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ABSTRACT 

Author: Kim, Yon Hoon. PhD 
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Degree Received: December 2019 

Title: Integrated Modeling Framework for Dynamic Information Flow and Traffic Flow under 

Vehicle-to-Vehicle Communications: Theoretical Analysis and Application 

Major Professor: Srinivas Peeta 

 

Advances in information and communication technologies enable new paradigms for 

connectivity involving vehicles, infrastructure, and the broader road transportation system 

environment. Vehicle-to-vehicle (V2V) communications under the aegis of the connected vehicle 

are being leveraged for novel applications related to traffic safety, management, and control, which 

lead to a V2V-based traffic system. Within the framework of a V2V-based traffic system, this 

study proposes an integrated modeling framework to model the dynamics of a V2V-based traffic 

system that entails spatiotemporal interdependencies among the traffic flow dynamics, V2V 

communication constraints, the dynamics of information flow propagation, and V2V-based 

application. The proposed framework systematically exploits their spatiotemporal 

interdependencies by theoretical and computational approaches. 

First, a graph-based multi-layer framework is proposed to model the V2V-based advanced 

traveler information system (ATIS) as a complex system which is comprised of coupled network 

layers. This framework addresses the dynamics of each physical vehicular traffic flow, inter-

vehicle communication, and information flow propagation components within a layer, while 

capturing their interactions among layers. This enables the capabilities to transparently understand 

the spatiotemporal evolution of information flow propagation through a graph structure.  A novel 

contribution is the systematic modeling of an evolving information flow network that is 

characterized as the manifestation of spatiotemporal events in the other two networks to enhance 

the understanding of the information flow evolution by capturing the dynamics of the interactions 

involving the traffic flow and the inter-vehicle communication layers. The graph-based approach 

enables the computationally efficient tracking of information propagation using a simple graph-

based search algorithm and the computationally efficient storage of information through a single 

graph database. 
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Second, this dissertation proposes analytical approaches that enable theoretical investigation 

into the qualitative properties of information flow propagation speed. The proposed analytical 

models, motivated from spatiotemporal epidemiology, introduce the concept of an information 

flow propagation wave (IFPW) to facilitate the analysis of the information propagation 

characteristics and impacts of traffic dynamics at a macroscopic level. The first model consists of 

a system of difference equations in the discrete-space and discrete-time domains where an 

information dissemination is described in the upper layer and a vehicular traffic flow is modeled 

in the lower layer. This study further proposes a continuous-space and continuous-time analytical 

model that can provide a closed-form solution for the IFPW speed to establish an analytical 

relationship between the IFPW speed and the underlying traffic flow dynamics. It can corporate 

the effects of congested traffic, such as the backward traffic propagation wave, on information 

flow propagation. Thereby, it illustrates the linkage between information flow propagation and the 

underlying traffic dynamics. Further, it captures V2V communication constraints in a realistic 

manner using a probabilistic communication kernel (which captures the probability). 

Third, within the integrated modeling framework, this dissertation captures the impact of 

information flow propagation on traffic safety and control applications. The proposed multi-

anticipative forward collision warning system predicts the driver’s maneuver intention using a 

coupled hidden Markov model, which is one of statistical machine learning techniques. It 

significantly reduces the false alarm rates by addressing the uncertainty associate improves the 

performance of the future motion prediction, while currently available sensor-based kinematic 

models for addressing the uncertainty associated with the future motion prediction. A network-

level simulation framework is developed to investigate a V2V-based ATIS in a large-scale network 

by capturing its inter-dependencies and feedback loop. This modeling framework provides the 

understanding of the relationship between the travelers’ routing decisions and information flow 

propagation.  

This thesis provides a holistic understanding of information flow propagation characteristics 

in space and time by characterizing interactions among information flow propagation, and 

underlying traffic flow, and V2V communications characteristics. The proposed models and the 

closed-form solution of IFPW speed can help in designing effective V2V-based traffic systems, 

without relying on computationally expensive numerical methods. An innovative aspect of this 

approach represents a building block to develop both descriptive capabilities and prescriptive 
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strategies related to propagating the flow of useful information efficiently and synergistically 

generating routing mechanisms that enhance the traffic network performance. Given the lack of 

appropriate methodologies to characterize the information flow propagation, this thesis expects to 

make a novel and significant contribution to understanding the characteristics of V2V-based traffic 

systems and their analysis. 
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1. INTRODUCTION 

 Background 

The connectivity provided to the transportation system through dedicated short range 

communication (DSRC) is enabling new paradigms involving vehicles (V2V), infrastructure (V2I) 

and the broader road transportation system environment (V2X). These capabilities can provide a 

data-rich environment and enhanced range of awareness of traffic conditions for a V2V-based 

traffic system. Therefore, the communication capabilities have potential to develop innovative 

solutions for enhancing traffic safety and mobility, and sustainable solutions from the perspectives 

of energy usage and the environment.  

The success of the V2V-based traffic systems is dependent on the timely and reliable 

dissemination of information. However, the real-world environment for implementing a V2V-

based application can be constrained by the characteristics and phenomena associated with the 

interactions involving traffic flow dynamics and V2V communication constraints. Hence, a critical 

question is how information propagation is impacted by the traffic flow dynamics and V2V 

communication constraints. While widely-used analytical and simulation-based models exist to 

characterize the influencing factors in the communication and transportation domains, there are 

currently limited methodologies that allow us to integrate the underlying components for modeling 

of the information flow propagation in space and time and investigating effects of emergent 

phenomena associated with communication connectivity. 

Modeling the propagation of multiple units of information in space and time and determining 

how the information flow dynamics can be mapped from the traffic flow dynamics and the inter-

vehicle communication constraints are not trivial. This is because a V2V-based traffic system 

consists of the vehicular traffic flow, inter-vehicle communication, spatiotemporal information 

flow, and V2V-based applications. Further, the relationship between these components is 

characterized by non-linearity, interdependencies, and feedback loop as illustrated in Figure 1.1. 
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Figure 1-1 Components of a V2V-based traffic system 

 

This dissertation focuses on developing the integrated modeling framework that incorporates 

these underlying components to address their dynamics within a layer and the interactions among 

layers. The proposed graph-based multi-layer network framework not only models the impacts 

from traffic flow dynamics and V2V communication constraints but also provides a retrospective 

capability to track the spatiotemporal characteristics of multiple units of information flow and 

evolution of vehicle knowledge explicitly across the network. This systematic modeling and 

understanding of the information flow propagation in a V2V-based traffic system are critical to 

leverage its use to develop driver route guidance strategies and system operator strategies for the 

efficient spread of useful information. Hence, the proposed multi-layer framework serves as a 

building block for the design of a new generation of information flow routing and vehicular route 

guidance strategies to manage traffic conditions in congested networks. 

The proposed dissertation proposes macroscopic approaches that enable theoretical 

investigation into the qualitative properties of information flow propagation speed. To do so, this 

study introduces the concept of an information flow propagation wave (IFPW) to facilitate the 

analysis of the information propagation characteristics and impacts of traffic dynamics at an 

aggregate level. It constructs a two-layer model consisting of an information dissemination model 

in the upper layer and a traffic flow model in the lower layer. First, a system of difference equations 

in the discrete space and time domain is proposed.  Second, it further proposes a continuous-timing 

Vehicular flow

Inter-vehicle 

communication

Dynamic information 

flow propagation
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and continuous-space analytical model that can provide a closed-form solution for the IFPW speed 

to establish an analytical relationship between the IFPW speed and the underlying traffic flow 

dynamics. The closed-form solution and analytical model can be used to predict the IFPW speed 

and the position of the IFPW front under diverse vehicular environments (in terms of density and 

topology) and V2V communication network parameters (such as data communication frequency, 

transmission power, etc.). Further, it can corporate the effects of congested traffic, such as the 

backward traffic propagation wave, on information flow propagation. Thereby, it illustrates the 

linkage between information flow propagation and the underlying traffic dynamics.  

From the traffic safety application perspective, the comprehensive coverage enabled by V2V 

communications bring a possible benefit that information of multiple vehicles ahead can be used 

as a priori knowledge to provide the early warning by predicting the collision risk associated with 

a lead-vehicle. The problem is that the earlier a warning is provided, the less certain that the 

situation will require the driver to act to a collision. This dissertation develops a coupled Hidden 

Markov model that synergistically combines the multiple vehicles information to predict the 

potential risk of collision. From the traffic management and control application perspective, the 

successful V2V-based advanced traveler information system (ATIS) is dependent on the individual 

vehicle’s accurate estimation of prevailing traffic conditions. Therefore, the characteristic of 

dynamic vehicle knowledge must be considered in the formulation of the guidance solutions. This 

dissertation proposes a simulation-based framework to analyze a fully decentralized ATIS system, 

in which the guidance is continuously updated for V2V-equipped vehicles based on both on 

historical information stored in the vehicle-level database and time-dependent vehicle knowledge 

that is updated through V2V communications. Hence, an understanding of the relationship 

between V2V-based ATIS performance and dynamic knowledge of vehicle provides insights into 

the design of robust V2V-based ATIS architecture. It seeks to evaluate an impact assessment of 

V2V-based system for the application domains in the perspectives of network-level and feedback 

loop. 

 Objectives of the dissertation 

The fundamental objective of this dissertation is to develop a systematic model that integrates 

the physical traffic flow, inter-vehicle communication, information flow propagation, V2V 

application for a V2V-based system. The specific tasks that address these objectives are: 
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(i) Propose a graph-based multi-layer network framework to model the V2V-based system 

as a complex system which is comprised of three coupled network layers: a physical 

traffic flow network, and virtual inter-vehicle communication and information flow 

networks. To determine the occurrence of V2V communication, the inter-vehicle 

communication layer is first constructed using the time-dependent locations of vehicles 

in the traffic flow layer and inter-vehicle communication related constraints. Then an 

information flow network is constructed based on events in the traffic and inter-vehicle 

communication networks. The graph structure of this information flow network enables 

the efficient tracking of the time-dependent vehicle knowledge of the traffic network 

conditions using a simple graph-based reverse search algorithm and the storage of the 

information flow network as a single graph database. The development of multi-layer 

framework enables to consider explicitly these interdependencies and to track the 

spatiotemporal characteristics of information flow propagation in the analytical 

framework. This proposed graph-based multi-layer network framework provides an 

explicit retrospective modeling capability to articulate how information flow evolves 

and propagates beyond the current descriptive capability afforded by simulation-based 

approaches.  

(ii) Develop a system of difference equations in the discrete space and time domain to 

model the dynamic information flow propagation. We propose a cell-based 

heterogeneous traffic flow model, where the information flow propagation mechanism 

is consistent with an epidemic model. Vehicle movement in the traffic layer satisfies 

the classical traffic flow theory characterized by the cell transmission model in this 

study. The upper layer describes the information dissemination among the equipped 

vehicles. It captures the dynamics of IFPW that can characterize how the density, speed, 

and locations of the vehicles lead to the dynamics of information flow. 

(iii) Develop a macroscopic model to characterize the IFPW. The proposed information 

dissemination model constructs a continuous-timing and continuous-space analytical 

model that can provide a closed-form solution for the IFPW speed under certain 

conditions. It establishes an analytical relationship between the IFPW speed and the 

underlying traffic flow dynamics. It uses a probability communication kernel function 

to represent the strength of communication of nearby vehicles compared with distant 
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ones under a fixed V2V-equipped vehicle density level. The dynamics of traffic flow 

propagation are described through a macroscopic hydrodynamic model of traffic flow 

originated with the first order LWR model.  

(iv) Develops a multi-anticipative forward collision warning system that synergistically 

combines V2V communication technologies to predict the potential risk. There are 

currently limited methodologies that allow us to incorporate these multiple vehicle 

kinematic data to predict the motion of the lead-vehicle and assess the associated risk. 

A coupled hidden Markov model is developed, motivated by a statistical machine 

learning technique, for predicting the motion of lead-vehicle trajectory. The coupled 

HMM offers a mathematically sound basis for making inference under uncertainty. It 

breaks down each maneuver into a chain of consecutive events. The proposed model 

can reduce the false/nuisance significantly.  

(v) Models the dynamic flow propagation of multiple units of information using an 

analytical multi-layer framework that captures the dynamics of interacting layers. The 

traffic flow dynamics are captured using a cell transmission model in the vehicular 

traffic flow layer. The inter-vehicle communication layer uses the time-dependent 

locations of vehicles and the density of the V2V-equipped vehicles as inputs for an 

aggregate analytical function of the inter-vehicle communication success rate. Then, 

the information flow evolution and propagation is modeled using a graph-based 

representation. The proposed analytical modeling framework enables capturing the 

information flow dynamics (in terms of the information forward/backward propagation 

waves, spatial propagation fronts, spatiotemporal vehicular knowledge characteristics, 

etc.) using the traffic flow dynamics (in terms of traffic forward/backward propagating 

waves and traffic flow variables) and the inter-vehicle communication events. 

(vi) Proposes a simulation-based framework to investigate a V2V-based ATIS in a large-

scale network. In this system, each individual vehicle can potentially gain knowledge 

on travel-related information and utilize the associated knowledge to revise vehicle-

level routing decisions. Hence, an understanding of the relationship between the 

travelers’ routing decisions and information flow propagation provides insights into the 

design of robust V2V-based ATIS architecture. This approach is intended to improve 

guidance quality with the ability of the decentralized architecture to respond rapidly to 
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random incidents. The results show that the proposed model provides potential benefits 

both for travelers with such equipment as well as for a whole system are demonstrated.  

 Organization of the dissertation 

This dissertation consists of eight chapters. Chapter 2 proposes a multi-layer framework that 

models the information flow propagation based on a dynamic graph structure. The performance of 

the graph structure is compared with that of the simulation-based approaches to investigate the 

capabilities of the proposed model to transparently track information generation and propagation 

in both time and space. The associated experiments highlight the potential benefits of the 

retrospective capability of the graph-based modeling of the information flow propagation to 

identify the spatiotemporal characteristics of vehicle knowledge.  

Chapter 3 discusses the concept of IFPW and develops a descriptive analytical model that 

illustrates the IFPW. Results from computational experiments demonstrate its ability to describe 

the dynamic characteristics of information flow propagation along with the traffic flow dynamics. 

Chapter 4 develops a macroscopic model to characterize the information flow propagation 

wave (IFPW). A closed-form solution is derived for the IFPW speed under homogeneous traffic 

conditions. The IFPW speed is numerically determined for heterogeneous traffic conditions. 

Numerical experiments illustrate the influence of traffic density heterogeneity on the IFPW speed. 

The proposed model can capture the spatiotemporal interactions between the traffic and V2V 

communication layers, and aid in the design of novel information propagation strategies to manage 

traffic conditions. 

Chapter 5 develops a multi-anticipative forward collision warning (FCW) system. It balances 

the trade-off between false/nuisance and missed alarms. The proposed model can alert a driver of 

the potential risk in advance and can give enough response time, helping to avoid a collision. 

Results from computational experiments demonstrate the effectiveness of the proposed model and 

its ability to predict the potential risk of collision using dissemination of information through V2V 

communication.  

Chapter 6 models the dynamic propagation of multiple units of information using an analytical 

multi-layer framework that captures the dynamics of the three interacting layers. The proposed 

framework describes how the dynamic flow propagation of multiple units of information can be 

mapped from the traffic flow dynamics and the inter-vehicle communication constraints. Synthetic 
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experiments analyze the interactions between the traffic flow dynamics and inter-vehicle 

communication constraints, and the flow propagation characteristics of multiple units of 

information. They illustrate that the proposed analytical multi-layer framework enables the 

integration of the traffic flow dynamics and inter-vehicle communication constraints to generate 

insights on the flow propagation of multiple units of information. Also, they indicate that it can be 

extended to incorporate the dynamic flow propagation characteristics of multiple units of 

information into the design of robust V2V-based ATIS architectures. 

Chapter 7 develops a simulation-based framework to evaluate a V2V-based ATIS in a large-

scale network. The routing decisions are subsequently revised by V2V-equipped vehicles based 

on both on historical data stored in the vehicle-level database and on real-time information 

obtained through V2V communications. An information updating process and online stochastic 

routing scheme are processed on vehicle-level computation. Using simulation-based experiments, 

potential benefits for V2V-equipped vehicles as well as for unequipped vehicles are demonstrated. 

The experiments illustrate that a higher market penetration rate of V2V-equipped vehicles does 

not guarantee better performance for a V2V-based ATIS. It highlights the value of considering 

some level of coordination of decision-making across vehicles to enhance network-level traffic 

performance, and points to the need for a new generation of hybrid traffic management strategies 

that leverage such emerging technologies. 

Chapter 8 concludes this dissertation with a summary of the overall insights from the research. 

Novelties and significant contributions are identified. Finally, the potential directions for future 

research are discussed. 
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2. GRAPH-BASED MODELING OF INFORMATION FLOW 

EVOLUTION AND PROPAGATION UNDER V2V 

COMMUNICATIONS BASED ADVANCED TRAVELER 

INFORMATION SYSTEMS 

 Introduction 

Communications technologies enable technological advances to be integrated into the 

transportation system and vehicles to foster objectives such as congestion mitigation, safety 

improvement, and traffic network performance enhancement. In this context, vehicle-to-vehicle 

(V2V) communications can be leveraged in an advanced traveler information system (ATIS) to 

allow vehicles to accumulate their own travel experience data and communicate with other 

vehicles within communication range to exchange travel experience data without any central 

coordination. Hence, V2V communications capabilities in an ATIS can provide a data-rich 

environment for travelers based on information transmitted anonymously from vehicles without 

the requirement of additional infrastructure. Thereby, it can potentially provide an enhanced range 

of awareness of traffic conditions to travelers. 

The dynamics of vehicular traffic flow, inter-vehicle communication, and traffic information 

flow are the three underlying factors that shape a V2V-based ATIS. A complex characteristic of 

this system is that these factors themselves interact with each other. Due to these interactions, a 

V2V-based ATIS can be viewed as consisting of coupled layers involving traffic flow, inter-

vehicle communication, and information flow, in which events in the different layers are 

interdependent. In this study, we use the term “information flow” to denote the flow of the 

information on the time-dependent link travel time experienced by a vehicle, and refer it as “a unit 

of information”. This information is not processed for congestion or incident detection (Yang and 

Recker 2008), and/or other applications through data fusion/update. The analysis of the 

propagation of a single unit of descriptive information has been proposed by various analytical 

approaches(Kim et al. 2014; Wang 2007; Wu et al. 2005a). By contrast, as vehicles generate their 

own link travel time experience data over time and space, a V2V-based ATIS entails the 

propagation of multiple units of information. The set of travel experience data on an equipped 
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vehicle, based on own experience or obtained through inter-vehicle communication, is referred to 

as the “vehicle knowledge.” 

Due to the highly-decentralized nature of the V2V-based ATIS in the absence of centralized 

coordination of information provision, and the dynamics associated with the traffic and 

information flows, different vehicles may have different time-dependent knowledge of the network 

traffic conditions. In this context, this study focuses on modeling the information flow evolution 

and propagation that lead to the dynamics of vehicle knowledge in V2V-based ATIS as a building 

block to develop coordinated information provision strategies that additionally would require an 

understanding of how the vehicle knowledge would affect the driver actions. This is because the 

estimated network traffic conditions based on a vehicle’s time-dependent knowledge can be used 

by its driver for route choice decisions. The route choice decisions of V2V-equipped vehicles 

would then lead to the traffic network flow evolution and influence the dynamics of the 

information flow due to their interactions. To reiterate, this study does not intend to determine the 

driver route choices based on the information content in the time-dependent vehicle knowledge. 

Thus, the identification of the time-dependent vehicle knowledge addressed here is a sub-problem 

of the broader V2V-based ATIS that seeks to address user/system objectives in congested traffic 

networks, possibly in coordinated control settings. This aspect is reinforced further when 

discussing the conceptual framework in Figure 2-1. 

Several studies (Gupta and Kumar 2000; Jinyang Li et al. 2001; Vuyyuru and Oguchi 2007) 

originating from the communications domain primarily focus on how the vehicle dynamics affect 

the inter-vehicle communication effectiveness between vehicles; for example, at different speeds. 

Hence, these studies have sought to address the integration of the dynamics of the traffic flow and 

the inter-vehicle communication. Other studies (Fitzgibbons et al. 2004; Schroth et al. 2005; Wu 

et al. 2005b) propose frameworks that incorporate a traffic flow simulator (such as Paramics and 

CORSIM) and a wireless (inter-vehicle communication) network simulator (such as NS-2 and 

Qualnet, or a simple analytical model) to derive some descriptive insights on the interactions 

between the traffic flow movement and the inter-vehicle communication. 

However, the aforementioned studies focus primarily on the feasibility and the reliability of the 

V2V communication system for practical applications, and do not explicitly address the modeling 
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of the dynamics of the traffic information flow in the V2V-based ATIS context. Thereby, they 

address only two of the three coupled layers identified heretofore. 

Motivated by the need to analyze the dynamics of the interactions among the traffic flow, inter-

vehicle communication, and information flow at the network level, recent simulation-based studies 

(Eichler et al. 2005; Schmidt-Eisenlohr et al. 2007; Wu et al. 2005b) in the transportation domain 

seek to estimate the dynamic traffic conditions through simple data update mechanisms so that 

travelers can use this information to make routing decisions under V2V communication systems. 

They incorporate a microscopic traffic flow model and a set of inter-vehicle communication 

constraints to determine vehicle knowledge. Thereby, these simulation-based approaches entail a 

descriptive capability to identify the time-dependent knowledge of each vehicle in terms of their 

own travel experience data and such data obtained from other vehicles through V2V 

communication.  

However, these approaches do not have a retrospective capability to articulate explicitly how 

information flow evolves and propagates, particularly in terms of its linkage to the interactions 

with the traffic flow and inter-vehicle communication dynamics. That is, they cannot track when 

and from whom a specific unit of V2V communication-based travel experience data located in a 

certain vehicle’s knowledge reaches it, and when and to whom it propagates from it. Such 

spatiotemporal capabilities are critical to develop strategies for both the rapid flow of useful 

information and traffic routing to enhance network performance. 

The lack an explicit model for the information flow layer at the network level in simulation-

based and analytical approaches precludes an understanding of the fundamental relationships 

between the dynamic interactions among the three layers, and the evolution of equipped vehicles’ 

knowledge in time and space. This is critical for three real-world objectives: (i) to identify and/or 

design information flow strategies/paradigms that lead to the rapid propagation of useful 

information (in the sense of enhancing the traffic network performance), (ii) to develop targeted 

V2V-based routing strategies to manage traffic network conditions, and (iii) to design a V2V-

based ATIS so that such communications are reliable and successful. This paper seeks to fill this 

key gap in the literature by proposing an integrated graph-based multi-layer network framework 

to model the V2V-based ATIS as a complex system which is comprised of three coupled network 

layers: traffic flow network, inter-vehicle communication network, and information flow network.  
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The proposed graph-based framework provides an explicit retrospective modeling capability to 

articulate how information flow evolves and propagates beyond the current descriptive capability 

afforded by simulation-based approaches. To do so, the framework is modeled as a set of 

interacting networks in which information flow occurs as a result of events in the traffic flow and 

inter-vehicle communication networks. These events are the travel experience data generation in 

the traffic flow network, and the V2V communication occurrences in the inter-vehicle 

communication network. In particular, the dynamics of traffic flow are represented in terms of the 

spatiotemporal vehicle trajectories in the traffic network, and the feasibility of inter-vehicle 

communication among vehicles is captured in the inter-vehicle communication network using 

constraints. Hence, to simulate the information flow evolution and propagation that characterize 

the vehicle knowledge in a V2V traffic system, the following are assumed to be known: (i) “travel 

experience data” from the physical traffic network, which represents the actual travel experiences 

of vehicles (in terms of the time a vehicle enters a link and its experienced travel time on that link) 

along their route trajectories, and (ii) the inter-vehicle communication constraints arising from the 

communications network technology (in terms of the communication range, interference and 

bandwidth).  

Based on the known entities in the V2V-based ATIS, the study first constructs the virtual inter-

vehicle communication layer that illustrates inter-vehicle communication events determined by 

the known locations of the vehicles and the technological constraints. Then, it constructs the 

information flow network layer based on the events in the other two layers. Finally, it seeks to 

identify the vehicle knowledge of all vehicles in space and time to explain what information is 

obtained by each equipped vehicle. Through these modeling processes, the graph-based approach 

provides a retrospective capability to explicitly illustrate how information flow evolves and 

propagates, particularly in terms of the linkage to the interactions with the traffic flow and inter-

vehicle communication dynamics.  

The proposed information flow network has two key modeling characteristics. First, it has a 

graph structure that illustrates the information flow evolution and propagation. This enables the 

efficient use of a graph-based search algorithm to obtain a vehicle’s travel experience data based 

on its traversing a connected subgraph of the information flow network. Second, it stores data 

using an efficient graph database. Graph databases (Robinson et al. 2013) use the graph as a data 
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structure that is optimized for the efficient storing and processing of dense, interrelated datasets. 

Akin to other studies that involve graph databases such as social, citation, and biological networks, 

an information flow network employs a graph database by assembling nodes and links into a single 

graph structure. Thus, the information flow network eliminates data representation redundancies 

so that the same piece of data is not stored in more than one place, and information flow evolution 

and propagation is represented using directed links. Also, since a graph-based search algorithm to 

characterize in the information flow network performs a local search and is not concerned with the 

network size, adapting a graph database enables the development of computationally efficient 

solution methodologies. 

 Preliminaries 

2.2.1 The integrated multi-layer network framework 

As illustrated by Figure 2-1, the V2V-based ATIS can be viewed as an integrated multi-layer 

network framework consisting of three network layers: traffic flow network, inter-vehicle 

communication network, and information flow network. Their structures are determined based on 

the physical traffic network. Hence, the three network layers have interactions. For example, the 

inter-vehicle communication network evolution is linked to the traffic flow network through 

dynamic vehicle trajectories and inter-vehicle communication constraints. 
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Figure 2-1 Conceptual framework of the integrated multi-layer network framework 

 

The information flow network is dependent on the other two layers through events in them; 

specifically, through the travel experience data generation in the traffic flow network and the V2V 

communications in the inter-vehicle communication network. Thereby, the information flow 

evolution and propagation can be depicted as a network whose nodes correspond to events that 

occur in the traffic flow and inter-vehicle communication networks, and whose links indicate the 

direction of information flow propagation. This facilitates the analysis of their spatiotemporal 

interactions through shared structural characteristics. 

2.2.1.1 Notation 

The following notation is used to represent variables in the integrated multi-layer network 

framework. 

Traffic flow network

Inter-vehicle communication 

network

Information flow network 

Dynamics of information flow

Corresponding node 

generation in the 

information flow network 

Travel experience

data generation event

Inter-vehicle 

communication event

Dynamic vehicle 

trajectory

TG = (N,A)

CG = (C,M)

I I I I IG = (N ,C , A , M )

Location of 

vehicles

Inter-vehicle 

communication event

Node in the traffic flow 

network
i

A pair of inter-vehicle 

communication nodes

Variable name Detailed representation

Vehicle identification  

(VID) number
ID of the vehicle

Traveled link  
A link that the 

vehicle passes through

Link entrance time
Time that the vehicle 

enters the link

Link travel time
Vehicle travel time between the  

two nodes of a link

33 346 07:55:33 55seconds

Traveled  linkVID Link entrance time Travel time

Inter-vehicle 

communication link

Example of travel experience data

A pair of virtual inter-

vehicle communication 

(VIC) nodes

Links in information 

flow network 

Travel experience data 

generation event

Travel experience data 

(TED) node
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Traffic flow network TG = (N,A)  

N   : the set of physical nodes 

A   : the set of physical links 

X   : the set of vehicles 

x   : subscript for a vehicle, xX  

T   : the duration of interest in the V2V-based ATIS 

t  : superscript for (continuous) the time of interest, t
 [0,T]  

i   : a physical node in the network, i N  

( , )i j   : a physical link in the network, ( , )i j  A  

Inter-vehicle communication network CG = (C,M)  

C   : the set of inter-vehicle communication nodes 

M   : the set of inter-vehicle communication links 

x   : broadcasting inter-vehicle communication nodes for vehicle x , 
x C   

y   : receiving inter-vehicle communication nodes for vehicle y , y C   

( , )x y     : inter-vehicle communication link from vehicle x  to vehicle y , ( , )x y   M  

Information flow network  I I I I IG = (N ,C , A , M )  

IN   : the set of travel experience data (TED) nodes 

IC   : the set of virtual inter-vehicle communication (VIC) nodes 

IP   : the set of nodes in the information flow network, I I IP {N ,C } , I IN C  

IA   : the set of information flow propagation trajectory links (T-link) indicating the vehicle 

trajectory direction based on the traffic flow  

IM   : the set of inter-vehicle communication based information flow propagation links (I-link) 

denoting the direction of information flow based on the inter-vehicle communication 

t

xi   : travel experience data (TED) node indicating a travel experience data generated by 

vehicle x  at node i  at time t , x  X , i  N , 
t

xi  IN  

t

x   : virtual inter-vehicle communication (VIC) node denoting that vehicle x broadcasts travel 

experience data at time t , 
t

x
IC  
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t

y   : virtual inter-vehicle communication (VIC) node denoting that vehicle y receives travel 

experience data at time t , t I

y C   

,
t t

x xp q   : nodes in the information flow network associated with vehicle x at time t; t t I

x x, Pp q   

  
( p

x

t
1 ,q

x

t
2 ) : information flow propagation trajectory link associated with the trajectory direction of 

vehicle x from time 1t  to time 2t , 1 2 I

x x, P
t t

p q  , x  X , 
1 2t t  

1 2( , )t t

x y  : inter-vehicle communication based information flow propagation link representing the 

direction of information flow (from vehicle x  to vehicle 
 y

), 1 2( , )t t

x y  IC , x y , 1 2t t  

2.2.2 Physical traffic network 

Under V2V-based ATIS, the equipped vehicles generate data on their travel experiences using 

a global positioning system (GPS) and a digital network mapping. Thereby, when a vehicle reaches 

the end of the link (that is, the associated downstream node in the traffic network), it generates 

travel experience data. As shown in Figure 2-1, the travel experience data of a vehicle includes its 

vehicle identification (VID) number, the identification number of the link traversed, the link 

entrance time, and the link travel time. Since the traffic flow network is a physical entity, we 

assume that the generation of travel experience data based on vehicle trajectories are observable, 

and given in the study.  

Let 
 G

T = (N,A) denote a traffic flow network in which vehicles have an ability to communicate 

with each other. A set  Nof nodes corresponds to physical intersections or designated points in the 

traffic flow network, and a set A  of directed links corresponds to road links. This layer captures 

the spatiotemporal interactions among vehicles through their trajectories. The time-dependent 

locations of vehicles determine the events of interest; the travel experience data generation in the 

traffic flow network, and the feasibility of inter-vehicle communication based on relevant technical 

constraints in the inter-vehicle communication network. The travel experience data generated in 

the physical traffic network represent one of the components used to construct the information 

flow network. 
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2.2.3 Virtual inter-vehicle communication network 

The known time-dependent locations of vehicles in the traffic flow network and the inter-

vehicle communication constraints are used to construct the inter-vehicle communication network. 

An inter-vehicle communication event is viewed as a one-way transfer from a broadcasting 

vehicle to a receiving vehicle. The transfer of information through inter-vehicle communication 

creates a virtual communication node set C  and a directed communication link set M , leading to 

the inter-vehicle communication network CG = (C,M).  The virtual inter-vehicle communication 

network represents the characteristics of the inter-vehicle communication events (that is, which 

vehicle broadcasts and which vehicle receives the information in a given event), as illustrated in 

Figure 2-1. Based on the occurrence of events in the inter-vehicle communication network, 

information flow propagation takes place between vehicles.  

The communication range illustrates the physical distance within which V2V communication 

can potentially occur. The communication signal power decreases with distance. Hence, it is 

assumed that V2V communication will not occur outside the specified range. Two equipped 

vehicles can potentially communicate with each other when physical distance is less than a 

predefined communication range r . However, multiple transmissions from vehicles within 

communication range leads to interference, which may result in the failure of receiving 

information from other vehicle. The interference rate is defined as follows (Gupta and Kumar, 

2000): 

2 2
X

/ ( )x z

z
x y z y

z x

T T
E





 
 

 
   

                                 (1) 

where, 
z  is defined as the GPS location coordinate of an equipped vehicle z within communication 

range, Xz . We assume that the power levels of vehicles ( xT  and 
zT ) are identical and the 

ambient noise power level ( E ) is zero. Signal power decays with distance and the vehicle y will 

successfully receive the information from vehicle x if it satisfies the minimum signal-to-

interference ratio of 

 (the study experiments use 


= 2 based on Gupta and Kumar, (2000)). 

Specifically, all equipped vehicles’ positions within communication range of vehicle y in the traffic 

network are tracked. The time interval of V2V communication is set to 0.5 seconds and the 

accomplishment of inter-vehicle communication between y and those vehicles is checked every 
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interval. Consider the locations of vehicles shown in Figure 2-2, where vehicle x is broadcasting 

and y is the receiving vehicle. Vehicles z3, z4 and z5, whose positions are within communication 

range r from vehicle y, can potentially interfere with the communication from vehicle x from 

vehicle y. This interference rate is calculated based on Equation (1).  

 

Figure 2-2 Interference among vehicles 

The bandwidth (capacity) of inter-vehicle communication is a limiting factor and can result in 

dropped data packets. In this study, we assume a 2Mbps data transmission rate and 0.5 seconds for 

frequency of communication. This is applied by restricting the number of travel experience data 

to be broadcast in each inter-vehicle communication. 

The inter-vehicle communication layer uses the trajectories of all equipped vehicles from the 

traffic flow network, and computes whether vehicles succeed or fail to communicate with each 

other in the presence of the inter-vehicle communication constraints discussed heretofore. Hence, 

the retrospective capability in the proposed framework is deterministic in the sense that given the 

dynamic vehicle trajectories from the traffic flow network and the inter-vehicle communication 

constraints, inter-vehicle communication events are deterministically computed. Given that this 

deterministic framework is a building block, ongoing work by the authors seeks to provide a 

stochastic capability for the inter-vehicle communication layer to model the effects of the inter-
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vehicle communication constraints in terms of capturing the randomness related to the V2V 

communication. 

2.2.4 Graph-based representation of information flow network 

Under a V2V–based ATIS, a vehicle continuously updates its knowledge using its own 

experience and the anonymously obtained travel experience data of other vehicles. These travel 

experience data are stored in the temporary memory on board the vehicle’s system, and duplicate 

(spatiotemporal data of the same vehicle) and/or older (data older than 30 minutes in the study 

experiments) data are discarded. 

Figure 2-3 illustrates the vehicle knowledge evolution due to travel experience data generation 

and inter-vehicle communication, and details of the associated data packet configuration. Figure 

2-3(a) shows the details of the vehicle knowledge of vehicles 33 and 25, and the associated travel 

experience data. Figure 2-3(b) illustrates how events (generation of travel experience data, and 

inter-vehicle communication) impact the evolution of vehicle knowledge in Figure 2-3(a). For 

example, the vehicle knowledge of vehicle 33 consists of sets of data that it generates and stores, 

and receives from other vehicles (vehicle 17 in Figure 2-3).  

The information flow network, whose flows are a set of travel experience data, is constructed 

using nodes and links to map what/when/where information is generated and how it propagates. It 

illustrates the dynamic nature of the information flow evolution and propagation, and the 

associated evolution of vehicle knowledge. 
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Figure 2-3 Vehicle knowledge evolution 

 

The information flow network I I I I IG = (N , C , A , M )  has two types of nodes: a “travel 

experience data (TED)” node 
IN  generated by the corresponding each event of travel experience 

data generation in 
TG , and ii) a pair of “virtual inter-vehicle communication (VIC)” nodes (one 

for broadcast and the other for receiving) 
IC  representing the corresponding each event of inter-

vehicle communication in CG , as illustrated in Figure 2-1.  

Two sets of links represent the dynamics of information flow evolution and propagation. The 

directed information flow propagation trajectory links (T-link)
IA  denotes the spatiotemporal 

trajectories of the same vehicles through TED-TED, TED-VIC, VIC-TED or VIC-VIC node 
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connections. The inter-vehicle communication based information flow propagation links (I-link)

IM  connect each pair of nodes (VIC-VIC) corresponding to inter-vehicle communication events 

between two vehicles. 

2.2.4.1 Information flow generation/deletion 

When a V2V-equipped vehicle reaches a physical intersection, it generates data on the travel 

time experienced on the link just traversed. This event is denoted by a TED node, denoted as 

IN .t

xi   It represents the travel experience data generated by vehicle Xx  at node i at time t. 

