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ABSTRACT 

Much legacy soils data and soils information lies idle in libraries and archives and is largely 

unused, especially in developing countries like Kenya. We demonstrated the usefulness of a 

stepwise approach to bring legacy soils data ‘back to life’ using the 1980 Reconnaissance Soil 

Map of the Busia Area (quarter degree sheet No. 101) in western Kenya as an example. Three 

studies were conducted by using agronomic information, field observations, and laboratory data 

available in the published soil survey report as inputs to several digital soil mapping techniques. 

In the first study, the agronomic information in the survey report was interpreted to 

generate 10 land quality maps. The maps represented the ability of the land to perform specific 

agronomic functions. Nineteen crop suitability maps that were not previously available were also 

generated. 

In the second study, a dataset of 76 profile points mined from the survey report was used 

as input to three spatial prediction models for soil organic carbon (SOC) and texture. The three 

predictions models were (i) ordinary kriging, (ii) stepwise multiple linear regression, and (iii) the 

Soil Land Inference Model (SoLIM). Statistically, ordinary kriging performed better than SoLIM 

and stepwise multiple linear regression in predicting SOC (RMSE = 0.02), clay (RMSE = 0.32), 

and silt (RMSE = 0.10), whereas stepwise multiple linear regression performed better than SoLIM 

and ordinary kriging for predicting sand content (RSME = 0.11). Ordinary kriging had the 

narrowest 95% confidence interval while stepwise multiple linear regression had, the widest. From 

a pedological standpoint, SoLIM conformed better to the soil forming factors model than ordinary 

kriging and had a narrower confidence interval compared to stepwise multiple linear regression. 

In the third study, rules generated from the map legend and map unit descriptions were 

used to generate a soil class map. Information about soil distribution and parent material from the 
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map unit polygon descriptions were combined with six terrain attributes, to generate a 

disaggregated fuzzy soil class map. The terrain attributes were multiresolution ridgetop flatness 

(MRRTF), multiresolution valley bottom flatness (MRVBF), topographic wetness index (TWI), 

topographic position index (TPI), planform curvature, and profile curvature. The final result was 

a soil class map with a spatial resolution of 30 m, an overall accuracy of 58% and a Kappa 

coefficient of 0.54. 

Motivated by the wealth of soil agronomic information generated by this study, we 

successfully tested the feasibility of delivering this information in rural western Kenya using the 

cell phone-based Soil Explorer app (https://soilexplorer.net/). This study demonstrates that legacy 

soil data can play a critical role in providing sustainable solutions to some of the most pressing 

agronomic challenges currently facing Kenya and most African countries. 

  

https://soilexplorer.net/
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PREAMBLE 

“Would it not be a great satisfaction to the king to know at a designated moment every year the 

number of his subjects, in total and by region, with all the resources, wealth & poverty of each 

place; [the number] of his nobility and ecclesiastics of all kinds, of men of the robe, of Catholics 

and of those of the other religion, all separated according to the place of their residence? 

......[Would it not be] a useful and necessary pleasure for him to be able, in his own office, to 

review in an hour's time the present and past condition of a great realm of which he is the head, 

and be able himself to know with certitude in what consists his grandeur, his wealth, and his 

strengths?” 

--Marquis de Vauban, proposing an annual census to Louis XIV in 1686-- 
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CHAPTER 1. INTRODUCTION 

Soils are essential for achieving food security and have the potential to help mitigate the 

negative impacts of climate change. Sustainable soil management, in turn, can contribute to the 

production of more and healthier food. The care, restoration, enhancement, and conservation of 

soil should therefore become a major global priority (Africa Progress Panel, 2015).  

Africa’s current population of ~1 billion is projected to increase to ~6 billion by 2100 

(Gerland et al., 2004). As much as 70% of the current population depends directly on agriculture. 

There will be a tremendous need to produce more food on an essentially finite soil resource base. 

This can only happen when there is an in-depth understanding of existing soil resources. 

Although information on soils for much of Africa is sparse, Kenya, fortunately, has 

considerable soils information in the form of traditional soil maps (Kenya Soil Survey, 1980), soil 

survey reports (i.e. Rachilo and Michieka, 1991), soil survey manuals (Kenya Soil Survey Staff, 

1987), land evaluation frameworks, soil profile descriptions, and farm management handbooks 

(Jaetzold and Schmidt, 1982). These types of soil information are collectively known as legacy 

soil data (Zinck, 1995). Legacy soil data have been widely used as meaningful sources of soil 

information to support soil conservation or as major components of national environmental 

monitoring programs (McBratney et al., 2003; Odeh et al., 2012). 

In developing countries, legacy soil data often remains idle in libraries as artifacts 

accumulating dust. The demand for soil data, however, is soaring (Cook et al., 2008). The 

probability of such data being lost through disasters, be it natural, manmade, political, or simply 

inattention is very high (Rossiter, 2008). Our visits to the Kenya Soil Survey (KSS) in the spring 

of 2016 confirmed this. (i) Legacy soil data is left seemingly unused and stored on library shelves, 

(ii) some are in private collections of retired soil scientists, (iii) while some data are in digital 
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formats and, used only internally. One potential solution for the dissemination of such 

geographical data is to take advantage of advances in geo-information technology to take this data 

out of libraries, and make it available via portable digital devices. In addition to making the 

information more accessible, this may also reduce the possibility of loss of the paper data and the 

information it contains.  

Legacy soil data contains considerable agronomic information that can help revitalize 

agriculture in countries with poor soils spatial data infrastructures (Zinck, 1995). This information 

often includes the spatial distribution of soils, land quality, crop suitability, geo-located soil profile 

information, geology, and land use. This sort of data can be used as baselines for long-term studies 

that assess changes of soil functional properties (Bellamy et al., 2005) and to model temporal 

trends of soil quality and soil processes (Baxter et al., 2006). Moreover, it can be used as a primary 

input for digital soil mapping (DSM), especially for countries with sparse soil data infrastructures 

(McBratney et al., 2003). Methodologies on how to effectively transform and utilize renewed 

legacy soil data have become a new area of research in soil science (Hengl et al., 2007). Rossiter 

(2008) proposed a stepwise process for collating legacy soil data where digital soil mapping 

concepts can play an important role in legacy soil data rescue and renewal through the use of 

medium to high resolution digital elevation models and derived terrain attributes.  

The most common form of legacy soil data is the traditional soil map. Traditional soil 

mapping involves field observations followed by manual drawing of soil delineations onto aerial 

photographs or topographic maps. In the case of Kenya, this process was used to produce the 

Exploratory Soil Map and Agro-climatic Zone Map of Kenya, 1980 at a scale of 1:1,000,000 

(Sombroek et al., 1982). This scale is equivalent to a resolution of ~300 meters. Resolution here 

refers to the smallest cell size on the ground. In this case, 300 m resolution refers to a 300 by 300 
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m area (an area of 9 hectares). The African Soil Information Service (AfSIS) is working to improve 

the spatial resolution of African soil maps using geostatistical approaches and their work so far 

has yielded a resolution of 250 meters (an area of 6.25 hectares).  

Maps at these resolutions do not provide sufficient detail to inform management and land 

use decisions needed by rural smallholder farmers whose average landholding is less than a hectare 

(FAO, 2017). In addition, the uncertainty of such predictive maps is high and is not adequate to 

support cost-benefit based decisions at local levels. A more nuanced approach is needed to improve 

on the resolution of traditional maps to provide soils information to support agronomic decision-

making. A digital soil mapping approach as described by Ashteker, (2014) resulted in resolutions 

as fine as 5 by 5 meters, which has sufficient resolution for farmers to use for management 

decisions.  

All this will be in vain if such information does not reach the individuals making agronomic 

decisions. In addition to adapting the DSM outputs to specific user needs, this study aims to 

demonstrate the delivery of the information to potential end users via an easy to use cell phone 

app. We have already tested a possible approach using the cell phone network in rural western 

Kenya (Minai et al., 2016). This is an important accomplishment as it opens up the possibility of 

delivering timely and useful agronomic information to end users at low cost compared to 

traditional agricultural extension services.   

1.1 Hypotheses 

The need for spatial soil information is growing, particularly in digital formats that can 

readily be incorporated into geographical information systems (GIS) and analyzed with other 

spatial data (Lagacherie and McBratney, 2006). DSM offers not only the opportunity to map soil 

properties, but it also provides an opportunity to upgrade traditional soil maps (McBratney et al., 



 

 

23 

2003). DSM is defined as “the creation and population of spatial soil information systems by 

numerical models inferring the spatial and temporal variations of soil types and soil properties 

from observations and knowledge and from related environmental variables” (Lagacherie, 2008).  

In this dissertation, I attempt to test two hypotheses. (1) Soil properties can be predicted 

without any additional field work through the utilization of existing legacy soil data and (2) a 

traditional soil map can be downscaled by utilizing soil forming factors together with terrain 

attributes derived from a digital elevation model (DEM). 

 Hypothesis 1 

The prediction of soil properties can be achieved without any additional field work through 

the utilization of existing legacy soil data.  

This hypothesis will be tested by using only soil profile data mined from an existing soil 

survey of a selected portion of western Kenya. The rapid advances made in georeferencing of soil 

samples and the growing availability of earth remote sensing data provided new opportunities for 

predicting soil functional properties using legacy soil data. Soil functional properties are those 

properties related to a soil’s capacity to support essential ecosystem services such as primary 

productivity, nutrient and water retention, and resistance to soil erosion. DSM of soil functional 

properties, especially in regions with poor spatial data infrastructures such as Africa, is important 

for planning sustainable agricultural intensification and natural resources management (NRM) for 

rural smallholder farmers.  

For instance, over the past decade, the AfSIS project has compiled two georeferenced soil 

profiles/samples datasets: (1) the Africa Soil Profiles database (Leenaars et al., 2014a) which 

contains legacy soil profile data and, (2) the Sentinel Sites database (Vågen et al, 2010) which 

contains newly collected topsoil data. Together, these two databases consist of over 85,000 
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samples, representing one soil sample for every 274 km2. Using these soil point observations and 

measurements, and an extensive collection of global (SoilGrids1km) and continental (Africa) 

environmental covariates, ISRIC - World Soil Information Service, in collaboration with The 

Earth Institute, Columbia University, the World Agroforestry Centre, Nairobi, and 

the International Center for Tropical Agriculture (CIAT), have produced predictions of an array of 

soil functional properties for the whole African continent at an initial spatial resolution of 1km 

(Hengl et al., 2014). These predictions have since been downscaled to 250 m raster grids for either 

two or six standard soil depths (Hengl et al., 2017).  

