Sulfonate/nitro bearing methylmalonyl-thioester isosteres applied to methylmalonyl-CoA decarboxylase structurefunction studies

Lee M. Stunkard, Austin D. Dixon, Tyler J. Huth and Jeremy R. Lohman*

Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States

Supporting Information

Table of Contents:

Experimental Information:

I. Materials and Methods S2
II. List of Abbreviations S2
III. Experimental Procedures and Characterization Data S3
IV. Extinction Coefficient Determination S11
V. Cloning of coaA, coaD, coaE and ygfG from Escherichia coli S11
VI. Expression and Purification of CoaA, CoaD, CoaE and YgfG (MMCD) S12
VII. Crystallization, X-ray Crystallographic Data Collection and Refinement S13
VIII. MMCD Enzymatic Assays, pH rate profile and K_{i} determination S14
SI References S15
SI Tables S17
Table S1. Statistics of Crystallographic Data Collection, Processing and Refinement S17
SI Figures S18
Figure S1. Omit maps for 4-9 bound to MMCD S18
Figure S2. Pyruvate oxime degradation product of 7 and $\mathbf{8}$ S25
Figure S3. Alternative His66 sidechain conformations S26
Figure S4. Example HPLC traces of $\mathbf{1}$ and MMCD products S27
Figure S5. Kinetic trace for (R / S)-methylmalonyl-CoA decomposition by MMCD S28
Figure S6. MMCD pH rate profile S29
Figure S7. Alternative mechanisms for hydrolysis and decarboxylation S30
Figure S8. Potential allosteric site with partial binding of phospho-adenosine S31
Figure S9. Representative data for inhibition of MMCD activity by 4-9 S32
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S33

I. Materials and Methods

Chemicals and solvents: All chemicals were purchased from Acros, Aldrich, Alfa Aesar, Fluka, Oakwood or TCI America and used without further purification. For reactions, technical grade solvents were used without further purification and dried over molecular sieves ($3 \AA$) when applicable. HPLC grade solvents were used for flash chromatography, analytical and preparative HPLC. Deuterated solvents were purchased from Acros or Sigma-Aldrich.

Reactions: All organic synthesis reactions were performed under normal atmosphere at room temperature unless otherwise noted. The reactions and purifications were not optimized. Reactions were magnetically stirred with Teflon coated stirbars. Flash chromatography was performed on a CombiFlash Rf200 (Teledyne ISCO) with 24 or 40 gram silica Flash Columns. Preparative HPLC chromatography was performed on an Agilent 1100 preparative HPLC with diode array UV/Vis detection over a Luna $5 \mu \mathrm{C} 18$ (2) $100 \AA 250 \times 21.2 \mathrm{~mm}$ column (Phenomenex). The reported yields are post purification and spectroscopically pure unless previously reported or otherwise indicated.

Analysis: Reactions and products were characterized by HPLC-MS on an Agilent 1100 HPLC with diode array UV/Vis detection over a Luna $5 \mu \mathrm{~m}$ C18(2) $100 \AA 50 \times 2 \mathrm{~mm}$ (Phenomenex) or Luna $5 \mu \mathrm{~m}$ C18(2) $100 \AA 250 \mathrm{x} 4.6 \mathrm{~mm}$ (Phenomenex) with low resolution mass spectrometry (LRMS) analysis in positive and negative modes by an Agilent 1100 G1946D quadrupole with electrospray ionization (ESI). NMR spectra were collected on a Bruker AV500HD equipped with a 5 mm BBFO Z-gradient cryoprobe in the solvents indicated. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are referenced using the signals of the residual undeuterated solvent $\left(\mathrm{CDCl}_{3}{ }^{1} \mathrm{H}-7.27 \mathrm{ppm}\right.$ and ${ }^{13} \mathrm{C}$ 77.14 ppm , DMSO ${ }^{1} \mathrm{H}-2.48 \mathrm{ppm}$ and ${ }^{13} \mathrm{C}-39.5 \mathrm{ppm}$ and $\mathrm{D}_{2} \mathrm{O}{ }^{1} \mathrm{H}-4.68 \mathrm{ppm}$) and where applicable tetramethylsilane $0-\mathrm{ppm}$. All spectra were collected at 298 K . Chemical shifts are reported in parts per million (ppm) and multiplicities are abbreviated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and br (broad). Coupling constants (J) are reported in Hertz (Hz).
II. List of Abbreviations

ACN acetonitrile
ATP adenosine triphosphate
CF chloroform
DCM dichloromethane
DMF dimethylformamide
DMP 2,2-dimethoxypropane
ECF ethylchloroformate
EtOAc ethyl acetate
EtOH ethanol
$\mathrm{pTsOH} \quad$ p-toluenesulfonic acid
TEA triethylamine
TFA trifluoroacetic acid

III. Experimental Procedures and Characterization Data

16

D-pantethine acetonide (16): ${ }^{1}$

To a solution of DMF containing $380 \mathrm{mg}(2.00 \mathrm{mmol})$ of $\mathrm{pTsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ and 10 grams (18.03 $\mathrm{mmol})$ of D-pantethine syrup, $360 \mathrm{~mL}(2.9 \mathrm{~mol})$ of DMP was slowly added. ${ }^{1}$ The reaction was allowed to stir for 12 hours at room temperature and was quenched with solid sodium bicarbonate. The solvent was removed leaving a white precipitant which was suspended in DCM and filtered. The solvent from the flow through was removed yielding 16 as an oil that slowly crystallized ($10 \mathrm{~g}, 15.75 \mathrm{mmol} 87.4 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}), 7.12(\mathrm{br}, 2 \mathrm{H}, \mathrm{NH}), 4.00(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{~d}, J=$ $11.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.57-3.38(\mathrm{~m}, 8 \mathrm{H}), 3.20(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{t}, J=6.9 \mathrm{~Hz}, 4 \mathrm{H}), 2.43(\mathrm{t}, J=$ $6.5 \mathrm{~Hz}, 4 \mathrm{H}), 1.37(\mathrm{~s}, 6 \mathrm{H}), 1.39(\mathrm{~s}, 6 \mathrm{H}), 0.96(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $171.38,169.57,98.70,76.83,71.00,38.27,37.42,35.27,34.72,32.63,29.20,21.90,18.70$, 18.48. LRMS (ESI) m / z calculated for C28H50N4O8S2H ([M+H] ${ }^{+}$) 635.31, found 635.3.

D-pantetheine acetonide (10): ${ }^{2}$
To a solution of $\mathbf{1 6}$ (10 grams, 15.75 mmol) in ethanol, sodium borohydride (15.7 grams, 415 mmol) was added. The reaction was allowed to stir for 6 hours at room temperature. The reaction was carefully quenched with acetic acid to pH 5.0 . The solvent was removed, re-suspended in DCM and filtered. The flow through solvent was removed and the remaining residue was
subjected to flash chromatography ($0 \rightarrow 100 \%$ gradient of hexanes \rightarrow EtOAc) to afford $\mathbf{1 0}$ (transparent oil, $8.5 \mathrm{~g}, 26.69 \mathrm{mmol}, 84.7 \%$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\left.\delta 7.05(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 6.42 \mathrm{br}, 1 \mathrm{H}, \mathrm{NH}\right), 4.08(\mathrm{~s}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=$ $11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.48(\mathrm{~m}, 2 \mathrm{H}), 3.48-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.27(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.59(\mathrm{~m}$, 2 H), 2.51-2.44 (m, $J=6.8,5.7,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.24,170.50,99.14,76.78,71.39,42.47,36.12,34.99,32.99$, 29.46, 24.51, 22.11, 18.92, 18.70. Spectroscopic data are consistent with previously reported data. ${ }^{2-3}$ LRMS (ESI) m / z calculated for C14H26N2O4SH ($[\mathrm{M}+\mathrm{H}]^{+}$) 319.16 and ([M-H] $]^{-}$) 317.16, found 319.2, 317.1, respectively.