As illustrated in Figure 2-3, the travel experience data consists of the vehicle identification number, 

the link entrance time, and the experienced link travel time. Figure 2-4 shows the route trajectory 

of vehicle Xx , and the corresponding TED nodes 1t

xi  and 2t

xj  generation in the information 

flow network. They share the same topology of the physical nodes Ni and Nj , but at time 

points 1t  and 2t , respectively.   

Since the TED nodes are generated based on vehicles’ time-dependent locations in the traffic 

flow network, the TED node can characterize the spatiotemporal dynamics of traffic flow. Thus, 

1t

xi  also characterizes the spatiotemporal vehicle trajectory for vehicle Xx  located at node i at 

time t. Therefore, in Figure 2-4, the TED node 
  
j
x

t
2  in the information flow network denotes the 

travel experience data that is generated by x at the physical node Nj  at time 2t . 
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Figure 2-4 Travel experience data nodes in the information flow network corresponding to 

events of travel experience data generation in the physical traffic network 
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travel experience data to vehicle y, a pair of VIC nodes 1t

x  and 2t

y
IC  is generated in IG  

corresponding to the inter-vehicle communication nodes ( x  and y ) of CG . The VIC node pairs 

consist of the broadcasting VIC node 
I

bC  and the receiving VIC node I

rC  (
I

bC , I I

rC C ).  

Each pair of VIC nodes is connected by an inter-vehicle communication based information flow 

propagation link (I-link), 1 2( , )t t

x y  IM  in IG , which is defined as follows: 

1 2I I I

b r 1 2M {( , ) C C , }
t t

x y x y t t      
           (2) 

A directed I-link connects a pair of VIC nodes from the broadcasting VIC node I

bCt

x   to the 

receiving VIC node 
I

rCt

y  . This representation stores the corresponding information flow 

propagation through the inter-vehicle communication. We assume that the broadcasting and 

receiving of information start at the same time.  

Figure 2-5 illustrates the generation of the VIC nodes and I-links in the information flow 

network corresponding to the inter-vehicle communication. For example, the occurrence of the 

inter-vehicle communication from vehicle y to vehicle x at time 7t  is represented as the pair of 

broadcasting VIC node 7t

y  and receiving VIC node 7t

x , and the directed I-link ( 7 7,
t t

y x  ). These 

VIC nodes and I-links can map when/where information propagates from one vehicle to another 

vehicle.  

We define a set of information flow propagation trajectory links (T-links) 
IA  as follows: 

1 2I I I

1 2A {( , ) (P P ) X, }t t

x xp q x t t     
          (3) 

As the TED and VIC nodes for a vehicle occur along with its trajectory, a directed T-link 

connects TED-TED, TED-VIC, VIC-TED or VIC-VIC nodes based on the trajectory of vehicle 

x  from time 1t  to time 2t  ( 1 2t t ). Hence, a set of T-links represents the associated 

spatiotemporal traffic flow dynamics. Figure 2-5 illustrates that the directed T-links 1 2( , )t t

x xi j , 

32( , )
tt

x xj   and 3 4( , )
t t

x x   connect the TED-TED, TED-VIC, and VIC-VIC nodes based on the 

vehicle  x  trajectory direction. These T-links explain how information flow propagates along with 

this vehicle’s trajectory. 
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Figure 2-5 Representation of information flow evolution and propagation 
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2.2.5 Graph structure and reverse search algorithm for vehicle knowledge identification 

The time-dependent knowledge of a vehicle at a particular location (indicated by a specific 

TED node) is represented by a connected group of TED nodes (interpreted as travel experience 

data) and the associated directed links in the graph structure of the information flow network. 

Thereby, determining a subgraph that is connected to a specific node in the information flow 

network identifies the vehicle knowledge of interest. We formulate this process as a searching 

problem. A graph-based reverse search algorithm (Ahuja et al., 1993) tracks the flow of 

information using a backtracking logic from the specific node, by tracing the direction opposite to 

that of the directed link and identifying each source of information (that is, each TED node).  

begin 

                  Unmark all nodes in IG ; 

                  Mark node s ; 

                  List:={s}; 

                  while List 0 do 

                  begin 

                           select a node  j in List; 

                           while there is an admissible link (i , j)              

                                     that is incident to node  j do 

                           begin 

                                     mark node i; 

                                     add node i to List; 

                                     add node i to Travel Data;  

                           end; 

                           delete node  j from List; 

                   end; 

    end;  

Figure 2-6 Implementation of the graph-based reverse search algorithm 

The time-dependent knowledge of a vehicle located at a TED node can be identified by identifying 

all nodes that can reach it along directed paths. Figure 2-6 illustrates the procedure to implement 

the reverse search algorithm to identify the vehicle knowledge. In the initialization step, every 



 

42 

 

node is set as “unmarked”, and “Travel Data”, which collects all nodes that are reachable from a 

specific node s (vehicle location), is set to empty. Here, a node l is “reachable” from another node 

k if there is a directed path from k to l. 

A specific node j = s is marked initially and added to the empty list “List”. We fan out from j 

to identify nodes that can reach it. To do so, we search for admissible links that are incident to j. 

A link (i, j) is referred to as admissible if node i is unmarked and node j is marked. For each 

admissible link, we designate its unmarked node i as visited and tag it as marked. Node i is added 

to “List” and “Travel Data”. After all admissible links for j are scanned, remove j from “List”. Go 

to the next node in “List” and repeat the algorithmic process until there are no nodes in “List”. 

When the algorithm terminates, each TED node in “Travel Data” indicates a generated travel 

experience data and each VIC node explains how it is obtained through inter-vehicle 

communication. 

 Retrospective modeling capability in the graph-based framework 

2.3.1 Vehicle knowledge update in simulation-based approach 

Modeling a large-scale V2V-based ATIS is inherently complex. Hence, a simulation-based 

approaches has typically been used to identify vehicle knowledge in V2V-based ATIS studies. 

Past studies (Wu et al., 2005; Kim et al., 2009; Kim, 2010) use traffic simulators as the traffic flow 

layer, and inter-vehicle communication constraints govern data exchange based on each equipped 

vehicle’s location information in each simulation time step. Thereby, in each time step of the 

simulation-based approach, each vehicle’s knowledge is updated using traffic data received from 

other vehicles as well as the data generated by the vehicle itself. In an update process, each 

vehicle’s knowledge after a relevant event is copied to an individual memory location (for that 

vehicle) which stores its previous vehicle knowledge; this is illustrated in Figure 2-7 for two time 

steps (t1 and t2). While this is an intuitive approach that mimics the individual vehicles’ onboard 

memory storage and copies the travel experience data from one vehicle to another, it lacks 

retrospective modeling capabilities to articulate explicitly how information flow evolves and 

propagates. Further, as explained in Section 2.3.3, an extensive update process is required to update 

each vehicle’s knowledge under this approach. 
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Figure 2-7 Vehicle knowledge update in the simulation-based approach 
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2.3.2 Retrospective modeling capabilities 

2.3.2.1 Retrospective modeling of the integrated multi-layer network 

There is a need to understand and model the dynamics of information flow explicitly at the 

multi-layer network level. However, the integration of the information flow evolution and 

propagation with the traffic flow dynamics and inter-vehicle communication introduces significant 

complexity for two reasons. First, the need to track vehicles from the perspective of information 

flow evolution and propagation in addition to the physics of vehicular interactions requires a multi-

layer network approach. Second, since information is exchanged by vehicles continuously, there 

is a need to ensure consistency in information flow propagation over space and time. In this context, 

the evolution of vehicle knowledge can be analyzed in the multi-layer network framework through 

the information flow network by linking the TED nodes to events in the traffic flow network and 

VIC nodes to the events in the inter-vehicle communication network, thereby illustrating the 

dynamics of traffic flow and the occurrence of the inter-vehicle communication, respectively.  

Figure 2-8 (a) shows an example to track the evolution of knowledge of two vehicles with 

similar routes based on the dynamics of traffic flow and the inter-vehicle communication events. 

By understanding what inter-vehicle communication occurs with whom, when vehicles 

communicate, and what vehicle knowledge is transmitted over space and time, insights can be 

generated on the interaction of events that influence the evolution of vehicle knowledge. Figure 2-

8 (b) illustrates a spatiotemporal analysis of the knowledge of two vehicles shown in Figure 2-8 

(a) in space and time. It illustrates that dynamic vehicle knowledge entails the following aspects: 

dynamic spatiotemporal coverage, time delay (different color shades imply different time delays), 

quality and quantity of travel experience data (thickness of line indicates the number of travel 

experience data for a corresponding link), and the relevance of data for its trip (based on current 

location and destination). These observations illustrate the need for a systematic understanding of 

vehicle knowledge characteristics to leverage its use to develop driver route guidance strategies, 

and system operator strategies for the efficient spread of useful information. 

2.3.2.2 Information propagation chain 

The graph structure of the information flow network provides retrospective information related 

to how information evolves and vehicle knowledge is updated. This provides a capability to track 
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the spatiotemporal characteristics of information flow evolution and propagation directly through 

a connected graph structure and generate a fundamental understanding of how events affect the 

evolution of the information flow network. Figure 2-9 (a) illustrates an example of an information 

flow network using the graph-based representation and a subgraph of  G
I  indicating vehicle 

knowledge. The vehicle knowledge of this vehicle consists of a set of subgraphs that it generates 

or receives from other vehicles (from vehicle y and w) through inter-vehicle communication. 

Therefore, the evolution of vehicle knowledge of interest can be tracked from any point using a 

graph-based search algorithm. A subgraph connected to a VIC node represents vehicle knowledge 

received from another vehicle through each inter-vehicle communication. As shown in Figure 2-9 

(a), the vehicle knowledge of vehicle y (represented by a subgraph using dotted lines) is transmitted 

to vehicle x through the inter-vehicle communication from vehicle y to vehicle x. Figure 2-9 (b) 

illustrates the “Travel Data” obtained using the graph-based search algorithm. 

The algorithm fans out from the node in the shaded circle in Figure 2-9 (a) in sequence, 

identifying the reachable nodes in “Travel Data”.  VIC nodes in “Travel Data” form an information 

propagation chain which can address the following: (1) which vehicle contributes to propagating 

the travel experience data of vehicle z to vehicle x?, and (2) what is the time required to propagate 

information to the target vehicle x through inter-vehicle communication?.  

Figure 2-9 (c) shows each vehicle’s knowledge at the end of the simulation based on the same 

events as in Figure 2-9 (a). As can be seen, unlike in Figure 2-9 (b), the simulation-based approach 

is limited in its ability to illustrate the information flow evolution and propagation. That is, Figure 

2-9(c) shows the vehicle knowledge without indicating the time dimension and the information 

propagation chain. It cannot easily infer which vehicle contributes to propagating the travel 

experience data z in the shaded square and when this experience data is obtained by vehicle x.  
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Figure 2-8 Multi-layer network analysis and evolution of vehicle knowledge 
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Figure 2-9 Comparison of spatiotemporal tracking capabilities  
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Figure 2-10 Dynamic information flow evolution and propagation under different market 

penetration rates 
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This is because the simulation-based approach copies data from the vehicle knowledge of one 

vehicle to another without explicitly indicating which vehicle is involved in the inter-vehicle 

communication. Therefore, tracking the spatiotemporal characteristics of the inter-vehicle 

communication requires the tagging of when such communications occur and which vehicles are 

involved in such communication, which can be computationally expensive. Figure 2-10 (a) 

illustrates a subgraph of  G
I  indicating the propagation of a single unit of information. A subgraph 

can explicitly address when and to whom a specific unit of information propagates. For example, 

travel experience data generated by vehicle z at time 
0t  propagates to vehicle y and x through the 

inter-vehicle communication, and the event locations can be tracked using the TED node as 

discussed in Section 2.3.2.1. 

Therefore, the graph structure transparently provides a direct link to track the information flow 

evolution and propagation from one vehicle to another using the graph-based search algorithm 

from a TED node (which indicates a specific travel experience data). By contrast, the simulation-

based approach requires a scan of the knowledge of all vehicles stored using the data structure in 

Figure 2-7 to determine whether it has a particular travel experience data of interest, which can be 

computationally expensive. Figure 2-10 (b) shows the propagation of a travel experience data from 

a vehicle in terms of the dynamics of traffic flow and inter-vehicle communication events. It shows 

which vehicle receives this information over time (5, 15, and 25 minutes after it is first generated) 

under different market penetration rates (10% and 20%). 

2.3.3 Efficiency of the graph database 

2.3.3.1 Graph database in the graph-based approach 

In contrast to the data storage mechanism of the simulation-based approach illustrated in 

Section 3.1, the graph database used in this study shares data in a single memory to represent the 

knowledge of all vehicles through interconnected nodes and links, and uses a local search to 

identify the vehicle knowledge of any vehicle. A reverse graph-based search algorithm leverages 

this structure to traverse the graph in a direction opposite to that of the information flow 

propagation from the current location of a vehicle to determine the current vehicle knowledge. 

More details on graph databases can be found in Robinson et al. (2013) and Sakr and Pardede 

(2012). 
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2.3.3.2 Memory usage efficiency 

By sharing the nodes and links to represent the knowledge of vehicles in the information flow 

network, the graph database leads to memory size efficiency compared to a simulation-based 

approach which needs to store the vehicle knowledge separately for each vehicle to update the 

knowledge of other vehicles. The reverse search algorithm for each vehicle of interest identifies 

the subgraph of the information flow network that denotes its knowledge. Thereby, the proposed 

graph database is efficient and eliminates the need to store vehicle knowledge for each vehicle.  

By contrast, the simulation-based approach adapts an update mechanism which copies data 

from the most recent vehicle knowledge of the broadcasting vehicle to the receiving vehicle at the 

time of inter-vehicle communication, as seen in Figure 2-7. Thus, the simulation-based approach 

must memorize all vehicles’ knowledge individually to compute other vehicles’ knowledge. This 

leads to an exponential increase in memory size usage for large scale real-world traffic networks.  

Let | X | be the number of equipped vehicles in V2V-based ATIS, and | N
I |, | C

I |, | A
I |, and | M

I

|, the number of elements in  N
I , C

I , A
I , and  M

I , respectively. Since the graph database of the 

information flow network is stored as a single graph, there is no duplication of nodes. Hence, the 

memory usage for representing the information flow network can be bounded by (| N
I |+| C

I | +| A
I

|+| M
I |). However, the memory usage for the simulation-based approach requires up to (| N

I |  | X

|). This is because it stores all vehicles’ knowledge individually to compute other vehicles’ 

knowledge. That is, each of the | X | vehicles can have a maximum of | N
I | travel experience data 

nodes. 

2.3.3.3 Computational efficiency 

In the graph database, the vehicle knowledge of any vehicle can be identified by visiting only 

connected subgraph of information flow network. Therefore, it does not require an update of the 

knowledge of all vehicles to identify a specific vehicle’s knowledge. In addition to addressing the 

three real-world objectives identified in Section 2-1, this provides a significant practical benefit in 

terms of the ability to track the spatiotemporal evolution of information for a specific class of 

vehicles. Further, traversing from one node to another is a constant time operation. Thus, the search 

time is defined solely by the number of nodes and links identified by the local search. This is 

irrespective of the size/topology of the information flow network as a whole. The time it takes to 
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search is determined by the local topology of the subgraph surrounding the particular node being 

traversed from. 

Thus, the graph-based approach can identify a vehicle’s knowledge with complexity O  (| A
I

|+| M
I |). In the reverse search algorithm in Figure 2-6, the admissible links are identified and new 

nodes are marked and added to “List” and “Travel Data”. The effort spent in identifying the 

admissible links from each node j in the information flow network is equal to the number of 

adjacent links to j, indicated by the link adjacency list of j. Hence, the graph-based approach for a 

vehicle of interest at a specific location has the order of the total number of links in  G
I ; O  (| A

I

|+| M
I |). Then, for a specific class of vehicles (such as vehicles in a certain geographical area or 

vehicles exposed to a certain variable message sign), the algorithm has an order O  ((| A
I |+| M

I |) 

| K |), where | K | is the number of vehicles of the specific class K . 

By contrast, to track the knowledge of a specific class of vehicles, the simulation-based 

approach relies on updating all processes starting from the first time interval to update the 

knowledge of a vehicle. Thus, the simulation-based approach in Figure 2-7 can identify a vehicle’s 

knowledge of interest only when all processes of copying the travel experience data across storage 

locations are completed. Therefore, the execution time to identify the knowledge of a single vehicle 

is the same as that for identifying the knowledge of all vehicles.  

The computational complexity is determined as follows. For each vehicle, each travel 

experience data is added to its storage location. Since there are | N
I | such travel experience data 

generated, the computational time to store all such data has an order O  (| N
I |). When inter-vehicle 

communication takes place, the vehicle knowledge is copied from the broadcasting vehicle storage 

location to the receiving vehicle storage location. Since the maximum size of vehicle knowledge 

has an order O  (|  N
I |), the copy operation computational time for each inter-vehicle 

communication has an order O  (| N
I|). As the number of inter-vehicle communications is | N

I |, the 

time complexity of updating all vehicles’ knowledge in the simulation-based approach is O  (| N
I

|+| N
I |  | M

I |). Since | M
I | can be really large, this approach is less efficient compared to the graph-

based approach. 

Further, the travel experience data are stored in the temporary memory on board the vehicle’s 

system, and duplicate data from many other vehicles are processed and discarded. In this context, 

the simulation-based approach copies the travel experience data across storage locations and 

executes the process to filter duplicate data. However, in the graph database, each travel experience 
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data is represented by a node only once and its propagation is captured through the link 

representation, eliminating these filtering processes. This observation is important to further 

illustrate the efficiency of the graph-based approach. 

 Numerical experiments 

2.4.1 Experiment design 

The Borman Expressway network in northern Indiana, which includes interstates 80/94 and 65, 

and the surrounding arterials, is used as the study network. It consists of 197 nodes and 460 links, 

and has a size 11.3miles×8.5miles. Different demand levels (low: 11,074 vehicles; medium: 

43,988 vehicles; high: 88,123 vehicles) and market penetration rates (1%, 5%, 10% and 20%) that 

denote percentage of V2V-equipped vehicles, are considered for analysis over a 90-minute period 

of interest. Figure 2-11 shows the Borman Expressway network. 

 

Figure 2-11 Study network 

Of the three layers of the V2V-based ATIS, the traffic flow layer is replicated using a 

mesoscopic vehicular traffic simulator, DYNASMART-P, to represent the flow dynamics in the 

traffic network. To ensure consistency in comparison, both the graph-based and simulation-based 

approaches use the corresponding trajectories of the V2V-equipped vehicles in the traffic flow 

layer for a 90-minute time horizon of interest, and the inter-vehicle communication constraints, to 

determine the vehicle knowledge. The following inter-vehicle communication constraints are used: 

the inter-vehicle communication range (250m), interference rate (Equation (1)), and bandwidth 
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(2Mbps). Since the graph-based representation of the information flow network does not store the 

travel experience data in disparate storage locations, to calculate the data packet size of a vehicle 

the bandwidth constraint is applied by restricting the number of travel experience data (12,500 

TED nodes) to be searched from a specific node in the information flow network. Correspondingly, 

for consistency, the simulation-based approach is allowed to copy only a maximum number of 

12,500 such travel experience data for each inter-vehicle communication. The performance of the 

two approaches to identify the vehicle knowledge under various scenarios is examined in terms of 

memory usage efficiency and computational efficiency. In all scenarios, demand is loaded during 

the first 90 minutes of analysis. We examine twelve scenarios that represent combinations of three 

demand levels (low, medium, and high) and four market penetration rates (1%, 5%, 10%, and 

20%). 

2.4.2 Information flow network size and construction time 

Given events in the traffic flow and inter-vehicle communication networks, the information 

flow network is constructed in the graph-based approach by adding new nodes and links. The sizes 

of the information flow network under the 250m communication range, and different scenarios of 

demand and market penetration levels are summarized in Table 2-1 in terms of the number of 

equipped vehicles | | and the number of network components, including TED nodes | |, VIC nodes 

| |, T-links | |, and I-links | |. Here, | | increases with the number of equipped vehicles | |. As vehicles 

are more likely to exchange information under higher demand and market penetration rates, the 

associated number of nodes | |, and links | | and | | increase rapidly. The time to construct   in terms 

of generating the node-link adjacency matrix of the information flow network is also shown in 

Table 2-1. Given the information flow network for each scenario, the graph-based approach 

identifies the spatiotemporal characteristics of vehicle knowledge using the graph-based reverse 

search algorithm. 

2.4.3 Performance evaluation 

2.4.3.1 Memory usage efficiency 

Table 2-1 compares the memory usage of the graph-based information flow network and the 

simulation-based approach. For example, for the high demand scenario with market penetration 
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20%, the memory usage to store the knowledge of all vehicles requires 2.9 MB for the graph-based 

representation and 1.45 GB for the simulation-based approach.  

 

Table 2-1 Information flow network size and construction time under different scenarios 

Scenario* Size of the information flow network Network construction  

time (unit: seconds)  | X | |
IN | |

IC | |
IA | |

IM | 

L-1 111 1,082 174 1,145 87 0.04 

L-5 543 5,060 4,146 8,663 2,073 0.06 

L-10 1,091 10,324 15,936 25,169 7,968 0.53 

L-20 2,173 20,763 62,280 80,870 31,140 1.4 

M-1 372 3,490 2,488 5,606 1,244 0.25 

M-5 1,834 16,885 54,464 69,515 27,232 1.15 

M-10 3,682 33,995 202,806 233,119 101,403 4.2 

M-20 7,354 67,729 689,358 749,733 344,679 15.1 

H-1 601 4,959 8,260 12,618 4,130 0. 4 

H-5 2,986 24,898 174,082 195,994 87,041 2.8 

H-10 5,953 49,895 589,180 633,122 294,590 13.2 

H-20 11,953 99,947 1,945,198 2,033,192 972,599 42.3 

 *L: low demand, M: medium demand, H: high demand; 1,5,10, and 20: market penetration rate 

(in percent) 

 

The associated ratios of the memory usage of the simulation-based and graph-based 

approaches are shown in the last column. As the number of inter-vehicle communication events 

increases rapidly with higher demand and market penetration rates, the memory required to store 

the knowledge of all vehicles individually tends to increase exponentially.  

As discussed earlier, the superior memory usage efficiency under the graph-based approach is 

due to the sharing of nodes and links to represent vehicle knowledge rather than duplicating the 

travel experience data when information propagation occurs. 
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2.4.3.2 Computational efficiency 

Table 2-3 compares the computational times of the graph-based and the simulation-based 

approaches to determine the vehicle knowledge of all vehicles at their destinations to ensure 

consistency in comparison, as the simulation-based approach can determine their vehicle 

knowledge only at the end of the horizon of interest (90 minutes in the study experiments).  

Table 2-2 Memory usage to update vehicle knowledge 

Scenario* 
Memory usage (unit: Megabytes) 

Graph-based approach Simulation-based approach Comparison ratio 

L-1 0.025 0.1 4 

L-5 0.1 2.5 25 

L-10 0.2 13.3 67 

L-20 0.4 54 135 

M-1 0.1 0.6 6 

M-5 0.3 28.2 94 

M-10 0.7 130 185 

M-20 1.4 543 387 

H-1 0.1 1.2 12 

H-5 0.5 49 98 

H-10 1.1 477 433 

H-20 2.9 1,454 501 

*L: low demand, M: medium demand, H: high demand; 1,5,10, and 20: market penetration rate 

(in percent) 
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Table 2-3 Computation time to determine vehicle knowledge for all vehicles 

Scenario* 

Graph-based approach for the 

vehicle knowledge identification 

Simulation-based 

approach 

Number of 

equipped 

vehicles   | X | 

Average execution 

time of the search 

algorithm (seconds) 

Time to determine 

the knowledge of all 

vehicles (seconds) 

Time to determine 

the knowledge of 

all vehicles 

(seconds) 

L-1 111 0.0018 0.2 0.3 

L-5 543 0.0030 1.6 2.0 

L-10 1,091 0.0046 5.0 7.2 

L-20 2,173 0.0075 16.3 38.8 

M-1 372 0.0024 0.9 1.4 

M-5 1,834 0.0074 13.6 26.7 

M-10 3,682 0.0169 62 310 

M-20 7,354 0.0567 417 2,552 

H-1 601 0.0031 1.9 4.4 

H-5 2,986 0.0175 52 166 

H-10 5,953 0.0502 299 1,147 

H-20 11,953 0.1715 2,050 9,212 

 *L: low demand, M: medium demand, H: high demand; 1,5,10, and 20: market penetration rate 

(in percent) 

 

The number of equipped vehicles | X |, shown in the second column, represents the number of 

times that the reverse search algorithm is executed. Since the graph-based approach can identify 

the knowledge of a vehicle of interest without updating the other vehicles’ knowledge, the 

associated average computational times across the vehicles in column 2 are shown in the third 

column. The computational times to determine the knowledge of all vehicles are shown in the 

fourth column (as the product of the second and third columns). The computational times to 
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determine the knowledge of all vehicles under the simulation-based approach are shown in last 

column. 

In summary, an explicit modeling of the information flow network as a graph database leads 

to memory efficiency due to the circumvention of redundant storage of the travel experience data. 

Further, the local searching of only reachable nodes, which are a subgraph of the information flow 

network, enables the computational efficiency. 

2.4.4 Key insights for V2V-based ATIS 

As illustrated in Sections 2-3 and 2-4, a primary benefit of the graph-based approach is its 

capability to track the spatiotemporal characteristics of vehicle knowledge explicitly. Further, the 

proposed graph-based multi-layer network framework provides an explicit modeling capability to 

articulate how information flow evolves and propagates. It can link it to the interactions with traffic 

flow and inter-vehicle communication dynamics. The graph-based multi-layer framework also 

provides the important capability to determine the vehicle knowledge of any vehicle in space and 

time in a computationally efficient manner. By contrast, simulation-based approaches need to 

update the knowledge of all vehicles so as to track the knowledge of any vehicle or subset of 

vehicles of interest, and this can be computationally exhaustive and expensive. These capabilities 

of the graph-based approach are fundamental to illustrating the significance of this study. 

Information-based control and/or management of highly congested traffic networks, especially 

under random incidents (such as accidents), entails a detailed understanding of the information 

flow dynamics under V2V-based ATIS. Such an understanding is critical to develop strategies for 

the active control of congested traffic networks and the rapid flow of useful information. Hence, 

the proposed graph-based framework serves as a building block for the design of a new generation 

of information flow routing and vehicular route guidance strategies to manage traffic conditions 

in congested networks. That is, the proposed approach can pave the way to develop a range of 

graph-based and/or analytical models/strategies that can entail theoretical properties and illustrate 

spatiotemporal phenomena transparently. These aspects, and the capabilities to generate 

prescriptive solutions for both information flow and traffic flow, enable the proposed graph-based 

multi-layer network framework to foster advances significantly beyond the current simulation-

based approaches for V2V-based ATIS. 
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While the proposed framework does not require public infrastructure, it may be beneficial to 

install public infrastructure along roads to promote the propagation of information for system-level 

applications. This vehicle-to-infrastructure (V2I) context is particularly useful: (i) during the initial 

deployment stages when the penetration rate of V2V communication devices is low, (ii) for a 

situation where the information collection is not smooth/adequate in certain locations of the 

network due to insufficient traffic flow, or (iii) for system-level traffic control strategies. 

 Summary and discussion 

The need to understand the information flow evolution and propagation, and spatiotemporal 

characteristics of the vehicle knowledge, is a core problem for a V2V-based ATIS, especially in 

the context of information-based decision-making by travelers and control by system operators. 

This study models the information flow evolution and propagation based on a dynamic graph 

structure in the form of a virtual information flow network emerging from the spatiotemporal 

events in the other two layers of the proposed integrated multi-layer network framework. The 

graph structure of the information flow network provides a key capability to track the complex 

spatiotemporal characteristics of information flow, and analyze the underlying fundamental 

relationships among the dynamics of the traffic flow network, inter-vehicle communication 

network, and the information flow network. 

The graph structure of the information flow network enables the leveraging of well-known 

graph algorithms and properties to develop efficient approaches to explicitly elicit the information 

flow evolution and propagation aspects that characterize the dynamic vehicle knowledge. These 

capabilities are critical to develop strategies for the rapid flow of useful information and traffic 

routing to enhance network performance, and for the design of V2V-based ATIS so that such 

communications are reliable and successful. The proposed graph-based framework provides 

capabilities to transparently track information generation and propagation in both time and space. 

Thereby, individual vehicles can be tracked at any point in time or space to identify their current 

knowledge. The graph-based approach is compared to a simulation-based approach to determine 

vehicle knowledge. It illustrates the potential benefits of the retrospective capability of the graph-

based modeling of the information flow evolution and propagation to identify the spatiotemporal 

characteristics of vehicle knowledge. Hence, a graph-based modeling of the information flow 
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evolution and propagation can provide powerful capabilities to leverage efficient graph-based 

methods and algorithms.  

Synthetic experiments illustrate memory efficiency through the use of a graph database and 

computational efficiency through the use of a simple reverse search algorithm to update the vehicle 

knowledge by traversing a connected subgraph of the information flow network. Hence, graph-

based modeling to identify vehicle knowledge can provide powerful capabilities to leverage 

efficient graph-based methods and algorithms. 

The proposed multi-layer network framework represents a building block to develop both 

descriptive capabilities and prescriptive strategies related to propagating the flow of useful 

information efficiently, and synergistically generating routing mechanisms that enhance the traffic 

network performance. Hence, an important practical implication of the proposed methodology is 

the ability to generate effective traffic control strategies under V2V-based ATIS. The proposed 

methodology can serve as a platform to address several other applications and modeling needs 

related to V2V-based ATIS; they include routing strategies for specific classes of vehicles, targeted 

information propagation strategies to alleviate local traffic situations, rapid information 

communication strategies to address emergent safety problems, seamless communication of 

pricing strategies, etc.  

Ongoing work by the authors seeks to leverage the graph-based multi-layer network 

framework in various ways. First, the inter-vehicle communication layer in the proposed 

framework assumes a deterministic framework. A stochastic modeling capability to generate 

greater realism is being incorporated. Second, we are developing V2V communications based 

route guidance strategies that link vehicle knowledge to driver decision-making, thereby 

completing the interactions loop in Figure 2-1 by linking the information flow network dynamics 

to the traffic flow network dynamics. 
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3. AN ANALYTICAL MODEL TO CHARACTERIZE THE 

SPATIOTEMPORAL PROPAGATION OF INFORMATION UNDER 

VEHICLE-TO-VEHICLE COMMUNICATIONS  

 Introduction 

Understanding and modeling the spatiotemporal characteristics of information flow 

propagation is a core problem for a vehicle-to-vehicle (V2V) communications based traffic system. 

For example, a forward collision warning system based on V2V communications can allow drivers 

to receive a safety warning from other vehicles when a vehicle traveling far ahead detects an 

impending rear-end collision(Biswas et al. 2006a; Palazzi et al. 2010). A cooperative system 

enables drivers to be continuously aware of each other and adjust their driving speed, so that the 

level of service and stability of traffic flow can be improved (Leontiadis et al. 2011; Monteil et al. 

2013). An important issue that arises in the aforementioned V2V communication based traffic 

systems is how far and quickly information can propagate to other vehicles in the network. 

In a traffic system with V2V communications, the dynamics of information flow propagation 

is shaped by the traffic flow dynamics and the V2V communication events. Hence, the modeling 

of information flow propagation entails the integration of dynamic traffic flow and V2V 

communication events. 

An integrated multi-layer framework is required to describe the interdependencies among 

information flow, traffic flow, and the V2V communication events, each of which would represent 

a network layer in this framework (Kim and Peeta 2015). Due to inherent complexities introduced 

by the integration of traffic flow dynamics and V2V communications, information flow 

propagation is typically analyzed using simulation-based approaches, most of which integrate two 

simulators: a traffic flow simulator and a communication simulator (Kim 2007; Yang and Recker 

2005, 2006). A detailed review on simulation-based approaches can be found in Spaho et al. (2011). 

The simulation-based approaches can adequately capture the non-linear interactions between 

traffic flow, V2V communications, and information flow. However, their major disadvantage is 

the lack of a rigorous mathematical formulation that precludes theoretical insights. Thereby, while 

traffic flow and V2V communication phenomena have been investigated using the simulation-

based approaches, the applications developed therein are tailored to the specific problem. 
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In contrast to simulation-based approaches, an analytical approach can provide theoretical 

insights by integrating the dynamics of traffic flow and information flow into a multi-layer 

framework. However, existing analytical approaches have limitations to characterize the 

spatiotemporal propagation of information, as discussed hereafter. 

First, most existing analytical approaches (Briesemeister et al. 2000; Ukkusuri and Du 2008; 

Wang 2007; Yang and Recker 2008) assume that information propagates instantaneously through 

a multi-hop process. A few studies (Kesting et al. 2010; Ng and Travis Waller 2010; Wu et al. 

2005a) discuss the limitations of instantaneous information propagation which restricts the 

information hopping only to the spatial dimension. They propose models in which information is 

stored and relayed to other vehicles with time delay to relax the assumption of instantaneous 

propagation. However, traffic flow in these models is largely simplified as a static flow that relies 

on a statistical distribution of the spatial headway to derive analytical probability distributions for 

message transmission times and propagation speeds. A recent study (Du and Dao 2015) proposes 

models that assume precise vehicle movement trajectories are available, and does not include a 

traffic flow model. Hence, existing models cannot analytically describe the comprehensive 

interactions between the information flow propagation and the traffic flow dynamics, especially 

under congested traffic conditions. Second, to capture the information propagation in temporal 

dimension, some analytical approaches rely on the independent vehicle mobility assumption (Wu 

et al. 2004, 2009). Thereby, congestion phenomena are absent at medium to high densities, and 

the impacts from spatiotemporal vehicle movements, such as traffic propagation waves and queues, 

are not captured. As a result, the fundamental role of traffic flow in information flow propagation 

has largely been ignored in these models. It is significant because the traffic dynamics lead to 

spatiotemporal changes of vehicle position and equipped vehicles density within communication 

range, both of which constrain V2V communications. In the literature, Choffnes and Bustamante 

(2005) shows that the success rate of V2V communications based on the random waypoint model 

significantly differs from that based on a realistic traffic flow model. 

Third, V2V communication constraints are not well captured in existing analytical approaches. 

Most of them only factor the communication range constraint. However, in the real world, the 

occurrence of V2V communication is also subject to other technical constraints, such as 

interference and bandwidth. 
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Fourth, to our knowledge, no existing analytical approach considers an information flow 

propagation wave that can be used to describe the interactions between the information flow and 

the underlying traffic flow. If equipped vehicles are distributed across a network and information 

is generated from a vehicle, information flow propagation waves can occur indicating the potential 

for a sudden variation of information density, similar to the traveling waves in epidemiology 

(Grenfell et al. 2001; Mollison 1977). In this regard, a wide variety of phenomena related to 

spatiotemporal information spread can be characterized by information flow propagation waves, 

which describe how the density, speed, and locations of the vehicles lead to the dynamics of 

information flow. 

 

Figure 3-1 Conceptual framework of cell-based information flow propagation model 

 

To bridge the methodological gaps in the existing literature, this study seeks to develop a 

descriptive analytical model that illustrates the information flow propagation. We propose a cell-

based heterogeneous traffic flow model, where the information flow propagation mechanism is 

consistent with an epidemic model. Figure 3-1 illustrates a conceptual framework of the proposed 

model.  

The model formulates the dynamics of traffic flow and information flow in a two-layer 

structure. The lower layer in Figure 3-1 describes the traffic flow propagation, where vehicles are 

considered as heterogeneous flows according to their status as follows. The set of vehicles in the 

transportation network, denoted by M , is divided into two disjoint subsets, i.e.,  ,M G U , 

Traffic flow propagation by cell-based traffic flow model

U

U

S

S

I

I

S S S

U

UU

U

U

S

S

I

I

S S S

U

UU

Information propagation by epidemic model

S ISusceptible vehicle Informed vehicle U Unequipped vehicle

Traffic flow 

direction



 

63 

 

where G  represents the set of vehicle equipped with a V2V communications capability and U

represents the set of unequipped vehicles. The equipped vehicles (i.e., set G ) are further divided 

into two disjoint subsets, S  and I , to represent the susceptible and informed vehicles, 

respectively. Informed vehicles already have the information, while susceptible vehicles do not 

yet have that information, but have the potential to receive that information. Vehicle movement in 

the traffic layer satisfies the classical traffic flow theory characterized by the cell transmission 

model (CTM) (Daganzo 1994) in this study. 