These initiatives show that state of the art baseline soil property map products can be 

developed cost-efficiently using DSM based on legacy soil data and can be updated when 

additional, data become available (Leenaars et al., 2017). It is unclear, however, what prediction 

model(s) are best suited and perform best with very limited soil data, which is the case for soil 

profile data mined from legacy soil data. Moreover, as already mentioned, the current spatial 

resolutions of 250 m resulting from prediction models is too low to help with practical land 

management for rural smallholder farmers in Africa whose landholding are typically less than a 

hectare (Sanchez et al., 2009).  

 Hypothesis 2 

A traditional soil map can be downscaled by utilizing soil forming factors together with 

terrain attributes derived from a DEM.  

Legacy soil data in the form of soil maps from traditional soil surveys describe soils as they 

appear in the field. They arise from traditional soil mapping approaches that are rooted in the 

catena concept to infer where specific soil types occur within landscapes. The catena concept refers 

to the repeating pattern of lateral soil variation over a hillslope (Milne, 1935). On steeper slopes, 
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erosion and runoff is faster, so the soils there are typically thinner and drier. Conversely, on 

shallower slopes at the top or bottom of a catena, soils are usually deeper, resulting in soil types 

and soil characteristics that are different from those on the adjacent steeper slopes. 

Using this concept, soil mappers have traditionally studied soil patterns in small-localized 

areas. Once they understood these patterns, they depicted the patterns by drawing polygons around 

areas of similar soil properties. These patterns were then extrapolated to larger spatial areas to map 

soils with similar soil properties. The problem with the traditional approach of depicting individual 

soil map units as discrete polygons with definite boundaries is that it simplifies the complex 

continuous distribution of soil types across a landscape (Zhu et al., 2004; Odgers et al., 2014). 

Specifically, soil map units of legacy soil maps were generalized to fit the amount of information 

the soil mapper could interpret from the available base maps and field observations. To correct for 

this, an appropriate method of better integrating relief attributes into the soil mapping process is 

needed (Penizek and Boruvka, 2008).  

One way of doing this is by the use of terrain attributes (McBratney et al., 2003) to tie soil 

types described in soil map units with their slope position. For example, alluvial plains are relief 

units characterized by relatively flat areas around watercourses that have a concave transition to 

the surrounding upland landscape. Typical relief attributes of alluvial plains include: (1) high 

values of contributing area, (2) low slopes, (3) no or concave curvature, and (4) high values of the 

compound topographic index (Park et al., 2001). Delineation of alluvial plains using these terrain 

attributes can therefore give a more precise location of where alluvial soils occur within the 

landscape. Odgers et al. (2014) used such an approach to disaggregate a 1:250,000-scale legacy 

soil polygon map from Central Queensland, Australia to a 30 m raster grid resolution.  
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Disaggregation of soil map units involves “downscaling of information to produce new 

information at a finer scale than the original source” (McBratney, 1998), with the aim of mapping 

constituent soil classes of soil map units individually (Thompson et al., 2010). The result is a 

rasterized prediction of the spatial distribution of soil classes after disaggregating the soil polygon 

map units. Bui and Moran (2001) disaggregated soil associations mapped at a reconnaissance scale 

(1:500,000 – 1:250,000) using the legend description and terrain attributes to allocate the soils 

described for a particular soil map unit onto their respective landscape positions. This added further 

detail to the existing soil map and was used to improve (increase) their scale. Soil map unit 

disaggregation is important because the original soil map units, even though useful, do not contain 

enough detail to assist farmers in making sound agronomic decisions. Moreover, mapping soil 

classes as opposed to soil map units is of importance because specific land uses can be associated 

with specific soil classes (Brungard et al., 2015) but not necessarily with broad soil map units.  

1.2 Objectives 

The overall objective of this study was to bring legacy soil data for a selected portion of 

Kenya ‘back to life’ using DSM techniques. The specific objectives include: 

a) Transform the best available legacy soil survey of a selected portion of Kenya into a digital 

format. 

b) Make spatial predictions of selected soil functional properties by using data mined from 

the legacy soil survey using DSM techniques. 

c) Improve the spatial resolution of the legacy soil map of the study area-using DSM 

techniques.  

d) Develop a prototype platform that could deliver spatially explicit soil and agricultural 

information for the area of the legacy soil survey on a smart phone or tablet. 
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1.3 Dissertation Outline 

This dissertation is organized into six chapters. This chapter, Chapter 1, describes the lack 

of use of legacy soil data and justifies the need for the ‘rescue’ of this legacy soils data for its use 

for digital soil mapping. Chapter 2 provides a literature review of the use of legacy soil data, 

highlights the attempts by various institutions and initiatives to rescue both legacy soil profile data 

and legacy soil survey reports, and identifies existing gaps in the literature. Chapter 3 demonstrates 

the stepwise process of bringing legacy soil data ‘back to life’. Chapter 4 illustrates how to make 

spatial predictions of selected soil functional properties mined from legacy soil data using specific 

soil interpolation methods. Chapter 5 discusses a proposed methodology for disaggregating a 

traditional soil polygon map to produce new information at a finer scale than the original source 

with an aim of mapping constituent soil classes within soil map units. Chapter 6 illustrates how to 

deliver spatially explicit soils and agricultural information on mobile devices to the end user. 

Chapter 7 summarizes the conclusions from the different chapters and provides recommendations 

for future study. 
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CHAPTER 2. LITERATURE REVIEW 

This chapter reviews literature on legacy soil data highlighting some of the efforts used to 

rescue different types of legacy soil data. It also gives a history of soil mapping in Kenya and 

identifies some of the current efforts being made to map soil properties.  

2.1 Legacy Soil Data 

The world is full of soil resources produced over the past several decades (Arrouays et al., 

2017). These exist as traditional soil maps, soil survey reports, soil survey manuals, land evaluation 

frameworks, soil profile descriptions, and farm management handbooks, collectively known as 

legacy soil data (Zinck, 1995).  

Legacy soil data remains the backbone for present and future studies (Panagos et al., 2011). 

For instance, soil maps are resources used in a myriad of fields of science; they are among primary 

resources of soil resources used to: (i) monitor land degradation, improvement, and management, 

(ii) identify changes in land use and water resources, and (ii) predict climatic and environmental 

changes. The collection of new soil information, however, is costly. Fewer and fewer new field-

based soil data are being collected and analyzed, and as a result, older data and information is 

increasingly sought after. Therefore, the preservation of legacy soil data is vital as they are the 

building blocks of most current studies requiring soil information. Ideally, users should have easy 

public access to the source material and available derived information.  

Unfortunately, data, information and knowledge of the world soil resources are currently 

fragmented and even at risk of being lost or forgotten due to the cost of maintaining paper-based 

soil data holdings and archives, and the physical deterioration of these paper-based sources, 
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especially in tropical climates. In addition, there are risks to storage buildings such as fire, storms 

etc. The loss of existing soils data would be a disaster not only because soil data are central to 

many of the major global issues the world is facing (McBratney et al., 2014; Amundson et al., 

2015; Montanarella et al., 2016), but also because the tremendous resources that went into the 

collection and analysis of these data (Arrouays et al., 2017). Collection of comparable future soil 

data would certainly be cost prohibitive in many countries and not justifiable without first having 

made optimal use of data already available. 

A visit to the Kenya Soil Survey department in the spring of 2016 confirmed this narrative. 

Legacy soil data remained idle in the Kenya soil survey library. Some data were in the collection 

of retired soil scientists. The probability of such data being lost was therefore very high and a lot 

of effort needs to be put to ensure they are not lost due to neglect or inattention.  

Legacy soil data is a huge reservoir of soil information that can serve as inputs into DSM 

procedures or as evaluation data sets (Lagacherie, 2008). A quick look at the information contained 

within some of the existing legacy soil data from the Kenya Soil Survey showed that the legacy 

soil data often held information on the spatial distribution of soils, vegetation type, land evaluation 

keys, land quality assessments, geo-located soil profile data, geology, land use, crop suitability, 

soil fertility aspects, land management aspects, soil engineering properties, and soil erosion hazard. 

This information in itself is very useful as it can be used to support soil conservation or as major 

components of national environmental monitoring and hence revitalize agriculture (McBratney et 

al., 2003; Odeh et al., 2012). From soil maps, we can learn about the pedological context as well 

as some insight in the soil spatial variability, and since legacy soil data is also the history of soil 

mapping, several conclusions can be drawn on their relevance and their usage (Carré and 

Boettinger, 2008).  
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Legacy soil data arise from traditional soil survey (Bui and Moran, 2001). The methods of 

soil survey are generally empirical, based on conceptual models developed by the surveyors that 

correlate soil with underlying geology, landforms, vegetation, and air photo interpretations. In 

traditional soil survey, survey samples are located to confirm the surveyor’s interpretation of the 

landscape and not in accordance with a statistical design. This automatically leads to bias at 

sampled locations. Carré et al. (2007) examined this problem in more detail. While soil 

observations collected in soil surveys pose a problem to the statistician, soil scientists recognize 

that the conceptual, mental models developed by soil surveyors in the past, represented in map 

legends and map boundaries, can be highly informative. The main challenge that legacy soil data 

pose is how to ensure that this information is effectively transferred into the DSM framework 

(Minasny et al., 2008).  

There are two types of legacy soil data: (i) those existing as soil maps, and (ii) and those 

existing as data from individual soil profiles. Both occur in well-detailed soil survey reports. Soil 

maps provide a continuous representation of the soil pattern and can be used as soil covariates for 

DSM (Mayr and Palmer, 2006). In addition, soil maps can be used as a source for calibrating DSM 

procedures that consider the soil surveyor’s knowledge if they are sampled to be representative of 

a larger region (Lagacherie et al., 1995). Existing soil profile data provide detailed information on 

many soil properties at different soil depths. Such data is often used as inputs into many statistical 

and geostatistical procedures to predict soil properties at unsampled locations (Carre and Girard, 

2002; Hengl et al., 2004). A number of problems, however, usually hamper the use of legacy soil 

data. These include the unavailability of enough numeric data, lack of harmonization and 

imprecision of soil descriptions, imprecise georeferencing of soil profiles, and non-optimal 

location of soil data (Lagacherie, 2008). This has however not hindered the use of legacy soil data 
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for DSM (Arrouays et al., 2017). A lot of efforts have been undertaken by various soil agencies to 

integrate soil data into coherent spatial data infrastructures (Dusart, 2005; Feuerherdt, 2006; 

Dobos, 2006; Daroussin et al., 2007). 

