
HIGH-PERFORMANCE COMPUTING MODEL FOR A BIO-FUEL 

COMBUSTION PREDICTION WITH ARTIFICIAL INTELLIGENCE  

by 

Veeraraghava Raju Hasti 

 

A Dissertation 

Submitted to the Faculty of Purdue University 

In Partial Fulfillment of the Requirements for the degree of 

 

Doctor of Philosophy 

 

School of Mechanical Engineering 

West Lafayette, Indiana 

December 2019 

  



 

 

2 

 

THE PURDUE UNIVERSITY GRADUATE SCHOOL 

STATEMENT OF COMMITTEE APPROVAL 

Dr. Jay P. Gore, Chair 

School of Mechanical Engineering 

Dr. Robert P. Lucht 

School of Mechanical Engineering 

Dr. Gregory Blaisdell 

School of Aeronautics and Astronautics 

Dr. Li Qiao 

 School of Aeronautics and Astronautics 

 

Approved by: 

Dr. Nicole L. Key 

Head of the Graduate Program 
 



 

 

3 

 

Dedicated to 

Grandmother: Venkatamma Dommaraju 

Mother: Jayamma Hasti 

Father: Ramachandra Raju Hasti 

Sister: Jagadeeswari Hasti 

Sister: Rama Hasti 

Niece: Abhishri 

Niece: Yashmita 

Nephew: Gopi Dommaraju



 

 

4 

 

ACKNOWLEDGMENTS 

I have immense pleasure in acknowledging the constant support, guidance, inspiration, and 

encouragement provided by my advisor Prof. Jay P. Gore.  Prof. Jay is very generous and kind to 

share his deep insights in the field of combustion and I learned a lot from his teachings and 

discussions. I am fortunate to have Prof. Jay as my teacher, guide, philosopher, and most 

importantly as my friend. I am grateful to my mentors Prof. Roddam Narasimha, Dr. Hukam 

Mongia and Mr.Kuhn Terrel for constant support and guidance. My sincere thanks to Prof. Robert 

P. Lucht for the constant support, guidance, and encouragement on various stages of this work. I 

would like to sincerely thank Prof. Blaisdell for several useful discussions on turbulence modeling 

and statistical analysis. I would like to thank Prof. Li Qiao for serving on my advisory committee.  

 

I would like to thank all my teachers,  friends, research group members, collaborators at Argonne 

National Laboratory and Convergent Science Inc., for their guidance, encouragement, and support. 

I am thankful to Dr. Jeff Moder for providing computing resources on NASA Pleiades 

Supercomputer and all NJFCP members for many technical discussions and sharing experimental 

data.   

  

I am deeply indebted to my parents, sisters, nieces and all my family members for their 

unconditional love, encouragement, and support. Without them none of this would have been 

possible. They have been my constant source of inspiration, energy, and wisdom. I truly owe 

everything to my parents and family. I dedicate this work to my beloved parents, sisters, nieces 

and all my family members.   

 

I sincerely acknowledge the financial support from the School of Mechanical Engineering, 

Graduate School, Purdue University, Department of Energy (DOE), National Aeronautics and 

Space Administration (NASA) and Federal Aviation Administration (FAA). 



 

 

5 

 

TABLE OF CONTENTS 

LIST OF TABLES .......................................................................................................................... 8 

LIST OF FIGURES ........................................................................................................................ 9 

ABSTRACT .................................................................................................................................. 14 

1. INTRODUCTION ................................................................................................................. 16 

 Motivation ......................................................................................................................... 16 

 Selected fuels for the present study .................................................................................. 17 

 Spray combustion in gas turbine engines.......................................................................... 17 

 Artificial intelligence for online monitoring, diagnostics, and control ............................. 19 

 Literature review ............................................................................................................... 19 

1.5.1 Experimental studies .................................................................................................. 19 

1.5.2 Computational modeling studies ............................................................................... 20 

1.5.3 Artificial intelligence for  combustion applications .................................................. 22 

 Research objectives ........................................................................................................... 23 

 Structure of the report ....................................................................................................... 24 

2. COMPUTATIONAL METHODOLOGY ............................................................................. 25 

 Governing equations ......................................................................................................... 25 

 Lagrangian description for the spray ................................................................................ 26 

 Droplet evaporation model ............................................................................................... 27 

 Secondary breakup model ................................................................................................. 28 

 Dynamic drag model ......................................................................................................... 29 

 Droplet dispersion model .................................................................................................. 29 

 Chemical kinetic models ................................................................................................... 29 

 Computational domain, boundary conditions, and meshing strategy ............................... 30 

 Spray boundary conditions ............................................................................................... 33 

 Numerics ......................................................................................................................... 34 

3. VALIDATION WITH EXPERIMENTS .............................................................................. 36 

 Test case 1: PARAT pilot stabilized flame ....................................................................... 36 

3.1.1 Non-reacting simulation ............................................................................................ 38 

3.1.2 Reacting simulation ................................................................................................... 42 



 

 

6 

 

 Test Case 2: Volvo bluff-body stabilized flame ............................................................... 56 

4. NONREACTING SIMULATION ......................................................................................... 79 

 Determination of the number of cells across cooling holes .............................................. 79 

 Flow rate calculations through swirler passages (component-wise) ................................. 82 

 Flow rate calculations through all passages on the combustor liners ............................... 84 

5. LEAN BLOWOUT COMPUTATION AND ANALYSIS ................................................... 89 

 Lean blowout (LBO) simulation methodology ................................................................. 89 

 Mesh sensitivity study....................................................................................................... 90 

 Reacting spray comparison at near LBO stable flame condition ...................................... 92 

 Flame shape comparison at near LBO stable flame condition ......................................... 94 

 The heat release rate from stable flame to lean blowout .................................................. 95 

 Global lean blowout (LBO) equivalence ratio .................................................................. 96 

 Combustion model sensitivity........................................................................................... 97 

 Flame structure analysis during LBO ............................................................................... 98 

6. APPLICATION OF ARTIFICIAL INTELLIGENCE ........................................................ 106 

 Machine learning approach based on a probe data ......................................................... 106 

6.1.1 Machine learning model .......................................................................................... 107 

6.1.1.1 Dimensionality reduction ................................................................................... 108 

6.1.1.2 Training support vector machine (SVM) models ............................................... 108 

6.1.1.3 Finding optimal sensor locations ........................................................................ 109 

6.1.1.4 Evaluation of machine learning model and metric for LBO detection ............... 109 

 Machine learning approach based on spatiotemporal features ....................................... 114 

6.2.1 Machine learning model .......................................................................................... 114 

6.2.1.1 Data preprocessing ............................................................................................. 114 

6.2.1.2 Feature extraction – Convolutional autoencoder ................................................ 115 

6.2.1.3 Classification – Support Vector Machine ........................................................... 118 

6.2.1.4 Evaluation of machine learning model for LBO detection ................................. 119 

7. CONCLUSIONS AND RECOMMENDATIONS .............................................................. 124 

 Conclusions ..................................................................................................................... 124 

 Recommendations for future work ................................................................................. 126 

REFERENCES ........................................................................................................................... 128 



 

 

7 

 

VITA ........................................................................................................................................... 140 

PUBLICATIONS ........................................................................................................................ 141 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

8 

 

LIST OF TABLES 

Table 1.1. Comparison of properties for A-2 and C-1 fuels [2] ................................................... 17 

Table 2.1.Number of Species in the Kinetic Models for A-2 and C-1 Fuels. ............................... 30 

Table 3.1.Operating conditions for Volvo test rig validation case[45]......................................... 58 

Table 3.2. Boundary conditions for Volvo test rig validation case[45]. ....................................... 58 

Table 4.1. Flow splits comparison for an experimental total flow rate of 31.8 g/s for swirlers (all 

passages open) with RANS for a maximum cell size of 3 mm and different mesh resolution [1].

....................................................................................................................................................... 83 

Table 4.2. Comparison of component-wise swirler flow rates with experimental data for 10 

million cells [1]. ............................................................................................................................ 83 

Table 5.1. Details of the minimum mesh resolution for establishing a mesh independent solution 

with a base size of 3 mm [2-4] ...................................................................................................... 90 

Table 6.1. Convolutional autoencoder parameters ..................................................................... 116 

 

 

 

  



 

 

9 

 

LIST OF FIGURES 

Figure 1.1 (a) Spray (b) Iso-surface of Temperature = 1800 K in the Referee gas turbine 

combustor ...................................................................................................................................... 18 

Figure 1.2. Complex flow field resulting from the multiple flow interactions with a spray inside 

referee combustor. (streamlines plotted on Z=0 plane). HCHO (or CH2O) iso-contours are also 

shown with thick black lines. ........................................................................................................ 18 

Figure 2.1. The computational domain of referee combustor (left),  magnified view of the hybrid 

airblast swirler (right), and 2D cross-section at Z=0 (bottom)  [3, 4]. .......................................... 31 

Figure 2.2. Computational grid for a reacting case with AMR at t= 5 ms (top) and t= 10 ms 

(bottom). Contours are colored with axial velocity (m/s) [3, 4]. .................................................. 32 

Figure 2.3. Spray boundary conditions ......................................................................................... 33 

Figure 3.1. Computational domain for Non-Reacting simulations[47] ........................................ 39 

Figure 3.2. The mesh and three magnified x-y plane sections of it at z=0 for non-reacting flow 

simulations with adaptation based on the instantaneous velocity gradients[47] .......................... 40 

Figure 3.3. Contours of Axial velocity profile on the center plane of the burner[47] .................. 41 

Figure 3.4. Radial profiles of axial velocity [47] .......................................................................... 41 

Figure 3.5. The mesh in the x-y plane at z=0 for reacting simulations of PARAT with adaptation 

based on instantaneous temperature gradients[47] ....................................................................... 43 

Figure 3.6. Reacting flow mean axial velocity contour and mean, rms axial velocity and 

turbulence intensity comparison at y/d=0.2[47] ........................................................................... 44 

Figure 3.7. Mesh Sensitivity Study – Comparison of Mean temperature [K] profiles along the 

centerline. Contour plot corresponds to 0.25 mm case[47] .......................................................... 44 

Figure 3.8. Instantaneous axial velocity (m/s) (left) and instantaneous radial velocity (m/s) (right)

....................................................................................................................................................... 45 

Figure 3.9. Instantaneous vorticity magnitude (1/s) ..................................................................... 45 

Figure 3.10. Iso-surface of second invariant of velocity gradient tensor (Q-criterion) for 

visualization of vortex tubes Left: Q = 100000 s − 2 Middle: Q = 10000 s − 2 Right:  Q = 1000 

s − 2. Colored by instantaneous temperature[47] ........................................................................ 46 

Figure 3.11. Divergence of instantaneous velocity (1/s) [47] ....................................................... 47 

Figure 3.12. Mean temperature profile along the centerline of the jet for all 3 flame conditions 

[49] ................................................................................................................................................ 50 

Figure 3.13. RMS temperature profile along the centerline of the jet for all 3 flame 

conditions[49] ............................................................................................................................... 51 



 

 

10 

 

Figure 3.14. Radial profiles of mean and RMS temperatures at different x/ds for flame 1 (0% 

CO2) and flame 3 (10% CO2) [49]. ............................................................................................... 51 

Figure 3.15. Progress variable ...................................................................................................... 52 

Figure 3.16. Mean temperature versus RMS temperature[49] ..................................................... 52 

Figure 3.17. Mean mass fraction of OH showing thinner and longer reaction zone with CO2 

dilution .......................................................................................................................................... 53 

Figure 3.18. Instantaneous temperature comparison for three flames .......................................... 53 

Figure 3.19. Mole fraction of H2O, CO2, CO and H2 for 0% CO2 case[49] ................................. 54 

Figure 3.20. Mole fraction of H2O, CO2, CO and H2 for 5% CO2 case[49] ................................. 54 

Figure 3.21. Mole fraction of H2O, CO2, CO and H2 for 10% CO2 case[49] ............................... 55 

Figure 3.22. Equilibrium Constant for the instantaneous temperature obtained from JANAF 

tables for CO2 + H2 ↔ CO + H2O reaction[49] .......................................................................... 55 

Figure 3.23. Comparison of Ratio = XCOXH2O/XCO2XH2  for three flames[49] ....................... 56 

Figure 3.24.Volvo Bluff Body for LES simulations[48]. ............................................................. 57 

Figure 3.25.Boundaries for the Volvo bluff body test case[48]. .................................................. 57 

Figure 3.26. Mesh at the centreline plane in FGM (a-c) and TFM (d-f) simulations for base mesh 

sizes of 3mm, 2.5mm, and 1mm. Each case has 3 levels of maximum AMR refinement [48]. ... 59 

Figure 3.27.Adaptive mesh refinement in action in the wake region behind the Volvo bluff body 

[48]. ............................................................................................................................................... 60 

Figure 3.28. Centerline mean axial velocity Profile at z/d=0, y/d=0 [48]. ................................... 63 

Figure 3.29.Centerline turbulence intensity profile at z/d=0, y/d=0 [48]. .................................... 63 

Figure 3.30.Transverse Mean Ux Velocity Profile on z=0 plane at x/D=0.375 [48]. ................... 64 

Figure 3.31. Transverse Mean Ux Velocity Profile on z=0 plane at x/D=0.95 [48]. ................... 64 

Figure 3.32. Transverse Mean Ux Velocity Profile on z=0 plane at x/D=1.53 [48]. ................... 64 

Figure 3.33. Transverse Mean Ux Velocity Profile on z=0 plane at x/D=3.75 [48]. ................... 65 

Figure 3.34. Transverse Mean Ux Velocity Profile on z=0 plane at x/D=9.4 [48]. ..................... 65 

Figure 3.35. Transverse Mean Uy Velocity Profile on z=0 plane at x/D=0.375 [48]. ................. 65 

Figure 3.36. Transverse Mean Uy Velocity Profile on z=0 plane at x/D=0.95 [48]. ................... 66 

Figure 3.37. Transverse Mean Uy Velocity Profile on z=0 plane at x/D=1.53 [48]. ................... 66 

Figure 3.38. Transverse Mean Uy Velocity Profile on z=0 plane at x/D=3.75 [48]. ................... 66 

Figure 3.39. Mean Uy Velocity Profile on z=0 plane at x/D=9.4 [48]. ........................................ 67 



 

 

11 

 

Figure 3.40. Transverse Ux RMS Velocity Profile on z=0 plane at x/D=0.375 [48]. .................. 67 

Figure 3.41. Transverse Ux RMS Velocity Profile on z=0 plane at x/D=0.95 [48]. .................... 67 

Figure 3.42. Transverse Ux RMS Velocity Profile on z=0 plane at x/D=1.53 [48]. .................... 68 

Figure 3.43. Transverse Ux RMS Velocity Profile on z=0 plane at x/D=3.75 [48]. .................... 68 

Figure 3.44. Transverse Ux RMS Velocity Profile on z=0 plane at x/D=9.4 [48]. ...................... 68 

Figure 3.45.  Transverse Uy RMS Velocity Profile on z/d=0 plane at x/D=0.375 [48]. .............. 69 

Figure 3.46.  Transverse Uy RMS Velocity Profile on z/d=0 plane at x/D=0.95 [48]. ................ 69 

Figure 3.47. Transverse Uy RMS Velocity Profile on z/d=0 plane at x/D=1.53 [48]. ................. 69 

Figure 3.48. Transverse Uy RMS Velocity Profile on z/d=0 plane at x/D=3.75 [48]. ................. 70 

Figure 3.49. Transverse Uy RMS Velocity Profile on z/d=0 plane at x/D=9.4 [48]. ................... 70 

Figure 3.50. Transverse Mean Temperature Profile on z/d=0 plane at x/D=3.75 [48]. ............... 70 

Figure 3.51. Transverse Mean Temperature Profile on z/d=0 plane at x/D=8.75 [48]. ............... 71 

Figure 3.52. Transverse Mean Temperature Profile on z/d=0 plane at x/D=13.75 [48]. ............. 71 

Figure 3.53. Transverse Mean CO mass fraction Profile on z/d=0 plane with FGM [48]. .......... 71 

Figure 3.54. Temperature distribution in FGM (a-c) and TFM (d-g). TFM simulations have FTF 

=7.0 for (e-f) and FTF= 3.0 for (d) [48]. ....................................................................................... 72 

Figure 3.55. Time averaged temperature contours in FGM (a-c) and TFM (d-g). TFM 

simulations have FTF=7.0 for (e-f) and FTF=3.0 for (d) [48]. ..................................................... 73 

Figure 3.56. Time-averaged axial velocity distribution in FGM (a-c) and TFM (d-g) simulations. 

TFM simulations have FTF=7.0 for (e-f) and FTF=3.0 for (d) [48]. ........................................... 74 

Figure 3.57.  Instantaneous velocity magnitude in FGM (a-c) and TFM (d-g) simulations. TFM 

simulations have FTF=7.0 for (e-f) and FTF=3.0 for (d) [48]. ..................................................... 75 

Figure 3.58. Instantaneous vorticity magnitude in FGM (a-c) and TFM (d-g) simulations. TFM 

simulations have FTF=7.0 for (e-f) and FTF=3.0 for (d) [48]. ..................................................... 76 

Figure 3.59.  Instantaneous distribution of OH mass fraction in FGM simulations [48]. ............ 77 

Figure 4.1. Computational domain and boundary conditions for a single hole study [1]............. 80 

Figure 4.2. Computational grid for Cd sensitivity study. FE stands for Fixed Embedding [1]..... 80 

Figure 4.3. Mesh sensitivity results for the coefficient of discharge for a single hole study with 

RANS model [1]. .......................................................................................................................... 82 

Figure 4.4. Comparison of component-wise flow splits for swirler passages for 10M cells [1, 4].

....................................................................................................................................................... 84 

Figure 4.5. Mean velocity (m/s) contours for swirler flow paths: RANS (left) and LES (right) for 

10 million cells [1]. ....................................................................................................................... 85 



 

 

12 

 

Figure 4.6.Comparison of combustor flow splits [1]. ................................................................... 85 

Figure 4.7.LES time-averaged velocity (m/s) components on mid-plane for 10 million case (all 

passages open) [1, 4]. .................................................................................................................... 86 

Figure 4.8. LES time-averaged velocity magnitude (m/s) on mid-plane with velocity vectors for 

10 million cells (all passages open) [1, 4]..................................................................................... 87 

Figure 5.1. Staged fuel ramp down approach for LBO prediction. The red dot represents the 

measured lean blow-out global equivalence ratio [2-4]. ............................................................... 90 

Figure 5.2. The fraction of resolved turbulent kinetic energy (TKE) with a minimum cell size of 

0.375 mm and maximum cell size (base size) of 3 mm (total cell count is 10 million cells) [4]. 91 

Figure 5.3. Effect of mesh resolution on the global LBO equivalence ratio for C-1 fuel [4]. ...... 91 

Figure 5.4. Effect of mesh resolution on the heat release rate for C1 fuel [4]. ............................. 92 

Figure 5.5.Spray statistics comparison with PDPA data [12] for a stable flame at ϕ = 0.096 [2-

4]. .................................................................................................................................................. 93 

Figure 5.6. Line of Sight averaged mass fraction of OH from LES compared with experimental 

OH* from chemiluminescence [2-4]. ........................................................................................... 94 

Figure 5.7. Heat release rate with detailed chemistry simulations using FRC combustion model 

[2-4]............................................................................................................................................... 95 

Figure 5.8. Heat release rate with FGM combustion model and compact mechanism [4] ........... 96 

Figure 5.9. Global LBO equivalence ratio comparison between experiments [6] and LES [2-4].96 

Figure 5.10. LBO Equivalence ratio comparison between LES  (detailed chemistry solver)  and 

experiments [2-4]. ......................................................................................................................... 97 

Figure 5.11. Effect of combustion model on the fuel sensitivity to the computed LBO global 

equivalence ratio [4]. .................................................................................................................... 97 

Figure 5.12. Comparison of temperature (filled contours), velocity (vectors), and iso-contour of 

mean mass fraction of OH = 5e-04 (black line) for C-1 fuel. ....................................................... 98 

Figure 5.13. Instantaneous temperature [K] contour plots (left) at the combustor mid-plane and 

formaldehyde mass fractions (right) for A-2 and C-1 fuel during LBO [2-4]. ............................. 99 

Figure 5.14. Temperature versus mixture fraction scatterplots for A-2 fuel (top) and C-1 fuel 

(bottom) sampled from the primary zone. Colored with CH2O mass fraction [3, 4]. ................ 101 

Figure 5.15.  Temperature versus mixture fraction scatterplots for A-2 fuel sampled from the 

primary zone. Colored with OH mass fraction [3, 4]. ................................................................ 101 

Figure 5.16.  Mean temperature [K] contours for A-2 (left) and C-1 (right) with streamlines in 

the flame stabilizing primary zone at a stable flame condition with ϕ = 0.096 near the lean blow-

out point [3, 4]............................................................................................................................. 102 



 

 

13 

 

Figure 5.17.  The probability density function of the temperatures of the recirculating gases in 

the primary zone for A-2 fuel (left) and C-1 fuel (right) [3, 4]. ................................................. 103 

Figure 5.18.  Primary zone sampling region for combustion process investigation during LBO.