O,O'-isopropylidene-D-pantothenic acid (17): ${ }^{2}$

To a solution of DMF containing $3.94 \mathrm{~g}(20.7 \mathrm{mmol})$ of $\mathrm{pTsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ and $5 \mathrm{~g}(20.7 \mathrm{mmol})$ of sodium D-pantothenate, $200 \mathrm{~mL}(1.6 \mathrm{~mol})$ of DMP was slowly added. ${ }^{4}$ The reaction was allowed to stir for 12 hours at room temperature. The solvent was removed leaving a white precipitant that was suspended in DCM and filtered. The solvent was removed yielding 17 (crystalline oil, $5.4 \mathrm{~g}, 20.83 \mathrm{mmol} 100 \%$). Spectroscopic data are consistent with previously reported data. ${ }^{2,4}$ LRMS (ESI) m / z calculated for C12H21NO5 $\left([\mathrm{M}+\mathrm{H}]^{-}\right) 258.14$, found 258.1.

oxa(dethia)pantetheine acetonide (11): ${ }^{4}$
To a solution of DCM containing $17(5.9 \mathrm{~g}, 22.75 \mathrm{mmol})$ and TEA ($4 \mathrm{~mL}, 28.68 \mathrm{mmol})$ at $4^{\circ} \mathrm{C}$, ECF ($2.5 \mathrm{~mL}, 26.27 \mathrm{mmol}$) was added slowly. The reaction was allowed to stir for 15 minutes at $4^{\circ} \mathrm{C}$. Then ethanolamine ($2 \mathrm{~mL}, 33.14 \mathrm{mmol}$) was added to the reaction dropwise. The reaction was allowed to stir for 12 hours. The solution was transferred to a separatory funnel. The mixture was diluted with CF and then washed with brine. The organic layer was collected. The brine mixture was back extracted with CF. The organic layers were pooled and dried with anhydrous sodium sulfate. The solvent was removed yielding 11 (off white powder, $5.72 \mathrm{~g}, 18.9 \mathrm{mmol}$ 83.1\%).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.04(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 6.54(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 4.07(\mathrm{~s}, 1 \mathrm{H}), 3.75-3.63$ $(\mathrm{m}, 3 \mathrm{H}), 3.61-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.48-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{t}, J=6.3 \mathrm{~Hz}$, $2 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 171.94, 170.61, 99.17, 76.77, 71.39, 62.20, 42.53, 36.38, 35.00, 32.98, 29.45, 22.12, 18.87, 18.68. LRMS (ESI) m / z calculated for C14H26N2O5H ([M+H] ${ }^{+}$) 303.19, found 303.1.

amino(dethia)pantetheine acetonide (12): ${ }^{5}$
To a solution of DCM containing $17(5 \mathrm{~g}, 19.28 \mathrm{mmol})$ and TEA ($6 \mathrm{~mL}, 28.68 \mathrm{mmol}$) at $4^{\circ} \mathrm{C}$, ECF ($4 \mathrm{~mL}, 28.68 \mathrm{mmol}$) was added slowly. The reaction was allowed to stir for 15 minutes at $4^{\circ} \mathrm{C}$. Then the reaction was slowly added to a solution of DCM containing ethylenediamine (20 $\mathrm{mL}, 300 \mathrm{mmol}$). The reaction was allowed to stir for 12 hours. The solvent was removed and the remaining oil was subjected to flash chromatography ($0 \rightarrow 100 \%$ gradient of $\mathrm{DCM} \rightarrow \mathrm{MeOH}$) affording 12 (oil, $5.2 \mathrm{~g}, 17.25 \mathrm{mmol} 89.5 \%$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.06(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 6.50(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 4.06(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=$ $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.30-3.22(\mathrm{~m}, 3 \mathrm{H}), 2.80(\mathrm{t}, \mathrm{J}=12.7,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{t}, \mathrm{J}=$ $6.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H})$. Spectroscopic data are consistent with previously reported data. ${ }^{5}{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.29,170.22,99.09$, $76.79,71.42,42.07,41.34,36.17,35.01,32.96,29.47,22.13,18.88,18.69$. LRMS (ESI) m / z calculated for $\mathrm{C} 14 \mathrm{H} 27 \mathrm{~N} 3 \mathrm{O} 4 \mathrm{H}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 302.20$, found 302.2 .

Preparation of 13-15 via 10-12:

General procedure
A solution of DCM containing $\mathbf{1 0 - 1 2}$ pyridine was added slowly to a solution of DCM containing bromopropionyl bromide at $4^{\circ} \mathrm{C}$. The reaction was allowed to stir for 12 hours while warming to room temperature. The solution was transferred to a separatory funnel. The solution was washed with brine, copper sulfate, and sodium thiosulfate, repeatedly. The solvent was removed and the remaining red/orange oil was subjected to flash chromatography ($0 \rightarrow 100 \%$ gradient of $\mathrm{DCM} \rightarrow$ acetone or MeOH) affording 13-15.

2-bromopropionyl-S-pantetheine acetonide (13):

$\mathbf{1 0}(9.0 \mathrm{~g}, 28.26 \mathrm{mmol})$ was reacted with pyridine ($19 \mathrm{~mL}, 235.8 \mathrm{mmol}$) and bromopropionyl bromide ($9.5 \mathrm{~mL}, 90.7 \mathrm{mmol}$) according to the general procedure above affording 13 (oil, 1.5 g , $3.31 \mathrm{mmol} 11.7 \%)$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 7.14(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 4.55(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.08(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.38(\mathrm{~m}, 2 \mathrm{H}), 3.27(\mathrm{~d}, \mathrm{~J}=11.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.08(\mathrm{t}, 2 \mathrm{H}), 2.49(\mathrm{t}, \mathrm{J}=15.4,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.84(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.43$ $(\mathrm{s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl} 3$) δ 196.20, 171.36, 169.90, 98.89, 76.97, 71.17, 47.81, 38.70, 35.45, 34.81, 32.79, 29.36, 29.10, 22.04, 21.88, 18.85, 18.63. LRMS (ESI) m / z calculated for $\mathrm{C} 17 \mathrm{H} 29 \mathrm{BrN} 2 \mathrm{O} 5 \mathrm{SH}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 453.10$ and 455.10 , found 453.1 and 455.1.

2-bromopropionyl-oxa(dethia)pantetheine acetonide(14):

11 (2.5 grams, 8.27 mmol) was reacted with pyridine ($2 \mathrm{~mL}, 24.83 \mathrm{mmol}$) and bromopropionyl bromide ($1.5 \mathrm{~mL}, 14 \mathrm{mmol}$) according to the general procedure above affording 14 (oil, 830 mg , $1.90 \mathrm{mmol} 22.9 \%$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 7.20(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 4.43(\mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.25 (t, $J=6.2,5.7 \mathrm{~Hz}, 6 \mathrm{H}), 4.07(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.47$ (m, 4H), 3.27 (d, $\mathrm{J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H})$, $1.02(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.46,169.99,169.94,98.86,76.90$, $71.08,64.13,39.91,37.98,35.47,34.80,32.72,29.27,21.97,21.39,18.75,18.57$. LRMS (ESI) m / z calculated for $\mathrm{C} 17 \mathrm{H} 29 \mathrm{BrN} 2 \mathrm{O} 6 \mathrm{H}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 437.12$ and 439.12 , found 437.1 and 439.1.

2-bromopropionyl-amino(dethia)pantetheine acetonide (15):

$12(5 \mathrm{~g}, 16.59 \mathrm{mmol})$ was reacted with pyridine $(5.5 \mathrm{~mL}, 68.3 \mathrm{mmol})$ and bromopropionyl bromide ($3.6 \mathrm{~mL}, 34.4 \mathrm{mmol}$) according to the general procedure above affording 15 (oil, 510 $\mathrm{mg}, 1.17 \mathrm{mmol} 7.1 \%)$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 7.32(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 7.08(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 4.34(\mathrm{q}$, $J=6.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.38(\mathrm{~m}, 2 \mathrm{H}), 3.33-3.24(\mathrm{~m}$, $6 \mathrm{H}), 3.19(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{t}, J=6.4,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{~s}$, $3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.34,170.66$, 170.35, 99.08, 76.89, 71.27, 60.87, 43.95, 40.14, 35.87, 35.17, 32.89, 29.39, 22.44, 22.07, 18.87, 18.67. LRMS (ESI) m / z calculated for $\mathrm{C} 17 \mathrm{H} 30 \mathrm{BrN3O5H}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 436.14$ and 438.14 , found 436.1 and 438.1.

Preparation of 21-23 via 18-20 via 13-15:

General procedure
A solution of water containing equimolar sodium dithionite and sodium bicarbonate is allowed to stir for 5 minutes, followed by an addition of a solution of water containing 2-bromopropionyl pantetheine acetonide (13-15). The reaction was allowed to stir at room temperature. After stirring for 30 minutes, HPLC-MS analysis indicated complete conversion of bromides (13-15) to sulfinates (18-20). After stirring for 18 hours, sulfinates (18-20) oxidize to sulfonates (21-23)
as indicated by HPLC-MS analysis. The acetonides were deprotected with 15% TFA in water. The resulting solution was subjected to preparative HPLC with a $0 \rightarrow 40 \%$ gradient of 0.1% TFA in water \rightarrow methanol over 30 minutes. Solvent was removed affording 18-20.

2-sulfiniatepropionyl-S-pantetheine acetonide (18):

$13(600 \mathrm{mg}, 1.32 \mathrm{mmol})$ was reacted with sodium dithionite ($1.22 \mathrm{~g}, 7.00 \mathrm{mmol}$) and sodium bicarbonate ($588 \mathrm{mg}, 7.00 \mathrm{mmol}$) according to the general procedure above affording 18 (off white powder which was used directly in the next reaction). MS (ESI) m / z calculated for C17H30N2O7S2 ([M-H $]^{-}$) 437.15, found 437.1.