2.2 Legacy Soil Data Rescue Efforts 

 Legacy Soil Report Rescue Efforts 

Globally, there have been tremendous efforts by various institutions and initiatives to 

rescue legacy soil reports. Since 1966, the International Soil Reference and Information Center 

(ISRIC) has been compiling a large collection of articles, country reports, books, and maps with 

emphasis on developing countries (https://www.isric.org/explore/library, accessed 1/11/2019). 

The ISRIC library currently contains a collection of about 10,000 (digitized) maps and 17,000 

reports and books, many of which can be accessed online. The subject emphasis is on soils, but 

related geographic information on climate, geology, geomorphology, land degradation, land use, 

and land suitability are also collected. The map collection contains mainly small-scale (1:250,000 

or smaller) maps, the majority of which are accompanied by reports and related thematic and 

derived materials. A significant part of the ISRIC map collection was scanned at the European 

Commission’s Joint Research Centre (JRC) as a foundation for the European Digital Archive of 

Soil Maps (EuDASM) whose main objective is to transfer soil information into digital formats, 

with the maximum resolution possible, to preserve the information of paper maps 

(https://esdac.jrc.ec.europa.eu/, accessed 9/16/2019). EuDASM provides access to an on-line 

collection of soil and related maps for Africa (Selvaradjou et al., 2005a), Asia (Selvaradjou et al., 

2005b), Canada, Europe, Latin America and the Caribbean (Selvaradjou et al., 2005c), and the 

United States of America. Available maps can be downloaded and viewed on screen. More than 

6,000 maps from 135 countries have been captured and are freely available through a user-friendly 

https://www.isric.org/explore/library
https://esdac.jrc.ec.europa.eu/
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web-based interface, while over 30% of the available country reports are available as full text (PDF) 

(Panagos et al., 2011). 

The Food and Agriculture Organization (FAO) land and water division has also made 

tremendous efforts to make legacy soil data available through the FAO soils portal 

(http://www.fao.org/soils-portal/en/ accessed 1/11/2019). Soil survey maps can be accessed 

through the FAO’s soil and legacy maps web portal (http://www.fao.org/soils-portal/soil-

survey/soil-maps-and-databases/fao-soil-legacy-maps/en/ accessed 1/11/2019). It has a collection 

of up to 1,228 land legacy maps, mainly soil maps, but also land use, geology, and land cover 

maps. These maps were initially scanned as jpeg and then uploaded with standard metadata. 

Additionally, soil survey reports can be accessed through the FAO’s soil legacy report portal 

(http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/soil-legacy-reports/en/ 

accessed 1/11/2019), which contains links to other institutes and organizations that have similar 

collections. These legacy reports resulted from the hundreds of soil survey field projects that were 

carried out since the 1950s and published as gray literature.  

The World Soil Survey Archive and Catalogue (WOSSAC) also consists of an extensive 

collection of soil, land resource and land suitability surveys that were undertaken worldwide over 

the last 80 years by soil surveyors and scientists at the behest of the British government and others 

(https://www.wossac.com/ accessed 1/11/2019). This collection has been archived and catalogued 

using internationally recognized bibliographic standards (Hallet et al., 2006) and consists of 13,000 

reports and maps available for consultation and use by the international soil science 

community. WOSSAC’s mission is to provide a secure home for soil survey reports, maps, 

imagery, and photographs produced by British companies and surveyors overseas from 336 

territories worldwide, with a view to ensuring their enduring availability and protection. WOSSAC 

http://www.fao.org/soils-portal/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/fao-soil-legacy-maps/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/fao-soil-legacy-maps/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/soil-legacy-reports/en/
https://www.wossac.com/
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concentrates solely on British-affiliated surveys in developing countries, but accommodates all 

soil survey materials that arrive irrespective of geographical coverage or source. The archive holds 

a wide variety of media, including map sheets; map albums; reports, books and monographs; 

satellite imagery on paper, film and in digital forms; GIS digital datasets; aerial photography; site 

photographs; micro-fiche; and survey electronic information (Hallet et al., 2011).  

Within the United States, the United States Department of Agriculture (USDA) has 

published soil surveys reports since 1899 and archived many of these publications as PDF files. 

Most of the archived soil surveys include detailed soil maps. Printed copies of soil surveys reports 

are available at federal depository libraries and in some cases at USDA offices. These reports can 

be accessed through the USDA’s Natural Resource Conservation Service web portal 

(https://www.nrcs.usda.gov/wps/portal/nrcs/soilsurvey/soils/survey/state/ accessed 7/10/2019). 

Web Soil Survey (WSS) (https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm, accessed 

9/16/2019) provides the most up to date soil data and information produced by the National 

Cooperative Soil Survey and is operated by the USDA Natural Resources Conservation Service 

(NRCS), which provides access to the largest natural resource information system in the world. 

NRCS has soil maps and data available online for more than 95% of the US’s counties and 

anticipates having 100% in the near future. The site is updated and maintained online as the single 

authoritative source of soil survey information for the US and its territories. 

 Legacy Soil Profile Data Rescue Efforts 

Even though soil survey reports have been scanned and made available online, many of the 

rescued soil survey reports do not contain geo-referenced soil profile information. Currently, there 

is much effort to capture and compile soil profile data mined from rescued soil survey reports into 

https://www.nrcs.usda.gov/wps/portal/nrcs/soilsurvey/soils/survey/state/
https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm
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various databases. In this section, we highlight the efforts of various institutions and initiatives to 

rescue soil profile data from existing soil survey reports.  

Since the 1980s, ISRIC has developed and managed a number of stand-alone soil profile 

databases that are freely available to the public. In 1986, ISRIC developed the Soil and Terrain 

(SOTER) database, a program initiated by FAO, the United Nations Environmental Program 

(UNEP), and ISRIC, under the auspices of the International Soil Science Society (ISSS) (van 

Englen and Dijkshoorn, 2012). The SOTER database is composed of a map that delineates the 

SOTER map units and a table with terrain and soil data that can be linked to the units of the map 

and provides data on key soil and terrain properties that are relevant inputs to agro-environmental 

applications such as food projection studies, climate studies, land evaluation or hydrological 

catchment modelling. The aim of the program was to develop a global SOTER database at scale 

1:1,000,000 that was supposed to be the successor of the FAO-UNESCO Soil Map of the World 

(SMW). The SOTER database with global coverage, however, was never achieved, but SOTER 

databases were developed for various regions, countries and continents. Soil profile data in the 

SOTER databases is often incomplete, which hampers their applicability for quantitative studies. 

To overcome this, consistent taxotransfer rules, methodology for filling gaps in primary soil 

analytical data, were used to fill gaps in the SOTER soil profiles (Batjes, 2003). From these soil 

profiles, a consistent set of 18 soil properties were derived for depth intervals of 20 cm up to 100 

cm depth. The soil properties include: organic C, total N, pH, CEC, base saturation, Al saturation, 

CaCO3 and gypsum content, exchangeable Na, electric conductivity, bulk density and the sand, 

silt and clay fractions. The database contains 6,388 soil profiles (Ribeiro et al., 2018). 

 ISRIC also maintains the World Inventory of Soil Emission Potentials (ISRIC-WISE) soil 

profile database that was developed between 1991 and 1995 (Batjes and Bridges, 1994). The 
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current version of the ISRIC-WISE database (ISRIC-WISE3) was compiled from a wide range of 

soil profile data collected by many soil professionals worldwide (Batjes, 2009). All profiles have 

been harmonized with respect to the original FAO Legend and FAO Revised legend of the Soil 

Map of the World (FAO-UNESCO, 1974; FAO, 1988). WISE3 holds selected attribute data for 

10,253 soil profiles, with some 47,800 horizons, from 149 countries. Individual profiles have been 

sampled, described, and analyzed according to methods and standards in use in the originating 

countries. The primary data contained within the ISRIC-WISE3 project has been used for a range 

of applications such as the development of harmonized sets of derived soil properties for the soil 

types of the world, gap-filling in primary SOTER databases, global modelling of environmental 

change, analyses of global ecosystems, up-scaling and downscaling of greenhouse gas emissions, 

and crop simulation and agro-ecological zoning (ISRIC-WISE, 2008).  

Significant progress has also been made in collecting and assembling legacy soil profile 

data for sub-Saharan Africa. This effort draws from decades of soil survey campaigns in Africa, 

converting the legacy profile data into formats that link the digital platforms. ISRIC-World Soil 

Information Service (WoSIS) has been compiling legacy soil profile data for Sub-Saharan Africa, 

as a project activity of the globally integrated-Africa Soil Information Service (AfSIS) project 

(Shepherd and Vågen, 2010). The Africa Soil Profiles database (AfSP) currently contains over 

18,500 georeferenced legacy soil profile records for 40 countries (Leenaars et al., 2014b). The soil 

profile records were identified and collected from over 500 data sources, both digital and analogue, 

and the data were compiled and converted to a common standard and passed through basic quality 

rules and cleaning. Previously, such data would only be accessible through a myriad of sources 

and would not be standardized, hindering efforts to make the data shareable and usable. All records 

include soil profile layer attribute data and over 80% of the records include soil analytical data 
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including, but not limited to, those specified by GlobalSoilMap. Soil attribute values were 

standardized according to e-SOTER conventions and validated according to routine rules. e-

SOTER was proposed to overcome the shortcomings of SOTER and provide a regional platform 

that can be extended worldwide. The degree of validation, and associated reliability of the data 

varies because reference soil profile data that were previously and thoroughly validated are 

compiled together with non-reference soil profile data of lesser inherent representativeness. The 

database is continuously updated and growing, and milestone versions have been posted online 

and made available to the project and the public. This data has since been used to produce an array 

of both physical and chemical soil property maps at an initial resolution of 1 km, for 8 different 

soil properties, and currently at 250 m resolution for 35 different soil properties.  

Due to the need for central global soil profile database, the World Soil Information Service 

(WoSIS) was developed in 2015 (Ribiero, et al., 2015). WoSIS contains “a centralized and user-

focused database containing only validated and authorized data with a known and registered 

accuracy and quality” (Tempel et al., 2013). WoSIS is a server database for handling and managing 

multiple soil profile datasets in an integrated manner, subsequent to proper data screening, 

standardization, and ultimately harmonization of all the existing stand-alone soil profile databases. 

All data submitted for consideration in WoSIS are first preserved ‘as is’ in the ISRIC’s world data 

center for soils as certified soils, data repository by the CoreTrustSeal Board (Edmunds et al., 

2016). Subsequently, they are assessed for quality, standardized and, where possible, harmonized 

using consistent procedures. Special attention is paid to the selection of soil properties 

considered in the GlobalSoilMap specifications such as pH, SOC content, soil texture, bulk density, 

CEC, and soil water retention (Arrouays et al., 2014). WoSIS receives its data from a multitude of 
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sources including the AfSP, ISRIC-WISE, and SOTER databases and other national and regional 

soil profile databases from around the world. 

