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uncertainty for different SNR with M = 7 and w = 3T . Blue, green, and
red correspond to SNR of 30, 20, and 10 dB, respectively. (b) Zoomed
version of (a) to show the mean values. (c) Localization uncertainty for
different numbers of detectors M with 30 dB noise and w = 3T . Red,
green, and blue correspond to M = 7, M = 31, and M = 50. (d) Enlarged
version of (c) to show the mean values. (e) Localization uncertainty for
different window lengths w, 30 dB SNR, and M = 7. Red, green, and
blue correspond to windows w = 32T , 17T , and 2T , where T = 0.19 ns
and tmax = 64T . (f) Enlarged version of (e) to show the mean values.
The ellipses are not circles because the fluorescent inhomogeneity is not
located at the center of the medium and equidistant to all detectors. Note
that the fluorescent inhomogeneity can be accurately localized even with
low SNR, few detectors, and a short window w. . . . . . . . . . . . . . . . 44



xi

Figure Page

4.1 The simulated measurement arrangement has a plane wave incident from
the top, with the free-space wavelength as λ = 1.5µm. Two dielectric
slabs act as partially reflecting mirrors and form a low-Q cavity with a
length of 2.7λ (inner face-to-face distance). An object comprised of a thin
film on top of a substrate, and a total thickness of T = λ/5, is located
in this cavity and moved vertically upwards in nm-scale increments. As
the object is translated in the cavity to a set of positions, the power is
measured at the detector plane, located 0.4λ below the bottom surface of
the lower mirror. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Measured power flow against object position for different film parameters.
The end-to-end length of the error bars is equal to 4σ, calculated with an
SNR of 30 dB. (a) Film with L = 0.005λ and varying refractive indices,
n. (b) Film with n = 2.00 and different thicknesses, L. (c) Expanding
the scale in (a), the red curve uses S(∆y;L, 1.95) as a reference by setting
it to zero, and the blue curve gives [S(∆y;L, 2.00) − S(∆y;L, 1.95)]. (d)
Expanding the scale in (b), the red curve shows S(∆y; 0.005λ, n) as a
reference (zero), and the blue curve [S(∆y; 0.007λ, n)− S(∆y; 0.005λ, n)]. 50

4.3 Calculated costs for a thin film substrate by comparing the simulated noisy
experimental measurements with forward calculations of different film con-
figurations without multiresolution (top left), and with multiresolution
(starting from top right and following the arrows). The film substrate used
in the simulated experiment has a film thickness Lt = 0.006λ and refrac-
tive index nt = 1.72. Without multiresolution, forward calculations were
made for different combinations of film thicknesses L ∈ [0.002λ, 0.022λ]
with step increments of 0.002λ, and refractive indices n ∈ [1.62, 1.98] with
step increments of 0.04, resulting in an 11x11 grid. The cost is minimized
at the correct parameters where L̂ = 0.006λ and n̂ = 1.72. When using a
multiresolution approach, forward calculations were made on a coarse 5x5
grid with a significantly increased range of values of L ∈ [0.002λ, 0.13λ]
and n ∈ [1, 3.56]. The cost is calculated iteratively on zoomed in regions of
interest (following the arrows) that encompasses the the point of minimum
cost. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



xii

Figure Page

4.4 500 independent measurements were made at different SNR values to cal-
culate a distribution of reconstructed values of L/1000λ and n, represent-
ing uncertainty in the reconstruction of thin film parameters. (a) Box plots
of the distribution of reconstructed film thicknesses for different SNR val-
ues. Note that the y-axis is on the scale of 10−3. (b) Box plots of the
distribution of reconstructed refractive indices. The top edge of the box
represent the upper quartile of the reconstructed values, and the bottom
edge represent the lower quartile. The whiskers extend to the upper and
lower extremes, and the red dots represent outliers. In both plots, the
median (red dashed line) obtained from the set of reconstructed values is
equal to the the true film thickness and refractive index, Lt and nt. . . . . 55

4.5 Minimum detectability of very thin films with low index contrast relative
to the optical properties of the slab. The region to the right and above
of each curves represent detectability above 99.99% for when a thin film
is present from noisy measurement data. (a) The dashed black, solid red,
and dashed-dotted blue curves correspond to 35 dB, 30 dB, and 25 dB,
respectively. (b) At a SNR = 30 dB, the solid red, dashed black, and
dashed-dotted blue curves correspond to when the number of positions,
K, equals 21, 11, 5, respectively. . . . . . . . . . . . . . . . . . . . . . . . 57



xiii

ABSTRACT

Lin, Dergan , Purdue University, December 2019. Super-Resolution Imaging and
Characterization. Major Professor: Kevin J. Webb.

Light in heavily scattering media such as tissue can be modeled with a diffusion

equation. A diffusion equation forward model in a computational imaging frame-

work can be used to form images of deep tissue, an approach called diffuse optical

tomography, which is important for biomedical studies. However, severe attenuation

of high-spatial-frequency information occurs as light propagates through scattering

media, and this limits image resolution. Here, we introduce a super-resolution ap-

proach based on a point emitter localization method that enables an improvement in

spatial resolution of over two orders of magnitude. We demonstrate this experimen-

tally by localizing a small fluorescent inhomogeneity in a highly scattering slab and

characterize the localization uncertainty. The approach allows imaging in deep tissue

with a spatial resolution of tens of microns, enabling cells to be resolved.

We also propose a localization-based method that relies on separation in time

of the temporal responses of fluorescent signals, as would occur with biological re-

porters. By localizing each emitter individually, a high-resolution spatial image can

be achieved. We develop a statistical detection method for localization based on tem-

poral switching and characterization of multiple fluorescent emitters in a tissue-like

domain. By scaling the spatial dimensions of the problem, the scope of applications

is widened beyond tissue imaging to other scattering domains.

Finally, we demonstrate that motion of an object in structured illumination and

intensity-based measurements provide sensitivity to material and subwavelength-scale-

dimension information. The approach is illustrated as retrieving unknown parameters



xiv

of interest, such as the refractive index and thickness of a film on a substrate, by uti-

lizing measured power data as a function of object position.
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1. INTRODUCTION

1.1 Super-Resolution Diffuse Optical Imaging

The interaction of light with tissue has received intense study due to a myriad of

applications in biomedical science [1–4]. Near the tissue surface, coherent methods

enable imaging with a spatial resolution at the diffraction limit [5–7]. However, in

deep tissue, where the propagation direction of light is randomized due to optical

scattering, forming an image becomes a much greater challenge.

Deep-tissue imaging is achievable with diffuse optical imaging (DOI), a computa-

tional imaging method where a model of light transport in scattering media allows

extraction of images from incoherent intensity measurements [2, 8–10]. For exam-

ple, in diffuse optical tomography (DOT), three-dimensional images of the spatially

dependent optical properties are iteratively reconstructed from boundary measure-

ments of highly scattered light [10–13]. With the addition of fluorescent contrast

agents, fluorescence diffuse optical tomography (FDOT) allows computational imag-

ing of targeted biochemical pathways [14,15]. FDOT has proven especially useful for

in vivo small animal studies of, for example, targeted drugs [16] and protein misfold-

ing [17]. However, the low resolution of DOI methods such as FDOT compared to

coherent methods [18], which are typically near-surface (≤ 1 mm), has restricted the

applications.

In Chapter 2, we present a method to circumvent previous DOI resolution limits.

We use optical localization, where information about the location of the centroid of

an inhomogeneity is extracted. We call the method super-resolution diffuse optical

imaging (SRDOI). The case we consider is a small region embedded in a heavily

scattering background that contains fluorophores. Multiple fluorescent regions could

be similarly imaged at high resolution when the emission from each region is sepa-
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rable, for example, through sufficient spatial, temporal, or spectral separation, or a

combination of these. The results indicate that by localizing many inhomogeneities

individually within a highly scattering medium and combining the positions into a

single image, high-resolution DOI can be achieved. Previous studies have localized

fluorescent inhomogeneities in deep tissue [19–22]. For example, boundary measure-

ments of fluorescence emission have allowed extraction of the location of fluorescing

tumors [21, 23]. In these studies, tumor masses were localized after injecting mice

with fluorescent contrast agents that targeted specific cancer cells. However, the im-

plications and limits for high resolution imaging have not been previously examined.

1.2 Temporal Scanning for Super-Resolution Diffuse Optical Imaging

Super-resolution methods have been developed for improving the spatial resolu-

tion beyond the diffraction limit in microscopy. Fundamentally, imaging methods

can surpass resolution limits with the addition of prior information to compensate for

the information that is lost due to attenuation or randomization of the signal. For

example, structured illumination microscopy (SIM) [24] breaks the resolution limit

through spatial modulation of coherent light sources. Stimulated emission depletion

(STED) [25] forms a smaller effective point spread function (PSF) by saturating fluo-

rophores at the periphery of the focal point. Other techniques, such as photoactivated

localization microscopy (PALM) [26] and stochastic optical reconstruction microscopy

(STORM) [27], are able to localize switchable fluorescent molecules by distinguish-

ing the emission between their fluorescent and non-fluorescent states. A method to

achieve super-resolution imaging in a heavily scattering medium would be important

for deep-tissue in vivo imaging.

Fluorescence imaging has become a standard tool in biomedical research because

modulation of fluorescence intensity in space and time can provide information on bio-

chemical processes [28–30]. Methods such as confocal microscopy [31] have enabled

high-resolution fluorescence imaging near the surface of tissue. However, imaging in
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deep tissue, where the propagation direction of light becomes randomized, presents a

major challenge in optical imaging. Information is lost due to scatter and absorption,

which hinders image formation. Diffuse optical imaging methods have been devel-

oped to overcome the detrimental effects of scatter, enabling deep tissue fluorescence

imaging [28]. The dependence of the spatial resolution on depth is nonlinear, but for

typical tissues, measurement geometries, and beyond a depth of about 1 cm, spatial

resolutions of about depth/2 have been achieved [32–38].

In Chapter 3, we present a localization-based method that allows for super-

resolution diffusive optical imaging in highly scattering media, such as tissue. The

method relies on some degree of separation in time of the temporal response of mul-

tiple fluorescent sources. By localizing each emitter individually, a spatial resolution

on the order of 10 microns through 1 cm of tissue or more is possible.

1.3 Motion in Structured Illumination

The broad need for determining the optical properties of thin films in a multitude

of applications is generally served by ellipsometry [39]. Ellipsometry measures the

amplitude ratio and the phase difference between polarized light reflected from the

surface of a film and determines parameters such as the refractive index and thickness

by fitting the experimental data to an optical model that represents an approximated

sample structure [39]. Generally, a model of the frequency-dependent dielectric con-

stant is used for successful parameter extraction. For example, such a model may

represent a Lorentzian resonance or impose a Drude model. While simplifying the

extraction, this imposes a description that is both approximate and not necessarily

correct .

In Chapter 4, we demonstrate motion in structured illumination as a means to ob-

tain additional measurement data and hence avoid the need for a material response

model. The structured field is obtained using a cavity. There is a long history of

using interferometers to determine the relative position of a surface, and white-light
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interferometry has been used to retrieve the thickness of thin films [40], under the

assumption that the frequency-dependent dielectric constant is known. We present

an interferometer arrangement where measurements as a function of the controlled

position of the sample, as could be achieved with a piezoelectric positioner, allows

the extraction of both the thickness and the dielectric constant based on transmission

measurements. The simple intensity-based measurement required avoids the align-

ment and multiple polarization data typical of ellipsometry. Here, the film is moved

in a structured background field in steps, and the total power due to the background

and scattered fields is measured. The method relies on cost-function minimization

using a forward model to compare the measurements to a set of forward model data

corresponding to different sample structures, rather than repeated corrections to a

theoretical dielectric function and initial values in order to fit the experimental data.

Imaging methods based on object motion in structured illumination have been pro-

posed for achieving far-subwavelength resolution using far-field measurements [41].