The upper layer in Figure 3-1 describes the information dissemination among the equipped 

vehicles. A classical epidemic model is adapted to formulate the information dissemination process 

due to the similarity between the information transmission under V2V communications and 

disease transmission. At any time instant, all equipped vehicles attempt to communicate with other 

equipped vehicles within the communication range. If a susceptible vehicle successfully 

communicates with an informed vehicle, then that vehicle changes its status from susceptible to 

informed, similar to getting infected in epidemiology.   

Following the two-layer structure, the proposed model provides capabilities to: (i) describe the 

characteristics of information flow wave built upon the traffic flow dynamics, (ii) factor the 

impacts from congested traffic, such as the backward traffic propagation wave, in information flow 

propagation, (iii) capture V2V communication constraints, and (iv) illustrate the dependency 

between the information flow propagation and the underlying traffic flow. These capabilities lead 

to a better understanding of the fundamental relationship between traffic flow dynamics and 

information flow propagation and enable a broader development of applications based on V2V 

communications. 

The remainder of this paper is structured as follows. The next section introduces the 

fundamentals of epidemiology and the CTM. Section 3-3 presents the detailed model which 

integrates information flow propagation and traffic flow dynamics. This is followed by numerical 

experiments and the associated results in Section 3-4. The final section summarizes the main 

findings and future research directions. 
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 Preliminaries 

3.2.1 Epidemic model 

In a V2V communications system, once an equipped vehicle generates traffic information 

(such as travel time on a link), the information continuously propagates to other vehicles through 

V2V communications. In this study, we use the term “information flow” to denote the flow of raw 

data between equipped vehicles, and data processing or data fusion/update.  

There is a broad analogy between the information flow propagation among equipped vehicles 

and the transmission of an infectious disease between individuals, though the fundamental 

assumptions of standard epidemic models need to be revised to account for the unique 

characteristics of V2V communications due to their high mobility and V2V communication 

constraints. Table 3-1 summarizes the analogy between a V2V communications system and an 

epidemiological system, and the terminology that will be used in the study. 

Applying an epidemic model to information flow propagation can aid in describing the 

underlying transmission mechanism of information. The complexity of information flow 

propagation in a V2V communications system precludes the formulation of the dynamics of 

information flow propagation using a simple equation. An epidemiological model bridges the 

microscopic description (the role of an infectious individual) to the macroscopic behavior of 

disease spread through a population. Hence, mathematical epidemic models provide a tool to 

formulate information flow propagation at the macroscopic level. 
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Table 3-1 Conceptual analogy between epidemiological and V2V communications systems 

Notation Epidemiology V2V communications system 

t

iG  
Set of individuals in community i at 

time t 
Set of equipped vehicles in cell i at time t 

t

iS  
Set of susceptible individuals in 

community i at time t 

Set of vehicles that can potentially 

receive the information in cell i at time t 

t

iI  
Set of infectious individuals in 

community i at time t 

Set of vehicles who have the information 

in cell i at time t 

t

iP  

Force of infection: Probability that a 

susceptible individual 

in community i becomes infected 

between t and t+1 

Force of communication: Probability 

that a susceptible vehicle becomes 

informed in cell i between t and t+1 

  Success rate of the infection Success rate of V2V communications 

 

In classical epidemic models, the population is divided into two disjoint groups of individuals: 

the susceptible group (denoted by t

iS ) and the infected group (denoted by t

iI ). Let t

xS  and t

xI  

denote the densities of vehicles that are susceptible and informed, respectively, and located at x at 

time t. Then the spread of infection can be governed by the following differential equations 

(Mollison 1977): 

S t qSI    ,                             (1) 

I t qSI   ,          (2) 

with initial condition   00 0S S   and   00 0I I  . Here, 0   is the average contact rate, 

and 0q   known as the success rate of infection. The above formulation is also known as a 

Susceptible-Infected model, which can be approximated by difference equations. 

Several previous studies (Chen and Robert 2004; Chen et al. 2003; Cole et al. 2005) in 

computer science and recent studies (Khelil et al. 2002; Nekovee 2006; Trullols-Cruces et al. 2013) 

in information spreading have modeled the propagation of a computer virus or malicious 

information in a network. For example, Trullols-Cruces et al. (2013) evaluates the dynamics of a 

vehicular malware epidemic in a large-scale road network. However, the applicability of an 
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epidemic model for a V2V communication system with traffic flow dynamics has not been 

numerically validated previously. 

An analogy of the Susceptible-Infected model under V2V communications is the Susceptible-

Informed (SI) model. However, the SI model cannot address the underlying traffic dynamics that 

affect the information flow propagation. The inclusion of an traffic flow model is a key ingredient 

in the modeling of the spatiotemporal propagation of information under V2V communications.  

3.2.2 Traffic flow model 

Daganzo (1994 and 1995) introduced the cell transmission model (CTM) as a continuous-to-

discrete transformation of the LWR model (Lighthill and Whitham 1955; Richards 1956). The key 

advantages of the CTM are: (i) its low computation requirements compared to micro simulation 

models, (ii) a simpler structure that can model traffic propagation without the assumption of a link 

performance function or an exit function, and (iii) the ease with which it can be empirically 

calibrated in practice (Lin and Ahanotu 1995; Muñoz et al. 2004). The CTM captures several key 

phenomena of real-world traffic flow such as kinematic waves, and queue formation and 

dissipation, in an explicit manner, making it a suitable platform for modeling dynamic traffic.  

The CTM can be constructed as follows. The road network is represented by the set of cells 

C  with a length equal to the distance traveled at free flow speed in one time interval t , and the 

set of cell connectors E . Let ( )i
  denote the set of successors of cell i C  and ( )i

  denote 

the set of predecessors of cell i C . The maximum occupancy of a cell i C  at time point t T  

is 
t

iN , and the maximum inflow or outflow is 
t

iQ  for time step t T . For cell i C  in time 

step t T , the free-flow speed is 
t

iv , the traffic backward wave propagation speed is 
t

ir , and the 

ratio 
t t t

i i ir v  .  

Further, denote t

ix  as the number of vehicles in cell i C  at time point t T , 
t

ijy  the 

number of vehicles routed by cell connector ( , )i j E , in time interval ( , 1)t t  . These two sets 

of variables are the decision variables in the CTM. Other notation will be defined when first 

introduced. In the CTM, vehicles moving from an upstream cell to a downstream cell satisfy two 

main constraints on flow conservation and flow restriction: 
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   

1 1 1, , ,t t t t

i i ki ij

k i j i

x x y y i C t T
 

  

 

           (3) 

    min , , , , , , .t t t t t t t

ij i i j j j jy x q q N x i C j i t T         (4) 

Equation (3) indicates the flow conservation. Equation (4) represents flow propagation that is 

restricted by the three traffic conditions of the underlying trapezoidal flow density relationship: (i) 

free flow, (ii) saturated, and (iii) congested. 

The CTM is a difference equation system, where traffic dynamics are examined at discrete 

time steps. Discrete-time models are especially appealing for the description of vehicle traffic 

movement as well as the information flow propagation process, since such a process can be 

conceptualized as evolving through a set of discrete-time epochs rather than continuously. In 

addition, most available simulation-based or field data are discrete in nature (e.g., success or 

information transmission rates for a given time interval). The integration of the epidemic model 

and the CTM is illustrated in next section. 

 Mathematic modeling of the spatiotemporal propagation of information 

The proposed model, named CTM-SI model, is a system of difference equations in the discrete 

space and discrete time domains. The difference equations system prescribes the V2V 

communications as well as the traffic flow dynamics.  

3.3.1 Modeling heterogeneous traffic flows 

In the proposed CTM-SI model, vehicles are classified into groups depending on their status 

S, I, and U with regard to the information of interest. All variables in the CTM are first expanded 

to S-I-U subgroups. Classical infectious disease propagation models in epidemiology are based on 

the status change of disease in a population. Here, two groups of vehicles, S and I, are used to 

describe information flow propagation. Once a susceptible vehicle receives the information, it 

moves into the informed group. Only informed vehicles can transmit the information. An informed 

vehicle is assumed to keep carrying and broadcasting the information. 

Heterogeneous traffic flow movement in the CTM-SI model satisfies the flow conservation 

constraint (5) for each group of vehicles as follows:  
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   

1 1 1

, , , ,
ˆ t t t t

i g i g ki g ij g

k i j i

x x y y
 

  

 

                                                           (5) 

where subscript  , ,g M S I U   denotes each group of vehicles and ,

t

ij gy  represents the total 

number of vehicles in group g  advancing from upstream cell i  to downstream cell j  during 

time interval  1,t t . Note that the road capacity is shared by all groups of vehicles. Based on 

the proportional movement assumption that is used for multi-class vehicle movement in the CTM 

(Han et al. 2011), the vehicular flow restriction constraint (4) has a corresponding reformulation 

for each group of vehicles g M , as follows: 

  
1

,

, 1

,

min , , , , ,

t

i gt t t t t t t

ij g i i j j j jt

i g

g M

x
y x q q N x g M

x







    


                   (6) 

where 
1 1

,

t t

i g i

g M

x x 



  represents the total number of vehicles in cell i  at time 1t  . The group-

specified flow restriction constraint (6) shows that each group of vehicles proportionally advances 

to the downstream cell.  

In the CTM-SI model, equations (5) and (6) are used as an intermediate step to update the 

heterogeneous traffic flow dynamics due to the V2V communications. The intermediate step 

allows the factoring of the traffic flow dynamics into the V2V communication constraints. It 

should be noted here that since V2V events can occur within a time interval, time discretization 

can lead to approximation, especially as the interval length increases. The details of information 

flow propagation are presented in the next section. 

3.3.2 Modeling information flow propagation 

Determining the rate at which the susceptible vehicles become informed is the core part of the 

proposed CTM-SI model and is critical to determining the information flow propagation waves. 

Without loss of generality, the study assumes that the information hopping distance in one-time 

interval is equal to one cell length due to the communication constraints.    

Based on the intermediate step, a fraction of vehicles that belong to susceptible group S  in 

cell i at time t have received the information during time interval  1,t t  depending on the V2V 

communication constraints. This fraction is determined by the force of communication t

iP , which 
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is the probability that the information is received by a susceptible vehicle during a time interval. 

Then, the susceptible group of vehicles in cell i  at time t  is updated as: 

 , ,
ˆ1t t t

i S i i Sx P x            (7) 

where 
,

ˆt

i Sx  is determined by equation (5). As a result, the informed group I  in cell i  at time t  can 

be updated as: 

, , ,
ˆ ˆt t t t

i I i I i i Sx x P x   .        (8) 

The unequipped vehicle in group U  would not change its status; that is: 

, ,
ˆt t

i R i Rx x .           (9) 

Note that equations (7) - (9) ensure flow conservation, that is, , , ,

t t t

i S i I i Ux x x   , , ,
ˆ ˆ ˆt t t

i S i I i Ux x x  . 

The next section focuses on the determination of 
t

iP . 

3.3.3 Modeling the force of communication 

The force of communication corresponds to the force of infection in epidemiology, which 

denotes the probability per unit time that a susceptible individual becomes infected. The classical 

epidemic models (Keeling and Rohani 2008; Kermack and McKendrick 1927; Rvachev and 

Longini 1985) assume homogeneous mixing in a large population size, meaning that the 

individuals with whom a susceptible individual has contact are proportional to the prevalence of 

the infectious individuals. This assumption allows the use of nonlinear differential equations to 

describe the rates of change for the respective groups. However, this assumption of homogeneous 

mixing may not hold for V2V communications, due to the communication range constraints.  
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Figure 3-2 V2V communication range 

 

The communication range constraint is defined as follows. Any pair of vehicles whose distance 

is less than a predefined communication range may communicate with each other at any time 

through V2V communications as shown in Figure 3-2. Note that all susceptible vehicles within 

communication range have the same probability to be informed vehicles. 

The force of communication, t

iP , varies in each cell i and at each time t, as the force of infection 

in modeling the disease spread on a social network(Newman 2002). Consider a susceptible vehicle 

inside cell i at time t, and let ,

t

i Iz
 
denote the number of informed vehicles within its 

communication range. Let the success rate of V2V communications between any pair of equipped 

vehicles be . Then, t

iP  is determined by:  

,1 (1 )
t
i Izt

iP    .                                                                                          (10) 

In general, ,

t

i Iz  varies across cells, determined by 
 , ,

t t

i I j Ij C i
z x


 , where  C i  denotes the 

set of cells within the communication range of cell i.  

Note that the success rate of the infection   in the classical epidemic model is assumed to be 

constant (Kermack and McKendrick 1927). It may not be the case for V2V communications, as 

the success rate of V2V communications also depends on the interference which is based on the 

number of equipped vehicles within the communication range. It is reasonable to assume that the 

success rate of V2V communications is a decreasing function of the equipped vehicle density, 

where a large number of equipped vehicles lead to an increase of interference. Therefore, the 

success rate   abstracts the V2V communication constraints for information transmission.  

I

S S S

U

U

I U

Cell i

I

Cell k Cell j

Cell l+1 Cell m Cell n

S

S

S ISusceptible vehicle Informed vehicle U Un-equipped vehicle

: communication range from cell i : inter-vehicle communication



 

71 

 

Although the lack of real world data makes it difficult to measure success rate precisely, it is 

possible to estimate the success rate through a simulation-based approach. The next section 

describes the estimation of the success rate of V2V communications. 

3.3.4 Estimation of success rate of V2V communication 

The goal of estimation is to use an equation to describe the relationship between the success 

rate of V2V communications,  and the density of equipped vehicle. An integrated simulation-

based approach is used to estimate  , where a traffic flow simulator DYNASMART 

(Mahmassani et al. 1998) describes the traffic flow dynamics and V2V communication constraints 

are considered, including wireless communication range, the interference rate and bandwidth. We 

first generate the traffic flows under various scenarios with different demand levels and market 

penetration rates ( ) that denote the percentages of V2V-equipped vehicles, and track the 

trajectories of all equipped vehicles. Then, we compute whether vehicles succeed or fail to 

communicate with each other along the locations/trajectories traveled by equipped vehicles in the 

presence of interference. For simplicity, the information propagation mechanism in this study 

assumes that the V2V communications can occur successfully up to a predefined distance (200 

meters) representing the communication range, and none beyond it. Thereby, the effect of the 

communication success rate decay with distance is ignored. The communication frequency are set 

to be 0.5 seconds. For the communication from equipped vehicle b to equipped vehicle a, the 

interference rate is defined as (Gupta and Kumar 2000): 

         2 2
G

/a k

k
a b k b

k a

T T






 

 
   

                          (11)                   

where 
k   denotes the coordinates of an equipped vehicle k within communication range of 

equipped vehicle a. A simultaneous broadcasting at some time instant from a subset of equipped 

vehicles within the communication range leads to possible interference. The signal power decays 

with distance from a broadcasting vehicle k as 
2

1/ k b  . The transmitted information from 

vehicle b is successfully received by vehicle a if it satisfies the minimum signal-to-interference 

ratio of   (the study experiments use  = 2) as shown in Figure 3-3. The signal power level of 

vehicle a (
aT ) and of all vehicles (

kT ) is identical in this study. The accomplishment of V2V 

communications between a pair of equipped vehicles is checked every 0.5 seconds. Also, we 
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assume that vehicles transmit a packet size that is less than 1 kilobyte at the data rate of 3Mbit/s. 

When the density of equipped vehicles is less than a critical value, the V2V communications under 

the assumptions would not exceed the available bandwidth capacity. Hence, when the density of 

equipped vehicles exceeds the critical value, it would cause communication irregularities (Killat 

and Hartenstein 2009) that are not addressed by our model. 

Then, the success rate  is calculated based on simulation results as follows: 

 ( ) ( ) ( ) ( ) ,w s w s w f w          (12) 

where ( )s w  is the number of vehicles who successfully receive information, ( )f w  is the number 

of vehicles who fail to receive information due to the communication constraints, and w  denotes 

the total number of equipped vehicles within the V2V communication range.   

 

Figure 3-3 V2V communication range and interference among vehicles in simulation-based 

experiment 

 

The values of   for different numbers of equipped vehicles are shown in Figure 3-4. The 

Least Sum of Squared Errors (LSSE) was applied to estimate the function  . The estimation result 

indicates that the success rate of V2V communications is a negative exponential function of the 

density of equipped vehicles within V2V communication range. It means that a larger number of 

equipped vehicles in communication range increase the potential interference.  
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Figure 3-4 Estimation of success rate of V2V communication (  ) 

 

Figure 3-5 Force of communication (
t

iP ) 

Using the estimated function ( )w , the corresponding force of communication t

iP  can be 

calculated as shown in Figure 3-5. t

iP  reaches and maintains 100% when the density level of 

informed vehicles ,

t

i I
Z  is below 22 vehicles within communication range. It decreases with higher 

density levels of informed vehicles. It indicates that while a larger number of equipped vehicles 

imply the potential to communicate with more vehicles, it simultaneously increases the 
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interference as well. Consequently, the number of vehicles that successfully communicate 

decreases with higher density of informed vehicles due to the increased interference rate.  

3.3.5 Deriving analytical formula for the wave speed of the information flow propagation 

When the information is spreading, an information flow propagation wave separates the traffic 

flow into the informed and uninformed regions and moves towards the uninformed region with a 

certain speed. The aim of this section is to derive the analytical formulation of the wave speed of 

information flow propagation, which is a function of traffic density and market penetration rate 

( ). 

We label the wave speed of information flow propagation in the direction of vehicular traversal 

as the forward propagation wave speed (
FV ). The wave speed of information flow propagation 

opposite to the direction of vehicular traversal is defined as the backward propagation wave speed 

(
BV ). We consider a uniform stream of traffic on a highway whose density is  . 

The wave speed of information flow propagation consists of three parts: (i) information 

hopping speed (
IV ) through V2V communications, (ii) traffic flow speed (

TV ), and (iii) adjusted 

speed (
AV ) due to the temporal and spatial discretization in the CTM.  

The information hopping speed can be estimated as: 

i, /3(1 (1 ( )) (1 (1 ( ))
t
IZt t w

I i iV v w v w                     (13) 

where t

iv  is free flow speed, w  is the number of equipped vehicles within communication range, 

and ,

t

i I
Z  is the number of informed vehicles within communication range of cell i. Equation (13) 

represents that the information hopping speed depends on the force of communication. However, 

,

t

i I
Z  varies across space and time, and this precludes the derivation of a close-form formulation. We 

approximate ,

t

i I
Z  based on the scenario that the equipped vehicles in the adjacent upstream cell k 

are informed and those in cell i and in the adjacent downstream cell j are susceptible. In this 

scenario, all informed vehicles that can communicate with the susceptible vehicles in cell i are in 

cell k. Therefore, the number of informed vehicles within the communication range of cell i, i.e., 

,

t

i I
Z , can be estimated as w /3 under a uniform stream of traffic flow. As information is assumed 
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to propagate only to the adjacent cells in one time interval, the maximum information hopping 

speed is equal to the free flow speed 
t

iv .  

The traffic flow speed, 
TV , is determined by the fundamental diagram which implies a speed-

density relationship. This study adopts a trapezoid fundamental diagram in the CTM where the 

traffic speed can be expressed by (Jin and Recker 2010):   

    

, 0

,

( )
,

( )

t

i c

t

i
T c k

t
k j i
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                        (14) 

where, 
t

iQ  is maximum flow for time step, c  is the critical density, k  is equal to j c  , and 

j  is the jam density.  

In addition, temporal and spatial discretization in the CTM model can lead one fraction of 

vehicles to advance to downstream cells and the other fraction of vehicles to remain in the current 

cell under saturated and congested traffic conditions, if there are no spillbacks downstream. Under 

these conditions, the “leading forward front” vehicles for the forward propagation wave are 

defined as the informed vehicles inside the leading forward front cell (that separates the informed 

and uninformed regions) that advance to the downstream cell in the next time step. For the 

backward propagation wave, the “trailing backward front” vehicles are defined as those informed 

vehicles inside the trailing backward front cell (that separates the informed and uninformed regions) 

that remain in that cell in the next time step. From the information flow propagation perspective, 

the front vehicles determine the forward and backward propagation wave speeds. This observation 

motivates the derivation of the adjusted speed to account for the front vehicle speed differences 

for forward and backward propagation waves under saturated and congested traffic conditions. 

The adjusted speed 
AV  is as follows: 

      
( )( ) (1 ( ))A

A k TV V V w                            (15) 

where 
kV  is the front vehicle speed and ( )A   is the number of front vehicles. The term ( )k TV V  

represents difference between the front vehicle and average vehicle speed. Here, we use free flow 

speed as the speed of the leading forward front vehicles and zero as the speed of the trailing 
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backward front vehicles to be consistent with the CTM-SI model. The number of front vehicles 

( )A   is defined as 
t

ijy / and (
t t

i ijx y )/  for the forward and backward propagation wave 

speed, respectively. The term 
( )(1 ( ))Aw   represents the probability that a susceptible vehicle in a 

downstream cell will receive information through a leading forward front vehicle, or in an 

upstream cell through a trailing backward front vehicle. Finally, 
FV  and 

BV  are defined as: 

        F I T AV V V V                                                     (16)    

        B I T AV V V V                                                     (17) 

Note that though the derivation of equations (16) and (17) is based on uni-directional traffic flow, 

the formulation holds for bi-directional traffic flow as well. Under the bi-directional traffic flow 

case, the backward propagation wave speed of one direction is determined by the forward 

propagation wave speed of its opposite direction. 

 Numerical experiments 

3.4.1 Experiment Design 

The network consists of 200 cells and 199 cell connectors, which are equivalent to 22 miles of 

highway length. Different levels of demand and a pre-defined market penetration (50%) are used 

to generate various traffic conditions. The cell parameters are provided in Table 3-2 using CTM 

terminology. Note that all cells have homogeneous characteristics. The study focus is on the 

spatiotemporal information flow propagation along with the traffic flow dynamics. In this sense, a 

uniform stream of traffic with density   on a long highway is considered. To describe the 

relationship between the traffic flow dynamics and spatiotemporal information flow propagation, 

the inflow rates are assumed constant.  
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Table 3-2 Cell characteristics of the study network 

Free flow speed (mph) 65 

Time interval (seconds) 6 

Cell length (miles) 0.11 

Number of lanes 3 

Number of cells 200 

Maximum link flow (vehicle/hr/lane) 2,350 

Maximum cell flow (vehicle/time interval) 12 

Maximum number of vehicles per cell 60 

 

3.4.2 Uni-directional highway 

First, the results on uni-directional traffic flow streams are illustrated. The forward and 

backward propagation wave speeds of information flow are shown in Figure 3-6. Note that since 

vehicles carry the information, and the information can leap forward through V2V 

communications, forward propagation wave speed of information flow is always greater than or 

equal to a vehicle’s speed. 

As shown in Figure 3-6 and Figure 3-7, under low density case (Case 1:  =7), the forward 

propagation wave speed of information flow is close to the free flow traffic speed because the 

opportunity for V2V communications is limited. As the density increases, the opportunity for V2V 

communications increases. The maximum forward propagation wave speed of information flow 

reaches (Case 2:  =27), while the traffic flow speed does not change. As the density level 

increases further, the traffic flow speed decreases, so does the forward propagation wave speed of 

information flow (Case 3:  =80 and case 4:  =160) due to the reduced traffic flow speed and 

the reduced success rate of V2V communications under high densities. 
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Figure 3-6 Forward and backward propagation wave speeds of information flow under the uni-

directional traffic scenario 

 

Similarly, the backward propagation wave speed of information flow can be analyzed. Under 

very low density, backward propagation wave of information flow may not occur, due to the 

limited opportunity for V2V communications (Cases 1 and 2). As the density level increases, the 

backward propagation wave of information flow occurs and gradually reaches its maximum speed 

(Case 3) due to the increased opportunity for V2V communications and slower traffic flow speed. 

However, as the density level increases to more than 80 veh/mile/lane, the backward propagation 

wave speed of information flow reduces (Case 4) due to the much higher impact of interference 

than the effect of the reduced traffic speed. 
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Figure 3-7 Information flow wave speed variation relative to density under the uni-directional 

traffic scenario 

 

3.4.3 Bi-directional highway 

In the bi-directional highway case, the opposite direction traffic is set as a uniform stream with 

fixed density (50 veh/mile/lane) and fixed speed (57 mph).  Unlike the uni-directional traffic flow 

stream, for the bi-directional traffic flow stream, two more factors affect the forward and backward 

propagation wave speeds of information flow: (i) the interference from the opposite direction 

traffic, and (ii) the information carried by equipped vehicles in the opposite direction.  

Comparing Figure 3-9 with Figure 3-7, it can be observed that the pattern of forward 

propagation wave speed of information flow is similar to that of the uni-directional highway case, 

and the overall speed is lower because the vehicles in the opposite direction may introduce 

additional interference. By contrast, the backward propagation wave speed of information flow in 

the bi-directional traffic case is much faster than that of the uni-directional highway case. The 

reason is because the opposite direction vehicles carry and propagate the information.  
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Figure 3-8 Forward and backward propagation wave speeds of information flow under the bi-

directional traffic scenario 

 

Figure 3-9 Information flow wave speed variation relative to density under the bi-directional 

traffic scenario 
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It should be noted here that these results are based on the assumption that the information 

propagates only to the cells within communication range in a given time interval. The proposed 

CTM-SI model uses cells to simulate the evolution of traffic flow and information spreading, 

whose length is equal to the distance traveled by a free-flowing vehicle in one time step. This 

implies that the accuracy of the propagation wave speed of information flow can be improved by 

adjusting the cell characteristics. 

3.4.4 Uni-directional highway under different market penetration rates 

We examine the sensitivity of the information flow propagation wave speed to the market 

penetration rate ( ). The traffic density is set as a uniform stream with fixed density (80 

veh./mile/lane) and fixed speed (29.4 mph). The forward and backward propagation wave speeds 

of information flow are illustrated in Figure 3-10.  

 

Figure 3-10 Information flow wave speed variation under the different market penetration rates 

( ) in a uni-directional traffic scenario 

 

As the traffic flow speed remains unchanged, the wave speed of information flow propagation 

varies due to the information hopping speed under different values of  . The speed variation 

pattern is symmetric for the forward and backward wave speeds. Up to   of 0.2, both wave speeds 

of information flow increase due to the increased opportunity for information hopping under V2V 

communications. Beyond   of 0.3, both wave speeds decrease due to the increased interference. 
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This is consistent with the trends identified in the previous sections that show a non-linear 

relationship between the different interference rates and the propagation wave speed of 

information flow. 

3.4.5 Comparison of analytical and numerical results 

We analyze the analytical formulation of the propagation wave speeds of information flow by 

comparing the results from equations (13-17) to the numerical experiments from equations (5-10). 

Figure 3-11 and 12 show that the analytical formulation can predict the relationship between the 

density of traffic flow and the propagation wave speed of information flow accurately, except for 

the case with low traffic flow density.  

 

Figure 3-11 Comparison between predicted and simulated information flow wave speeds under 

the uni-directional traffic scenario 

 

For the low density case, the numerical result is able to capture the stochastic nature of V2V 

communications in that information hopping may not occur, due to the limited number of vehicles 

to propagate the information. However, the analytical formulation is constructed based on non-

discrete numbers of vehicles in equation (13), resulting in the overestimation of the propagation 

wave speed of information flow in the low density case. 
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Figure 3-12 Comparison between predicted and simulated information flow wave speeds under 

the bi-directional traffic scenario 

 

3.4.6 Bi-directional highway with incident 

Here, we consider a non-uniform traffic stream on a bi-directional highway. Initially, the EB 

(vehicles moving to the right in Figure 3-13) traffic density is 80 veh./mile/lane and the WB density 

is 50 veh./mile/lane. As illustrated in Figure 3-13(a), an incident occurs at location A at 5 time 

units and reduces the highway capacity by 1/3 of its initial value. Highway capacity is recovered 

to capacity at 4.5 minutes (at point B in Figure 3-13(a)). Point C in Figure 3-13 (a) shows the 

location where the discharging flow departing from the congested area catches the tail of 

downstream flow traffic. 
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Figure 3-13 Contours of traffic density and informed vehicle density 

 

The information is generated at 10 time units (1 minute) at point D by an equipped vehicle. In 

Figure 3-13(b), forward propagation wave speed of information flow varies as the downstream 

traffic density changes. Note the arrows a, b, c, and d in Figure 3-13(b) represent the forward 

propagation wave speeds of information flow corresponding to downstream densities. 

As shown in Figure 3-13(b), the forward propagation wave speed of information flow reduces 

after encountering the underlying traffic shock wave, since higher vehicle density implies higher 

interference and lower likelihood of V2V communications. By contrast, at the queue dissipation 

area, forward propagation wave speed of information flow is faster than that of the other cases, 

since traffic is at free flow speed and V2V communication takes place more frequently. After the 
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information propagates through the congested traffic area, the overall information flow 

propagation is delayed as measured by the difference between the solid arrow and dash arrow, 

which shows the forward propagation wave of information flow if no incident occurs. The 

observation of the different information flow propagation speeds at different density levels is 

consistent with the results summarized in Figures 3-7 and 3-9. 

 Summary and discussion 

To account for the limitations arising from existing analytical approaches based on 

instantaneous information flow propagation, this study develops a discrete analytical model to 

track dynamic information flow propagation by integrating a traffic flow model and an epidemic 

model. The main contributions of this study are as follows. First, the proposed model can describe 

the network-wide spatiotemporal propagation of information while factoring the constraints 

arising from traffic flow dynamics and V2V communications. Second, with the integrated multi-

layer framework, the proposed model can describe the interdependencies among information flow, 

traffic flow and V2V communication events by simultaneously tracking the dynamics of 

information flow and traffic flow. Third, it captures information flow propagation wave that can 

characterize how the density, speed, and locations of the vehicles lead to the dynamics of 

information flow.  

The study offers the possibility of developing more sophisticated information flow 

propagation models. First, this model can be extended to the multiple information flow propagation 

context which has issues such as information quality and reliability. Second, more detailed 

epidemic models can be adopted. Third, a stochastic modeling capability to generate greater 

realism can be incorporated. 
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4. MODELING THE INFORMATION FLOW PROPAGATION WAVE 

UNDER VEHICLE-TO-VEHICLE COMMUNICATIONS 

 Introduction 

4.1.1 Background 

Advances in information and communication technologies enable new paradigms for 

connectivity involving vehicles, infrastructure, and the broader road transportation system 

environment. They provide the potential for developing innovative and sustainable solutions to 

enhance traffic safety and mobility. In this context, vehicle-to-vehicle (V2V) communications 

under the aegis of the connected vehicle are being leveraged for novel applications related to traffic 

safety, management, and control, which lead to a V2V-based traffic system. For example, traffic 

safety applications (Benedetto et al. 2015; Biswas et al. 2006a; Palazzi et al. 2010) primarily 

provide advisories and warning for drivers to avoid potential collisions. Traffic management and 

control applications (Leontiadis et al. 2011; Monteil et al. 2013) focus on improving mobility by 

assisting the driver to manage speed for smooth driving or fostering informed decision-making by 

providing information on alternate routes. These applications can be developed based on vehicle 

operational information (such as vehicle position, speed, and direction) and road condition 

information (such as hazardous locations on roads, slippery sections, and potholes). 

A V2V-based traffic system consists of the vehicular traffic flow, inter-vehicle communication, 

spatiotemporal information flow, and V2V-based applications. The relationships between these 

components are characterized by nonlinearity, interdependencies, and a feedback loop, as 

illustrated in Figure 4-1. In this study, we use the term “information flow” to denote the flow of a 

single unit of traffic data (for example, traffic condition information or safety alert information) 

between vehicles. The dynamics of the vehicular traffic flow (such as the travel direction, location, 

speed, and the density of equipped vehicles) determine the occurrences of inter-vehicle 

communication. The traffic flow dynamics and the communication occurrences lead to the 

dynamics of information flow propagation. Based on the information propagated, a V2V-based 

application provides an audio or visual message to a driver, which he/she uses to determine the 
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future speed or an alternative route to take. This impacts the traffic dynamics, as illustrated by the 

feedback loop in Figure 4-1.  

 

 

Figure 4-1 Components of a V2V-based traffic system 

 

Within the proposed V2V-based traffic system framework, this study focuses on understanding 

how information propagates in space and time, as highlighted by the shaded box in Figure 4-1. 

This is because V2V-based applications require timely and reliable information delivery. However, 

the real-world environment for implementing a V2V-based application can be constrained by the 

characteristics and phenomena associated with the interactions involving traffic flow dynamics 

and V2V communication constraints. Hence, a critical question is how information propagation is 

impacted by the traffic flow dynamics and V2V communication constraints.  

To address the aforementioned question, there is the key need to develop realistic models that 

can: (i) capture the relationship between traffic flow and information flow propagation, (ii) 

incorporate realistic V2V communication constraints related to range, data communication 

frequency, and transmission power, and (iii) generate closed-form solutions for the information 

flow propagation speed, so as to provide insights on its qualitative properties.  
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This paper seeks to develop an analytical model, which characterizes the relationship between 

V2V communications and traffic flow dynamics, to determine the information flow propagation 

speed. In this context, we derive a closed-form solution of the information flow propagation speed 

under certain traffic conditions. Reliable knowledge of the information flow propagation, and 

corresponding closed-form solutions, serve as the enabling foundation for the reliable and practical 

design of V2V-based applications. This underlines the importance of developing realistic, yet 

easy-to-use, models to capture the dynamics of information flow propagation.  

Previously, analytical microscopic models have been developed to describe the dynamics of 

information flow propagation. These models can be classified into two groups based on the 

underlying assumption of V2V communications. The first group of analytical models (Han et al. 

2011; Jin and Recker 2006; Li and Wang 2007; Wang et al. 2012; Yin et al. 2013) rely on the 

assumption of instantaneous multi-hop to characterize the propagation of information flow. They 

assume that information propagation is instantaneous with respect to vehicle movement based on 

the existence of an end-to-end multi-hop communication path between vehicles. Based on this, the 

probabilities for information to travel to and beyond a vehicle are computed (Jin and Recker 2006).  

The second group of studies (Du and Dao 2015; Jacquet et al. 2010; Wu et al. 2009; Zhang 

and Peeta 2011) are based on a store-and-forward scheme, also referred to as a delay-tolerant 

network. Vehicles are partitioned into a number of clusters, where a cluster is a maximal set of 

vehicles in which every pair of vehicles is connected by an instantaneous multi-hop 

communication path. Due to the dynamics of vehicular flow, these clusters may split and merge 

over time. The information is stored in moving vehicles and propagated when the head vehicle of 

a cluster communicates with the tail vehicle of another cluster. Therefore, the entire information 

flow propagation process consists of a catch-up process, followed by a forwarding process. 

The aforementioned analytical models have several realism issues in the context of a V2V-

based traffic system. First, the instantaneous multi-hop assumption restricts the information 

hopping only to the spatial dimension. It precludes the analysis of the time delay of information to 

reach a certain location. In a traffic safety application, it is important to analyze a stringent delivery 

delay requirement in order to provide timely emergency warnings to drivers. Second, these models 

rely on the Poisson or uniform distribution of equipped vehicles and ignore interactions between 

vehicles. They do not allow for traffic dynamics such as kinematic waves, and queue formation 
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and dissipation, and the consequent dynamics in the propagation of information flow. Third, they 

do not capture the relationships between the dynamics of traffic flow and V2V communications.  

While Jin and Recker (2010) introduce a continuous traffic stream to capture the dynamics of 

traffic flow, traffic density is used only to calculate the geometric communication distance between 

vehicles. However, from a communication perspective, diverse traffic situations in terms of 

vehicular density may affect the success rate of V2V communications due to the interference 

caused by transmissions of other equipped vehicles within communication range. Fourth, as 

distance between equipped vehicles is used as the only communication constraint in most of the 

aforementioned models (except in Du and Dao (2015)), all equipped vehicles are assumed to be 

connected if the traffic density reaches a certain critical level such that the distance between 

vehicles is shorter than the communication range. Therefore, these models can possibly be applied 

only to situations of low vehicle density, low market penetration rate (the proportion of V2V-

equipped vehicles), and large spatial gaps in traffic flow that temporarily delay the propagation of 

information.  

Further, the microscopic nature of the aforementioned models leads to three major difficulties 

in terms of their applicability to a V2V-based traffic system. First, it is analytically challenging to 

properly account for the traffic flow dynamics and communication constraints at a disaggregate 

level. Second, the integration of traffic flow dynamics and V2V communications entails large 

computational burden for microscopic models. Third, it is difficult to generalize the findings in a 

meaningful manner, as the evaluation involves a microscopic model with specific settings related 

to market penetration rates, and road traffic and network topological conditions. 