2.3 History of Soil Mapping in Kenya 

Attempts to map the soils of Kenya date back to 1908 when there was a need for soil survey 

for settled areas (Aore, 1995). However, it was not until 1936 that the first soil map of Kenya was 

included in Milne’s ‘A Provisional Soil Map of East Africa’ at a scale of 1:2,000,000 (Milne, 

1936). Refinement of this map led to the publication of the 1:3,000,000 soil map of Kenya by 

Gethin-Jones and Scott in the first edition of the National Atlas of Kenya (Gethin-Jones and Scott, 

1959; Survey of Kenya, 1959). The same map was included in the second and third editions of the 

National Atlas (Soil Survey of Kenya, 1962 and 1971). Basically, the same information as 

contained in the Atlas was used by Scott for the 1:4,000,000 soil map of East Africa in Morgan’s 

book on people and natural resources of the region (Scott, 1969).  

In all these attempts, soils were mapped following the catena sequence as developed by 

Milne (1936). This catena concept was taken a step further into a ‘Land System’ approach, which 

resulted in the preparation of the ‘Land System Atlas for Western Kenya’ at a scale of 1:500,000 

(Scott et al., 1971). Making use of available information, FAO-UNESCO (1974) published the 

‘Soil Map of Africa’ at a scale of 1:5,000,000 as part of ‘Soil Map of the World’ program.  

The exploratory ‘Soil Map of Kenya’ at a scale of 1:1,000,000 (Sombroek et al., 1982) was 

the fourth effort to comprehensively map the soils of Kenya. Through a methodology developed 

by the Kenya Soil Survey from 1972 onwards termed ‘physiographic soil survey’, this exploratory 

soil map visualized the complex relation between landforms, geology, and soils. This map was 

used as a basis for compilation of the generalized soil map to be represented in the fourth edition 
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of the National Atlas. In the process of generalization, the number of mapping units was reduced, 

the legends simplified, and the soil classification simplified to the highest level.  

The legend of the generalized soil map represents a subdivision of the country into major 

landforms and soil mapping units (SMUs). Each SMU was described in terms of drainage 

condition, depth, color, texture, etc. using a descriptive terminology that was based on the FAO 

guidelines (FAO, 1977). Each SMU description was then followed by the soil classification 

according to FAO-UNESCO’s legend for their Soil Map of the World (FAO-UNESCO, 1974).    

More detailed soil surveys in Kenya started on an ad hoc basis in early 1950s mainly at a 

detailed or semi-detailed scale in areas earmarked for development. Soil surveys were mainly 

carried out by the chemistry department of the National Agricultural Research Laboratories 

(NARL) under the umbrella of the senior soil chemist. In the early 1960s, a soil survey unit was 

set up as part of the chemistry section. From 1972 onwards, soil survey in Kenya was considerably 

strengthened under a bilateral aid agreement between The Netherlands and the Kenya Soil Survey 

(KSS). KSS was mandated to conduct soil and other land resource surveys throughout Kenya to 

provide information about soil and land resources required for accelerated agricultural 

development. All these efforts led to the provision of traditional soil maps for Kenya at different 

scales (Kenya Soil Survey, 1984). Experienced soil surveyors who knew the area well spent much 

time in the field making auger observations at regular intervals, and in this way drew a field soil 

map that was later digitized and printed. 

2.4 Current Soil Mapping Efforts 

On a global scale, the only complete systematic survey of the world’s soil resource remains 

the FAO-UNESCO Soil Map of the World completed in the 1970s at a scale of 1:5,000,000 (FAO-

UNESCO, 1974). Modern technologies applied to it have permitted much more useful information 
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to be derived from it than was originally envisaged. Publications such as World Soil Resources 

(FAO, 1991) and Potential Population Supporting Capacities of Lands in the Developing World 

(FAO/UNFPA/IIASA, 1982) demonstrated what can be done by systematically re-analyzing 

existing soils data. The Soil Map of the World is now available in digital form making it more 

useful compared to the paper version that is very large and hard to use (http://www.fao.org/soils-

portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/ accessed 

8/20/2019).  

Nevertheless, the original maps are showing their age and need updating considering the 

wealth of more recent soils information (Purnell, 1995). This initiated the updating of the legend 

of the Soil Map of the World (FAO, 1988). A more ambitious and potentially valuable effort was 

to make a worldwide soils and terrain map at a scale of 1:1,000,000: SOTER project (ISRIC, 

1986). Despite the widespread support from UNEP, FAO, ISRIC, ISSS, and some national soil 

surveys, financing for the whole project was not achieved (Purnell, 1995). At present, less than 

half the world has a complete, systematic published 1:1,000,000 scale soil map.  

Another small-scale map is the Global Assessment of Human-induced Soil Degradation 

(GLASOD) that originally begun in the 1970s and was published in 1990 at a scale of 1:10,000,000 

(Oldeman et al., 1991). The status of soil degradation was mapped within loosely defined 

physiographic units (polygons), based on expert judgment. The type, extent, degree, rate, and main 

causes of degradation were printed on a global map and documented in a downloadable database 

(https://www.isric.org/projects/global-assessment-human-induced-soil-degradation-glasod 

accessed 1/11/2019).  

Currently, efforts to map soils at finer resolutions for Africa, including Kenya, have soared 

(Vågen et al., 2013). The African Soil Information Service (AfSIS) initially mapped selected 

http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/
https://www.isric.org/projects/global-assessment-human-induced-soil-degradation-glasod
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physical and chemical soil properties at a resolution of 1 km (Hengl et al., 2014) and currently 

mapping has been downscaled to 250 m resolution (Hengl et al., 2017). Additionally, Hengl et al 

(2017) predicted the distribution of soil classes based on the World Reference Base (WRB) and 

the USDA classification systems for the entire world, Africa, and subsequently for Kenya at 250 

m resolution.  

All these efforts affirm that existing legacy soil maps, though not perfect, contain a wealth 

of information that can potentially serve as a starting point for revising soil legacy soil maps using 

advances made in GIS and soil modelling.      

2.5 Challenges Associated with Traditional Soil Survey Methods 

Traditional soil survey is anchored in the classic catena concept. Soil scientists first built a 

conceptual model associating soils with specific landscape positions. These models were then used 

together with photo-interpretations to identify and delineate soil-landscape units that were 

delineated by soil polygons. Although this process was very successful in providing information 

on soil variability within a landscape, the three main drawbacks associated with this approach 

include the polygon-based model itself, the manual mapping process, and the lack of 

documentation on the soil-landscape model. 

 The Polygon Based Model  

With the polygon-based model, only soil bodies large enough to be drawn on the map by 

the cartographer can be shown. Therefore, the level of detail is limited by the scale of the map, not 

by what the soil scientist knows. In addition, soils in a given polygon are treated as homogenous 

bodies; changes in the soil property values occur only at the spatial boundaries of the polygons, 
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which is almost never true. This creates an unrealistic representation of spatial variability of soil 

properties within the landscape.  

 Manual Mapping Process 

The traditional process of mapping soils was mainly manual, in which surveyors delineated 

the extent of soil bodies based on visual interpretation of environmental conditions. It is very hard 

for soil mappers to correctly identify and delineate soil-landscape units using a few environmental 

data layers due to the limits of the human capacity for simultaneous visual perception of multiple 

variables. As a result, the delineation of soil-landscape units may not reflect the totality of 

knowledge processed by the surveyor. Most soil mappers base their soil-unit delineation solely on 

the visual interpretation of stereo aerial photographs. Subtle and gradual changes in environmental 

conditions are often difficult to discern via stereoscope and it is not unusual to misplace boundaries 

of soil polygons in the manual process of delineation. Thus, the mapping process is tedious and 

time consuming, and can be error prone and inconsistent.  

 Lack of Documentation 

The lack of explicit documentation on soil landscape models for maps is a major limitation. 

In most soil survey reports, the landscape model is deeply buried within the survey text and needs 

careful interpretation to discern what kind soil landscape model used.  

2.6 The Case for Digital Soil Mapping (DSM) 

While digital soil maps are available for most parts of the world (Grunwald et al., 2011), 

for many areas, they exist at a very small scale (1:1,000,000 or coarser), and do not adequately 

represent soil variability in a way that is useful to non-pedologists (Sanchez et al., 2009). The 
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majority of currently available digital soil maps are actually compilations of multiple legacy soil 

maps that were initially produced as hard-copy and subsequently digitized (Grunwald et al., 2011). 

For example, although the Harmonized World Soil Database version 1.2 is a digital product, it is 

based on paper maps that were later converted to vector-based polygon maps and later on rasterized 

(ISRIC, 2012).  

In the U.S. the Soil Survey Geographic database (SSURGO) soil maps were originally 

produced as part of approximately 3,000 independent soil surveys. These individual maps were 

made at different times and have different scales. They were created using different mapping 

concepts, and they often use different soil components and different estimated property data to 

represent the same soil landscape features. Consequently, there are frequently artificial boundaries 

in the data associated with geopolitical boundaries caused by discontinuities in mapped soil 

properties and soil used and management interpretations. All these emphasize the point that 

digitizing existing paper maps is not DSM. 

Hartemink et al. (2010) listed the limitations of most existing digitized soil survey maps: 

(i) they are static, (ii) they aggregate soil information into soil classes that are not readily 

compatible with quantitative applications, (iii) the information content has been overly generalized 

relative to the information on the regional soil resources that was collected to create the soil survey, 

(iv) they are improperly scaled, and (v) they represent the information as polygons that are not as 

readily combined with most other natural resource data that are raster-based. Similarly, Zhu (2006) 

emphasized that the spatial and attribute generalization of soil into discrete classes makes soil 

survey information incompatible with other forms of continuous spatial data for environmental 

modelling. All things considered, there is a tremendous potential for the DSM community to 

capitalize on the demand for better soil information by improving the quality of existing polygon-
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based soil maps and directly creating raster-based soil data of functional soil properties by utilizing 

soil properties existing within legacy soil data.  

 Digital Soil Mapping  

Digital soil mapping refers to “the creation and population of spatial soil information 

systems by numerical models inferring the spatial and temporal variations of soil types and soil 

properties from observations and knowledge and from related environmental variables” 

(Lagacherie, 2008).  