..................................................................................................................................................... 104 

Figure 5.19.  Evolution of the Volume averaged scalars in the primary zone of the combustor 

from stabale flame to complete lean blowout (LBO) process. ................................................... 105 

Figure 6.1.  The machine learning model for determining optimal sensor location ................... 107 

Figure 6.2.  The optimal location for T and YOH sensor ............................................................ 110 

Figure 6.3.  The probability density function of T, YOH, fand YCH2O at location 1 ................. 111 

Figure 6.4.  Variation of Kurtosis (a) and skewness (b) of T, YOH, fand YCH2O at location 1 . 111 

Figure 6.5.  Moving average of T, YOH, fand YCH2O at location 1 ........................................... 112 

Figure 6.6.  Time-series of T, YOH, YCH2O and f at location 1 and LBO Indicator (p) ............ 113 

Figure 6.7.  The proposed methodology for LBO detection ....................................................... 114 

Figure 6.8.  The architecture of the convolutional autoencoder ................................................. 117 

Figure 6.9.  Mean square error vs epochs ................................................................................... 119 

Figure 6.10.  (a) Autoencoder input (b) Autoencoder output with 64 nodes in the dense layer (c) 

Autoencoder output with 128 layers in the dense layer .............................................................. 120 

Figure 6.11.  YOH distribution at different time instants (top) and it’s autoencoder reconstruction 

for an equivalence ratio of 0.096 (bottom) ................................................................................. 120 

Figure 6.12.  YOH distribution at different time instants (top) and it’s autoencoder reconstruction 

for equivalence ratio of 0.090 (bottom) ...................................................................................... 121 

Figure 6.13.  YOH distribution at different time instants (top) and it’s autoencoder reconstruction 

for an equivalence ratio of 0.085 (bottom) ................................................................................. 121 

Figure 6.14.  YOH distribution at different time instants (top) and it’s autoencoder reconstruction 

for an equivalence ratio of 0.082 (bottom) ................................................................................. 121 

Figure 6.15.  (a) Input to the autoencoder and (b-e) 4 out of the 32 feature-maps in the first 

convolutional layer...................................................................................................................... 122 

Figure 6.16.  LBO indicator for the entire dataset (all time-steps and all equivalence ratios) ... 123 

 

 

 

 



 

 

14 

 

ABSTRACT 

Author: Hasti, Veeraraghava Raju. PhD 

Institution: Purdue University 

Degree Received: December 2019 

Title: High-Performance Computing Model for a Bio-Fuel Combustion Prediction with Artificial 

Intelligence. 

Committee Chair: Jay Gore 

 

The main accomplishments of this research are  

(1) developed a high fidelity computational methodology based on large eddy simulation to capture 

lean blowout (LBO) behaviors of different fuels;  

(2) developed fundamental insights into the combustion processes leading to the flame blowout 

and fuel composition effects on the lean blowout limits;  

(3) developed artificial intelligence-based models for early detection of the onset of the lean 

blowout in a realistic complex combustor.  

The methodologies are demonstrated by performing the lean blowout (LBO) calculations and 

statistical analysis for a conventional (A-2) and an alternative bio-jet fuel (C-1). 

High-performance computing methodology is developed based on the large eddy 

simulation (LES) turbulence models, detailed chemistry and flamelet based combustion models. 

This methodology is employed for predicting the combustion characteristics of the conventional 

fuels and bio-derived alternative jet fuels in a realistic gas turbine engine. The uniqueness of this 

methodology is the inclusion of as-it-is combustor hardware details such as complex hybrid-

airblast fuel injector, thousands of tiny effusion holes, primary and secondary dilution holes on the 

liners, and the use of highly automated on the fly meshing with adaptive mesh refinement. The 

flow split and mesh sensitivity study are performed under non-reacting conditions. The reacting 

LES simulations are performed with two combustion models (finite rate chemistry and flamelet 

generated manifold models) and four different chemical kinetic mechanisms. The reacting spray 

characteristics and flame shape are compared with the experiment at the near lean blowout stable 

condition for both the combustion models. The LES simulations are performed by a gradual 

reduction in the fuel flow rate in a stepwise manner until a lean blowout is reached. The 

computational methodology has predicted the fuel sensitivity to lean blowout accurately with 

correct trends between the conventional and alternative bio-jet fuels. The flamelet generated 
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manifold (FGM) model showed 60% reduction in the computational time compared to the finite 

rate chemistry model.  

The statistical analyses of the results from the high fidelity LES simulations are performed 

to gain fundamental insights into the LBO process and identify the key markers to predict the 

incipient LBO condition in swirl-stabilized spray combustion. The bio-jet fuel (C-1) exhibits 

significantly larger CH2O concentrations in the fuel-rich regions compared to the conventional 

petroleum fuel (A-2) at the same equivalence ratio. It is observed from the analysis that the 

concentration of formaldehyde (𝐶𝐻2𝑂) increases significantly in the primary zone indicating 

partial oxidation as we approach the LBO limit. The analysis also showed that the temperature of 

the recirculating hot gases is also an important parameter for maintaining a stable flame. If this 

temperature falls below a certain threshold value for a given fuel, the evaporation rates and heat 

release rated decreases significantly and consequently leading to the global extinction phenomena 

called lean blowout. The present study established the minimum recirculating gas temperature 

needed to maintain a stable flame for the A-2 and C-1 fuels.   

The artificial intelligence (AI) models are developed based on high fidelity LES data for 

early identification of the incipient LBO condition in a realistic gas turbine combustor under 

engine relevant conditions. The first approach is based on the sensor-based monitoring at the 

optimal probe locations within a realistic gas turbine engine combustor for quantities of interest 

using the Support Vector Machine (SVM). Optimal sensor locations are found to be in the flame 

root region and were effective in detecting the onset of LBO ~20ms ahead of the event.  The second 

approach is based on the spatiotemporal features in the primary zone of the combustor. A 

convolutional autoencoder is trained for feature extraction from the mass fraction of the OH (𝑌𝑂𝐻) 

data for all time-steps resulting in significant dimensionality reduction. The extracted features 

along with the ground truth labels are used to train the support vector machine (SVM) model for 

binary classification. The LBO indicator is defined as the output of the SVM model, 1 for unstable 

and 0 for stable. The LBO indicator stabilized to the value of 1 approximately 30 ms before 

complete blowout. 



 

 

16 

 

1. INTRODUCTION       

The material presented in this chapter is obtained from the author’s published papers [1-

3] and the project progress report [4]. 

 Motivation 

Almost 84% of the total energy used today is coming from burning oil, gas and coal. 

Burning these fuels produce pollutants like CO2, NOx, soot, and particulate matter, etc. To limit 

global temperature just to 2°C rise would demand a 75% reduction in carbon emissions by 2050. 

The global population is expected to increase from today’s 7.7 billion to 11.2 billion in 2100. On 

the other hand, the consumption of global fossil fuels is increasing and new reserves are difficult 

to find. What are our future energy options for a sustainable planet and economy? These questions 

motivated research on bio-fuels for future energy needs.  

The material discussed in this section is obtained from the author’s AIAA conference 

papers [1, 2]. Biofuels are offering promising solutions with an alternative to depleting fossil fuels. 

Biofuel can be obtained from various sources like bio-waste (forest waste, food waste, etc.,), 

agricultural crops, marine algae, etc., After we convert these sources into fuel, it is very important 

for us to know how safe they are to handle, store and burn. Air-breathing combustion for energy 

and propulsion applications must remain viable for the foreseeable future [1]. It is important to 

understand the characteristics and combustion performance of biofuels (or alternative jet fuels) as 

well as petroleum-derived jet fuels to better understand how fundamental fuel properties impact 

applications, fuel efficiencies, and emissions [2]. While recognizing that the entire flight envelope 

is of interest in certifying fuels (which for the near term are likely to be blends of alternative and 

petroleum-derived stocks), lean blowout (LBO), high altitude relight (HAR), and cold start effects 

related to fuel properties have been identified as most important considerations i.e. as certification 

figures of merit [5]. Fit for purpose fuels (or drop-in) must meet these figures of merit as presently 

characterized for the ranges of petroleum-derived jet fuels presently in the field [2].  

Laboratory experiments are time-consuming and very expensive. For example, the fuel 

qualification process currently takes about 5 years and costs $4 million dollars. Therefore, 

developing a high fidelity high-performance computing methods for computer simulations for 
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virtual fuel experiments helps to reduce time and cost. These calculations help us to know exactly 

how these fuels burn under any given condition and allow us to accurately estimate how much heat 

energy produced and emissions like CO2, NOx, etc., Computer simulations also help to optimize 

the fuel performance and offer new avenues in lowering pollutants and developmental costs. 

 Selected fuels for the present study 

The material presented in this section is obtained from the author’s AIAA conference 

papers [2, 3]. A-2 jet fuel represents the global norm found in the field for petroleum-derived jet 

fuels, while C-1 is a bio-derived alternative jet fuel composed almost entirely of only two specific 

iso-paraffins, 2,2,4,6,6-pentamethylheptane (iso dodecane) and iso-cetane [2]. The properties of 

A-2 and C-1 fuels are shown in Table 1.1 [2, 6-9].  

Table 1.1. Comparison of properties for A-2 and C-1 fuels [2] 

 Mol. 

Formula 

Mol.Weight 

(kg/kmol) 

Composition (% by mass) H/C 

Cyclo-

Paraffins 

Iso-

Paraffins 

n-

Paraffins 

Aromatics Alkenes H 

A-2 C11.4H22.1 159 31.86 29.45 20.03 18.66 <0.001 13.84 1.91 

C-1 C12.6H27.2 178 0.05 99.63 <0.001 <0.01 0.32 15.28 2.17 

 

 DCN 
(

F

A
)

stoich
 

Viscosity  

(mPa s) 

Density 

kg/m3  

Δhc (
MJ

kg
) 

10% 

Distillation 

Temp, K 

90% 

Distillation 

Temp, K 

Flash 

Point 

 K 

Freeze 

Point 

K 

A-2 48.3 0.06803 1.17 803 43.1 449 517 321 222 

C-1 17.1 0.06665 0.98 760 43.9 451 501 323 212 

 Spray combustion in gas turbine engines 

The material presented in this section is obtained from the author’s AIAA conference paper 

[1]. A single cup combustor (“referee combustor”) shown in Figure 1.1 was designed at AFRL and 

used for experimental characterization of lean blow out (LBO) and ignition for a wide range of   
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Figure 1.1 (a) Spray (b) Iso-surface of Temperature = 1800 K in the Referee gas turbine 

combustor 

 

 

Figure 1.2. Complex flow field resulting from the multiple flow interactions with a spray inside 

referee combustor. (streamlines plotted on Z=0 plane). HCHO (or CH2O) iso-contours are also 

shown with thick black lines. 

 

fuels and operating conditions [1, 9-13]. These experiments are aimed at mimicking the geometry 

and operating conditions of a real gas turbine combustor.  Air from the compressor outlet entering 

the combustor is split among multiple passages within and around the combustor as shown in 

Figure 1.2 [1]. The split flow consists of air going through different swirler passages for assisting 

atomization and mixing of the fuel and for stabilization of the flame.  Air that bypasses the swirlers 
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is directed into the combustor through primary and secondary crossflow dilution holes. The 

remainder of the flow enters the main combustion chamber through numerous liner effusion and 

dome cooling holes. The effusion cooling holes play an important role in reducing thermal loads 

on the combustor liner. The resulting turbulent flow field evolves over a very complex geometry 

with flow passages that have a wide range of length scales. Moreover, the flow distribution through 

all of these flow passages affects the combustion process [1]. The details on the fuel injection, 

spray processes, evaporation, mixing, ignition, combustion, flame holding and fuel effects on the 

combustion stability can be found in the literature[14, 15]. 

 Artificial intelligence for online monitoring, diagnostics, and control 

The modern gas turbine engines are operated towards lean combustion to meet the stringent 

emission regulations. However, lean combustion can introduce instabilities to the flame which can 

eventually lead to the blowout. Lean blowout (LBO) can also have very severe consequences for 

aircraft engines and poses a major safety hazard. The lean blowout is one of the most important 

figures of merit for certification of a gas turbine engine combustor and aviation fuels [5] to ensure 

flight safety to avoid accidents like TACA Flight 110 in May 1988, Pinnacle Airlines Flight 3701 

in October 2004, and British Airways Flight 38 in January 2008. The lean blowout limits prediction 

for a given fuel in a realistic combustor is a major challenge in the engine combustor design phase. 

This is due to the lack of a reliable model that accounts for complex physicochemical processes 

involved in the combustion phenomena [16]. Lean blowout is dominated by fuel kinetic effects. 

Hence, serious efforts are needed for online engine health monitoring, diagnostics, and prevention 

utilizing the state of the art artificial intelligence techniques for real-time control for prevention of 

catastrophic failures.   

 Literature review 

1.5.1 Experimental studies  

The literature review presented in this section is obtained from the author’s AIAA 

conference paper [1-3]. The National Jet Fuel Combustion Program (NJFCP) utilizes a single cup 

combustor (“referee combustor”) for experimental characterization of lean blow out (LBO) and 

ignition for a wide range of fuels and operating conditions [1, 3, 6, 10, 11, 13]. A suite of non-
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reacting flow split experiments characterizes the airflow inside the combustor [1]. The flow rate 

measurements in the referee combustor and their computations for non-reacting conditions are 

available in references [1, 17-20]. Detailed spray and LBO measurements have been carried in the 

referee combustor for a wide range of fuels [2, 6, 7, 10, 13, 21, 22]. These datasets are used to 

benchmark and validate CFD models for realistic gas turbine combustors operating on a wide 

range of fuel properties.  Three petroleum-derived jet fuels (A1-A3) and nine test fuels including 

several bio-derived jet fuels are considered to study the effects of physical and chemical properties.  

The literature review presented in this section is obtained from the author’s AIAA 

conference paper [1-3]. Stouffer et.al[6] examined the ignition and LBO characteristics with 

physical and chemical properties for 8 different fuels in the referee combustor and reported that 

fuels with low derived cetane number (DCN) blow-out more readily, i.e. at a  more rich fueling 

limit than fuels with higher DCN [2]. Lieuwen et.al[23] reported experimental results on the 

impact of fuel composition on auto-ignition, flashback and blow-out processes in a syngas 

operated gas turbine combustor [2]. These studies revealed that fuel composition with higher 

hydrogen content led to LBO characteristics with blowout occurring at a leaner equivalence ratio. 

Stohr et. al [24] performed chemiluminescence imaging, OH-PLIF, and stereo PIV to understand 

the dynamics of the blowout process in partially premixed, swirl-stabilized methane combustion 

in a gas turbine combustor configuration at atmospheric pressure. Experimental results showed 

that the blowout process initially develops as extinction/re-ignition events at the flame root near 

the nozzle exit due to high strain rates and sustained flame extinction processes over a critical 

period of time leads to full extinction and blowout. 

1.5.2 Computational modeling studies  

The literature presented in this section is obtained from the author’s AIAA conference 

papers [1-3]. Multidimensional CFD modeling of such complex flows is challenging because of 

the complexity and the computational times involved. Therefore, simplifying assumptions are 

often used in computations of the flows. The combustor liner geometry is often simplified by 

ignoring the effusion holes altogether or by modeling the holes using mass inflow and outflow 

boundary conditions. Briones et.al [17, 18] have reported results of RANS calculations for the 

referee combustor flow field without film and effusion cooling holes but retaining their imprints 

on the liners. The modeling approach in these studies involves one dimensional adiabatic and 
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calorically perfect gas calculations of flows through the imprinted cooling holes. The approach 

requires a priori inputs of jet angle, orientation, and the coefficient of discharge  (CD) . The 

estimated flow rate defines the boundary conditions or the source terms (depending on the specifics 

of the numerical method) for the momentum at the inflow and the outflow ends of the effusion 

holes. Briones et.al [17, 18, 20, 25]  with the support of non-reacting RANS simulations concluded 

that the methodology to estimate mass flow rates through several regions in a combustor is afflicted 

by three inherent systematic errors. One of the errors results from the differences in the orientation 

of the flow areas of individual passages on the combustor versus on the flow bench.  The second 

error results from the differences in the local plenum pressures over the complex liner geometry.  

The third error accumulates from relatively small errors in the evaluation of the flows through 

individual liner cooling holes to a significant value.  Gritsch et al. [26] measured the discharge 

coefficient (Cd) for flow-through cylindrical holes at different orientations and inclinations with 

the cross-flow for a wide range of conditions.  

The material presented in this section is obtained from the author’s AIAA conference paper 

[2]. Esclapez et. al [11] reported LES simulations for A-2, C-5 and C-1 fuels to capture the fuel 

effects on the lean blow-out in the referee combustor using a low Mach number incompressible 

flow solver (VIDA) code. The Eddy viscosity-based WALE model was used for modeling the sub-

grid-scale stress term for turbulence and a flamelet/progress variable (FPV) approach was used to 

model combustion. Hybrid chemistry-based chemical kinetic models [27-30] were employed to 

represent fuel chemistry for all three fuels. The results from their study at near LBO stable 

condition show that spray characteristics (SMD, axial velocity and radial velocity) and flame shape 

qualitatively agree with experimental data. Their LBO calculations suggested a more stable flame 

for C-1 than for A-2, with A-2 fuel blow-out occurring at an equivalence ratio of 0.090 while C-1 

blow- out at an equivalence ratio of 0.085. Joshua et.al[31] performed LES simulations for A-2 

and C-1 fuels in the referee combustor with adaptive mesh refinement and finite rate chemistry 

solver using Hychem skeletal mechanism [32]. The spray is represented as a single hollow cone 

with a specified SMD and Rosin-Rammler distribution and cone angle. These LES simulations 

showed blow-out for A-2 fuel at an equivalence ratio of 0.074 and for C-1 fuel at an equivalence 

ratio of 0.082.   
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1.5.3 Artificial intelligence for combustion applications 

Machine learning has been successfully used in many areas like computer vision, speech 

recognition, natural language processing, traffic predictions, and online fraud detection, etc., But 

the application of machine learning for physics-driven problems is at the early stages and need 

more investigations to benefit from the state of art developments in this subject. Machine learning 

techniques have been recently used by a few researchers for combustion problems [33-46]. The 

problem of LBO has also been analyzed in the literature for simple laboratory-scale combustors. 

Akintayo. et. al. [40] used a high-speed video of swirl-stabilized gas turbine combustor. They 

trained a convolutional selective autoencoder model to reconstruct the input image if the flame 

was stable and output a black image if the flame was unstable. The authors have defined the 

instability metric based on the similarity between the input image and the corresponding output of 

the convolutional autoencoder. To identify the instability signature in the time domain, Sarkar et. 

al. [41] trained a Deep Belief Network (DBN) with stable and unstable flame images for a 

combustor. The output of the DBN was then fed to Symbolic Time Series Analysis (STSA) model 

followed by a D-Markov model. Ghosal et. al. [42] applied the Dynamic Mode Decomposition 

(DMD) and its sparsity promoting variant (DMDSP) to define instability metrics. Prediction of 

combustion instability in a swirl-stabilized combustor has also been studied using the 

chemiluminescence and pressure sensor data [43] by applying STSA and xD-Markov model. 

Support Vector Machine (SVM), a machine learning algorithm, was then used to predict the state 

of the combustion – nominal, impending blowout or progressive blowout.  

Janakiraman et. al. [44] developed an online learning model based on Extreme Learning 

Machines (ELM) for a Homogeneous Charge Compression (HCCI) engine. ELM is a neural 

network with a single hidden layer and the parameters connecting the input layer to the hidden 

layer are randomly assigned. This helps in reducing the time required for training the model which 

is a crucial component of online learning. Prediction of heat output based on the images of the 

flame has also been studied with the prediction of up to 28 minutes in the future [45]. Application 

of machine learning to classify flow features in computational fluid dynamics (CFD) simulation 

has also been studied [46] using the sliding window approach followed by Convolutional Neural 

Network (CNN) based classifier. 

Previous attempts of using machine learning for LBO identification have involved high-

speed images, chemiluminescence data or pressure sensor data in simple laboratory type gas 
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turbine combustors. However, data sets required for training and validation of the machine learning 

algorithms for realistic engine combustor configurations is limited due to difficulties with 

experimental diagnostic methods to obtain the comprehensive flame data. The high-fidelity 

reacting large eddy simulations of realistic gas turbine engine combustors under engine relevant 

conditions can provide greater insights into events leading to LBO. The machine learning 

algorithms trained based on the high fidelity simulation data has several advantages over the 

existing simplistic data sets  (1) accounts for the geometry induced flow complexity in the 

combustor, (2) accounts for the amount of fuel/air participation in the combustion resulting from 

complex multiple jets interactions and with spray in the primary zone (3) accounts for different 

time scales involved in the liquid-fueled combustion etc., Machine learning algorithms can also be 

used for identifying the undesirable events during the combustor operation in the flight envelope 

for early warning to prevent major accidents.  

 Research objectives  

The objective of the research is to develop a computational methodology with the LES 

turbulence model, automatic meshing, and adaptive mesh refinement for predicting the fuel 

sensitivity to combustion characteristics in a realistic gas turbine combustor under engine relevant 

conditions [1-3]. The specific objectives of the present work are summarized below: 

(1) application of automatic mesh generation with adaptive mesh refinement (AMR), all 

effusion holes resolved and gridded 

(2) model the spray from hybrid airblast injector as a multi-ring injection for spray 

representation in CFD with boundary conditions derived from PDPA measurements 

(3) evaluate the sensitivity of HyChem and compact kinetic models on LBO  

(4) evaluate the sensitivity of different combustion models on LBO 

(5) identify the global markers for LBO  

(6) establish fundamental insights into the combustion process during LBO for different fuels 

(7) understand the fuel composition effects on the lean blowout limits 

(8) develop robust machine learning models for early identification of the onset of the lean 

blowout. 
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 Structure of the report 

The structure of the remaining thesis document is as follows: computational methodology 

is discussed in Chapter 2 followed by the validation in Chapter 3. Non-reacting simulations of 

referee combustor for flow splits estimation and comparison with experiments is presented in 

chapter 4. The lean blowout computation with different kinetic models and flame structure analysis 

is reported in chapter 5. The proposed machine learning model for the early detection of LBO 

onset is discussed in chapter 6. The important conclusions of this work are summarized in chapter 

7 with recommendations for future research work. 
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2. COMPUTATIONAL METHODOLOGY 

The details of the computational methodology for simulating the spray combustion in a 

realistic gas turbine combustor are discussed in this chapter. The part of the material presented in 

this chapter is obtained from the author’s papers [1-3, 47-49]. 