4.1.2 Information flow propagation wave (IFPW) 

In contrast to the microscopic models, macroscopic models can be derived from the knowledge 

of disaggregate microscopic behavior at a high level of aggregation without distinguishing 

between individual vehicles. A key advantage of macroscopic models is that they can quantify the 

characteristics of information flow propagation using analytical formulations. Very few studies 

develop macroscopic approaches to describe information flow propagation. Indrakanti et al. (2012) 

propose a macroscopic analytical model to predict the number of vehicles in a region that receive 

a specific unit of information over time, by adopting an epidemic Susceptible-Infected-Removed 
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model from epidemiology. However, they do not consider the spatial structure to describe the 

propagation of information in space. The spatial structure plays an important role in information 

propagation, not only because the spread of information relies on communication between 

spatially-distributed equipped vehicles, but also because these vehicles carry information and 

move in space. We propose a spatially-structured macroscopic model that treats space and time 

explicitly. 

From a macroscopic perspective, as a unit of information spreads in a V2V-based traffic system, 

an information flow propagation wave (IFPW) front forms a moving boundary that separates the 

traffic flow into informed and uninformed regions, and moves towards the uninformed region 

(Kim et al., 2016), as shown in Figure 4-2. Thereby, the IFPW is characterized by the direction 

and speed of the moving boundary. As illustrated in the figure, this wave can move in the forward 

and backward directions; the speed of the wave in each direction depends on the traffic flow 

dynamics and V2V communication constraints. Hence, the quantification of the IFPW speed and 

the position of the IFPW front are fundamental to determining how information flow propagates 

in a V2V-based traffic system. 

 

Figure 4-2 Illustration of the information flow propagation wave 
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A recent study by the authors (Kim et al., 2016) proposes a system of difference equations in 

the discrete space and time domain to track the dynamic information flow propagation. However, 

the associated analytical formulation estimates the IFPW speed based on the numerical solution of 

traffic flow dynamics using a cell transmission model (Daganzo, 1995 (a)). Hence, it lacks a 

closed-form solution that can establish an analytical relationship between the IFPW speed and the 

underlying traffic flow dynamics. This motivates the current study which constructs a continuous-

time, continuous-space analytical model that can provide a closed-form solution for the IFPW 

speed under certain traffic conditions. The closed-form solution and analytical model can be used 

to predict the IFPW speed and the position of the IFPW front under diverse vehicular environments 

(in terms of density and topology) and V2V communication network parameters (such as data 

communication frequency, transmission power, etc.). Such an understanding of the IFPW 

characteristics is critical to designing strategies to propagate information (e.g., safety alert or work 

zone message) to appropriate locations in a timely manner, and effective traffic control strategies 

that leverage V2V-based capabilities. 

 

This paper proposes a macroscopic model to characterize the IFPW. As illustrated in Figure 4-

3, the proposed model has a two-layer structure in which V2V communications and vehicle 

movements are assumed to occur continuously. The IFPW consists of two waves: traffic flow 

propagation wave in the lower layer and information dissemination wave in the upper layer. The 

traffic flow propagation is formulated in the lower layer as a system of partial differential equations 

(PDEs) based on the Lighthill-Whitham-Richards (LWR) model (Lighthill and Whitham, 1955; 

Richard; 1956). The upper layer adapts and modifies the spatial epidemic Susceptible-Infected (SI) 

model from epidemiology to describe the information dissemination among equipped vehicles, 

using a probabilistic communication model (labeled “communication kernel”) to indicate the 

communication strength with distance. The communication kernel can capture the traffic 

randomness and V2V communication range in representing real-world V2V communication 

characteristics, as will be discussed in Section 5.2. The multi-hop information dissemination 

process is formulated as integro-differential equations (IDEs). These two layers are coupled, in 

that the traffic flow dynamics in the lower layer affect the V2V communication in the upper layer. 
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When traffic density is uniform and traffic flow is unidirectional, the impacts of the traffic flow 

dynamics on the IFPW speed are uniform in space and time in the sense that the traffic flow 

dynamics do not change the density of informed vehicles. We refer to this situation as 

homogeneous conditions in this study. Under homogeneous conditions, the proposed two-layer 

model provides a closed-form solution of the IFPW speed. However, when traffic density is not 

uniform and/or traffic flow is bidirectional, the impacts of traffic flow dynamics on the IFPW 

speed are not uniform in space and time, and this situation is referred to as heterogeneous 

conditions in this study. Under heterogeneous conditions, we propose a numerical method for the 

proposed two-layer model. Section 2.5 discusses homogeneous and heterogeneous conditions in 

more detail (see Fig. 6), and the rationale for the solutions for the two-layer model under 

homogeneous and heterogeneous conditions. 

Through the concept of the IFPW, the proposed model provides capabilities to: (i) derive a 

closed-form solution of the IFPW speed for homogeneous traffic conditions (constant density) and 

unidirectional flow, (ii) propose a numerical method for the IFPW speed for heterogeneous traffic 

conditions, (iii) factor the impacts from congested traffic, such as the backward traffic propagation 

wave, on information flow propagation, (iv) capture V2V communication constraints in a realistic 

manner through the communication kernel, and (v) illustrate the dependency between the 

information flow propagation and the underlying traffic flow. These capabilities lead to a better 

understanding of the fundamental relationship between traffic flow dynamics and information flow 

propagation and enable traffic management and safety applications based on V2V communications.  

The primary contributions of this study can be summarized as follows. First, it models the 

multi-hop process of information flow propagation based on the broadcast method rather than the 

assumption of instantaneous multi-hop propagation. Second, it characterizes the success rate of 

single-hop V2V communication as a probabilistic function to reflect the impact and details of V2V 

communication constraints. This provides significant flexibility for the traffic modeler in terms of 

testing different communication models to characterize the evolution of the IFPW speed. Third, it 

leverages a well-developed mathematical model from epidemiology and ecology to describe the 

information flow propagation. To the best of our knowledge, this work is the first attempt to 

consider the impact of V2V communication constraints on the characteristics of information flow 

propagation wave. 
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Figure 4-3 Two-layer structure of the proposed model 

The remainder of this paper is organized as follows. The next section discusses the 

macroscopic model for the IFPW, including the modeling framework, the IDEs for information 

flow propagation using the SI model, and the PDEs for the traffic flow propagation using the LWR 

model. Then, the linearization of the IDEs is used to generate a closed-form solution of the IFPW 

speed under homogeneous traffic conditions. Next, for heterogeneous traffic conditions, a 

numerical method is presented to numerically solve the proposed model using the fast Fourier 

Transform and the Runge-Kutta method for the IDEs, and finite differential equations for the PDEs. 

This is followed by a discussion of the numerical experiments, the parameter calibration for the 

proposed communication kernel, and the associated insights. The final section summarizes the 

main findings and future research directions. 

 Modeling the spatiotemporal propagation of information flow   

4.2.1 Modeling framework 

Figure. 4-4 illustrates the proposed modeling framework to determine the IFPW. The dynamics 

of traffic flow propagation in the lower layer are described using a macroscopic hydrodynamic 

model based on the first-order LWR model. The LWR model has been used extensively in the 

field of traffic flow theory due to its capability for capturing key real-world traffic flow phenomena, 
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such as shock waves and spillbacks. The traffic flow propagation is formulated as a system of 

PDEs. The traffic flow propagation layer is coupled with the information dissemination layer 

through the density of equipped vehicles. As shown in Figure 4-4, while the equipped vehicles are 

associated with both information dissemination (through the communication success rate) and 

traffic flow dynamics, the unequipped vehicles are directly associated only with the traffic flow 

dynamics.  

To describe the information dissemination among equipped vehicles, the upper layer adapts a 

probabilistic communication model that incorporates the success rate of single-hop 

communication based on the distance between equipped vehicles. As illustrated in Figure 4-4, the 

density of the equipped vehicles, transmission power, data communication frequency, and 

environmental factors (such as weather, urban or rural area, etc.) determine the success rate of 

single-hop communication with distance, which is represented as a probability function labeled 

the communication kernel. The communication kernel is then used to formulate the process of 

multi-hop information dissemination as a system of IDEs. These PDEs and IDEs in the two layers 

determine the IFPW characteristics. A detailed description of the communication kernel and the 

multi-hop information dissemination process is provided in the next section. 

 

Figure 4-4 The IFPW modeling framework 
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4.2.2 Characteristics of V2V communication  

The success rate of V2V communication decays over distance due to the fading effects of the 

signal amplitudes. This signal fading significantly affects the efficiency of information 

propagation in a V2V-based traffic system, especially when multiple vehicles frequently exchange 

or disseminate information simultaneously.  

Real-world measurements (Jiang et al. 2008; Torrent-Moreno et al. 2009) and simulation 

studies (Killat and Hartenstein 2009) show that the distance between sender and receiver vehicles, 

and the mutual interference from equipped vehicles, have a significant effect on packet reception. 

However, deterministic models of communication success rate assume that V2V communication 

can occur with a 100% success rate up to a predefined communication range, and that no V2V 

communications can take place beyond that distance (Killat and Hartenstein, 2009). Hence, 

deterministic models lack realism, and may provide only an upper bound on the information flow 

propagation wave speed. By contrast, our study models the success rate of V2V communication 

as a probabilistic function due to the effects of interference caused by multiple transmissions in 

the network. In IEEE 802.11p networks, interference can cause failure of the reception of V2V 

communication.  

The V2V communication constraints related to range, data communication frequency, and 

transmission power and density of V2V-equipped vehicles influence the rate of interference. 

Successful or unsuccessful reception of transmitted information is determined using the signal to 

interference and noise ratio (SINR) while considering the sum of all ongoing transmissions as the 

cumulative interference. 
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Figure 4-5 Characteristics of V2V communications 

Figure 4-5 (a) illustrates the probability of successful communication over distance 

(communication kernel). The parameters of the communication kernel can be calibrated using real-

world data or simulated data. Section 5.2 provides a detailed discussion related to SINR-based 

simulation.  

Further, in V2V-based applications, information should be provided to all surrounding vehicles, 

motivating the need for a broadcast method (Karagiannis et al. 2011). A vehicle that receives the 

information can forward information again using a broadcast communication. Thus, information 

propagates by being relayed from one vehicle to another (multi-hop information dissemination 

process), as shown in Figure 4-5 (b). The formulation of the multi-hop information dissemination 

process, where the success rate of single-hop communication corresponds to the communication 

kernel, is discussed next. 
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4.2.3 Spatial susceptible-informed model 

This study leverages modeling capabilities from epidemiology and ecology to study the IFPW 

in a V2V-based traffic system. The upper layer adapts and modifies a spatial SI epidemic model 

to describe information dissemination between equipped vehicles as a spatial “susceptible-

informed” model. Conceptual similarities exist in terms of propagation of information and disease 

in space and time. First, the spread of both disease and information relies on contacts between 

spatially-distributed entities (individuals for disease and equipped vehicles for information). 

Second, based on their spatial positions, nearby individuals/vehicles interact more strongly. In this 

sense, well-developed mathematical theory in epidemiology and ecology (Hastings 1996; 

Mollison 1972 a; b) to describe traveling frontal waves of a disease spread provides a conceptual 

platform that can be adapted to describe the dynamics of information flow propagation in terms of 

the forward/backward IFPWs, and spatial propagation fronts.  

Key differences should be noted when adapting an epidemic model to the V2V-based traffic 

system context. First, while a specific disease may spread in all directions through airborne 

transmission, road network is geographically constrained. Second, unlike the fixed infection rate 

for a specific disease, communication success rate varies with the density of equipped vehicles. 

Third, individuals can be assumed to be stationary or moving randomly in the context of disease 

spread. However, since drivers interact with each other in a traffic stream, the positions of vehicles 

and their mobility are not independent. Fourth, while the objective in epidemiology is to regulate 

disease spread, V2V-based traffic systems typically seek the fast propagation and widespread 

dissemination of information.  

We now describe the proposed spatial susceptible-informed model. In a V2V-based traffic 

system, vehicles can be grouped into mutually exclusive classes: equipped vehicles E  and 

unequipped vehicles .U  Equipped vehicles can be further classified into susceptible and informed 

vehicle classes based on their status in space x and time t. Let ( , )S x t  denote the density of 

susceptible vehicles located at x at time t, that is, those vehicles that are equipped to receive 

information, but are not yet informed. Let ( , )I x t  denote the density of informed vehicles, that is, 

vehicles that have received information and can transmit it to any susceptible vehicle within 

communication range. Hence, the model has three classes of vehicles: S, I and U. The susceptible-

informed model is constructed upon the following assumptions: (i) a single unit of information 
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propagates to other vehicles; (ii) susceptible vehicles can receive information from any informed 

vehicle that is within communication range; and (iii) unequipped vehicles are not involved in the 

information propagation process but affect the traffic flow dynamics.  

Assume that an equipped vehicle generates information at time zero. The probability that a 

susceptible vehicle located at point x at time t becomes an informed vehicle can be represented as 

a rate proportional to the product of the local density of susceptible vehicles ( , )S x t , and a 

communication kernel-weighted integral of the density of informed vehicles, ( , )I y t , over the 

spatial domain   (y ∈ Ω) within V2V communication range from x. Due to flow conservation, 

we have the following IDEs:  

         ( ( , ) ( , ) ) ( , )
S

K x y I y t dy S x t
t 


    

                                   (1-a) 

         ( ( , ) ( , ) ) ( , ),
I

K x y I y t dy S x t
t 


   

                                   (1-b) 

where contact rate   represents the frequency of communication. Due to their tractability in 

mathematical analysis, the Laplace, Gaussian and Exponential distributions are widely used (Kot, 

1992) to represent the communication kernel ( , )K x y  which is an integrable function satisfying 

( , ) 0K x y  . The differentials in the IDEs are evolution equations that specify how the system will 

evolve with time through multi-hop broadcast communications. 

4.2.4 Traffic flow model 

The lower layer describes the dynamics of traffic flow propagation using a first-order LWR 

model. The mathematical form of the LWR model is a PDE describing the spatiotemporal 

evolution of density and flow. It assumes that the behavior of traffic at a given point in space and 

time is only affected by the state of the system in a neighborhood of that point (Daganzo, 1995b). 

The model consists of the flow conservation law and an explicit density-flow relationship known 

as the fundamental diagram of traffic flow. The flow conservation law and the fundamental 

diagram can be expressed as follows:  

( , ) ( , ) 0k x t q x t
t x

 
 

 
                         (2) 

( , ) ( , , )u x t F k x t ,                           (3) 
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where ( , )k x t  denotes the traffic density for cell x at time t, ( , )q x t  is the instantaneous flow, ( , )u x t  

is the average speed, and ( , , )F k x t  is the fundamental diagram in which ( , )k x t  and ( , )u x t  are 

related by a continuous and piecewise differential equation. The PDE model allows small 

perturbations to the system to propagate forward when traffic is light, and backward when traffic 

is heavy (Daganzo, 1995b). The spatiotemporal change of the equipped-vehicle density in the 

lower layer affects the success rate of V2V communication due to the effects of interference, where 

the success rate is specified by the probabilistic communication kernel function discussed in 

Section 4.2.2. This spatiotemporal coupling between the traffic flow dynamics and the V2V 

communication constraints can capture the impacts of congested traffic (such as the backward 

traffic propagation wave) on information flow propagation. It is important to note here that ( , )k x t  

in equation (2) of the lower layer is the same as ( , )S x t + ( , )I x t + ( , )U x t  in equation (1) of the upper 

layer. This illustrates the linkage between the two layers of the proposed model.  

4.2.5 Solutions for homogeneous and heterogeneous conditions 

For the proposed two-layer model (Sections 4.2.3 and 4.2.4), the traffic flow layer (Section 

4.2.4) is a single class traffic flow model which is sufficient to represent the impacts of traffic flow 

dynamics on the IFPW for homogeneous conditions. This is because while the traffic flow 

dynamics shift the IFPW towards the direction of traffic flow, they do not change the density of 

informed vehicles. Figure 4-6 illustrates the impact of the traffic flow dynamics on the IFPW under 

homogeneous and heterogeneous conditions. Figure 4- 6(a) shows the location and shape of the 

IFPW at time t1. Figure 4-6(b) shows that the traffic flow dynamics only shift the IFPW to the 

direction of traffic flow with constant speed but do not change the density of informed vehicles 

under homogeneous conditions. Therefore, the two layers are part of a coupled system in which 

dynamics occur in each system simultaneously, consisting of the information dissemination 

dynamics in the upper layer and the traffic flow dynamics in the lower layer. The information 

dissemination process is an overlay to the traffic flow that progresses in the same direction under 

homogeneous conditions. Both of these dynamics are addressed in a continuous time setting 

simultaneously. As discussed next, different approaches are needed to obtain solutions for the two-

layer model under homogeneous (Section 4.3) and heterogeneous (Section 4.4) conditions. A 
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simultaneous approach and continuous time settings suffice for homogeneous conditions, while a 

sequential approach and discrete time settings are required for heterogeneous conditions.  

Section 4.3, which determines a closed-form solution for the IFPW speed under homogeneous 

conditions, uses the two-layer model to determine the solution by simultaneously capturing the 

interactions involving the two layers. Hence, the single class traffic flow model and a continuous 

time setting are sufficient to obtain a closed-form solution under homogeneous conditions due to 

the ability to use the simultaneous approach. 

By contrast, as will be discussed in Section 4.4, under heterogenous conditions, the impacts of 

traffic flow dynamics on the IFPW are not uniform in space and time. Figure 4-6(c) shows the 

spatiotemporal change of the informed vehicle density under heterogeneous conditions. Figure 4-

6(d) illustrates the effects of bidirectional flow on the IFPW in that the density of informed vehicles 

is changed in space. This makes it necessary to track the density of informed vehicles in each cell 

in the lower layer (which was not necessary under homogeneous conditions). This requires 

discretizing the problem, unlike in Sections 4.2 and 4.3 where continuous time settings suffice due 

to the simultaneous approach. To do so, an intermediate component is introduced in Section 4.4.4 

that consists of a set of steps to connect the upper and lower layers consistently in terms of the 

number of vehicles by vehicle class. The intermediate component uses a discretized multi-class 

traffic flow model and outcomes from a discretized SI model. We propose a numerical solution to 

capture the interactions between the upper and lower layers sequentially using discretized time 

intervals. 
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Figure 4-6 Impacts of traffic flow dynamics on the IFPW under homogeneous and heterogeneous 

conditions 

 Closed-form solution of IFPW speed for homogeneous traffic conditions 

One of the main advantages of the model [(1), (5)] proposed to characterize the IFPW, is that 

it can be used to derive a closed-form solution of the IFPW speed under homogeneous traffic 

conditions, thereby circumventing the need for a more complex numerical solution. We now derive 

the closed-form solution for the IFPW speed, obtained as the summation of the information 

dissemination wave speed ( Ic ) and traffic flow propagation wave speed ( Tc ). 

4.3.1 Information dissemination wave speed 

The proposed susceptible-informed model using IDEs identifies an information dissemination 

wave whose speed quickly converges to a finite asymptotic speed 
Ic  (Weinberger, 1978; Kot, 

1992; Hart and Gardner, 1997). Equation (1) is not amenable to obtaining a closed-form solution 

for the traveling wave speed. However, there is compelling empirical evidence (Kot, 1992; Hart 

and Gardner, 1997) that the asymptotic speed ( Ic ) of the IDEs for the SI model is equal to the 

minimum wave speed, Ic , of a linearized version of the model obtained by satisfying a linear 

conjecture (Mollison, 1991; Kot, 1996; Medlock and Kot, 2003). In the V2V-based traffic system 
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context, the linear conjecture would be satisfied if: (i) the success rate of communication per 

informed vehicle is a non-increasing function of the number of informed vehicles, so that the 

maximum per capita communication rate occurs at the wave front, and (ii) the influence of a 

vehicle beyond its communication range is negligible. Both these conditions are satisfied in the 

V2V-based traffic system. 

To linearize equation (1), the last term in its integral, ( , )S x t , is replaced by ( , ) ( , )E x t I x t  (by 

definition), and then the negative term ( , )I x t  is removed based on the linear conjecture. Under 

homogeneous traffic conditions, ( , ) 0E x t E  ; hence, equation (1) can be linearized as:  

          ( ( , ) ( , ) )
S

K x y I y t dy E
t 


    

                                 (6-a) 

        ( ( , ) ( , ) ) .
I

K x y I y t dy E
t 


   

                                   (6-b) 

Since the negative term is ignored in the linearized model (6), E overestimates ( , )S x t  in (6-a) and 

(6-b). Hence, in (6-a), the rate of decrease of susceptible vehicles is overestimated, and similarly, 

in (6-b), the rate of increase of informed vehicles is overestimated. Therefore, the solution of model 

(1) is bounded above by the solution of its linear approximation (6). Then, by the linear conjecture, 

the minimum wave speed of equation (6), Ic , is equal to the asymptotic wave speed of equation 

(1). We will now solve equation (6) to obtain the information dissemination wave speed. 

As the traffic density is constant under homogeneous conditions, the communication kernel K 

depends only on the absolute value of the magnitude of the distance between the vehicle located 

at x and any vehicle located at any y within communication range, | |x y , and not the locations 

themselves. This enables the communication kernel to be of convolution type, i.e., ( , )K x y =

(| |)K x y = ( )K v , where v  = | |x y . In particular, this study adopts the Gaussian exponentially 

bounded kernel, ( )K v
v

A e


 


 with positive parameters A  and  , which has the following 

moment generating function: 

( ) ( )vM e K v dv


  

 .                                 (7) 

The moment generating function ( )M   has a strictly positive radius, and its integral converges to 

a finite value (Medlock and Kot, 2003). Studies (Kot, 1996; Medlock and Kot, 2003) for SI 
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epidemic models illustrate analytically that Gaussian kernels produce constant traveling wave 

speeds. Hence, the information dissemination wave in the proposed V2V-based traffic system 

context has a constant asymptotic speed. 

The basic technique for determining traveling wave solutions of equation (6) is by using 

the form 
( )

( , ) Ix c t
I x t A e

 
 


 (Mollison, 1991). We now define a new variable 

*
( , )I x t 

( )II x c t   that shifts the reference coordinates to speed 
Ic . Thus, the density ( , )I x t  at x at time t 

will be exactly the same as the density at x+
Ic  at time t+1. This allows us to derive a closed-form 

solution for equation (6). Based on equation (6-b), we obtain the characteristic equation:  

( ) ( )
( )I Ix c t y c t

Ic A e E K v A e dy
   


       

   .              (8) 

Canceling common factors, Ic t
A e

  gives: 

    ( ( ) ) ( )v

Ic E e K v dv E M


       
    .                                  (9) 

Equation (9) shows that 
Ic  is function of  . Minimizing 

Ic ( ) for all   >0 provides the 

asymptotic speed (
Ic ):  

            
0

( )
( ) infI

M
c E


  




 


.                                                      (10) 

To find 
Ic , we set the derivative of ( ) /M    to zero based on the first-order optimality condition. 

Then, 

*( )Ic E M     ,                                      (11) 

where *  satisfies the first-order optimality condition: 

* * *( ) ( )M M   .                            (12) 

Using the Gaussian communication kernel 
2 2/( ) ,vK v e 





 
 where  and   are constants, 

the moment generating function is given by: 

            

2 2

4( )M e 
 

  ,                                (13) 

Equations (11)-(13) together determine the minimum wave speed 
Ic  as:      

            
2

I

e
c E       .                          (14) 



 

104 

 

Equation (14) illustrates a simple, but important relationship between the communication kernel 

parameters ( ,  ), the data communication frequency (  ), the density of the equipped vehicles 

( E ), and the information dissemination wave speed ( ).Ic It shows that the proposed model can 

leverage the success rate of V2V communication to illustrate the information dissemination wave 

speed using the communication kernel parameters. Therefore, it provides significant flexibility to 

test various communication models to characterize the evolution of the IFPW speed. Also, the 

equipped-vehicle density and data communication frequency illustrate a linear relationship with 

the IFPW speed.  

4.3.2 Traffic flow propagation wave speed 

The traffic flow propagation wave speed ( Tc ) is determined by the fundamental diagram which 

is a continuous and a non-increasing function defined on [0 , ]jk , where jk  is the jam density. 

Since the fundamental diagram is identical across the three vehicle classes, each class has the same 

speed at a given location and time. This study adopts the following triangular fundamental diagram 

(Jin and Recker, 2006): 

       

, 0

( )
,

( )

f c

T
c j

f c j

j c

u k k

c k k k
u k k k

k k k

 


   
  

 

                             (15) 

where, fu  is the free flow speed, and 
ck  is the critical density. The IFPW speed depends on 

the information dissemination wave speed and the traffic flow propagation wave speed. For a 

single straight road corridor, the IFPW speed is the sum of two speeds (
Ic +

Tc ), since the 

information dissemination wave is an overlay to the traffic flow propagation wave that progresses 

in the same direction. Correspondingly, the backward IFPW is opposite to the traffic flow, and 

hence the backward IFPW speed is (
Ic -

Tc ). To illustrate the closed-form solution, the experiments 

in Section 4-5 are also conducted for this topology. However, the numerical solution approach, 

discussed next for heterogeneous conditions, is applicable to any network topology.  
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 Numerical solution of IFPW speed for heterogeneous traffic conditions 

The closed-form solution for the IFPW speed derived in the previous section is applicable only 

for homogeneous conditions (which occur under constant density and unidirectional traffic flow). 

In this section, a numerical solution is proposed for heterogeneous conditions.  

4.4.1 Framework of numerical solution for heterogeneous conditions 

The conceptual framework of the numerical solution is illustrated in Figure 4-7. As discussed 

in Section 2.5, the numerical solution for heterogeneous conditions requires the discretization of 

the two-layer model. The continuous SI model in the upper layer consists of IDEs (equation 1) that 

involves both integrals (spatial domain) and differentials (time domain) of a function. The fast 

Fourier Transform (FFT) is used for the spatial discretization of the integral part of the IDE 

equations. The Runge-Kutta method is used for the temporal discretization of the differential part 

of the IDE equations (Medlock and Kot, 2003). The mathematical form of the LWR model (PDEs, 

equations (2)-(3)) in the lower layer is discretized using the generalized cell transmission finite 

difference equations (FDEs) that approximate the PDEs (Daganzo, 1995b). 

 

Figure 4-7 Framework of numerical solution for heterogeneous conditions 
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Sections 4.4.2 and 4.4.3 provide a detailed discussion related to the numerical solution 

framework for the upper and lower layers, respectively. The numerical solution starts by defining 

an initial condition in which the information unit is generated in the middle of the single straight 

road corridor, and propagates in both directions. Then, the upper and the lowers layers are 

sequentially solved for by using the discretized SI model and the FDEs, respectively. An 

intermediate component is introduced in Section 4.4.4 that consists of a set of steps to connect the 

upper and lower layers consistently in terms of the number of vehicles by vehicle class. At time t, 

the discrete single class traffic flow in the lower layer is solved first. Then, the outcomes of the 

discrete single class traffic flow model at time t and the outcomes of the discretized SI model at 

time t- are used to update the number of vehicles by vehicle class in the intermediate component. 

The outcomes of the intermediate component are used to solve the discretized SI model at time t 

in the upper layer. Then, the numerical solution moves to next time interval (t+ ). Therefore, the 

system evolves in time by solving the lower layer, intermediate component, and the upper layer, 

sequentially and iteratively. 

4.4.2 Numerical method for SI model  

The FFT is used to solve the integral part of equation (1), ( , ) ( , )K x y I y t dy


  (Medlock and Kot, 

2003). Space and time are discretized into cells with length ( x ) and time interval (  ), 

respectively. We assume that 
fx u   , based on Daganzo (1995a). We note an important 

property of the FFT; that the FFT of the convolution of two functions is the product of their 

individual FFTs. Therefore, the FFT of the convolution of the (| |) ( , )K x y I y t dy


  * ( )f g w  is 

as follows:         

* ( )f g w 2
( ) ( ),

L
f w g w

N
                 (14) 

where L represents communication range and N represents the number of cells within 

communication range in the two directions. We use the discrete FFT:  

/ 2
2

/2

( ) ( ) ,
N

i w j x

j N

f w f j x e     



                              (15) 
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where function f is defined on the interval w [0,1]  and i is the imaginary unit that satisfies i2 = -1. 

Note that 2L in equation (14) allows for a change in the length of the interval from 1 to 2L. Finally, 

the inversion of FFT provides * ( )f g w  which is the value of the right-side of IDEs (1).  

With the solution of the FFT which provides the value of the right-side of IDEs (1), the original 

IDEs can be treated as an initial value problem. The Runge-Kutta method is used to solve this 

initial value problem. Then, the number of vehicles by vehicle class in cell x and at time t through 

information dissemination process are updated. The updated proportion of vehicles by vehicle 

class are used in the intermediate component for the next time interval.   

4.4.3 Numerical method for single class traffic flow model  

The single class traffic flow model (PDE equations (2) and (3)) is reformulated into the discrete 

single class traffic flow model (equations (16) and (17)). Same as the upper layer, space and time 

are discretized into cells with length ( x ) and time interval ( ), and fx u   . The continuous 

single class traffic flow conservation law (equation (2)) is discretized as follows: 

( , ) / ( , ) / ( , ) / ( , ) /k x t k x t q x x t x q x t x         .                      (16) 

The fundamental diagram of traffic flow (equation (3)) is discretized as (Daganzo, 1995b):  

( , ) min{ ( ( , )), ( ( , ))}jq x t T k x t R k k x x t                                        (17) 

where a “sending” function T specifies the maximum flow from the cell that can be sent to a 

downstream cell, and a “receiving” function R specifies the maximum flow that can be received 

by the downstream cell. The functions T and R are continuous, piecewise differentiable, and non-

decreasing functions defined in the interval [0, jk ], and such that T(0)=R(0)=0. In FDE 

approximation, the sending and receiving functions correspond to the increasing and decreasing 

branches of the flow-density curve. In an uncongested region of time-space, the outflow of a cell 

is ( ( , ))T k x t . Similarly, in a congested region the outflow of a cell is ( ( , ))jR k k x x t   . Hence, the 

outflow from a cell, ( , ),q x t  is the largest value that does not exceed the number of vehicles that 

can be sent by the cell or received by its downstream cell (Daganzo, 1995b). The updated total 

number of advancing vehicles in cell x and at time t is used to update the upper layer through the 

intermediate component. 
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4.4.4 Intermediate component to connect the lower and upper layers  

At each location x and time t, numerical solutions are obtained for the discrete SI and the 

discrete single class traffic flow model. We introduce an intermediate component to connect the 

upper and lower layers consistently in terms of the number of vehicles by vehicle class. The 

sequence of numerical solutions and the intermediate component are illustrated in Figure 4-8. The 

single class outflow of a cell at location x and time t, ( , )q x t , is decomposed into the multi-class 

outflow using the previous time interval’s proportion of vehicles by vehicle class in the upper layer. 

Then, the discrete multi-class traffic flow conservation equation is used to update the number of 

vehicles by vehicle class of each cell. The steps of the intermediate component are as follows:   

  

Figure 4-8 Framework of the intermediate component to connect the upper and lower layers 
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ˆ( , )

( , ) ( , )
( , )

S

S x t
q x t q x t

k x t






 


                         

       
ˆ( , )

( , ) ( , )
( , )

I

I x t
q x t q x t

k x t






 


                    (18) 

       
ˆ ( , )

( , ) ( , )
( , )

U

U x t
q x t q x t

k x t






 


  

where ( , )zq x t is the number of vehicles of each class that leave cell x during time interval  and 

ˆ( , )S x t , ˆ( , )I x t , ˆ ( , )U x t  are variables that describe the updated number of vehicles of each class in 

cell x at time t in the discrete SI model. Equation (18) indicates that the number of vehicles of each 

class that advance to the downstream cell is proportional to the previous time interval’s proportion 

of vehicles by vehicle class in the upper layer (equations (14)-(15) and the Runge-Kutta method).  

Step 2 updates the number of vehicles by vehicle class in each cell of the upper layer using the 

discrete multi-class flow conservation law, as follows: 

       ( , ) ( , ) ( , ) ( , ).Z Z Z Zk x t k x t q x x t q x t                                  (19)     

It is important to note here that ( , )Sk x t , ( , )Ik x t , ( , )Uk x t  in equation (19) are the same as ( , )S x t , 

( , )I x t , ( , )U x t  that describe the number of vehicles of each class in the upper layer, respectively. At 

each location x and time t, two layer’s numerical solutions are obtained sequentially to update the 

evolution of the IFPW. 

 Numerical experiments  

This section first discusses the design of numerical experiments and the parameter calibration 

for the proposed communication kernel. Then, it provides numerical examples for the IFPW speed 

under homogeneous and heterogeneous traffic conditions. 

4.5.1 Experiment design 

The study network consists of 2,000 grid cells, which is equivalent to 30 km of highway length. 

Consistent with the data communication frequency (2Hz), the time interval  for updating is set to 

0.5 seconds. Different demand levels and a pre-defined market penetration rate (50%) are used to 
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generate various traffic conditions. The cell characteristics and experiment parameter values are 

provided in Table 4-1.  

We label the IFPW speed in the direction of vehicular traversal as the forward IFPW speed. 

The IFPW speed opposite to the direction of vehicular traversal is defined as the backward IFPW 

speed. The IFPW speed is positive in the direction of traffic flow. 

 

Table 4-1 Cell characteristics of the study network, and experiment parameters 

Variables Units Value 

Free flow speed (
fu ) (km/h) 108 

Time interval ( ) (seconds) 0.5 

Grid cell length ( x ) (meters) 15 

Number of lanes - 1,2 

Market penetration rate (  ) (%) 50 

Total number of cells - 2,000 

Critical density (
ck ) (vehicles/km/lane) 42 

Jam density ( jk ) (vehicles/km/lane) 167 

Frequency of communication (  ) (Hz) 2 

Communication range (L) (meters) 500 

 

4.5.2 Parameter calibration of communication kernel 

This section discusses the calibration of the parameters of the communication kernel that 

describes the success rate of single-hop communication and the effect of interference caused by 

multiple transmissions in a network. To do so, we analyze how the success rate of V2V 

communication decays with the increase in interference for different demand levels and a specific 

market penetration rate (50%). Due to the lack of real-world data for various V2V communication 
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environments, we use a simulation-based approach. The aim of the simulation-based approach is 

to generate realistic synthetic data for the success rate of single-hop V2V communication under 

various demand levels. As we focus on the success rate of single-hop V2V communication at a 

time instant (of length 0.5 seconds), the impact of the dynamic changes in the vehicle positions is 

ignored.  

Using the simulation-based approach, we analyze the success rate of communication from the 

sender equipped vehicle to the receiver equipped vehicle, by factoring the cumulative interference 

(see Section 4.2.2). Note that the inherent random effects on V2V communication from the real-

world traffic and communication constraints are captured by the communication kernel, which is 

a key innovation of this study. To obtain the communication kernel, Monte Carlo simulations are 

performed that randomly locate vehicles based on the traffic density in each simulation run, and 

then apply the V2V communication constraints (range, interference and signal power). Through 

the simulation approach, we are able to leverage the macroscopic models to derive analytical 

properties and closed-form solutions for information flow propagation. 

The approach is as follows. For a given density (k), the sender is assumed to be located in the 

middle of a 2 km highway, and other equipped vehicles are randomly distributed along the highway. 

The 2km highway length is used because the communication range is 500 meters, and we 

incorporate the ranges of both the sender and receivers who are 500 meters on either side of the 

sender. The analysis is performed for the scenarios in which the receiver is assumed to be located 

at a distance between 5 meters and 500 meters from sender, at 5 meters space intervals. Suppose 

other equipped vehicles within communication range from the receiver simultaneously transmit 

information at a time instant, leading to some cumulative interference. The success (or lack of it) 

in receiving the transmitted information is determined using the SINR (Gupta and Kumar, 2000). 

For the communication from equipped vehicle a (sender) to equipped vehicle b (receiver), the 

SINR is defined as: 

         2 2
E

1 1
/

h
a b h b

h a






 

 
   

                (20)                

where h  denotes the coordinates of an equipped vehicle h within communication range of 

equipped vehicle b. The transmitted information from vehicle a is successfully received by vehicle 



 

112 

 

b if it satisfies the SINR threshold  (the study experiments use  = 0.15). For each distance (v) 

between the sender and receiver vehicles, 100 simulation runs are performed to account for the 

stochasticity in the locations of other equipped vehicles.  

  

Figure 4-9 Parameter calibration for communication kernel (density: 50 veh./km, and market 

penetration rate: 50%) 
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The simulation data is also used to calibrate the parameters   and   for the Gaussian 

communication kernel 
2 2/( ) vK v e 





 
. The Least Sum of Squared Errors (LSSE) is applied 

to calibrate the communication kernel. Figure 4-6 shows the calibrated communication kernel that 

indicates the probability of successful reception of information with respect to the distance 

between the sender and receiver vehicles for the density level 50 veh./km. Table 4-2 illustrates the 

calibrated values of the parameters   and   for various densities (k) ranging from 10 veh./km 

to 480 veh./km, in discrete intervals of 10 veh./km, under the 50% market penetration rate.  