2.6.1.1 The Clorpt Model – State Factor Model 

The scientific rationale for soil mapping has been the state factor, or clorpt model (Jenny, 

1941, 1980) that was originally proposed by Dokuchaev (1883) and Hilgard (1906), and later 

articulated by Hans Jenny (Hudson, 1992). The model is formalized by the following equation, 

𝑆 = 𝑓(𝑐𝑙, 𝑜, 𝑟, 𝑝, 𝑡, … )                                                                   [2.1] 

where soil (S) is considered to be a function of climate (cl), organisms (o), relief (r), and parent 

material (p) acting through time (t) (Jenny, 1941, 1980). The ellipsis (.) in the model indicated that 

for additional unique factors that may be locally significant, such as atmospheric deposition 

(Thompson et al., 2012).  

The clorpt equation illustrates that by correlating soil attributes with observable differences 

in one or more of the state factors, a function (f) or model can be developed that explains the 

relationship between the two that can be used to predict soil functional properties at new locations. 

An important distinction of the clorpt model is that “the factors are not formers, or creators, or 

forces; they are variables (state factors) that define the state of a soil system” (Jenny, 1961) 

meaning that the factors do not constitute pedogenic processes, but are factors of the environmental 

system which condition processes. To bridge the gap between factors and processes, the clorpt 
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model is supplemented by additional models that are useful at explaining various processes at 

different scales. A notable example is the catena concept (Milne, 1936) that attributes soil variation 

along a hillslope sequence to erosion and deposition, hydrology, and stratigraphy. 

2.6.1.2 The Scorpan Model – The Digital Soil Mapping Formula 

Recently, McBratney et al. (2003) offered a revised formalization of the state factor model. 

                                                        𝑆 = 𝑓(𝑠, 𝑐, 𝑜, 𝑟, 𝑝, 𝑎, 𝑛)                                                           [2.2] 

where S, a set of soil attributes (Sa) or classes (Sc) is considered as a function of other known soil 

attributes or classes (s), climate (c), organisms (o), relief (r), parent materials (p), age or time (a), 

and spatial location or position (n). The scorpan equation also explicitly incorporates space (x, y 

coordinates) and time (~t). Thus, the scorpan model can be expanded as follows: 

𝑆[x, y, ~t] = 𝑓(𝑠[x, y, ~t], 𝑐[x, y, ~t], 𝑜 [x, y, ~t], 𝑟 [x, y, ~t], 𝑝[x, y, ~t], 𝑎[x, y, ~t], [x, y])    [2.3] 

This expansion indicates that scorpan is a geographic model, where the soil and factors are 

spatial layers that can be represented in a geographic information system. The scorpan model 

deviates from the clorpt model in that it is intended for quantitative spatial prediction, rather than 

explanation (McBratney et al., 2003).  

The scorpan model has been used to predict soil properties for Sub-Saharan Africa using 

the AfSP Database for thirty-five (35) different soil functional properties at 2-7 standard depths: 

0, 5, 15, 30, 60, 100, and 200 cm, following the vertical discretization as specified in the 

GlobalSoilMap specifications (Arrouays et al., 2014) at spatial resolutions of 1 km and 250 m. 

These maps can be accessed through this link 

https://data.isric.org/geonetwork/srv/eng/catalog.search#/search?resultType=details&sortBy=rele

vance&any=Africa%20Soil%20Profiles%20Database&fast=index&_content_type=json&from=

11&to=20 (accessed 9/13/2019). 

https://data.isric.org/geonetwork/srv/eng/catalog.search#/search?resultType=details&sortBy=relevance&any=Africa%20Soil%20Profiles%20Database&fast=index&_content_type=json&from=11&to=20
https://data.isric.org/geonetwork/srv/eng/catalog.search#/search?resultType=details&sortBy=relevance&any=Africa%20Soil%20Profiles%20Database&fast=index&_content_type=json&from=11&to=20
https://data.isric.org/geonetwork/srv/eng/catalog.search#/search?resultType=details&sortBy=relevance&any=Africa%20Soil%20Profiles%20Database&fast=index&_content_type=json&from=11&to=20
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CHAPTER 3. RENEWAL OF ARCHIVAL LEGACY SOIL DATA: A 

CASE STUDY OF BUSIA AREA, KENYA 

Abstract  

Much older soils information, collectively known as ‘legacy soil data’ lies idle in libraries or in 

the personal collections of retired soil scientists. The probability of this legacy data being lost or 

destroyed is very high. We demonstrate the stepwise process of bringing legacy soils data ‘back 

to life’ using the Reconnaissance Soil Survey of the Busia Area (quarter degree sheet No. 101) in 

western Kenya as an example. The first step, data archeology, involves locating and cataloging 

legacy soil data from key institutions, which often requires numerous site visits and the assistance 

of individuals familiar with the desired data. The second step, data rescue, involves converting 

paper copies of data into a digital format by scanning the maps, narrative descriptions, and tables, 

and storing the information in a database. The third step, data renewal, consists of bringing the 

data to modern standards by taking advantage of technological and conceptual advances in geo-

information technology. In our example, the resulting digital (scanned) soil map of the Busia area 

is a significant upgrade from the fragile paper map. Careful interpretation of the agronomic 

information available within the legacy soil survey allowed us to produce ten land quality maps 

showing the ability of the land to perform specific agronomic functions, and nineteen different 

crop suitability maps that were not available originally. Some of these maps will be made available 

in the Soil Explorer app and SoilExplorer.net website. These rescued maps and their associated 

tabular and narrative data, while useful themselves, also provide crucial inputs for generating more 

detailed soil maps using digital soil mapping techniques that were unavailable when the original 

mapping was conducted. 
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3.1 Introduction 

The majority of current soil resources exist as traditional soil maps, soil survey reports, soil 

survey manuals, land evaluation frameworks, soil profile descriptions, and farm management 

handbooks, collectively known as legacy soil data (Zinck, 1995). These soil resource inventories 

have been widely used as meaningful sources of soil information to support soil conservation or 

as major components of national environmental monitoring (McBratney et al., 2003; Odeh et al., 

2012; Cambule et al., 2015). Information on soils for much of Africa and most developing 

countries is sparse. Kenya fortunately has considerable soils information (Dijkshoorn, 2007). 

Unfortunately, the majority of available legacy soil data often remains idle in libraries. The 

demand for soil data, however, is soaring (Cook et al., 2008). The probability of such data being 

lost through disasters, be it natural, manmade, political or simply inattention is very high (Rossiter, 

2008). Our visits to the Kenya Soil Survey (KSS) in the spring of 2016 confirmed this. The 

majority of legacy soil data was left unused and stored in library shelves, some were in private 

collections of retired soil scientists, and those existing in digital format are largely unused or used 

only internally. One potential solution for the dissemination of such geographical data was to take 

advantage of advances in geo-information technology to take this data out of libraries and reduce 

the possibility of loss of the paper data and the information it contains. 

This is mainly driven by the fact that a lot of effort and resources financial and human, 

went towards compiling, analyzing and publishing the data contained in legacy soil data. The 

information within such data often consists of spatial distribution of soils, land quality, crop 

suitability, geolocated soil profile information with their respective laboratory data, geology, and 

land use type. This sort of data can be analyzed and used as a primary input for digital soil mapping 

(DSM) especially for countries with sparse soil data infrastructures (McBratney et al., 2003; Baxter 

and Crawford, 2008; Krol, 2008). Since resources needed to replicate these studies is dwindling, 
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the only justifiable thing to do is to fully use available soil data and then seek additional resources 

to study aspects not provided by the legacy data.  

Ways on how to effectively utilize renewed legacy soil data has become a new area of 

research in soil science (Hengl et al., 2007). Currently, many discussions center on how to collate 

legacy soil data to enhance the re-use of such data to meet current demands (Dent and Ahmed, 

1995; Ahmed and Dent, 1997; Baxter and Crawford, 2008; Rossiter, 2008; Dobos et al., 2010; 

Cambule et al., 2015). We observe, however, a need in the literature on how to renew legacy soil 

data, and how to interpret information stored in legacy soil surveys for additional agronomic 

information (Rossiter, 2008; Odeh et al., 2012; Cambule et al., 2015; Arrouays et al., 2017).  

This study aimed at providing a conceptual framework for using geographical information 

techniques to support the renewal of legacy soil data by transforming the best available soil survey 

of a selected portion of Kenya into a digital format. To meet this objective, we followed the quality 

criteria described by Forbes et al. (1987) and used by Cambule et al. (2015) to guide the legacy 

soil data renewal to meet current and future demands for soil information.  

3.2 Materials and Methods 

 Study Area 

Busia area situated in the western part of the Republic of Kenya. It is bound by the equator 

to the south, latitude 0° 30’ N in the north, longitude 34° 30’ E in the east, and the Kenya-Uganda 

border to the west (Fig. 3.1). It has an acreage of 279,800 hectares including Lake Namboyo, Lake 

Kanyaboli, and part of Lake Victoria, which occupy 12,800 hectares. The climate of the area is 

characterized by a mean annual rainfall of 925 mm to 1990 mm. In drier areas bordering Lake 

Victoria, only one rainy season (March-May) is noticeable. The wetter areas have two rainy 
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seasons, March – May and August – December (East Africa Metrological Department (EAMD), 

1972).  

The mean annual temperature ranges from 20 to 23 °C, with the mean annual maximum 

temperature ranging from 26 to 29 °C, whereas the mean annual minimum temperature ranges 

from 14 to 17 °C (EAMD, 1970). Dominant geological features are (1) igneous rocks (Samia hill 

series and andesites), (2) sedimentary rocks (Kavirondo series), (3) intrusive rocks (granites, 

dolerites, and felsites), and (4) quaternary superficial deposits (Rachilo and Michieka, 1991). The 

soils of the survey areas are classified according to the legend of the Soil map of the World (FAO-

UNESCO, 1974), which has now been incorporated into the World Resource Base (WRB) for Soil 

Resources (Spaargaren and Deckers, 1998). The major soil classifications are Arenosols, 

Ferralsols, Nitosols, Luvisols, Acrisols, Vertisols, Gleysols, Histosols, Solonchaks, Fluvisols, 

Cambisols, and Lithosols (Rachilo and Michieka, 1991).  
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Figure 3.1: Geographical location of the Busia area. 

3.3 Methodology  

This study consisted of four phases. Phase 1 consisted of meetings with key partners and 

stakeholders in Kenya to identify a setting for this study. Phase 2 entailed locating and cataloging 

all historical legacy soil data for the study area by contacting various agricultural institutions 

through a process known as data archeology. All of the recovered legacy soil data for the study 

area were transformed to an up-to-date archival format by scanning or by direct entry into a 

database, a process known as data rescue. The quality of the legacy soil data was assessed using 

relevant adequacy criteria (Forbes et al., 1987; Goodchild and Hunter, 1997). Finally, the legacy 

soil data were brought to modern standards by taking advantage of technological and conceptual 

advances in geo-information technology through a process known as data renewal.  
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The renewal phase includes georeferencing soil polygons and point data and linking it with 

their associated attribute databases, use of auxiliary data such as multispectral images and derived 

terrain attributes, generation of metadata, which includes description of semantics used within the 

legacy soil data, and integration of the legacy soil data into an easily accessible geospatial data 

infrastructure. Data archeology, rescue, and renewal are terminology proposed by Rossiter et al. 