 Governing equations  

The material discussed in this section is obtained from the author’s AIAA conference paper 

[3]. The compressible form of the Favre filtered Navier-Stokes equations after LES decomposition 

is solved on a non-staggered, collocated computational grid along with the species transport 

equations, energy equation and the equation of state [1-3, 50].  

 

Continuity:     

∂ρ̅

∂t
+

∂ρ̅uj̃

∂xj
= S          (1) 

Conservation of Momentum:  

∂ρ̅ uĩ̇ 

∂t
+

∂ρ̅uĩ̇uj̃̇

∂xj
= −

∂P̅

∂xi
+

∂σi̇j̇̅̅ ̅

∂xj
−

∂τij

∂xj
           (2) 

Species Continuity:  

∂ρ̅ Ym̃

∂t
+

∂ρ̅uj̃̇Ym̃

∂xj
=

∂

∂xj
(ρ̅(D + Dt)

∂Ym̃

∂xj
) + ω̅̇m ,      m = 1,2,3 … . . , n          (3) 

Conservation of Energy:  

∂ρ̅ ẽ

∂t
+

∂ρ̅uj̃̇ẽ

∂xj
= −P̅

∂uj̃̇

∂xj
+ σi̇j̇̅̅ ̅  

∂uĩ̇

∂xj
+

∂

∂xj
(K

∂T̃

∂xj
) +

∂

∂xj
(ρ̅(D + Dt) ∑ hm̃

∂Ym̃

∂xjm
) + Se,   m

= 1, . . n          (4) 

 

The material discussed in this section is obtained from the author’s AIAA conference paper 

[3]. The Redlich-Kwong equation of state is used to couple density, pressure, and temperature in 

the present compressible flow solver [3, 50]. The sub-grid stress tensor term, τij = ρ̅(ui̇uj̇̃ −  uĩ̇uj̃̇) 

in the momentum equation is modeled using a non-viscosity based one equation sub-grid scale 

model to obtain the closure [3, 50-52]. The sub-grid stress tensor is related to the Leonard stress 
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tensor [53] and sub-grid kinetic energy as τij = 2kρ̅
Lij

Lkk
 , where, k =

1

2
(ui̇ui ̇̃ − uĩ̇uĩ̇), is the sub-

grid kinetic energy and is estimated by solving the following transport equation, 

∂ρ̅ k 

∂t
+

∂ρ̅uj̃k

∂xj
=

∂

∂xj
 (

μ

Prsgs

∂k

∂xj
 ) + τijSij

̅̅ ̅ − ρε          (5) 

and, the sub-grid dissipation rate is calculated as , ε = Cε
k

3
2

Δ  
, where Cε = 1.0 and Δ is the grid size.  

The material discussed in this section is obtained from the author’s AIAA conference paper 

[3]. The Leonard stress tensor, Lij = uĩ̇uj̇ ̃
̂ −  ũî̇ ũĵ̇ here ^ is called the test filter and it is calculated 

from the center cell and neighboring cells [3]. The test filter is larger than the first level filter i.e., 

grid size. This sub-grid scale modeling procedure is less dissipative on coarser grids compared to 

the viscosity based sub-grid scale models. The filtered reaction rate ω̅̇m in Eq.3 is estimated using 

the Arrhenius law and the sub-grid level reaction rates are treated using a well-stirred reactor (WSR) 

model. The use of WSR with appropriate grid resolution for modeling the sub-grid turbulence 

chemistry interactions (TCI) in laboratory burners, jet flames, and engines under relevant 

conditions has been successfully reported in the literature [2, 3, 48, 54-65]. 

The flamelet generated manifold (FGM) combustion model also investigated in the present 

study with adaptive mesh refinement for computing the fuel sensitivity to lean blowout. The FGM 

model has been successfully employed in the literature for predicting phenomena like flame 

extinction and re-ignition in spray flames [66-71]. A compact kinetic mechanism based on fuel 

surrogates is used for representing chemical reactions [2]. The FGM model accounts for the effects 

of turbulence on the reaction rates via a joint PDF of mixture fraction, mixture fraction variance, 

and reaction progress variable. The more details on the FGM model formulation and 

implementation can be found in the CONVERGE documentation [50].  

 Lagrangian description for the spray 

The equations of the droplet position (xp), velocity (up), and temperature (Tp) are given 

by the following equations. The particles are assumed to be spherical.   

dxp

dt
= up 

mp

dup

dt
= F 



 

 

27 

 

mpCp

dTp

dt
= Q 

dmp

dt
= −ṁevap 

where  

t = time (s) 

mp = mass of the parcel (kg) 

F = summation of all the forces acting on the parcel (N) 

Cp= specific heat at constant pressure (J/kg-K) 

Q = net rate of heat transfer to the parcel (W) 

ṁevap = parcel evaporation rate (kg/s) 

 Droplet evaporation model 

The Frossling correlation is employed to calculate the drop evaporation rates [4, 72, 73]. 

The time rate of change of droplet radius is given by the following expression as a function of the 

laminar mass diffusivity of the fuel vapor, a mass transfer number, and a Sherwood number [50].  

dr0

dt
= −

αsprayρgasD

2ρlr0
BdShd 

where, 

Bd =
Y1

∗ − Y1

1 − Y1
∗  

Y1
∗ =

MCnH2m

MCnH2m
+ MMix (

pgas

pv
− 1)

 

Shd= Sherwood number, and is calculated using the following expression 

 Shd =(2.0 + 0.6Re
d

1

2 Sc
1

3)
ln (1+Bd)

Bd
 

Red = Reynolds number based on the relative velocity 

Sc = Schmidt number of air and is calculated as  

Sc =
μair

ρgasD
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ρgas D = 1.293 D0 (
T̂

273
)

n0−1

 

αspray = scaling factor for the mass transfer coefficient  

D = mass diffusivity of liquid vapor in the air 

Y1
∗= vapor mass fraction at the drop’s surface  

Y1= vapor mass fraction 

MMix=molecular weight of the mixture  

d = drop diameter 

pgas = gas pressure 

pv=vapor pressure at the droplet temperature 

ρgas = gas density 

ρl = liquid density 

Tgas = gas temperature 

Td = drop temperature 

μair = air viscosity and is calculated at the temperature T̂ 

T̂ =
Tgas+2Td

3
  

D0 , n0 = Model constants derived from experiments 

In the present work, D0=4.16e-06 kg/m-s and n0=1.6 is used for the single droplet 

evaporation study and referee combustor lean blow-out simulations. 

 Secondary breakup model 

The secondary droplet atomization is modeled following the work of O’Rourke and 

Amsden[73].  This model is based on Taylor’s analogy between the spring-mass system and 

distorting-oscillating droplet [50]. The breakup of the radius is calculated as per the following 

expression, 

r =
ro

1 +  
8K 
20 y2 +

ρlro
3

σ ẏ2 (
6K − 5

120 )

 

More details on the mathematical description of this model can be found in [50].  
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 Dynamic drag model 

The drag coefficient is calculated as  

CD = CD,sphere(1 + 2.632y) 

CD,sphere =  {
 0.424                  Re > 1000 

24

Re
(1 +

1

6
Re

2
3)                   Re ≤ 1000                   

 

where y is the droplet distortion calculated with the TAB model [50]. More details on this model 

are given elsewhere [72-74].        

 Droplet dispersion model 

The effect of turbulent flow on parcels is accounted for by introducing the fluctuating 

velocity to the gas velocity. This sub-grid fluctuating velocity is based on the first term in the 

Taylor series expansion given by the following expression.  

ui
′ = 2(1 − 2Y)Cles

dx2

24

∂2ũi

∂xj ∂xj
 

A detailed description of this model is given in [50]. 

 Chemical kinetic models 

The material discussed in this section is obtained from the author’s AIAA conference paper 

[3]. Detailed chemical kinetics is a pre-requisite for high fidelity combustion simulations in order 

to capture the complex reaction pathways like strong chain branching, weak chain branching and 

chain termination at different operating pressures and temperatures [3]. Mechanisms with high-

temperature chemistry are important for simulating stable flames and their propagation while those 

with low-temperature chemistry are crucial for simulating auto-ignition. The computational cost 

depends on the number of species in the mechanism and this makes detailed mechanism having 

hundreds of species prohibitively expensive for high fidelity simulations on fine mesh resolutions. 

The numerical computations employing hundreds of species may cause chemical stiffness due to 

the non-linearly coupled chemical reactions with a wide range of timescales [3]. Hence, reduced 

mechanisms are developed with varying levels of kinetic details to reduce the computational cost, 

stiffness and storage memory requirements with adequate accuracy in the calculations. The hybrid 

chemistry approach [27-30] developed for a real, multi-component fuel based on several lumped 
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reaction steps obtained from shock tube experiments for modeling fuel pyrolysis and the 

foundational fuel chemistry from USC Mech II for the oxidation of the pyrolysis products. This 

approach is employed for developing detailed mechanisms for both conventional (A-category) and 

alternative fuels (C-category) tested in the NJFCP program. The detailed HyChem model for 

conventional Jet-A fuel (A-2) and an alternative fuel (C-1) chosen for the present study contains 

119 species with 843 reactions. Yang et al [32] employed a two-stage mechanism reduction 

technique using a directed relation graph (DRG), sensitivity analysis and timescale reduction using 

the linearized quasi-steady-state approximations and obtained skeletal and reduced versions of 

HyChem mechanisms for A-2 and C-1 fuels. The skeletal mechanism contains 41 species with 202 

reactions for A-2 fuel and 34 species with 182 reactions for C-1 fuel. The reduced mechanism 

contains 31 species for A-2 fuel and 28 species for C-1 fuel. The compact chemical kinetic models 

[2] are developed based upon combustion property target surrogate mixture emulation [75-78] for 

A-2 and C-1 fuels [78, 79].  

Table 2.1. The number of species in the kinetic models for A-2 and C-1 fuels. 

 A-2 C-1 

HyChem Detailed 119 119  

HyChem Skeletal 41  34  

 HyChem Reduced 31 28 

Dryer’s Compact 41 35 

 Computational domain, boundary conditions, and meshing strategy 

The material discussed in this section is obtained from the author’s AIAA conference paper 

[3] and more details on the computational domain, boundary conditions, and meshing strategy are 

given in [1-4]. The computational domain of the referee combustor is shown in Figure 2.1. A full-

scale combustor is housed in a rectangular box of size 353.07 mm x 101.6 mm is chosen for the 

present study. The flow-through swirler passages, primary and secondary dilution holes, effusion 



 

 

31 

 

and film cooling holes are resolved in the present study. The airflow through window effusion and 

aft slot cooling holes located near the exit of the combustor does not participate in the combustion 

process and hence this flow is excluded in the present work. The total air mass flow rate of 338.7 

g/s at temperature 394 K is specified at the inlet with a static pressure outlet boundary condition. 

The adiabatic condition is imposed on all the combustor walls. Spray boundary conditions are 

discussed in the next section.  

 

 

 

 

 

 

Figure 2.1. The computational domain of referee combustor (left),  magnified view of the hybrid 

airblast swirler (right), and 2D cross-section at Z=0 (bottom)  [3, 4]. 

 

The material discussed in this section is obtained from the author’s AIAA conference paper 

[1, 3]. A modified Cartesian cut cell method is employed in the present work that allows the use 

of orthogonal grids by eliminating the need for the grid to be morphed with the geometry while 

precisely capturing the boundary shapes [50, 80-83]. The computational mesh is generated and 

optimized on the fly with the Cartesian cut cell method and adaptive mesh refinement (AMR) 

(a). 3D Domain (b). Swirler 

(c). 2D Cross-section at Z=0 
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techniques for this complex realistic gas turbine combustor with the swirler, dilution holes, film 

cooling holes and thousands of effusion-cooling holes [1-4]. The AMR algorithm refines the mesh 

during the runtime based on the second gradients of velocity and temperature. Mesh refinement is 

added in regions of steep gradients while keeping the mesh coarser in regions of weaker gradients 

[1-3, 47-49, 80, 84]. The adaptive mesh refinement helps in optimal use of cells and in 

minimization of the cell count for a given accuracy in capturing the essential features of the flow. 

Mesh generation is completely automated with the flexibility of having mesh distribution as a 

function of maximum cell size (base size). The relative mesh size in different regions can be set a 

priori in this method to create fine mesh in the regions of importance, for example, near the injector 

and primary zones, effusion and film cooling holes, etc., The fine mesh embedded in those regions 

is kept through the entire flow simulations. To save computational time, extra mesh resolution can 

be added during the run time based on local temperature and velocity gradients using adaptive 

mesh refinement techniques. The maximum number of cells is specified to limit the number of 

embedded cells with adaptive mesh refinement.   

 

 

Figure 2.2. Computational grid for a reacting case with AMR at t= 5 ms (top) and t= 10 ms 

(bottom). Contours are colored with axial velocity (m/s) [3, 4]. 

 

t=5 ms 

t=10 

ms 
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The material discussed in this section is obtained from the author’s AIAA conference paper 

[3]. The mesh resolution required to compute the mass flow rates under non-reacting conditions 

through the multi-passage air-blast swirler (while all other flow passages are closed) is determined 

using the comparison of RANS and LES computational results with experimental data from Refs. 

[7-10]. The present work is based on the meshing approach discussed in [1] for the treatment of 

effusion cooling flows through tiny inclined holes.  For the gas turbine combustor simulations, the 

mesh is refined in shear layers, flame front, recirculation regions and near the jets as shown for a 

reacting case in Figure 2.2. A maximum cell size of 3 mm and a minimum cell size of 0.375 mm 

near the injector region and in the effusion and film cooling holes resulting in a total count of 10 

million cells are used for the present LBO calculations[1-3]. The mesh sensitivity and resolved 

kinetic energy distribution on the chosen mesh resolution is discussed in the Chapter 5.   

 Spray boundary conditions  

 

Figure 2.3. Spray boundary conditions 

   

The material discussed in this section is obtained from the author’s AIAA conference paper 

[3]. The spray boundary conditions (droplet diameter, average velocity, and cone angle) specified 
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at 2 mm from the nozzle exit in the present work are based on the UTRC approach using non-

reacting PDPA measurements[2, 3, 21, 85, 86] at 25.4 mm from the deflector plate. The nozzle 

inlet is represented by six ring nozzles, each having a different CDF distribution for droplet 

diameter as shown in Figure 2.3. 

 Numerics  

The material discussed in this section is obtained from the author’s AIAA conference paper 

[3].  The details on the CFD numerics are given in [1-3]. The pressure-velocity coupling is obtained 

by using modified Pressure Implicit with Splitting of Operator (PISO) algorithm [87] based on the 

Predictor-Corrector method.  A Rhie-Chow interpolation scheme[88] is used to avoid the spurious 

oscillations in the pressure-velocity solution resulting from the use of collocated quantities (cell-

centered values). The governing conservation equations are discretized using a second-order 

accurate central differencing scheme for spatial discretization and a fully implicit first-order 

accurate time integration scheme in order to maintain numerical stability. The global time step size 

is calculated during each computational cycle based on the maximum convection CFL number, 

the speed of sound CFL number, and the diffusive CFL number, maximum time step for the spray 

and the chemical time scale. A multi-zone model along with AMR, a fast iterative ODE solver 

CVODES accelerate the detailed chemistry calculations. The multi-zone approach in the present 

work groups computational cells with similar temperatures (T) and equivalence ratios (ϕ) into 

separate bins, with specified limits on these two variables. This multi-zone binning concept was 

first introduced by Aceves et al. [89] and improved by others [90]. After clustering into bins of 

similar temperature and equivalence ratio, the zone-average values of species concentrations and 

temperature are used to compute the reaction rates for each zone (rather than for every individual 

cell). The zonal temperature and mass fractions are then remapped onto the cells, such that the 

temperature and composition non-uniformities are preserved. Detailed descriptions of chemistry 

acceleration for combustion calculations with and without the multi-zone model can be found in 

Raju et al [90]. The calculations are run in parallel on distributed memory machines using the 

Message Passing Interface (MPI). Automatic domain decomposition allows for efficient load 

balancing as the adaptive mesh refinement changes the distribution of the cells significantly. The 

LES simulations are performed using the Broadwell nodes on the NASA Pleiades supercomputer. 
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Each Broadwell node contains two 14 core E5-2680v4 (2.4 GHz) processors and 128 GB of 

memory. 

The material discussed in this section is obtained from the author’s AIAA conference paper 

[3]. Reacting flow simulations are carried out for referee combustor with liquid fuels using the 

Eulerian-Lagrangian approach with the large eddy simulation turbulence model using the 

CONVERGE code [1-3, 50, 80]. Combustion is treated using finite rate chemistry with Compact 

and HyChem kinetic models and laminar closure for turbulence-chemistry interactions (well-

stirred reactor assumption). Flamelet generated manifold combustion model is also utilized for 

evaluating the flamelet approach on capturing the fuel sensitivity to lean blowout.  
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3. VALIDATION WITH EXPERIMENTS  

The adaptive mesh refinement based computational methodology and gird sensitivity for 

combustion calculations are validated with laboratory flames for which detailed measurements are 

available in the literature. The velocity and temperature measurements are not available in the 

realistic gas turbine combustor employed in this research for detailed validation of the combustor 

flow field. The material presented in this chapter is obtained from the author’s published papers 

[47-49].  

 Test case 1: PARAT pilot stabilized flame 

The material discussed in this section is obtained from the author’s paper [49]. The details 

on the test case1 are also given in [47, 49, 91]. Emissions regulations and depletion of fossil fuels 

have motivated research on developing fuel flexible, efficient, reliable and low emission engines 

for energy and propulsion applications [47, 49]. Lean premixed combustion with Exhaust Gas 

Recirculation (EGR) is a promising technique to reduce the NOx emissions and the CO2 capture 

cost in power plants [92-94]. Mitsubishi Heavy Industries (MHI) demonstrated up to 40% NOx 

reduction using EGR for a lean premixed combustor at a fixed combustor outlet temperature of 

1700°C [95]. The main challenges associated with EGR are flame instability and lean blowout 

[96]. Understanding the effects of EGR on premixed flame structure, operability and emissions is 

an important topic of research. Among many species in the exhaust,  CO2 is known to have a 

significant impact on the flame structure, stability and emissions [97-101]. According to the 

literature on laminar premixed flame studies [100, 101], CO2 dilution can influence the flame 

structure through thermal, kinetic and transport effects. The kinetic effects are predominant in 

determining the flame stability limits for a gas turbine combustor.  

The material discussed in this section is obtained from the author’s paper [49]. Extensive 

experimental studies on premixed methane/air flames with CO2 dilution have been reported in the 

literature because of an increased interest in combined power plants with EGR and CO2 capture 

[47, 49]. Han et.al [102] reported temperature measurements using dual pump vibrational coherent 

anti-Stokes Raman scattering (CARS) and velocity profiles measurements near the nozzle exit 

using particle image velocimetry (PIV) in methane/air turbulent premixed flames with CO2 
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dilution. These experiments were carried out at atmospheric pressure and temperature. The thermal 

and transport effects were minimized by operating the flames nearly at constant Reynolds numbers, 

Lewis numbers, and adiabatic flame temperatures. Reynolds number is defined based on the nozzle 

exit diameter (d), bulk velocity (U), and mixture density (ρ), and viscosity (μ). Lewis number is 

the ratio of thermal diffusivity to mass diffusivity of the mixture at the nozzle exit. One of the 

objectives of their study was to understand the kinetic effects associated with CO2 dilution on the 

turbulent premixed flame structure. They observed that with increasing CO2 dilution: (a) mean 

flame length increased, (b) turbulent burning velocity decreased while combustion intensity 

increased, (c) departure from the universal flame brush structure and (d) collapse of RMS vs mean 

temperature onto a single curve for all three conditions (0%, 5% and 10% CO2 dilution). Han et.al 

[103] also investigated the turbulent flame structure and burning velocity through 9 kHz OH planar 

laser-induced fluorescence (PLIF) for identical test conditions as in Ref. [102]. The reduction in 

laminar flame speed with increasing CO2 dilution resulted in a wider distribution of unburned 

reactant pockets in the flame. The authors observed that the consumption speed of the fine-scale 

unburned reactant pockets is higher than the unstretched laminar flame speed. The CO2 dilution 

affected the flame surface density and the mean progress variable distribution in a consistent 

manner. Reuter et.al [97] performed OH planar laser-induced fluorescence measurements in 

methane/air flames with CO2 dilution to study the kinetic, thermal and transport effects. Reuter et 

al also analyzed the relative importance between these effects on the turbulent burning velocity, 

flame surface density, flame wrinkling, and progress variable. Kobayashi et.al [104] investigated 

the effect of CO2 dilution at elevated pressure (1 MPa) and temperature (573 K) in CH4/Air 

turbulent premixed flames using OH-PLIF measurements. Reported OH PLIF data were consistent 

with those shown in the literature. CO2 dilution resulted in a decrease in turbulent burning velocity 

and an increase in the flame length. The mean volume of the turbulent flame region increased with 

CO2 dilution because of the reduced scales of wrinkling and reduced local burning velocities. 

Kobayashi and coworkers [104, 105] also observed that CO2 dilution can suppress combustion 

instabilities possibly because of the enlarged turbulent flame brush.  

