∑|Vn|
i Xni

]
= |V |ζ. We know that

∑|Vn|
i Xni = diag(XT

nXn) =

diag(∆2
n) and

∑|V |
i Xni = diag(XTX) = diag(∆2). Defining αn = |Vn|/|V | for all

n ∈ [1, ..., N ], we have

E [∆nΘ∆n] =
√
αnE [∆Θ∆]

√
αn

Note that if all graphs have the same size, |Vn|, then αn = N−1. Furthermore, using the

eigendecomposition on both sides, we have

E
[
ZnDnZ

T
n

]
=
√
αnE

[
ZDZT

]√
αn

Thus, Zn = Z ⇐⇒ Dn = αnD.

Finally,

E
[
ZT

n∆
−1
n ∆Z

]
= E

[
ZT
(
α−1/2
n ∆−1

)
∆Z
]

= E
[
α−1/2
n ZTZ

]
= α−1/2

n

□

B.6.2 Proof of Lemma 3.3.2

Proof By Lemma 3.3.1,

E[ηn(Xn,W )] ∝ ∥XnW −Q∗
n∥

2
F

|Vn|K
|V |

where Q∗
n = Qn

|V |
|Vn| = UnD

|Vn|
|V |

|V |
|Vn| = UnD. Given |Vn|

|V | = 1
N

and dropping all constants

across graphs, we have E[ηn(Xn,W )] ∝ ∥XnWn − Ûn∥2F □
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C. APPENDIX TO CHAPTER 4
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Figure C.1.: Synthetic data results using Gaussian distribution for increasing graph size
(100, 500, 1000 and 1500) in two settings low variance (left) and high variance (right).
Each row represent a performance metric: ARI (top) and NMI (middle) for cluster retrieval
assessment, and MSE (bottom) for P̂ assessment). X-axis represents increasing level of
zero inflation.

C.1 Proof of Lemma 4.3.1

Proof The interaction between nodes i and j in A is generated as

aij|Xi, Xj,µ,Σ
ind∼ N(XiµX

T
j , XiΣX

T
j ) (C.1)

Part 1. Show that Eq. (4.9) is unbiased.
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For node i where Xi[k] = 1, we marginalize out the membership Xj in (C.1):

aij|Xi,µ =
∑
m

πmϕ (ai∗ − µkm) (C.2)

where ϕ (·) is the normal distribution probability density function. Thus,

E [aij|Xi] =
∑
m

πmµkm = µ∗
k· (C.3)

V ar (aij|Xi) =
∑
m

πm(σ
2
km + µ2

km)−

(∑
m

πmµkm

)2

= σ2
k (C.4)

And the covariance between aij and aiu is given by

Cov (aij, aiu|Xi)
def
= E [aij, aiu|Xi]− E [aij|Xi]E [aiu|Xi]

= E [E [aij, aiu|Xj[m] = 1, Xu[m
′] = 1] |Xi]− (µ∗

k·)
2

= E [µkmµkm′|Xi]− (µ∗
k·)

2 =
K∑

m=1

K∑
m′=1

µkmµkm′πmπm′ − (µ∗
k·)

2

Hence,

Cov(aij, aiu) =


∑K

m=1 µ
2
kmπ

2
m − (µ∗

k·)
2σ2

Xj
= σ2

k, if m = m′∑K
m=1 µkmπm

∑K
m′=1 µkm′πm′ − (µ∗

k·)
2 = 0, otherwise

(C.5)

The correlation between nodes j and u is given by ρju
def
= Cov(aij, aiu)/σ

2
k = IXj=Xu .

Assume Xj[l] = 1, and using the correlation ρju, we have an unbiased estimator for µkl as

P̂ij =
(
1TW

\i
j 1
)−1

1TW
\i
j ai∗ where W

\i
j = diag

(
{ρaj}a∈V \i}

)
(C.6)

=

∑
j∈V a

∗
ij

|Gl|
=

∑
j∈Gl

aij

|Gl|
(C.7)

where a∗iu := ρjuaiu.
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Thus,

E
[
P̂ij

]
=

∑
j∈Gl

E [aij]

|Gl|
= µkl (C.8)

Part 2. Show that the transformed a∗iu’s are independent ∀u ∈ V \ i, j.

Cov (a∗iw, a
∗
iu|Xi)

def
= E

[
a∗ij, a

∗
iu|Xi

]
− E

[
a∗ij|Xi

]
E [a∗iu|Xi]

= E
[
aijIXj=Xw , aiuIXj=Xu|Xi

]
− E

[
aijIXj=Xw |Xi

]
E
[
aiuIXj=Xu|Xi

]
If either Xj ̸= Xw or Xj ̸= Xu then Cov (a∗iw, a

∗
iu|Xi) = 0. When Xj = Xw = Xu,

Cov (a∗iw, a
∗
iu|Xi) = E

[
E
[
aijIXj=Xw , aiuIXj=Xu|Xw, Xu

]
|Xi

]
− µ2

kl

= E
[
aijIXj=Xw |Xi

]
E
[
aiuIXj=Xu|Xi

]
− µ2

kl = 0

Hence, a∗iw, a∗iu are independent since Cov (a∗iw, a
∗
iu|Xi) = 0 ∀w, u ∈ V \ i, j.