2-sulfonatepropionyl-S-pantetheine (21):
The deprotection of $\mathbf{1 8}$ yielded $\mathbf{2 1}$ (off white powder, $50 \mathrm{mg}, 0.12 \mathrm{mmol} 9.1 \%, \mathbf{1 3} \rightarrow \mathbf{2 1}$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 4.35(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.43(\mathrm{~m}$, $3 \mathrm{H}), 3.25(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.67(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.51-2.39(\mathrm{~m}, 3 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}$, 3H), 0.84 (s, 3H). ${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) δ 180.08, 174.94, 174.00, 77.12, 75.93, 75.61, $40.72,35.93,35.48,35.34,32.05,21.48,20.62,18.24$. MS (ESI) m/z calculated for C14H26N2O8S2 ([M-H] ${ }^{-}$) 413.11, found 413.0.

2-sulfinatepropionyl-oxa(dethia)pantetheine acetonide (19):

$14(800 \mathrm{mg}, 1.83 \mathrm{mmol})$ was reacted with sodium dithionite $(1.92 \mathrm{~g}, 11.00 \mathrm{mmol})$ and sodium bicarbonate $(924 \mathrm{mg}, 11.00 \mathrm{mmol}$) according to the general procedure above affording 19 (off white powder which was used directly in the next reaction). MS (ESI) m / z calculated for C17H30N2O8S ([M-H] $]^{-}$) 421.17, found 421.1.

2-sulfonatepropionyl-oxa(dethia)pantetheine (22):
The deprotection of $\mathbf{1 9}$ yielded $\mathbf{2 2}$ (off white powder, $140 \mathrm{mg}, 0.35 \mathrm{mmol} 19.1 \%, \mathbf{1 4} \rightarrow \mathbf{2 2}$). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $4.24-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 1 \mathrm{H}), 3.46-3.31(\mathrm{~m}, 5 \mathrm{H}), 3.27(\mathrm{~d}, J=$ $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.39(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{~d}, 3 \mathrm{H}), 0.80(\mathrm{~s}, 3 \mathrm{H}), 0.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 175.01,174.08,170.33,75.76,68.37,64.28,60.50,38.53,38.10,35.35,35.17$, 20.44, 19.03, 12.72. MS (ESI) m/z calculated for C14H26N2O9S ([M-H] ${ }^{-}$) 397.17, found 397.0.

2-sulfinatepropionyl-amino(dethia)pantetheine acetonide (20):
$15(1.0 \mathrm{~g}, 2.29 \mathrm{mmol})$ was reacted with sodium dithionite ($2.1 \mathrm{~g}, 12.0 \mathrm{mmol}$) and sodium bicarbonate ($1.0 \mathrm{~g}, 12.0 \mathrm{mmol}$) according to the general procedure above affording $\mathbf{2 0}$ (off white powder which was used directly in the next reaction). MS (ESI) m/z calculated for C17H31N3O7S ([M-H] $]^{-}$420.19, found 420.1.

2-sulfonatepropionyl-amino(dethia)pantetheine (23):

The deprotection of $\mathbf{2 0}$ yielded $\mathbf{2 3}$ (off white powder, $800 \mathrm{mg}, 2.01 \mathrm{mmol} 87.8 \%, \mathbf{1 5} \rightarrow \mathbf{2 3}$). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 8.36(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), \delta 7.99(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 3.92(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{q}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.50-3.37(\mathrm{~m}, 3 \mathrm{H}), 3.35-3.19(\mathrm{~m}, 5 \mathrm{H}), 2.43(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 0.85(\mathrm{~s}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 174.99,174.07,170.50,75.81$, $68.45,61.10,38.74,38.69,35.52,35.43,29.26,20.68,19.30,13.02$. MS (ESI) m / z calculated for C14H27N3O8S ([M-H] ${ }^{-}$) 396.15, found 396.1.

Preparation of 27-29 via 24-26 via 13-15:
General procedure
To a solution of DMF containing 2-bromopropionyl pantetheine acetonide (13-15), anhydrous phloroglucinol and KNO_{3} were added. ${ }^{6}$ The mixture was allowed to stir for 12 hours at room temperature, over which time a bright yellow-orange color formed. Solvent was removed yielding a yellow oil affording 2-nitropropionyl-pantetheine acetonide (24-26). The acetonides are deprotected with 15% TFA in water. The resulting solution is subjected to preparative HPLC with a gradient of $28 \rightarrow 45 \%$ of 0.1% TFA in water \rightarrow methanol or ACN over 30 minutes. Pooled fractions solvent were removed and dissolved in water. The resulting solution is subjected to preparative HPLC with a gradient of $0 \rightarrow 35 \%$ of 0.1% TFA in water \rightarrow methanol or ACN over 30 minutes. Pooled fractions solvent were removed and dissolved in water. The solvent is removed affording 2-nitropropionyl-pantetheine (27-29)

2-nitropropionyl-S-pantetheine acetonide (24):
13 ($600 \mathrm{mg}, 1.32 \mathrm{mmol}$) was reacted with anhydrous phloroglucinol ($441 \mathrm{mg}, 3.50 \mathrm{mmol}$) and $\mathrm{KNO}_{3}(255 \mathrm{mg}, 3.00 \mathrm{mmol})$ according to the general procedure above. The solvent was removed and the remaining orange oil was subjected to flash chromatography $(0 \rightarrow 100 \%$ gradient of $\mathrm{DCM} \rightarrow$ acetone or MeOH). Solvent was removed affording 24 (orange oil which was used directly in the next reaction). MS (ESI) m/z calculated for C17H29N3O7S ([M+H] $\left.]^{+}\right) 420.17$ and ([M-H] $]^{-}$) 418.17, found 420.1, 418.1, respectively.

2-nitropropionyl-S-pantetheine (27):

The deprotection of $\mathbf{2 4}$ yielded $\mathbf{2 7}$ (light yellow oil, $110 \mathrm{mg}, 0.29 \mathrm{mmol} 22.0 \%, \mathbf{1 3} \rightarrow \mathbf{2 7}$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 3.85(\mathrm{~s}, 1 \mathrm{H}), 3.42-3.22(\mathrm{~m}, 6 \mathrm{H}), 3.06(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{t}, \mathrm{J}$ $=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{~s}, 3 \mathrm{H}), 0.79(\mathrm{~s}, 3 \mathrm{H}), 0.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 194.44$, 175.03, 174.04, 75.72, 68.34, 42.24, 38.57, 38.08, 35.33, 35.14, 28.84, 20.44, 19.06, 15.52. MS (ESI) m / z calculated for $\mathrm{C} 14 \mathrm{H} 25 \mathrm{~N} 3 \mathrm{O} 7 \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 380.14$ and $\left([\mathrm{M}-\mathrm{H}]^{-}\right) 378.14$, found 380.2 , 378.1, respectively.

2-nitropropionyl-oxa(dethia)pantetheine acetonide (25):
$14(650 \mathrm{mg}, 1.49 \mathrm{mmol})$ was reacted with anhydrous phloroglucinol ($188 \mathrm{mg}, 1.49 \mathrm{mmol}$) and $\mathrm{KNO}_{3}(254 \mathrm{mg}, 2.98 \mathrm{mmol})$ according to the general procedure above. The solvent was removed and the remaining orange oil was subjected to flash chromatography $(0 \rightarrow 100 \%$ gradient of $\mathrm{DCM} \rightarrow$ acetone or MeOH). Solvent was removed affording 25 (orange oil which was used directly in the next reaction). MS (ESI) m/z calculated for C17H29N3O8 ([M+H] ${ }^{+}$) 404.20 ([M-$\left.\mathrm{H}]^{-}\right) 402.20$, found $404.2,402.1$, respectively.

2-nitropropionyl-oxa(dethia)pantetheine (28):

The deprotection of $\mathbf{2 5}$ yielded $\mathbf{2 8}$ (light yellow oil, $80 \mathrm{mg}, 0.22 \mathrm{mmol} 14.8 \%, \mathbf{1 4} \rightarrow \mathbf{2 8}$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 4.30-4.13(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 1 \mathrm{H}), 3.38(\mathrm{~m}, 5 \mathrm{H}), 3.26(\mathrm{~d}, 1 \mathrm{H}) 3.08$ $(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{t}, \mathrm{J}=7.0,5.8,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.16(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~s}, 3 \mathrm{H}), 0.76$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 175.06,174.12,167.07,83.58,75.70,68.33,65.40,46.63$, $37.87,35.37,35.15,20.42,19.01,8.18$. MS (ESI) m / z calculated for $\mathrm{C} 14 \mathrm{H} 25 \mathrm{~N} 3 \mathrm{O} 8\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 364.16 and $\left([\mathrm{M}-\mathrm{H}]^{-}\right) 362.16$, found 364.2 and 362.1 , respectively.