The material discussed in this section is obtained from the author’s paper [49]. The 

literature review on CFD studies for premixed flames is also given in [47, 49, 91]. There is 

extensive literature on large eddy simulations of turbulent premixed jet flames with a co-flow and 

hot gas as a pilot [106-112]. Large eddy simulations (LES) of lean premixed combustion with EGR 
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are needed to gain an improved fundamental understanding of the physicochemical processes 

affecting the flame structure, the combustion stability, and the pollutant formation. Comparisons 

of the results of the LES models of lean premixed combustion vis à vis the structure, stability, and 

emissions with experimental data are important for assessing their predictive capabilities. Duwig 

et.al [54] reported LES simulations of premixed jet flames stabilized by a pilot using finite rate 

chemistry and LES turbulence model. The authors found that a skeletal mechanism of 20 species 

showed good agreement with experimental data for velocity, temperature, and species mass 

fractions. LES has the potential to be used for designing low emission gas turbine engine 

combustors with EGR to reduce cost and time during the industrial development cycles.  

Validation of LES results using detailed experimental data aimed at gaining a fundamental 

understanding of chemical kinetics effects in a turbulent environment consisting of non-premixed 

regions, changes in fuel hydrogen content, and changes in dry EGR based CO2 concentrations is a 

logical next step. The experiments by Han et.al [102] utilized for LES simulations in the present 

study are unique because these were designed to study the kinetic effects of CO2 on the flame 

structure by matching the Reynolds numbers, Lewis numbers and adiabatic flame temperatures.      

The material discussed in this section is obtained from the author’s paper [49]. The overall 

objective of this study is to conduct LES simulations of H2 piloted methane/air lean premixed 

turbulent flames stabilized on the PARAT burner with CO2 dilution [47, 49].  The specific 

objectives are:   

(1) compare LES results with measurements of mean and RMS profiles of temperature and 

velocity; 

(2) utilize the species and temperature distributions to identify the flame structure; and 

(3) study the effects of non-equilibrium chemistry on the species distributions. 

3.1.1 Non-reacting simulation 

 The material discussed in this section is obtained from the author’s AIAA conference 

paper [47]. The computational domain for the non-reacting flow simulations is shown in Figure 

3.1. This model consists of all components of the burner as it is in the test hardware. The bluff 

body, the turbulence generation plates and the annular gap for pilot hydrogen flow are all simulated 

[47]. The domain for the free jet region is 60D in the axial direction and 32D in the radial direction. 

Mass flow boundary conditions with a specified mass flow rate normal to the boundaries are used 
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at the air inlet, fuel inlet, and pilot inlet boundaries. No-slip and adiabatic boundary conditions are 

used for all walls. Pressure boundary conditions with atmospheric pressure are specified along all 

open boundaries surrounding the free jet. An outflow boundary condition with atmospheric 

pressure is used for the outlet at the top. A computational grid consisting of 8 million cells is used 

for non-reacting simulations and the mesh on z = 0 plane is shown in Figure 3.2.  

 

 

 

Figure 3.1. Computational domain for Non-Reacting simulations[47] 
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Figure 3.2. The mesh and three magnified x-y plane sections of it at z=0 for non-reacting flow 

simulations with adaptation based on the instantaneous velocity gradients[47] 

 

The material discussed in this section is obtained from the author’s AIAA conference paper 

[47]. The contours of axial velocity on z=0 (burner center plane) from non-reacting RANS 

simulations are shown in Figure 3.3[47]. These contours show the wake region behind the 

cylindrical bluff body, deceleration of the flow in the divergent section, flow acceleration through 

small holes in both the turbulence generation plates and in the converging section. A quantitative 

comparison of axial velocity with hot wire anemometer measurements is shown in Figure 3.4 at 

y/d=1, 2, 3, 4 and 5. The current results with the RNG k-Ԑ model match reasonably well with the 

experimental data at all five locations. The presence of a second turbulence generation plate at 30 

mm upstream the nozzle exit induces a central peak in the velocity profile at the nozzle exit as 

observed from both the measurements and the computations. The reduced mass flow through holes 

near the wall due to the displacement boundary layer effects leading to more mass flow and 

momentum through the center holes results in a unique profile captured by the present 

computations.  The velocity and turbulence kinetic energy profile at the nozzle exit are extracted 

from the non-reacting simulation and used as inlet boundary condition for the reacting LES 

simulations.  
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Figure 3.3. Contours of Axial velocity profile on the center plane of the burner[47] 

 

 

Figure 3.4. Radial profiles of axial velocity [47] 
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3.1.2 Reacting simulation 

The material discussed in this section is obtained from the author’s AIAA conference paper 

[47]. The premixing section is excluded in the reacting LES simulations to enable using very fine 

mesh in the jet flame regions and to save computational time[47, 49]. A computational domain of 

size 60D in the axial direction and 32D in the cross-stream direction is considered for reacting 

flow and included a small portion of the burner and pilot hydrogen inlet. The mesh is adapted with 

5 levels of refinement based on local instantaneous temperature and velocity gradients to resolve 

the flame structure in the present LES simulations. Two different meshes with total cell count of 

10 million (minimum cell size 0.3125 mm) and 15 million (minimum cell size 0.25 mm) were 

evaluated to study the sensitivity of prediction to the mesh resolution. A sample of mesh refinement 

added by AMR is shown in Figure 3.5. It is clearly seen that grid resolution is automatically added 

to resolve the complex flow behavior in regions near shear layer and flame front while leaving the 

remaining grid coarse to minimize simulation time. 

The material discussed in this section is obtained from the author’s AIAA conference paper 

[47]. The mean velocity contours from reacting LES simulations are shown in Figure 3.6 [47, 49]. 

The burner and the pilot flame profiles are marked with a white rectangle at the bottom and the 

mean velocity contours with the maximum represented by the burner exit velocity (red) and the 

minimum represented by the surrounding quiescent flow (blue) are depicted with a color pallet 

separated by ~2 m/s. The present Cartesian coordinate system did not involve an assumption of 

axial symmetry and the excellent symmetry observed in Figure 3.6 resulted from the calculation 

themselves.  The figure shows a symmetric potential core around the computationally inferred axis 

and an axisymmetric shear layer within which the velocity decays to the surrounding value.  Subtle 

changes in the axial velocity decay are observed by the emergence of a region of approximately 

20% lower axial velocity which recovers back to the exit value probably because of the heat release 

leading to lower density.  The decrement in the peak axial velocity continues because of the radial 

spreading of the jet countered by the decrease in density caused by the heat release. This continues 

until the flame tip is reached beyond which the velocity decreases more rapidly because of the 

annular spread.  The reacting flow measurements of the mean and RMS axial velocity and the 

turbulence intensity at the burner exit are shown in the panels on the right and agree with the 

computations not surprisingly so because of the proximity of the measurement station to the jet 

exit.    
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Figure 3.5. The mesh in the x-y plane at z=0 for reacting simulations of PARAT with adaptation 

based on instantaneous temperature gradients[47] 

 

The material discussed in this section is obtained from the author’s AIAA conference paper 

[47]. Mean temperature profiles along the centerline are compared for two different meshes in 

Figure 3.7 [47, 49]. This plot shows that the computed mean temperatures are independent of the 

mesh size and hence the results for the 0.25 mm grid spacing are chosen for further analysis. 
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Figure 3.6. Reacting flow mean axial velocity contour and mean, rms axial velocity and 

turbulence intensity comparison at y/d=0.2[47] 

 
 

 
 

Figure 3.7. Mesh Sensitivity Study – Comparison of Mean temperature [K] profiles along the 

centerline. Contour plot corresponds to 0.25 mm case[47] 

 

The material discussed in this section is obtained from the author’s AIAA conference paper 

[47]. The instantaneous axial velocity (y-component) and radial velocity (x-component) on z=0 

plane are shown in Figure 3.8 [47, 49]. Similar to the mean axial velocity, the instantaneous 

velocity depicts a decay from the peak value of 12 m/s.  However, the direction of decay in case 

of the instantaneous velocity is not necessarily axial but also radial and azimuthal depending on 

the time and location.  The jet also shows multiple scales of departure from axisymmetric including 

an overall swag and multiple scales that appear to be multiples of the largest fluctuation scale.  The 

existence of a semi-organized structure of the flow field is confirmed by the radial velocity 

component which also shows remarkable overall symmetry but significant local departures from 
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an axisymmetric flow field.  The two velocity profiles clearly show the presence of streamwise 

and cross-stream vorticity that is a characteristic of turbulence.  The instantaneous distribution of 

vorticity magnitude shown in Figure 3.9 depicts a wide range of vortex structures.  Plotted to a 

scale limited to a relatively small maximum value of vorticity magnitude the flow shows a rich 

content as seen in the left-most panel.  This richness declines rapidly if the scale is expanded by a 

factor of 10 and only an order of magnitude fewer structures remains visible.  Finally, at a factor 

of 10 larger magnitudes a few structures with strong vorticity magnitudes remain and these are the 

structures supporting rapid mixing of products and reactants and heat release.   

 

 

Figure 3.8. Instantaneous axial velocity (m/s) (left) and instantaneous radial velocity (m/s) (right) 

 

 

 

Figure 3.9. Instantaneous vorticity magnitude (1/s)  

 

The material discussed in this section is obtained from the author’s AIAA conference paper 

[47]. The isosurface of the second invariant of the velocity gradient tensor (also called Q-criterion) 
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is used to visualize the vortex structures [47, 49, 113-115].  These structures are shown in Figure 

3.10 with the color pallet linked to the local temperature value.  Clearly, the highest values of the 

second invariant of vorticity occur within the shear layer near the jet exit and near the flame tip 

region.  A longer and wider flow region now are included in the description of the vortical flow 

and many larger size structures with lower energy per unit volume appear in the flow field.  Any 

flow field can be separated into a potential and a vortical component. The divergence of the 

potential component is zero in nonreactive flows and represents a quantity proportionate to the 

heat release rate per unit volume in the reacting flows.  The divergence is plotted to two different 

scales in Figure 3.11.  The left panel magnifies the value of the heat release rate in specific regions 

and the right panel focuses on the region of intense heat release by increasing the maximum value 

of the scale by a factor of 30.  Now the thin flamelet regions become quite clear but do not rule 

out the importance of many regions with smaller heat release rate per unit volume but a larger 

volume of such a release.   

 

 

Figure 3.10. Iso-surface of second invariant of velocity gradient tensor (Q-criterion) for 

visualization of vortex tubes Left: Q = 100000 s−2 Middle: Q = 10000 s−2 Right:  Q = 1000 s−2. 

Colored by instantaneous temperature[47] 
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Figure 3.11. Divergence of instantaneous velocity (1/s) [47] 

 

The material discussed in this section is obtained from the author’s published paper [47, 

49]. Mean temperature profiles along the centerline are compared with the experimental data for 

the flames in Figure 3.12[47, 49].  The LES results and the CARS data show an agreement of the 

mean temperatures for the three flames within a range of 6 K for the best and 26 K for the worst.  

The increase in the mean temperature along the axis is captured within similar error bars until the 

peak flame temperature is reached.  The experimentally observed locations of the peak temperature 

for the three flames are 93, 113, and 133 mm respectively.  The computed locations of peak 

temperatures for the three flames are 95, 111, and 120 mm respectively.  The agreement for the 

first two flames is outstanding while the agreement for the third flame is not as good within 

experimental uncertainty.  The decay in the mean temperature beyond the peak temperature points 

is somewhat over predicted for the flame with 0% CO2 but captured satisfactorily for the flames 

with CO2 addition. The computed and measured RMS of temperature along the centerline is shown 

in Figure 3.13.  The differences until one diameter from the exit may be attributed to the widely 

discussed limitations of CARS data at low temperatures [6].  The computations consistently show 

shorter distances of rapid increases in the RMS temperatures for all three flames.  The peak values 

of RMS temperatures are captured well for the 0% and 10% CO2 flames while the peak value is 

higher than the measurements for the 5% CO2 flame.      

 The material discussed in this section is obtained from the author’s paper [49]. Radial 

profiles of mean and rms temperature profiles at y/d = 1.94 and 5 are compared for 0% and 10% 
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CO2 cases in Figure 3.14 [47, 49].  Similar results are expected for the 5% CO2 case.  While neither 

the measurements nor the computations assume axisymmetric profiles in an a priori manner, both 

capture the expected symmetry in a remarkable manner.  However, significant quantitative 

differences between measurements and computations exist in the width of the temperature profiles, 

with the measurements showing remarkably narrower profiles than the computations.  At y/d = 

1.94, the differences could be attributed to the limited number of experimental data points.  

However, the differences in the width of the profiles at y/d = 5 may need further attention. The 

mean progress variable computed from LES is compared with PLIF and CARS data in Figure 3.15. 

The mean progress variable is computed based on temperature definition for the progress variable 

in CARS and LES. The one reason for the initial mismatch seen in Figure 3.15 could be attributed 

to the difference in the different minimum temperatures in both methods. The minimum 

temperature is measured as around 350K in the unburnt reactant zone which is at 300 K whereas 

in LES the minimum temperature is 300 K.   

The material discussed in this section is obtained from the author’s paper [49]. Taken 

together, the agreement between measured and computed mean temperatures and temperature 

profiles is strong enough to proceed with further analysis of flame structure [47, 49].  The turbulent 

premixed flame structure is analyzed following the pioneering work of Bray, Moss, and Libby 

[116-118].  One of the remarkable results of this theory is that in the thin flame limit, the 𝑇𝑅𝑀𝑆 is 

related to 𝑇𝑚𝑒𝑎𝑛  as:  TRMS = √(TMax − Tmean)(Tmean − Tmin ) . The relationships between the 

present measurements of RMS temperatures and mean temperatures along the axis and along a 

radius at two axial locations are shown in Figure 3.16 as symbols.  The results of the computations 

at the corresponding locations and for the corresponding flames are shown as lines labeled as LES.  

The collapse between the experimental data from the three flames and the computations results 

from the three flames is remarkable.  The departures of both, for all three flames, by almost equal 

magnitudes from the thin flame limit is also noted and suggest that the computations capture the 

combustion process and the effects of CO2 addition on the process remarkably well.   

The material discussed in this section is obtained from the author’s paper [49]. The 

encouraging agreement of the computed and experimental values of a parameter tied to the flame 

structure justifies a further examination of the details of the computational results particularly 

starting with important reaction steps involving the compounds of practical interest such as CO2, 

H2O and the corresponding minor species CO and H2 [47, 49].  The OH concentration is a good 



 

 

49 

 

indicator of heat release rates in flames and the effect of CO2 dilution on the heat release rates is 

compared in terms of mean mass fraction of OH contours for three flames in Figure 3.17. Given 

the importance of instantaneous temperatures to detailed reaction steps, instantaneous temperature 

distributions are shown in Figure 3.18Figure 3.17. The false-color plots present instantaneous 

temperature contours separated by 300 K in the range 500 K to 2000 K.  Details of the annular 

pilot flame and the flame attachment region, the cold potential core, the annular premixed flame 

are observed in the near burner region.  As the jets progress further the effects of turbulent 

fluctuations are clearly observed in all three cases.  Pocket formations and releases into the 

surrounding in the radial and the axial direction are notable.  The emergence of thin hot regions 

far from the nominal flame height defined by the peak mean temperature is obvious. 

The material discussed in this section is obtained from the author’s paper [49]. Figure 3.19 

to Figure 3.21 shows the contour plots of species mole fractions involved in the water gas shift 

reaction [47, 49].  For the species concentrations without CO2 addition, as expected there is 

similarity between the mole fractions of the major product species and the temperature.  In the top 

left panel, mole fraction profiles of H2O show the expected effect of the hydrogen pilot flame.  

Beyond the pilot flame, the H2O mole fractions range from 0 to 0.18.  The CO2 mole fraction varies 

from 0 to maximum of 0.122 while the CO and H2 mole fractions vary from 0 to 5(10-3) consistent 

with their minor species status in lean premixed flames.  How the ratio of these mole fractions 

compares with the equilibrium constant of the water gas shift reaction at the local temperature is 

one of the interesting questions.  This is taken up following a brief discussion of the changes in 

the profiles of CO2, H2O, CO and H2 observed with CO2 addition to the fuel stream.  As expected, 

the addition of CO2 and subsequent increase in temperature leads to its dissociation and increase 

in the mole fraction of CO and corresponding increase in the mole fraction of H2O.  The conversion 

of H2 to H2O leads to a decrease in the availability of H2 is expected to lead to a decrease in the 

reaction rates of all reactions because of the decrement of concentration of H atom from the system.  

Thus an indirect effect of CO2 addition involves increase in the potential for emission of CO as 

observed in the bottom panels of Figure 3.20 and Figure 3.21.  Clearly, there is a danger of 

increased emissions of CO with increasing EGR as is widely known in the community.  Using 

high hydrogen content fuels is one of the mitigating factors utilized in the industry. Future 

experimental and computational work along the lines of the present study should include a fuel 

mixture with high levels of hydrogen and CO2. 
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The material discussed in this section is obtained from the author’s paper [49]. Figure 3.22 

shows a contour plot of the equilibrium constant for the water gas shift reaction CO2 + H2 ↔ CO +

H2O  [47, 49].  As expected the equilibrium constant contour plots are very similar to the 

temperature contour plots, the former being a unique function of the later and independent of the 

individual equilibrium mole fractions of the species but only a function of a ratio of their products: 

Kp(T) =
XCO|eqXH2O|eq

XCO2|eqXH2|eq
.  The departure of the actual mole fractions of the species from equilibrium 

can be depicted by plotting the ratio: 
XCOXH2O

XCO2XH2
.for comparison.  Figure 3.23 shows such a ratio.  

Clearly, there are significant differences between the equilibrium constant and the ratio of mole 

fractions.  In fact, significant increases in mole fractions of CO higher than the equilibrium value 

are observed at most high-temperature locations.  A decrease in temperature promotes 

recombination but not to equilibrium values.  Insufficient time for completion of CO oxidation 

reactions provided by the rapid turbulent mixing and further slowing down of the reverse reaction 

because of external addition of CO2 for the EGR emulating flames leads to approximately 15% to 

30% super equilibrium CO concentrations.   

 

Figure 3.12. Mean temperature profile along the centerline of the jet for all 3 flame conditions 

[49] 
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Figure 3.13. RMS temperature profile along the centerline of the jet for all 3 flame 

conditions[49] 

 

 

Figure 3.14. Radial profiles of mean and RMS temperatures at different x/ds for flame 1 (0% 

CO2) and flame 3 (10% CO2) [49]. 
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Figure 3.15. Progress variable 

 

 

Figure 3.16. Mean temperature versus RMS temperature[49] 
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Figure 3.17. Mean mass fraction of OH showing thinner and longer reaction zone with CO2 

dilution 

 

 

Figure 3.18. Instantaneous temperature comparison for three flames 
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Figure 3.19. Mole fraction of H2O, CO2, CO and H2 for 0% CO2 case[49] 

 

 

Figure 3.20. Mole fraction of H2O, CO2, CO and H2 for 5% CO2 case[49] 
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Figure 3.21. Mole fraction of H2O, CO2, CO and H2 for 10% CO2 case[49] 

 

 

Figure 3.22. Equilibrium Constant for the instantaneous temperature obtained from JANAF 

tables for CO2 + H2 ↔ CO + H2O reaction[49] 
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Figure 3.23. Comparison of Ratio = XCOXH2O/XCO2
XH2

  for three flames[49] 

 

The material discussed in this section is from the author’s published paper [47, 49]. The 

computational results show excellent agreement with available experimental data for mean axial 

velocity, r.m.s axial velocity, mean temperature, and r.m.s temperature. The computational results 

captured the equality of the peak temperatures within uncertainty limits.  The computations 

correctly captured the experimentally observed increases in mean flame length. In summary, the 

CFD methodology based on a high fidelity LES turbulence model and detailed chemistry is able 

to capture the kinetic effects of CO2 dilution in turbulent premixed hydrogen stabilized methane/air 

jet flames.   

 Test Case 2: Volvo bluff-body stabilized flame  

The material discussed in this section is from the author’s AIAA conference paper [48]. 

The Volvo combustion system consists of a rectangular channel with an equilateral triangular bluff 

body-mounted spanwise to the flow. Air at a specified temperature is supplied as the oxidizer and 

gaseous propane is used as the fuel. The simulation domain of the Volvo test case is shown in 

Figure 3.24. The V-shaped triangular cylinder used as the flame holder has a height of D=4cm. 

The size of the computational domain is 22D, 3D and 2D in the streamwise, wall-normal and 

spanwise directions, respectively. The upstream length with respect to the back-face of the flame 
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holder is 5D. At the inlet, a premixed mixture of fuel-air is introduced at a constant mass flow rate 

of 0.2079 kg/s with a uniform velocity of 17.6 m/s. The fuel/air mixture is composed of premixed 

propane-air at a constant temperature of 288 K at an equivalence ratio of 0.62. The boundary zones 

for Volvo bluff body test case are shown in Figure 3.25 The operating conditions are shown in 

Table 3.1 and boundary conditions in Table 3.2. The computational grids for Volvo bluff body are 

shown in Figure 3.26 and Figure 3.27. 

 

 

Figure 3.24.Volvo Bluff Body for LES simulations[48]. 

 

 

Figure 3.25.Boundaries for the Volvo bluff body test case[48]. 
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Table 3.1.Operating conditions for Volvo test rig validation case[48]. 