Table 4-2 Calibrated communication kernel parameters for various densities, and the market 

penetration rate of 50% 

Density (k) 

(veh./km) 
    

Density (k) 

(veh./km) 
    

Density (k) 

(veh./km) 
    

10 0.464 0.864 170 0.066 0.108 330 0.037 0.063 

20 0.410 0.685 180 0.063 0.106 340 0.035 0.061 

30 0.345 0.548 190 0.063 0.101 350 0.034 0.059 

40 0.273 0.420 200 0.059 0.096 360 0.035 0.06 

50 0.224 0.345 210 0.056 0.091 370 0.032 0.057 

60 0.191 0.292 220 0.054 0.086 380 0.031 0.056 

70 0.156 0.246 230 0.049 0.084 390 0.031 0.055 

80 0.138 0.218 240 0.049 0.084 400 0.03 0.053 

90 0.125 0.195 250 0.048 0.08 410 0.029 0.051 

100 0.109 0.175 260 0.045 0.076 420 0.029 0.051 

110 0.101 0.165 270 0.042 0.073 430 0.028 0.05 

120 0.088 0.145 280 0.039 0.067 440 0.028 0.051 

130 0.083 0.140 290 0.04 0.07 450 0.027 0.048 

140 0.081 0.131 300 0.038 0.065 460 0.027 0.048 

150 0.073 0.121 310 0.038 0.067 470 0.026 0.046 

160 0.070 0.116 320 0.037 0.065 480 0.027 0.047 
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4.5.3 Comparison of the IFPW speeds of the closed-form and numerical solutions 

4.5.3.1 IFPW speed under homogeneous traffic conditions and unidirectional flow 

We first consider a unidirectional one-lane highway under homogeneous traffic conditions 

(that is, constant density over the 30km highway). The results for the forward and backward IFPW 

speeds are illustrated in Figure 4-10. In the figure, solid curves represent the forward and backward 

IFPW speeds generated using the closed-form solution, and dashed curves show the numerical 

solutions. As the density of traffic flow increases, the IFPW speeds increase until k = 30 veh./km 

and decrease thereafter. This is because while higher equipped vehicle densities provide more 

opportunities for communication, they also cause increasing interference due to the higher 

numbers of equipped vehicles. The IFPW speed variation patterns for the forward and backward 

IFPW speeds have a similar trend, and illustrate symmetry with respect to the traffic speed pattern. 

Further, Figure 4-10 illustrates that the speeds generated by the closed-form solutions fit very 

closely to those of the numerical solutions. For example, when k= 30 veh./km, the closed-form 

solution (14) of IDE (1) provides the value of 
Ic  as: 

2 2

e e
E        ·0.345·2·0.548·(0.45·0.5) = 0.099 km/s = 357 km/h   

Also, the speed for k= 30 veh./km is the free flow speed (see Table 4-1), 108  The forward IFPW 

speed is then calculated as 
Ic +

Tc  = 357 + 108 = 465 km/h, which is close to the speed of 447 

km/h provided by the numerical solution. 
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Figure 4-10 Speed of IFPWs under various densities (one-lane highway) 

 

The forward and backward IFPW speeds in a unidirectional two-lane highway are illustrated 

in Figure 4-10. Note that the traffic flow propagation wave speeds are identical to those in Figure 

4-9. Akin to Figure 4-9, the trends show that the forward and backward IFPW speeds decrease 

with increasing density, due to the increased interference. Figure 4-10 also illustrates that the 

closed-form solutions of the forward/backward IFPW speeds are similar to their numerical 

solutions. 
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Figure 4-11 Speed of IFPWs under various densities (two-lane highway) 

 

5.3.2 Sensitivity analysis of the IFPW speed 

This section examines the sensitivity of the IFPW speed to the market penetration rate (  ). 

The traffic density is set at 50 veh./km, and the associated speed is 84 km/h. We perform parameter 

calibration for the communication kernel for this density under different market penetration rates 

(10% to 100%). Figure 4-12 illustrates the variation of the IFPW speed with  . The IFPW speeds 

vary with   as the information dissemination speeds vary with  . The IFPW speed variation 

pattern is symmetric with respect to the traffic flow speed (84 km/h) for the forward and backward 

IFPW speeds. Up to a   of 50%, both IFPW speeds increase due to the increased opportunity for 

information dissemination under V2V communications. Beyond the   of 50%, both forward and 

backward IFPW speeds decrease due to the increased interference. 
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Figure 4-12 IFPW speeds for different market penetration rates 

 

4.5.4 Shape of the IFPW and its asymptotic speed 

The forward and backward IFPWs under various densities are illustrated in Figure 4-13. The 

IDEs (equation (1)) and PDEs (equation (5)) generate IFPWs that preserve their shape and move 

across space at a constant speed. Figure 4-13 is obtained by plotting the forward and backward 

IFPW fronts every thirty iterations (15 seconds). To evaluate the IFPW shape and the speed at 

which traffic information propagates along a given unidirectional highway, we perform a 

numerical experiment based on equations (1) and (5). Each curve represents the density of 

informed vehicles at successive time intervals, and lines that are farther from the origin appear 

later in time.  
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Figure 4-13 IFPWs under various densities 

 

As illustrated by Figure 4-12, the forward and backward IFPW speeds are different under 

different traffic flow conditions. For light traffic conditions (k = 10 veh./km), the IFPW speeds are 

slow due to the fewer opportunities to communicate in a low-density environment. As the density 

of traffic flow increases (k = 30 veh./km), the IFPW speeds increase. At even higher densities (in 

the figure, k = 70 veh./km, and beyond), the interference increases substantially and the traffic 

speed reduces, leading to the decrease in IFPW speeds. As informed vehicles carry and broadcast 
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the information, a boundary of informed region moves in the direction of vehicular traversal. These 

observations are consistent with those in Kim et al. (2016). 

 

Figure 4-14 Illustration of asymptotic speed 

 

Next, we illustrate the asymptotic property of the solution of the IDE model (equation (1)). 

Figure 4-14 indicates that the IFPW speed takes 15 seconds to increases from a low initial value 

to the asymptotic speed. This observation is consistent with the finding in epidemiology (Mollison, 

1972a) that the initial speed of epidemic front is slower than its asymptotic speed. 

4.5.5 IFPW under bidirectional flow and/or heterogeneous traffic conditions  

4.5.5.1 Bidirectional flow  

In this section, we address the bidirectional highway (one lane in each direction) case, where 

information can be propagated by vehicles traveling in both directions. The number of vehicles in 

the two lanes of the bidirectional highway is the same as for the case with unidirectional traffic 

flow and two lanes (see Section 4.5.3.1).  
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Figure 4-15 Speed of IFPWs under various densities (bidirectional two-lane highway) 

 

The bidirectional (eastbound and westbound) traffic flow affects the forward and backward 

IFPW speeds in two ways. First, it can be observed that the pattern of the forward IFPW speed is 

similar to that of the unidirectional two-lane highway case, though the speed is lower. This is 

because vehicles moving in the opposite direction contribute to the IFPW, though they move in 

the direction opposite to that of the IFPW front. Hence, the unidirectional two-lane case provides 

an upper bound for the bidirectional forward IFPW speed, as shown in Figure 4-15. Second, as 

traffic flow conditions are identical for both directions, the backward and forward IFPW speeds in 

the bidirectional traffic case are symmetric with respect to the forward traffic speed.  

 

4.5.5.2 One-lane unidirectional highway with incident 

Here, we examine the influence of traffic density heterogeneity in the traffic stream on the 

speed of IFPWs, by considering the effects of a traffic incident for a one-lane unidirectional 

highway with a traffic density of 50 veh./km. To account for the spatial variability in density due 

to the incident, the communication kernel function consistent with the density for a spatial segment 
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is used to capture the effects of interference. As illustrated in Figure 4-16 (a), an incident occurs 

at location A at t = 0, and is cleared at t = 4 minutes (at point B in Figure 4-16 (a)).  

 

Figure 4-16 Contours of traffic density and information density 

 

The incident reduces the highway capacity by 1/3 of its initial value for this duration. The line 

connecting points A and D in Fig. 4-16 (a) separates the congested area and the free flow traffic 

departing from the congested area. The information generated at t = 0 at point C propagates in both 

directions. The resulting spatiotemporal contour plot of the traffic density and informed vehicle 
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density are shown in Figure 4-16. The forward IFPW speed changes as the downstream traffic 

density changes, and is represented by the arrows (a, b, c, and d) in Figure 4-16 (b). 

As shown in Figure 4-16 (b), the forward IFPW speed (arrow b) decreases in the region of the 

backward propagating traffic shock wave. This is because a higher vehicle density implies 

unfavorable conditions for V2V communication due to the higher interference, resulting in the 

lower likelihood of V2V communications. By contrast, in the queue dissipation area (illustrated 

by ABFD in Figure 4-16 (a)), the forward IFPW speed (illustrated by arrow c) is faster than those 

of the other areas, as traffic is at free flow speed and V2V communications take place more 

frequently.  

The effect of encountering the congested traffic area is illustrated by the difference between 

the solid and dashed arrows in Figure 4-16 (b), whereby the dashed arrow indicates the forward 

IFPW if no incident occurs. The speed decrease in the congested area (illustrated by arrow b) is 

more than the speed increase in the queue dissipation area (illustrated by arrow c). Hence, the 

average IFPW speed is reduced due to the traffic congestion associated with the incident, compared 

to the no-incident case (illustrated by the dashed arrow). 

 Concluding comments 

Existing studies on information flow propagation typically ignore the relationships between 

traffic flow and information flow dynamics by assuming instantaneous propagation of information 

flow through multi-hop communications. To bridge this gap, this study proposes a macroscopic 

model which characterizes the relationship between V2V communications and traffic flow 

dynamics, to determine the IFPW speed while factoring constraints arising from traffic flow 

dynamics and V2V communications.  

A primary contribution of the proposed model is its closed-form solution for the IFPW speed 

under certain conditions. The theoretical investigation provides useful insights into the IFPW 

speed and interdependencies with traffic flow dynamics. While this model is used to describe the 

dynamics of information flow propagation, it is worth noting that the proposed model and its 

closed-form solution can also aid in designing effective V2V-based traffic systems without relying 

on computationally expensive numerical methods. For example, from a communication viewpoint, 

it bridges the relationship between V2V communication constraints and the IFPW speed through 
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the specification of a communication kernel. Therefore, it enables communication engineers to 

choose the optimal V2V communication parameters (such as transmission power and data 

communication frequency) to satisfy a certain speed threshold for information flow propagation. 

From a transportation perspective, it can help to design prescriptive strategies to promote the 

propagation of useful information efficiently.   

The study offers the possibility of developing more sophisticated information flow propagation 

models by leveraging well-developed mathematic theories in epidemiology and ecology. For 

example, while this study establishes a deterministic model based on the notion that the density is 

large enough to ignore stochastic effects, a more comprehensive study could include stochastic 

effects, which can be important when the vehicle density is especially low. Another interesting 

topic would be considering the congestion effects for IFPW. This study considers a situation where 

the size of data and data generation rate is less than a critical value, and the V2V communications 

would not exceed the available bandwidth capacity. Hence, when the large number of information 

is generated by multiple vehicles in a small space and a short time period, it would cause 

communication congestion that it may significantly affect the speed of IFPW.  
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5. COUPLED HIDDEN MARKOV MODEL FOR TWO-STAGE 

MANEUVER-BASED MULTI-ANTICIPATIVE FORWARD 

COLLISION WARNING SYSTEM  

 Introduction 

Driving an automobile is a complex task that requires the driver to continuously scan the 

environment, interpret traffic situation, and interact with it. To aid safe driving and reduce 

accidents, innovative technologies have been leveraged in advanced driver assistance systems 

(ADASs). An ADAS labeled as forward collision warning (FCW) system is an advanced safety 

feature that provides a warning about an impending collision with the lead vehicle to refocus 

driver’s attention to the roadway and elicit a safe maneuver response from the driver. While the 

function and performance of FCW systems can vary widely, several studies (Cicchino, 2016; 

Georgi et al., 2009; Wu et al., 2018) report that FCW systems may prevent a significant proportion 

of rear-end collisions by providing warnings to drivers of upcoming threats and potential collisions.  

There are several ways in which FCW systems work, including variations in the method used 

to detect potential collisions. Currently, typical FCW systems employ an on-board sensor 

(Ammoun and Nashashibi, 2010; Benedetto et al., 2015) such as radar, LIDAR, vision-based 

system, or a fusion of different sensing technologies. Such systems offer varying degrees of 

capability for vehicle detection and tracking (Sun et al., 2006). However, these technologies are 

limited in their ability to detect multiple downstream vehicles due to line-of-sight problem. Recent 

technological developments in vehicle-to-vehicle (V2V) communications make it possible to 

perceive downstream traffic conditions beyond those enabled by on-board sensors (Biswas et al., 

2006; Kim et al., 2018; Leontiadis et al., 2011; Monteil et al., 2013; Palazzi et al., 2010). Thereby, 

an FCW system can utilize trajectory-related information from multiple downstream vehicles 

through V2V communications as a priori knowledge to predict the lead vehicle trajectory with 

sufficient lead time.  

The ability to provide a warning about an upcoming safety-critical situation with sufficient 

time for the driver to react is the most critical component of FCW systems. Such systems can 

include early warning, imminent warning, or both. Lerner et al. (1996) define an imminent warning 

as a warning requiring an immediate corrective action, while an early warning alerts the driver 
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about a situation that requires immediate attention and may require a corrective action. Depending 

on whether an early warning is included, the FCW system can be classified into single-stage and 

multi-stage warning systems. Multi-stage warning systems (Werneke et al., 2014; Winkler et al., 

2016) include multiple early warnings and an imminent warning, while single-stage warning 

systems provide only imminent warning. With an early warning, drivers can react with much 

milder and stress-free control (Winkler et al., 2016). The National Highway Traffic Safety 

Administration (NHTSA, 2002) also reports that multi-stage warnings can evoke significantly 

faster reaction times at the imminent warning compared to single-stage warnings by directing 

driver’s attention towards a possible collision situation through early warning. A driving simulator 

based study (Lee et al., 2002) shows that early warnings help to avoid more collisions compared 

to no-warning or imminent-warning only scenarios. The National Transportation Safety Board 

(NTSB, 2015) crash data study shows that if vehicles had been equipped with an FCW system that 

is capable of providing a sufficiently early warning, it may have prevented or reduced the severity 

of injuries in more than 90 percent of those crashes.  

 While the safety benefits of multi-stage FCW systems are widely acknowledged in the 

literature (Cicchino 2017), two key issues related to the uncertainty in predicting the trajectories 

of downstream vehicles still remain. First, as the time required to predict collision risk of the host 

vehicle increases, the likelihood of a false alarm, that is, a warning being issued for a non-

threatening situation, increases (Brown et al., 2001). Second, and as a consequence of the first 

issue, excessive number of false alarms reduces the driver’s trust in the FCW system which results 

in slower and less reliable reactions by the driver towards valid warnings (Bliss and Acton, 2003; 

Burgett and Miller, 2001), thereby reducing the effectiveness of the FCW system.  

While traditional FCW systems do not handle false alarm-related issues, several motion models, 

which predict the evolution of vehicle trajectory with time, have been proposed to address the 

uncertainty in predicting the lead-vehicle trajectory. A detailed survey on motion models can be 

found in Lefèvre et al., (2014). They can be categorized into two broad methodological groups, 

physics-based and maneuver-based, depending on the level of driving decisions and control. In 

general, driving is usually considered as an activity that consists of three levels of decision and 

control: strategic (planning), maneuvering (tactical), and operational (control) (Michon, 1985). At 

the strategic level, the driver makes high-level travel decisions such as choices related to 
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destination, route, and departure time. At the maneuvering level, the driver makes controlled 

maneuvering decisions such as overtaking, stopping, turning and obstacle avoidance (Michon, 

1985). The operational level relates to executing maneuvering-level decisions by taking control 

actions such as steering and pressing brake or gas pedal.  

Physics-based motion models (Brunson et al., 2002; Burgett and Miller, 2001; Kiefer et al., 

1999; Najm et al., 2003; Wang et al., 2016) have the lowest degree of abstraction with an 

operational level interpretation (e.g., constant speed and deceleration). They assume that the lead 

vehicle will continue its current rate of deceleration until it stops, and thereby allow efficient 

computation of its instantaneous trajectory. However, they are unable to provide a reliable long-

term (i.e., in the order of several seconds) prediction of the lead-vehicle trajectory as they do not 

factor the possible changes in maneuvering level decisions of downstream vehicles’ drivers. Hence, 

physics-based models fail to adequately capture the uncertainty associated with lead-vehicle 

trajectory prediction.  

Maneuver-based motion models (Kumar et al., 2013; Toledo-Moreo and Zamora-Izquierdo, 

2010) have primarily emerged to predict the maneuvers of the lead-vehicle driver. Maneuver-based 

motion models postulate that the motion of the lead vehicle depends on the maneuver that its driver 

intends to perform (Lefèvre et al., 2014). In these models, the driver is represented as a 

maneuvering entity that executes its intended maneuvers. However, the intent of a maneuver is not 

directly observable until the maneuver is performed. The general approach is to define a finite set 

of discrete maneuvers and analyze the driver’s maneuvers as a classification problem or pattern 

recognition. Different machine learning methods such as support vector machine (Kumar et al., 

2013), and Hidden Markov model (HMM) (Hou et al., 2011; Kumagai et al., 2003) have been used 

to develop maneuver-based motion models in the literature. However, most existing maneuver-

based motion models used in FCW systems are “single process” models; that is, they use only the 

immediate lead-vehicle’s trajectory-related information as they are built upon the assumption of 

on-board sensor technology that is limited by line-of-sight. In reality, the lead vehicle’s trajectory 

depends on the interactions among multiple vehicles downstream of it and thus, single process 

motion models are not well-suited to describe FCW systems as they entail multiple interacting 

processes (Brand et al., 1997). 
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To address the aforementioned gaps, this study proposes a maneuver-based multi-anticipative 

motion (MBMAM) model that is embedded in a two-stage FCW system. “Multi-anticipative” 

implies here that trajectory-related information (such as location, speed, acceleration and direction) 

from multiple downstream vehicles through V2V communications is used in the model to 

anticipate their maneuvers. It predicts the lead-vehicle trajectory by considering its interactions 

with multiple downstream vehicles. Thereby, the proposed model takes into account the maneuver 

intentions of drivers of multiple downstream vehicles and their interdependencies to incorporate 

the uncertainty in anticipating their vehicle trajectories. Figure 5-1 illustrates the conceptual 

difference between the existing approaches and the proposed one. While existing approaches use 

only the lead-vehicle’s trajectory-related information using on-board sensors to predict the lead-

vehicle’s trajectory, the proposed approach leverages V2V communications to obtain and use 

trajectory-related information of multiple downstream vehicles. 

 

Figure 5-1 Conceptual comparison of the proposed approach with the current approaches 

 

The MBMAM model is formulated as a coupled HMM (Brand et al., 1997) that models the 

maneuver intentions and their interdependencies as a causal relationship. This model is embedded 

in the two-stage FCW system that includes an early warning in the first stage and an imminent 

warning in the second stage. The collision risk of the host vehicle based on the lead-vehicle’s 

anticipated trajectory is used to determine the issuance of warning and the warning type. The 

proposed FCW system generates a more effective early warning in the first stage which reduces 

the frequency of false alarms. The performance of the coupled HMM-based two-stage FCW 
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system is evaluated using the Next Generation SIMulation (NGSIM) driving trajectory data 

(FHWA, 2005). The system performance is benchmarked against two existing FCW systems: (i) 

a two-stage FCW system embedded with NHTSA’s physics-based motion model (Brunson et al., 

2002), and (ii) a single stage FCW system embedded with a physics-based motion model (Knipling 

et al., 1993).  

The primary contributions of this study are to: (i) develop a two-stage FCW system that 

provides an earlier first stage warning in potential collision situations, (ii) leverage V2V 

communications to incorporate trajectory-related information from multiple downstream vehicles 

to enhance prediction accuracy, and (iii) reduce the frequency of false alarms by decreasing the 

uncertainty associated with predicting the lead-vehicle’s trajectory. 

The remainder of the paper is organized as follows. Section 2 discusses the proposed two-stage 

maneuver-based multi-anticipative FCW system, including the embedded coupled HMM model. 

Section 3 describes the experiment design and the NGSIM data used for the experiments. Section 

4 discusses numerical experiments to analyze the capabilities of the proposed FCW system and 

compares it to the two existing FCW systems. Section 5 summarizes the main findings and future 

research directions. 

 Two-stage MBMAM model-based FCW system 

Section 5.2.1 discusses the information propagation capabilities enabled by V2V 

communications. Section 5.2.2 elucidates the key capability enabled by the MBMAM model. 

Section 5.2.3 discusses the proposed MBMAM model. Section 5.2.4 describes the criticality 

assessment of collision risk that is used to determine the issuance of warning and the warning type.  

5.2.1 V2V communications for the MBMAM model 

Suitably equipped vehicles can generate trajectory-related information, including location data 

using a Global Positioning System (GPS) and on-board kinematic data (speed, acceleration, and 

direction). Through V2V communications, V2V-equipped vehicles can propagate this information 

by relaying it from one vehicle to another through a multi-hop dissemination process (Kim et al., 

2018). Thus, periodic transmission and acquisition of trajectory-related information enables V2V-
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equipped vehicles to maintain up-to-date trajectory-related information of other V2V-equipped 

downstream vehicles.  

This study assumes that all vehicles are V2V-equipped while developing the MBMAM model. 

While there will be a transition period during which V2V-equipped vehicles and unequipped 

vehicles would need to interact on the road, over the long-term all vehicles would be equipped 

with compatible V2V communication devices (Tan and Huang, 2006). In the U.S., the USDOT is 

seeking to mandate V2V communication technology for all new light-duty vehicles (NHTSA 

NPRM, 2018). Further, to keep the focus on the development of the proposed motion model, the 

study assumes that no communication failure or time lag would occur due to communication 

constraints (related to range, interference and bandwidth; see Kim et al., 2018).   

5.2.2 Capability enabled by the MBMAM model 

Figure 5-2 illustrates the key capability enabled by the proposed MBMAM model. It considers 

a potential collision situation involving multiple vehicles on a highway. The trajectories of vehicles 

A-D are shown in the space-time diagram where elapsed time is shown on the x-axis and the 

vehicle positions are shown on the y-axis. The figure illustrates a four-vehicle example with a host-

vehicle (vehicle D), an immediate lead-vehicle (vehicle C) and two other downstream vehicles 

(vehicles A and B). Vehicle A is the most-downstream vehicle, and is followed by vehicles B, C, 

and D, in that order. Assume that vehicle A brakes abruptly at time . For a FCW system that 

uses only on-board sensors, and hence only the immediate lead-vehicle information, vehicle B will 

detect vehicle A’s braking cue at time , and will begin to brake at time . Similarly, vehicles 

C and D will detect the braking event of their immediate lead vehicle at times  and , 

respectively, and will apply brakes at times 
 
and  respectively, as shown in Figure 5-2(a). 

Hence, vehicle D will receive a warning only after vehicle C starts braking at time , based on 

vehicle C’s predicted trajectory. Depending on the space headway between vehicles C and D, this 

situation may result in a collision.  
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Figure 5-2 Capability of the MBMAM model to provide an earlier early warning 

 

By contrast, Figure 5-2(b) illustrates the same potential collision situation handled by the 

proposed FCW system leveraging V2V communications capability. V2V communications allow 

vehicle D to receive information about vehicle A’s braking event at time , and use this 

information to predict the vehicle trajectories of vehicles B and C assuming that vehicle A will 

maintain its current deceleration rate. Then, using the MBMAM model, FCW system can provide 

an early warning to vehicle D at an earlier time (between  and ) which can increase its 

likelihood of avoiding a collision with vehicle C due to the valuable additional time to act on the 

warning, as illustrated in Figure 5-2(b). Thus, the proposed system can be more effective than 

existing FCW systems as it provides more time to the host vehicle to react to potentially dangerous 

situations. 
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5.2.3 MBMAM model-based FCW system 

Figure 5-3 shows the framework of the MBMAM model-based FCW system. The trajectory-

related information of multiple downstream vehicles is provided to the host vehicle at every time 

instant (0.1 seconds in this study) through V2V communications. Using their trajectory-related 

information, the host vehicle predicts the driver maneuver intentions of these downstream vehicles 

through a coupled HMM at every time instant. The predicted maneuver intentions of these 

downstream vehicles are used to predict their trajectories.  

Next, we perform a criticality assessment to determine if a warning should be issued to the 

host vehicle, and if so, the type of warning to be issued. To do so, we first project the host-vehicle’s 

future trajectories under early and imminent warnings. Depending on the type of warning, the host-

vehicle’s driver will decelerate at a different rate after a specific reaction time. Then, the predicted 

lead-vehicle trajectory and the projected host-vehicle trajectories under the two types of warnings 

are used to estimate the collision risk. Finally, based on the estimated collision risk, the host-

vehicle’s FCW system determines the issuance of warning and its type. 

The rest of this section is organized as follows. We first discuss the conceptual modeling of 

driver maneuver intention in Section 5.2.3.1. Next, in Section 5.2.3.2, we propose a coupled HMM 

to anticipate the lead-vehicle driver’s maneuver intention by coupling the maneuver intentions of 

the drivers of multiple downstream vehicles. Finally, we discuss Gipps’ car-following model in 

the study context in Section 5.2.3.3. 
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Figure 5-3 Framework of the MBMAM-based FCW system 

5.2.3.1 Conceptual modeling of driver maneuver intention 

The FCW system is designed to provide a warning on an upcoming high-risk situation if the 

host vehicle comes too close to the lead vehicle. Typically, such situations occur upon abrupt 

braking by a vehicle downstream that leaves little time for the host vehicle to react and maintain a 

safe distance from its leading vehicle. Another possible high-risk situation is when the lead vehicle 

slows down but the host vehicle does not adjust its speed accordingly due to its driver being 

inattentive or distracted. However, it should be noted here that there can be situations in which the 

lead vehicle maintains a certain speed, but the host vehicle accelerates, leading to tailgating. This 

is not addressed in FCW modeling as it indicates an intentional unsafe driving action on the part 

of the host-vehicle driver. 

The maneuver intention is endogenous to the driver and may not be observed directly (that is, 

it is hidden) which makes its inference uncertain. HMMs offer a mathematically sound basis for 

making inference under uncertainties. They have been applied extensively to problems in speech 

recognition and computational biology due to their effectiveness in modeling uncertainties 

(Rabiner and Juang, 1986). The hidden maneuver intention is inferred from vehicle’s observable 

trajectory-related information and its surrounding environment (e.g., speed limit, etc.). A HMM 
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can be used to model maneuver intention as a sequential Markov process over time with N possible 

discrete states, 𝑆 = {𝑆 , 𝑆 , 𝑆 , … . . , 𝑆𝑁}. 

In this study, four states (that is, N = 4) are used to represent the possible maneuver intention: 

(i) normal driving ( ), (ii) hard braking ( ), (iii) very-hard braking ( ), and (iv) transitory driving; 

transitory driving is a transitory moment from normal driving for any circumstance that requires 

an evasive maneuver by the host vehicle. Among these, normal driving corresponds to a low-risk 

situation, and the other three states correspond to a high-risk situation. The state of driver maneuver 

intention at time instant t, denoted by 𝑞𝑡, is determined based on the previous maneuver state (𝑞𝑡− ), 

and the rolling average acceleration rate (𝑤𝑎𝑣𝑔) in the previous T time instants (we use 30 time 

instants in this study).  

We define the vehicle to be in state 𝑆  if any of the following conditions is satisfied: : (i) 𝑤𝑎𝑣𝑔 

is greater than 1m/s2 (condition 1), or (ii) 𝑤𝑎𝑣𝑔 is between -3m/s2 and 1m/s2 when the previous 

state is 𝑆  (condition 2), or (iii) 𝑤𝑎𝑣𝑔 is between -3m/s2 and 1m/s2 after 3.0 seconds of being in 𝑆  

(condition 3). Conditions 1 and 2 correspond to the situations where the vehicle accelerates to 

achieve its desired speed or uses a low acceleration/deceleration rate to adjust its space headway, 

respectively. Condition 3 occurs when the vehicle resumes normal driving after being in a 

transitory driving state. Under the normal driving actions of the lead-vehicle driver, the FCW 

system will not issue a warning for the host vehicle. 

State 𝑆  corresponds to the driving situation when 𝑤𝑎𝑣𝑔 is between -5m/s2 and -3m/s2, and 

state 𝑆  corresponds to 𝑤𝑎𝑣𝑔 being less than -5m/s2. These driving states are characterized based 

on the following considerations: (i) the maximum “comfortable” braking deceleration rate is 

generally accepted to be around -3m/s2 (ITE, 1992), (ii) the mean of unexpected deceleration rate 

is -5.39 m/s2 (Fambro et al., 1997), and (iii) the maximum deceleration rate for a typical passenger 

vehicle is around -9m/s2 (Punzo et al., 2011). A vehicle under states 𝑆  or 𝑆  transitions back to a 

normal driving state if it accelerates with 𝑤𝑎𝑣𝑔 greater than 1m/s2. We choose 𝑤𝑎𝑣𝑔 greater than 

1m/s2 to indicate normal driving since a nominal range for “comfortable” acceleration for speeds 

of 48km/h and above is 0.6m/s2 to 0.7m/s2 (AASHTO, 1990). The transition from states 𝑆  or 𝑆  

to transitory driving is discussed after state 𝑆  is described in detail next. 

1S 2S 3S
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We define transitory driving (𝑆 ) as a short-term driving situation in which the lead vehicle is 

driving at a low acceleration/deceleration rate (between -3m/s2 and 1m/s2) immediately after hard 

or very-hard braking. At that point, the host vehicle is still adjusting to the braking action of the 

lead vehicle as it requires some reaction time. This leads to a situation in which the headway 

between the lead and host vehicles is reduced because the lead vehicle uses a low 

acceleration/deceleration rate. The maximum duration of the transitory state (𝜌) is set to the 99th 

percentile value of reaction time under the unexpected lead-vehicle braking, which is 3.0 seconds 

(Lerner et al., 1995) or 30 time instants. This is because it is assumed that the host-vehicle driver 

will notice the slow-moving lead vehicle within 𝜌 time instants and will react to this situation. 

Under state 𝑆 , the issuance of a warning by the FCW system will be determined by the criticality 

assessment (discussed in Section 2.4). 

The transition from states 𝑆  or 𝑆  to state 𝑆  occurs when 𝑤𝑎𝑣𝑔  is between -3m/s2 and 1m/s2. 

However, if within 3.0 seconds the acceleration rate again goes below -3m/s2, the state will revert 

back to 𝑆  or 𝑆  depending on the actual value of the acceleration rate. On the other hand, if a 

vehicle is in state 𝑆  for at least 3 seconds, its driving state reverts to normal driving (condition 3). 

The set of all possible driver’s maneuver intention states is illustrated in Figure 5-4. 

 

Figure 5-4 Set of the lead-vehicle driver’s current maneuver intention (𝑞𝑡) states 
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Next, the conceptual modeling of the lead-vehicle driver’s maneuver intention through the 

proposed coupled HMM is illustrated. A “coupled” HMM is proposed here because the driver’s 

maneuver intention is determined by coupling trajectory-related information from multiple 

downstream vehicles. 

5.2.3.2 Proposed coupled HMM 

Assume that there are G consecutive moving vehicles, indexed by g = 1,…, G, from the 

upstream to the most-downstream vehicle. The maximum value of G in the study experiments is 

5; that is, if there are more than 5 vehicles downstream of the host vehicle, only the 5 vehicles 

immediately downstream of the host vehicle are considered, starting with its lead vehicle. If G=1, 

it simply implies that only one vehicle is downstream of the host vehicle, at which point there is 

no coupling of trajectory-related information across multiple vehicles, and line-of-sight is the basis 

to determine the lead-vehicle driver’s maneuver intention. Hence, in the discussion hereafter G 

has a minimum value of 2.  

The proposed coupled HMM to anticipate the lead-vehicle driver’s maneuver intention has 

three distinctive properties. First, the sequence of states of the most-downstream vehicle (g=G) 

satisfies the Markov property that the probability of the current state depends only on the 

immediate previous state of that vehicle. From the perspective of the proposed FCW system, it 

implies that the most-downstream vehicle driver’s previous maneuver state includes all 

information about the history of the process needed to predict the current maneuver intention of 

that vehicle. This state sequence is generated by a Markov model parametrized by a state transition 

matrix (A).  

Second, in HMMs, an underlying stochastic process is not observable before the current state 

occurs. However, it can be inferred through another set of stochastic processes that produce a 

sequence of observations. In the proposed FCW system, the current maneuver intentions of the 

drivers of the downstream vehicles are not observable before those maneuvers are performed. 

However, the current maneuver intention for each of these vehicles can be inferred through 

trajectory-related information on speed and acceleration for that vehicle, and the time headway 

between that vehicle and its lead vehicle. We model the probability of generating trajectory-related 

information as a function of the hidden state using an observation probability matrix (B). 
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Third, the sequences of the states of the other downstream vehicles (g = 1,…, G-1) satisfy the 

coupled Markov property that the probability of the current state of vehicle l at time instant t 

depends only on its immediate previous state and its lead vehicle’s state at time instant (t- ), where 

 denotes the reaction time. While a single-process HMM uses only the immediate previous state 

(matrix A) to predict the lead-vehicle’s maneuver intention, the proposed coupled HMM predicts 

the downstream-vehicles’ maneuver intention by considering interactions with their lead-vehicle’s 

state. The sequences of maneuver intentions of the downstream vehicles are generated by a driver 

interaction matrix (DI). We use the value of 1.2 seconds for  in this study based on Green’s (2000) 

report that response to unexpected, but common signals, such as a lead car’s brake lights, is about 

1.2 seconds. 

Based on the aforementioned three distinctive properties of the proposed coupled HMM, at 

each time instant, a downstream driver’s current maneuver state is determined as follows: (i) the 

current maneuver state for vehicle G is determined using the state transition matrix (A) and the 

observation probability matrix (B), and (ii) the current maneuver state for each of the other 

downstream vehicles (1,…, G-1) is determined by the driver interaction matrix (DI) and the 

observation probability matrix (B).  

The state transition matrix (A) is a N×N matrix of the transition probabilities (𝑎𝑡
𝐺(𝑖, 𝑗)) that the 

current (that is, at time instant t) maneuver state of vehicle G is 𝑆𝑗 if its previous maneuver state is 

𝑆𝑖; that is, based on the Markov property: 

A={𝑎𝑡
𝐺(𝑖, 𝑗)} = 𝑃(𝑞𝑡

𝐺 = 𝑆𝑗|𝑞𝑡− 
𝐺 = 𝑆𝑖),   1 ≤ 𝑖, 𝑗 ≤ 𝑁   (1) 

where 𝑞𝑡
𝐺 denotes the state of the driver maneuver intention of vehicle G at time instant t and N is 

4 in this study. The state transition probability for vehicle G, 𝑎𝑡
𝐺(𝑖, 𝑗), has the following standard 

properties: 

𝑎𝑡
𝐺(𝑖, 𝑗) ≥ 0          (2) 

∑ 𝑎𝑡
𝐺(𝑖, 𝑗)𝑁

𝑗= = 1.         (3) 

The matrix A of state transition probabilities for the study experiments using NGSIM data is listed 

in Table I in the Appendix. 

We infer the state of each vehicle through the observed trajectory-related information. To do 

so, the observation probability matrix (B) encodes the probability of the hidden state generating 






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the trajectory-related information. The trajectory-related information on speed, deceleration rate, 

and time headway are discretized into three discrete categories (low, medium, and high). Speed is 

discretized into speed within a queue, queue discharge, and uncongested (Hall et al.1992). 

Deceleration rate is discretized by the comfortable (ITE, 1992), expected and the unexpected 

deceleration rates (Fambro et al., 1997). Time headway is discretized into the tailgating, normal, 

and sufficient following distance (Song and Wang, 2010). Table 5-1 shows three trajectory-related 

observations that have been discretized into three levels, where 𝑘𝑠, 𝑘𝑑, and 𝑘𝑢 denote the speed, 

deceleration rate, and time headway variables, respectively.   