The film characterization approach described here is a 1D implementation where it

is shown that both the dimension and the dielectric constant of a film can be de-

termined using a forward model. Also,measured intensity correlations over object

position with motion in a speckled field have shown that both macroscopic and mi-

croscopic information is available [42], although in this case extraction is through

statistical averaging using intensity data, yielding normalized geometric information

about the object, and a forward model is not plausible.
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2. SUPER RESOLUTION DIFFUSE OPTICAL IMAGING†

We consider the general case of localizing small fluorescent inhomogeneities in three-

dimensional (3D) space that are embedded within scattering media. We call the

method super-resolution diffuse optical imaging (SRDOI). In Section 2.1, we describe

light propagation in highly scattering media and examine the spatial resolution in

deep tissue that has been achieved by diffuse optical imaging (DOI) as a comparison

for SRDOI. In Section 2.2, the fluorescent localization method is described, including

the derivation of the forward model and the optimization procedure. In Section 2.3,

we characterize the performance of SRDOI with numerical simulation and experimen-

tal validation in a slab geometry. Our results demonstrate two orders of magnitude

improvement in the spatial resolution compared to fluorescence diffuse optical tomog-

raphy (FDOT).

2.1 Diffuse Optical Imaging

Optical transport in tissue can be described by the radiative transfer equation,

and under restrictions on scattering strength (weak), absorption (weak), and time

(long compared to the scattering time), and with sufficient scatter, the diffusion

approximation provides a simple model [10, 11]. In the frequency domain, the light

source is modulated at angular frequency ω, i.e., we assume exp(−iωt) variation.

† This work is published as B. Z. Bentz, D. Lin, K. J. Webb, “Superresolution Diffuse Optical
Imaging by Localization of Fluorescence,” Phys. Rev. Appl., vol. 10, no. 3, p. 034021, 2018
(Ref. [43])



6

For a fluorescence source in a locally homogeneous medium, the coupled diffusion

equations can then be written in the form of wave equations as [15]

∇2φx(r) + k2xφx(r) = −Sx(r, ω) (2.1)

∇2φm(r) + k2mφm(r) = −φx(r)Sf (r, ω), (2.2)

where r denotes position, φ (W/mm2) is the photon flux density, the subscripts x

and m, respectively, denote parameters at the fluorophore excitation and emission

wavelengths, λx and λm, k2 = −µa/D + iω/(Dv), where D = 1/[3(µ′s + µa)] (mm) is

the diffusion coefficient, µ′s is the reduced scattering coefficient, µa is the absorption

coefficient, v is the speed of light within the medium, Sx(r, ω) is the excitation source,

and Sf (r, ω) describes the fluorescence emission. In an infinite homogeneous space,

the frequency domain diffusion equation (written as a lossy wave equation) Green’s

function is

g(r′, r) =
eik|r−r′|

4π|r− r′|
, (2.3)

where r′ is the position of a point source and the complex wave number k is applied

at λx or λm in (2.1) or (2.2) respectively.

Solutions to (2.1) and (2.2) are called diffuse photon density waves (DPDW’s) [2,

33,44]. Here, we refer to data formed through experimental detection of DPDW’s as

measurements. In contrast, images recovered using an inversion method (an indirect

imaging method that extracts desired parameters (e.g., r′) from measurement data

(e.g., φ) through inversion of a forward model) are referred to as reconstructed images.

The resolution of a reconstructed image depends on the method used (see for example,

[34,36]). Of note, the treatment of the nonlinear nature of the inversion process and

the use of constraints can be of substantial consequence.

Even without absorption, the DPDW wavenumber is complex, implying that there

is always both propagation and attenuation at any spatial frequency [33]. The wave-

length of DPDW’s for typical tissue and modulation frequencies (10 MHz or so) is

on the order of a few centimeters. Measurements are therefore usually made within

distances less than about one wavelength from a source location, placing them in
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the near field in this sense. However, the attenuation of high spatial frequencies is

still severe, causing a significant reduction in resolution with depth. Here, we de-

fine resolution as the full width at half max (FWHM) of the point spread function

(PSF), where the PSF is the image of a point source located in the scattering medium.

Equivalently, the resolution is the distance between two identical point sources such

that their PSFs intersect at their FWHM.

The dependence of the resolution on depth is nonlinear and has been estimated

using the FWHM of the propagation transfer function in a homogeneous infinite

medium [33]. The resolution is unrelated to the diffraction limit because DPDW’s

have a complex wavenumber and are measured in the near field. The resolution de-

pends primarily on µ′s, µa, and the distance from the source to detectors. Practically,

however, the resolution depends on many other factors, including the measurement

signal-to-noise ratio (SNR), the medium geometry, the source-detector diversity, the

contrast between the inhomogeneity and the background, and the experimental setup.

For the case of reconstructed images, the resolution will also depend on the compu-

tational method used for reconstruction.

As a comparison for the work presented here, Fig. 2.1 shows a plot of the resolu-

tions achieved based on both measured data (without reconstruction of an image) and

image reconstructions (though a computational imaging procedure). The red sym-

bols are reconstructed image resolutions (without prior information), and the blue

symbols are direct measurement resolutions. The blue curves are analytical resolu-

tion limits of direct measurements for µ′s and µa typical of tissue, as calculated by

Ripoll et al. [33]. From Fig. 2.1, we find that for optical properties similar to tissue

and beyond a depth of about 1 cm, the reported reconstructed image resolution is

typically about depth/2, as represented by the dashed black line.

The resolution in Fig. 2.1 can be improved with the incorporation of prior in-

formation that constrains the inverse problem. When combined with other imaging

modalities, such as MRI [50,51], the resolution can be improved to that of the higher

resolution method. Here, we show that the resolution of DOI can be greatly im-
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Fig. 2.1. Resolution of diffuse optical imaging as reported in the literature.
Red symbols are image reconstructions, where H, �, J, N,  , F, I, and
�, correspond to [34–37,45–48]. Blue symbols are solution measurements
(no inversion was performed), � and where � correspond to [32, 49].
The background µ′s and µa used in each paper varies, but their average
values are 0.85 mm−1 and 0.0063 mm−1 (close to those of tissue-simulating
Intralipid), where µ′s is between 0.5 and 1.0 mm−1 and µa is between
0 and 0.01 mm−1. The blue curves are theoretical resolution limits for
CW (ω = 0) direct measurements, as calculated by Ripoll et al. [33].
The dashed blue curve was calculated using breast tissue parameters,
where µ′s = 1.5 mm−1 and µa = 0.0035 mm−1. The solid blue curve
was calculated using the average values from the literature. The black
curve is depth/2.



9

proved through localization, where the problem becomes finding the position of a

point source [19–21]. The prior information that is incorporated into the inversion

is that a measurement data set contains information about only a single fluorescent

inhomogeneity. Practically, such measurements could be made, for example, if the

inhomogeneities have sufficient separation in space, time, and/or emission spectrum.

Furthermore, we model every inhomogeneity as a point source, an assumption that

has been shown to be valid numerically and experimentally for fluorescent inhomo-

geneities with diameters up to 10 mm at depths of 10-20 mm in tissue-simulating

1 % Intralipid [21]. This assumption holds because of the rapid attenuation of high

spatial frequencies within the scattering medium. Here, the efficacy of localizing

a cylindrical fluorescent inhomogeneity with 1 mm diameter and 2 mm height is

demonstrated. With sufficient SNR, smaller inhomogeneities could be localized, and

previous work [21] suggests that larger inhomogeneities with diameters of at least

10 mm could also be localized. If needed, the forward model could be modified for

structured or larger inhomogeneities, extending localization beyond a single point in

space.

2.2 Localization

We propose localization as a means for finding fluorescent inhomogeneities embed-

ded within a highly scattering medium with great precision. The method estimates

the location of an inhomogeneity by fitting measured intensity data to a diffusion

equation forward model for a point emitter, allowing extraction of the 3-D position of

the inhomogeneity. For the forward model, we use an analytical solution to the dif-

fusion equation in an infinite slab geometry [1], and we note that analytical solutions

can be derived for more complicated geometries [52], or the forward model could be

solved using a numerical method [53].
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2.2.1 Forward Model

Equations (2.1) and (2.2) can be used to derive a forward model for comparison

with measured data. For experimental simplicity, we set ω = 0, so that the data is

an integration over the measured temporal response at each measurement location.

As seen in Fig. 2.2, a single point excitation source corresponding to the laser exci-

tation is positioned at rs. In this case, Sx(r, ω) = Soδ(r − rs), where So is the laser

excitation power density (W/mm3) and δ is the Dirac delta function. Furthermore,

N point detectors at λm that correspond to camera pixels behind an emission band-

pass filter are placed at positions ri, where i is an index form 1 to N . Finally, in

the example we consider, a single fluorescent point source is located at rf , such that

Sf (r, ω) = ηµaf δ(r − rf ), where η is the fluorophore’s quantum yield and µaf is its

absorption. Estimating rf constitutes localization. Under these conditions, we let

gx(rs, rf ) represent the Green’s function for (2.1) at λx (the excitation wavelength)

and gm(rf , ri) be the Green’s function for (2.2) at λm (the fluorescent wavelength), as-

suming an infinite slab geometry. Then, the ith element of the forward model vector,

describing the fluorescence emission measured at ri, f̃i, is

f̃i(rf ) = w [gm(rf , ri)gx(rs, rf )] (2.4)

≡ wfi(rf ), (2.5)

where w is a multiplicative constant that incorporates η, So, and the efficiency of

light coupling into the medium, and fi(rf ) depends nonlinearly on rf . The excitation

laser light incident upon the medium is approximated in the model as an isotropic

point source located one mean-free path length (l∗ = 3D) into the medium [1, 11,

21], where l∗ is the distance for photon momentum randomization. Similarly, the

light collected by the detectors, in our case each pixel of a camera, is modeled as

that given by a diffusion model at points located l∗ into the medium. We derive fi

using the extrapolated zero flux boundary conditions shown in Fig. 2.2 to simulate

an infinite homogeneous slab geometry [1]. The extrapolated boundary condition

can accommodate mismatched background refractive indices at the surface. We set
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the extrapolated boundary ls = 5.03D away from the physical surface, analogous

to an interface between air and scatterers in water [54] and useful in our earlier

experiments [21], to approximately model the physical boundary for the experimental

results we present. Four pairs of excitation and fluorescent image sources are placed

to approximately enforce φ = 0 at the extrapolated boundary. Superposition of the

physical and image sources allows analytic expressions for gx(rs, rf ) and gm(rf , ri) to

be obtained that have the form in (2.3).

2.2.2 Position Estimation

If a fluorescent inhomogeneity is present, which can be determined subject to some

probability of detection [21], in order to localize it, we must estimate rf . This can be

accomplished through minimization of the cost function

c(rf ) = min
w
||y − wf(rf )||2Υ−1 (2.6)

over all rf of interest, where y is a vector of N measurements, f(rf ) is a vector of

N normalized forward calculations fi(rf ), from (2.5), Υ = αdiag[|y1|, . . . , |yN |] is the

noise covariance matrix, for which we assume a Gaussian noise model characterized

by α [11], and for an arbitrary vector v, ||v||2Υ−1 = vHΥ−1v, where H denotes the

Hermitian transpose. A two step procedure can be used to solve this optimization

problem [21,55], where the minimization in (2.6) with respect to w leads to

w̃(rf ) =
fT (rf )Υ

−1y

fT (rf )Υ−1f(rf )
, (2.7)

found by taking the derivative with respect to w and setting the result equal to zero,

and this estimate results in the modified cost function

c(rf ) = ||y − w̃(rf )f(rf )||2Υ−1 . (2.8)

The maximum likelihood estimates are then

r̂f = arg min
rf

c(rf ) (2.9)

ŵ = w̃(r̂f ), (2.10)
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detector (O) at ri are placed one scattering length l∗ = 3D away from the
slab boundaries as shown. A fluorescence source ( ) is at the unknown
position rf . Zero flux (φ = 0) boundary conditions with ls = 5.03D are
used to simulate an infinite slab geometry [21].
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where (2.8) is minimized over a set of values for rf bounded by the slab geometry.