 

 

Table 3.2. Boundary conditions for the Volvo test rig validation case[48]. 
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a. FGM (3mm) 
 

 

b. FGM (2.5mm) 
 

 

c. FGM (2mm) 
 

 

d. TFM (3mm) 
 

 

e. TFM (2.5mm) 
 

 

f. TFM (2mm) 
 

 Figure 3.26. Mesh at the centreline plane in FGM (a-c) and TFM (d-f) simulations for base mesh 

sizes of 3mm, 2.5mm, and 1mm. Each case has 3 levels of maximum AMR refinement [48]. 
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(a) FGM (3mm) 

 

 
(b) TFM (3mm) 

 

 
(c) FGM (2.5mm) 

 

 
(d) TFM (2.5mm) 

 

 
(e) FGM (2mm) 

 

 
(f) TFM (2mm) 

 

Figure 3.27. Adaptive mesh refinement in action in the wake region behind the Volvo bluff body 

[48] 

 

In this section, we discuss the grid-convergence study conducted with FGM and TFM 

combustion models in the LES framework [48]. The numerical results are compared to the 

experimental data. We also discuss the effect of numerical wall boundary conditions, namely 

adiabatic and iso-thermal walls, for an identical mesh setting. We present results for four different 

cases 

(a)  FGM: FGM simulation with the adiabatic wall for 3mm, 2.5mm and 2mm mesh 

(b) FGM-Wall BC: FGM simulations with adiabatic and fixed temperature wall (free-stream 

temperature) at 3mm base mesh. 
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(c) TFM FTF=7: TFM simulation with the adiabatic wall for 3mm, 2.5mm and 2mm mesh 

using a value of 7 for the flame thickening function. 

(d) TFM FTF=3(wake) TFM simulation with the adiabatic wall for 3mm and 2mm mesh using 

a value of 3 and 7 for the flame thickening function in the re-circulation zone and further 

downstream, respectively. 

Normalized mean axial velocity profile along the center-line is compared against the 

experimental data for the three mesh levels and for the two combustion models in Figure 3.28 [48]. 

FGM over predicts the value of centerline velocity further downstream. The centreline velocity 

predicted by TFM, with a value of the flame thickening function as 3.0, matches quite well with 

the experimental data as shown in Figure 3.28 (d). The effect of thermal boundary conditions on 

the top and bottom walls is simulated in this study and we find that the two numerical thermal 

boundary conditions have no significant impact on the results as shown in Figure 3.28 (b). This is 

easily explained from Figure 3.54 and Figure 3.55 which shows the presence of a layer of cold 

gases at almost freestream temperature close to the walls. TFM with thickening factor 7 predicted 

longer reattachment distance for the wake region. Reducing this factor to 3, a TFM simulation 

using a 3mm base mesh predicts similar results as _ne meshes (2mm) and results are almost grid 

convergent. The grid convergence is evident from sub-figures (d) in Figures Figure 3.28-Figure 

3.52. Turbulence intensity profiles along the centerline are shown in Figure 3.29. The turbulence 

intensity profile is over-predicted for all grid resolution with both FGM and TFM models. FGM 

and TFM models also tend to over-predict the anisotropy along the centerline. 

Radial profiles of mean axial velocity at different axial locations (x/D=0.375, 0.95, 1.53, 

3.75 and 9.4) are shown in Figure 3.30 to Figure 3.34 [48]. Although, the mean axial velocity is 

under-predicted at x/D=0.375 the results are nearly grid-independent. TFM model with a 

thickening factor of 3 in the wake region shows grid converged results at all locations. Radial 

profiles of mean Uy are shown in Figure 3.35 to Figure 3.39. These plots show nearly grid 

converged results for both combustion models except at x/D=0.95 and 1.53. Radial profiles of 

RMS values for Ux are shown in Figure 3.40 to Figure 3.44. Predictions show sensitivity to the 

grid up to y/D=±0.5 for both combustion models and after that the results are grid converged. 

Radial profiles for RMS values of Uy at different axial locations are shown in Figure 3.45. Similar 

to RMS predictions of Ux, results are sensitive to grid in the region up to y/D=±0.5 and beyond 

that, the results are grid-independent. TFM model predictions in-general look better compared to 
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FGM model. At x/D=9.4, both models show similar results for all grid resolutions and results are 

grid-independent. The mean temperature profiles at x/D=3.75, 8.75 and 13.75 are shown in Figure 

3.50 to Figure 3.52  respectively. Both combustion models show grid converged results for mean 

temperature. The radial profiles for mean CO mass fraction are shown only for FGM model with 

detailed mechanism in Figure 3.53. The FGM model predictions agree with experimentally 

predicted trends in the CO profiles and results are sensitive to the grid resolution. Because the 

chemical time scale of CO is much larger than that of C3H8, using models that include non-

equilibrium states would likely improve the prediction of CO level, i.e., unsteady flamelet model 

or detailed finite rate chemistry model. Since the current TFM simulations use two-step chemistry, 

the CO level is one order lower than the FGM results (didn't show). CO prediction would be 

improved if UCSD mechanism is used with TFM. Figure 3.54, Figure 3.56 and Figure 3.58 show 

the distribution of instantaneous temperature, mean streamwise velocity, and instantaneous 

vorticity from FGM and TFM simulations with different grid resolutions. Generally, the maxima 

of the mean streamwise velocity at the outflow boundary from FGM simulation is about 50% 

greater than that in the TFM simulation. A higher outflow velocity in the FGM simulations 

indicates a much higher overall heat release in the computational domain. From the plot 

instantaneous temperature in Figure 3.54, FGM case shows a “finer" (smaller scale) wrinkling of 

the flame downstream. This “fine" wrinkling of the flame front is likely due to the small vortices 

generated in the flame front as indicated by the large vorticity value in the flame front downstream. 

This could be due to a relatively large dispersion error generated at the flame front since the flame 

is under-resolved for the FGM case. Close to the bluff body, there is no fine wrinkling of the flame 

front which could be attributed to a higher grid resolution. For TFM cases, the flame front is well 

resolved which reduces the effect of numerical error. Moreover, as the flame front is thickened, its 

response to small-scale vortices is much smaller compared to an un-thickened flame. 

Since the grid resolution just downstream of the bluff body is higher compared to the mesh 

resolution further downstream, tested another set of TFM simulations with the thickening factor 

of 3 right after the wake while keeping thickening factor as 7 in the further downstream regions 

[48]. In this set of simulations, the results didn't show much difference between 3mm and 2mm 

base mesh, which further indicates the grid size for converged results is around 0.375mm (3mm 

base mesh with 3 levels of refinement). For TFM simulations with a thickening factor of 7 in all 

regions, the length of the recirculation zone predicted with a 3mm base mesh (Figure 3.28(d)) is 
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larger compared to the experimental data and the corresponding 2mm base mesh simulation. One 

should note that thickening the flame will recover the correct laminar flame speed, but the flame 

response to flow strain or vortices is changed. The larger is the thickening of the flame, the slower 

is the response to the flow. Even though the efficiency factor can make some corrections to the 

flame response, its accuracy will decrease with a large thickening factor. With adaptive mesh 

refinement in different regions, one could keep the thickening factor to be relatively small in 

regions with the high-velocity gradient or turbulent fluctuations, i.e., near the bluff body for this 

case. This helps the correct prediction of flame response to the flow field and at the same time 

keep the total cell count small. 

 

 

 

(a) FGM   (b) FGM-Wall BC  (c) TFM FTF=7   (d) TFM FTF=3(wake) 

 Figure 3.28. Centerline mean axial velocity Profile at z/d=0, y/d=0 [48]. 

 

 

(a) FGM   (b) FGM-Wall BC  (c) TFM FTF=7   (d) TFM FTF=3(wake) 

Figure 3.29.Centerline turbulence intensity profile at z/d=0, y/d=0 [48]. 
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(a) FGM   (b) FGM-Wall BC     (c) TFM FTF=7  (d) TFM FTF=3(wake) 

Figure 3.30.Transverse Mean Ux Velocity Profile on z=0 plane at x/D=0.375 [48]. 

 

 

 

(a) FGM   (b) FGM-Wall BC  (c) TFM FTF=7   (d) TFM FTF=3(wake) 

Figure 3.31. Transverse Mean Ux Velocity Profile on z=0 plane at x/D=0.95 [48]. 

 

 

 

(a) FGM   (b) FGM-Wall BC  (c) TFM FTF=7   (d) TFM FTF=3(wake) 

Figure 3.32. Transverse Mean Ux Velocity Profile on z=0 plane at x/D=1.53 [48]. 
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(a) FGM   (b) FGM-Wall BC  (c) TFM FTF=7   (d) TFM FTF=3(wake) 

Figure 3.33. Transverse Mean Ux Velocity Profile on z=0 plane at x/D=3.75 [48]. 

 

 

 

(a) FGM   (b) FGM-Wall BC  (c) TFM FTF=7   (d) TFM FTF=3(wake) 

Figure 3.34. Transverse Mean Ux Velocity Profile on z=0 plane at x/D=9.4 [48]. 

 
 

 

(a) FGM   (b) FGM-Wall BC  (c) TFM FTF=7   (d) TFM FTF=3(wake) 

Figure 3.35. Transverse Mean Uy Velocity Profile on z=0 plane at x/D=0.375 [48]. 
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(a) FGM   (b) FGM-Wall BC  (c) TFM FTF=7   (d) TFM FTF=3(wake) 

Figure 3.36. Transverse Mean Uy Velocity Profile on z=0 plane at x/D=0.95 [48]. 

 

 

 

(a) FGM   (b) FGM-Wall BC  (c) TFM FTF=7   (d) TFM FTF=3(wake) 

Figure 3.37. Transverse Mean Uy Velocity Profile on z=0 plane at x/D=1.53 [48]. 

 

 

 

(a) FGM   (b) FGM-Wall BC  (c) TFM FTF=7   (d) TFM FTF=3(wake) 

Figure 3.38. Transverse Mean Uy Velocity Profile on z=0 plane at x/D=3.75 [48]. 
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(a) FGM   (b) FGM-Wall BC  (c) TFM FTF=7   (d) TFM FTF=3(wake) 

Figure 3.39. Mean Uy Velocity Profile on z=0 plane at x/D=9.4 [48]. 

 

 

 

(a) FGM   (b) FGM-Wall BC  (c) TFM FTF=7   (d) TFM FTF=3(wake) 

Figure 3.40. Transverse Ux RMS Velocity Profile on z=0 plane at x/D=0.375 [48]. 

 

 

 

(a) FGM   (b) FGM-Wall BC  (c) TFM FTF=7   (d) TFM FTF=3(wake) 

Figure 3.41. Transverse Ux RMS Velocity Profile on z=0 plane at x/D=0.95 [48]. 
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(a) FGM   (b) FGM-Wall BC  (c) TFM FTF=7   (d) TFM FTF=3(wake) 

Figure 3.42. Transverse Ux RMS Velocity Profile on z=0 plane at x/D=1.53 [48]. 

 

 

 

(a) FGM   (b) FGM-Wall BC  (c) TFM FTF=7   (d) TFM FTF=3(wake) 

Figure 3.43. Transverse Ux RMS Velocity Profile on z=0 plane at x/D=3.75 [48]. 

 
 

 

(a) FGM   (b) FGM-Wall BC   (c) TFM FTF=7  (d) TFM FTF=3(wake) 

Figure 3.44. Transverse Ux RMS Velocity Profile on z=0 plane at x/D=9.4 [48]. 
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(a) FGM   (b) FGM-Wall BC  (c) TFM FTF=7   (d) TFM FTF=3(wake) 

Figure 3.45.  Transverse Uy RMS Velocity Profile on z/d=0 plane at x/D=0.375 [48]. 

 

 

 

(a) FGM  (b) FGM-Wall BC   (c) TFM FTF=7   (d) TFM FTF=3(wake) 

Figure 3.46.  Transverse Uy RMS Velocity Profile on z/d=0 plane at x/D=0.95 [48]. 

 
 

 

(a) FGM   (b) FGM-Wall BC  (c) TFM FTF=7   (d) TFM FTF=3(wake) 

Figure 3.47. Transverse Uy RMS Velocity Profile on z/d=0 plane at x/D=1.53 [48]. 
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(a) FGM   (b) FGM-Wall BC  (c) TFM FTF=7   (d) TFM FTF=3(wake) 

Figure 3.48. Transverse Uy RMS Velocity Profile on z/d=0 plane at x/D=3.75 [48]. 

 
 

 

(a) FGM   (b) FGM-Wall BC  (c) TFM FTF=7   (d) TFM FTF=3(wake) 

Figure 3.49. Transverse Uy RMS Velocity Profile on z/d=0 plane at x/D=9.4 [48]. 

 

 

 

(a) FGM   (b) FGM-Wall BC  (c) TFM FTF=7   (d) TFM FTF=3(wake) 

Figure 3.50. Transverse Mean Temperature Profile on z/d=0 plane at x/D=3.75 [48]. 
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(a) FGM   (b) FGM-Wall BC  (c) TFM FTF=7   (d) TFM FTF=3(wake) 

Figure 3.51. Transverse Mean Temperature Profile on z/d=0 plane at x/D=8.75 [48]. 

 
 

 

(a) FGM   (b) FGM-Wall BC  (c) TFM FTF=7   (d) TFM FTF=3(wake) 

Figure 3.52. Transverse Mean Temperature Profile on z/d=0 plane at x/D=13.75 [48]. 

 

 

 

(a) x/d=3.75                          (b) x/d=8.75                               (c) x/d=13.75 

Figure 3.53. Transverse Mean CO mass fraction Profile on z/d=0 plane with FGM [48]. 
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a. FGM (3mm) 
 

 

b. FGM (2.5mm) 
 

 

c. FGM (2mm) 
 

 

d. TFM, FTF=3 (3mm) 
 

 

e. TFM (3mm) 
 

 

f. TFM (2.5mm) 
 

 

g. TFM (2mm) 

Figure 3.54. Temperature distribution in FGM (a-c) and TFM (d-g). TFM simulations have FTF 

=7.0 for (e-f) and FTF= 3.0 for (d) [48]. 
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a. FGM (3mm) 
 

 

b. FGM (2.5mm) 
 

 

c. FGM (2mm) 
 

 

d. TFM, FTF=3 (3mm) 
 

 

e. TFM (3mm) 
 

 

f. TFM (2.5mm) 
 

 

g. TFM (2mm) 

Figure 3.55. Time averaged temperature contours in FGM (a-c) and TFM (d-g). TFM 

simulations have FTF=7.0 for (e-f) and FTF=3.0 for (d) [48].  
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a FGM (3mm) 
 

 

b FGM (2.5mm) 
 

 

c FGM (2mm) 
 

 

d TFM, FTF=3 (3mm) 
 

 

e TFM (3mm) 
 

 

f TFM (2.5mm) 
 

 

g TFM (2mm) 

Figure 3.56. Time-averaged axial velocity distribution in FGM (a-c) and TFM (d-g) simulations. 

TFM simulations have FTF=7.0 for (e-f) and FTF=3.0 for (d) [48]. 
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a FGM (3mm) 
 

 

b FGM (2.5mm) 
 

 

c FGM (2mm) 
 

 

d TFM, FTF=3 (3mm) 
 

 

e TFM (3mm) 
 

 

f TFM (2.5mm) 
 

 

g TFM (2mm) 

Figure 3.57.  Instantaneous velocity magnitude in FGM (a-c) and TFM (d-g) simulations. TFM 

simulations have FTF=7.0 for (e-f) and FTF=3.0 for (d) [48]. 
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a FGM (3mm) 
 

 

b FGM (2.5mm) 
 

 

c FGM (2mm) 
 

 

d TFM, FTF=3 (3mm) 
 

 

e TFM (3mm) 
 

 

f TFM (2.5mm) 
 

 

g TFM (2mm) 

Figure 3.58. Instantaneous vorticity magnitude in FGM (a-c) and TFM (d-g) simulations. TFM 

simulations have FTF=7.0 for (e-f) and FTF=3.0 for (d) [48]. 
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a FGM (3mm) 
 

 

b FGM (2.5mm) 
 

 

c FGM (2mm) 

Figure 3.59.  Instantaneous distribution of OH mass fraction in FGM simulations [48]. 

 

The grid convergence is studied for the premixed turbulent flame in a bluff body stabilized 

Volvo combustor using Flamelet Generated Manifold (FGM) and Thickened Flame (TFM) models 

in the LES framework on three grid resolutions of 3mm, 2.5mm and 2mm [48]. For all cases 

Adaptive Mesh Refinement adds further refinement, as needed, up to a maximum of 3 refinement 

levels, giving the smallest cell sizes of 0.375mm, 0.3125mm and 0.25mm for the three cases. The 

effect of the numerical wall boundary condition is also studied. The numerical results are compared 

against the experimental data and the major findings are outlined below: 

1. We show that the mean temperature profiles are grid converged for both combustion 

models, FGM and TFM, at a 0.3125mm smallest cell size (2.5mm base mesh and 3 levels 

of refinement). 

2. TFM shows a better match for axial velocity further downstream of the combustor (x=D 

> 4). This is attributed to a better resolution of the flame front in TFM cases due to flame 

thickening. The FGM model over-predicts the burn-rate/overall heat-release, leading to a 

higher velocity downstream. 

3. TFM with thickening factor 7 predicts a longer reattachment distance in the wake region 

for 3mm base mesh. Reducing the thickening factor to 3 in the region surrounding the re-
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circulation bubble for the 3mm case, the results match 2mm base mesh and show grid-

convergence. 

4. Mean quantities for temperature, axial velocity, transverse velocity show grid-independent 

whereas the RMS profiles are sensitive to the grid resolutions near the center-line up-to 

y=D = ±0.5. 

5. Trend-wise variations in CO profiles are predicted correctly with the FGM model but 

results show dependency on the grid resolution. 

6. The effect of numerical boundary condition for the wall, namely adiabatic and prescribed 

temperature, was found to be minimal. This is not surprising as the flame stays mostly 

away from the wall and the gas close to the wall is mostly at free-stream temperature. It is 

clear that the wall heating would be mostly dominated by radiation, which is not considered 

as part of this study. 
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4. NONREACTING SIMULATION  

The material presented in this chapter is obtained from the author’s AIAA conference paper 

[1]. Numerical simulations are first performed under the non-reacting conditions to calculate the 

flow-split through various parts of a realistic gas turbine combustor inclusive of swirler passages, 

dilution jets, and all effusion/slot cooling holes [1, 4, 119]. Numerical simulations including 

hardware details such as liners with effusion holes are challenging due to: (a) highly complex 

meshing of a large number of tiny effusion holes, and (b) requirement for an optimized robust 

mesh for a faster turnaround time to support engineering design calculations. With the goal to 

optimize turnaround time and accuracy, flow-split studies are carried out using steady-state 

Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES) approaches. The 

results help establish the efficacy of numerical simulations in the determination of combustor flow 

splits. The method used in the numerical calculation of component-wise flow splits involves 

closing all other passages except the one of interest while maintaining the pressure drop and is 

similar to the method used in the experiments. The total flow split, in turn, is estimated with all 

flow passages open, allowing for interaction with different flows. This study is aimed at 

establishing a computational method for capturing the flow-splits and the velocity fields which in 

turn are essential for predictive gas turbine simulations. 

 Determination of the number of cells across cooling holes 

The material presented in this chapter is obtained from the author’s AIAA conference paper 

[1]. Computing flow through tiny effusion holes requires knowledge of the mesh resolution needed 

for engineering calculations [1]. A fine mesh with a resolved boundary layer may be desirable but 

it also makes the CFD model computationally very expensive. A single sector of a combustor can 

have 1000-2000 effusion holes which would not only need a huge number of boundary layer cells 

(10-20 million) but the meshing itself is very challenging. The sharp corners at the inlet and outlet 

of each hole pose a big challenge for the meshing tools and a compromised mesh also affects the 

robustness of the solver.  Hence, it is imperative to find the balance between computational time 

and accuracy which can offer a fast and robust engineering solution to serve the gas turbine 

industry. To address this problem, a separate validation exercise is undertaken for flow through a 
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single hole with law-of-the-wall boundary condition instead of a no-slip wall. The single hole with 

crossflow on both ends is representative of an effusion hole. The study will help validate the 

efficacy of the law-of-the-wall boundary condition and also help understand the minimum mesh 

resolution needed for accuracy. The methodology is validated against an independent experiment 

that mimics the flow through an effusion hole of a combustor. Experimental data are available for 

the discharge coefficient (Cd) for a cylindrical film hole at different inclination and orientation 

angles with respect to crossflow, over a wide range of internal and external flow conditions[26]. 

 

Figure 4.1. Computational domain and boundary conditions for a single hole study [1]. 

 

 

Figure 4.2. Computational grid for Cd sensitivity study. FE stands for Fixed Embedding [1]. 

 

The material presented in this chapter is obtained from the author’s AIAA conference paper 

[1]. The test case chosen for this study is a 10 mm hole with a 30° inclination angle and 0° 

orientation angle and is shown in Figure 4.1. Inflow total pressure is 111.45 kPa and temperature 
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290K. The outflow static pressure is varied to get different crossflow Mach numbers at the inlet of 

the hole. The cross-flow Mach number on the exit side of the hole is zero with temperature set to 

290 K and outlet static pressure 1 atm. The two base cell sizes considered in this study are 4 mm 

and 2 mm [1]. For a fixed base cell size, the mesh in the hole region is varied by adding a fixed 

embedding (FE), using AMR based on second gradients of velocity and Y+ to get different mesh 

resolutions to understand the sensitivity on computed discharge coefficient. Figure 4.2 shows the 

mesh at each refinement level for both base mesh sizes and the corresponding total cell count.  All 

single hole studies are carried out using the RANS and k − ϵ turbulence model.  