2-nitropropionyl-amino(dethia)pantetheine acetonide (26):
$15(510 \mathrm{mg}, 1.17 \mathrm{mmol})$ was reacted with anhydrous phloroglucinol ($151 \mathrm{mg}, 1.20 \mathrm{mmol}$) and $\mathrm{KNO}_{3}(230 \mathrm{mg}, 2.70 \mathrm{mmol})$ according to the general procedure above. The solvent was removed and the remaining orange oil was subjected to flash chromatography $(0 \rightarrow 100 \%$ gradient of $\mathrm{DCM} \rightarrow$ acetone or MeOH). Solvent was removed affording 26 (orange oil which was used directly in the next reaction). MS (ESI) m/z calculated for C17H30N4O7 ([M+H] ${ }^{+}$) 403.21 and ($[\mathrm{M}-\mathrm{H}]^{-}$) 401.21, found 403.2, 401.1, respectively.

2-nitropropionyl-amino(dethia)pantetheine (29):

The deprotection of $\mathbf{2 6}$ yielded $\mathbf{2 9}$ (light yellow oil, $18.7 \mathrm{mg}, 0.05 \mathrm{mmol} 4.3 \%, \mathbf{1 5} \boldsymbol{\rightarrow} \mathbf{2 9}$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 5.28(\mathrm{q}, \mathrm{J}=6.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 1 \mathrm{H}), 3.42-3.34(\mathrm{~m}, 3 \mathrm{H}), 3.33$ $-3.24(\mathrm{~m}, 5 \mathrm{H}), 2.36(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.59(\mathrm{~d}, \mathrm{~J}=6.9,1.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~s}, 3 \mathrm{H}), 0.76(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13}$ C NMR ($126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 175.08,174.15,167.60,84.22,75.74,68.31,48.82,39.02,38.55$, 38.32, 35.26, 20.42, 19.02, 15.04. MS (ESI) m/z calculated for C14H26N4O7 ([M+H] ${ }^{+}$) 363.18 and $\left([\mathrm{M}-\mathrm{H}]^{-}\right) 361.18$, found 363.1, 361.0, respectively.

Chemoenzymatic preparation of 4-9:

General procedure ${ }^{7}$

A solution containing 100 mM Tris (pH 8.0), 10 mM MgCl , $50 \mathrm{mM} \mathrm{NaCl}, 10 \mathrm{mM}$ TCEP (pH 8.0) and $20 \mu \mathrm{M}$ ATP was used to dissolve the malonyl-pantethine analogs 21-23 or 27-29 at a final concentration of $5.5 \mathrm{mM}, \sim 60-150 \mathrm{~mL}$ total. Then CoaA was added to a final concentration of $2.7 \mu \mathrm{M}$ and the reaction allowed to mix at room temperature for 2 hours. Then CoaD was added to a concentration of $5.6 \mu \mathrm{M}$ and allowed to mix at room temperature for 1 hour. Then CoaE was added to a final concentration of $13.1 \mu \mathrm{M}$ and allowed to mix at room temperature overnight. The reaction was quenched with $10 \% \mathrm{TFA}$, precipitating the protein out of solution, which was removed by filtration. Reverse phase HPLC was used to purify the final products using a $0 \rightarrow 20 \%$ gradient of 0.1% TFA in water \rightarrow methanol or ACN over 30 minutes.
Fractions were pooled, rotary evaporated and lyophilized.

2-sulfonatepropionyl-S-CoA (4):

$21(50 \mathrm{mg}, 0.12 \mathrm{mmol}$) was used as starting material to afford 4 (off white powder, $5 \mathrm{mg}, 0.01$ mmol 8.3\%). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 6.12(\mathrm{~d}, \mathrm{~J}=5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.83-4.74(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{~s}, 1 \mathrm{H}), 4.13-4.03(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{dd}, \mathrm{J}=9.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.55(\mathrm{dd}, \mathrm{J}=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.35(\mathrm{~m}, 2 \mathrm{H}), 3.26(\mathrm{~m}, 2 \mathrm{H}), 3.01-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{t}, \mathrm{J}=$ $6.5,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.91-0.69(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta$ $197.55,174.76,174.05,149.86,148.39,144.56,142.39,118.60,87.80,74.34,73.77,73.72$, $71.64,66.95,64.29,38.37,38.30,38.24,35.37,35.16,28.48,20.53,18.59,13.38$. MS (ESI) m/z calculated for $\mathrm{C} 24 \mathrm{H} 40 \mathrm{~N} 7 \mathrm{O} 20 \mathrm{P} 3 \mathrm{~S} 2\left([\mathrm{M}-\mathrm{H}]^{-}\right) 902.10$, found 902.2 .

2-sulfonatepropionyl-oxa(dethia)CoA (5):

$22(100 \mathrm{mg}, 0.25 \mathrm{mmol}$) was used as starting material to afford $\mathbf{5}$ (off white powder, 16.7 mg , $0.02 \mathrm{mmol} 8.0 \%) .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 8.53(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 6.11(\mathrm{~d}, \mathrm{~J}=5.5,1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.86-4.75(\mathrm{~m}, 2 \mathrm{H}), 4.50(\mathrm{~s}, 1 \mathrm{H}), 4.22-4.07(\mathrm{~m}, 4 \mathrm{H}), 3.89(\mathrm{~s}, 1 \mathrm{H}), 3.87-3.81(\mathrm{~m}$, $1 \mathrm{H}), 3.80-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.30(\mathrm{~m}, 4 \mathrm{H}), 2.36(\mathrm{t}, \mathrm{J}=7.0,3.4 \mathrm{~Hz}, 2 \mathrm{H})$, $1.38(\mathrm{dd}, \mathrm{J}=7.0,4.9,1.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.91-0.68(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 174.67$, $174.05,170.19,149.84,148.47,144.62,142.49,118.58,87.52,83.19,74.33,74.06,73.70,72.21$, 64.19, 60.49, 52.57, 38.27, 38.08, 35.35, 35.18, 20.72, 18.07, 12.68. MS (ESI) m/z calculated for C24H40N7O21P3S ([M-H] ${ }^{-}$) 886.12, found 886.0.

2-sulfonatepropionyl-amino(dethia)CoA (6):

23 ($600 \mathrm{mg}, 1.51 \mathrm{mmol}$) was used as starting material to afford $\mathbf{6}$ (off white powder, 56.9 mg , $0.06 \mathrm{mmol} 4.0 \%) .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 6.06(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.83-4.78(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{~s}, 1 \mathrm{H}), 4.22-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~m}$, $1 \mathrm{H}), 3.59-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{~m}, 4 \mathrm{H}), 2.37-2.28(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~d}, \mathrm{~J}=6.7,2.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.81$ $(\mathrm{s}, 3 \mathrm{H}), 0.70(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 174.65,174.08,170.39,149.74,148.37$, 144.67, 142.39, 118.43, 87.46, 83.15, 74.16, 73.69, 72.18, 65.12, 61.04, 38.60, 38.54, 38.29, 35.40, 35.30, 35.26, 20.68, 18.16, 12.70. MS (ESI) m/z calculated for C24H41N8O20P3S ([M-H^{-}) 885.14, found 885.0.

2-nitropropionyl-S-CoA (7):

27 ($110 \mathrm{mg}, 0.29 \mathrm{mmol}$) was used as starting material to afford 7 (off white powder, 63.6 mg , $0.07 \mathrm{mmol} 24.1 \%)$. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 8.48(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 6.06(\mathrm{~d}, \mathrm{~J}=5.9,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.81(\mathrm{t}, \mathrm{J}=5.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{q}, \mathrm{J}=11.7,5.9$
$\mathrm{Hz}, 2 \mathrm{H}$), $3.88(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~d}, \mathrm{~J}=9.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, \mathrm{~J}=9.7 \mathrm{~Hz} 1 \mathrm{H}), 3.32(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}$, 2 H), $3.26(\mathrm{t}, 2 \mathrm{H}), 3.01(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.60(\mathrm{~d}, \mathrm{~J}=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.81$ (s, 3H), $0.70(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) δ 194.37, 174.61, 174.02, 149.74, 148.37, $144.68,142.37,118.42,87.47,83.08,74.43,74.14,73.67,72.23,65.13,38.37,38.31,38.02$, $35.33,35.17,28.82,20.68,18.29,15.51$. MS (ESI) m/z calculated for C24H39N8O19P3S $\left([\mathrm{M}+\mathrm{H}]^{+}\right) 869.13$ and $\left([\mathrm{M}-\mathrm{H}]^{-}\right) 867.13$, found 869.1, 867.0, respectively.