(2008) and are explored in detailed in this paper. Lastly, we use the renewed legacy soil data to 

generate additional agronomic information through interpretation of the soil information in the soil 

survey report.  

 Geodetic Control  

One drawback of many legacy soil survey maps is lack of geodetic control points (Cambule 

et al., 2015). Four corners of the map that had clearly labeled latitude and longitude were used as 

control points. An additional forty control points were used to improve on georeferencing. These 

additional points were identified using clues such as road intersections and rivers that were clearly 

visible on the scanned map. The quality of this step was assessed by the absolute Root Mean Square 

Error (RMSE) of the control points.  

 Creation of GIS Layers  

This step involved the conversion of the scanned soil map to a GIS layer. Fortunately, the 

KSS provided a digitized soil map of the area. However, a quick look at the GIS layer showed that 

the layer has was not correctly digitized. Not all soil map units were digitized, and most soil 

polygon boundaries were inaccurately drawn. The soil polygon map from the KSS was manually 

edited by going through the soil map unit boundaries and editing them to align with the digitized 

soil map in ArcMap. The attribute table was also edited and populated with attributes from the 
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original soil map and survey report. The soil map and the survey report were also subjected to 

quality assessment following the adequacy criteria: scale and texture and legend, as described by 

Forbes et al. (1987) to determine the effectiveness of their use.  

Map Scale and Texture  

Forbes et al. (1987) defines map scale as the relation between distances on the map and 

corresponding distances on the ground whereas map texture refers to “the sizes and pattern of 

delineations on the map, and determines the map’s overall legibility”. The scale and texture of the 

Busia map were evaluated to assess the legibility and capability of the map to represent the smallest 

area of interest. These include the Minimum Legible Area (MLA) (Eqn. 3.1), which indicates the 

smallest land area that can be represented on the map at its published scale using the criterion of a 

Minimum Legible Delineation (MLD) of 0.4 cm2 (Forbes et al., 1987). The Index of Maximum 

Reduction (IMR) was also used to assess the map (Eqn. 3.2), and it refers to the factor by which 

the scale of the map could be reduced before the average size delineation (ASD) would become 

equal to the MLD, i.e. before more than half of the map would become illegible. An IMR of 2.0 is 

considered optimal, that of 1.58 as minimally acceptable and an IMR of greater than 2 implies that 

the map is very legible. A large IMR implies that the survey area is represented on a map that is 

physically larger than necessary (Forbes et al., 1987). The ASD of a portion of a map is the 

arithmetic mean of the sizes of the delineations in that portion of the map (Eqn. 3.3). It is estimated 

for portions of a map with a given map texture by randomly sampling the map areas with circles 

or squares of known area, and converting the count of delineations in several of these areas (Laker, 

1977). A transparent overlay with a 2.5 cm radius circle was used to count the number of 

delineations within the circle.  
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                                                                MLA =
(

1

RF
)2

2.5∗108                                                                    [3.1] 

                                                            IMR = √2.5 x ASD                                                                [3.2] 

                                            ASD2.5 cm radius circle = {(
sum of 5 counts

142
) − 0.1}                             [3.3] 

Map Legend  

The map legend identifies the map units, generally referring to a full description in the 

associated survey report and may also provide a brief description and various interpretations. The 

legend can be identified by the symbols printed inside the map unit polygons. The descriptive 

legend gives information about each map unit. The map unit names and definitions in descriptive 

and interpretative legends dictate the level of usefulness of the information. The map legend may 

be evaluated either in terms of specific use of the soil inventory or by a more general criterion, 

such as a soil classification system (Forbes et al., 1987). We evaluated the map unit information 

based on the soil classification. Information is considered adequate if the map unit description 

included the diagnostic information such as horizons, and properties, or the soil classification. The 

overall information quality of the Busia soil survey map was expressed by the proportion of the 

survey area evaluated as ‘adequate’ relative to the total number of units or area. 

 Integration of Remotely Sensed Data 

The renewal of legacy soil data requires the integration of ancillary data such as remotely-

sensed data (Rossiter, 2008). Such products include Landsat imagery, vegetation cover, and terrain 

attributes. Soil is in part related to topography and vegetation and therefore the boarders of some 

soil map units may be well depicted by these remotely-sensed data. This requires an overlay of the 

digitized map and the remotely sensed products. We used the 30m SRTM 1 Arc-Second 
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Global elevation data projected to the WGS84 Web Mercator (auxiliary sphere) coordinate system 

(USGS, 2017a) and compute the hillshade using the System Automated Geoscientific Analyses 

(SAGA) Geographical Information System (GIS) software (Conrad et al., 2015) to provide a 

grayscale 3-dimensional representation of the surface. The satellite imagery available in ArcMap 

was used a base map because (1) it is geometrically correct (2) it provides the best currently 

available up to date imagery of the study area from space, and (3) it is freely available. These two 

products were useful in georectification of the soil polygon map because map units in the study 

area represented physiographic units such as hills, valleys, swamps etc.  

 Metadata  

This step involved the development of appropriate metadata to include key identification 

information such as spatial data source, spatial reference, attributes, information on data quality, 

and description(s) of methods used to renew the data. The metadata should also include the 

explanation of key semantics.  

 Interpretation of Soil Survey Data  

Soil surveys can provide basic information on soil and land characteristics that can be 

useful for various purposes, for example, determining the suitability for various types of 

agriculture, range and forestry. This exercise involved interpretation of the land survey data from 

which land can be classified to show its use for a particular kind of land use in a process called 

land evaluation (Rachilo and Michieka, 1991).  

For the Busia area, the ‘Framework for Land Evaluation’ prepared by FAO (FAO, 1976), 

was followed in the land evaluation process. Fundamental in this approach is that land can only be 

classified meaningfully for clearly defined land uses termed as land use alternatives types or land 
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utilization types considered relevant for the survey area. Each land use type was defined by some 

specific, quantifiable factors that have a marked influence on the performance of the land that is 

integral for defining land utilization types devised in terms of crop suitability maps. 

In many existing land evaluation systems, single land characteristics such as drainage 

conditions, or texture are used as a basis for diagnosis and for establishing suitability class to 

determining land use specifications, grouped together into land qualities. A land quality can be 

defined as the fitness of a given type of land for a specific type of use (FAO, 1976) without 

permanent damage (Soil Conservation Society of America, 1976).  

The KSS prepared proposals for rating land qualities for the Busia area (internal 

communication Nos. 7 and 29 (Braun and van de Weg, (1977) and FURP (1988) respectively). In 

this rating system, land qualities were classified into three to five grades ranging from very low to 

very high based on the most limiting factor for the land qualities. The next step involved the 

establishment of specifications for the land qualities that will define the suitability class levels for 

each land use alternatives. We followed these steps to generate land quality and crop suitability 

maps of the Busia area. The current suitability evaluation of each soil map unit for each land use 

alternative was carried out by comparison of the rating of the land qualities of that particular soil 

map unit with specifications for each land use alternative.  

3.4 Results and Discussions 

 Site Identification  

We met with the Kenya Soil Survey (KSS), the Kenya Agricultural and Livestock Research 

Organization (KALRO), and the Academic Model Providing access to Healthcare (AMPATH) to 

identify a site for this study. Busia area was identified because it met the following criteria: (1) it 

had accessible detailed legacy soil data at a scale of 1:100,000 (Rachilo and Michieka, 1991), (2) 
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agriculture is the main economic activity in the area (Onywere et al., 2011), (3) the area has high 

population and poverty densities (Kenya National Bureau of Statistics, 2010), and (5) we are 

familiar with the area. 

 Legacy Soil Data Archeology  

Legacy soil data was obtained from the Kenya Soil Survey (KSS) in Nairobi, Kenya (Fig. 

3.2). We obtained several soil survey reports in western Kenya and settled for the Busia area for 

the reasons stated above. Additionally, the main author is from the Busia area and familiar with 

the study area. The main soil survey report for the Busia area was published as the Reconnaissance 

Soil Survey of the Busia Area (quarter degree sheet No. 101) (Rachilo and Michieka, 1991). After 

studying this soil survey report, maps, and tables obtained during our first visit, we identified 

missing materials, which resulted in a second visit to the KSS to obtain missing information. Table 

3.1 summarizes the list of soils information contained within the survey report. A reconnaissance 

site visit to the area was also conducted to familiarize ourselves with the area. 
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Figure 3.2: The Kenya Soil Survey library, June 6 2017. Photo by Joshua Minai. 

 Legacy Soil Data Rescue 

The majority of the data in the soil survey report existed in a paper format. The survey 

report consists of the report itself, which was a published report of the soil resources of the Busia 

area. Additionally, there were three map sheets which include two soil maps of the Busia area, one 

in color (Fig. 3.3) and another in black and white (Appendix 1 and 2 in Rachilo and Michieka, 

1991 respectively) and a black and white soil engineering map (Appendix 7 in Rachilo and 

Michieka, 1991). It also has two large folio sheets that include a land evaluation key (Appendix 3 

in Rachilo and Michieka, 1991) and soil profile characteristics significant for the soil classification 

(Appendix 4 in Rachilo and Michieka, 1991) (Table 3.1). 
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Table 3.1: Soil information contained within the Reconnaissance Soil Survey of the Busia Area.  

Type of Soil Information Scale 

a) Reconnaissance soil map of the Busia Area (colored)  1:100,000 

b) Reconnaissance soil map of the Busia Area (black and white)  1:100,000 

c) Soil engineering map of the Busia Area (in black and white) 1:100,000 

d) Land evaluation key   

e) Soil profile characteristics significant for soil classification  

f) Soil profiles and analytical data descriptions  

g) Land quality ratings for soil mapping units  

 

 

Figure 3.3: Rescued soil map of the Busia area at a scale of 1:100,000 from Panagos et al. (2011) 

used with permission. 
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 Legacy Soil Data Renewal  

Geodetic Control 

The geodetic control was good: both geographic and grid coordinates were printed on the 

margin of the maps (Fig. 3.4). The map projection was not given explicitly, but conversations with 

the KSS GIS expert confirmed that Busia soil map was developed using the East Africa War 

System of Coordinates Traverse Mercator projection, belt I on the Arc 1960 datum. The reference 

ellipsoid was Clarke 1880. The reconnaissance soil map was first projected to Arc 1960 and then 

georeferenced using the four geodetic control points (GCPs) printed at the four corners of the map. 