The material presented in this chapter is obtained from the author’s AIAA conference paper 

[1]. Steady-state RANS results are compared against the experimental data for a single hole 

discharge coefficient (Cd) with different mesh resolutions as shown in Figure 4.2 [1]. These results 

correspond to a pressure drop of 10% across the hole. The computed Cd results are plotted as a 

function of hole inlet cross-flow Mach number (Mc). RANS models underpredict the value of Cd 

up to an inlet crossflow Mach number of Mc < 0.25 and then it over predicts. The sharp decrease 

in Cd is observed in the experiments after Mc > 0.3 which is not captured with the RANS model. 

A similar conclusion is reached in[120]  where the authors use 50 cells across the holes and try to 

resolve the boundary layer. As the inlet cross-flow Mach number increases, the size of the 

separation bubble at the hole inlet also increases causing deviation in the Cd prediction. The RANS 

k − ε realizable model is over predicting the separation bubble size with Mach number, resulting 

in a slightly lower Cd values. The results show grid independence with cell size of around 2 mm 

for a 10 mm hole. This corresponds to 5 cells across the 10 mm cylindrical hole. Refining the mesh 

further by decreasing smallest cell size does not have much impact on the prediction of Cd. On the 

other hand, additional refinement increases the total cell count and therefore, total computational 

time. The observation from this study is that it may be difficult to capture the detailed flow physics 

inside individual cooling holes with “law of the wall” approach near wall and fewer computational 

cells but the approach is reasonably sufficient for computing nearly accurate mass flux and 

direction for engineering calculations in complex industrial geometries with an added advantage 

of faster run-times and robust meshing.  
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Figure 4.3. Mesh sensitivity results for the coefficient of discharge for a single hole study with 

RANS model [1]. 

 Flow rate calculations through swirler passages (component-wise)  

The material presented in this chapter is obtained from the author’s AIAA conference paper 

[1]. Mesh sensitivity study is carried out using steady-state RANS with all swirler passages open 

while dilution, effusion, and film cooling holes are sealed off [1, 4]. For this arrangement, only the 

total flow rate is available from the experimental data for comparison. The computed total flow 

rates are compared for different mesh resolutions in Table 4.1 and it is observed that the total flow 

rate is matching well with experimental data with a maximum deviation of 1.62% for the coarse 

mesh case. All passages show grid convergence for flow rate calculations. Based on this study, a 

maximum cell size of 3 mm and a minimum cell size of 0.375 mm are chosen for component-wise 

flow split calculations. For the component-wise flow split study, a comparison between the 

experimental and computed results is presented in Table 4.2 [4]. Figure 4.4 shows a bar chart 

comparing the swirler flow splits with the experimental data. Computed results are in excellent 

agreement with experimental data for outer axial, inner axial and radial swirlers [4]. Both RANS 

and LES underestimate (by about 22%) the order of magnitude smaller swirler cooling flow [4].  

However, the flow splits contributing to over 95% of the total flow are captured accurately by both 

computational models [4].   
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Table 4.1. Flow splits comparison for an experimental total flow rate of 31.8 g/s for swirlers (all 

passages open) with RANS for a maximum cell size of 3 mm and different mesh resolution [1]. 

Flow passage Flow rates (g/s) 

Total Cells (Millions) 10 21 35 

Outer Axial Swirler 14.1 14.0 14.01 

Inner Axial Swirler  10.4 10.2 10.2 

Radial Swirler 6.8 6.7 6.7 

Cooling Holes 1.1 1.1 1.0 

Total 32.31 32.0 32.0 
        

The material presented in this chapter is obtained from the author’s AIAA conference paper 

[1]. The mean velocity magnitude contours are plotted for swirler passages in Figure 4.5 [1]. Flow 

from the outer axial swirler turns 90° just after exiting the swirler and flows along with the 

deflector plate and then turns axially near the liner and flow along the liner walls. Airflow through 

inner axial swirler flows inward close to the exit and it expands radially outwards as it exits the 

swirl cup and enters the combustor. Air from radial swirler flows along the walls of the swirler 

cup and exits radially outwards into the combustor. Swirler flow behavior changes when there is 

flow through all the passages as it is seen in the velocity contours at the bottom panel of Figure 

4.5. The interactions between the airflow from each passage make the overall flow exit the swirl 

cup radially outwards and not along the deflector plate.  

Table 4.2. Comparison of component-wise swirler flow rates with experimental data for 10 

million cells [1]. 

  Measured Present Work  Erdmann et.al[19]  

  RANS) Computed (LES)  RANS 

  g/s % g/s % g/sec % g/s % 

Outer Axial Swirler 13.35 41 13.36 41 13.25 41 13.61 42 

Inner Axial Swirler  10.08 31 10.30 32 10.36 32 10.36 32 

Radial Swirler  7.60 23 7.58 23 7.61 23.5 7.16 22 

Swirler Cooling Holes 1.51 4.7 1.16 3.6 1.18 3.6 1.23 3.8 
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Figure 4.4. Comparison of component-wise flow splits for swirler passages for 10M cells [1, 4].  

 Flow rate calculations through all passages on the combustor liners 

The material presented in this chapter is obtained from the author’s AIAA conference paper 

[1]. RANS model is evaluated for a total cell count of 10 million with a maximum cell size of 3 

mm and a minimum cell size of 0.375 mm [1, 4]. The LES model is evaluated for a total cell count 

of 10 million and a total cell count of 21 million. The LES results for the two different meshes 

show grid convergence for flow splits. Both RANS and LES estimate similar flow split for total 

swirler, total dilution, and total effusion flow and comparison with experimental data and previous 

literature in Figure 4.6. Total swirler flow is overestimated by 19% with the coarse mesh and by 

17.6% with the fine mesh; total dilution flow is overestimated by 14% with the coarse mesh and 

9% with the fine mesh, and total effusion flow underestimated by 11.7% with coarse mesh and 

10.6% with fine mesh [1, 4]. The differences between experiments and computations can be 

attributed to the interactions between the flows from multiple passages, numerical errors associated 

with model limitations and also three systematic errors associated with the experimental procedure 

[20] in arriving at the experimental flow rates at the near LBO stable condition [1, 4].  
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Figure 4.5. Mean velocity (m/s) contours for swirler flow paths: RANS (left) and LES (right) for 

10 million cells [1]. 

 

 

Figure 4.6.Comparison of combustor flow splits [1]. 
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 Figure 4.7.LES time-averaged velocity (m/s) components on mid-plane for 10 million case (all 

passages open) [1, 4]. 

 

The material presented in this chapter is obtained from the author’s AIAA conference paper 

[1]. The mean velocity components on XY-plane at Z=0 (center) plane are shown in Figure 4.7 [1] 

[1, 4]. The axial velocity contours on the top panel clearly show the flow recirculation region at 

the center of the primary zone, higher velocity in the shear layers and flow acceleration in the 

convergent section. The middle panel for Y-velocity contours shows positive velocity for flows 

aligned in the positive Y-direction and negative for flows aligned in the negative Y-direction. The 

bottom panel for Z-velocity clearly shows the clockwise (looking from the exit) rotation of the 

swirling flow in the primary zone. The mean velocity magnitudes on the XY-plane at Z=0 are 

shown in Figure 4.8 [1, 4]. Air flows through all swirler passages interact resulting in a radially 

outward airflow entering the combustor. The primary dilution holes result in the highest velocities 

and their impingement leads to local flow reversals in this cross-section.  The bending of the cross 

jets in the streamwise direction is observed. However, the dilution jets have a high enough 

momentum to impinge upon each other. A relatively low-velocity region exists beyond the cross-
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flow jets and the primary zone. Flow is accelerated as it passes through the convergent section. 

The flows from the effusion holes form a film on the liner walls and pass along the wall. While 

the overall flow field seen in Figure 4.8 is highly symmetric around the X-axis, small dis-

symmetries observed in the experiments are also captured in the results of the simulations. For 

example, the measured angles of the cross-jets are 13 and 14 degrees while the computed angles 

of the cross-jets are 12 and 13 degrees respectively.  While these comparisons are encouraging, 

more quantitative measurements of velocities and other detailed flow features are proposed for 

comparison with the LES results [1, 4].    

 

Figure 4.8. LES time-averaged velocity magnitude (m/s) on mid-plane with velocity vectors for 

10 million cells (all passages open) [1, 4]. 
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The material presented in this chapter is obtained from the author’s AIAA conference paper 

[1]. The primary zone aerodynamics and the air-fuel ratio play a major role in achieving the desired 

combustion characteristics and flame stability over a wide range of operating conditions [1, 4]. 

The two counter-rotating large scale recirculation zones observed in the primary zone are created 

by a combination of the swirler airflow and the opposed primary dilution jets as shown in Figure 

4.8. When the flow is reacting, a portion of the hot products is entrained back into the unburnt 

mixture.  These entrained products lead to the ignition of the incoming mixture. The swirl 

components imparted to the air by the hybrid swirler produce high turbulence, strong shear regions 

with rapid mixing rates [1]. The combustor aerodynamics in the primary zone and the first set of 

cross jets control the size and shape of the flame stabilizing counter-rotating vortices.  The flow 

downstream of the primary zone is affected by the secondary cross jets, cooling holes, and their 

interactions. The computed flow features with the present methodology agree qualitatively with 

the established literature [1, 14].  

The material presented in this chapter is obtained from the author’s AIAA conference paper 

[1].  Detailed flow rate calculations are presented for component-wise as well as total flow splits 

for a complex combustor [1, 4]. RANS and LES models are employed with different mesh 

resolutions. A highly automated, on the fly meshing strategy, along with adaptive mesh refinement 

was used to demonstrate the feasibility of CFD modeling. The computational results are compared 

with non-reacting flow splits data from a complex combustor. It is observed that with the present 

meshing strategy of capturing the flow through effusion holes, a minimum of 5-8 cells per effusion 

hole is sufficient. The computed flow rates for individual passages at the actual test conditions are 

in good agreement with the experimental data. Grid sensitivity studies are reported for the 

combustor swirler configuration. The results for combustor total flow splits show under-prediction 

for the effusion flow and over prediction for dilution and swirler flows. Overall, the RANS, as well 

as LES calculations, capture similar flow splits compared to the experiments. Flow interaction 

effects between swirler and primary jets are observed to be significant in creating strong vortex 

structures with toroidal flow recirculation in the primary zone [1, 4].  
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5. LEAN BLOWOUT COMPUTATION AND ANALYSIS 

Lean Blow-Out (LBO) calculations for an alternative bio-jet fuel (C-1) and conventional 

fuel (A-2) are performed using Large Eddy Simulations (LES) methodology discussed in Chapter 

2 for a realistic gas turbine combustor [1-4, 47-49, 119]. The liquid spray is modeled with a 

Lagrangian approach, and finite rate chemistry is implemented using compact and HyChem 

reaction mechanisms developed for the A-2 and C-1 fuels [1-3]. The flamelet generated manifold 

model with a compact kinetic mechanism also implemented to demonstrate the fuel sensitivity to 

lean blowout with reduced computational time. Lean Blow-Out (LBO) conditions are reached by 

decreasing the fuel flow rate gradually in a stepwise manner. Four different kinetic mechanisms 

and two combustion models are evaluated in this study. The LES results are analyzed in detail to 

understand the mechanism of LBO and key markers for identification of the incipient LBO 

condition in a realistic gas turbine combustor. The material presented in this chapter is obtained 

from the author’s AIAA conference papers [2, 3] and project progress report [4]. 

 Lean blowout (LBO) simulation methodology  

The material presented in this chapter is obtained from the author’s AIAA conference 

papers [2, 3] and the project progress report [4]. LES simulations are carried out at a global 

equivalence ratio of 0.096, which was experimentally found to produce stable combustion [2-4]. 

From this condition, the fuel flow rate is reduced in a gradual stepwise manner with larger time 

steps first and progressively reduced flow rate reduction steps as evidence of impending blowout 

behavior is approached as shown in Figure 5.1. The simulations are run with a fixed global 

equivalence ratio for at least two flow-through times, estimated to be approximately 30 ms.  The 

fixed equivalence ratio is maintained beyond 30 ms if a quasi-steady heat release rate is not reached 

during either of those limits.  The heat release rate is used as a criterion for identifying the lean 

blowout.  The global equivalence ratio steps resulting from this process are plotted as a function 

of time in Figure 5.1 for fuel A-2 on the left-hand side and fuel C-1 on the right-hand side. 

Experimental data shown as red filled circles indicate that the C-1 fuel shown on the right-hand 

frame blows out at higher equivalence ratio than for the A-2 fuel (left-hand frame). 
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Figure 5.1. Staged fuel ramp down approach for LBO prediction. The red dot represents the 

measured lean blow-out global equivalence ratio [2-4].  

 Mesh sensitivity study 

The material discussed in this chapter is obtained from the author’s project progress report 

[4] and the author’s AIAA conference papers [2, 3]. The mesh sensitivity study is carried to 

understand the effect of mesh resolution on the computed LBO equivalence ratio for C-1 fuel with 

Won-Dryer compact mechanism [2-4]. The mesh details are shown in Table 5.1 and corresponding 

computed lean blowout global equivalence ratio is shown in Figure 5.3.  The 10M mesh evaluation 

under the reacting flow conditions showed that more than 95% of the turbulent kinetic energy is 

resolved in the combustor as shown in Figure 5.2. The volume integrated heat release rate is 

compared for different mesh resolutions in Figure 5.4. The stable heat release rate is noticed for 

both mesh resolutions at the near LBO condition showing stable flame corresponding to global 

equivalence ratio of 0.094 and then a decrease in heat release rate due to flame extinction at 0.092 

for both mesh resolutions. It is noted from this study that minimum mesh resolution of 0.375 mm 

and 0.1875 mm considered in this study yielded the same LBO global equivalence ratio.  

Table 5.1. Details of the minimum mesh resolution for establishing a mesh independent solution 

with a base size of 3 mm [2-4] 

Total Cells (Millions) 10 25 

Adaptive Mesh Refinement Level 3 4 

Min.Cell Size, mm 0.375 0.1875 
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Figure 5.2. The fraction of resolved turbulent kinetic energy (TKE) with a minimum cell size of 

0.375 mm and maximum cell size (base size) of 3 mm (total cell count is 10 million cells) [4].  

 

 

Figure 5.3. Effect of mesh resolution on the global LBO equivalence ratio for C-1 fuel [4]. 
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Figure 5.4. Effect of mesh resolution on the heat release rate for C1 fuel [4]. 

 Reacting spray comparison at near LBO stable flame condition  

The material discussed in this chapter is obtained from the author’s project progress report 

[4] and the author’s AIAA conference papers [2, 3]. Spray statistics are calculated from LES 

simulations at a stable operating point over a period of two flow-through times [2-4]. The 

averaging process over two flow-through times is started after the flame and heat release rate 

reached a quasi-steady state. Figure 5.5 shows the experimental [12] and predicted statistics of 

droplets with finite rate chemistry (FRC) and flamelet generated manifold (FGM) combustion 

models at four axial stations as a function of radial distance. The fuel spray exhibits a pattern with 

smaller diameter droplets near the hollow cone surface 10mm downstream of the nozzle exit. This 

distribution widens in the radial direction as we go towards the downstream locations with larger 

droplets towards the center and vice-versa. Both combustion models with LES are able to 

satisfactorily capture this trend for both the fuels. Better agreement with experiments is observed 

for the downstream locations. Axial and radial velocities increase away from the center and then 

decrease again with increasing spray cone angle. These trends are accurately captured for the near-

nozzle regions as well as in downstream regions for both fuels. Overall, the Lagrangian spray setup 

is able to accurately capture the spray breakup and evaporation. 
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A-2 (POSF10325) C-1(POSF11498)         

  

  

  

 

Figure 5.5.Spray statistics comparison with PDPA data [12] for a stable flame at ϕ = 0.096 [2-

4].  
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 Flame shape comparison at near LBO stable flame condition  

 

Figure 5.6. Line of Sight averaged mass fraction of OH from LES compared with experimental 

OH* from chemiluminescence [2-4].  

 

The material discussed in this chapter is obtained from the author’s project progress report 

[4] and the author’s AIAA conference papers [2, 3]. The OH* chemiluminescence data from UIUC 

experiments [12] is utilized to compare the line of sight averaged OH mass fraction from LES 

simulations with two combustion models [2-4]. They are reported for detailed, skeletal, reduced 

and compact mechanisms in Figure 5.6 alongside experimentally observed OH* 

chemiluminescence. The results from the compact, detailed, the skeletal and the reduced 

mechanisms are qualitatively similar. The experimental data (OH* chemiluminescence) and the 

results of the detailed mechanism calculations (OH) show a similar spread in radial and axial 

directions. It must be noted these comparisons are qualitative in nature. The experimental images 

are based on false color and do not indicate a quantitative measurement of the OH field. The 

horizontal position of 0 mm corresponds to the deflector plate. OH formation marks the high-

temperature heat release regions which extend 50 mm downstream of the deflector plate and also 

correspond to the downstream location of first row of dilution holes. This is the flame stabilization 

region of the swirl-stabilized flame. It exhibits a truncated cone shape with high regions of OH/heat 

release corresponding to the cone angle of the hollow spray cone. This indicates strong burning 

and heat release near the spray cone surface downstream of the swirl cup. The A-2 fuel exhibits a 

higher degree of asymmetry in OH* for this configuration and measurements. These regions of 

intense heat release are captured qualitatively by all the four chemistry mechanisms. The computed 
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flame shape with FGM combustion model shows stronger and larger reaction zone compared to 

FRC model. 

 The heat release rate from stable flame to lean blowout 

The material discussed in this chapter is obtained from the author’s project progress report 

[4] and the author’s AIAA conference papers [2, 3]. The evolution of heat release rates for each 

equivalence ratio and the two different fuels with finite rate chemistry combustion model and 

compact and HyChem skeletal mechanism are shown in Figure 5.7 [2-4]. The flame is observed 

to be stable for the first couple of milliseconds, this is followed by a steady decrease and eventually 

by a sharp drop in heat release rate for both A-2 and C-1 fuels. The heat release rates are allowed 

to reach a steady-state before the next step down. The evolution of heat release rates with FGM 

combustion model with mean heat release rate (dotted black line ) and ideal heat release rate (ideal 

heat release rate) are shown in Figure 5.8. 

 

Figure 5.7. Heat release rate with detailed chemistry simulations using FRC combustion model 

[2-4]. 
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Figure 5.8. Heat release rate with FGM combustion model and compact mechanism [4] 

 Global lean blowout (LBO) equivalence ratio 

 

Figure 5.9. Global LBO equivalence ratio comparison between experiments [6] and LES [2-4].   

 

The material discussed in this chapter is obtained from the author’s project progress report 

[4] and the author’s AIAA conference papers [2, 3]. The LBO trends computed with finite rate 

chemistry (FRC) model for both fuels are summarized and compared against experiments in Figure 

5.9 and Figure 5.10 [2-4]. C-1 blows-out at a significantly higher equivalence ratio compared to 
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A-2 in the experiments. This LBO dependence on the fuel physical and chemical properties is very 

complex. The simulations are able to capture qualitatively the trend in LBO for each fuel as well 

as their relative behaviors with compact and HyChem skeletal mechanisms.  

 

Figure 5.10. LBO Equivalence ratio comparison between LES  (detailed chemistry solver)  and 

experiments [2-4].  

 Combustion model sensitivity 

 

Figure 5.11. Effect of combustion model on the fuel sensitivity to the computed LBO global 

equivalence ratio [4]. 
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The Flamelet Generated Manifold (FGM) approach under the adaptive mesh refinement 

framework is assessed for fuel sensitivity to LBO predictions [4]. The Won-Dryer compact 

mechanism is chosen for this study. The FGM model successfully captured the fuel sensitivity to 

lean blowout with a 60% reduction in the computational time compared to the finite rate chemistry 

model. The computed velocity, temperature, and mean OH mass fraction contours are compared 

for FRC and FGM combustion models in Figure 5.12. The results with FRC model show pointed 

flame root and smaller reaction zone whereas FGM model results show stronger flame root and 

much larger reaction zone.  However, validation data from experiments would truly help for 

verification of the computational modal results and further enhancements. 

 

Figure 5.12. Comparison of temperature (filled contours), velocity (vectors), and iso-contour of 

mean mass fraction of OH = 5e-04 (black line) for C-1 fuel. 

 Flame structure analysis during LBO 

The material discussed in this chapter is obtained from the author’s project progress report 

[4] and the author’s AIAA conference papers [2, 3]. The swirl stabilized spray flame in gas turbine 

combustors are a result of highly coupled and unsteady processes that are difficult to quantify and 

measure [1-4]. Even though high fidelity experimental data is available, validated models can be 

used to gain further insights into such processes. These insights can further improve understanding 

of flame stabilization and key factors governing LBO limits. LES results from the HyChem 

skeletal mechanism are chosen for understanding the flame extinction process during the LBO for 
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both A-2 and C-1 fuels [2-4]. A qualitative analysis of the flame during LBO is presented in Figure 

5.13. Instantaneous temperature contour plots at the combustor mid-plane are shown on the left 

for both fuels and corresponding formaldehyde mass fractions are shown on the right. The primary 

recirculation zone corresponds to the region of intense heat release rate. These regions correspond 

to the high OH formation regions described in the previous section. For A-2 fuel, after the final 

step-down, at an equivalence ratio of 0.080, a lifted flame is observed to stabilize inside the swirler 

cup region between the 0 to 5 ms window. The formaldehyde is observed to form in the regions 

very near to the nozzle tip and follows the spray. It gets oxidized to form the high-temperature 

regions. As time progresses, the flame stabilization point starts to move in the axial direction and 

a remarkable shift in the CH2O regions is observed away from the nozzle tip. The heat release in 

the primary recirculation region decreases considerably by 15 ms with a considerable shift of 

CH2O formation in the downstream regions. Finally, the flame is observed to blowout by 25 ms. 