2-nitropropionyl-oxa(dethia)CoA (8):

$28(80 \mathrm{mg}, 0.22 \mathrm{mmol}$) was used as starting material to afford $\mathbf{8}$ (off white powder, $46 \mathrm{mg}, 0.05$ mmol 22.7\%). ${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 8.59(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{br}, 1 \mathrm{H}, \mathrm{NH}), 7.74$ (br, 1H, NH), 5.97-5.83 (m, 1H), $5.65-5.51(\mathrm{~m}, 1 \mathrm{H}), 4.37(\mathrm{~s}, 1 \mathrm{H}), 3.86-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}$, $1 \mathrm{H}), 3.59-5.46(\mathrm{~m}, 1 \mathrm{H}), 3.35-3.28(\mathrm{~m}, 4 \mathrm{H}), 3.24-3.15(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.32-$ $2.18(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 3 \mathrm{H}), 0.70(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO) $\delta 173.14,172.06,166.27,150.90,148.76,146.28,141.84,118.74,87.51,83.64,74.59,73.89$, $73.46,72.46,65.38,39.50,39.33,39.17,37.70,35.45,35.23,21.44,19.28,15.64$. MS (ESI) m/z calculated for $\mathrm{C} 24 \mathrm{H} 39 \mathrm{~N} 8 \mathrm{O} 20 \mathrm{P} 3\left([\mathrm{M}+\mathrm{H}]^{+}\right) 853.15$ and $\left([\mathrm{M}-\mathrm{H}]^{-}\right) 851.15$, found 853.1, 851.1, respectively.

2-nitropropionyl-amino(dethia)CoA (9):

$29(18.7 \mathrm{mg}, 0.05 \mathrm{mmol}$) was used as starting material to afford 9 (off white powder, 23.1 mg , $0.03 \mathrm{mmol} 60 \%) .{ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 8.51(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H}), 6.13-6.04(\mathrm{~m}, 1 \mathrm{H})$, $5.32-5.20(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 1 \mathrm{H}), 4.23-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~d}, \mathrm{~J}=9.5,1 \mathrm{H}), 3.54$ $(\mathrm{d}, \mathrm{J}=9.5,1 \mathrm{H}), 3.35(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.28-3.17(\mathrm{~m}, 4 \mathrm{H}), 2.34(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.56(\mathrm{~d}, \mathrm{~J}$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}), 0.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 174.66,174.16,167.57$, 149.77, 148.39, 144.67, 142.40, 118.44, 87.47, 84.19, 83.22, 74.20, 73.76, 72.10, 65.10, 39.03, 38.35, 38.29, 38.26, 35.38, 35.31, 20.68, 18.31, 15.05. MS (ESI) m/z calculated for C24H40N9O19P3 ([M+H] ${ }^{+}$) 852.17 and ([M-H $\left.]^{-}\right) 850.17$, found 852.7 and 852.6 , respectively.

IV. Extinction Coefficient Determination

The extinction coefficients of 4-6 were assumed to be the same as acetyl-CoA $\left(15.4 \mathrm{mM}^{-1} \mathrm{~cm}^{-1}\right.$ at $\left.\mathrm{A}_{259}\right)^{8}$, as there was no appreciable absorption at 259 nm for the intermediates 18-23. The nitro bearing analog intermediates 24-29 have an absorption with a peak at 318 and 326 nm with some absorption at 259 nm due to the tail of the 318 peak in 10 mM potassium phosphate buffer $\left(\mathrm{KH}_{2} \mathrm{PO}_{4} / \mathrm{K}_{2} \mathrm{HPO}_{4}\right)$ at pH 6.5 . Calculation of an extinction coefficeient was performed at 259 nm for $\mathbf{2 7}$ and use to adjust the extinction coefficient of 7-9. Compound $\mathbf{2 7}$ was measured to 5.0379 mg and dissolved in 1 mL of water $(100 \mathrm{mM})$ buffered to pH 7.0 with Tris: HCl . Measurement of the UV spectrum for a serial dilution of 27 gave an extinction coefficient at 259 nm of $0.997 \pm 0.022 \mathrm{mM}^{-1} \mathrm{~cm}^{-1}$. Addition of the adenine and nitro extinction coefficients yields overall extinction coefficients at 259 nm for 7,8 and 9 of $16.4 \mathrm{mM}^{-1} \mathrm{~cm}^{-1}$.

V. Cloning of coaA, coaD, coaE and $y g f G$ from Escherichia coli

The pBS3080 expression plasmid was used to generate gene fustions with N -terminal hexahistidine tags (His-tag) and Tobacco etch virus protease (TEV) sites as previously described. ${ }^{9}$ Briefly, pBS3080 was digested with BsmFI and purified by gel electrophoresis and the linearized vector was treated with T4 DNA polymerase in the presence of dGTP at $20^{\circ} \mathrm{C}$ for 30 min and then heated at $75^{\circ} \mathrm{C}$ for 20 min to denature the polymerase, affording overhangs
with complementary sequences to clone the PCR-amplified genes. The $c o a A / D / E$ and $y g f G$ genes were amplified by PCR from E. coli DH5 5 genomic DNA using the following primers: coaA-forward 5'-AAAACCTCTATTTCCAG TCGATAAAAGAGCAAACGTTAATGAC-3', coaA-reverse 5'-TACTTACTTAAATG TTATTTGCGTAGTCTGACCTCTTC-3', $c o a D$-forward 5'-AAAACCTCTATTTCCAG TCGCAAAAACGGGCGATTTATCCGG-3', $c o a D$-reverse 5'-TACTTACTTAAATG TTACGCTAACTTCGCCATCAGC-3', $c o a E$-forward 5'-AAAACCTCTATTTCCAG TCGAGGTATATAGTTGCCTTAACGGG-3', coaE-reverse 5'-TACTTACTTAAATG TTACGGTTTTTCCTGTGAGACAAAC-3', $y g f G$-forward 5'-AAAACCTCTATTTCCAG TCGTATCAGTATGTTAACGTTGTC-3', $y g f G$-reverse 5'- TACTTACTTAAATG TTAATGACCAACGAAATTAGGTTTAC-3'.
The PCR products were purified by gel electrophoresis, and similarly treated with T4 DNA polymerase in the presence of dCTP at $20^{\circ} \mathrm{C}$ for 30 min and then heated at $75^{\circ} \mathrm{C}$. The T4 DNA polymerase-treated pBS3080 vector and gene fragments were then mixed at room temperature, annealed on ice for 5 min , and transformed into E. coli $\mathrm{DH} 5 \alpha$. Plasmids containing the appropriate genes were isolated and confirmed by DNA sequencing, yielding expression plasmids for CoaA (pJLHis6T-ecCoaA), CoaD (pJLHis6T-ecCoaD), CoaE (pJLHis6T-ecCoaE) and MMCD-His6 (pJLHis6T-ecYgfG).

Due to incomplete his-tag removal from expressed MMCD in the above construct, we subcloned $y g f G$ as follows. The pBS3080 plasmid was digested with NcoI and XhoI enzymes and purified by gel electrophoresis. The $y g f G$ gene was amplified by PCR from the His-tagged version with the following primers (start/stop codons are bold, NcoI and XhoI cut sites are underlined): $y g f G$-his6-forward 5'-GTACCCATGGCGTATCAGTATGTTAACGTTGTC-3', $y g f G$-his6-reverse 5'-ATCGGAGCTCA TTAATGACCAACGAAATTAGGTTTAC-3'. The PCR product was treated with NcoI and XhoI and purified by gel electrophoresis. The purified product was then ligated into the respectively cut pBS 3080 with T4 DNA ligase and transformed into E. coli $\mathrm{DH} 5 \alpha$. Plasmids containing the appropriate genes were isolated and confirmed by DNA sequencing, yielding an expression plasmid for MMCD (pJL-ecYgfG(S2A)) that generates a protein with a Ser $2 \rightarrow$ Ala mutation.

VI. Expression and Purification of CoaA, CoaD, CoaE and YgfG (MMCD)

CoaA (pJLHis6T-ecCoaA), CoaD (pJLHis6T-ecCoaD), CoaE (pJLHis6T-ecCoaE) and MMCD (pJLHis6T-ecYgfG) were transformed into E. coli BL21 (DE3), and the resultant recombinant strains were grown overnight in 50 mL of LB and $50 \mu \mathrm{~g} / \mathrm{mL}$ kanamycin. A 5 mL aliquot of the overnight culture was used to inoculate 1 L of LB containing 10 mM MgCl 2 and $50 \mu \mathrm{~g} / \mathrm{mL}$ kanamycin, which was incubated at $37^{\circ} \mathrm{C}$ while being shaken at 180 rpm . Once the OD_{600} reached $\sim 0.5-0.6$, the temperature was reduced to $18{ }^{\circ} \mathrm{C}$. Once the cultures reached thermal equilibrium, gene expression was induced by the addition of isopropyl β-d-thiogalactopyranoside with a final concentration of $500 \mu \mathrm{~g} / \mathrm{mL}$, with incubation for an additional 16 hours. E. coli cells were harvested by centrifugation at 6300 rpm and $4^{\circ} \mathrm{C}$ for 30 min .
E. coli cell pellets, carrying CoaA, CoaD, CoaE and MMCD were re-suspended in lysis buffer [1 $\mu \mathrm{g} / \mathrm{mL}$ DNase, $300 \mathrm{mM} \mathrm{NaCl}, 20 \mathrm{mM}$ imidazole, 10% glycerol, and 20 mM Tris- HCl (pH 8.0)], sonicated ($60 \times 1 \mathrm{~s}$ on ice), and clarified by centrifugation at 11000 rpm and $4^{\circ} \mathrm{C}$ for 30 min . The supernatant was filtered applied to a 5 mL HisTrap HP (GE Healthcare,) and washed with lysis buffer using an Äkta pure fast-performance liquid chromatography system (GE Healthcare,).