This was then projected to the WGS84 Web Mercator (Auxiliary Sphere). 

 

Figure 3.4: Geo-referencing of the reconnaissance soil map of the Busia area map using the top 

right corner geodetic control point. This geodetic control point is designated 340 30’E, 00 30’N. 

For georectification purposes, satellite imagery was used as a base map because it is freely 

available and provides the best currently available, up to date, georeferenced imagery of the study 

area. Key features on the soil map such as road intersections and natural features such as rivers 

were clearly visible on the scanned map and were used as additional control points for 

georectification. Forty additional control points, evenly spread out within the study area were used 
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for georectification. Using these GCPs, the map was transformed using the third order polynomial 

transformation. Forty-four GCPs were used and resulted to an RMSE of 6.63 x 10-4
 m.  A large 

number of GCPs is necessary to transform the map and achieve the best possible RMSE. 

GIS Coverages 

The digitized soil map showed that the soil map units were often inaccurately drawn and 

did not accurately delineate and capture key features such as islands and hills (Fig. 3.5). This is a 

common challenge with old paper maps as it was a common practice for drafters, not surveyors, 

to transfer soil boundaries by eye from field sheets to base maps. Without the soil surveyor’s expert 

eye, knowledge, and experience, soil boundaries that followed obvious landscape features may not 

be produced correctly (Rossiter 2008). This is expected because base maps used by soil mappers 

available in the early 1980s were not as accurate compared to what is available today.  

 

Figure 3.5: Using a hillshade to identify and correct inaccurately drawn soil map units. Black 

arrows show inaccurately drawn soil map units occurring in islands. Soil map unit within the red 

circle shows an incorrect boundary between that soil map unit and the water body. The soil map 

unit within the white boundary shows a map unit that is meant to represent soils of the hills. 

These discrepancies were manually adjusted by editing soil map unit boundaries in ArcMap 

version 10.6 (ESRI, 2018). 
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Quality Assessment  

 The guidelines described by (Forbes et al., 1987) were used to assess the quality of the 

legacy map data. These guidelines evaluate the scale, texture, and legend of the map. 

Map scale and Texture  

The minimum legible area for the Busia map was 40 ha and represents the smallest land 

area that can be represented on the map. The maximum location accuracy was 25 m meaning that 

the inherent uncertainty in the ground position of well-defined map points is 25 m. This directly 

affects the accuracy with which points on the ground may be represented. In order for a map scale 

to be adequate, the maximum location accuracy must be numerically smaller than the accuracy to 

which the user wishes to locate points on the ground and therefore depends on the intended uses 

of the survey. A well-defined ground point can be plotted to an accuracy of at best 0.25mm on the 

map sheet (Davis et al., 1981). The index of maximum reduction was 3.2. indicating that the map 

is very legible and that the scale of the map could be substantially reduced without impairing 

legibility.  

Map Legend  

Map units were explicitly labeled and categorized in the map legend (Table 3.2). The 

construction of the map unit legend indicated physiographic land types (such as hills, footslopes, 

uplands, etc.) based on physiographic photo-interpretation. These land types were further 

subdivided according to the underlying parent material on which the soils were developed, 

described as either the stratigraphy or just rocks such as dolerites, granites, etc. At the third level 

the map units were broken down and described based on important soil profile characteristics 

including drainage conditions, depth, color, consistency, texture, etc. (Rachilo and Michieka, 
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1991). This was then followed between brackets (dominant soils column in Table 1.2), by the 

classification of the main soils described according to the FAO/UNESCO nomenclature in the 

legend of the Soil Map of the World (FAO/UNESCO, 1974).  

All the map units were explicitly described and therefore map units are considered to be 

‘adequately defined’ because information within map units ‘provides sufficient specific 

information relative to the land use so that the map unit’s suitability may be determined’ and ‘are 

uniform in their suitability for the land use i.e. 85% of their total area will perform similarly for 

the use’. Map unit descriptions contained descriptions of acreage, agro-climatic zone, parent 

material, macro- and meso-relief, erosion, vegetation, land use, general soil description, color, 

texture, structure, consistence, chemical properties, clay mineralogy, diagnostic properties, and 

soil classification (Rachilo and Michieka, 1991).  
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Table 3.2: Samples of soil map legend tables of the Busia Area, at 1:100,000 scale. 

Cartographic unit Physiography Geology  Soil depth (cm) Soil characteristics  Dominant soils 

HIP* Hills Igneous 0 – 50 Overlying hard rock Lithosols (I)*** 

AA1** River terraces and  

floodplains 

Alluvium -  -  Ferralic Arenosols (Qf) 

Chromic Vertisols (Vc) 

PSb1 Plains  Sandstone -  Brown Orthic Acrisols (Ao) 

Orthic Ferralsols (Fo) 

VXC2 Minor valleys Various parent 

material 

-  Complex Ferralic Cambisols (Bf) 

Dystric Gleysols (Bd) 

Vertic Fluvisols (Jv) 

UGr4M**** Uplands  Granite  0 – 50 Shallow and red, over 

petroplinthite 

Rhodic Ferralsols (Fr) 

* P – soils over hard rock.  

**AA1 – integer number 1, 2, 4 indicate sequence of mapping units with almost identical features.  

*** Major soil grouping (FAO, 1974).  

**** ‘r’ – red soils at depth specified by the letter ‘M’ (M = shallow). 
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Integration of Remotely Sensed Data  

Rossiter (2008) proposed the use of both satellite imagery and terrain attributes to adjust 

soil map unit boundaries. To ensure that each soil map unit captured their respective landscape 

features, satellite imagery and the hillshade were used to manually adjusting the polygon 

boundaries for each soil map unit. Satellite imagery proved useful in correcting soil map units that 

occurred on river terraces and swamps and for correcting boundaries between soil and water bodies, 

whereas the hillshade was used to adjust soil map unit boundaries occurring on islands and hills 

(Fig. 3.5). The result was an accurately georeferenced, digitized soil map of the Busia area with 

348 polygons that belong to 52 different soil map units broadly grouped into eleven soil orders 

(Fig. 3.6). The majority of the soils are moderately deep-to-deep, yellowish red to reddish brown, 

non-calcareous and predominantly kaolinitic in clay composition with few weatherable minerals 

remaining and evidence of weak argillic horizon (Rachilo and Michieka, 1991). 
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Figure 3.6: Digitized soil map of the Busia area. RGBs of soil map units similar to those used by Rachilo and Michieka (1991) were 

determined and used to reproduce the map and overlaid on the hillshade with transparency set to 45% for a 3-dimensional effect.
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Metadata 

Metadata included spatial data source, spatial reference, and processing steps. Table 3.3 

shows the metadata stored internally as a text file for the renewed legacy soil map. This data is 

useful because it allows other users to access the data, evaluate its usefulness for their intended 

purposes, and assist other users to replicate renewal efforts for other legacy soil data. 

Table 3.3: Metadata information in the GIS layer of the Reconnaissance Soil Map of the Busia 

Area. 

Item  Detail Description  

Data source Description  Data was obtained from the Kenya Soil Survey library.  

ID information Description  The soil map was created to enhance a systematic inventory 

of soil and land resources for multipurpose land use planning 

for the Busia area. 

Spatial 

reference 

Description  East Africa War System of the Coordinates Traverse Mercator 

projection belt I on the Arc 1960 datum. Reference ellipsoid 

was Clarke 1880. 

Data quality Processing 

steps  

This GIS layer was created by (1) downloading the scanned 

map from the European Digital Archive of Soil Maps 

(EUDASM) (Panagos et al., 2011), then (2) georeferencing 

using satellite imagery and the hillshade as a base map. (3) 

The digital soil map was edited to ensure that polylines right 

on top of the soil line units’ borders at very high 

magnification. (4) The attribute table was edited and 

repopulated with information from the legend and soil survey 

report.  

 Land Quality Maps 

Careful interpretation of the Busia soil survey report showed that land quality maps could 

be generated depending on the agro-climatic zone within which a specific soil type occurs. We 

took, as an example of one land quality, the availability of moisture for plant growth, and 

demonstrate how to generate this land quality by interpreting legacy soil information in the 

Reconnaissance Soil Survey of the Busia area.  
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Adequate moisture is necessary for plant growth. For the Busia area, this land quality 

expresses the period of time that a plant has adequate available soil water to maintain its normal 

productive growth. It is measured in terms of the presence of humid months without limitations 

for the plant. The length of the accumulated growing months determined the suitability for a 

specific plant or crop. Suitability for specific plants was determined by the length of accumulated 

growing months (Rachilo and Michieka, 1991).  

Three different rooting depths, 0-50, 0-80, and 0-120 cm, were used to determine the total 

easily available soil moisture storage capacity. This approach was explicitly described in the 

legacy soil survey report (Rachilo and Michieka, 1991). Soil moisture is climate dependent. The 

agro-climatic map of Kenya was used to map out the different agro-climatic zones in Busia area. 

Four different agro-climatic zones, zones I, II, III, IV, were mapped (Sombroek et al., 1982). Table 

3.4 shows the relationship between soil depths and the length of the growing season for soils within 

agro-climatic zone one (I) only.  

Table 3.4: Relationship of soil depth and length of growing season in agro-climatic zone I. 

Soil depth (cm) Growing months 

0 - 50 11 

0 - 80 11 

0 - 120 11
1

2
 

Source: Rachilo and Michieka, 1991. 

The availability of moisture for plant growth was determined by two independent variables: 

soil type, herein soil map unit (Rachilo and Michieka, 1991), and agro-climatic zone (Sombroek 

et al., 1982). Spatial datasets of these two variables were joined using the Spatial Join function in 

the Overlay Tools within the Analysis Tools in ArcMap (ESRI, 2018). Since land quality ratings 

were determined by soil map units occurring within specific agro-climatic zones, Field Calculator 
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was used to join the soil map units together with their respective slope classes, ‘SoilSlope’ and the 

agro-climatic zones within which they occur, ‘SoilCode’. For example, SoilCode Psb1/ABII (Fig. 

3.7) represents soil map unit Psb1 of slope AB (0-5 %) and found in agro-climatic zone II. Rachilo 

and Michieka, (1991) worked out all the land quality ratings for each soil map unit occurring within 

the four agro-climatic zones for the Busia area (Fig. 3.8). A similar database was recreated using 

Microsoft Excel software version 2010 (Microsoft, 2010). 