Part 3. Show P̂ij converges to Pij almost surely.

Notice that for n → ∞ then |Gl| → ∞ since πl > 0. Thus, since P̂ij is unbiased,

and a∗ijs are independent and identically distributed for any j ∈ V \ i, it follows from

Khintchin-Kolmogorov convergence theorem.

lim
n→∞

P̂ij
a.s.→ Pij (C.9)

C.2 Proof of Lemma 4.3.2

Proof This proof is divided in three parts. For parts 1 and 2, we used the Markov law to

prove consistency in probability, and in part 3 we used the Slutsky’s theorem. For details

on these results, see [84–86].
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Part 1. Show ρ̂ju converges in probability to ρju.

We considered the result from [86] where they showed ρ̂ju is unbiased for the degener-

ated cases when ρju = 0 and |ρju| = 1. [86] also showed in Example 10.6 that the variance

of ρ̂ju is given by

V ar (ρ̂ju) =
ρju
n
C (C.10)

where C is a function independent of n. Thus, since ρ̂ju is unbiased and V ar (ρ̂ju)
n→∞→ 0,

it follows from the Markov law that ρ̂ju converges in probability to ρju.

Part 2. Show
∑

u∈V \i ρ̂ju

n−1

P→
n→∞

πl and
∑

u∈V \i ρ̂iuaiu

n−1

P→
n→∞

πlµkl.

We know that

E

[∑
u∈V \i ρ̂ju

n− 1

]
=

E
[∑

u∈V \i E [ρ̂ju] |X
]

n− 1
= πl (C.11)

V ar

(∑
u∈V \i ρ̂ju

n− 1

)
=
V ar

(∑
u∈V \i E [ρ̂ju] |X

)
+ E

[∑
u∈V \i V ar (ρ̂ju) |X

]
(n− 1)2

=
V ar

(∑
u∈V \i ρju|X

)
+ E

[∑
u∈V \i

ρju
n
C|X

]
(n− 1)2

<
πl(1− πl) +

(
1− 1

n

)
E [ρjuCmax|X]

(n− 1)2
(C.12)

where Cmax = maxu∈V \iC. Thus, it follows from the Markov law that
∑

u∈V \i ρ̂ju

n−1
con-

verges to πl in probability since Eq. (C.11) is finite and Eq. (C.12) converges to 0 as n

increases. Moreover,

E

[∑
u∈V \i ρ̂juaiu

n− 1

]
=

E
[∑

u∈V \i E [ρ̂ju] aiu|X
]

n− 1
= πlµkl (C.13)

V ar

(∑
u∈V \i ρ̂juaij

n− 1

)
=
V ar

(∑
u∈V \i E [ρ̂ju] aij|X

)
+ E

[∑
u∈V \i V ar (ρ̂ju) aij|X

]
(n− 1)2
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=
V ar

(∑
u∈V \i ρjuaij|X

)
+ E

[∑
u∈V \i

ρjuaij
n

C|X
]

(n− 1)2

<
nσkl +

(
1− 1

n

)
E [ρjuaijCmax|X]

(n− 1)2
(C.14)

Again, it follows from the Markov law that
∑

u∈V \i ρ̂iuaiu

n−1

P→
n→∞

πlµkl since Eq. (C.13) is finite

and Eq. (C.14) converges to 0 as n increases.

Part 3. P̂ ∗
ij converges in probability to Pij .

Using Part 2 results and applying the Slutsky’s theorem, we have

P̂ ∗
ij =

(
n− 1

n− 1

)∑
u∈V \i ρ̂juaiu∑
u∈V \i ρ̂ju

D→
n→∞

µkl =⇒ P̂ ∗
ij

P→
n→∞

µkl = Pij (C.15)

where D→ denotes convergence in distribution. Convergence in probability is implied from

convergence in distribution in Eq. (C.15) since µkl is a constant.