Wash buffer [$300 \mathrm{mM} \mathrm{NaCl}, 40 \mathrm{mM}$ imidazole and 20 mM Tris- $\mathrm{HCl}(\mathrm{pH} 8.0)$] was used to remove additional contaminants, and proteins were eluted with wash buffer containing 500 mM imidazole. At this point the purity of CoaA, CoaD and CoaE from the fractions was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Pure fractions were pooled, concentrated, buffer-exchanged into 10 mM Tris- $\mathrm{HCl}(\mathrm{pH} 8.0)$ and 200 mM NaCl , frozen in small aliquots with liquid nitrogen, and stored at $-80^{\circ} \mathrm{C}$. MMCD-His6 was bufferexchanged into 10 mM Tris- $\mathrm{HCl}(\mathrm{pH} 8.0)$ and 200 mM NaCl and further purified using size exclusion chromatography HiLoad 26/600 Superdex 200pg (GE Healthcare) in the same buffer. The purity of the protein from the fractions was analyzed by SDS-PAGE. Pure fractions were pooled, concentrated via filtration and final concentration determined using calculated extinction coefficients at 280 nm . The proteins were frozen in small aliquots with liquid nitrogen, and stored at $-80^{\circ} \mathrm{C}$.

MMCD(S2A) expressed from pJL-ecYgfG(S2A) was subjected to similar cell lysis, sonication, and clarity by centrifugation as above. The supernatant was slowly mixed with $15 \% \mathrm{w} / \mathrm{v}$ ammonium sulfate for 30 minutes at $4^{\circ} \mathrm{C}$. The sample was clarified by centrifugation at 11000 rpm and $4{ }^{\circ} \mathrm{C}$ for 30 min . The supernatant was slowly mixed with an additional $20 \% \mathrm{w} / \mathrm{v}(35 \%$ w / v total) ammonium sulfate for 30 minutes at $4{ }^{\circ} \mathrm{C}$. The sample was clarified by centrifugation at 11000 rpm and $4^{\circ} \mathrm{C}$ for 30 min . The supernatant was filtered, buffer-exchanged into 10 mM Tris- $\mathrm{HCl}(\mathrm{pH} 8.0)$ and 200 mM NaCl and loaded onto a 5 mL HiTrap Q HP (GE Healthcare,). A linear gradient over 12 column volumes from 0 to 70% buffer B [50 mM Tris- $\mathrm{HCl}(\mathrm{pH} 8.5)$ and $1.0 \mathrm{M} \mathrm{NaCl}]$ was used to elute the proteins. The pooled fractions were buffer-exchanged into 10 mM Tris- $\mathrm{HCl}(\mathrm{pH} 8.0)$ and 200 mM NaCl and further purified using size exclusion chromatography HiLoad 26/600 Superdex 200pg (GE Healthcare). The purity of the protein from the fractions was analyzed by SDS-PAGE. Pure fractions were pooled, concentrated via filtration and final concentration determined using calculated extinction coefficients at 280 nm . The protein was frozen in small aliquots with liquid nitrogen, and stored at $-80^{\circ} \mathrm{C}$.
VII. Crystallization, X-ray Crystallographic Collection and Refinement of MMCD

MMCD(S2A) was screened against 384 crystallization conditions in 500 nL sitting drops at 20 ${ }^{\circ} \mathrm{C}$, set up with a Mosquito (TTPlabtech, Melbourne, Australia) to find initial conditions. $\operatorname{MMCD}(\mathrm{S} 2 \mathrm{~A})[23 \mathrm{mg} / \mathrm{mL}$ in 10 mM Tris- $\mathrm{HCl}(\mathrm{pH} 8.0)$ and 200 mM NaCl$], 10 \mathrm{mM} 4-9$ and 10 $\mu \mathrm{M} \mathrm{NiSO} 4\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}(\mathrm{Ni}$ omitted in solution with compound 5$)$ were screened by the hanging drop method over 1.0 mL wells containing $0-5 \%$ PEG $400,50-200 \mathrm{mM} \mathrm{NaCl}, 0.4 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4} / 1.6 \mathrm{M}$ $\mathrm{K}_{2} \mathrm{HPO}_{4}$, and 0.1 M imidazole (pH 8.0) in $4 \mu \mathrm{~L}$ drops (1:1, protein:well and 3:1, protein:well), which produced crystals in conditions with less than or equal to 4% PEG 400.

Crystals were looped and frozen directly out of the drops with liquid nitrogen. X-ray diffraction data for all datasets were collected at Advanced Photon Source LS-CAT beamline 21-ID-G (PDB: 6N92, 6N93, and 6N94) at a wavelength of 0.97856 , beamline 21-ID-F (PDB: 6N95 and 6N97) at a wavelength 0.97872 , and beamline 21-ID-D (PDB: 6N96) at a wavelength 0.97849 . Diffraction intensities were integrated, reduced, and scaled using HKL2000, ${ }^{10}$ with data collection and refinement statistics listed in Table 1. Molecular replacement with the program Phaser was used to phase our initial structure of MMCD with 7 (PDB: 6N92) based off PDB 1EF8 coordinates. The remaining structures of MMCD with 4-6 (PDB: 6N95, 6N96, and 6N97) and 8-9 (PDB: 6N93 and 6N94) were solved by isomorphous replacement from 7 (PDB: 6N92).

Refinement was conducted using Refmac ${ }^{11}$ in the CCP4i package ${ }^{12}$ with automated model building performed with ARP/wARP ${ }^{13}$ and manual model building with Coot. ${ }^{14}$

VIII. MMCD Enzymatic Assays, pH rate profile and K_{i} determination

General procedure for MMCD-His6 catalyzed activity assays. The reactions were performed in a $550 \mu \mathrm{~L}$ reaction mixture which contained 50 mM potassium phosphate buffer $\left(\mathrm{KH}_{2} \mathrm{PO}_{4} / \mathrm{K}_{2} \mathrm{HPO}_{4}\right)$ at pH 6.5 unless otherwise noted, $10 \mathrm{mM} \mathrm{MgCl}_{2}$, methylmalonyl-CoA and the assay was initiated by the addition of MMCD. Reaction mixtures were incubated at $25^{\circ} \mathrm{C}, 65$ $\mu \mathrm{L}$ aliquots taken at times noted below were quenched with $25 \mu \mathrm{~L}$ of $50 \% \mathrm{TFA} \mathrm{v} / \mathrm{v}$, precipitating the protein. Centrifugation at 2000 rpm at $25^{\circ} \mathrm{C}$ for 10 minutes was used to pellet the protein and the supernatant was analyzed via the procedure outlined below.

General procedure for determination of methylmalonyl-CoA, propionyl-CoA and CoA concentrations in MMCD catalyzed assays. Substrate and product concentrations were determined using HPLC with detection at A254 over the $250 \times 4.6 \mathrm{~mm}$ C18(2) column. The analytes were separated with a $2 \rightarrow 25 \%$ gradient of 0.1% TFA in water \rightarrow ACN over 20 min . Peak areas of substrate and products were converted to concentration by summing their areas and dividing each peak by this total to give relative percentages that were converted to concentration by adjusting to the starting concentration of methylmalonyl-CoA. This procedure gave essentially the same values as using a standard curve to generate concentrations for each peak, but enhanced reproducibility due to small differences in recovery from the reaction quenching step outlined above.

The pH rate profile was performed according to the general procedure above with 50 mM potassium phosphate buffer $\left(\mathrm{KH}_{2} \mathrm{PO}_{4} / \mathrm{K}_{2} \mathrm{HPO}_{4}\right)$ at $\mathrm{pH} 4.5,5.0,5.5,6.0,6.5,7.0,7.5,8.0,8.5,9.0$, and $9.5,500 \mu \mathrm{M}$ methylmalonyl-CoA, and reactions were initiated by the addition of 5 nM MMCD. Aliquots were taken at the times $30 \mathrm{~s}, 50 \mathrm{~s}, 70 \mathrm{~s}, 100 \mathrm{~s}, 130 \mathrm{~s}, 190 \mathrm{~s}, 310 \mathrm{~s}$, and 910 s .

Inhibition assays of MMCD by 4-9 were performed according to the general procedure above with $200 \mu \mathrm{M}$ methylmalonyl-CoA, $4-9(0 \mu \mathrm{M}, 2 \mu \mathrm{M}, 5 \mu \mathrm{M}, 20 \mu \mathrm{M}$, and $50 \mu \mathrm{M})$ and the assay was initiated by the addition of 1 nM MMCD. Aliquots were taken at the times $20 \mathrm{~s}, 40 \mathrm{~s}, 60 \mathrm{~s}$, $150 \mathrm{~s}, 300 \mathrm{~s}, 600 \mathrm{~s}, 900 \mathrm{~s}$, and 1800 s .