𝑉 = {𝑣 , 𝑣 , 𝑣 , … , 𝑣𝐸}  denotes the set of E distinct trajectory-related observations. Each 

observation is a combination of the three trajectory-related variables. For example, 𝑣 = {𝑘𝑠 =

𝐿, 𝑘𝑑 = 𝐿, 𝑘𝑢 = 𝐿} denotes that all three observations are at their low levels, where 𝐿, 𝑀, and 𝐻 

denote low level, medium level and high level, respectively. The number of distinct trajectory-

related observations (E) in this study is 27. The complete set of possible combinations of 

observations is illustrated in Table II in the Appendix. 

Table 5-1 Discrete trajectory-related observations 

 Low (L) Medium (M) High (H) 

Speed: 𝑘𝑠 (km/h) 30>
 
𝑘𝑠

 30≤ 𝑘𝑠 ≤50 50<
 
𝑘𝑠

 

Deceleration rate: 𝑘𝑑 (m/s2) -5>
 
𝑘𝑑

 -5≤ 𝑘𝑑 ≤-3 -3<
 
𝑘𝑑

 

Time headway: 𝑘𝑢 (seconds) 3>
 
𝑘𝑢

 3≤ 𝑘𝑢 ≤6 6<
 
𝑘𝑢

 

 

We denote the observation of vehicle g at time instant t as 𝑜𝑡
𝑔

. The observation probability 

matrix (B) is defined by a N × E matrix, containing the probabilities (𝑏𝑡
𝑔
(𝑗, 𝑘)) of the current 

maneuver state of vehicle g (1,…, G-1) at time instant t, 𝑞𝑡
𝑔

, being 𝑆𝑗 if the observation of vehicle 

g at time instant t, 𝑜𝑡
𝑔

, is 𝑣𝑘; 

B={𝑏𝑡
𝑔
(𝑗, 𝑘)} = 𝑃(𝑜𝑡

𝑔
= 𝑣𝑘|𝑞𝑡

𝑔
= 𝑆𝑗),              1 ≤ 𝑗 ≤N, 1≤ 𝑘 ≤E.  (4) 

The observation probability for vehicle g in state j, 𝑏𝑡
𝑔
(𝑗, 𝑘), has the following standard properties: 

𝑏𝑡
𝑔
(𝑗, 𝑘) ≥ 0               (5) 

∑ 𝑏𝑡
𝑔
(𝑗, 𝑘)𝐸

𝑘= =1.         (6) 
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The matrix B of observation probabilities is listed in Table II in the Appendix. 

The driver interaction matrix (DI) is a 4×4×4 matrix containing the probabilities of the current 

maneuver state 𝑞𝑡
𝑔
 of all downstream vehicles g (1,…, G-1) other than the most-downstream 

vehicle. It contains the probability (𝑐𝑡
𝑔
(ℎ, 𝑖, 𝑗)) of vehicle g being in state 𝑆𝑗  if the immediate 

previous maneuver state of vehicle g, 𝑞𝑡− 
𝑔

, is 𝑆𝑖 and the maneuver state of its lead vehicle (vehicle 

g+1) at time instant t-𝛿, 𝑞𝑡−𝛿
𝑔+ 

 is 𝑆ℎ; that is, based on the coupled Markov property: 

DI = {𝑐𝑡
𝑔
(ℎ, 𝑖, 𝑗)} = 𝑃(𝑞𝑡

𝑔
= 𝑆𝑗|𝑞𝑡− 

𝑔
= 𝑆𝑖, 𝑞𝑡−𝛿

𝑔+ 
= 𝑆ℎ),    1 ≤ ℎ, 𝑖, 𝑗 ≤N  (7) 

The DI for vehicle g, 𝑐𝑡
𝑔
(ℎ, 𝑖, 𝑗), has standard properties based on probability theory: 

𝑐𝑡
𝑔
(ℎ, 𝑖, 𝑗) ≥ 0,          (8) 

∑ 𝑐𝑡
𝑔
(ℎ, 𝑖, 𝑗)𝑁

𝑗=  = 1.        (9) 

Finally, the initial state matrix that is the initial probability distribution over states at time (t=1) is 

defined as:  

𝜋𝑖 = 𝑃(𝑞 
𝑔
= 𝑆𝑖),    1 ≤ 𝑖 ≤N.                         (10) 

The matrix DI and the initial state matrix are illustrated for the NGSIM data in Table III and IV in 

the Appendix, respectively. 

Figure 5-5 shows the graphical representation of the proposed coupled HMM. A circular node 

denotes the state of maneuver intention of vehicle g at time instant t, 𝑞𝑡
𝑔

. A square node represents 

the observation at time instant t, 𝑜𝑡
𝑔

 which is received by the host vehicle from vehicle g through 

V2V communications. The vertical links represent the observation probability matrix. The 

horizontal links for vehicle G represent the state transition matrix. The diagonal and horizontal 

links together represent the DI matrix for downstream vehicles g (g =1,2,3,4). For example, the 

maneuver state 𝑞𝑡
  is updated based on 𝑞𝑡− 

 and 𝑞𝑡−𝛿
 , as illustrated in Figure 5-5. 

Given the graphical representation of proposed coupled HMM, a statistical inference algorithm 

is required to infer the most likely series of states given a series of trajectory-related observations. 

The message passing algorithm (Pearl, 1988) for exact inference in singly-connected networks 

(Suermondt and Cooper, 1990) has been developed to compute the marginal probabilities of all 

the variables to incorporate new observations. However, the proposed structure of coupled HMM 

in Figure 5-5 has a multiply-connected network in which there can be more than one directed path 
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between any two nodes. Suermondt and Cooper (1990) extend the message passing algorithm to 

enable it for multiply-connected networks. We adapt the extended message passing algorithm to 

update the maneuver intentions of the drivers of multiple downstream vehicle to incorporate new 

observations. Based on the aforementioned properties of the proposed coupled HMM, at each time 

instant, the maneuver intentions of multiple downstream vehicles are obtained. Next, the detailed 

trajectories of downstream vehicles are estimated using a car-following model. 

 

Figure 5-5 Graphical representation of the proposed coupled HMM 
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5.2.3.3 Trajectory estimation using Gipps’ car-following model 

The predicted maneuver intentions of downstream vehicles are used to predict their trajectories 

using a microscopic car-following model. We use the Gipps’ car-following model (Gipps, 1981) 

to generate a detailed trajectories of downstream vehicles. After generating downstream vehicle 

trajectories, we generate the lead-vehicle’s trajectory. Gipps’ model is developed based on the 

notion that the following driver tends to keep a safe following distance. It is well-known from the 

literature that Gipps’ model is able to reproduce essential traffic dynamics phenomena observed 

on freeways. If the coupled HMM produces the high-risk situations of hard braking, very-hard 

braking, and transitory driving of any downstream vehicle (g), a feasible trajectory of vehicle g is 

calculated using the kinematic constraints, with a deceleration rate of -4m/s2 ( ),  -7m/s2 ( ) and 

-1m/s2 ( ), respectively. For hard braking and very-hard braking, we assume that vehicle g will 

continue its current rate of deceleration until it stops. For transitory driving, we assume that the 

deceleration rate of -1m/s2 continues for 10 seconds. Then, Gipps’ model predicts the trajectories 

of all vehicles downstream of the host vehicle (from vehicle g-1 to the lead vehicle) using the 

following equation:  

        𝑉𝑔− (𝑡 + 𝛿) = 𝑏𝑔− ∙ 𝛿 +

       √(𝑏𝑔− ∙ 𝛿)
 
− 𝑏𝑔− [2[𝑥𝑔(𝑡) − 𝑠𝑔 − 𝑥𝑔− (𝑡)] − 𝑣𝑔− (𝑡) ∙ 𝛿 −

𝑣𝑔(𝑡)2

𝑏̂𝑔   
]) ,                   (11) 

where 𝑏𝑔is the most severe braking rate that the driver of vehicle g wishes to undertake, 𝑠𝑔 is the 

effective size of vehicle g, 𝛿  is the reaction time (that is, 1.2 seconds), 𝑏̂𝑔  is the value of 

𝑏𝑔−  estimated by the driver of vehicle g who cannot know this value from direct observation, and 

𝑥𝑔(𝑡) and 𝑣𝑔(𝑡) are the location and speed of vehicle g at time t, respectively. The parameters of 

Gipps’ model in this study are from Gipps (1981). 

5.2.4 Two-stage criticality assessment 

The criticality assessment determines the issuance of warning and the level of warning 

(Knipling et al., 1993; Van Der Horst and Hogema, 1993). Two groups of approaches have been 

proposed in the literature based on the risk indicators; the time headway or time-to-collision (TTC), 

and the projected vehicle trajectory. An advantage of using risk indicators is their simplicity and 

2S 3S

4S
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consistency with current driving-manual recommendations for safe driving (Taieb-Maimon and 

Shinar, 2001). Time headway is measured as the elapsed time between the lead vehicle and host 

vehicle reaching the same location. TTC is defined as the time until a collision between the lead 

vehicle and host vehicle would occur if their current trajectory and speed are maintained, if the 

host vehicle is moving faster than the lead vehicle (Minderhoud and Bovy, 2001).  

The other approach that this study adopts is based on the projected minimum distance between 

the lead vehicle and host vehicle using their predicted trajectories (Brunson et al., 2002). As shown 

in Figure 5-6, the lead-vehicle trajectory is predicted using the proposed MBMAM model. It 

computes the projected host-vehicle trajectory at each time interval, based on the assumption that 

the driver of the host vehicle will respond to the warning with a specific reaction time and a specific 

decelerate rate. Here, we use different braking rates for the host-vehicle deceleration. The assumed 

host-vehicle braking rate for early warning is 3.14 m/s2 and for imminent warning is 5.39 m/s2 

(Brunson et al., 2002). The reaction time is set as 1.2 seconds. The projected minimum distance is 

then compared with a predefined critical distance to determine whether a warning should be issued. 

The critical distance is defined as the physical length of a vehicle plus a margin into which the host 

vehicle is not willing to intrude.  

When the projected minimum distance is less than or equal to the critical distance (5 meters 

in this study), a warning is issued. As the early warning uses a conservative value (less hard 

braking) for the assumed braking rate, it will be issued before the imminent warning. The 

decision to issue a warning is made every 0.1 seconds upon a new observation through V2V 

communications. A warning may be suppressed when the driver has recently braked or been 

warned. Once a warning is issued, the same warning level is maintained for a minimum of one 

second, unless an imminent warning is issued. The FCW system is specified to be active only 

when the host vehicular speed is greater than 30 km/h. This is because under stop-and-go driving 

or close-to-jam density, the FCW system is not effective (Brunson et al., 2002). 
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Figure 5-6 Illustration of the two-stage criticality assessment 

 Experiment design  

5.3.1 Experiment scenario 

The scenario which we consider for the study experiments is a string of vehicles on a highway. 

A time-series NGSIM (FHWA, 2005) data is used to reproduce the dynamics of vehicle trajectories 

and the trajectory-related information which the host vehicle will receive from multiple 

downstream vehicles. We make the following assumptions: (i) the current trajectory-related 

information is accurate (no measurement errors for on-board kinematic data and no 

communication failure), (ii) warnings are not issued when the host vehicle speed is below a 

threshold value (30 km/h in this study), (iii) all vehicles are equipped with GPS and V2V 

communications, and (iv) the host vehicle predicts the driver maneuver intentions of the five 

downstream vehicles through a coupled HMM. To analyze the performance of the proposed FCW 

system, we compare it with two commonly-benchmarked systems: (1) a two-stage FCW system 

embedded with NHTSA’s physics-based motion model (Brunson et al., 2002), and (2) a single 

stage FCW system embedded with a physics-based motion model (Knipling et al., 1993). Details 

of these two FCW systems are provided in Section 5.3.4. 

5.3.2 NGSIM data 

This study uses the NGSIM vehicle trajectory data to evaluate the performance of the FCW 

systems as well as to estimate the model parameters. The NGSIM data contains real-world vehicle 

trajectory data that provide opportunities to evaluate the performance of the FCW systems based 
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on realistic driving behaviors. The NGSIM vehicle trajectory data are from a segment of Interstate-

80 in Emeryville, California collected between 4:00pm and 4:15pm, 5:00pm and 5:15pm, and 

5:15pm and 5:30pm on April 13, 2005. This data was collected using several synchronized video 

cameras, mounted on a 30-story building adjacent to the roadway. The corridor is approximately 

500 meters long and has an HOV lane and 5 regular lanes. Each dataset stores microscopic 

information on vehicle trajectories on the road segment. It includes vehicle ID, x and y location 

coordinates, speed, acceleration rate, and space headway at a resolution of 10 frames per second.  

The reliability of the experiment is highly affected by the accuracy of empirical vehicle 

kinematic quantities, such as speed, acceleration, and time headway. Several papers have raised 

issues related to the accuracy of NGSIM vehicle trajectory data. Punzo et al. (2011) identify 

different types of errors including misidentification of vehicle, vehicle’s lane ID, and lane-

changing and merging behaviors. This may be due to errors in extracting vehicle trajectory data 

from video recordings (Montanino and Punzo, 2015). They suggest using a pre-processing step to 

filter several errors in order to obtain a consistent dataset. We filter the identified errors using the 

following two steps.  

Step 1 modifies the outliers from acceleration data using the maximum and minimum 

acceleration rates. Thresholds of 5 m/s2 and -8 m/s2 are adopted (Montanino and Punzo, 2015) for 

the maximum and minimum acceleration rates. Step 2 eliminates noise from the acceleration data. 

This can be done by smoothing the acceleration profile with moving average filters. The signal is 

filtered using 7-points moving average filters. The resulting acceleration profiles are shown in 

Figure 5-7. The speed is also changed as a result of modifying the acceleration data. Figure 5-8 

illustrates the speed profiles resulting from the filtering. 
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Figure 5-7 NGSIM acceleration data pre-processing 
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Figure 5-8 NGSIM speed data pre-processing 

 

5.3.3 Generation of driver maneuver states using NGSIM data 

Based on the NGSIM vehicle trajectory profiles, the sequences of driver maneuver states are 

estimated using the criteria described in Section 2.3.1. An example of estimated states based on 

vehicle trajectory data is shown in Figure 5-9. It starts with state 1, and changes to state 2 as the 

vehicle decelerates at time t=12.9. At t=27.6, the vehicle decelerates and the state changes from 1 
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Figure 5-9 Estimation of maneuver states 

 

5.3.4 The two benchmark FCW systems  

5.3.4.1 A single-stage FCW embedded with Knipling model 

Knipling et al. (1993) develop a physics-based motion model that classifies rear-end crash 

scenarios into: lead-vehicle stationary (LVS) and lead-vehicle moving (LVM). The model uses a 

warning distance (𝑟𝑤) to determine the issuance of warning. A warning distance is the required 

minimum distance that allows the host vehicle to react and then decelerate to a stop just behind 

the stationary lead vehicle. The warning distance for the LVS case is:   

𝑟𝑤 = 𝑡𝑑 · 𝑣𝐻 +
𝑣𝐻
2

 ∙𝑎𝐻
        (12) 

where , , and  denote reaction time of the driver, host-vehicle speed, and acceleration rate 

of host vehicle, respectively. For the LVM case, the equation becomes: 

𝑟𝑤 = 𝑡𝑑 · 𝑣𝐻 +
𝑣𝐻
2

 ∙𝑎𝐻
−

𝑣𝐿
2

 ∙𝑎𝐿
        (13) 

where 𝑣L  and 𝑎L are the speed and acceleration of the lead vehicle, respectively. If the actual 

headway falls below the computed 𝑟𝑤, then the warning is issued. The modeling parameters 𝑡𝑑  

dt Hv Ha
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and 𝑎L  are set as 2.05 seconds and 5.88 m/s2 (Knipling et al., 1993). This motion model is 

embedded in a single-stage FCW system.  

5.3.5 NHTSA physics-based motion model based two-stage FCW system  

The NHTSA physics-based motion model by Brunson et al. (2002) is developed based on the 

predicted minimum distance calculation. There are two cases for the calculation of minimum 

distance; either the lead vehicle stops prior to the host vehicle or host vehicle stops while the lead 

vehicle is still in motion. They are used to determine which set of equations should be used. To 

determine the case that applies, the time for the lead vehicle to stop (𝑡𝐿,𝑆) and the time for the host 

vehicle to stop (𝑡𝐿,𝑆) are calculated as follows and compared: 

𝑡𝐿,𝑆 = −𝑣𝐿 𝑎𝐿        (14) 

and  

𝑡𝐻,𝑆 = 𝑡𝑅 − (𝑣𝐻 + 𝑎𝐻 ∙ 𝑡𝑅) 𝑎𝐻𝑚𝑎𝑥     (15) 

where, 𝑣L and 𝑣H  denote the speed of lead vehicle and host vehicle, respectively. 𝑎L  and 𝑎H  

denote the acceleration of lead vehicle and host vehicle, respectively. 𝑎Hmax  refers the maximum 

brake rate of host vehicle, and 𝑡R denotes reaction time of the host-vehicle driver.  

When the lead vehicle comes to a stop first (𝑡𝐿,𝑆<𝑡𝐻,𝑆), the minimum distance (𝐷𝑚𝑖𝑛) between 

the lead vehicle and host vehicle will occur when the host vehicle comes to a stop. This minimum 

distance can be calculated as follows:  

𝐷𝑚𝑖𝑛 = 𝑟ℎ + 0.5 ∙ (𝑎𝐻 − 𝑎𝐻𝑚𝑎𝑥) ∙ 𝑡𝑅
 − 0.5 ∙ 𝑎𝐿 ∙ 𝑡𝐿,𝑆

 − (𝑎𝐻 − 𝑎𝐻𝑚𝑎𝑥) ∙ 𝑡𝑅 ∙ 𝑡𝐻,𝑆 

+𝑟𝑟 ∙ 𝑡𝐻,𝑆 + 𝑎𝐿 ∙ 𝑡𝐻,𝑆 ∙ 𝑡𝐿,𝑆 − 0.5 ∙ 𝑎𝐻𝑚𝑎𝑥 ∙ 𝑡𝐻,𝑆
 .      (16) 

where, 𝑟ℎ is headway and 𝑟𝑟  is range rate (the change rate of the headway between the lead vehicle 

and host vehicle). When the host vehicle comes to a stop first (𝑡𝐿,𝑆 ≥ 𝑡𝐻,𝑆),  between the lead 

vehicle and host vehicle will occur when two vehicles’ speed is same (𝑡𝑀). This minimum distance 

can be calculated as:  

𝐷𝑚𝑖𝑛 = 𝑟ℎ + 𝑟𝑟 ∙ 𝑡𝑀 + 0.5 ∙ (𝑎𝐿 − 𝑎𝐻𝑚𝑎𝑥) ∙ 𝑡𝑀
 − (𝑎𝐻 − 𝑎𝐻𝑚𝑎𝑥) ∙ 𝑡𝑀 ∙ 𝑡𝑅 + 0.5 ∙

     (𝑎𝐻 − 𝑎𝐻𝑚𝑎𝑥) ∙ 𝑡𝑅
        (17) 

missD
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Warnings are issued when the calculated minimum distance is less than the predefined 

threshold in two of the last three time intervals. This motion model is embedded in a two-stage 

FCW system. It uses different brake rates for the two-stage FCW system. The assumed host-

vehicle brake rates are 3.14 m/ s2 for early warning and 5.39 m/ s2 for imminent warning Brunson 

et al. (2002), respectively.  

 Numerical experiments  

This section discusses results of numerical experiments to investigate how the proposed FCW 

system performs compared to the two benchmarked FCW systems. 

5.4.1 Performance index  

 

The performance of the three FCW systems can be evaluated based on missed alarm rates and 

false alarm rates computed using a confusion matrix. It describes the performance of a 

classification model. An illustration of the confusion matrix is shown in Table 5-2. The columns 

correspond to the true driving conditions and the rows correspond to the predicted driving 

conditions. Ground truth data, such as data on near-crash situations, is needed to create the 

confusion matrix. A near-crash is defined as a conflict situation requiring a rapid, severe evasive 

maneuver to avoid a crash (McLaughlin et al., 2009). Hence, in near-crash situations, the FCW 

system should provide an appropriate warning. However, the development of quantitative near-

crash criteria is very limited (Klauer et al., 2006). This study uses all of the following criteria to 

define near-crash situations for the NGSIM data: (i) TTC is less than 3 seconds, (ii) average 

acceleration rate of the lead vehicle for 2 seconds is less than -3.5 m/s2, (iii) speed of the host 

vehicle is greater than the speed of lead vehicle, and (iv) speed of the host vehicle is greater than 

30 km/h.  

The A and D values of the confusion matrix in Table 5-2 give the correctly predicted driving 

conditions, while B and C values show the percentage of mislabeling for each driving condition. 

Therefore, the sum of A and D values divided by the total number of observation represents the 

overall accuracy. There are two error types: missed and false alarms. A missed alarm (false 

negative) is a situation in which the FCW system predicts no near-crash or crash but the traffic 
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situation is a near-crash situation. A false alarm (false positive) is a situation in which the FCW 

system has identified a near-crash or crash and gives a warning, but in reality poses no threat or 

danger to the driver. Excessive false warnings result in slower and less-reliable driver reactions. 

Missed alarm rates and false alarm rates are calculated based on Table 5-3. 

Table 5-2 Confusion matrix 

 Ground truth NGSIM data 

Near-crash or crash Safe 

Prediction of 

FCW system 

Warning A  C  

No-warning B  D  

 

Table 5-3 Performance indices 

Performance index Definition 

Missed alarm rate (false negative) B/(A+B)  

False alarm rate (false positive) C/(A+C) 

  

5.4.2 Performance comparison  

Tables 5-4 and 5-5 show the missed alarm rates and false alarm rates for the three FCW systems 

compared using the NGSIM data. Several observations can be made on the performance of these 

FCW systems.  

 

Table 5-4 Missed alarm rates  

FCW system Missed alarm rate (%) 

Single-stage FCW system embedded  

with a physics-based motion model (Knipling model) 
19.1 

Two-stage FCW system 

embedded with NHTSA’s 

physics-based motion model 

(Brunson model) 

    Early warning 25.5 

    Imminent warning 34.0 

Proposed model 

    Early warning 12.8 

    Imminent warning 21.3 
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Table 5-5 False alarm rates  

FCW system False alarm rate (%) 

Single-stage FCW system embedded  

with a physics-based motion model (Knipling model) 
24.0 

Two-stage FCW system 

embedded with NHTSA’s 

physics-based motion model 

(Brunson model) 

    Early warning 14.6 

    Imminent warning 6.0 

Proposed model 

    Early warning 4.7 

    Imminent warning 2.6 

 

While the Knipling model has a 19.1% missed alarm rate, it also has the highest false-alarm 

rate (24.0%). That is, it provides frequent warnings for situations that pose no threat to the driver.   

The NHTSA model provides fewer false alarm rates than the Knipling model, but its missed alarm 

rates are higher than those for other models. The proposed model provides 4.7 and 2.6 percent 

false alarm rates for early warning and imminent warning, respectively. It performs significantly 

better than the NHTSA model for both the missed alarm (37% to 50% better) and false alarm rates 

(57% to 68% better).  

In general, early warnings using the NHTSA model and the proposed model have lower missed 

alarm rates than those of imminent warnings. However, they provide a higher rate of false alarms. 

To reduce the rate of missed alarms while maintaining an acceptable level of FCW false alarm rate, 

one method is to adjust the critical distance or host-vehicle braking rate in Section 5.2.4. This will 

aid in balancing missed alarm rate and false alarm rate. Second, the driver state information could 

be useful. If drivers are attentive to the driving task, it is likely that suppressing warnings when 

the driver is attentive can be effective in reducing false alarms. 

5.4.3 Timing of warnings 

The capability to provide earlier warnings is an important factor as earlier warnings allow 

sufficient time for the driver to react. Here, the time at which the downstream vehicle begins to 

brake at less than -5 m/s2 is used as a primary reference and is defined as t = 0. The timings of the 

warnings are shown in Table 5-6 for the various FCW systems. The results show that the Knipling 
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(6.4 seconds) and NHTSA (5.6 and 6.8 seconds) models’ warning timings occur later than those 

using the proposed model as they can provide warnings only after the lead vehicle starts to 

decelerate. By contrast, through V2V communications, imminent warning using the proposed 

model can be provided 2 seconds earlier than imminent warnings under the NHTSA and Knipling 

models. This provides sufficient time to react to a possible collision situation. These results 

indicate that the proposed model performs significantly better than the other two models in terms 

of providing an earlier warning. 

 

Table 5-6 Timing of warnings 

FCW system Timing of warning from t = 

0 (seconds) 

Single-stage FCW system embedded  

with a physics-based motion model (Knipling model) 
6.4 

Two-stage FCW system 

embedded with NHTSA’s 

physics-based motion model 

(Brunson model) 

    Early warning 5.6 

    Imminent warning 6.8 

Proposed model 

    Early warning 3.7 

    Imminent warning 4.7 

 Concluding comments 

This study proposes a two-stage MBMAM model to provide an effective early warning in the 

first stage while reducing the false alarm rate. The proposed FCW system leverages V2V 

communications to incorporate trajectory-related information from multiple downstream vehicles 

to enhance prediction accuracy. It provides a capability to alert the driver in an early stage. A 

coupled HMM is used to predict the lead-vehicle driver’s unobservable maneuver intention, by 

taking into account the interactions of downstream vehicles with the lead vehicle. Thereby, the 

host-vehicle driver will have greater clarity on unfolding situations that require the driver to act to 

avoid a collision. Hence, by leveraging V2V connectivity, the proposed FCW system overcomes 

the limitations of existing physics-based motion models that assume that the lead vehicle will 

continue its current rate of deceleration, and of single process maneuver-based models that use 
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only the lead-vehicle information. Numerical results illustrate the effectiveness of proposed FCW 

system to provide early warnings while reducing false alarm rates. In addition to the enhanced 

anticipation for human-driven vehicles, this model can predict the evolution of ambient traffic 

conditions for partially and fully autonomous vehicles with V2V communication capabilities. 

The study offers the possibility of developing even more sophisticated FCW systems. First, 

while we use a fixed deceleration rate and reaction time for the host-vehicle’s trajectory prediction, 

they vary across different driver groups. Hence, it may be meaningful to develop a FCW system 

that integrates a learning mechanism for the host-vehicle’s driving behavior, so that the system can 

adjust its settings by interacting with the host-vehicle’s driver. Second, during a transition period 

with mixed traffic flows, V2V-equipped vehicles will interact with unequipped vehicles, which 

can be addressed by extending the proposed FCW system. Third, in addition to the heterogeneity 

in reaction times to predict the maneuver intention of the lead vehicle, there is the possibility of 

V2V communications failure in receiving downstream vehicle information. In this context, the 

proposed model can be extended by incorporating a stochastic modeling capability to enable more 

realism. 
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6. MODLELING OF THE DYNAMIC FLOW PROPAGATION OF 

MULTIPLE UNITS OF INFORMATION UNDER V2V 

COMMUNICATIONS BASED ADVANCED TRAVELLER 

INFORMATION SYSTEMS 

 Introduction 

Vehicle-to-vehicle (V2V) communications can facilitate a broad range of applications, 

including road safety (Sepulcre et al. 2013), cooperative driving (Ammoun and Nashashibi 2010), 

and advanced traveler information system (ATIS) applications. In the ATIS context, V2V 

communications can provide a capability for vehicles to exchange time-dependent information on 

the network traffic conditions. Thereby, suitably-equipped vehicles can generate data on their 

time-dependent locations, and consequently their experienced travel times on the links traversed 

on their routes. We refer to the time-dependent link travel time experienced by a vehicle as “a unit 

of information”. As vehicles generate their own link travel experience data over time and space, a 

V2V-based ATIS entails the propagation of multiple units of information. The vehicles carry such 

information and exchange it with other vehicles through V2V communications without any central 

coordination. Consequently, the traffic dynamics and inter-vehicle communication constraints lead 

the dynamic flow propagation of multiple units of information.  

The dynamic flow propagation of multiple units of information leads to each vehicle having 

time-dependent knowledge on the traffic network conditions, labeled the “vehicle knowledge,” 

based on its own experienced link travel time data and similar data received from the other 

equipped vehicles. The current traffic state estimation of each equipped vehicle based on its time-

dependent knowledge represents an input for the associated driver to determine his/her route 

choice. As the route choice decisions of all drivers lead to the traffic flow network evolution, the 

information flow evolution and propagation influences the dynamics of the network traffic flow. 

More broadly, an understanding of how the   information evolves and propagates is critical to 

develop system-level strategies for information flow routing and vehicular route guidance. 

The dynamic flow propagation of multiple units of information generates two challenges for 

the modeling of the V2V-based ATIS. First, the propagation of each unit of information depends 

on the vehicular traffic flow dynamics and the inter-vehicle communication constraints introduced 
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by the V2V communications technology and the ambient traffic flow characteristics. To address 

the complexity associated with modeling the propagation of multiple units of information under 

traffic flow dynamics and inter-vehicle communication constraints, simulation-based approaches 

(Schmidt-Eisenlohr et al. 2007; Schroth et al. 2005) have been proposed. Although these 

approaches can model the propagation of information flow, they lack insights to understand the 

characteristics of the information flow propagation and their interactions with the traffic flow and 

the inter-vehicle communication. To the best of our knowledge, there is no approach to address 

the propagation of multiple units of information flow. 

Second, as multiple units of information in the network are dynamically exchanged across 

vehicles, it is necessary to track the propagation of multiple units of information flow in a 

computationally efficient manner. That is, we need to map what information is generated and 

when/where the information propagates. Kim and Peeta (2016) model a V2V-based ATIS as 

consisting of three interacting layers: physical traffic flow, inter-vehicle communication and 

information flow. They propose a graph-based multi-layer framework that enables the 

computationally efficient tracking of information propagation using a simple graph-based search 

algorithm and the computationally efficient storage of information through a single graph database.  

The focus of that framework is to develop a computationally efficient graph mechanism to 

track and store the dynamic vehicle knowledge, and provide an explicit retrospective modeling 

capability to track how information flow evolves and propagates. However, it incorporates a 

simulation-based traffic flow model and a set of inter-vehicle communication constraints to 

determine the information flow propagation. That is, the simulation model is used to replicate the 

traffic flow dynamics as well as determine when and where inter-vehicle communication would 

occur subject to the inter-vehicle communication constraints. Similarly, past studies (Wu et al., 

2005; Fitzgibbons et al., 2004; Schroth et al., 2005) use simulation-based approaches to analyze 

the feasibility and reliability of V2V-based traffic system for practical applications. They 

incorporate a traffic flow simulator (such as Paramics and CORSIM) and a wireless (inter-vehicle 

communication) network simulator (such as NS-2 and NS-3, or a simple analytical model) to 

derive some descriptive insights on the interactions between the traffic flow movement and the 

inter-vehicle communication. However, the key limitation of simulation-based approaches is the 

lack of theoretical insights. The use of such a simulation-based approach limits the understanding 
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of the dynamics of the information flow characteristics, such as the information forward/backward 

propagation wave speeds, spatial information propagation front, spatio-temporal density of 

informed vehicles and the spatio-temporal characteristics of vehicle knowledge. 

This study proposes a multi-layer framework to address the propagation of multiple units of 

information flow by capturing the dynamics of the three interacting layers so as to generate the 

aforementioned insights. The physical traffic flow layer is represented using an analytical model 

(the Cell Transmission Model (CTM)) and the inter-vehicle communication layer is represented 

using the communication range and an aggregate function that links the inter-vehicle 

communication success rate and the density of the V2V-equipped vehicles. As graph structure is 

shown to be able to track the spatiotemporal characteristics of information flow explicitly in a 

computationally efficient manner (Kim and Peeta 2016), we adapt the  graph-based representation 

of information flow propagation in the proposed multi-layer framework. The term “information 

flow” denotes the flow of raw traffic data (such as the time-dependent experienced link travel time) 

between vehicles, and not processed data through mechanisms such as data fusion. Hence, this 

study does not intend to determine how the information flow layer, through the information content, 

would affect the traffic flow layer. Rather, as stated earlier, it seeks to determine how the dynamics 

of multiple units of information flow (in terms of the information forward/backward propagation 

waves, spatial propagation fronts, spatiotemporal vehicular knowledge characteristics, etc.) can be 

mapped from the traffic flow dynamics (in terms of the traffic forward/backward propagating 

waves, etc.) and the inter-vehicle communication constraints. Therefore, adding CTM-based 

traffic dynamics in the physical traffic flow layer, and integrating it with the graph-based multi-

layer framework (Kim and Peeta, 2016), does not add much computational burden in this study 

context.  

While widely-used analytical models exist to characterize traffic flow dynamics in a network 

context, and inter-vehicle communications constraints associated with range, interference and 

bandwidth have been well-studied in the communications domain, existing analytical models to 

characterize the evolution and propagation of information under V2V communications have key 

limitations, especially for the V2V-based ATIS, and even more so when multiple units of 

information are considered. 



 

156 

 

First, analytical approaches (Wang 2007; Wu et al. 2004) to integrate the traffic flow and the 

inter-vehicle communication have limitations to characterize the underlying dynamics within a 

layer or the interactions among layers. From the traffic flow layer perspective, they do not describe 

several key phenomena of real-world traffic flow such as kinematic waves, and queue formation 

and dissipation. Instead, they focus on the instantaneous spatial propagation of information and do 

not consider the time dimension. To do so, they rely on the independent vehicle mobility 

assumption whereby the locations of vehicles are pre-determined based on statistical distributions 

of the spatial headway. Thereby, they lack realism in terms of modeling traffic flow dynamics. 

From the perspective of the interactions among layers, the V2V communication constraints are not 

well-captured in the inter-vehicle communication layer. The information propagation mechanism 

in these studies often assumes that the V2V communications can occur successfully up to a 

predefined distance representing the communication range, and none beyond it. Thereby, the 

interference and bandwidth are ignored in the modeling.  

Second, most existing analytical approaches (Ukkusuri and Du 2008; Wang 2007) assume that 

information propagates instantaneously across multiple vehicles through a multi-hop process 

based on the perspective that the speeds at which vehicles move are negligible compared to the 

speed at which information propagates via inter-vehicle communication. A multiple hop implies a 

unit of information can propagate through an instantaneous relay process to all vehicles which are 

serially connected to the vehicle disseminating the information by being within communication 

range of any vehicle within this series. However, the instantaneous multi-hop assumption does not 

factor interference effects and the size of information, which are significant characteristics of the 

V2V-based ATIS where multiple vehicles frequently exchange or disseminate information. 

Further, due to the assumption of instantaneous information propagation, the traffic flow dynamics 

and its interactions with the inter-vehicle communication constraints are ignored. That is, the 

transfer of a unit of information from one vehicle to another that is not in its vicinity can entail 

some time, which requires the consideration of the traffic flow dynamics as vehicles move 

continuously. This aspect is significantly exacerbated when multiple units of information flow are 

exchanged. A consequence of this aspect is that information needs to be tracked in terms of when 

and where a vehicle receives the information to determine the spatiotemporal propagation of 
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information. So, while the assumption of instantaneous information propagation can be 

analytically convenient, it has limitations to model the V2V-based ATIS. 

Third, most of the aforementioned analytical approaches analyze the propagation of a single 

unit of information. An example is the propagation of upstream collision warning information to 

allow other drivers approaching the affected location to be aware of the impending situation. By 

contrast, a V2V-based ATIS entails the propagation of multiple units of information. Extending a 

single unit of information propagation model to capture the propagation of multiple units of 

information in space and time is neither simple nor straightforward, in terms of determining how 

the information flow dynamics can be mapped from the traffic flow dynamics and the inter-vehicle 

communication constraints. 

This paper seeks to bridge the aforementioned gaps in the literature in the V2V-based ATIS context 

by proposing a multi-layer framework to model the flow of multiple units of information as a 

complex system comprised of three interacting layers. Shown in Figure 6-1, these layers include 

the traffic flow, the inter-vehicle communication, and the information flow layers.  

 

Figure 6-1 Conceptual overview of the multi-layer framework 

Traffic flow propagation

Information flow propagation

Information flow layer: Graph 

structure 

Inter-vehicle communication layer

Traffic flow layer: 

Cell-based traffic flow model

Inter-vehicle 

communication event

Travel experience data 

generation event

Interaction between 

vehicles

Locations of vehicles, and 

the density of the V2V-

equipped vehicles
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The traffic flow dynamics are captured by a cell-transmission model (CTM) in the physical 

traffic flow layer. The inter-vehicle communication layer uses the time-dependent locations of 

vehicles and a traffic flow variable (the density of the V2V-equipped vehicles) in the traffic flow 

layer and inter-vehicle communication related constraints/function to determine the occurrence of 

inter-vehicle communications. The information flow layer depicts the flow of multiple units of 

information as a network whose nodes correspond to events of travel experience data generation 

and inter-vehicle communication, and links indicate the direction of information flow. 