Therefore, the estimate r̂f in (2.9) is the position within the slab that returns the

lowest value of the cost function (2.8). In our illustrative example of a homogeneous

scattering slab, this minimization can be computed quickly because the Green’s func-

tions from (2.4) used to calculate f(rf ) are closed-form and given by (2.3). However,

the forward model data could also be generated using finite element or related nu-

merical methods [53], at the cost of increased computational time.

We use simulations of solution measurements in Fig. 2.3 to demonstrate the local-

ization of a fluorescent source in a slab. Figure 2.3(a) shows the problem geometry

where the positions of an excitation source, a fluorescent source, and N = 400 de-

tectors are shown as red, green, and blue points, respectively. We let rft be the

true location of the fluorescent source. The slab is 18 mm thick with µa = 0 and

µ′s = 0.9 mm−1. The localization procedure was performed on the discretized region

of interest (2× 2× 1.8 cm3) with Nx = 17 points in the x dimension, Ny = 17 points

in the y dimension, and Nz = 17 points in the z dimension. Following the localization

procedure, w̃(rf ) from (2.7) and then c(rf ) from (2.8) were evaluated at each grid

point in the region of interest. Figures 2.3(b) and (c) show plots of w̃(rf ) and c(rf ) for

a fixed y that contains the minimum of c(rf ). r̂f and ŵ are then calculated using (2.9)

and then (2.10). We calculated the localization error as [(rft − r̂f )/rft × 100]%. The

localization error in Fig. 2.3 is high because of the course discretization over the re-

gion of interest. In Section 2.2.3, we present a computationally efficient method for

removing the discretization error.

2.2.3 Multigrid for Super Resolution

In order to achieve high resolution, the grid spacing of the points within the region

of interest must be reduced from what is used in Figs. 2.3(a) and (b). However, this

presents a computational problem when evaluating w̃(rf ) and c(rf ), because (2.4)

must be calculated for each combination of ri and rf within the region of interest.
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Fig. 2.3. Slab problem geometry and a demonstration of the localization of
a point fluorescent source with high discretization error. (a) Slab problem
geometry with rs = (8.09, 9.07, 1.11) mm plotted as the red point, rft =
(12.77, 10.79, 5.0) mm plotted as the green point, and N = 400 detector
locations ri plotted as blue points. The slab is 18 mm thick with µ′s =
0.9 mm−1 and µa = 0 mm−1. These positions were used so that the
simulation and experimental results can be compared. The slab has the
same dimensions and properties as used in the experiment. Measurements
were simulated using (2.4) with w = 10 and a 30 dB SNR, and w̃(rf )
from (2.7) and c(rf ) from (2.8) were evaluated over the region of interest.
(b) Plot of w̃(rf ) slice and (c) plot of c(rf ) slice for fixed y, such that
the plots contains the point that minimizes c(rf ). Here, y = 10.59, and
the color bars have log scales with arbitrary units. Using (2.9), r̂f =
(12.94, 10.59, 5.29), and using (2.10), ŵ = 10.07. The localization errors
in the x, y, and z dimensions are 1.37%, 1.85%, and 5.88%, respectively.
The course discretization of the region of interest is a primary contributor
to the estimation error. (d) Localization with multiresolution. Plots of
c(rf ) slices for fixed y are shown for multiresolution iterations 1, 2, 3, and
13. At iteration 13, from (2.9), r̂f = (12.77, 10.78, 4.98), and from (2.10),
ŵ = 10.02. The localization errors in the x, y, and z dimensions are
0.05%, 0.05%, and 0.19%, respectively. The discretization error has been
minimized.
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For this reason, we apply a multiresolution method to simultaneously reduce the com-

putational time and the discretization error of the localization. This multiresolution

approach is similar to multigrid in the general sense that it incorporates a hierarchy

of discretization grids into the localization [56, 57]. However, multigrid algorithms

propagate solutions back and forth between coarse and fine grids to reduce errors,

whereas our multiresoltion approach iterates strictly in one direction from coarse to

finer grids. Therefore, we use the term multiresolution to describe the method, which

is demonstrated in Fig. 2.3(d). First, the cost c(rf ) is calculated and minimized in

the region of interest with dimensions 2 × 2 × 1.8 cm3, as before, but with a grid of

Nx = Ny = Nz = 5. The cost is then iteratively calculated on successively smaller

regions of interest that each encompass the point of minimum cost found from the

previous iteration. At each iteration after the first, the region of interest extends

a distance equal to the grid spacing of the previous iteration along each dimension

around the point of minimum cost, and the grid contains the same number of gird

points (5× 5× 5). This procedure is repeated until convergence, which we defined as

two grids where the change in the minimum cost was less than 0.1%, but not equal to

zero. In Fig. 2.3(d), the first three iterations are shown. It is observed that successive

iterations appear to “zoom in” on the point of lowest cost. After 13 iterations, the

convergence condition was satisfied and r̂f was calculated using (2.9). The localiza-

tion error is much less than that of Fig. 2.3(b) and (c) because multiresolution has

effectively minimized the discretization error.

2.3 Results

We use the multigrid localization method described in Section 2.2 to achieve SR-

DOI. The potential for super-resolution is perhaps apparent in Fig. 2.3(d), but the

limits on the resolution are not clear. Here, we evaluate these limits using numerical

simulation and experimental validation.
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2.3.1 Simulation

A Gaussian noise model is implied by (2.6), and the use of non-zero elements only

on the diagonal of Υ is a consequence of the assumption of independent measurements.

The model assumes that each measurement is normally distributed with a mean equal

to the noiseless measurement and a variance that is proportional to the DC (ω = 0)

component of the noiseless measurement [11]. Simulated noisy data can therefore be

numerically generated as

yi = f̃i(rf ) + [α|f̃i(rf )|]1/2 ×N(0, 1), (2.11)

where N(0, 1) is a zero mean Gaussian random variable with unit variance, and α

scales the noise variance. The signal-to-noise ratio (SNR in dB) at the ith detector

is then

SNRi = 10 log10

(
1

α
|f̃i(rf )|

)
. (2.12)

This noise model assumes that the uncertainty in the estimated position of the fluo-

rescent inhomogeneity (r̂f ) is dominated by measurement noise. This would not be

the case, for example, if if the fluorophores changed position or diffused significantly

during the integration time of the measurement [58,59].

Since the measurements are noisy, each localized position r̂f falls within an un-

derlying probability distribution function p(rf ) with true mean µ = rft and variance

σ2. The performance of the localization can therefore be evaluated by estimating

σ, which has been called the localization uncertainty [58–62]. By the central limit

theorem, σ can be estimated from a sufficient number of samples of p(rf ) [63]. Here,

we calculate σ̂x, σ̂y, and σ̂z, which are estimates of σ corresponding to each of the

xyz coordinates of rf . We use the same geometry, optical properties, rs, ri, and rf

as in Fig. 2.3 to generate samples of p(rf ).

First, we generated 50 noisy independent solution measurements for an assumed

SNR using (2.11). Each simulated measurement data set was then used to determine

r̂f using (2.9) with multiresolution. Finally, σ̂x, σ̂y, and σ̂z, were calculated from the

50 values of r̂f . The results from this statistical analysis are shown in Fig. 2.4(a).
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The depth of the fluorescent inhomogeneity, or its distance from the detector plane,

was 13 mm, as shown in Fig. 2.3. Figure 2.4(a) gives plots of σ̂x, σ̂y, and σ̂z versus

SNR, and Fig. 2.4(b) shows a subset of this data as ellipses, where the major and

minor axes have dimension 4σ̂x or 4σ̂y. We chose 4σ̂x and 4σ̂y to indicate the space

containing 95% of the localized points. Figure 2.4(c) presents plots of σ̂x, σ̂y, and σ̂z

versus depth for a constant SNR of 30 dB, and Fig. 2.4(d) shows plots of ellipses for

different depths. It is clear that σ̂z is consistently larger than σ̂x and σ̂y. This occurs

because the detectors are on a constant z-plane. The value of σ̂z could be reduced to

the levels of σ̂x and σ̂y by placing additional detectors in the x − z or y − z planes.

Thus, σ̂x and σ̂y are better indicators of the achievable localization uncertainty for

the geometry in Fig. 2.3(a). The reason σ̂x does not equal σ̂y and the ellipses are

not perfect circles is because of the uncertainty in the estimations and the fact that

the 400 detectors locations in Fig. 2.3(a) are not perfectly symmetric around the

fluorescent inhomogeneity. Even though we use the same equation for the forward

model that was used to generate the simulated data, it is not guaranteed that the

localization will work due to the addition of simulated noise. In the next section we

will validate our localization scheme with experimental data and demonstrate that

the simulated results closely match those from the experiment.

2.3.2 Experiment

We present the results of an experimental study of the accuracy of SRDOI with

measurement data collected using the arrangement shown in Fig. 2.5(a). A highly

scattering slab of thickness d = 18 mm was created by stacking three pieces of white

plastic (Cyro Industries, Acrylite FF, a clear acrylic with 50 nm TiO2 scatterers)

with dimensions 140× 140× 6 mm. A hole with a diameter of 1 mm and a depth of

2 mm was drilled into the top-center of the bottom slab. The size of this hole is large

relative to the expected localization uncertainty, however it is small enough to be well

approximated by a fluorescent point source in a heavily scattering medium [21]. A
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Fig. 2.4. Uncertainty in the numerical localization of a fluorescent in-
homogeneity in the slab geometry shown in Fig. 2.3(a). The standard
deviations were estimated using 50 noisy independent measurements that
were generated using (2.11). (a) σ̂x, σ̂y, and σ̂z versus SNR plotted as red,
green, and blue curves, respectively. The depth of the fluorescent inhomo-
geneity was 13 mm, as shown in Fig. 2.3(a). σ̂z is larger than σ̂x and σ̂y
because the detectors are only in the x−y plane. (b) Ellipses in the x−y
plane with major and minor axes of lengths 4σ̂x or 4σ̂y and means given
by their center point. Red, green, and blue ellipses correspond to SNRs
of 15 dB, 25 dB, and 40 dB, respectively. (c) σ̂x, σ̂y, and σ̂z versus depth
plotted as red, green, and blue curves, respectively, with 30 dB SNR. (d)
Ellipses in the x − y plane with major and minor axes of length 4σ̂x or
4σ̂y and means given by their center point. Red, green, and blue ellipses
correspond to depths of 13 mm, 8 mm, and 5 mm, respectively.
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10 mM stock of the fluorophore Maleimide ATTO 647N (peak λx = 646 nm, peak

λm = 664 nm) in dimethyl sulfoxide (DMSO) was used to prepare a 10 µM diluted

solution of the fluorophore. This fluorophore solution was carefully placed into the

drilled hole in the bottom highly scattering slab using a pipette and a needle to

remove air bubbles.

The filtered output of a pulsed supercontinuum source (EXR-20 NKT Photonics,

5 ps seed pulse width, 20 MHz repetition rate, VARIA tunable filter) was used to

generate the excitation light at λx = 633 nm with a 10 nm bandwidth, as shown in

Fig. 2.5(a). With this bandwidth, the average excitation power was approximately

15 mW. Measurements at λm = 676 nm were made through an OD6 bandpass filter

having a bandwidth of 29 nm (Edmund Optics 86-996), to reject the excitation light.

Measurements at λx were performed by removing the bandpass filter. All measure-

ments were pseudo-CW (corresponding to unmodulated light data and ω = 0 in (2.1)

and (2.2)), with the CCD camera (PIMAX, 512 x 512 pixels) integration time being

long compared to the pulsed laser repetition rate (20 MHz). A λx measurement result

with an integration time of 30 ms is shown in Fig. 2.5(b).