The initial rates $\left(V_{i}\right)$ of decomposition of methylmalonyl-CoA were determined by fitting the progress curve data to equation (1) which describes a simple exponential decay with rate (k), time (t) and initial substrate concentration $\left([\mathrm{S}]_{\mathrm{t}}\right)$, see Figure S 5 for a representative fit. The rate of formation of propionyl-CoA or CoA could be fit to equation (2). The derivative at time 0 for Equation (1) divided by enzyme concentration gives the initial rates V_{i} as shown in equation (3). Using this method rather than linear estimation from the early data points gave similar values. However, it allowed more accurate determination of V_{i} at early time points.

$$
\begin{array}{ll}
\text { Equation (1) } & {[\mathrm{S}]=[\mathrm{S}]_{t} \cdot e^{-k \cdot t}} \\
\text { Equation (2) } & {[\mathrm{S}]=[\mathrm{S}]_{t} \cdot\left(1-e^{k \cdot t}\right)} \\
\text { Equation (3) } & V_{i}=\left([S]_{t} \cdot k\right) /[E]
\end{array}
$$

Initial rate data for the pH rate profile was fit to equation (4) to determine the pK_{a} of a single titratable group for the decomposition of methylmalonyl-CoA and appearance of propionyl-CoA. Equation (5) describes two titratable groups and was used to fit appearance of CoA.

$$
\begin{aligned}
& \text { Equation (4) } \quad V_{i}=\frac{V_{\max }}{1+10^{p H-p K_{\mathrm{a}}}} \\
& \text { Equation (5) } \quad V_{i}=\frac{V_{\max }}{\left(1+10^{p K_{\mathrm{a} 1}-p H}+10^{p H-p K_{\mathrm{a} 2}}\right)}
\end{aligned}
$$

Inhibition of MMCD by 4-9 was determined by fitting initial rate data to equation (6), which describes competitive inhibition and $V_{i i}$ describes the V_{i} in the presence of inhibitor. ${ }^{15}$ The values of $\left(V_{i i} \cdot V_{i s}\right) /\left(V_{i i}-V_{i s}\right)$ and $\mathrm{K}_{\mathrm{m}} / k_{c a t}$ were determined from the initial slopes of V_{i} or $V_{i i}$ versus substrate concentration rather than from the full assay, see Figures S5 and S9. A minimum of two concentrations were used, 20 or $50 \mu \mathrm{M}$ of each 4-9 and the experiments were repeated at least twice.

$$
\text { Equation (6) } \quad \mathrm{Ki}_{\mathrm{i}}=\frac{V_{i i} \cdot V_{i s}}{V_{i i}-V_{i s}} \cdot \frac{[I]}{[E] \cdot[S]} \cdot \frac{\mathrm{K}_{\mathrm{m}}}{k_{c a t}}
$$

SI References

1. Ma, M.; Lohman, J. R.; Liu, T.; Shen, B., C-S bond cleavage by a polyketide synthase domain. Proc. Natl. Acad. Sci. U.S.A. 2015, 112 (33), 10359-64.
2. Crawford, J. M.; Dancy, B. C.; Hill, E. A.; Udwary, D. W.; Townsend, C. A., Identification of a starter unit acyl-carrier protein transacylase domain in an iterative type I polyketide synthase. Proc. Natl. Acad. Sci. U.S.A. 2006, 103 (45), 16728-33.
3. Agarwal, V.; Diethelm, S.; Ray, L.; Garg, N.; Awakawa, T.; Dorrestein, P. C.; Moore, B. S., Chemoenzymatic Synthesis of Acyl Coenzyme A Substrates Enables in Situ Labeling of Small Molecules and Proteins. Org. Lett. 2015, 17 (18), 4452-5.
4. Tosin, M.; Spiteller, D.; Spencer, J. B., Malonyl carba(dethia)- and malonyl oxa(dethia)coenzyme A as tools for trapping polyketide intermediates. Chembiochem 2009, 10 (10), 171423.
5. Li, H. J.; Li, X.; Liu, N.; Zhang, H.; Truglio, J. J.; Mishra, S.; Kisker, C.; Garcia-Diaz, M.; Tonge, P. J., Mechanism of the intramolecular Claisen condensation reaction catalyzed by MenB, a crotonase superfamily member. Biochemistry 2011, 50 (44), 9532-44.
6. Kornblum, N.; Blackwood, R. K.; Powers, J. W., A New Synthesis of α-Nitroesters. J. Am. Chem. Soc. 1957, 79 (10), 2507-2509.
7. Strauss, E.; Begley, T. P., The antibiotic activity of N-pentylpantothenamide results from its conversion to ethyldethia-coenzyme a, a coenzyme a antimetabolite. J. Biol. Chem. 2002, 277 (50), 48205-9.
8. The National Academies Press. Specifications and Criteria for Biochemical Compounds, Third ed.: Washington, DC, 1972.
9. Lohman, J. R.; Bingman, C. A.; Phillips, G. N., Jr.; Shen, B., Structure of the bifunctional acyltransferase/decarboxylase LnmK from the leinamycin biosynthetic pathway revealing novel activity for a double-hot-dog fold. Biochemistry 2013, 52 (5), 902-11.
10. Otwinowski, Z.; Minor, W., Processing of X-ray diffraction data collected in oscillation mode. Meth. Enzymol. Macromolecular Crystallography, Pt A 1997, 276, 307-326.
11. Murshudov, G. N.; Vagin, A. A.; Dodson, E. J., Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 1997, 53 (Pt 3), 240-55.
12. Winn, M. D.; Ballard, C. C.; Cowtan, K. D.; Dodson, E. J.; Emsley, P.; Evans, P. R.;

Keegan, R. M.; Krissinel, E. B.; Leslie, A. G.; McCoy, A.; McNicholas, S. J.; Murshudov, G. N.; Pannu, N. S.; Potterton, E. A.; Powell, H. R.; Read, R. J.; Vagin, A.; Wilson, K. S., Overview of the CCP4 suite and current developments. Acta Crystallogr. D 2011, 67 (Pt 4), 235-42.
13. Langer, G.; Cohen, S. X.; Lamzin, V. S.; Perrakis, A., Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 2008, 3 (7), 1171-9. 14. Emsley, P.; Lohkamp, B.; Scott, W. G.; Cowtan, K., Features and development of Coot. Acta Crystallogr. D 2010, 66 (Pt 4), 486-501.
15. Lu, J.; Dong, Y.; Ng, E. C.; Siehl, D. L., Novel form of the Michaelis-Menten equation that enables accurate estimation of $(\mathrm{kcat} / \mathrm{KM}) * \mathrm{KI}$ with just two rate measurements; utility in directed evolution. Protein Eng. Des. Sel. 2017, 30 (5), 395-399.

SI Tables

Table S1. Statistics of Data Collection, Processing and Refinement

MMCD +	4	5	6	7	8	9
Data collection						
Wavelength	0.97872	0.97849	0.97872	0.97856	0.97856	0.97856
Total reflections	1311297	1174981	1242089	1473722	1256192	1422149
Unique reflections	178862	191624	189024	213244	203268	194971
Space group	$\mathrm{P} 2{ }_{12}{ }_{1}{ }_{1}$	$\mathrm{P} 21_{2} 2_{1}$				
Cell dimensions						
$a, b, c(\AA)$	$\begin{gathered} 86.93,114.42, \\ 193.43 \end{gathered}$	$\begin{gathered} 87.15,114.66 \\ 192.70 \end{gathered}$	$\begin{gathered} 86.96,114.61 \\ 192.34 \end{gathered}$	$\begin{gathered} 87.01,114.32 \\ 194.35 \end{gathered}$	$\begin{gathered} 87.18,114.65 \\ 194.55 \end{gathered}$	$\begin{gathered} \hline 87.05,114.82, \\ 193.73 \end{gathered}$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	90.0, 90.0, 90.0	90.0, 90.0, 90.0	90.0, 90.0, 90.0	90.0, 90.0, 90.0	90.0, 90.0, 90.0	90.0, 90.0, 90.0
Resolution (\AA)	30.00-1.80	30.00-1.70	30.00-1.75	30.00-1.70	30.00-1.70	30.00-1.75
$\mathrm{R}_{\text {merge }}$	0.165 (1.395)	0.105 (0.840)	0.093 (1.018)	0.117 (0.813)	0.110 (1.192)	0.125 (1.489)
$\mathrm{R}_{\text {meas }}$	0.177 (1.503)	0.108 (0.914)	0.101 (1.102)	0.122 (0.874)	0.119 (1.303)	0.135 (1.604)
$I / \sigma(I)$	46.7 (3.5)	185.7 (20.1)	121.8 (7.4)	69.5 (4.1)	34.5 (2.1)	39.9 (2.1)
$C C_{1 / 2}$	0.991 (0.617)	0.995 (0.724)	0.997 (0.788)	0.994 (0.793)	0.992 (0.544)	0.995 (0.599)
CC*	0.998 (0.873)	0.999 (0.917)	0.999 (0.939)	0.999 (0.941)	0.998 (0.839)	0.999 (0.865)
Completeness (\%)	100.0 (100.0)	90.8 (90.7)	97.5 (94.9)	99.7 (100.0)	94.0 (93.8)	100.0 (100.0)
Redundancy	7.3 (7.2)	6.1 (5.7)	6.6 (6.5)	6.9 (6.7)	6.2 (5.9)	7.3 (7.3)
Wilson B-factor	22.2	10.8	19.9	11.4	10.9	17.8
Refinement						
Resolution (\AA)	20.0-1.80	29.96-1.70	30.0-1.75	29.4-1.70	28.68-1.70	29.29-1.75
No. reflections	178638	177529	179523	199274	177818	175192
$R_{\text {work }}$	0.1593	0.1509	0.1475	0.1509	0.1545	0.1457
$R_{\text {free }}$	0.1922	0.1839	0.1794	0.1841	0.1838	0.1777
No. atoms						
Protein	12715	12692	12940	12856	12854	12823
Ligands	470	415	448	585	472	550
B-factors						
Protein	25.5	15.7	25.4	16.6	16.6	22.1
Ligands	39.0	26.4	40.2	32.0	41.2	39.5
Water	36.7	27.6	36.2	29.1	28.9	33.8
Ramachandran outliers	6	10	6	9	10	6