C.3 Proof of Lemma 4.3.3

Proof From Section 4.2.3, define Wa∗ as the centroid of community a and the eigenvector

Uj the low dimension representation of the connectivity of node j. While [54] showed the

spectral clustering misclustering rate is bounded as n increases, the individual misclustering

probability is not null. Hence,

Prob (∥Wa∗ −Uj∥ < ∥Wb∗ −Uj∥|j ∈ Gb) > 0 (miscluster) (C.16)

Equivalently,

Prob
(
IX̂j=X̂u

= IXj=Xu |Xj ̸= Xu

)
> 0 (C.17)
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Thus, it exists an ϵ where 0 < ϵ <= 1

Prob
(∣∣∣IX̂j=X̂u

− IXj=Xu

∣∣∣ > ϵ|Xj ̸= Xu

)
> 0 ∀n ∈ N (C.18)

In other words, with probability larger than 0 the estimator IX̂j=X̂u
does not converge to

the true IXj=Xu when nodes j and u do not belong to the same cluster. Using the same

argument, we have

Prob
(
IX̂j=X̂u

̸= IXj=Xu|Xj = Xu

)
> 0 (C.19)

Prob
(∣∣∣IX̂j=X̂u

− IXj=Xu

∣∣∣ > ϵ|Xj ̸= Xu

)
> 0 ∀n ∈ N (C.20)

In this case, with probability larger than 0 the estimator IX̂j=X̂u
does not converge to the

true IXj=Xu when nodes j and u belong to the same cluster. Results presented in Eqs.(C.18)

and (C.20) imply

ρ̂stacked
ju

P

̸→
n→∞

ρju (C.21)

C.4 Complete data experiment setup

We generated graphs using the following generative process

π ∼ Dir(α), Xi|π ∼ Multi(π) (C.22)

µ[a, b] := µab ∼Pareto(0.5) (C.23)

A[i, j] := aij|Xi, Xj ∼ N
(
XiµX

T
j , λXiΣX

T
j

)
(C.24)

where Σ is a K × K matrix of variances. We fixed K = 4, α = 10 (somewhat balanced

nodes over clusters), and Σ = JK is a K ×K matrix of ones. We generated 30 graphs for

each tuple (λ,N):
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• λ = {1, 5}: 1 is low variance and 5 is a high variance

• N = 100, 300, ..., 2300, 2500

C.5 Summary table of imputation methods and their limitations

Table C.1 contains the summary of each imputation method and their main limitation.

Table C.1.: Imputation methods. Assume aij where i ∈ Gk and j ∈ Gl.

Method Lij = 1 Lij = 0 Problems when
aij MSE aij MSE

No imputation aij σ2
kl 0 0 + µ2

kl |µkl| ≫ 0

Global mean aij σ2
kl Eq. (4.24) Eq. (4.28)

1. π is unbalanced, i.e.
πk ̸≈ πl∀k, l = 1, ...,K
2. Heterogeneous µ

Mean of means aij σ2
kl Eq. (4.29) Eq. (4.36)

1. Large number of missing
interactions, i.e. ∥Li∗∥0 ≪ n
2. Heterogeneous µ

Self-similar (ours) Eq. (4.37) σ2
kl + 0 Eq. (4.37) σ2

kl + 0
Large number of missing
interactions, i.e. ∥Li∗∥0 ≪ n

Gao’s [19] aij

(
2n2

∥L∥0

)
Eq. (4.42) 0 0 + µ2

kl ϕij ̸= ϕ∀i, j = 1, ..., n

C.6 Synthetic data experiments using Gaussian distribution

Figure C.1 shows the results for increasing graph size and different performance mea-

sures (ARI, NMI and log(MSE)). The results are very similar to the ones shown in 4.2, the

main difference is that for smaller size graphs N = 100 the performance across methods

is very poor. Our two proposed methods self_similar_spec and egoNet_spec

performs very similar using Gaussian distribution. In fact, for most cases they are not

statistically different.

C.7 Additional real-world experiment: clicks on news articles

We also consider the data presented in [69] where there are 384 hours of clicks on a

news from a news portal in Brazil called G1. Since community ground-truth is unknown,

the task is to predict future clicks based solely on past clicking behavior. For each model,

we used a 5-hour training window and we test the predictions on the next hour. For each
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user, we recommend 50 news articles with the highest predicted connectivity Λ, and eval-

uate the Hit Rate (HR@10) and the Mean Reciprocal Rank (MRR@10) for the next hour.

In order to have a more precise evaluation of each model performance, we also included

a recommender model CHAMELEON as a baseline. This model uses additional informa-

tion such as news article embeddings, all the other models only considers user’s clicking

behavior.

C.7.1 Results

Table C.2 shows that the recommender system model, CHAMELEON, outperforms the

competitors in terms of HR@10 and MRR@10, however self_similar_spec and

egoNet_spec are not very behind using only clicking behavior to make the predictions.

Table C.2.: Prediction results for real-world data

Model HR@10 MRR@10

CHAMELEON 0.6738 0.3458

reg_spec 0.3718 0.1886

reg_mcmc 0.3998 0.2559

dc_spec 0.2432 0.1498

self_similar_spec 0.5593 0.2739

egoNet_spec 0.4816 0.2643
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