All λm measurements were calibrated by subtracting corresponding measurements

of the filter bleed-through, according to yi = yslabi − ybleedi , where yi is the ith com-

ponent of y, yslabi is the ith experimental datum captured from the slab, and ybleedi

is the ith experimental datum from the slab without the fluorescent inhomogeneity

present. A calibrated λm measurement with an integration time of 1 s is shown in

Fig. 2.5(c). We selected N = 400 detector locations (pixels) around the maximum

value, as shown by the blue dots. The values (indicated by the color bar) at these

positions were used to construct the data vector y in (2.6).

In order to calculate the forward solution in (2.4), µ′s, µa, ri for each detector

along with rs must be known. To determine these, first the positions of all pixels

in Fig. 2.5(b) and (c) were found in mm using images of a ruler like that shown in

Fig. 2.5(d). Care was taken in the alignment of the experimental components so

that the distance between each pixel in the x and y dimensions was approximately
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the same (0.043 mm). The xi and yi coordinates of the vector ri could then be

determined from the positions of the chosen 400 detector pixels, and the z coordinate

was (18 − 3D) mm, to satisfy the zero-flux boundary condition at the top of the

scattering medium [1]. The point directly below the maximum intensity in Fig. 2.5(b)

indicates the source position, rs. This position of maximum intensity was estimated

by fitting a 2-D Gaussian function [58] to Fig. 2.5(b). This procedure resulted in

rs = (8.09, 9.07, 3D) mm, where the z component is 3D to satisfy the boundary

condition at the bottom of the scattering medium [1]. The 2-D Gaussian fit was also

used to estimate the true location of the fluorescent inhomogeneity using a data set

with 50 times the integration time of that used for Fig. 2.5(c), resulting in a much

higher SNR than that of Fig. 2.5(c). The true location was estimated as the centroid

with coordinates rft = (12.77, 10.79, 5.0) mm, where the z component at the center of

the drilled hole was found from the thickness of the white plastic slabs (6 mm) and the

depth of the drilled hole (2 mm). We note that the 2-D Gaussian fit does not provide

depth information, motivating the use of the localization method in Section 2.2 even

in this simple example.

The optical parameters of the slab, µ′s and µa, were estimated by fitting (2.3) to the

data shown in Fig. 2.5(b), where in this case, r′ = rs, r = ri, and the z components

of rs and ri depended on µ′s and µa. The data in Fig. 2.5(b) was captured with

the fluorescent inhomogeneity present, but because the bandpass filter used in the

experiment attenuated the excitation light by a factor of 106, the fluorescent signal

in Fig. 2.5(b) was assumed to be negligible compared to the transmitted excitation

light. It was also assumed that the scattering medium background exists throughout

the small volume occupied by the fluorophore. The scattering slabs used have very

low absorption in the wavelength range for these experiments, so we set µa = 0.

The estimated µ′s of the slab (at 633 nm) was found to be 0.9 mm−1, giving 3D =

1.111 mm. These values are within the uncertainty of previous estimates using the

same method [64]. The positions rs, ri, and rft, are those indicated in Fig. 2.3, and
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were used for the corresponding numerical simulations in Section 2.2 and Fig. 2.4, so

that the simulation and experimental results can be compared.

The forward solution calculated in (2.4) using the experimental parameters, along

with the experimental measurement vector y, allow localization of the fluorescent

inhomogeneity embedded in the highly scattering slab. In order to characterize the

experimental localization uncertainty, the λm measurement shown in Fig. 2.5(c) was

repeated 50 times. Localization using these 50 measurements then allows calculation

of the experimental σ̂x, σ̂y, and σ̂z. The resulting values are shown plotted as an

ellipse in Fig. 2.6(a), with an axial ratio of σ̂y/σ̂x = 0.0232/0.0229 (i.e., close to

circular), and presented in Table 2.1.

In order to validate the SRDOI method, the experimental results in Fig. 2.6(a)

can be compared to the numerical data in Fig. 2.4. These results were all generated

using the same rs, ri, and rft, and identical scattering medium optical parameters,

µ′s and D. In order to estimate the SNR of the experiment, we calculated the ML

estimate of the noise parameter α from the full form of (2.6) [57], giving

α̂ =
1

N
||y − ŵf(r̂f )||2Υ̃−1 , (2.13)

where Υ̃ = diag[|y1|, . . . , |yN |] uses measured data. The SNR of the ith detector was

then estimated using (2.12) as

SNRi = 10 log10

(
1

α̂
|ŵfi(r̂f )|

)
. (2.14)

The SNR was calculated for all 400 detectors using (2.14) and one of the 50 experi-

mental data sets and its corresponding values for ŵ and r̂f . The mean experimental

SNR was found to be 28.9 dB, its standard deviation across detectors was 0.62 dB,

and its maximum was 29.9 dB. We used this mean SNR to generate the blue ellipse

in Fig. 2.6(b), which is plotted with the red ellipse from Fig. 2.6(a). The values for

the numerical localization uncertainties are also presented in Table 2.1. Note that the

experimental and numerical uncertainties are close, signifying that (2.12) describes

the noise process well. The difference between the experimental mean and the true
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Fig. 2.5. (a) Experiment setup for localization of a fluorescent inhomo-
geneity (green point). The fluorescent inhomogeneity (ATTO 647N) is
embedded in a highly scattering slab that is 18 mm thick. The laser
source is a filtered pulsed supercontinuum source (EXR-20 NKT Photon-
ics, 5 ps seed pulse width, 20 MHz repetition rate, VARIA tunable filter).
The laser source is tuned to λx, and detection is by a CCD camera with or
without a bandpass filter at λm. (b) Light at λx detected by the CCD cam-
era without the bandpass filter. Because the bandpass filter attenuates
the excitation light by a factor of 106, the fluorescent signal is negligible
compared to the transmitted excitation light when the bandpass filter is
not used. (c) Light at λm (after background subtraction) detected by the
CCD camera with the bandpass filter. The positions of the 400 detectors
are shown as blue dots. (d) CCD image of a ruler showing the field of
view (about 22.02 mm by 22.02 mm). Images of the ruler were used to
convert pixels to mm.
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Fig. 2.6. Experimental localization uncertainty for the fluorescent inhomo-
geneity embedded in the highly scattering slab of Fig. 2.5. Experimental
values for σ̂x, σ̂y, and σ̂z were estimated using 50 independent experi-
mental measurements. (a) Plot of the (x, y) components of the localized
positions as blue points. These points were used to calculate the major
and minor axes of the red ellipse, which have dimensions 4σ̂x or 4σ̂y, as
well as its center red point, which is the mean. The black point is the
true location that was estimated with a 2-D Gaussian fit. (b) Comparison
of the experimental uncertainty to the numerical uncertainty. The blue
ellipse was generated from numerical data with mean SNR= 28.9 dB to
match the experimental value, and the red ellipse is the same as in (a).
See Table 2.1 for the numerical values.
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location is likely due to the fit approximation used to determine the true location and

estimation error.

2.3.3 Resolution

A natural way to compare the localization uncertainties to the resolution of diffuse

optical imaging is to calculate the FWHM of the density function p(rf ) that describes

the localized positions. For a localization uncertainty σ and a Gaussian spread of

localized points, we can write the resolution as

Resolution = 2
√

2 ln 2 σ ≈ 2.36 σ, (2.15)

corresponding to the full width at one half of the maximum. The numerical and

experimental results are summarized in Table 2.1 for the case of depth = 13 mm, as

shown in Fig. 2.3, and a mean SNR of 28.9 dB, found for the experiment. The µ̂x,

µ̂y, and µ̂z are the mean of the localized position components. The FDOT resolution

is estimated as depth/2.

2.4 Conclusion

We have developed a localization method that allows imaging of fluorescent inho-

mogeneities deep in heavily scattering media with unprecedented spatial resolution.

The method was validated numerically and experimentally, demonstrating an im-

provement of two orders of magnitude in resolution compared to DOI. Alternatively,

numerical methods such as the finite element method could be used to solve the for-

ward problem for inhomogeneous media, where DOT could be employed to determine

µ′s and µa [65, 66]. However, the limited resolution to which µ′s and µa could be esti-

mated with DOT in inhomogeneous media may increase the localization uncertainty.

The localization constraints could be incorporated into the FDOT framework [15,67],

potentially allowing reconstruction of super-resolution images. Also, (2.6) could be

minimized using alternative optimization methods, such as a gradient search.
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Table 2.1.
Estimated numerical and experimental localization uncertainties, means,
and resulting resolution (mm). The resolution of FDOT is assumed to be
depth/2.

SRDOI Numerical SRDOI Experimental FDOT

(σ̂x, σ̂y, σ̂z) (0.0225, 0.0222, 0.1301) (0.0229, 0.0232, 0.1089) –

(µ̂x, µ̂y, µ̂z) (12.769, 10.793, 4.972) (12.809, 10.802, 4.875) –

Resolution (0.0530, 0.0523, 0.3064) (0.0539, 0.0546, 0.2564) 6.5
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The diffusion model presented in (2.1) and (2.2) assumes that the photon cur-

rent density does not change over one transport mean free path, l∗ = 3D. For the

white plastic slab used here, l∗ = 1.11 mm at 633 nm, which is much larger than

the localization uncertainties in Table 2.1. Therefore, SRDOI can find a fluorescent

inhomogeneity with a resolution that is much less than the minimum length described

by the physics in the diffusion model. This is possible because of the prior informa-

tion that has been incorporated into the localization. The results suggest that the

localization uncertainty is dominated by measurement noise and not inaccuracies in

the model. Therefore, a more accurate model, such as the radiative transfer equation

(RTE), is not required unless the combination of the diffusion equation forward model

and the prior information is insufficient for accurate localization. This could be the

case with weak scatter or high absorption, for example.

We found that a single excitation source position, rs, was sufficient for the situa-

tion considered, which is practical for experimentation. However, multiple excitation

source positions or expanded beam excitation may increase the fluorescence emission

and reduce the localization uncertainty. A low-pass spatial filter could be applied to

the experimental data before estimating rf in order to further reduce the localization

uncertainty (results not shown). This would smooth the noisy experimental data prior

to the localization. The computational time could be reduced and the experiment

simplified by using fewer detectors [21]. A few sensitive photodetectors placed at the

surface of a scattering medium should be sufficient to localize an inhomogeneity with

higher SNR than what can be achieved with a CCD camera. Figure 2.5(a) shows a

transmission measurement, but a reflection measurement could be performed.

Practical application of SRDOI requires access to fluorescent light data that can

be assumed to originate from single fluorescent inhomogeneities. This could be accom-

plished through known variations in space, time, the fluorescence emission spectrum,

or a combination of these. Variation in space could simply be fluorescent inhomo-

geneities separated by distances greater than the FWHM of the PSF. Variation in

time could be a unique temporal delay for each inhomogeneity, where measurements
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with short integration times (and sufficient SNR) could allow separation of the tem-

poral responses. Finally, if each inhomogeneity emitted photons at different energies,

a spectral measurement could allow separation of each response. All of these varia-

tions are possible with blinking quantum dots of different diameters [68], where each

quantum dot could then be localized in deep tissue.