The contributions of this study are: (i) developing a model for the propagation of multiple units 

of information in space and time, (ii) mapping the information flow dynamics from the traffic flow 

dynamics and the inter-vehicle communication constraints, (iii) illustrating the information 

forward/backward propagation waves, the spatial information propagation front, and spatio-

temporal density of informed vehicles, and (iv) modeling the spatio-temporal characteristics of 

vehicle knowledge as a building block for providing a descriptive capability and developing 

system-level strategies under V2V-based ATIS. 

The remainder of the paper is organized as follows. Section 6-2 discusses proposed models to 

integrate the traffic flow and inter-vehicle communication layers. Section 6-3 describes the 

information flow layer using a graph-based information flow network to map the information flow 

dynamics based on the interactions involving the other two layers. Section 6-4 discusses the 

characteristics of the information flow dynamics. Section 6-5 discusses synthetic experiments and 

analyzes the capabilities of the proposed approach. Section 6 provides some concluding comments. 

 The physical traffic flow and inter-vehicle communication layers 

6.2.1 Physical traffic flow layer 

The physical traffic flow layer captures the spatiotemporal interactions between vehicles 

through a cell-transmission model (Daganzo 1994). It is a discrete approximation to the LWR 

model (Lighthill and Whitham 1955; Richards 1956) through the use of a trapezoidal flow-density 

relationship. The CTM captures several key congestion phenomena in an explicit manner, making 

it a suitable platform for modeling the traffic flow dynamics. In the proposed framework, the 

following traffic flow characteristics are identified from this layer: (i) dynamic traffic vehicular 
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movement, and the impacts of congested traffic such as the backward propagating traffic wave, 

and (ii) “travel experience data,” which represents the actual travel experiences of vehicles along 

their route trajectories.  

Under V2V-based ATIS, a traffic flow layer consists of a physical traffic network  G
T = (N,A) 

and vehicles ( ,x y X ) have an ability to communicate with each other. A set  N  of nodes 

corresponds to physical intersections or designated points, and a set A  of directed links 

corresponds to road links. The link is further divided using the set of cells H with the cell length 

equal to the distance traveled at free flow speed in one time interval t , and the set of cell 

connectors E . The maximum number of vehicles that can be present in a cell a at time t T  is 

( )aN t , and the maximum flow from cell a-1 to cell a is ( )aQ t  for time interval ( , 1)t t  . The free-

flow speed and traffic backward wave propagation speed are denoted as v  and r , respectively. 

Further, denote ( )an t  as the number of vehicles in cell a H  at time t T , and ( )ay t  as the 

number of vehicles that are routed by cell connector ( 1, )a a E   for time interval ( , 1)t t  . The 

CTM is based on two main constraints on flow conservation and flow restriction: 

  
1( ) ( 1) ( 1) ( 1),a a a an t n t y t y t      1, , ,a a H t T          (1) 

     ( ) min ( ), ( ), ( ) ( ) ,a a a a ay t N t Q t N t n t    , ,a H t T             (2) 

where the ratio   is determined by r v . Equation (1) represents the flow conservation that 

indicates the cell occupancy at time t is equal to its occupancy at time t-1 plus inflow and minus 

the outflow. Equation (2) represents the flow propagation that is restricted by the three traffic 

conditions of the underlying trapezoidal flow density relationship: (i) free flow, (ii) saturated flow, 

and (iii) congested flow. 
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Figure 6-2 The travel experience data generation, and interactions among the vehicles 

 

While the conventional CTM can track the traffic flow variables (density, flow, and speed), it 

cannot track the individual vehicles’ locations. The proposed CTM is extended to track the 

individual vehicle’s trajectory and the associated multiple units of travel experience data 

generation. The following steps are implemented similar to Cheu et al. (2009). First, the vehicle 

identification number is generated as a sequential number based on the order a vehicle enters the 

network. The vehicle arrival headways are assumed to be uniform within the time interval. For 

each time step, the CTM moves some vehicles from cell a to the downstream cell a+1, and the 

first and last entering vehicle IDs to cell a+1 are updated and stored. In this manner, we assume 

that no overtaking is allowed within a cell and the First-In-First-Out (FIFO) property is preserved. 

Similar to past analytical studies that only consider a single straight road topology for a V2V-

based system, our approach also focuses on single road topologies. However, in our case, this is 

because we newly seek to incorporate traffic flow dynamics analytically to obtain a basic 

understanding of its impact on the propagation of multiple information units. We do so using an 

ordinary cell in CTM. Hence, the study experiments in Section 5 are conducted for a bi-directional 
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single highway. In future work, we aim to extend this to include different types of road geometry 

(e.g. merging and diverging nodes, and intersections). 

As presented in Figure 6-2, the generated travel experience data contains its vehicle 

identification (VID) number, the identification number of the link traversed, the link entrance time, 

and the link travel time. As shown in Figure 6-1, the time-dependent locations of vehicles and the 

associated generation of the multiple units of information flow are used to construct the 

information flow layer. The time-dependent locations of vehicles and the density of the V2V-

equippd vehicles are inputs for the determination of the success rate of inter-vehicle 

communication under the inter-vehicle communication constraints, as discussed next.  

 

6.2.2 Inter-vehicle communication layer 

The occurrence of the inter-vehicle communication is subject to inter-vehicle communication 

related technical constraints such as communication range, interference and bandwidth. As 

discussed earlier, most existing analytical approaches only use a predefined communication range. 

Hence, they do not factor the interactions between the traffic flow dynamics (in terms of the density 

of the V2V-equipped vehicles) and the success rate of inter-vehicle communication. In this study, 

the time-dependent locations of vehicles and the density of the V2V-equipped vehicles in the 

traffic flow layer are used as key determinants of the inter-vehicle communication characteristics. 

An issue that may arise in the integration of the physical traffic flow and the inter-vehicle 

communication layers is the different time scales to reflect the events in the two layers. Typically, 

inter-vehicle communication events can occur much more frequently compared to traffic-related 

events (such as travel experience data generation). In the study experiments, the traffic flow is 

updated in the CTM every 6 seconds for computational efficiency. Also, the frequency of inter-

vehicle communication is assumed to be 2 Hz (Karagiannis et al., 2011) for data transfer due to 

the limited bandwidth. Then, the impacts of the dynamic changes in the vehicle positions cannot 

be captured within the traffic flow update interval. To reconcile this issue, we use the cumulative 

success rate of inter-vehicle communication Z which is defined as the probability that a vehicle 

communicates with another vehicle within communication range during the traffic flow update 

interval (6 seconds). The cumulative success rate of inter-vehicle communication is estimated 
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through the simulation of scenarios (Kim et al., 2014). The aim of the simulation is to derive an 

aggregate function for the cumulative success rate of inter-vehicle communication for different 

densities of V2V-equipped vehicles within communication range. To do so, a traffic flow simulator, 

DYNASMART (Mahmassani et al., 1998), is used to generate the movements of all vehicles under 

various scenarios with different demand levels and market penetration rates (of vehicles equipped 

for V2V communications), and track the trajectories of all equipped vehicles.  

A pair of equipped vehicles within communication range (200 meters) can potentially 

communicate with each other at any time through V2V communications. However, multiple 

communications from vehicles within the communication range can cause interference and result 

in the failure of this inter-vehicle communication. The interference level can be measured by 

comparing the signal power of the specific inter-vehicle communication of interest with the signal 

powers of the other inter-vehicle communications within this communication range, as follows 

(Gupta and Kumar 2000): 

2
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x y
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
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
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

 

                                                                                   (3) 

Let k   denote the GPS location coordinate of an equipped vehicle k within communication 

range, Xk , as illustrated in Figure 6-3. Suppose a subset of vehicles within the 

communication range simultaneously transmit information at some time instant, leading to 

possible interference. The signal power decays with distance from a broadcasting vehicle k as 

2

1/ .k y   The transmitted information through the inter-vehicle communication of interest from 

a vehicle x is successfully received by a vehicle y  if it satisfies the minimum signal-to-

interference ratio of   (the study experiments use  = 2 based on Gupta and Kumar, 2000). It is 

assumed that the power levels of vehicles (
xT  and 

kT ) are identical and the ambient noise power 

level ( N ) is zero. Based on the interference level implied by equation (3), a simulation is 

conducted to check whether information is successfully transmitted between vehicles x and y every 

0.5 seconds during a 6-second time interval. From the perspective of the cumulative success rate 

of inter-vehicle communication, information is successfully transmitted between vehicles x and y 
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if it satisfies the minimum signal-to-interference ratio at least once during this 6-second time 

interval. 

 

Figure 6-3 Interference among vehicles 

 

Given a specific density, q , of equipped vehicles within the V2V communication range, 1,000 

simulation runs are performed using different demand levels and market penetration rates that are 

randomly chosen from specific ranges. In the study experiments, we use demand levels between 1 

veh./lane/mile to 160 veh./lane/mile in discrete units of 1 veh./lane/mile, and market penetration 

rates between 0.05 to 0.5 in discrete units of 0.05. Then, ( )Z q  is obtained based on the simulation 

results as: 

      ( ) 1000qZ q s                                                                                           (4) 

where qs  is the number of simulation runs in which information is successfully received under the 

scenario ( q ). The estimation results provide an aggregate function, which is the cumulative 

success rate of inter-vehicle communication ( Z ) for different densities is a negative exponential 

function of the density of equipped vehicles within V2V communication range as follows: 

      
0.066Z(q)=0.9411 qe          (5) 

Figure 6-4 shows that the cumulative success rate of inter-vehicle communication ( )Z q  

decreases with the density of V2V-equipped vehicles. As the density of equipped vehicles varies 

across cells with time, Z  also varies. Therefore, the function Z  represents how the dynamics of 
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traffic flow (the density of the V2V-equippd vehicles) affect the success rate of inter-vehicle 

communication. The occurrence of events in the inter-vehicle communication layer represents one 

of the components used to construct the information flow layer, as discussed next.  

 

Figure 6-4 Estimation of cumulative success rate of V2V communication ( ( )Z q ) 

 Information flow layer 

As illustrated by Figure 6-1, based on the known events in the other two layers (the travel 

experience data generation and the occurrence of inter-vehicle communication, discussed in 

Section 6-2), the flow of multiple units of information is mapped using a graph-based 

representation (Kim and Peeta, 2016) of  the information flow network. 

6.3.1 Information flow network construction 

Table 1 shows the notation of variables for the graph-based representation of the information 

flow network, which is a dynamically evolving graph in which the nodes and links appear and 

disappear based on the time-dependent events in the traffic flow and inter-vehicle communication 

layers. Hence, driven by the events in the other two layers, the information flow network evolves 

over time in that new nodes are generated, some nodes gain new links, and some nodes and links 

are deleted. The information flow network 
 G

I = (NI , CI , AI , MI ) consists of two types of nodes: (i) 

a “travel experience data (TED)” node IN , and (ii) a pair of “virtual inter-vehicle communication 
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(VIC)” nodes IC  (one for broadcast and the other for receiving). Hence, nodes correspond to 

events of travel experience data generation and inter-vehicle communication.  

Table 6-1 Notation to represent variables in the information flow layer 

Information flow layer  
 G

I = (NI , CI , AI , MI ) 

IN  the set of travel experience data (TED) nodes  

IC  the set of virtual inter-vehicle communication (VIC) nodes  

IP  the set of nodes in the information flow network, IP  I I{N ,C } , I IN C    

IA  
the set of information flow propagation trajectory links (T-link) indicating 

the vehicle trajectory direction based on the traffic flow 

IM  

the set of inter-vehicle communication based information flow propagation 

links (I-link) denoting the direction of information flow based on the inter-

vehicle communication 

t

xi  

travel experience data (TED) node indicating a travel experience data 

generated by vehicle x  at node i  at time t , x  X , i  N , 
t

xi  IN  

t

x  

virtual inter-vehicle communication (VIC) node denoting that vehicle x

broadcasts travel experience data at time t , 
t

x   IC  

t

y  

virtual inter-vehicle communication (VIC) node denoting that vehicle y

receives travel experience data at time t , 
t

y   IC  

,t t

x xp q  

nodes in the information flow network associated with vehicle x at time t; 

,t t

x xp q  IP   

  
( p

x

t
1 ,q

x

t
2 ) 

information flow propagation trajectory link associated with the trajectory 

direction of vehicle x  from time 1t  to time 2t , 1 2,t t

x xp q  IP , x  X , 

1 2t t  

1 2( , )t t

x y   

inter-vehicle communication based information flow propagation link 

representing the direction of information flow (from vehicle x  to vehicle

y ), 1 2( , )t t

x y  IC , x y , 1 2t t  
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The dynamics of information flow evolution and propagation are represented through two type of 

links: (i) the directed information flow propagation trajectory links (T-link) IA  representing the 

TED-TED, TED-VIC, VIC-TED or VIC-VIC node connections based on the trajectories of the 

vehicles, and (ii) the inter-vehicle communication based information flow propagation links (I-

link) IM  connecting each pair of nodes (VIC-VIC) corresponding to inter-vehicle 

communication events. In terms of the VIC-VIC connections, the I-link connects a pair of VIC 

nodes between two vehicles to indicate inter-vehicle communication, while a T-link connects a 

pair of VIC nodes of the same vehicle based on the spatiotemporal trajectory of that vehicle. The 

details of the aforementioned graph-based representation of the information flow network are 

discussed in Sections 6.3.2 and 6.3.3.  

6.3.2 Information flow generation/deletion 

The event that a V2V communications equipped vehicle reaches a physical intersection in the 

traffic layer entails the generation of travel experience data for the link traversed. A TED node, 

denoted as 
INt

xi  , represents the travel experience data generated by vehicle Xx  at node i at 

time t.  

Figure 6-5 shows that a vehicle Xx  reaches nodes i and j at times 1t  and 2t , respectively. 

TED nodes 1t

xi  and 2t

xj  in IG  are generated at the corresponding intersections sharing the same 

topology as the physical nodes , Ni j , but at times 1t  and 2t , respectively.  
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Figure 6-5 TED nodes in  G
I  corresponding to events of travel experience data generation 

 

The definition of the TED node illustrates that it can also aid in characterizing the 

spatiotemporal location of vehicles. This is because the travel experience data generation for a 

vehicle follows its trajectory in the traffic flow layer. Thus, 1t

xi  represents the spatiotemporal 

vehicle trajectory for vehicle Xx ; that it is located at node i at time t. For example, in Figure 6-

5, the TED node 
  
j
x

t
2  in the information flow network represents the travel experience data that is 

generated by x at the physical node and its time-dependent location. 

 

6.3.3 Information flow evolution and propagation 

Characteristics of the information flow evolution and propagation are captured through the 

VIC nodes and the directed link representations (T-links and I-links) in the IG . First, the inter-

vehicle communication by a vehicle with vehicles in its vicinity (communication range) leads to 

information being broadcast from that vehicle. When vehicle x communicates with vehicle y and 

shares its travel experience data, a pair of VIC nodes 1t

x  and 2t
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corresponding to the inter-vehicle communication event. The VIC node pairs are partitioned into 

two subsets: broadcasting VIC node 
I

bC  and receiving VIC node 
I

rC  (
I

bC , 
I I

rC C ). 

A set of inter-vehicle communication based information flow propagation links (I-links), 1 2( , )t t

x y 

IM  in IG , is defined as follows: 

 1 2I I I

b r 1 2M {( , ) C C , }
t t

x y x y t t                                                            (6) 

A pair of VIC nodes is connected by a directed I-link, from the broadcasting VIC node 
I

bCt

x   to 

the receiving VIC node 
I

rCt

y  , to represent the corresponding information flow evolution and 

propagation through the inter-vehicle communication. Given the instantaneous nature of a single 

inter-vehicle communication event, the broadcasting and receiving of information occur at the 

same time.  

Figure 6-6 illustrates a traffic flow layer and an inter-vehicle communication layer with four 

vehicles (x, y, w, and z), and the generation of the corresponding VIC nodes and I-links in the IG . 

For example, a broadcasting VIC node 7t

y  and a receiving VIC node 7t

x  represent the occurrence 

of the inter-vehicle communication from vehicle y to vehicle x at time 7t , and the directed I-link 

( 7 7,
t t

y x  ) connects them. These VIC nodes play the role of information flow propagation junctions, 

at which the information flow merges from another vehicle for the receiving node or diverges to 

another vehicle from the broadcasting node. 
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Figure 6-6 Information flow evolution and propagation 

 

The travel experience data generation for a vehicle follows its trajectory in the traffic flow 

layer. The associated spatiotemporal dynamics are represented by a set of information flow 

propagation trajectory links (T-link). A set of T-links  A
I  is defined as follows: 

1 2I I I

1 2A {( , ) (P P ) X, }t t

x xp q x t t                                                      (7) 

A directed T-link connects TED-TED, TED-VIC, VIC-TED or VIC-VIC nodes based on the 

trajectory of vehicle x  from time 1t  to time 2t  ( 1 2t t ).  Figure 6-6 illustrates that the directed 

T-links in IG  connect the nodes based on each vehicle’s trajectory direction. For example, T-links 

1 2( , )t t

x xi j , 32( , )
tt

x xj   and  3 4( , )
t t

x x   connect the TED-TED, TED-VIC, and VIC-VIC nodes 

based on the trajectory of vehicle x  consistent with the evolution of time. These T-links explain 

how information flow propagates along with each vehicle’s trajectory. 

The graph structure of IG  is the result of the continuous generation/deletion of travel 

experience data that is represented by TED nodes and their propagation represented by the VIC 

nodes and the directed links. This graph structure can illustrate which vehicle’s time-dependent 

travel experience data is propagated to a specific vehicle by traversing a connected subgraph of 
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the information flow network. Thereby, in the next section, a graph-based forward search 

algorithm is proposed to identify how information flow propagates, particularly in terms of linkage 

to the interactions with traffic flow and inter-vehicle communication.  

 Characterizing the information flow dynamics  

6.4.1 Graph structure of information flow network and the forward search algorithm to 

track the information flow propagation 

The graph structure of IG , through the node and link representations, can map of 

what/when/where information is generated and how it propagates. In this context, the 

spatiotemporal propagation of a particular unit of information is represented by a connected group 

of TED nodes (interpreted as a vehicle’s time-dependent locations) and the associated directed 

links from the specific TED node at which the travel experience data of interest is generated. 

Thereby, determining the TED nodes that are connected from a specific node in IG  provides an 

understanding of the characteristics of the information flow evolution and propagation. This is 

done using a graph-based forward search algorithm, by traversing the direction of the flow of 

information from the specific TED node where the unit of information (travel experience data of 

interest) is generated and identifying other vehicles’ time-dependent locations at which this 

information is obtained.  

Figure 6-7 conceptually shows the propagation of information flow generated by vehicles w  

and z  obtained from IG  using the forward search algorithm. Each unit of information 

propagation constitutes a different subgraph of IG  (blue and light red colored subgraphs in the 

figure). The encircled TED nodes in Figure 6-7 correspond to the generated travel experience data 

of interest, and TED nodes in each subgraph indicate the locations of vehicles. The VIC nodes 

enable the information flow propagation to other vehicles through the inter-vehicle communication. 

This graph structure illustrates the information flow evolution and propagation explicitly.   
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Figure 6-7 Subgraph of information flow network ( IG ) indicating information flow propagation 

 

6.4.2 Identification of information forward/backward propagation wave 

This section illustrates the information forward/backward propagation waves, spatial 

propagation fronts, and the spatio-temporal density of informed vehicles to characterize the 

information flow dynamics. When a unit of information is spreading, an information propagation 

wave separates the traffic flow into the informed and uninformed regions and moves towards the 

uninformed region (Kim et al. 2014). Of particular interest is the rate of spread of the information 

propagation wave front; the wave front refers to the boundary between the informed and 

uninformed regions. Viewed over the entire network in Figure 6-8(a), the propagation of the 

information occurs as a spatial wave, with most cases of information propagation occurring near 

the information propagation wave front. It characterizes the spatiotemporal information flow 

propagation, describing how the traffic density changes lead to the dynamics of information flow.  

Figure 6-8(b) illustrates how the propagation of a single unit of information is represented by 

a subgraph of IG . The subgraph structure can explicitly address when and to which vehicle a 

specific unit of information propagates. For example, the flow of travel experience data generated 

by vehicle z to vehicles y and x, and the information propagation front locations, can be tracked 

using the TED nodes. Figure 6-8(a) illustrates an information forward propagation wave that is 
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moving in the direction of vehicular traversal. Since vehicles carry the information and the 

information can leap forward through V2V communications, the information propagation wave 

speed is always greater than or equal to a vehicle’s speed.  

 

Figure 6-8 Illustration of the information forward propagation wave 

 Numerical experiments 

6.5.1 Experiment setup 

As shown in Figure 6-9(a), a bi-directional three-lane highway is considered for the 

experiments where all cells have homogeneous characteristics. Though experiments from 

heterogeneous environments (different road geometry or urban road network) may provide 

interesting topics for future work, for simplicity we confine our analysis to a homogeneous 

geometry environment. The traffic network consists of 100 cells and 99 cell connectors, which is 

equivalent to 11miles of highway length. Each link consists of 10 cells. The cell length is 0.11 

miles with a time step of 6 seconds. The cell parameters include backward propagating traffic wave 

speed of 22 mph, capacity of 2,350 vehicles per hour and free flow speed of 65 mph. A pre-defined 
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market penetration rate of 50% is assumed. Initially, the east bound (EB) traffic density is 40 

veh./mile/lane and the west bound (WB) density is 13.3 veh./mile/lane.  

 

Figure 6-9 Study traffic network and traffic density contours 

 

To consider the impact of traffic shock waves, we assume that an incident occurs on the EB 

highway on link 8 at time 10 minutes, and that is initial capacity is recovered at 15 minutes, as 

illustrated in Figure 6-9(a). The incident reduces the highway capacity by 1/3 of its initial value. 

A shock wave forms and travels backward at 22mph. The resulting spatiotemporal contour plot of 

the average traffic density is shown in Figure 6-9(b). Area A denotes a uniform traffic stream on 

the uncongested highway section. Area B is where the underlying traffic shock wave propagates 

backward due to the incident. Areas C and D denote the moving and discharging queue regions, 

respectively. The WB highway has a uniform traffic stream for all sections. 

6.5.2 Interaction between the traffic flow and inter-vehicle communication layers 

Figure 6-10 shows a heat map of the frequency of the inter-vehicle communication events 

under the different traffic conditions. The red color indicates higher frequency and blue color 
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indicates lower frequency of inter-vehicle communication events. It illustrates how different 

density levels of equipped vehicles affect the inter-vehicle communication frequency.  

 

Figure 6-10 Heat map showing inter-vehicle communication frequency 

A higher density level in the traffic network leads to a greater likelihood of communication 

with other vehicles under the same market penetration rate. As the interference level increases, it 

leads to lower success rate of communication. Specifically, for the EB highway, under the 

uncongested traffic condition in area A, successful inter-vehicle communications take place 15-25 
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times in a cell. As the density level increases in area C, vehicles are more likely to exchange 

information. However, as the density level increases further in the traffic shock wave region (area 

B), the success rate of V2V communications is reduced due to the much higher impact of 

interference, resulting in reduced inter-vehicle communication frequency. Also, since the traffic 

density is low in area D, the opportunity for V2V communications is limited. 

For the WB case, though the traffic stream is uniform, the occurrence of inter-vehicle 

communications can be affected by interference arising from the opposite direction (EB). A high 

density level in the EB reduces the success rates of inter-vehicle communication in the WB context, 

as illustrated by areas F and G area.  

6.5.3 Information forward propagation wave  

The graph structure of the information flow network provides a capability to determine how 

quickly and far the information forward/backward propagation wave can propagate, as discussed 

in Section 6.4.2. The trajectories of the information forward propagation wave front with the 

underlying traffic conditions are shown in Figure 6-11. Information generated at every minute 

from vehicles at point A propagates in the downstream direction.  

The information forward propagation wave speed varies as the downstream traffic density changes. 

As the information is transported by moving vehicles and broadcasted, the speed of information 

flow propagation depends on the underlying traffic speed and information propagation 

characteristics. The information forward propagation wave speed reduces after encountering the 

traffic shock wave (B and C areas) because of the reduced traffic flow speed and the limited inter-

vehicle communication occurrences due to the higher interference. These observations are 

consistent with Figure 6-10, which illustrates the likelihood of inter-vehicle communication at 

different density levels. In the queue dissipation area (area D), the information forward propagation 

wave speed is faster than that of the B and C areas, since traffic is at free flow speed and inter-

vehicle communication takes place more frequently.  
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Figure 6-11 Trajectories of information forward propagation wave front 

 

 

Figure 6-12 Information flow propagation speed 
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traffic backward propagating wave. Figure 6-12 illustrates how fast the information generated 

Time (minutes)

30

20

0

Distance (miles)76 8 95

10

Point A

DB

A

C

Traffic density 

(# of vehicles/cell)

Time (minutes)

30

20

0

Distance (miles)76 85

10

4
Point A Point B

Traffic density 

(# of vehicles/cell)



 

177 

 

downstream can reach the upstream traffic through the bi-directional traffic flow. The downstream 

traffic conditions on the EB facility are sensed by vehicles at point B and these travel experience 

data are received by the equipped vehicles in the opposite traffic direction (WB), and finally the 

EB vehicles at point A. 

Each solid line in Figure 6-12 connects the spatiotemporal locations where travel experience 

data is generated and where vehicles receive that information. As vehicles in the opposite direction 

carry and transmit the information, the traffic flow and the interference in the opposite direction 

affect the information flow propagation speeds. This indicates that the vehicles located at point A 

can receive the most recent information faster than the speed of the backward traffic shock wave 

(22mph). 

 

6.5.4 Spatiotemporal characteristics of vehicle knowledge 

As discussed heretofore, a V2V-based ATIS is inherently a decentralized system where the 

dynamic flow propagation of multiple units of information depends on the interactions between 

the traffic and inter-vehicle communication constraints. This implies that, at any given time, the 

information available to each vehicle may differ, and hence the specific interpretation of the 

network state of each vehicle may also vary. In the multi-layer framework, the time-dependent 

vehicle knowledge of interest consists of a set of subgraphs in IG . The evolution of the vehicle 

knowledge can be tracked from any point using the graph-based reverse search algorithm (Kim 

and Peeta, 2016). 

Figure 6-13 shows the spatiotemporal knowledge of vehicles located on link 4 at different time 

points. The set of travel experience data on the downstream link 8 is received by vehicles on the 

upstream link 4, and each distribution graph shows a range of travel times at different times (17, 

22, 27, and 32 minutes). Duplicate data (spatiotemporal data of the same vehicle) and older data 

(older than 15 minutes) are discarded. The figure indicates that each vehicle has different time-

dependent knowledge of the traffic conditions due to the dynamics of multiple units of information 

flow propagation. This is because of the different information flow propagation speeds, which 

depend on the dynamics of traffic flow and inter-vehicle communication. Figure 6-14 illustrates 
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that the spatiotemporal knowledge of vehicles can be different for vehicles at the same location 

(link 4) at a given time (22 minutes). 

 

Figure 6-13 Illustration of the time-dependent knowledge of vehicles located on link 4 

 

Some studies (Bauza and Gozálvez 2013; Lee and Park 2008) highlight the limitations of most 

existing link travel time estimation or prediction methods to address the dynamic vehicle 

knowledge related challenges. For example, an inaccurate interpretation of the network conditions 

based on the time-dependent vehicle knowledge of each individual vehicle can cause travelers to 

experience worse trip conditions. 

More broadly, ensuring some level of coordination of decision-making across vehicles through 

real-time traffic management is important for enhancing the network-level traffic performance 

rather than potentially being negatively affected by the myopic decisions of individual vehicles 

based on their individual spatiotemporal knowledge. This motivates the need to understand how 

multiple units of information flow propagate and contribute to the time-dependent vehicle 
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knowledge. Such an understanding is critical for the design of robust V2V-based ATIS 

architectures, especially to establish coordinated real time traffic management strategies and active 

control mechanisms to spread useful/important information. 

 

Figure 6-14 Illustration of the knowledge of vehicles located at link 4 at a given time point 

 Summary and discussion 

Due to the multi-dimensional impacts of traffic flow dynamics and inter-vehicle 

communication constraints on information flow evolution and propagation, the need to understand 

their interdependencies is a fundamental problem for a V2V-based ATIS. The existing literature 

in this domain typically focuses on the propagation of a single unit of information. There is a key 

need for modeling frameworks to explain how multiple units of information flow evolve and 

propagate, particularly in terms of the linkage to the interactions with traffic flow and inter-vehicle 

communication dynamics. 

This study proposes a multi-layer framework to model multiple units of information flow 

evolution and propagation by integrating a traffic flow model and an inter-vehicle communication 

model. Traffic flow dynamics are captured by the CTM in the physical traffic flow layer. The inter-

vehicle communication layer uses the time-dependent locations of vehicles and the density of the 

V2V-equipped vehicles as inputs for an aggregate function (equation 5) of the inter-vehicle 

communication success rate. Then, the information flow evolution and propagation is modeled 

using a graph-based representation. The proposed modeling framework enables capturing the 



 

180 

 

information flow dynamics (in terms of the information forward/backward propagation waves, 

spatial propagation fronts, spatiotemporal vehicular knowledge characteristics, etc.) using the 

traffic flow dynamics (in terms of traffic forward/backward propagating waves and traffic flow 

variables) and the inter-vehicle communication events.  

Synthetic experiments seek to map how the information flow dynamics are determined by the 

traffic flow dynamics and the inter-vehicle communication constraints. The occurrence of the 

inter-vehicle communication varies as the underlying traffic density changes. This leads to varying 

information forward/backward propagation wave speeds under different traffic conditions. The 

experiments also seek to understand the interactions involving information flow in terms of the 

spatiotemporal characteristics of the time-dependent vehicle knowledge. They illustrate that the 

proposed multi-layer framework can integrate the dynamics of traffic flow and inter-vehicle 

communication constraints to generate insights for the propagation of the multiple units of 

information flow.  

This study offers the potential to develop a new generation of V2V communications based 

route guidance strategies with individual routing decisions. These include fully decentralized V2V 

communications based routing that relies solely on the vehicle-level knowledge, and more 

advanced hybrid systems that combine both centralized and decentralized information strategies 

under V2V-based ATIS. 
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7. EVALUATION OF DECENTRALIZED VEHICLE-TO-VEHICLE 

COMMUNICATIONS-BASED ADVANCED TRAVELER 

INFORMATION SYSTEM 

 Introduction 

Intelligent transportation systems (ITS) leverage advanced technologies to improve the 

efficiency, reliability, and safety of a transportation system. Within the framework of ITS, 

advances in wireless and other communication technologies have enabled vehicle-to-vehicle (V2V) 

communications in traffic systems, which offer the potential for real-time traffic management and 

control in multiple, innovative ways. They include safety applications enabled by V2V 

communications that are effective in mitigating or preventing potential crashes (Harding et al., 

2014); examples include warnings for blind spot, forward collision and lane change. Another 

mechanism for real-time traffic management leverages information propagation to improve system 

efficiency based on the exchange of travel-related information between vehicles through V2V 

communications. In such a system, vehicles are envisioned to generate and relay time-dependent 

information on traffic conditions in the absence of centralized coordination. Using such V2V-

obtained information, the vehicle computes its own route so as to satisfy its travel-related 

objectives.  

While the level of decentralization may vary, the potential for an infrastructure-based 

decentralized advanced traveler information system (ATIS) has been analyzed in past studies 

(Papageorgiou, 1990; Hawas and Mahmassani, 1996; Pavlis and Papgeorgiou, 1999; Wang and 

Papageorgiou, 2000) to address the limitations of centralized systems (Chen and Underwood, 1991; 

Ben-Akiva et al., 1997; Bottom, 2000). Here, infrastructure refers to intrusive and non-intrusive 

sensors installed on roads, and associated communications infrastructure such as road-side units. 

Infrastructure-based decentralized ATIS is responsive to unfolding local traffic conditions, and 

can be more robust and resilient under disasters. This is because decentralized systems rely on 

nodal controllers and/or in-vehicle devices and are less likely to be affected by potential single-

point failures.   

Ziliaskopoulos and Zhang (2003) first discuss a decentralized real-time V2V-based ATIS and 

introduce the concept of a zero-infrastructure traffic information system through V2V-based 
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information-sharing. Such a decentralized system can be easily extended and is scalable without 

the need for elaborate system-level sensing and control infrastructure as the technology resides in 

the vehicles. Yang and Recker (2005, 2006, 2008) investigate the feasibility of a decentralized 

V2V-based ATIS in terms of the required market penetration rate (MPR) of V2V-equipped 

vehicles and information propagation speed using simulation-based modeling. Some preliminary 

analyses of V2V-based ATIS have been conducted to explore the impact of V2V-based ATIS on 

the traffic network. Minelli et al. (2015) evaluate the impacts of V2V-based ATIS on mode choice 

and the efficiency of transportation system. They show that travel time changes in the auto mode 

under various MPRs of V2V-equipped vehicles can cause changes in mode choice. Dai et al. (2019) 

investigate driver route choice behavior heterogeneity related to fuel consumption and travel time, 

and suggest that a traffic system with higher MPRs of V2V-equipped vehicles can enhance 

performance. 

However, few studies have focused on the implications of the characteristics of the fully 

decentralized nature of information-sharing and routing decisions under an uncoordinated V2V-

based ATIS. First, a V2V-based ATIS consists of traffic flow, V2V communications, information 

flow and vehicle-level computations. The relationships between these components are 

characterized by nonlinearity and interdependencies, as will be illustrated in Section 7.2. 

Analyzing the closed loop relationship among these components is critical to enhance the 

understanding of the characteristics of V2V-based ATIS. It will serve as a building block to design 

new strategies with some level of coordination in information-sharing and decision-making across 

vehicles to manage traffic conditions in congested networks.  

Second, the quality and quantity of travel experience data can vary across links. As information 

spreads due to data from several vehicles, it may illustrate variability or have inconsistencies. For 

example, time-dependent travel times for a link may have a range even if vehicles traverse that 

link close to each other in time. Further, the vehicle knowledge may entail quality issues in terms 

of latency or the time gap between when data is collected and when it is used to estimate the traffic 

network state for that vehicle, labeled the time delay (Ziliaskopoulos and Zhang, 2003; Du et al., 

2012). Existing models do not consider the quality and usefulness of information in the estimation 

of traffic network conditions over time.  

https://www.sciencedirect.com/topics/social-sciences/mobility
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Third, any information that is shared with other vehicles is subject to traffic flow dynamics 

and V2V communications constraints, including interference, signal attenuation over distance, 

bandwidth, etc. These lead to randomness in terms of which information is propagated to which 

vehicle. That is, at any given time, each individual vehicle has a specific interpretation of the 

network conditions, which is labeled as the “vehicle-level knowledge” based on its own experience 

and the information it has received up to that time (Kim and Peeta, 2017). Therefore, the 

spatiotemporal coverage/spread of vehicle knowledge in an area can vary with the locations of 

vehicles, origin-destination (O-D) demand profile, traffic flow pattern, V2V communications 

constraints, and MPR of V2V-equipped vehicles. Hence, understanding the relationship between 

vehicle-level knowledge and routing decisions is critical under an uncoordinated V2V-based ATIS. 

Fourth, a V2V-based ATIS inherently implies that routing decisions are performed at the 

vehicle level. Since it lacks any level of formal coordination of decision-making across vehicles, 

the resulting routing decisions can be myopic. Therefore, it can potentially have a negative impact 

on the network performance. Chen and Du (2017) develop a local information provision strategy 

to address network traffic fluctuations which may occur when many vehicles are uniformly 

provided real-time traffic information based on global conditions.  

In the context of V2V-based ATIS, the focus of this study is to explore the decentralized nature 

of information-sharing and routing decisions and their impacts on the performance of 

transportation system. Understanding its strengths and limitations will provide insights for 

effectively leveraging a V2V-based ATIS. The primary contributions of this study can be 

summarized as follows. First, this study systematically exploits the interdependencies among 

traffic flow dynamics, V2V communications, information flow propagation, routing decisions and 

network state evolution. To the authors’ knowledge, this is the first study to close the loop on 

understanding how information flow propagation affects network state evolution, and how 

network evolution affects information flow propagation. Second, to address information quality 

issues, information processing and routing decisions that are suitable for the V2V-based ATIS are 

proposed. Most existing models use a simple mechanism to estimate link travel time and provide 

shortest path information. Third, the proposed study explicitly factors several deployment 

constraints related to V2V communications and vehicle-level computation. Fourth, many studies 

use simple, hypothetical networks which may produce a limited number of alternate routes. The 
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proposed modeling framework is tested on a large-size network, the Borman Expressway network 

in northern Indiana. Due to the inherent complexity of V2V-based ATIS, a simulation-based 

approach is used to analyze the study objectives.  