A similar trend is observed for the C-1 fuel, however, at a much higher global equivalence ratio of 

0.084. The C-1 fuel has significantly higher CH2O formation even at 0 ms and this will be analyzed 

further in the next section. From these plots, it can be summarized that overall the flame is observed 

to shift downstream as we approach LBO along with a downstream movement of intermediate 

species. The reduction of heat release rates and overall temperatures lead to partial oxidation of 

these intermediate species which shows up as a corresponding downstream shift in the contour 

plots. 

 

Figure 5.13. Instantaneous temperature [K] contour plots (left) at the combustor mid-plane and 

formaldehyde mass fractions (right) for A-2 and C-1 fuel during LBO [2-4].  
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The material discussed in this chapter is obtained from the author’s project progress report 

[4] and the author’s AIAA conference papers [2, 3]. To understand the flame stabilization and key 

factors governing LBO limits, species formation in the mixture fraction space can be analyzed 

during the LBO process [2-4]. For this analysis, only the primary flame stabilization region 

upstream of the first-row dilution holes, up to the nozzle tip is analyzed in the mixture fraction 

space. These are reported in Figure 5.14. The aim is to identify key markers or events that are 

universal in nature, with respect to different fuels, and these can be used to identify the onset of 

LBO. Each point in the T-Z space is colored by CH2O mass fraction. The red dotted line 

corresponds to the stoichiometric mixture fraction. These data points are also reported for the 

stable configuration at 0.096. We first consider the stable operating point for A-2. CH2O is 

observed to form in the rich regions in the temperature range of 1000-1600 K. This is similar to 

previous observations in high-pressure diffusion flames[121, 122]. These regions are subsequently 

oxidized in the high-temperature regions. After a series of step-downs in equivalence ratio to 0.080, 

we see that CH2O formation shifts towards the richer regions highlighted by the dotted lines. This 

shift indicates partial oxidation of the HC fuel due to a global reduction in heat release and 

corresponding temperatures.  

The material discussed in this chapter is obtained from the author’s AIAA conference 

papers [2, 3] and the author’s project progress report [4]. The C-1 fuel, on the other hand, indicates 

relatively higher CH2O concentrations in the rich regions even for the stable operating point [3, 4]. 

This is an early indication of partial oxidation and the likelihood of the flame blowing out at 

relatively higher equivalence ratios. As expected, as we reduce the equivalence ratios, 

formaldehyde formation shifts to the richer regions indicating partial oxidation and the flame 

subsequently blow out by 15 ms. The higher concentration of intermediates in the rich regions can 

be attributed to the lowered temperatures and a corresponding decrease in the oxidation rates of 

intermediate species. The reduction in HRR and overall temperatures further leads to a reduction 

in the overall evaporation efficiency and this finally leads to a blowout. The oxidation of the 

intermediate species to high-temperature radicals and saturated combustion products is the step 

that has a huge impact on the LBO limits. The high-temperature species formation, on the other 

hand, does not show such trends. Most of the OH formation occurs near the stoichiometric 

mixtures at high temperatures and continues to exhibit this pattern up to the blowout. 
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Figure 5.14. Temperature versus mixture fraction scatterplots for A-2 fuel (top) and C-1 fuel 

(bottom) sampled from the primary zone. Colored with CH2O mass fraction [3, 4]. 

 

 

Figure 5.15.  Temperature versus mixture fraction scatterplots for A-2 fuel sampled from the 

primary zone. Colored with OH mass fraction [3, 4]. 

 

The material discussed in this chapter is obtained from the author’s AIAA conference 

papers [2, 3] and the author’s project progress report [4]. The intermediate radical OH is formed 

in the high-temperature stoichiometric regions and does not shift with lower global equivalence 

ratios as shown in Figure 5.15 [3, 4]. This study showed that the trend of increasing concentrations 

of intermediate species in rich regions is an important marker during the LBO process. In this 

geometry, the swirler vanes are used to generate a swirling flow, and a subsequent breakdown of 

the vortex leads to the formation of a strong recirculation zone [3, 4]. This central recirculation 

zone (CRZ) facilitates the mixing and plays a key role in stabilizing the root of the flame. It 
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recirculates high-temperature products and radicals into the base of the flame and mixes them with 

the fresh reactants. Hence, this recirculation zone and the transience is studied to understand their 

impact on the LBO process. A central clip plane with mean temperature contours and streamlines 

are shown for both fuels in Figure 5.16. Temperatures from the primary zone (shown by the dotted 

red box) are isolated from the 3-D CFD domain and further filtered based on their axial velocities. 

The computational cells that have axial velocities in the negative direction are selected for analysis. 

As this is a non-uniform grid, these points are weighted with their respective cell volumes. These 

sets of points represent the recirculating fluid that flows from the high-temperature regions towards 

the base of the flame. Statistical analysis is carried out by generating a probability density function 

of the temperature distribution of these points and shown in Figure 5.17.   

  

Figure 5.16.  Mean temperature [K] contours for A-2 (left) and C-1 (right) with streamlines in 

the flame stabilizing primary zone at a stable flame condition with ϕ = 0.096 near the lean blow-

out point [3, 4]. 

 

The material discussed in this chapter is obtained from the author’s AIAA conference 

papers [2, 3] and the author’s project progress report [4]. The PDF of temperatures of the primary 

zone, recirculating fluid for A-2 and C-1 fuel at the stable flame configuration of 0.096 global 

equivalence ratio is shown as a solid red line in Figure 5.17 [3, 4]. At this condition, the 

temperature distribution of the recirculation zone shows a non-uniform, multi-modal distribution 

with a peak in the 500 K zone and major part of the distribution spread in the range of 1500 K – 

2300 K. This indicates that high temperatures are a major part of the recirculation zone and these 

play a significant role in stabilizing the flame. As we gradually reduce the global equivalence ratios, 

0.090, as well as 0.085 global equivalence ratios, represent a stable flame configuration with 

reduced heat release rates. These reduced fuel flow rates also exhibit a similar distribution; 

however, the distributions show more bias towards the low temperatures. In these simulations, the 

A-2 
C-1 
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flame finally blows out at the global equivalence ratio of 0.080. At this final step down, the 

distribution is observed to have shifted significantly. The second peak of the bimodal distribution 

corresponding to the high-temperature region is now at a significantly lower temperature compared 

to the previous equivalence ratios. As the flame finally approaches LBO, we observe that this 

distribution shifts towards the low-temperature region and merges into a delta PDF type of 

distribution. Thus, it is observed that, as the flame blows out, the recirculation zone cools down 

due to the decrease in overall heat release rates. This causes lower evaporation rates and further 

triggers a reduction in heat release leading to a cyclic process. This weakening of the recirculation 

zone is a key marker of flame stability. A significant shift in the PDF distribution of temperatures 

of the recirculating fluid can be marker for the start of LBO. In order to further test this hypothesis, 

the same analysis is carried out for the C-2 fuel which is observed to blow out at 0.084 in the 

simulations.  At the stable flame configuration, the PDF distribution is similar to A-2 with 

significant distribution in the 1500 K – 2300 K range. The other stable configuration of 0.090 also 

shows a similar distribution where the high-temperature points are in similar range. As the fuel 

flow is stepped down to 0.084 global equivalence ratio; the second mode shows a significant shift 

towards the low temperatures compared to previous equivalence ratios. As the flame blows out, 

the distribution becomes unimodal followed by a delta distribution after blowout. Overall, analysis 

of these CFD results indicates that if the recirculation zone temperature shifts beyond a certain 

value, the flame reaches an unstable configuration and blows out [3, 4].  

  

Figure 5.17.  The probability density function of the temperatures of the recirculating gases in 

the primary zone for A-2 fuel (left) and C-1 fuel (right) [3, 4]. 
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The volume-averaged temperature (T), equivalence ratio (Φ), YOH  and YCH2O  from the 

FGM simulations within the primary zone (shown in Figure 5.18) are plotted in Figure 5.19. For 

the near stable flame conditions, all the variables are decreased with time. The equivalence ratio 

decreases, the temperature and OH shift to lower values but the CH2O concentration increases due 

to partial oxidation during the LBO. A similar trend towards onset of LBO is observed in the 

experiments at Cambridge for a swirl stabilized laboratory combustor [123].  

 

 

Figure 5.18.  Primary zone sampling region for combustion process investigation during LBO. 
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Figure 5.19.  Evolution of the Volume averaged scalars in the primary zone of the combustor 

from stabale flame to complete lean blowout (LBO) process. 
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6. APPLICATION OF ARTIFICIAL INTELLIGENCE 

Modern gas turbine engines for propulsion and power applications are operated under lean 

combustion conditions to meet stringent emission regulations. However, lean combustion may 

introduce flame instabilities which may lead to a blowout defined as Lean blowout (LBO). LBO 

poses a major safety hazard in aviation engines. LBO is one of the most important figures of merit 

for certification of a gas turbine engine combustor and aviation fuels [5]. LBO prediction in a 

realistic combustor is a major challenge in the engine combustor design phase. This is due to a 

lack of reliable models that accounts for complex physicochemical processes involved in the 

combustion phenomena [124]. Potential solutions may include online engine health monitoring 

and diagnostics utilizing artificial intelligence (AI) techniques for real-time control to prevent 

catastrophic failures. The artificial intelligence-based data-driven model is investigated in this 

chapter for the identification of the incipient LBO condition for early warning to prevent engine 

failure. Two machine learning models are developed based on the following approaches for early 

warning of the LBO incipient condition: 

(1) Machine learning model based on a single point probe data: Optimal sensor location and 

identification of metric for scalars at these optimal locations for early identification of LBO. 

(2) Machine learning model based on spatiotemporal features: Identification of LBO incipient 

condition based on the spatiotemporal features within the primary zone. 

 Machine learning approach based on a probe data  

The various sensing approaches for LBO detection utilizing the acoustic, optical and 

pressure sensors have been investigated [125-128]. The sensor locations play a key role in the 

identification of the onset of LBO [125]. The sensor placement strategy currently is based on 

physical intuition and trial and error basis [125-129]. However, the LBO mechanism in the 

practical combustor is poorly understood due to the complex nonlinear interactions between 

chemistry, flow turbulence, spray evaporation and mixing, and radiation [24, 130, 131]. The 

limitations associated with measurements in practical combustors at high pressure and temperature 

pose further challenges in acquiring data for understanding the LBO mechanism [6, 7, 10, 20]. 
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Hence, there is limited literature on finding the optimal sensor locations and robust LBO detection 

criterion utilizing data-driven methods.  

Machine learning has found many applications in the field of combustion. The problem of 

LBO detection is discussed for simple laboratory-scale combustors using data-driven methods and 

machine learning techniques [40, 43, 132, 133]. These studies have utilized high-speed images, 

OH* chemiluminescence and pressure sensor data. High-fidelity numerical simulations of realistic 

gas turbine engine combustors under relevant conditions [1-3, 11]  can provide insights and the 

training datasets for machine learning models. The specific objectives of this section are: 

(1) development of a machine learning model for finding optimal sensor location; 

(2) analysis of conventional statistical measures for LBO detection; 

(3)  identification of a robust and practical metric based on machine learning for LBO 

detection 

6.1.1 Machine learning model  

The proposed machine learning model for arriving at the optimal sensor location is shown 

in Figure 6.1. The overall pipeline is divided into three main parts: (1) dimensionality reduction, 

(2) training Support Vector Machine (SVM) models, and (3) finding optimal sensor location. This 

method is tested for temperature and OH mass fraction (YOH) as the indicator scalars for which 

optimal sensor locations are to be found.  For brevity, temperature only is used for elaborating the 

process.  

 

 

Figure 6.1.  The machine learning model for determining optimal sensor location 
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6.1.1.1 Dimensionality reduction 

The LES simulations provide very rich spatial data at each time-step at more than 10 

million non-identical grid points. To limit the number of possible sensor locations, only the center 

plane of the combustor is considered.  Heuristically, this plane contains the main features of flame 

dynamics. The section of the combustor close to the flame root has the most effect on flame 

stability [24]. For this work, the data in the primary zone containing approximately 13000 

unstructured grid points, are locally mapped by interpolation onto a 64 × 64 structured grid. 

6.1.1.2 Training support vector machine (SVM) models 

The time-series data for the temperature at each of the 64 × 64 structured grid locations 

are extracted. These time-series contain 2646 time-steps out which 1946 represents stable 

conditions and 700 represent unstable conditions. The time-series for each grid location is sliced 

with a window of size of 1ms (10 samples). This window is shifted by 0.2ms to create all the slices. 

The present choices result in 1300 time slices, out which 344 represent equivalence ratios with 

unstable combustion and are labeled 1 and 956 represent equivalence ratios with stable combustion 

and are labeled as 0. These samples with the label 0 and 1 are randomly divided into a training set 

(90%) and a test set (10%). This ensures that the training and testing sets contain equal proportions 

of data samples representing stable and unstable combustor conditions. 

For each grid location, the training dataset is used to train a Support Vector Machine (SVM) 

model.  The SVM is a classifier aimed at maximizing the distance of the training samples from the 

separating hyperplane [134]. Given a training dataset (x1, x2, … , xm)  and their corresponding 

labels (y1, y2, … , ym), a discriminant function is defined as g(x) = wTx + w0 and the resulting 

separating hyperplane is wTx + b = 0 where g is a discriminant function, w is the weight vector 

and w0  is the bias. To find w  and w0 , the distance of the training data from the separating 

hyperplane is maximized while minimizing the number of misclassifications. The objective 

function for this optimization problem is min
w,w0,ζ

1

2
wTw + C ∑ ζj

m
j=1  subject to the constrains 

yj(wTψ(xj) + w0) ≥ 1 − ζj and ζj ≥ 0,   for j = 1,2, … , m , where ψ(xj)  is a transformation 

applied to the input x, C is a penalty parameter and ζj is a slack variable. The SVM is a linear 

classifier and requires a non-linear transformation for representation of the inherent non-linear 

decision boundary established by turbulent combustion. For this purpose, a kernel function is 
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defined as K(xi, xj) = ψT(xi)ψ(xj), and a new input x is classified using the function h(x) =

sign(∑ λj
∗yjK(xj, x)m

j=1 + w0
∗), where ∑ λj

∗yjxj
m
j=1 = w∗  and w0

∗  are the optimal values of w and 

w0. λj
∗ are introduced when the dual of the SVM optimization is solved. In the present work, the 

SVM classifier was implemented in Python 3.6 using scikit-learn [135] library. The radial basis 

function (rbf) was selected as the kernel function K(xi, xj) and the penalty parameter (C) was set 

to unity.  

6.1.1.3 Finding optimal sensor locations 

A metric is defined to quantify the quality of a sensor at each of the grid locations. A sensor 

at a location with optimal quality can differentiate between a normal condition and an LBO 

precursor condition. Hence, false negatives (not detecting LBO when it occurs) and false positives 

(detecting LBO when the conditions are normal) have to be minimized. A recall function is defined 

as Recall = TP (TP + FN)⁄  where TP is the number of true positives and FN is the number of false 

negatives. The recall function is deceptively cleaver in reaching a unity value for all values of true 

positives if 0% false negatives can be achieved. Another metric of performance is defined by 

Precision = TP (TP + FP⁄ ). Precision emphasizes the effects of false positives. A large value of 

FP  leads to a low value of precision for all values of TP.  The F⎼score =

2 (Precision−1 + Recall−1)⁄  captures the trade-off between precision and recall. At all the grid 

locations, the trained SVM models were tested using the test set and the F-score was used as a 

metric of performance. Each SVM model was trained using a subset of the time-series data at a 

particular location. Hence, the performance of the SVM model on the test set, which is a subset of 

the time-series data at the same location, was used as a metric of optimality for placing a sensor at 

that grid point. The definition of the F-score establishes an intuitive range of 0 to 1 for its values.  

Within this range, the higher the F-score, the better the location of the point sensor.   

6.1.1.4 Evaluation of machine learning model and metric for LBO detection 

The proposed machine learning model is successful in establishing the optimal probe 

locations for multiple scalar variables extracted from the LES simulations based on the F-score 

metric discussed in the previous section. In Figure 6.2, the optimal sensor location for temperature 

is designated as location 1 and the optimal sensor location for YOH is designated as location 2. 

Location 1 and location 2 both lie in the proximity of each other and of the flame root. F-scores 
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for both the temperature and the YOH probes at these locations were found to be ~0.94. The SVM 

models at other locations had a high recall value but a low precision. This generally resulted from 

the misclassification of many non-LBO events making the locations non-optimal.  

Conventional statistical properties of turbulent combustion at the optimal sensor locations 

such as probability density functions (pdfs), kurtosis, skewness, and moving averages are studied 

next. Figure 6.3 shows the pdf for T, YOH, f(mixture fraction) and YCH2O (mass fraction of CH2O) 

at location 1 for different equivalence ratios. As the equivalence ratio decreases, the three pdfs (T, 

YOH, and f) shift to lower values (the left) and the pdf for YCH2O shifts to higher values (the right).  

 

 

Figure 6.2.  The optimal location for T and YOH sensor 
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Figure 6.3.  The probability density function of T, YOH, fand YCH2O at location 1. 

 

Kurtosis is widely used for anomaly detection. Figure 6.4(a) shows kurtosis of T, YOH, f 

and YCH2O  at location 1 for different equivalence ratios. Kurtosis of T and YOH  remain almost 

constant for ϕ = 0.096, 0.090 and 0.085 which do not lead to LBO. Kurtosis for T decreases for 

ϕ = 0.082 whereas the kurtosis of YOH increases. Hence, threshold values for kurtosis of T and 

YOH can be estimated for detecting the LBO. These trends reinforce location 1 as an optimal sensor 

location for T and location 2, as an optimal sensor location for YOH. Threshold values for kurtosis 

cannot be estimated for fand YCH2O at location 1 as the kurtosis value vary for stable conditions.  

 

 

Figure 6.4.  Variation of Kurtosis (a) and skewness (b) of T, YOH, fand YCH2O at location 1. 

(b) (a) 
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Figure 6.5.  Moving average of T, YOH, fand YCH2O at location 1. 

 

The changes in the skewness are plotted in Figure 6.4(b) and are consistent with the 

changes observed in Figure 6.3. The skewness of T and YOH  remain almost constant for ϕ =

0.096, 0.090 and 0.085 and shows a significant increase as the ϕ is decreased to 0.082. Hence, 

threshold values for the skewness of T and YOH  can be estimated for detecting the LBO. The 

skewness for mixture fraction (f) also remain constant for ϕ not leading LBO and decreases for 

ϕ = 0.082. This implies that a threshold-based indicator for LBO can be defined using skewness 

of T, YOH  and f. The skewness for YCH2O  is approximately constant for ϕ = 0.085  and 0.082 

suggesting that  YCH2O is not a good indicator for LBO at location 1. The moving averages of  T, 

YOH, fand YCH2O at location 1 using a window of 10 time-steps (1ms) are also evaluated for LBO 

indication as shown in Figure 6.5. 

The LBO indicators based on threshold values of skewness and kurtosis of T and YOH 

require a significant amount of data from sensors at prescribed locations and at relatively high 

sampling frequencies. The collection of a large amount of data in real-time may lead to significant 

delays in LBO detection. Hence, pdf, skewness, and kurtosis of T  and YOH  are not practical 

indicators of early warning of LBO. The moving average of T over 1ms (10 time-steps) as shown 

in Figure 6.5 is relatively constant as compared to the other variables. However, it shows sudden 

dips even for ϕ = 0.096, 0.090 and 0.085. A control scheme based on a threshold value for 

change in the moving average of temperature may lead to excessive false positives rendering it to 

be unsuitable as an early warning indicator. 
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Figure 6.6 shows the results of classification by the SVM model for T at sensor location 1. 

The input for the model is a vector of 10 consecutive temperature values (time-series slices of 

1ms). These slices are created from the time-series data for all the equivalence ratios at every 

0.2ms. This input data set contains both the training and the testing data as described in Section 

6.1.1.2. The LBO indicator (p) is 1 when the SVM model classifies the input as unstable and is 0 

when the SVM model classifies the input to be stable. As seen in Figure 6.6, there are no false 

positives. When the equivalence ratio is reduced to 0.082, which leads to LBO and is hence marked 

as unstable, the LBO indicator shows 0 for about 11 ms. This region of false negatives occurs 

because the time-series resembles the stable region. The LBO indicator shows a spike and then 

stabilizes to the value of 1 indicating impending blowout. The LBO indicator based on the SVM 

model required only 1ms (10 data points) of data as compared to a large amount of data required 

for building PDFs, kurtosis-based and skewness-based indicators. The number of false positives, 

in this case, was 0. This is much better than applying a threshold on the moving average over the 

same 1ms time period. It can be observed from Figure 6.6 that the trained SVM model detects 

LBO approximately 20ms prior to blowout.  

 

Figure 6.6.  Time-series of T, YOH, YCH2O and f at location 1 and LBO Indicator (p) 
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 Machine learning approach based on spatiotemporal features 

The point probe analysis proposed in the above section using sensors may not be the ideal 

approach for a robust prediction of the onset. It does not take into account the physicochemical 

processors at other key locations. Hence, a prediction approach utilizing the spatiotemporal data 

is proposed and evaluated in this section. 

6.2.1 Machine learning model 

The proposed architecture for a machine learning model is shown in Figure 6.7. The details 

of the data generated using high-performance computing (HPC) are discussed in the above section. 