Localization techniques have also been developed in microscopy for improving

resolution [26, 61]. For example, in stochastic optical reconstruction microscopy

(STORM) [27], a subset of fluorescent molecules that are separated by a distance

greater than the diffraction limit are switched between fluorescent and non-fluorescent

states. Each molecule is then located with an uncertainty that is much less than the

diffraction limit. With multiple measurements, a super-resolution image is formed by

combining many localized positions. However, this is a fundamentally different class

of problem where scatter is largely ignored and the imaging system objective function

is incorporated into the localization framework. In our case, a model for the heavily

scattering domain is used in an optimization-based localization framework. Interest-

ingly, the improvement in spatial resolution that is achieved with super-resolution in

microscopy is comparable to what is achieved by SRDOI. For example, a diffraction-

limited resolution of 200 nm is improved to a few nanometers when imaging single

fluorescent molecules [69], an improvement of about two orders in magnitude. The lo-

calization technique presented here enables super-resolution imaging in other physical

imaging problems that use forward models, such as photoacoustic tomography [70],

electrical impedance tomography [71], seismic waveform tomography [72], and mi-

crowave imaging [73]. While the experiments differ, the premise we presented should

apply.
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3. LOCALIZATION WITH TEMPORAL SCANNING AND

MULTIGRID FOR SUPER-RESOLUTION DIFFUSE

OPTICAL IMAGING†

We develop a model describing the measured fluorescence intensity due to multiple in-

homogeneities within a highly scattering media in Section 3.1. We then use the model

to localize fluorescent inhomogeneities separated in space and in time in Section 3.2,

where the results are presented in Section 3.3. We use a statistical detection scheme,

and we show that this method allows super-resolution diffusive optical imaging.

3.1 Models

3.1.1 Coupled Diffusion Equations

We use the diffusion approximation to the radiative transfer equation to describe

the propagation of light in a highly scattering medium such as tissue [15, 75, 76].

This is an incoherent picture that has proven useful in describing the mean optical

intensity when the appropriate scattering conditions are met, which is the case for

tissue having millimeter thickness or more and red or near-infrared light. The coupled

diffusion model in the time domain is given by [1, 44]

1

v

∂

∂t
φx(r, t)−∇ · [Dx(r)∇φx(r, t)] + µax(r)φx(r, t)

= Sx(r; t)

(3.1)

1

v

∂

∂t
φm(r, t)−∇ · [Dm(r)∇φm(r, t)] + µam(r)φm(r, t)

= φx(r, t) ∗ Sf (r; t),

(3.2)

† This work is published as B. Z. Bentz, D. Lin, J. A. Patel, K. J. Webb, “Multiresolution Localiza-
tion with Temporal Scanning for Super-Resolution Diffuse Optical Imaging of Fluorescence,” IEEE
Trans. Image Process., vol. 29, p. 830, 2019 (Ref. [74])
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where r denotes the position, φ (W/mm2) is the photon flux density, µa (mm−1)

is the absorption coefficient, D = 1/[3(µa + µ′s)] (mm) is the diffusion coefficient,

µ′s = µs(1 − g) (mm−1) is the reduced scattering coefficient, µs is the scattering

coefficient (mm−1), g is the anisotropy parameter, v = c/n is the speed of light in the

medium, where c is the speed of light in free space and n is the refractive index, the

subscripts x and m, respectively, denote parameters at the excitation and emission

wavelengths, λx and λm, Sx (W/mm3) is the excitation source term, Sf (s−1/mm) is

the fluorescence source term, and ∗ signifies a temporal convolution. The spatially-

dependent fluorescence source in (3.2), assuming a single lifetime at each point in

space, can be written as

Sf (r; t) =
η(r)

τf (r)
exp

(
−t
τf (r)

)
, (3.3)

where η = ηfµaf is the fluorescent yield, with µaf the fluorophore absorption coeffi-

cient at λx and ηf the fluorophore quantum yield, and τf is the fluorescence lifetime.

With a temporal Fourier transform, resulting in the frequency domain form of (3.1)

and (3.2), and considering homogeneous D and µa, the resulting scalar wave equa-

tions for φ describe the propagation of diffuse photon density waves (DPDW’s). We

present results in terms of the mean free path, l∗ = 3D. However, the results can be

scaled to geometries of different size and amount of scatter.

3.1.2 Forward Model for a Single Fluorescent Inhomogeneity

Equations (3.1) and (3.2) can be used to form a model of the detected power at

λx and λm, respectively, at a set of locations around the periphery of the scattering

medium. We consider the case of a set of point-emitting fluorophores, each with a

differing temporal response due to the physical situation, so that the response can

be attributed to a sequence of single point fluorophores. We start by describing the

response due to a single fluorescent source embedded in a highly scattering medium.

The problem geometry is shown in Fig. 3.1. The incident laser light at wavelength

λx can be modeled as an (isotropically emitting) point source for Sx in (3.1) located
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l∗ into the scattering medium (the brain). Point excitation sources represent a set

of laser beam excitation locations at known positions rs. We therefore assume the

excitation source term is given by Sx(r; t) = Soδ(r− rs, t), where So is the excitation

power (W/mm3) and δ(·) is the Dirac delta. The implication is that the temporal

excitation laser source is short relative to the other time constants involved. In this

work, we let So = 1 for simplicity. Additionally, point detectors that collect light at

λm are assumed to be placed at known positions rd. Finally, a fluorescent emitter

(at λm) that is excited at λx is assumed to be located at the unknown position r′.

Using the domain geometry in Fig. 3.1, we define gx(rs, r
′, t) as the Green’s function

from (3.1) at λx and gm(r′, rd, t) as the Green’s function from (3.2) at λm. The

fluorescence emission photon flux density at the detector is then

φm(rs, rd, t) =∫
gm(r′, rd, t) ∗ Sf (r′; t) ∗ gx(rs, r′, t)dr′,

(3.4)

where ∗ is the temporal convolution.

We assume a point fluorophore is located at rf , as seen in Fig. 3.1, and from (3.3),

Sf (r; t) =
ηfµaf
τf

exp

(
−t
τf

)
δ(r− rf ). (3.5)

For simplicity, we assume that D and µa are homogeneous, and that v is the same at

λx and λm. Using the Green’s function solution to the diffusion equation [1], we find

from (3.4) that

φm(rs, rf , rd, t) =

v

(4πDmvt)3/2
exp

(
−|rd − rf |2

4Dmvt
− µamvt

)
∗ η
τf

exp

(
−t
τf

)
∗ v

(4πDxvt)3/2
exp

(
−|rf − rs|2

4Dxvt
− µaxvt

)
.

(3.6)
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Fig. 3.1. Model geometry with position vector r = (x, z). Excitation
sources at λx (red) are placed at known positions rs, point fluorescence
emission locations are assumed to be rf (green), and detectors at λm are
placed at known positions rd (blue).
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We also assume that µax = µam = µa and Dx = Dm = D. The detected power

through an aperture is described by the current density J (W/mm2), with a diffusion

framework, and we assume pointwise measurements

J(rs, rf , rd, t) = −D∇φm(rs, rf , rd, t). (3.7)

For laser excitation source locations rsq with q ∈ [1, ..., Q] and fluorescence detector

locations rdm with m ∈ [1, ...,M ], we write the detected fluorescent photon current

density in compact form as

Jqm(rf , t) = J(rsq , rf , rdm , t), (3.8)

where we emphasize the dependence on rf because it will be estimated in Section 3.2.

The pointwise detected fluorescence is then

Gqm(rf , t) = |Jqm(rf , t) · n̂|, (3.9)

where n̂ is the unit vector normal to the detector surface and G signifies the (diffusion

equation) Green’s function basis.

For simplicity we use the analytic solution (3.9) in this work, but the model

data could also be generated using finite element or other numerical methods [53].

These analytical solutions to the diffusion equation subject to boundary conditions

have been shown to match experiments of photon propagation in highly scattering

media [21, 54]. It has been shown that small fluorescent inhomogeneities can be

well approximated as point emitters because of the rapid attenuation of high spatial

frequencies in scattering media [21, 55]. For this reason, imaging based on a point

representation is possible.

3.1.3 Forward Model for Multiple Fluorescent Inhomogeneities

In the case where multiple fluorescent inhomogeneities are present, the forward

model must be modified. We assume each fluorescent inhomogeneity can be repre-

sented by a point that fluoresces with a unique and increasing delay τ from t = 0. We
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let K fluorescent inhomogeneities be located at positions rfk , where k is an index from

1 to K. Each fluorescent inhomogeneity has a different yield ηk and fires with differ-

ent delay τk from t = 0. Then, the detected fluorescence for a single source-detector

pair measured over the temporal support w starting at time to is

G̃qm(R, τ , t) = rect

(
t− 0.5w − to

w

)
×

K∑
k=1

δ(t− τk) ∗Gqm(rfk , t), (3.10)

where for general x, rect(x) is 1 when |x| < 0.5 and zero otherwise, the vector

τ = [τ1 ..., τK ]T corresponds to the delays τk, and the vector R contains the K

positions rfk .

We assume the detected fluorescence from (3.10) is sampled with sampling interval

T , and we discretize the domain such that Vvox is the volume of a single voxel, giving

the forward measurements

fqmn(R, τ ) = Vvox

[
G̃qm(R, τ , t)|t=nT

]
(3.11)

where n is an index from 1 to N , and tmax = NT . We emphasize the dependence on

R and τ because these parameters will be estimated in Section 3.2. We can now write

the fluorescence data vector expected from the diffusion model as f(R, τ ), which is

f(R, τ ) = [f111, ..., f11N , f121, ..., f12N , ..., f1M1,

..., f1MN , f211, ..., fQMN ]T .
(3.12)

Considering (3.6), each f̃qm is linear with respect to ηk such that we can pull out the

ηk’s from f(R, τ ), giving

f(R, τ ) = F(R, τ )η, (3.13)

where η = [η1 ..., ηK ]T is a vector containing the fluorescent yields ηk and F(R, τ ) is

a matrix of dimensions [QMN, K] that contains the scaled forward measurements.

The matrix F(R, τ ) can be calculated from (3.10) by setting all ηk equal to 1. The

vector multiplication in (3.13) is equivalent to the superposition of the K fluorescent

inhomogeneity temporal responses, which, after scaling, make up the columns of

F(R, τ ).
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3.1.4 Detector Noise

We use a shot noise model for detector noise [11, 57]. We let y be the noisy

measurement vector corresponding to f , such that both have dimensions of [QMN, 1].

We assume that the noise is independent, zero mean, and Gaussian with covariance

Υ, where

[Υ]ii = α|yi|, (3.14)

i = [1, ..., QMN ] is the data index, and α is a scalar parameter that is dependent

on the noise detector physics [11]. The SNR in dB for a single source-detector pair

depends on α according to

SNR = 10 log

[
1

α
fqmn(R, τ )

]
. (3.15)

We generate simulated noisy measurements y for a specified SNR by calculating α

from (3.15).

3.2 Localization for Super-Resolution Imaging

Compared to diffusive imaging with FDOT, fluorescence localization is a simpler

problem where information about an inhomogeneity’s location is extracted [19–21,

77, 78]. Biomedical applications of localization include determining the location of a

fluorescing tumor in a mouse [23] or the location of a targeted fluorophore embedded

in the tongue of a live mouse [79]. Here, we describe localization of multiple fluo-

rescent inhomogeneities for the formation of super-resolution images. Our method

assumes there is a significant temporal separation τf such that the fluorescent im-

pulse responses can be separated. By exploiting this information as prior knowledge,

higher resolution imaging compared to FDOT is achieved.

3.2.1 Localization of Multiple Fluorescent Inhomogeneities

In order to localizeK fluorescent inhomogeneities inside a highly scattering medium,

the positions rfk must be estimated. To further characterize the fluorescent inhomo-



35

geneities, the yields ηk, which are proportional to the concentration of fluorophore,

can also be estimated. We form the ML estimation as [21,55]

θ̂ = arg max
θ
p1,θ(y), (3.16)

where p1,θ(y) is the probability distribution given by

p1,θ(y) =
1√

(2π)P |Υ|
exp

(
−1

2
||y − F(R, τ )η||2Υ−1

)
, (3.17)

where P = QMN is the number of measurements, for an arbitrary vector u, ||u||2V =

uHVu, H being the Hermitian transpose, and θ corresponds to the parameters of

interest for localization, which are R and η. After taking the logarithm, (3.16) is

equivalent to minimizing

c(R, τ ) = min
η
||y − F(R, τ )η||2Υ−1 . (3.18)

We propose a method to minimize (3.18) that takes advantage of the causality

of the problem. This approach allows us to avoid calculation of the basis functions

at each τk and their inner products, alleviating the computation burden. We assume

that each τk is unique, allowing temporal separation of the fluorescent impulse re-

sponses, as shown in Fig. 3.2 for the case of two emitters. In Fig. 3.2(a) the temporal

responses from two point fluorophore locations in a scattering domain are measured

to be displaced in time but overlapping, whereas in Fig. 3.2(b) they are distinct. We

consider the general case where the delays τk are not large enough for the fluorescence

to decay to noise before the start of the next response, as shown in Fig. 3.2(a). The

discretized measurement data leads to a temporal sampling period T and we con-

sider a temporal window w, illustrated in Fig. 3.2, consisting of an integer number of

samples separated in time by T .