The remainder of this paper is organized as follows. The next section discusses the proposed 

modeling framework for the V2V-based ATIS. The modeling details of the decentralized V2V-

based ATIS are discussed in Section 7.3. Section 7.4 discusses the design of the study experiments. 

Results from the experiments are discussed in Section 7.5. The paper concludes with some 

comments in Section 7.6. 

 Decentralized V2V-based ATIS modeling framework 

While various ATISs differ in their design and operation, they have key common elements. 

Three important common components are data collection, information processing, and routing 

decisions. We discuss these components for the decentralized V2V-based ATIS.  

V2V-equipped vehicles have the ability to communicate with each other in the decentralized 

V2V-based ATIS. Each V2V-equipped vehicle generates data on its time-dependent location and 

experienced travel times on the links traversed on its route using a global positioning system (GPS) 

and a digital network mapping. The vehicles store such information and relay their own experience 

and obtain travel experience data of other V2V-equipped vehicles (data collection). The 

information available to a vehicle depends on network-level interactions. These network-level 

interactions include the vehicle’s physical interactions with other vehicles in its vicinity and the 

V2V communications constraints, as illustrated on the left-hand side of Figure 7.1. This study 

adopts a multi-layer network framework to characterize the network-level interactions associated 

with information flow propagation dynamics resulting from traffic flow dynamics and V2V 

communications constraints (Kim and Peeta, 2016). It provides a computationally efficient 

mechanism to track the individual vehicle-level knowledge. It is important to note here that Kim 

and Peeta (2016) address only how traffic flow dynamics lead to the dynamics of information flow, 

but do not close the loop in terms of how information flow propagation affects traffic flow through 

routing decisions. 

Based on its dynamic knowledge, a vehicle continuously estimates the network state by 

updating the link travel time distributions (information processing). Then, the routing decision is 
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determined at the vehicle level and provided to the driver. The right-hand side in Figure 7.1 shows 

the vehicle-level computational component that consists of information processing and routing 

decisions. We adapt an information discounting method (Koutsopoulos and Xu, 1993) to capture 

the quality of information. Then, the estimated link travel time distributions are used at the vehicle-

level to compute the routing decisions. This study uses a reactive routing strategy in which the 

route is continuously updated en route. It enables the vehicle to react to evolving network 

conditions, including the occurrence of incidents, daily variation in demand, and/or traffic 

fluctuations.  

The routing decisions of all V2V-equipped vehicles determine the traffic network state 

evolution, and the aforementioned components and processes are repeated as time progresses. 

Without loss of generality, it is assumed that all V2V-equipped vehicles have identical equipment. 

While V2V-equipped vehicles may switch from their initial paths based on updated vehicle-level 

knowledge as time progresses, we assume that unequipped vehicles rely on their past experience 

throughout the entire period and affect only the traffic flow dynamics. 

In summary, the primary focus of this study is on how information flow propagation affects 

routing decisions and vice versa. 

  

 

Figure 7-1 Elements of a decentralized V2V-based ATIS 

 

Information processing: 

Projection of network state

Routing decisions

Dynamic vehicle 

knowledge

Information flow network: 

Dynamic information propagation

(Data collection)

Network-level interactions

V2V communications network: 

Communication constraints and 

information relay control strategies

Traffic flow network: 

Mesoscopic simulator

Vehicle-level computations

Travel on selected paths:

Network evolution



 

186 

 

 Modeling of the decentralized V2V-based ATIS components 

7.3.1 Multi-layer framework for network-level interactions 

The dynamics of traffic flow and V2V communications lead to time-dependent vehicle-level 

knowledge on network traffic conditions. Kim and Peeta (2016) propose a graph-based multi-layer 

network framework to model dynamic information flow propagation in V2V-based ATIS as a 

complex system comprised of three coupled network layers: physical traffic flow network, V2V 

communications network and information flow network. These layers have dependencies in terms 

of shared physical networks, and dynamics of traffic flow and V2V communications constraints 

(based on location of vehicles and feasibility of V2V communications). The consideration of the 

three layers simultaneously enables addressing their interactions.  

7.3.1.1 Physical traffic flow network 

The physical traffic flow network captures the spatiotemporal interactions between vehicles 

and travel experience data generation. When a V2V-equipped vehicle reaches the end of a link, it 

generates travel experience data that includes vehicle identification number, identification number 

of the link traversed, link entrance time, and link travel time. These travel experience data are 

stored in the temporary memory onboard the vehicle’s system to communicate with other vehicles. 

Duplicate and/or older data (data older than 20 minutes in the study experiments here) are 

discarded. 

7.3.1.2 V2V communications network 

Most existing models represent V2V communications constraints in an abstract manner; that 

each vehicle has a fixed communication success rate. The V2V communications network in this 

study receives all V2V-equipped vehicles’ time-dependent positions as input from the traffic flow 

network, and then determines the occurrence of information flow propagation among the V2V-

equipped vehicles. The V2V communications network uses an interference model from Gupta and 

Kumar (2000) to calculate V2V communications connectivity between vehicles. Two V2V-

equipped vehicles whose physical distance is less than the communication range (250 meters in 

this study) can potentially communicate with each other at any time through V2V communications. 

However, multiple communications from vehicles within communication range can cause a high 
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degree of mutual interference, which may result in the failure of V2V communications. The 

interference rate is defined as follows (Gupta and Kumar, 2000): 

       

𝑇𝑥

|𝜃𝑥−𝜃𝑦|
2

𝑁+∑
𝑇𝑥

|𝜃𝑥−𝜃𝑦|
2𝑘∈𝑋

𝑘≠𝑥

≥ 𝛽                               (1) 

where, 𝜃𝑘 denote the coordinates of a V2V-equipped vehicle k within communication range, 𝑘 ∈

𝑋 , where X is the set of V2V-equipped vehicles within communication range. Consider the 

situation shown in Figure 7.2 where vehicle x is broadcasting, and y is a receiving vehicle. Suppose 

a subset of vehicles (𝑘  and 𝑘 ) within communication range of vehicle y simultaneously transmit 

information at the same time instant, it can lead to possible interference. 

Signal power decays with distance from a broadcasting vehicle k at the rate 1 |𝜃𝑥 − 𝜃𝑦|
 
. The 

transmitted vehicle-level knowledge from vehicle x is successfully received by vehicle y if it 

satisfies the minimum signal-to-interference ratio of 𝛽 (𝛽 = 2 in the study experiments here). 

Specifically, all V2V-equipped vehicles’ positions within communication range of vehicle y in the 

traffic network are tracked. The accomplishment of V2V communications between y and those 

vehicles is checked every 0.5 seconds based on the distances between it and the other V2V-

equipped vehicles in its vicinity to determine the interference level. It is assumed that the power 

levels of vehicles (𝑇𝑥) are identical and the ambient noise power level (N) is zero. The study 

experiments also assume that the available bandwidth is 3Mbps with the data communication 

frequency (2Hz) (Karagiannis et al., 2011).  

Wang et al. (2018) show that several communication factors (e.g. information packet 

generation rate, communication frequency, and communication buffer size) also significantly 

affect the characteristics of information flow propagation. This is because a large number of 

information packets generated by multiple vehicles in a small space and a short time period can 

lead to congestion in the information flow network. It necessitates an information relay control 

strategy to prevent packet collisions, so that the limited communication capacity can be efficiently 

shared by all information packets (Wang et al., 2018). How these buffers store information depends 

on which traffic information has a higher priority (usefulness) for a V2V-based ATIS. We use a 

strategy that seeks to keep the newest information (in terms of when the information is generated) 

in the communication buffer, to be relayed if the communication buffer is congested as shown in 
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Figure 7.2(b). All of the information received by a vehicle goes into its vehicle-level temporary 

memory storage in Figure 7.2(b) to generate the historical database, which will be discussed in 

Section 7.3.2.1. 

 

Figure 7-2 Illustration of V2V communications-related constraints 

 

7.3.1.3 Graph-based representation of information flow network 

Based on the travel experience data generation in the traffic flow network, and the occurrence 

of V2V communications in the V2V communications network, the flow of information is mapped 

using a graph-based representation of the information flow network (Kim and Peeta, 2016).  

The graph structure can illustrate which vehicle’s time-dependent travel experience data is 

propagated to a specific vehicle by traversing a connected subgraph of the information flow 
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network. A simple graph-based search algorithm by Kim and Peeta (2016) is used to identify how 

information flow propagates and how vehicle-level knowledge evolves, particularly in terms of 

the interactions with traffic flow and V2V communications constraints. In this study, we modify 

the graph-based search algorithm to incorporate the limited channel capacity by limiting the 

number of information packets being relayed. It seeks to identify the vehicle knowledge of all 

equipped vehicles in space and time to explain what information is obtained by each V2V-

equipped vehicle. 

A key benefit of the graph-based multi-layer framework is that it provides the capability to 

track the spatiotemporal characteristics of information flow and evolution of vehicle-level 

knowledge explicitly. An explicit model for information flow propagation in the graph-based 

approach enables an understanding of the dynamic interactions among the three layers, and the 

evolution of vehicles’ knowledge in time and space. Therefore, it can explain how vehicle-level 

knowledge is shaped by the events from the other two layers. Further, the graph-based approach 

provides retrospective information to track the spatiotemporal characteristics of information flow 

directly through a connected graph structure. For a detailed discussion on the multi-layer 

framework, see Kim and Peeta (2016).  

7.3.2 Vehicle-level computations 

The computational components reside onboard the vehicle. With its dynamic knowledge, the 

vehicle performs information processing and routing decisions. 

7.3.2.1 Information processing 

When the vehicle reaches the end of a link, it updates the link travel time distribution to 

estimate the traffic network state. In this study, an information discounting model (Koutsopoulos 

and Xu, 1993) is modified to incorporate the quality of information. The proposed information 

discounting model combines real-time information available from vehicle-level knowledge and 

data from the associated historical database. This is because it is likely that the real-time 

information will not provide full coverage on traffic conditions for the entire network (Toledo and 

Beinhaker, 2007). The historical database does not capture day-to-day variability that may be 

caused by fluctuations in demand and by events (such as incidents and maintenance work). Thus, 

it is desirable to leverage real-time information with the historical database.  
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The information discounting model (Koutsopoulos and Xu, 1993) involves the explicit 

recognition of accuracy in real-time information to update the long-term historical distribution. It 

is reasonable to assume that travel experience data with less time delay is reliable. Further, when 

the standard deviation of travel time data is large, the information on current travel time will soon 

be dated. Therefore, the larger the values of time delay and variability, the lesser the value of 

information on current travel times. So, the estimated travel time should be appropriately adjusted 

(discounted) with respect to the quality of information.  

The historical database is represented as a discrete distribution. Let 𝐻𝑎(𝑡) denote the discrete 

historical travel time distribution on link a at time 𝑡. Travel time state 𝑆𝑎
𝑖
 is defined as 𝑖th travel 

time interval with lower and upper bounds [ 𝑙𝑎
𝑖 , 𝑢𝑎

𝑖 ]  with associated probability 𝑝𝑎
𝑖 (t). The 

corresponding probability density function is given below:           

    𝐻𝑎(𝑡) = {𝑆𝑎
𝑖 , 𝑝𝑎

𝑖 (𝑡)}𝑖= 
𝐼𝑎 ,     𝑆𝑎

𝑖 = [𝑙𝑎
𝑖 , 𝑢𝑎

𝑖 ]                  (2) 

where 𝐼𝑎  is the total number of intervals in the discrete travel time distribution of link a. The 

associated standard deviation of the historical travel time of link a is defined as 𝜎𝑎 .  

Consider a set of real-time link travel experience data 𝑅𝑎
𝑖 (𝑡) on link a, obtained using the 

vehicle knowledge at time 𝑡. The data latency is 𝛿 = 𝑡−𝑡 . The updating mechanism for link a is 

as follows:  

𝐹𝑎
𝑖(𝑡) = 𝑝𝑎

𝑖 (𝑡) + 𝜑 ∙ ∑ 𝑒−𝜎𝑎 ∙𝛿𝑚
⌊𝑅𝑎

𝑖 (𝑡)⌋

𝑚= ,                (3) 

where 𝐹𝑎
𝑖(𝑡) is updated probability of 𝑝𝑎

𝑖 (t), 𝜑 is a weighting coefficient, and ⌊𝑅𝑎
𝑖 (𝑡)⌋ is the 

number of real-time link travel time data on travel time state 𝑆𝑎
𝑖 . To account for the lesser 

reliability of outdated data, it is discounted using an exponential function of time delay. Further, 

the real-time information is discounted by the standard deviation (𝜎𝑎 ) of historical travel time on 

that link. Then, 𝐹𝑎
𝑖(𝑡) is normalized to 𝐹̅𝑎

𝑖(𝑡), so that normalized values satisfy ∑ 𝐹̅𝑎
𝑖(𝑡) = 1

𝐼𝑎
𝑖= . If 

there is no information available on a link, its historical database will be used. This study uses an 

updated travel time distribution on link a for time interval t, 𝐶𝑎(𝑡), with lower and upper bounds 

[𝑙𝑎
𝑖 , 𝑢𝑎

𝑖 ] and associated updated probability 𝐹̅𝑎
𝑖(𝑡). 
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7.3.2.2 Routing decisions 

As traffic information (either real-time or with latency) is available to vehicles en route through 

V2V communications, this study assumes that travelers make routing decisions using routing 

policies. Given the location of the vehicle and the short-term link travel time distribution, a routing 

policy determines only the link that should be traversed next, rather than computing a complete 

path with the objective of minimizing the expected travel time. Such a routing strategy takes into 

account current as well as future availability of travel time information based on possible 

realization of link travel time. This study adapts an online stochastic routing strategy (Du et al., 

2013) for the proposed V2V-based ATIS. In it, the optimal routing decision is adaptively updated 

en route using vehicle-level knowledge. Thereby, based on the prevailing traffic state information, 

V2V-equipped vehicles may be re-routed to less congested paths.  

Let the set of links incident from node 𝑔 be denoted by 𝛿−(𝑔), and 𝑜 and s denote the origin 

and destination nodes, respectively. In the proposed routing policy, the traveler will be suggested 

the next link such that the associated route has the expected minimum travel time from his/her 

current node 𝑣 to the destination s given the network conditions at the current time. It can be 

expressed as:  

    𝑎∗(𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛{𝐸[𝐶𝑎(𝑡)]  + 𝐺𝑞𝑠(𝑡)|∀𝑎 = (𝑣, 𝑞) ∈ 𝛿−(𝑣)}           (4) 

where 𝑎∗(𝑡) denotes the next link suggested to the traveler at time 𝑡. 𝐸[𝐶𝑎(𝑡)] is the expected 

travel time on link 𝑎  at time 𝑡 . 𝐺𝑞𝑠(𝑡)  is the expected minimum travel time from node 𝑞  to 

destination 𝑠 at time 𝑡 given that the vehicle arrives at node 𝑞 and continues to be routed under the 

provided policy. It can be expressed as:  

𝐺𝑞𝑠(𝑡) = 𝐸[ in {𝐶𝑎(𝑡) + 𝐺𝑤𝑠(𝑡)|  ∀𝑎 = (𝑞, 𝑤) ∈ 𝛿−(𝑞)}]           (5) 

It is formulated as a recurrent relationship. Therefore, equation (6) also holds.  

  𝐺𝑠𝑠(𝑡) = 0                       (6) 

To find the optimal next link, a modified label-correcting routing algorithm that proceeds in a 

backward manner (Du et al., 2012) is used to identify the optimal next node.  

Several past studies have focused on capturing the network-level interactions associated with 

the traffic dynamics resulting from assumed behaviors of travelers under information provision 

(Peeta and Mahmassani, 1995a, 1995b; Peeta and Ziliaskopoulos, 2001), and the routing decision 

behavior of travelers under information provision and consequent network-level traffic evolution 
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(Peeta and Yu, 2002, 2004, 2005, 2006). Nevertheless, for simplicity, we assume that all vehicles 

which receive routing information comply with the recommended routes.  

The vehicle-level routing decisions of the V2V-equipped vehicles affect the traffic network 

flow evolution. Hence, the impacts of dynamic routing decisions based on vehicle-level knowledge 

are explicitly considered in the proposed V2V-based ATIS.  

 Case study   

This section discusses the setup for the simulation-based experiments to analyze the 

performance of the proposed V2V-based ATIS.   

7.4.1 Experiment setup 

A mesoscopic traffic simulator, DYNASMART-P (Mahmassani et al, 2009), is used to 

replicate the traffic flow dynamics and to track the vehicle positions in the traffic network. In the 

simulator, as vehicles are generated, they are randomly designated as V2V-equipped or 

unequipped based on the MPR. Both V2V-equipped and unequipped vehicles are assigned to 

initial paths at the beginning of their trips based on a time-dependent K-shortest path algorithm 

using current traffic conditions at those times (Jayakrishnan et al., 1994). However, V2V-equipped 

vehicles may change their initial paths en route based on updated vehicle-level knowledge, while 

unequipped vehicles do not.  

7.4.2 Test network and characteristics 

The Borman Expressway network in northern Indiana, which includes interstates 80/94 and 65, 

and the surrounding arterials, is used as the study network. It consists of 197 nodes and 460 links. 

Dynamic origin-destination demand (in 10-minute intervals) comprising a total of 45,143 vehicles 

and various MPRs (10%, 25%, 50%, 75% and 100%) are considered for analysis over a 120-

minute period of interest. Performance statistics are collected only for the vehicles generated 

between the 30th and 90th minutes to ensure that results are not biased by the warm-up or end 

periods of the simulation. Figure 7.3 shows the Borman Expressway network and its demand 

profile.  



 

193 

 

An incident scenario is modeled in which the incident lasts for 1 hour, from the 15th minute to 

the 75th minute, and reduces the capacity to 1/4 of the original capacity for that period. Figure 7.3 

(a) shows the location of the incident on State Road 912. The time-dependent number of vehicles 

entering the network and the number of vehicles present in the network are shown in Figure 7.3 

(b).  

(a) Study network  

 

(b) Demand profile and network conditions  

Figure 7-3 Study network and associated characteristics 
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7.4.3 Historical database for link travel time distribution 

A historical database is generated for the link travel time distribution by simulating 50 days of 

network conditions for the 2-hour period of interest using randomly generated origin-destination 

demands from a range that is ±50% from the base demand (45,143 vehicles). Based on these 50 

simulation runs, the link travel time distributions are generated for each link for 10-minute time 

intervals. The historical database is stored as a discrete link travel time distribution. All V2V-

equipped vehicles are assumed to access the same historical database before the start of their trips.  

7.4.4 Baseline and system optimal scenarios 

Baseline and system optimal (SO) scenarios are used to benchmark the effectiveness and 

robustness of the proposed V2V-based ATIS. The baseline scenario represents the situation 

without the V2V-based ATIS. Therefore, the MPR is zero for this scenario. The SO solution 

corresponds to the best system performance and is used as benchmark for real-time deployment 

strategies. 

 Results 

The experiments mainly seek to analyze the performance of the routing decisions provided by 

the V2V-based ATIS. The system performance depends on the dynamic vehicle-level knowledge 

and many factors such as origin-destination demand, MPR, V2V communications constraints, and 

the presence of incidents in the network. Thus, we analyze the relationship between these factors 

and the system performance. Section 7.5.1 discusses the results related to the V2V 

communications and evolution of vehicle-level knowledge. Section 7.5.2 illustrates the 

performance of the baseline and SO scenarios. Sections 7.5.3 and 7.5.4 analyze the performance 

of the V2V-based ATIS under incident-free and incident scenarios, respectively. 

7.5.1 V2V communications efficiency and vehicle-level knowledge 

The performance of V2V-based ATIS depends on the timely dissemination of travel-related 

information and the accurate estimation/prediction of prevailing traffic conditions. First, we 

analyze the V2V communications efficiency by focusing on the success rate of communication 

under different MPRs. The success rate 𝜇 is calculated as follows: 
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    ,s s f                                  (7) 

where s is the number of communications that successfully transmit information to other V2V-

equipped vehicles, and f is the number of communications that fail to transmit information due to 

the communication constraints.  

 

Figure 7-4 Efficiency of V2V communications under different MPR 

 

Figure 7.4 shows the values of 𝜇  under different MPRs. The success rate of V2V 

communications decreases as MPR increases, though the number of successful communications 

increases. It implies that the larger number of V2V-equipped vehicles within communication range 

increases the potential for interference, but also increases the opportunities for communications 

among V2V-equipped vehicles. 

The amount of information obtained by V2V-equipped vehicles is measured by the number of 

obtained travel experience data during the trip. Figure 7.5 shows the number of obtained travel 

experience data during the equipped vehicles’ trips under a 25% MPR. It indicates that the number 

of obtained travel experience data increases as vehicles are closer to their destinations and/or for 

longer trips. Also, the number of travel experience data is stable after 30 minutes of trip time; this 

is because as vehicles are closer to their destinations, they may discard older (20 minutes old and 

beyond) and duplicate data from the vehicle’s onboard memory storage.  

0.0

0.2

0.4

0.6

0.8

1.0

0

10

20

30

40

5% 10% 20% 30% 40% 50%

S
uc

ce
ss

 r
at

e 
o
f 

co
m

m
un

ic
at

io
n

A
v
er

ag
e 

nu
m

b
er

 o
f 

 s
u
cc

es
sf

u
l 

c
o

m
m

u
n
ic

a
ti

o
n
s

Market penetration rate (MPR)

Average number of  successful communication

Success rate of V2V communication



 

196 

 

 

Figure 7-5 Number of obtained travel experience data during trips 

 

 

Figure 7-6 Number of obtained travel experience data during trips for different MPRs 

 

Figure 7.6 shows that the performance in terms of the number of obtained travel experience 

data is the best for 50% MPR, and reduces for 75% MPR. This is due to the communications 

bandwidth constraint as the available capacity is shared by more equipped vehicles under 75% 

MPR. This illustrates that congestion in a V2V communications environment can lead to 

congestion effects for information flow propagation. 
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7.5.2 Baseline and SO scenarios  

Table 7.1 summarizes the performance of the baseline and SO scenarios in terms of travel time 

under the incident-free and incident scenarios. The average travel time of vehicles under SO 

decreases by 22% in the incident-free scenario and 16% in the incident scenario compared to the 

baseline. The presence of the incident increases travel time by approximately 15% in the baseline 

scenario. 

Table 7-1 Comparison to baseline and SO scenarios 

Scenarios 

Baseline System optimal (SO) 

Average travel 

time 

(minutes) 

Total system 

travel time 

(hours) 

Average travel 

time 

(minutes) 

Total system 

travel time 

(hours) 

Incident-free 13.23 7,775 13.23 7,775 

Incident 15.28 9,702 15.28 9,702 

7.5.3 Incident-free scenario 

7.5.3.1 Analysis of network performance 

The system performance is analyzed in two aspects: (i) fraction of V2V-equipped vehicles that 

change routes en route due to updated vehicle-level knowledge, and (ii) network performance. As 

shown in Table 7.2, the number of V2V-equipped vehicles that change routes en route increases 

as the MPR increases. However, the fraction changing routes en route increases until MPR 50% 

and then decreases with higher MPRs. As shown in Figure 7.6, this could be due to the size of the 

obtained travel experience data whereby due to congestion effects on information flow propagation, 

the efficiency of V2V-based ATIS is reduced. 

We analyze the average travel times of V2V-equipped, unequipped, and all vehicles as the 

primary measure of effectiveness of the proposed V2V-based ATIS. Figure 7.7 illustrates that 

V2V-based ATIS offers the potential for travel time savings. The average travel time for V2V-

equipped vehicles decrease up to an MPR of 50%. For 75% and 100% MPRs, V2V-equipped 

vehicles experience higher travel times than under 50% MPR. This is possibly because many V2V-

equipped vehicles shift to the same route en route, and the travel time of that route increases 
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accordingly. Further, the average travel times under the different MPRs (12.6 to 13.2 minutes) are 

much higher than for SO (10.33 minutes). These results suggest that a V2V-based ATIS can be 

leveraged through coordinated traffic management strategies involving a central controller to 

generate additional savings over the uncoordinated individual vehicle-level V2V-based ATIS. 

It is also insightful to examine the effect of MPRs on the unequipped vehicles. Figure 7.7 

illustrates that a V2V-based ATIS can be beneficial for unequipped vehicles, though V2V-

equipped vehicles benefit much more than the unequipped vehicles. The average travel time for 

all vehicles reduces as the MPR of V2V-equipped vehicles increases. 

 

Table 7-2 V2V-equipped vehicles changing routes en route for different MPRs 

MPR 
Number of V2V-

equipped vehicles 

Vehicles that 

change routes en 

route 

Vehicles that do not 

change routes en 

route 

Fraction of vehicles 

changing routes en 

route 

10% 4,514 1,129 3,385 0.25 

25% 11,286 3,273 8,013 0.29 

50% 22,572 7,900 14,672 0.35 

75% 33,857 10,834 23,023 0.32 

100% 45,143 13,994 31,149 0.31 
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Figure 7-7 Effects of MPR on average travel time under the incident-free scenario 

 

7.5.3.2 Analysis of individual vehicle performance 

Figure 7-8 compares the individual vehicles’ travel times under the V2V-based ATIS to those 

under the baseline scenario for 25% MPR. It can be noted that in several cases the V2V-equipped 

vehicles experience negative benefits (increased travel time), implying that information quality 

can impact the performance of a V2V-based ATIS. However, these cases are dominated by V2V-

equipped vehicles with trip times less than 30 minutes (shorter trips). 
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Figure 7-8 Distribution of travel time differences for different trip time (under 25% MPR) 

 

It can be noted that more travel time savings occur for longer trips under the V2V-based ATIS 

compared to the baseline scenario. This is because longer trips may provide better travel time 

estimates due to the larger number of obtained travel experience data as illustrated by Figure 7.5 

in Section 7.5.1. Further, Figure 7.8 suggests that while unequipped vehicles also benefit under a 

V2V-based ATIS, their share of travel time savings is significantly less than that of V2V-equipped 

vehicles.  

7.5.4 Incident scenario 

This experiment investigates the performance of a V2V-based ATIS under an incident (State 

Road 912 in Figure 7.3). While unequipped vehicles remain on their initial routes, V2V-equipped 

vehicles may shift routes to avoid the temporary bottleneck due to the incident. Figure 7.9 

illustrates that the average travel time is reduced up to 5.8% under the 50% MPR for the incident 

scenario. This illustrates a superior performance than under the incident-free scenario (2.7% 

reduction in Figure 7.7). This improvement is due to the incident response enabled by using a 

reactive algorithm which can respond quickly to changing network conditions. Similar to the 

incident-free scenario, V2V-equipped vehicles experience higher travel times for 100% MPR 

compared to those under 50% and 75% MPRs. 
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Figure 7-9 Effects of MPR on average travel time under incident scenario 

 Concluding comment 

This study analyzes a fully decentralized V2V-based ATIS which leverages spatiotemporal 

vehicle-level knowledge and entails vehicle-level computation. The interdependencies between 

traffic flow dynamics, V2V communications constraints, and information flow propagation impact 

traveler routing decisions, thereby determining the performance of the V2V-based ATIS. A 

simulation-based approach is used to capture the impacts of the interdependencies between 

information flow propagation and travelers’ routing decisions on the network state evolution and 

the performance of the V2V-based ATIS. Hence, this study closes the loop on understanding how 

information flow propagation affects network state evolution through routing decisions, and how 

network evolution affects information flow propagation in terms of obtained travel experience data. 

The study results show that as a consequence of information propagation, the level of vehicle 

knowledge may vary. That is, informed routing decisions depend on traffic flow dynamics, V2V 

communications constraints, and MPR of V2V-equipped vehicles. A V2V-based ATIS can lead 

to travel time savings under both incident-free and incident scenarios. Travel time benefits are 

higher for incident scenarios, possibly due to rapid incident response. The study also suggests that 

a V2V-based ATIS can provide benefits to both V2V-equipped and unequipped vehicles.  
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Experiment results also indicate that enabling some level of formal coordination of decision-

making across V2V-equipped vehicles through a centralized controller can enhance network-level 

traffic performance, especially under high MPRs to counteract the effects of communications-

related constraints. The proposed V2V-based ATIS framework can be expanded to implement a 

hybrid centralized system that has some level of coordination of decision-making across vehicles 

in addition to individual vehicle-level knowledge for routing decisions. 
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8. CONCLUSIONS 

This chapter summarizes the study and the research contributions and suggests directions for 

future research. Section 8.1 summarizes the research and discusses associated conclusions. Section 

8.2 highlights the significance of the research, and Section 8.3 discusses possible extensions for 

future research. 

 Summary and conclusions 

This dissertation proposes a systematic framework of V2V-based traffic system that is 

integrated with the information flow propagation with physical traffic flow, vehicle-to-vehicle 

communications, and V2V applications. The V2V-based traffic system is characterized by non-

linearity, interdependencies, and feedback structure. Due to the multi-dimensional impacts of 

traffic flow dynamics and inter-vehicle communication constraints on information flow 

propagation, the need to model and understand their interdependencies is a fundamental problem 

for a V2V-based traffic system. While widely-used analytical models exist to characterize the 

influencing factors in the communication and transportation domains, their interdependencies have 

not fully explored within the framework of V2V-based traffic system. The research focuses on 

understanding how information flow propagate in space and time while capturing the dependency 

with the underlying traffic flow. 

This study proposes a graph-based multi-layer framework to model multiple units of 

information flow evolution and propagation by integrating traffic flow model and vehicle-to-

vehicle communications model. It illustrates the potential benefits of the retrospective capability to 

identify the spatiotemporal characteristics of vehicle knowledge. Synthetic experiments illustrate how 

the proposed framework maps how the information flow dynamics are determined by the traffic flow 

dynamics and inter-vehicle communication constraints. As graph structure is shown to be able to track 

the spatiotemporal characteristics of information flow explicitly, the graph-based multi-layer 

framework is extended to develop the analytical multi-layer framework. They illustrate that the 

proposed analytical multi-layer framework can integrate the dynamics of traffic flow and inter-vehicle 

communication constraints to generate insights for the propagation of the multiple units of information 

flow.  



 

204 

 

This study develops a discrete analytical model to track dynamic information flow propagation 

by integrating a traffic flow model and an epidemic model. This study defines the information flow 

propagation wave (IFPW) to address the macroscopic behavior of information flow propagation. 

The proposed model characterizes the single-hop communication to reflect the details of 

communication constraints. Incorporated into a multi-hop information dissemination process 

through integro-differential equations, the proposed model allows to derive a closed-form solution 

for the IFPW speed. A theoretical investigation provides useful insights into the qualitative 

properties of information flow propagation speed and a better understanding of the fundamental 

relationship between traffic flow dynamics and information flow propagation that enable broader 

applications based on V2V communications.  

This thesis has integrated the key influencing factors for applications of traffic safety and 

management and control. The comprehensive coverage through V2V communications brings a 

possible benefit that information of multiple vehicles ahead can be used as a priori knowledge to 

predict the collision risk associated with a lead-vehicle. This study proposes a multi-anticipative 

FCW system that predicts the driver maneuver intention to incorporate the uncertainty of motion 

prediction. The multiple vehicle motion prediction is modeled by a coupled Hidden Markov model, 

motivated by statistical machine learning techniques. It overcomes the limitation of the currently 

available sensor-based kinematic model for addressing the uncertainty associated with future 

motion prediction.  

An assessment of V2V-based ATIS on vehicular traffic efficiency requires consideration of 

multiple units of information flow propagation and thus a large number of communications and 

reacting vehicles. In this context, this study focuses on modeling the information flow evolution 

and propagation that leads to the dynamics of vehicle knowledge in V2V-based ATIS as a building 

block to develop coordinated information provision strategies that additionally would require an 

understanding of how the vehicle knowledge would affect the driver actions. 

 Research Contributions 

As information flow propagation entails complex interdependent processes, an explicit 

understanding of their linkages for design, planning, and operation is important. This dissertation 

suggests the use of the concept of an integrated multi-layer network modeling framework that can 
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describe the network-wide spatiotemporal propagation of information while capturing the 

interdependencies with traffic flow dynamics and V2V communications. An important practical 

implication of the proposed methodology is the ability to generate effective traffic control 

strategies under V2V-based ATIS. The proposed methodology can serve as a platform to address 

several other applications and modeling needs related to V2V-based ATIS; they include routing 

strategies for specific classes of vehicles, targeted information propagation strategies to alleviate 

local traffic situations, rapid information communication strategies to address emergent safety 

problems, seamless communication of pricing strategies, etc. 

This study proposes a macroscopic model that characterizes the multi-hop process of 

information flow propagation based on the broadcasting method rather than the widely-used 

assumption of instantaneous multi-hop propagation while characterizing the single-hop 

communication to reflect the details of communication constraints. The proposed model and the 

closed-form solution of IFPW speed can help in designing effective V2V-based systems, without 

relying on computationally expensive numerical methods. From a communication point of view, 

it bridges the relationship between wireless network characteristics and the information flow 

propagation speed through communication kernel. Therefore, it enables communication engineers 

to choose the best wireless communication parameters to satisfy a certain speed threshold of 

information flow propagation. From a transportation point of view, the proposed model can be 

used to design prescriptive strategies that promote the propagation of useful information efficiently. 

Further, it can be used to develop a vehicle to infrastructure (V2I) placement strategy where the 

average delay to reach a vehicle at any location is bounded by a prescribed threshold. To enable 

these V2V-based applications and associated design, a wide range of research questions need to 

be answered by researchers in electrical engineering, computer science, and information 

communication. Therefore, this research would introduce great research opportunities in such an 

interdisciplinary research domain.  

From a practical standpoint, the proposed graph-based approach can efficiently model the 

V2V-based ATIS by leveraging a single graph database. It provides memory efficiency through 

the use of a graph database and computational efficiency through the use of a simple reverse search 

algorithm to update the vehicle knowledge by traversing a connected subgraph of the information 
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flow network. Hence, graph-based modeling to identify vehicle knowledge can provide powerful 

capabilities to leverage efficient graph-based methods and algorithms. 

 Future Research 

This section discusses several possible extensions of the proposed models. The study offers 

the possibility of developing more sophisticated information flow propagation models by 

leveraging well-developed mathematical theories in epidemiology and ecology. This study applies 

a spatially structured model that is quite flexible and can be extended to a spectrum of models. 

One advantage of the spatially structured model is that it is particularly amenable to mathematical 

analysis. The analysis can lead to many important insights into the characteristics of IFPW. A 

stochastic modeling capability to generate greater realism can be incorporated. This study 

establishes a deterministic model upon the basic assumption that the population is large enough to 

ignore stochastic effects. A more comprehensive study could include stochastic effects, which are 

particularly important when vehicle density is low.  

In addition, we present the effects of spatial heterogeneity on the information flow wave speed 

using the numerical experiments. Although it is confirmed that numerical solution is realized as 

an analytical solution, we have not developed analytical solutions for the heterogeneous 

environment. This problem needs further investigation. 

On the application of V2V-based system, vehicles need to autonomously choose the wireless 

network parameters (such as transmission power, communication frequency, and data rate) that 

best fit an application’s needs, for example, satisfying the minimum information flow propagation 

speed threshold for safety applications (Killat and Hartenstein, 2009). To do so, it is required to 

understand the relationship between wireless network parameters and information flow 

propagation speed. The complexity of the numerous influencing factors, however, impedes the 

determination of an appropriate relationship in general. If such linkages are identified in the 

planning stage, it can be formulated and solved as a corresponding optimization problem to achieve 

the maximum speed. The proposed model is a suitable approach that maintains accuracy and 

flexibility without relying on computational expensive simulation.  

The study offers the possibility of developing a more sophisticated FCW system. While we 

use a fixed parameters FCW system (non-adaptive), disagreement between the human drivers and 
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system response always exists. Therefore, the development of the adaptive FCW system is 

important. The most preferable tradeoff between false alarms and miss alarm is arguably varying 

from situation-to-situation and across different driver groups. Driver behavior in the presence of 

the collision warning/avoidance system, is usually the additional input of these algorithms, in order 

to make the system effective and acceptable to the driver. A system that integrates machine 

learning mechanism with predictive FCW algorithm, so that the system can adjust its settings by 

interacting with the driver is promising. 

It may be synergistic with a hybrid system which combines a predictive, behavior-consistent 

logic of a centralized system with the decentralized, reactive logic of the proposed V2V-based 

ATIS. The design of the hybrid system is focused on the effectiveness and quality of hybrid 

guidance logic by addressing the strengths and weaknesses of centralized and decentralized 

systems. The capabilities of the hybrid framework can leverage behavioral realism and the 

synergies of the centralized and decentralized systems. 
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