SI Figures

Figure S1. Omit maps for 4-9 bound to MMCD. Stereoimages of sigmaA weighted $\mathrm{mF}_{\mathrm{o}}-\mathrm{DF}_{\mathrm{c}}$ omit maps. The green mesh is contoured at $+3 \sigma$ an the red mesh is at -3σ shown for a $5 \AA$ region around the ligand. The ligand is denoted in each title and the letters correspond to each monomer in the deposited PDBs.

Figure S2. Pyruvate oxime degradation product of $\mathbf{7}$ and $\mathbf{8}$. Stereoimage of the pyruvate oxime degradation product from the structure of $\mathbf{8}$ bound to MMCD in chain F. The same ligand is found in the structure of MMCD bound to 7 in chain F . SigmaA weighted $\mathrm{mF}_{\mathrm{o}}-\mathrm{DF}_{\mathrm{c}}$ omit map for the oxime shown in green at $+3 \sigma$ and red at -3σ within $4 \AA$, with the sigmaA weighted $2 \mathrm{mF}_{\mathrm{o}}-\mathrm{DF}_{c}$ map shown in blue at 1σ for the surrounding ligands. Residues from chain F are in black and the Ni ion is shown as a gray sphere. The Lys 60 ' residue in white is from a symmetry mate.

Figure S3. Alternative His66 sidechain conformations. Stereoimages of MMCD active site comparisons. A) Binding of 2 from PDB 1EF9 in green compared to $\mathbf{4}$ from chain A in black revealing rotation of His66 towards the putative enolate as mimicked by the carboxylate of 2. B) The position of His66 has two positions dependent on protonation state as revealed by an overlay of MMCD with $\mathbf{4}$ bound in chain A in black (protonated His66, interactions shown in red dashes) and chain C in white (neutral His66, interactions shown in blue dashes). Notice that Ile68 changes conformation, which likely changes the affinity for CoA between the protonation states. C) Interaction of His66 with a water (shown as a large sphere, with the His66 interaction shown with magenta dashes) in the active site and alternative positions of the isosteres from MMCD with 7 bound in chain A in black and chain C in white. Notice that the His66 backbone changes significantly between the two states. Not shown is that Ile68 and Leu71 also change position significantly to accommodate the 7 in the orientation in chain C .

Figure S4. Example HPLC traces of $\mathbf{1}$ and MMCD products. HPLC chromatograms of A) standards and B) an experiment showing 5 nM MMCD activity on $200 \mu \mathrm{M}(R / S)$ -methylmalonyl-CoA at pH 6.5 over time.

Figure S5. Kinetic trace for (R / S)-methylmalonyl-CoA decomposition by MMCD. Data is from Figure S4B. Substrate (R / S)-methylmalonyl-CoA data is shown in blue and circles, decarboxylation product propionyl-CoA is in dark green squares and hydrolysis produdet CoA is in red Xs. Solid lines represent fitting of the data to equations (1) or (2). The blue dashes represent a V_{i} of $0.171 \mu \mathrm{M} \mathrm{s}^{-1}$ for (R / S)-methylmalonyl-CoA decomposition, green dashes represent a V_{i} of $0.163 \mu \mathrm{M} \mathrm{s}^{-1}$ for propionyl-CoA production and red dashes represent a V_{i} of $0.051 \mu \mathrm{M} \mathrm{s}^{-1}$ for CoA production.

Figure S6. MMCD pH rate profile. Initial rates of methylmalonyl-CoA decomposition is designated by blue circles for data points and blue line is fit to data. Initial rate of propionyl-CoA formation is designated by green squares and dark green line is fit to data. Initial rate of CoA formation is designated by red Xs and red line is fit to data. Starting methylmalonyl-CoA substrate concentration is $500 \mu \mathrm{M}$, and enzyme concentration is 5 nM .
A

Figure S7. Alternative mechanisms for hydrolysis and decarboxylation. A) Hydrolysis via activation of water in the oxyanion hole of His66 and Gly 110. The thioester tetrahedral intermediate is stabilized by the protonated His66 side chain. B) Hydrolysis via rearrangement of water and the methylmalonyl group. The water is deprotonated by His66 allowing attack on the activated thioester carbonyl. C) Alternative mechanism for decarboxylation via bicarbonate formation. Rearrangement of the water and methylmalonyl group leads to activation of the water for attack on the carboxylate. This mechanism is disfavored, as there was little evidence for a water molecule being retained in the active site upon binding of 9 .

Figure S8. Potential allosteric site with partial binding of phospho-adenosine. Stereoimages of sigmaA weighted $\mathrm{mF}_{o}-\mathrm{DF}_{\mathrm{c}}$ omit maps contoured at $+2.5 \sigma$ in green or -2.5σ in red in a within $3 \AA$ of the partial ligand. The ligand in the catalytic site is designated along with a $\operatorname{Trp} 108$ which interacts with both. A) Chain F of MMCD with $\mathbf{8}$ bound. B) Chain C of MMCD with $\mathbf{6}$ bound. The partial allosteric ligand is also found in MMCD with $\mathbf{5}$ bound (chains C and F), $\mathbf{6}$ bound (chains C, E and F), 7/8/9 bound (chains C, E and F) with variable occupancy.

Figure S9. Representative data for inhibition of MMCD activity by 4-9. Initial rate analysis to determine K_{i} of 4 . Solid lines are fit of data without 4, dotted lines (boxed Xs are data) are in the presence of $20 \mu \mathrm{M} 4$ and dashed lines (open diamonds are data) are for $50 \mu \mathrm{M} \mathrm{4}$, and all experiments were done at $200 \mu \mathrm{M}(2 R / S)$-methylmalonyl-CoA. The blue lines are the fit of equation (1) for the disappearance of $(2 R / S)$-methylmalonyl-CoA (open circles for no 4$)$ and the green lines are the fit of equation (2) for the appearance of propionyl-CoA (open squares for no 4).

10
${ }^{13} \mathrm{C}$ in CDCl_{3}

[^0]

10
COSY and HMQC in CDCl_{3}

11
COSY and HMQC in CDCl_{3}

12
COSY and HMQC in CDCl_{3}

13
COSY and HMQC in CDCl_{3}

14
${ }^{1} \mathrm{H}$ in CDCl_{3}

14
COSY and HMQC in CDCl_{3}

15
COSY and HMQC in CDCl_{3}

21
COSY and HMQC in $\mathrm{D}_{2} \mathrm{O}$

(1)

22
COSY and HMQC in $\mathrm{D}_{2} \mathrm{O}$

23
COSY and HMQC in $\mathrm{D}_{2} \mathrm{O}$

27
COSY and HMQC in $\mathrm{D}_{2} \mathrm{O}$

28
COSY and HMQC in $\mathrm{D}_{2} \mathrm{O}$

29
COSY and HMQC in $\mathrm{D}_{2} \mathrm{O}$

${ }^{1} \mathrm{H}$ in $\mathrm{D}_{2} \mathrm{O}$

O-

COSY and HMQC in $\mathrm{D}_{2} \mathrm{O}$

[^0]: 220 210 00

 180 170
 $150 \quad 1$
 130
 120
 110
 $\mathrm{f} 1(\mathrm{ppm})$
 90
 80
 $70 \quad 6$

 - 40

 10
 10
 1