Considering (3.10), we see that ηk and rfk could be estimated using data within

a temporal window starting at to = τk with w < τk+1 − τk. Thus, we assume that

the data within the temporal window w comes from a single fluorophore at rfk . A

simplified cost function based on (3.18) can then be written as

ck(rfk , τk) = min
ηk
||yk − ηkfk(rfk)||2

Υ−1
k
, (3.19)
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(a) (b)

Fig. 3.2. Typical fluorescence temporal responses for one source and seven
detectors (Q = 1, M = 7). The optical properties are similar to tissue,
where µ′s = 2 mm−1, µa = 0.02 mm−1, and n = 1.33, giving a mean
free path length l∗ = 3D = 0.5 mm. The 7 different symbols and cor-
responding colors represent different source-detector measurement pairs.
The time axis is a discrete set of points t1, ..., tN , with T between sample
points. (a) The delay τ2 is short, causing substantial overlap due to su-
perposition. (b) The delay τ2 is long such that the detected fluorescence
decays substantially before the next fluorescence response. We show that
localization of the fluorescence inhomogeneities is possible in both cases.
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where fk(rfk) is derived from f(R, τ ) in (3.12) with to = τk and w < τk+1 − τk, yk

is the corresponding windowed measurement vector, and Υk is the noise covariance

matrix for yk. In this description, yk contains the subset of measurements from y at

all detectors that are within w. Note that w is being used here as a model parameter

to identify the response of a single point fluorophore, and that the measured data y

has a temporal support that is much larger than w.

Forming (3.19) requires that τk is known. We estimate τk using the generalized

likelihood ratio test (GLRT) [21]. The GLRT uses a binary hypothesis to calculate a

threshold for determining whether a point fluorophore is detectable or “localizable”.

We apply the GLRT at each time index starting at t = 0 and progressing in positive

time in increments of T . The time index where a fluorescent inhomogeneity is first

detected is then our estimate for τk. Once detectability is established, (3.19) can be

minimized using the estimated τk and a preselected w. To detect the next emitter,

in general the estimated forward solution ŷk = η̂kf(r̂fk), must be subtracted from y

before before moving the temporal window w and calculating the GLRT at the next

time point. This removes the influence of one reporter’s response from the responses

following it, and is valid by superposition. The robustness of the method can be

improved by adding positive noise to ŷk before subtraction, where values that are

negative after subtraction are set to zero.

We also consider the special case where w can be large compared to the decay

time of the fluorescence responses. This is shown in Fig. 3.2(b), demonstrating that

the subtraction step is not needed if the time scan is resumed at t = τk+w. However,

we use the general case which allows extraction of the response of each fluorescent

inhomogeneity from the signals in Fig. 3.2(a) or (b).

To minimize (3.19), we use the method developed by Milstein et al. [21], which is

a two step procedure described by

η̃k(rfk) =
fTk (rfk)Υ−1k yk

fTk (rfk)Υ−1k fk(rfk)
(3.20)

ck(rfk , τk) = ||yk − η̃k(rfk)fk(rfk)||2
Υ−1

k
. (3.21)
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Equation (3.20) was found by setting the derivative of ||yk−ηkfk(rk)||2Υ−1
k

with respect

to ηk equal to zero. Equations (3.20) and (3.21) are then solved at positions rfk of

interest (within the time window w), and the kth fluorescent inhomogeneities’ position

and yield are estimated by

r̂fk = arg min
rfk

ck(rfk , τk) (3.22)

η̂k = η̃k(r̂fk). (3.23)

In an experiment, where calibration scale factors are unknown, η̂k can be considered

a nuisance parameter [21] where its estimate is no longer quantitative.

We demonstrate localization of a single fluorescent inhomogeneity using optical

properties similar to tissue in Fig. 3.3. For simplicity, we assume a two dimensional

geometry and a region of interest of length 32 × l∗ along x and of length 32 × l∗

along z, where the mean free path length l∗ = 3D. Extension to three dimensions is

unnecessary to demonstrate the method, but it is straightforward. We place a single

source and seven detectors along the boundary of the region of interest, as seen in

Fig. 3.3. We use a discretized grid with Nx = 64 points in the x dimension and

Nz = 64 points in the z dimension. The position with lowest cost in Fig. 3.3(b) is r̂f ,

and the value of η̃k at r̂fk in Fig. 3.3(a) is η̂k. Here, r̂fk = (x, z) = (15.24, 15.75)× l∗

and η̂ = 0.0999 mm−1, which are close to the true values given in the Fig. 3.3 caption.

We calculated the localization error as [(rfk − r̂fk)/rfk × 100]%. The results can be

extrapolated to three dimensions, and the problem is scalable in the amount of scatter.

3.2.2 Localization with Multigrid

We introduce a method to simultaneously reduce the computation time and im-

prove the accuracy of the localization by incorporating a hierarchy of discretization

grids into the localization. We refer to this as a multiresolution analysis (MRA)

method [56, 57], and it is demonstrated in Fig. 3.4. First, ck(rfk , τk) is calculated

using (3.20) and (3.21) on a coarse grid over the entire region of interest. Then,
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Fig. 3.3. Localization of a single fluorescent inhomogeneity (K = 1) us-
ing an (x, z) coordinate system. 1 source (green) and 7 detectors (red)
are placed at the boundary of a square of side length 32l∗. The optical
properties are the same as in Fig. 3.2, where l∗ = 0.5 mm, and we as-
sume an SNR of 30 dB. A fluorescent inhomogeneity with η1 = 0.1 mm−1

was placed at x = 15.26 × l∗ and z = 15.56 × l∗. The simulated noisy
data is the same as the first set of curves at τ1 shown in Fig. 3.2(b). (a)
Yield η̃k(rfk) from (3.20) plotted over the region of interest. (b) Cost
ck(rfk , τk) from (3.21) plotted over the region of interest. The position
with lowest cost in (b) is r̂fk , and the value of η̃k at r̂fk in (a) is η̂k. Here,
r̂fk = (x, z) = (15.24, 15.75) × l∗ and η̂k = 0.0999 mm−1. The percent
errors in the estimated x and z positions are 0.143% and 1.196%, respec-
tively. The discretization of the region of interest is a primary contributor
to the estimation error.
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ck(rfk , τk) is iteratively calculated on successfully finer and finer grids, such that each

new grid contains the point of minimum cost. This procedure is repeated until con-

vergence, which, in our case, was two grids where the change in the minimum cost

was less than 1%, but not equal to 0. Importantly, not converging when the change

in cost is zero avoids the situation where the same point happens to have the lowest

cost on two grids.

3.3 Results

We show localization of four different fluorescent inhomogeneities separated by

varying delays. We use the same geometry and optical parameters as in Fig. 3.3,

except we place four inhomogeneities within the medium instead of one.

Figure 3.5 (a) plots the problem geometry as in Fig. 3.3, where the positions of the

excitation source (green), detectors (red), and fluorescent inhomogeneities (cyan) are

shown. Figure 3.5 (b) shows the simulated noisy data from the four inhomogeneities

with delays of 0.9, 3.75, 7.5, and 8.6 ns. The first two inhomogeneities are temporally

separated, while the second two have a significant temporal overlap. Figure 3.5 (c)

plots the actual and predicted locations of the inhomogeneities, which are separated

by 0.2×l∗. Fig. 3.5 (d) shows the yield η (proportional to concentration) experimental

errors, calculated as [(ηk − η̂k)/ηk × 100]. For the multigrid operation, we used

Nx = Nz = 5 equally spaced points for each grid, the same as what was used in

Fig. 3.4. The first coarse grid was defined over the entire square region of interest

from Fig. 3.3, and each finer square grid was centered at (3.22) and extended a

distance slightly greater than the previous grid spacing along the x and z directions

(similar to Fig. 3.4). Both the position and η were predicted with high accuracy, even

for the case when there is overlap between the temporal signals. The accuracy of the

localization is the focus of Section 3.3.1.
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Fig. 3.4. Localization with MRA of the single fluorescent inhomogeneity
in Fig. 3.3. The cost is calculated using (3.20) and (3.21) on progressively
finer grids, where each new grid contains the region of smallest cost. Here,
r̂fk = (x, z) = (15.27, 15.57) × l∗ and η̂k = 0.1003 mm−1. The percent
errors in the estimated x and z positions are 0.037% and 0.066%, respec-
tively. The discretization error has been reduced, especially for the z
coordinate. The number of positions where the cost must be calculated
has also been reduced, decreasing the computation time. The reduction
is even greater when extrapolated to 3D.
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Fig. 3.5. Localization of four fluorescent inhomogeneities at differ-
ent positions with different delays and yields using the same opti-
cal parameters as in Fig. 3.2 and the same geometry as in Fig. 3.3.
The true parameters describing the inhomogeneities are (x, z, η, τ) =
(15l∗, 15l∗, 0.1, 5T ), (15l∗, 15.2l∗, 0.15, 20T ), (15.2l∗, 15.0l∗, 0.075, 40T ),
and (15.2l∗, 15.2l∗, 0.05, 46T ), where l∗ = 0.5 mm and T = 0.19 ns. All of
these parameters are estimated by the algorithm. We assume the fluores-
cence lifetime τf is known. (a) Problem geometry as in Fig. 3.3, where the
positions of the excitation source (green), detectors (red), and fluorescent
inhomogeneities (cyan) are plotted. (b) Detected fluorescence temporal
profile. One source (Q = 1) and seven detectors (M = 7) give 7 mea-
surements yqm. The 7 different symbols and their corresponding colors
represent different source-detector measurement pairs. The data was gen-
erated using the true parameters with 30dB of simulated noise. (c) True
positions of the inhomogeneities rk and the estimated positions r̂fk deter-
mined by the localization algorithm. Note the accuracy of the estimated
positions. (d) Yield ηk experimental errors. Labels one to four correspond
to delays from shortest to longest. Each fluorescent inhomogeneity was
successfully localized, even for the case when there is overlap between the
temporal signals.
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3.3.1 Localization for High Spatial Resolution

We assume insignificant background signal and that the fluorophores do not dif-

fuse or change positions significantly during the integration time. In this case, each

r̂kf coordinate x and z has a Gaussian probability distribution characterized by the

standard deviations σx and σz. These standard deviations are commonly used to

characterize the spatial precision of localization [60, 62]. Here, we show the capabil-

ity of localization to extract high-spatial-resolution information by generating these

statistics from numerical calculations.

We iteratively localize the single inhomogeneity in Fig. 3.3 using MRA, and the

results are shown in Fig. 3.6. During each iteration, random noise was added to the

forward calculation in order to generate independent simulated measurements. σx

and σz were then calculated from the localized positions and used to plot ellipses

with major and minor axis equal to 4σx or 4σz. The MRA method described in

Section 3.2.2 is essential to reducing the time required to compute these statistics.