The spatial distribution of the mass fraction of OH (YOH) was extracted on a uniform 64 × 64 

two-dimensional mesh at the center plane of the combustor for dimensionality reduction of the 

data. A convolutional autoencoder (encoder-decoder) model was trained using this 2D dataset for 

further dimensionality reduction. The dense layer of the convolutional autoencoder (output of the 

encoder) is a compressed representation of the 64 × 64 input. The encoder portion of the trained 

autoencoder model was used for feature extraction. These features with appropriate labels were 

then used to train a Support Vector Machine (SVM) model for classification of the YOH distribution 

as corresponding to a stable flame or an unstable flame. An LBO indicator is defined based on the 

output of the trained SVM model. The details of each of these steps are given in this section. 

 

Figure 6.7.  The proposed methodology for LBO detection 

 

6.2.1.1 Data preprocessing 

Due to the adaptive nature of the mesh used for the CFD simulations, the spatial data 

available at each time-step is not on a uniform grid. Also, for each time-step, the simulation data 

contains approximately 10 million mesh points. If each of these mesh points is considered as a 
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feature of the combustor system, a very complex model will be required to capture the very high 

data complexity. This, in turn, requires a huge amount of data samples. In this case, the number of 

data samples is equal to the number of time steps for which the simulations are run. The number 

of data samples is limited by the computational costs. If all the equivalence ratios are considered, 

data is available for 2646 time steps out of which 700 belong to unstable category and the rest to 

stable category. Hence a significant dimensionality reduction of the available data is required. 

The CFD simulations provide variables like temperature, pressure, velocity fields, the mass 

fraction of radicals, etc. at all the mesh points in the combustor. In the present study, only the mass 

fraction of OH (YOH) is considered as it is a good representative of the flame in the combustor. 

Heuristically, the center plane is known to capture the main features of the flame dynamics. Also, 

the section of the combustor close to the flame root has the most effect on flame stability [24, 125]. 

Only the data in the primary zone is considered in the present analysis. The primary zone contains 

approximately 13000 unstructured mesh points which are interpolated on a 64 × 64 structured 

mesh. For each equivalence ratio, the YOH data is normalized with the maximum value of the YOH 

at the first time-step of the time series data of that equivalence ratio. Applying this process, a set 

of 2621 matrices with dimension 64 × 64  is obtained out of which 800, 520, 601 and 700 

correspond to the equivalence ratio 0.096, 0.090, 0.085 and 0.082 respectively. Further 

dimensionality reduction is achieved using convolutional autoencoder.  

6.2.1.2 Feature extraction – Convolutional autoencoder 

In order to extract higher-level features from the 2D YOH data, a convolutional autoencoder 

[136] model is used. The architecture of the convolutional autoencoder is shown in Figure 6.8. The 

convolutional autoencoder consists of two main components: an encoder and a decoder. The 

encoder transforms the input into a lower-dimensional representation and then the decoder 

reconstructs the input using this compressed representation. The autoencoder architecture is 

similar to one used by [40] but the number of filters and the number of dense layers units were 

tuned for the data used in this study. 
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Table 6.1. Convolutional autoencoder parameters 

 

Layer Type Output Shape 

Number of 

trainable 

parameters 

E
N

C
O

D
E

R
 

Input Input 64 × 64 - 

Conv1 Convolution layer 62 × 62 × 32 320 

Conv2 Convolution layer 60 × 60 × 32 9248 

MP1 Max-pooling 30 × 30 × 32 0 

Conv3 Convolution layer 28 × 28 × 32 9248 

MP2 Max-pooling 14 × 14 × 32 0 

Conv4 Convolution layer 12 × 12 × 32 9248 

R1 Reshape layer 4608 × 1 0 

Dense Fully-connected layer 128 × 1 589952 

D
E

C
O

D
E

R
 

FC1 Fully-connected layer 961 × 1 123969 

R2 Reshape layer 31 × 31 × 1 0 

UP1 Upsampling 62 × 62 × 1 0 

Deconv Deconvolution layer 64 × 64 × 1 10 

 

Encoder: As described in Table 6.1, the encoder consists of four convolutional, two max-

pooling, one reshape and one fully-connected layer. When a mono-channel input image x of 

dimensions (m × n) is convolved with N filters of size (f × f), the output is a convolutional layer, 

Y, of dimension ((m − f + 1) × (n − f + 1) × N). For the kth filter, the corresponding layer in the 

convolutional layer is given by Yk = σc(x ∗ Wk + bk) where Yk, Wk and bk is the convolutional 

layer, the weight matrix and the bias corresponding to the kth filter respectively, σc is an activation 

function and ∗ denotes the 2D convolution. All the convolutional layers have 32 3 × 3 filters and 

padding is not applied. Max-pooling is applied to obtain a translational-invariant representation. 

The max-pooling function applies a window to the input and finds the maximum over that window. 

After max-pooling, the dimension of the input is reduced by a constant factor. For all the max-

pooling layers the window size is 2 × 2.  

The encoder transforms the input as multiple convolutional and max-pooling layers are 

applied sequentially. This transformed input, a multi-dimensional array, is then reshaped into a 

vector. This reshape layer is connected to another fully-connected layer with a specified number 
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of nodes. This fully-connected layer is referred to as the dense layer. The transformation from the 

reshape layer to the dense layer is given by ai = σe(θix̃ + bi) where ai, θi and bi represents the 

activation, weight matrix and the bias corresponding to the ith node of the dense layer respectively, 

σe is an activation function and x̃ vector of the reshape layer. The dense layer has 128 nodes and 

is the compressed representation of the 64 × 64  input YOH  distribution. Rectified Linear Unit 

(ReLU) is used as the activation function for the convolution layer and the fully-connected layers. 

Padding is not applied before the convolutional and max-pooling layers which are reflected in the 

output shape shown in Table 6.1. 

 

Figure 6.8.  The architecture of the convolutional autoencoder. 

 

Decoder: The decoder takes this compressed representation of the input, created by the 

encoder, and transforms it into a reconstruction of the autoencoder input. In the present analysis, 

the decoder has one fully-connected, reshape, unpooling and deconvolution layer. The fully-

connected layer is obtained by transforming the dense layer of the encoder as ai = σd(θix̃d + bi) 

where ai, θi and bi represents the activation, weight matrix and the bias corresponding to the ith 

node respectively, σd is an activation function and x̃d is dense layer. This fully-connected layer is 

reshaped into a matrix. The unpooling layer stretches the input by repeating each value in the 

matrix over a given window size. This operation is opposite to that of max-pooling. The window 

size for unpooling layer is chosen to be 2 × 2. The deconvolution layer applies transformation to 

the input which is like the convolution operation. The dimension of the output is, however, bigger 

than that of the input. Rectified Linear Unit (ReLU) is used as the activation function for the fully-

connected and deconvolution layer. 
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The weight matrices and bias terms corresponding to all the filters and the fully connected 

layers are learned by minimizing a loss function. The loss function measures how well the 

autoencoder was able to recreate the input. A total of 741,995 trainable parameters are present in 

this model. The trainable parameters were optimized by minimizing the Mean Square Error (MSE) 

between the input and output (reconstructed input) given by L(θ) =
1

mn
∑ ∑ (Yij − Xij)

2n
j=1

m
i=1  

where X and Y are input and output of the autoencoder model respectively and have a dimension 

of m × n. In the present study, X and Y have a 64 × 64 dimension. 

Out of 2621, the 700 samples corresponding to the equivalence ratio of 0.082 lead to 

blowout while the rest 1921 do not lead to blowout. These sets of 700 and 1921 samples are divided 

into three groups: train (90%), validate (5%) and test (5%). This ensures that the equal proportion 

of stable and unstable flame samples are present in these three sets. The autoencoder is trained on 

the training set. The convolutional autoencoder was implemented in Python 3.6 using TensorFlow 

2.0 [137]. The training was performed for 500 epochs in batches of 128 samples. Adam optimizer 

[138] was used with a constant learning rate of 10−4. Each of the 2621 samples in the YOH dataset 

is fed to the autoencoder model and encoder output or the activation value of the nodes in the dense 

layer are extracted as features representing the input. The samples corresponding the equivalence 

ratio of 0.082 are labeled as unstable (1) and the rest of the samples are labeled as stable (0).  

6.2.1.3 Classification – Support Vector Machine 

The 1921 samples with label 0 and the 700 samples with label 1 are randomly divided into 

three groups: train (80%), validate (10%) and test (10%). This ensures that the equal proportion of 

stable and unstable samples are present in these three sets. The Support Vector Machine (SVM) is 

used for classification of the reduced dimensional representation of the YOH  distribution as 

corresponding to stable (0) flame or unstable (1) flame. SVM is a classifier aimed at maximizing 

the distance of the training samples from the separating hyperplane [134]. For a training dataset 

(x1, x2, … , xm) with corresponding labels (y1, y2, … , ym), the separating hyperplane wTx + w0 =

0 is found by maximizing the distance of the training data from this hyperplane while minimizing 

the number of misclassifications. Here, w  is the weight vector and w0  is the bias. This is 

equivalent to solving min
w,w0,ζ

1

2
wTw + C ∑ ζj

m
j=1  subject to the constraints yj(wTϕ(xj) + w0) ≥

1 − ζj and ζj ≥ 0,   for j = 1,2, … , m., where, C is a penalty parameter and ζj is a slack variable. 
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The transformation ϕ(xj) is applied to the input x to obtain non-linear decision boundary. This 

transformation is encompassed in a kernel function  K(xi, xj) = ϕT(xi)ϕ(xj). A new input x is 

classified using the following function h(x) = sign(∑ λj
∗yjK(xj, x)m

j=1 + w0
∗) where ∑ λj

∗yjxj
m
j=1 =

w∗ and w0
∗  are the optimal value of w and w0. λj

∗ are introduced in the setup when the dual of the 

SVM optimization is solved.  

The SVM classifier was implemented in Python 3.6 using scikit-learn [135] library. To 

find the optimal kernel and regularization constant, the SVM classifier was trained with penalty 

parameter ranging from 0.0001 to 10 increased by a factor of 10 and with linear, polynomial, radial 

basis function (rbf) and sigmoid kernels. Based on the accuracy on the validation set, the 

regularization constant was set to 10 and a polynomial of degree four was selected as a kernel. 

6.2.1.4 Evaluation of machine learning model for LBO detection 

The autoencoder model is validated using the validation set. Figure 6.9 shows the Mean 

Square Error (MSE) between the input and output of the autoencoders on the training set and the 

validation set. The problem of overfitting was not observed as the validation error did not increase 

with epochs. The model was trained with 64 and 128 nodes in the dense layer (encoder output). 

Figure 6.10 shows sample input and its reconstruction for these two variants of the model. Clearly, 

the model with 128 nodes in the dense layer was able to reconstruct the input in a much better way 

than the model with 64 nodes.   

 

Figure 6.9.  Mean square error vs epochs 
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Figure 6.11 to Figure 6.14 show the visualization of YOH and its autoencoder reconstruction 

at different time instances and for different equivalence ratios. A good reconstruction implies that 

the autoencoder model was able to learn and encode the higher-level features of the input. The 

autoencoder is able to reconstruct the general shape of the input. It is also able to capture fine 

features like pockets within the flame where YOH is absent (refer Figure 6.15(b) at t = 112ms).  

 

 

Figure 6.10.  (a) Autoencoder input (b) Autoencoder output with 64 nodes in the dense layer (c) 

Autoencoder output with 128 layers in the dense layer 

 

 

Figure 6.11.  YOH distribution at different time instants (top) and it’s autoencoder reconstruction 

for an equivalence ratio of 0.096 (bottom) 
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Figure 6.12.  YOH distribution at different time instants (top) and it’s autoencoder reconstruction 

for equivalence ratio of 0.090 (bottom) 

 

 

Figure 6.13.  YOH distribution at different time instants (top) and it’s autoencoder reconstruction 

for an equivalence ratio of 0.085 (bottom) 

 

 

Figure 6.14.  YOH distribution at different time instants (top) and it’s autoencoder reconstruction 

for an equivalence ratio of 0.082 (bottom) 
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In the autoencoder model, the input data undergoes several transformations before getting 

reconstructed as the output. Visualizing these intermediate transformations can help in 

understanding the features learned by the model. The first convolutional layer has size closer to 

the input dimension and hence is easy to interpret. This layer can be thought of as a set of 32 

images. Figure 6.15 shows the visualization of the feature maps corresponding to 4 filters for the 

first convolution layer. The first image in Figure 6.15 is the input to the autoencoder encoder. 

Bottom edges can be seen in (b) and top edges in (c). Figure 6.15(d) shows that the autoencoder 

tries to capture the edge around the area where YOH is present while Figure 6.15(e) shows the areas 

which are devoid of YOH.  

 

     

(a) (b) (c) (d) (e) 

Figure 6.15.  (a) Input to the autoencoder and (b-e) 4 out of the 32 feature-maps in the first 

convolutional layer 

 

The features extracted using the autoencoder were used to train, validate and test the SVM 

model. The SVM model was tested on the test set which included 70 samples corresponding to 

unstable label and 192 samples corresponding to stable label. The accuracy on the test set was 

96.6%. For lean blowout, the false negatives are critical as it can lead to severe safety concerns. 

Hence, it is important that false negatives are minimized. Recall =
TP

TP+FN
 where TP is the number 

of true positives and FN is the number of false negatives. On the test set, the recall was 94.2%. A 

high recall value indicates that the number of false negatives is less. Ideally, recall should be close 

to 1. Precision considers the effect of false positives (FP) and is defined as Precision =
TP

TP+FP
. 

The effect of false positives is not catastrophic since the control system will adjust the inputs to 

make the flame more stable if it encounters signs of lean blowout. However, the purpose of running 

lean is to improve efficiency and keep emissions under control. It is important to minimize the 
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number of false positives as false positives can decrease the efficiency temporarily and exceed the 

emissions limit. Hence, the precision value needs to be maximized. The precision on the test set 

was 88.98%. The F-score considers the tradeoff between precision and recall. It is defined as F −

score =
2

(
1

Precision
+

1

Recall
)
. The F-score on the test set was 91.52%.  

The SVM model was then used to classify the YOH data at each time step in the entire 

dataset (train + validate + test) and the result is shown in Figure 6.16. The LBO indicator is 1 when 

the SVM model predicts the input to be unstable and is 0 when the SVM model predicts the input 

to be 0. Here, the input is compressed representation (128 features) of the 64 × 64 YOH data. A 

few false positives are observed for the equivalence ratio of 0.096 and 0.085. For the equivalence 

ratio of 0.082, initially, the LBO Indicator is 0 showing that the flame is stable. This is followed 

by intermittent changes in the LBO Indicator which then settles to the value of 1 approximately 

30ms before the actual blowout (indicated by the red dashed line). These intermittent changes in 

the LBO indicator correspond to the intermittent nature of the stability of the flame before blowout. 

 

 

Figure 6.16.  LBO indicator for the entire dataset (all time-steps and all equivalence ratios) 

 

 

 

 

 

 



 

 

124 

 

7. CONCLUSIONS AND RECOMMENDATIONS     

The important findings of the research work and recommendations for further research 

are discussed in this chapter. The material presented in this chapter is obtained from the author’s 

papers [1-3]. 

 Conclusions  

The material discussed in this section is obtained from the author’s AIAA conference 

papers [1-3]. The high fidelity large eddy simulation methodology developed based on finite rate 

chemistry and flamelet generated manifold combustion models for a realistic gas turbine 

combustor [1-4]. Detailed flow rate calculations are presented for component-wise as well as total 

flow splits for a complex combustor.  RANS and LES models are employed with different mesh 

resolutions. A highly automated, on the fly meshing strategy, along with adaptive mesh refinement 

was used to demonstrate the feasibility of CFD modeling. The computational results are compared 

with non-reacting flow splits data from a complex combustor. It is observed that with the present 

meshing strategy of capturing the flow through effusion holes, a minimum of 5-8 cells per effusion 

hole is sufficient for engineering calculations. The computed flow rates for individual passages at 

the actual test conditions are in good agreement with the experimental data. Grid sensitivity studies 

are reported for the combustor swirler configuration. The results for combustor total flow splits 

show under-prediction for the effusion flow and over prediction for dilution and swirler flows. 

Overall, the RANS, as well as LES calculations, capture similar flow splits compared to the 

experiments. Flow interaction effects between swirler and primary jets are observed to be 

significant in creating strong vortex structures with toroidal flow recirculation in the primary zone.  

The material discussed in this section is obtained from the author’s AIAA conference 

papers [1-3]. LES calculations with compact and HyChem skeletal mechanisms are able to capture 

the LBO limits and their sensitivities with respect to two different fuels accurately  [1-4]. The 

model setup consists of a detailed spray injection along with well-defined flow boundary 

conditions. The modeling approach is initially validated against a stable operating point where the 

global equivalence ratio is 0.096. The Lagrangian spray setup is able to capture the trends in spray 

SMD and velocities for both the fuels.  The flame shape and position at the stable condition is also 
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in tune with the experimentally observed OH* chemiluminescence data. The LBO process is 

simulated by systematic step reduction in global equivalence ratios. The simulations correctly 

capture the trend of the C-1 fuel blowing off at higher equivalence ratios compared to A-2.  

The material discussed in this section is obtained from the author’s AIAA conference 

papers [1-3]. The blowout process is studied in detail by analyzing the heat release rate, the 

temperatures and intermediate species distributions in the primary zone of the referee combustor 

[1-4]. The present study identified the key markers for conventional and bio-jet fuel that can be 

used to define the stability limits. Two main observations are reported that mark the onset of an 

unstable flame. It has been observed in simulations that formation of intermediate species like 

formaldehyde, move towards the richer regions of the flame as we approach the LBO limit. These 

high concentrations indicate incomplete oxidation near the LBO limits. The C-2 fuel shows 

significantly higher CH2O formation in richer regions for the same equivalence ratio compared to 

A-2 and exhibits a higher LBO limit. In the second part of the analysis, it has been observed that 

the temperature in the recirculation zone is also an important indicator of the stability of the flame. 

The temperature distributions show a remarkable shift in distributions as we approach an unstable 

configuration. The observation is consistent over both the fuels with different LBO limits. Overall, 

the study points to the feasibility of using CFD models to evaluate different fuels and their figures 

of merit like LBO for a realistic gas turbine combustor in a predictive fashion  [1-4]. 

The novel machine learning models are developed for early detection and warning of the 

incipient LBO condition based on a single point probe data and spatiotemporal features in the 

primary zone. A novel strategy using machine learning for optimal placement of sensors with 

specific examples of temperature (T)  and OH mass fraction (YOH)  sensors are successfully 

demonstrated in this work. The performance of these SVM models on the test data was quantified 

using F-score and was used as a metric of sensor location optimality. The sensor location with 

highest F-score was demonstrated to be the optimal location. The optimal locations for T and YOH 

sensors were found to be in the proximity of the flame root. Statistical measures like probability 

density function, kurtosis, skewness and moving averages were computed at the optimal location 

for the T sensor. Thresholds on kurtosis and skewness of T and YOH were used as indicators but 

required significant number of data points which cause unacceptable delays in LBO detection. A 

threshold on the moving average of T captured the LBO but is susceptible to false positives. The 

trained SVM model for detecting LBO based on the time-series data was found to be practical and 
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robust as compared to the conventional statistical measures. This sensor-based model detected 

LBO approximately 20 ms prior to the complete lean blowout. 

The machine learning model is developed based on the spatial distribution of the mass 

fraction of OH (YOH) obtained in the primary zone of the combustor. An SVM model is trained for 

binary classification, and the features extracted by the trained convolutional autoencoder. A good 

agreement is observed between the autoencoder reconstruction of the YOH distribution and the 

original distribution showing that the features extracted by the autoencoder are a good compressed 

representation of the original data. The predictions on the test set have a 96.6% accuracy and 94.2% 

recall. The LBO indicator fluctuated between 0 and 1 for the equivalence ratio leading to LBO and 

stabilized to the value of 1 approximately 30ms before the actual blowout. The machine learning 

model based on the spatiotemporal features detected the incipient LBO condition 10ms ahead of 

the machine learning model based on the single probe data at the optimal sensor location.  

 Recommendations for future work 

The material discussed in this section is obtained from the author’s AIAA conference 

papers [1-3]. The present work is focused on computing the fuel sensitivity to LBO and detailed 

investigation of the combustion process during LBO. Two different combustion models and four 

different kinetic models are evaluated in the present work. The detailed comparison for velocity, 

temperature, and species between these models and experiments will help for model evaluation 

and further enhancements to develop robust computational models. The detailed investigation of 

the HyChem detailed mechanism and reduced mechanism can be undertaken to develop a 

consistent and robust computational methodology for LBO prediction. The quantitative reaction 

pathway analysis can be performed to identify the key pathways leading to the LBO and compare 

these pathways between different kinetic models and for different fuels.  The present simulations 

utilized the multi-ring injection to represent the complex spray from the hybrid airblast atomizer. 

Spray processes will have significant impact on the combustion calculations. Spray modeling 

including the primary and secondary atomization in a realistic complex combustor employed in 

the present study can be very beneficial to the community. The present LBO computational 

methodology employed the adiabatic condition for all combustor walls. Gas turbine combustors 

under engine relevant high-pressure conditions have high rate of heat transfer to the liner walls 
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through convection and radiation [4]. Combustor liner walls are heated through radiation and 

convection from the flame on the hot side and are cooled through convection to the cold air in the 

annulus and radiation to the outer casing. Thermal conduction along the liner wall also contributes 

to the distribution of heat flux and wall temperature. Transient three dimensional solid-fluid fully 

coupled numerical simulations can be undertaken in the future to account for the effects of 

turbulent combustion and flame radiation on the rate of heat transfer to the combustor liner [4]. 

The coupled simulations facilitate accurate estimation of liner temperature distribution and heat 

losses and the subsequent effect on the flame stabilization and lean blowout process [4]. The 

solution accuracy can be further improved by including the models for the gas phase radiation, 

soot and soot radiation, and NOx emissions.  
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