Figure 3.6(a) and (b) show localization uncertainly statistics for different SNR,

where the noise was added as described by (3.14) [11]. Even for a low SNR of

10 dB, the location of the fluorescent inhomogeneity can be estimated with much

higher accuracy compared to traditional diffusive imaging methods. Figure 3.6(c)

and (d) show localization uncertainly statistics for different numbers of detectors

M . The detectors were distributed as in Fig. 3.3, and the statistics depend on the

spatial support. Compared to volumetric image reconstruction with FDOT, little

information, or fewer detectors, are needed to localize the fluorescent inhomogeneity.

To study how the localization uncertainty will depend on the window length w,

we build up localization uncertainly statistics for different w with a constant SNR of

30 dB and M = 7. The results are shown in Fig. 3.6(e) and (f). For all results in this

figure (and also in Fig. 3.5), the time axis starts at t = 0 and continues in increments

of T = 0.19 ns for 64 increments, giving tmax = 12.16 ns. As can be seen in Fig. 3.6(e)
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Fig. 3.6. Localization uncertainty of a single fluorescent inhomogeneity
using the same optical parameters as in Fig. 3.2 and the same geometry
as in Fig. 3.3 with Q = 1. The fluorescent inhomogeneity location was
estimated 150 times using noisy simulated independent data sets. The
true location is the black point. The ellipses have major and minor axes
of length 4σx or 4σz, such that they contain 95% of the x̂ and ẑ positions.
The center points of the ellipses are the mean of the x̂ and ẑ positions.
(a) Localization uncertainty for different SNR with M = 7 and w = 3T .
Blue, green, and red correspond to SNR of 30, 20, and 10 dB, respectively.
(b) Zoomed version of (a) to show the mean values. (c) Localization
uncertainty for different numbers of detectors M with 30 dB noise and
w = 3T . Red, green, and blue correspond to M = 7, M = 31, and M =
50. (d) Enlarged version of (c) to show the mean values. (e) Localization
uncertainty for different window lengths w, 30 dB SNR, and M = 7. Red,
green, and blue correspond to windows w = 32T , 17T , and 2T , where
T = 0.19 ns and tmax = 64T . (f) Enlarged version of (e) to show the mean
values. The ellipses are not circles because the fluorescent inhomogeneity
is not located at the center of the medium and equidistant to all detectors.
Note that the fluorescent inhomogeneity can be accurately localized even
with low SNR, few detectors, and a short window w.
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and (f), the localization statistics change slightly with window size, but they are still

highly accurate even for the shortest window of length 2T .

The localization uncertainty of the inhomogeneities in Fig. 3.5(c) is described by

the blue ellipse in Fig. 3.6(b). The extension to imaging is straightforward. If we

consider an image which is made up of voxels, and each voxel can be individually

localized, then Fig. 3.6 describes the resolution limit of the image, the minimum

distance between two inhomogeneities such that they can both be accurately localized,

is about 0.1l∗ or 50 µm. This is a remarkable spatial resolution for deep tissue optical

imaging.

3.4 Discussion

We have shown that localization is a powerful tool for retrieving high spatial and

temporal resolution information of fluorescent inhomogeneities embedded in scatter-

ing media. To accomplish this, we have assumed as prior information that the data

from each fluorescent inhomogeneity is separated by a varying and increasing delay.

Interestingly, because the scattering medium acts as a low pass spatial frequency

filter [33], the method is relatively robust to noise. Our incorporation of a forward

model, such as the coupled diffusion model for scattered light we use here, allows imag-

ing through scatter. Moreover, our super-resolution imaging method can be applied

to a wider variety of applications that employ forward models, such as photoacoustic

tomography [80], seismic waveform tomography [81], and microwave imaging [82].

One important potential application is brain imaging, because the response of

fluorescent contrast agents due to neurons or groups of neurons firing may follow a

model similar to in (3.10) [83–87]. If this is found to be true, and a reasonable SNR

can be achieved, then it would be possible to form images of the whole brain or brain

surface with high spatial and temporal resolution. These images could be used to form

correlation maps of brain activity, useful for diagnosing and studying neurological

diseases such as Parkinson’s or Alzheimer’s disease, and developing treatments [88].
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Considering Fig. 3.3, only one source and a few detectors are required, simplifying

the experiment setup. The experiment could be performed in the time domain with

fast and sensitive detectors, or with an integration time equal to w if the delays τk are

sufficiently large. Data captured with an intensified CCD over an integration time

of w could be used to separate temporally overlapping neuron responses in time and

in space due to the large number of detectors. Another potential application is the

localization of blinking quantum dots [68].

Outside of fluorescence imaging altogether, our method may be applied to, for

example, acoustic waves generated by multiple speakers in a room. A suitable forward

model can easily be obtained if the shape of the room is known in advance, and the

required intermittent generation of sound may arise in normal conversation between

people. Our method could then be used to localize these speakers, and once that

is achieved, we envision the location-specific amplification or attenuation of certain

speakers, thus allowing a measure of control over the acoustic environment.

3.5 Conclusion

We have developed an approach for fast localization of multiple fluorescent inho-

mogeneities within a highly scattering medium that takes advantage of variations in

temporal delays between responses. The method allows formation of super-resolution

optical images from highly scattered light. We demonstrate through simulations that

MRA and temporal scanning can significantly reduce the computational burden. The

geometries can be scaled and other forward models can be used, allowing a broad

range of applications.
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4. MOTION IN STRUCTURED ILLUMINATION

Controlled nanometer-scale movement of an object in a spatially varying field provides

far-subwavelength information and a new sensing and imaging modality. Considering

the one-dimensional case, where a film is moved in a standing wave, we show that

measured power data as a function of object position provides sensitivity to the film

refractive index and far-subwavelength thickness. Use of a cost function allows iter-

ative retrieval of the film parameters, and a multi-resolution framework is described.

The approach provides an alternative to ellipsometry with additional information that

circumvents the need to fit measurements to a frequency-dependent material param-

eter model. An instrument could use a piezoelectric positioner to move the sample,

and a measurement done in transmission or reflection.

4.1 Concept

An illustration of the arrangement used to obtain simulated data is shown in

Fig. 4.1. The 1D object to be characterized is located and scanned within a cavity

having a low quality (Q) factor that provides the structured field. Two dielectric slabs

forming the partially reflective mirrors have a refractive index of 1.5 (simulating crown

glass) and a thickness of λ/5, with λ being the free-space wavelength, 1.5µm. The

mirrors are separated by 2.7λ (inner face-to-face distance). Note that the length of

the cavity was not tuned to resonance. An object of total thickness λ/5, is comprised

of two layers of different materials: a slab with a known refractive index of 1.5 and

a thin film on top with a thickness L and refractive index n. Both L and n are

to be determined simultaneously at the single frequency of the measurement, at λ.

The numerical finite element method [89] simulations we used has a normally-incident

plane wave coming in from the top, with λ and the polarization in the ẑ direction (out
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of the page). Port boundary conditions were used at the top of the domain to set up

the incident field while prescribing a non-reflecting condition, and periodic boundary

conditions were applied to the sides. In the scattered field solution, A perfectly

matched layer of thickness 0.2λ is set 0.3λ below the detector plane. In Fig. 4.1, as the

object moves vertically within the structured field with subwavelength steps to a set of

positions (achievable with a piezoelectric positioner), we measure the time-averaged

Poynting vector magnitude, S, in the transmission direction at the detector plane, as a

function of the position (∆y) of the object. In other words, when the object is scanned

over K positions in the cavity, the measurement array will consist of K individual data

values, each representing the measured S at each object position. For this simulation,

the detector plane is located 0.4λ below the bottom surface of the lower mirror,

although for the single (separable) plane wave problem considered, this distance is

arbitrary. The object to be characterized is initially placed with the bottom surface

0.8λ above the top surface of the bottom mirror and scanned in small steps upwards

over a range of 0.5λ, giving 21 positions and measurements in total. We assume a

Gaussian noise model, such that the measurements are normally distributed with a

mean equal to the noiseless measurement, S, and a standard deviation σ proportional

to the noiseless data, giving us a measure of the variability of the measured signal. We

choose a conservative signal-to-noise ratio (SNR) of 30 dB, which can be achievable

with an appropriate input power source and integration time, for all results. The

standard deviation, σ, is determined from the SNR, given by SNRdB = 10 log10(S/σ).

In Fig. 4.2(a) and (b), we plot noiseless measured data S(∆y;L, n) with simulated

noise represented as error bars against the positions of different slab configurations.

In Fig. 4.2(a), the two plotted curves represent measurements of two different film

refractive indices (n = 2.00 and n = 1.95) with a fixed thickness (L = 0.005λ), while

Fig. 4.2(b) shows measurements of two different film thicknesses (L = 0.007λ and

L = 0.005λ) with a fixed refractive index (n = 2.00). In Fig. 4.2(a) and (b), we

show error bars at each measured data point, where the end-to-end length of the

error bars is equal to 4σ, representing the range of 95% of the noisy measurements.
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Δy

L

Fig. 4.1. The simulated measurement arrangement has a plane wave in-
cident from the top, with the free-space wavelength as λ = 1.5µm. Two
dielectric slabs act as partially reflecting mirrors and form a low-Q cavity
with a length of 2.7λ (inner face-to-face distance). An object comprised
of a thin film on top of a substrate, and a total thickness of T = λ/5,
is located in this cavity and moved vertically upwards in nm-scale incre-
ments. As the object is translated in the cavity to a set of positions, the
power is measured at the detector plane, located 0.4λ below the bottom
surface of the lower mirror.
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Fig. 4.2. Measured power flow against object position for different film pa-
rameters. The end-to-end length of the error bars is equal to 4σ, calculated
with an SNR of 30 dB. (a) Film with L = 0.005λ and varying refractive
indices, n. (b) Film with n = 2.00 and different thicknesses, L. (c) Ex-
panding the scale in (a), the red curve uses S(∆y;L, 1.95) as a reference by
setting it to zero, and the blue curve gives [S(∆y;L, 2.00)−S(∆y;L, 1.95)].
(d) Expanding the scale in (b), the red curve shows S(∆y; 0.005λ, n) as a
reference (zero), and the blue curve [S(∆y; 0.007λ, n)−S(∆y; 0.005λ, n)].

Noisy measurements of two slab configurations with minuscule differences in the film’s

refractive index n and thickness L can be separated with higher confidence if their

error bars do not overlap. This is shown in the magnified data in Fig. 4.2(a) and (b).

In other words, separability is achieved when the difference of the noiseless data is

larger than the sum of half of the respective error bar lengths for each measurement.

This is further demonstrated in Fig. 4.2(c) and (d), where we calculate the difference



51

of the two curves in Fig. 4.2(a) and (b), with the same error bars superimposed

at each data point. In Fig. 4.2(c), the red curve sets S(∆y;L, 1.95) to zero as a

reference, and the blue curve represents [S(∆y;L, 2.00)− S(∆y;L, 1.95)]. The same

is repeated in Fig. 4.2(d), where the red curve sets S(∆y; 0.005λ, n) to zero, and the

blue curve represents [S(∆y; 0.007λ, n)−S(∆y; 0.005λ, n)]. From Fig. 4.2(c) and (d),

we see that there exist multiple data points where there are non-overlapping error

bars, which can then be used as leverage to distinguish between two different noisy

measurements, thus demonstrating sensitivity to small differences in film refractive

indices and film thicknesses. Note that the data shown in Fig. 4.2 represents motion

span of one period, and repeats as the object continues its motion in the structured

field.

4.2 Thin Film Characterization

We demonstrate a straightforward application for the sensitivity provided with

motion in structured illumination by reconstructing the film’s thickness (L) and re-

fractive index (n) on top of a slab with known optical properties using the system in

Fig. 4.1. Utilizing the measurements obtained this way, we can use a cost function to

find parameters of interest by comparing the measurement with forward calculations

over a range of different combinations of L and n. We denote f(L, n) as the array of

calculated data, where each entry represents the data at each ∆y location obtained

from the forward model S(∆y;L, n), and y as the array of simulated noisy measure-

ments with presumably unknown true thickness, Lt, and refractive index, nt. Both

f(L, n) and y have dimensions equal to the total number of positions, K, that the

object has moved in the structured field. We denote yk as the kth element in array y,

and fk(L, n) as the kth element in f(L, n). Note that each entry of y can be generated

using the noise model described previously, with yk = fk(Lt, nt) + σ×N(0, 1), where
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N(0, 1) represents a normal distribution with zero mean and unit standard deviation.

We can then determine the estimated value of L̂ and n̂ from

(L̂, n̂) = arg min
L,n

K∑
k=1

|yk − fk(L, n)|. (4.1)

Here we chose an L1-norm as our cost function to illustrate the potential of this

application due to its robustness and resistance to outliers in data. However, an L2-

norm cost function combined with other optimization algorithms can be considered

using the data obtained from this method. The forward calculations were made for a

range of possible thicknesses (L) and refractive indices (n) that encompasses Lt and

nt. Consider a hypothetical experiment from a film structure with Lt = 0.006λ and

nt = 1.72, with a SNR = 30 dB. The calculated costs from (4.1) for each combination

of L ∈ [0.002λ, 0.022λ] with step increments of 0.002λ, and n ∈ [1.62, 1.98] with step

increments of 0.04 (resulting in an 11x11 grid), is shown in the top left plot of Fig. 4.3.

The cost is at the minimum when L̂ = 0.006λ and n̂ = 1.72, as indicated by the red

circle on the grid, demonstrating a correct estimation of the thickness and refractive

index from noisy data. This accurate reconstruction is possible if the true thickness

and refractive index is assumed to fall within the range of calculated configurations

in the grid.

A multi-resolution approach can be applied, significantly decreasing the calcula-

tion time while maintaining the same resolution when scanning over a larger search

range of Lt and nt. This is demonstrated in Fig. 4.3, where we start from the top right

plot. The cost is calculated and minimized on a coarse 5x5 grid with an increased

range of parameters, where L ∈ [0.002λ, 0.13λ], roughly half of the entire sample, and

n ∈ [1, 3.56]. The cost is then calculated iteratively on a smaller region of interest

and on a finer grid that zooms in at the point of minimum cost and extends a dis-

tance equal to the grid spacing from the previous iteration, as shown by following the

arrows in Fig. 4.3. This procedure is repeated five times until the step increments

of the film thickness on the grid reaches 0.002λ, which is where the measurements

remain separable given a 30 dB SNR.
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Fig. 4.3. Calculated costs for a thin film substrate by comparing the
simulated noisy experimental measurements with forward calculations of
different film configurations without multiresolution (top left), and with
multiresolution (starting from top right and following the arrows). The
film substrate used in the simulated experiment has a film thickness Lt =
0.006λ and refractive index nt = 1.72. Without multiresolution, forward
calculations were made for different combinations of film thicknesses L ∈
[0.002λ, 0.022λ] with step increments of 0.002λ, and refractive indices n ∈
[1.62, 1.98] with step increments of 0.04, resulting in an 11x11 grid. The
cost is minimized at the correct parameters where L̂ = 0.006λ and n̂ =
1.72. When using a multiresolution approach, forward calculations were
made on a coarse 5x5 grid with a significantly increased range of values
of L ∈ [0.002λ, 0.13λ] and n ∈ [1, 3.56]. The cost is calculated iteratively
on zoomed in regions of interest (following the arrows) that encompasses
the the point of minimum cost.
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4.3 Resolution

Since the simulated experimental measurements are noisy, the reconstructed film

thickness and refractive index will fall within a distribution. To evaluate the efficacy

of this characterization method we use the same film substrate structure, and generate

500 noisy independent simulated experimental measurements for a given SNR. The

500 sets of reconstructed thicknesses and refractive indices were then obtained from

these independent measurements, which allows us to obtain a statistical distribution

of the reconstructed values for the given SNR. This is repeated for different values of

SNR to demonstrate the performance at different SNR values and is shown in Fig. 4.4.

Figure 4.4 shows box plots of the distribution of reconstructed thickness and refractive

index at different values of SNR. For each SNR, the top and bottom edges of the box

represent the upper and lower quartile of reconstructed values, the whiskers extend to

the minimum and the maximum values and the red dots represent outliers (defined as

less than the first quartile or greater than the third quartile by more than 1.5 times

the interquartile range). The red dashed line in both plots represents the median

of the reconstructed values at each SNR and is identical to the true film thickness,

Lt, and refractive index, nt. In Fig. 4.4(a), the length of the box is skewed upwards

and asymmetric about the median. This is due to the boundary limits of the possible

reconstructed values of the thickness, i.e., the reconstructed thickness cannot go below

0.002λ. In Fig. 4.4, it is shown here that for both reconstructions of film thickness

and refractive index, as the SNR increases, with the exception of several outliers,

the size of the boxes and whiskers gradually decrease and converge to the median at

around 32dB, depicting a convergence to Lt and nt.

4.4 Detectability

The limitations of this method is further investigated in terms of sensitivity for

the cases of very thin films and films with low index contrast relative to the slab.

We consider the same film-substrate structure shown in Fig. 4.1, but for various sets
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Fig. 4.4. 500 independent measurements were made at different SNR
values to calculate a distribution of reconstructed values of L/1000λ and n,
representing uncertainty in the reconstruction of thin film parameters. (a)
Box plots of the distribution of reconstructed film thicknesses for different
SNR values. Note that the y-axis is on the scale of 10−3. (b) Box plots
of the distribution of reconstructed refractive indices. The top edge of
the box represent the upper quartile of the reconstructed values, and the
bottom edge represent the lower quartile. The whiskers extend to the
upper and lower extremes, and the red dots represent outliers. In both
plots, the median (red dashed line) obtained from the set of reconstructed
values is equal to the the true film thickness and refractive index, Lt and
nt.
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of combinations of thin film thicknesses, and differences in refractive index (∆n),

when compared to the case of a slab with the film having the same material as

the slab. For a given SNR, we generated 105 sets of measurement data for each

unique film parameter combination with L ∈ [0.001λ, 0.01λ] (increments of 0.001λ)

and ∆n ∈ [0.02, 0.2] (increments of 0.02). We use Eq. 4.1 to determine whether the

estimated parameters detects the presence of a thin film or returns a slab with no

film present due to measurement noise. This would give us the detectability for each

film parameter combination (percentage of correct reconstructions showing the thin

film present). Contours can then be obtained for when the detectability is at least

99.99%. The contours were then fitted to a two-term power series model (y = axb+c,

in this case, y and x are L/λ and ∆n, respectively, a and b are the fitted coefficients),

and is plotted in Fig. 4.5. In Fig. 4.5(a), fitted contours were drawn for SNR values

of 35 dB, 30 dB, and 25 dB, which are represented as the dashed black line, solid

red line, and dashed-dotted blue line, respectively. In other words, the area to the

right and above the curve represents the parameter space of the thin film that can be

reconstructed and distinguished from measurements of a film-less slab. It can be seen

from Fig. 4.5(a) that with a higher SNR, it is possible to detect a thinner film with

lower optical contrast compared to the slab. For example, in the case of a 30 dB SNR,

0.002λ is the lower limit for reconstruction and resolution in terms of film thickness

for particular values of n, while 0.04 is the lower limit for contrast in refractive index

for particular values of L. In Fig. 4.5(b), contours for different number of positions,

K, are plotted to investigate how K affects the efficacy of the method while fixing

the SNR to 30 dB. In both plots, the solid red curve represents identical parameters

(K = 21, SNR = 30). The solid red curve, the dashed black curve, and the dashed-

dotted blue line is for K equals 21, 11, and 5, respectively. Increasing the number of

steps that the slab moves within the cavity gives more information and in turn higher

detectability.
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Fig. 4.5. Minimum detectability of very thin films with low index contrast
relative to the optical properties of the slab. The region to the right and
above of each curves represent detectability above 99.99% for when a thin
film is present from noisy measurement data. (a) The dashed black, solid
red, and dashed-dotted blue curves correspond to 35 dB, 30 dB, and 25
dB, respectively. (b) At a SNR = 30 dB, the solid red, dashed black, and
dashed-dotted blue curves correspond to when the number of positions,
K, equals 21, 11, 5, respectively.
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4.5 Conclusion

In conclusion, we have presented a method to obtain the optical parameters and

thickness of a thin film on a substrate using motion in structured illumination. Several

changes to experiments using this method can be also be considered. For example,

reflective measurements can be used when the substrate is non transparent or above

band gap light is used, and in that case the substrate itself can serve as a mirror to

form structured illumination. Other ways of generating structured illumination can

also be applied, such as spatial light modulators, therefore removing the need for a

Fabry-Perot cavity. Alternatively, the standing wave could be scanned by controlling

the incident field and making measurements with a fixed detector. In terms of forward

calculations, analytical solutions can also be used instead of numerical solutions.

As for performing optimization of cost functions, the iterative coordinate descent

algorithm with multigrid could be applied, due to its demonstrated capabilities of

avoiding local minima while reducing the computational burden when solving non-

linear optimization problems [90].
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5. FUTURE DIRECTIONS

5.1 Whole-Brain Fluorescent Imaging

In Chapters 2 and 3, we have shown that localization through SRDOI is a power-

ful tool for retrieving high spatial and temporal resolution information of fluorescent

emitters in scattering media. One potential future application of SRDOI is brain

imaging [83, 85, 86]. Current whole-brain imaging methods, such as PET and MRI,

image the brain by detecting associated changes in blood flow, specifically through

blood oxygen level contrast [91–94]. However, they do not provide direct access to neu-

rons, i.e., they measure secondary parameters. Optical methods such as two-photon

microscopy offer more direct access to a wider range of neurobiological information

through optical contrast agents, but they are limited to applications near the sur-

face [95–98]. Understanding the functionality of the brain requires imaging of the

whole brain in vivo, which is not possible with available optical imaging methods.

Signaling among neurons is accompanied by an increase in the local concentration

of calcium, which can modulate the emission of fluorescent calcium reporters within

the brain [84,87]. Each neuron can be treated as a fluorescent source that, for exam-

ple, emits photons in response to calcium channels opening. This provides a direct

indication of neuron activity. In this case, data captured with an intensified CCD

camera or a fiber array over an appropriate integration time can yield information

that could allow neurons or clusters of neurons to be localized with SRDOI. In prin-

ciple, this could provide an image of a whole animal brain or a brain region in vivo

at a resolution of tens of micrometers. These images would provide new information

on how the brain encodes perceived information into neural activity, and how neural

circuits interact with different brain areas. Correlation maps with such data should

prove useful for studying neurological diseases and developing treatments [88].
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5.2 Film Characterization and Defect Detection

In Chapter 4, we showed that intensity measurements obtained as a function

of object position inside a structured field provide information on the material and

subwavelength-scale information of a thin film on a substrate. We also demonstrated

the application of thin film characterization through simultaneous reconstruction of

the refractive index and the thickness of a thin film on a slab to nanometer precision.

With sensitivity to differential changes in parameters, the application space can be

further expanded to characterize a layer of material within a well-characterized stack

of multiple layers of different materials, or to detect the presence of an inhomogeneity

(defect) located within a stack of multiple layers by comparing the measurement with

that of an inhomogeneity-free stack. It may thus be possible to determine the presence

of a defect in a semiconductor. However, the ability to characterize inhomogeneities

still depends on the SNR, size, and contrast between the inhomogeneity and the

background layer. We have shown that, given an SNR of 30 dB with the arrangement

considered, a resolution of L = 0.002λ and a refractive index change of ∆n = 0.04

can be achieved for detection of a thin film. This work presents a starting point

for investigating the resolution limit for small inhomogeneities in slabs for future

work. Other optimization methods can be explored and used in conjunction with this

approach. The method also has the potential to be extended to retrieve the imaginary

component of the refraction index by introducing a third unknown variable into the

cost function. Note that, at this stage, the results presented do not take surface

roughness into account, which would be another step.
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