Figure 3.7: An excerpt from the attribute table resulted from the spatial join between the agro-

climatic map of Kenya, ‘Agrozone’, and the Busia soil map ‘SOILMAPCOD’. 

The Join and Relate function in ArcMap was used to join the recreated database with the 

digitized soil map of the Busia area. The SoilCode in the Busia soil map attribute table was used 

as a unique identifier to join with the recreated database Soil_Aczon unique identifier from Fig. 

3.8. This resulted to a total of ten (10) different land qualities for the Busia area namely (i) 

temperature, (ii) availability of moisture for plant growth, (iii) availability of nutrients for plant 

growth, (iv) hazard of sodicity, (v) hazard of salinity, (vi) susceptibility to erosion, (vii) availability 

of oxygen in the root zone, (viii) flooding hazards, (ix) possibilities of seedbed preparation and 

cultivation (possibilities for the use of agricultural implements), and  (x) availability of foothold 

for roots (Appendix A). 
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Figure 3.8: An excerpt from the database of the availability of moisture. MAPCODE = 

individual soil-mapping units within Busia area. AgroZone = agro-climatic zone within which a 

soil map unit occurs. Soil_Aczon = similar to SoilCode in figure 7 above.  AoM = land quality 

ratings. Rating Criteria = interpretations of land quality ratings. Month(s) per growing season = 

number of humid months without limitations for plant growth (Table 3.5). 

Table 3.5: Ratings for the availability of moisture for plant growth. 

Month(s) per growing season Rating* 

>11 1 

9 - 5 2 

6 - 9 3 

4 - 5.5 4 

* 1 = High, 2 = Moderate, 3 = Low; 4 = Very low. 

Figure 3.9 is consistent with what we would expect on the landscape. Hills have low 

available moisture since soils are very shallow consisting of Lithosols with stony phases (Rachilo 

and Michieka, 1991). Conversely, river terraces and swamps have high available moisture since 

these are depositional areas. Having such a map is useful as it gives an idea of what crop types are 

best suited for such conditions. For instance, since hilly areas have very low available moisture for 

plant growth, forestry and/or grazing would be a suitable land use practice. On the other hand, 

plants require adequate available soil moisture for plant growth, but an excess may result cause 

root rot. Since soils in river terraces and swamps have a lot of available moisture, these areas can 

be used for ‘water loving’ plants such as rice. 
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Figure 3.9: Availability of moisture for plant growth for the Busia Area. 

Crop Suitability Maps  

The ratings of all land qualities developed by Rachilo and Michieka (1991) for the Busia 

area were further used to determine suitability classes for specific crops. In this section, we use 

suitability for maize (Zea mays L.) as an example and demonstrate how land qualities are used to 

generate the maize crop suitability map. Maize was chosen because it is a staple crop within the 

study area and in Kenya (De Groote et al., 2010). Specific decision matrices developed for each 

soil map unit were used to rate Busia soils for the suitability for maize cultivation. A table of all 

the soil map units for the study area with their respective agro-climatic zones was generated in 

Microsoft Excel software version 2010 (Fig. 3.10). 
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Figure 3.10: An excerpt from the recreated Busia land quality database. Temp = temperature. 

AoM = availability of moisture. AoN = Availability of nutrients. SH = Hazard of salinity. Sod = 

Hazard of sodicity. SE = Erosion hazard. Ox = Availability of oxygen. FH = Flooding hazard. 

SPC = Possibilities of seedbed preparation and cultivation. AoF = availability of foothold for 

roots. Numbers 1, 2, 3 and 4 represent land quality ratings while blanks indicate no data. 

To determine specific suitability ratings for maize, decision matrices developed by Rachilo 

and Michieka (1991) were used to generate crop suitability classes for each soil map unit by 

utilizing if then statements created in RStudio software version 3.5.1 (RStudio Team, 2016). The 

Join and Relate function in ArcMap was used to combine the newly created suitability class 

database with the Busia soil map attribute table. 

Table 3.6: Decision matrix for the suitability classification of soils for rainfed maize growing 

under the intermediate technology option. 

 

Suitability Class 

Land Qualities 

Temp AoM AoN SH Sod SE Ox FH SPC 

Highly Suitable(S1) 1 1-2 2-3 1 1 1-2 1-2 1-2 1-2 

Moderately Suitable (S2) 2, 3, 4 3 4 2-3 2-3 3-4 3-4 3-4 3-4 

Marginally Suitable (S3) 5, 6 4 4 4 4 5 5 5 5 

Unsuitable (NS) 7 4 4 4 5 5 5 5 5 

 

Only two suitability classes for rainfed maize under intermediate technology, moderately 

suitable and unsuitable, were identified for the Busia area (Fig. 3.11) using the decision matrix in 

Table 3.6. Intermediate level of technology was defined as “that level of technology where certain 

inputs such as fertilizers, insecticides, and mechanized land preparation are used on a modest scale” 

(Rachilo and Michieka, 1991). Even though most of the arable land is still farmed at a traditional 

level of technology, the majority of farmers apply, to a certain extent, intermediate technology.  
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Over 85% of the Busia area is suitable for maize cultivation using the decision matrices set 

by Rachilo and Michieka (1991). Eighteen different crop suitability maps were generated including 

rainfed (1) sugarcane (Saccharum officinarum), (2) cabbages (Brassica oleracea), (3) kales 

(Brassica oleracea), (4) onions (Allium cepa), (5) tomatoes (Lycopersicon esculentum L.), (6) 

wetland and upland rice(Oryza sativa), (7) citrus guava (Psidium guajava), (8) cotton (Gossypium 

hirsutum), (9) groundnuts (Arachis hypogaea), (10) maize (Zea mays L.), (11) finger millet 

(Eleusine coracana L.), (12) cassava (Manihot esculenta),  (13) common beans 

(Phaseolus vulgaris), (14) sunflower (Helianthus annuus), (15) Robusta coffee (Coffea canephora 

var. robusta), (16) forestry, (17) fodder crops, and (18) areas suitable for grazing (Appendix B).  

 

Figure 3.11: Maize (Zea mays L.) crop suitability for the Busia area.  
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3.5 Conclusion 

The Reconnaissance Soil Survey of the Busia area was rescued and converted into digital 

format by taking advantage of key concepts of soil science and technological advancements made 

in GIS. Freely accessible data such as satellite imagery and terrain attributes generated from the 

NASA’s 30m Shuttle Radar Topographic Mission (SRTM) were used to correct soil map unit 

polygon boundaries when editing the digitized soil polygon map. This legacy soil data was too 

information rich to be left moldering on the shelf. Specific decision matrices were used to generate 

a total of 10 land quality maps and 19 different crop suitability maps.   

Rural smallholder farmers are keen to know what crops are best suited for their farm. We 

hope that by demonstrating how to mine useful agronomic data a from legacy soil survey, this 

effort will catalyze their use to provide sustainable solutions that can assist in addressing some of 

the most pressing agronomic challenges. Additionally, DSM can benefit from renewed legacy data 

as it provides the data such as soil observations and reality checks for validation in the form of 

interpreted polygons as well as the surveyor’s concept of soil geography as revealed in the soil 

survey report.
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CHAPTER 4. SPATIAL PREDICTION OF SOIL PROPERTIES OF 

THE BUSIA AREA, KENYA USING LEGACY SOIL DATA 

Abstract  

Legacy soil data (traditional soil maps, soil survey reports, soil survey manuals, land 

evaluation frameworks, soil profile descriptions, and farm management handbooks) often contains 

considerable agronomic information that can help revitalize agriculture in countries with poor soil 

spatial infrastructures. The objective of this study was to determine whether existing legacy soil 

data could be used to quantitively predict soil properties at a higher spatial resolution using digital 

soil mapping techniques without conducting additional field work. A dataset of 76 profile points 

mined from the Reconnaissance Soil Survey of the Busia area in western Kenya was used to 

compare three prediction models: (i) ordinary kriging, (ii) stepwise multiple linear regression 

(SMLR), and (iii) the Soil Land Inference Model (SoLIM) to predict soil organic carbon, clay, 

silt, and clay. Six principal components from twenty-three original covariates were used as 

predictors for SMLR. For SoLIM, six terrain attributes: (i) multiresolution ridgetop flatness 

(MRRTF), (ii) multiresolution valley bottom flatness (MRVBF), (iii) topographic wetness index 

(TWI), (iv) topographic position index (TPI), (v) planform curvature, and (vi) profile curvature 

were used to generate ideal soil types for soil property prediction. Predicted soil maps were at a 

resolution of 30 m, more suitable for smallholder farmers. From a statistical standpoint, ordinary 

kriging performed better than SoLIM and SMLR in predicting SOC (RMSE = 0.02), clay (RMSE 

= 0.32), and silt (RMSE = 0.10) whereas SMLR performed better than SoLIM and ordinary kriging 

for predicting sand content (RSME = 0.11). 95% C.I. ranges were narrowest from ordinary kriging, 

and widest from SMLR. However, from a pedological standpoint, SoLIM conformed better to soil 
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forming factors model compared to ordinary kriging, but had lower confidence interval ranges 

compared to SMLR.  

4.1 Introduction 

Legacy soil data is available for many parts of the world in the form of traditional soil maps, 

soil survey reports, soil survey manuals, land evaluation frameworks, soil profile descriptions, and 

farm management handbooks (Zinck, 1995; Arrouays et al., 2017). Legacy soil data has been, and 

is, widely used as the source of soil information to support soil conservation and environmental 

monitoring (McBratney et al., 2003; Odeh et al., 2012). 

Legacy soil data, however, often remains idle in libraries, and the probability of this data 

being lost through natural, manmade, or political disasters, or simply neglect, is very high (Rossiter, 

2008). The demand for soil data, however, is soaring (Cook et al., 2008), and this demand can 

often be met by legacy soil data. Legacy soil data may contain considerable agronomic information 

that, if accessible, can help revitalize agriculture in countries with poor soils spatial infrastructures 

(Zinck, 1995). The spatial distribution of soils, land quality, crop suitability, geo-located soil 

profile information, geology, and land use information that is often available in legacy soil data 

can be used as baselines for long-term studies to assess changes in soil properties (Bellamy et al., 

2005), or to model temporal trends of soil quality and soil processes (Baxter et al, 2006). Legacy 

soil data can also be used as a primary input for digital soil mapping (DSM), especially for 

countries with sparse soil data infrastructures (McBratney et al., 2003). When financial resources 

are limited, legacy soil data is a reliable source of data for modelling soil variability without the 

need for major additional funding (Arrouays et al., 2017).  

Although legacy soil data for much of Africa is sparse, Kenya, fortunately, has 

considerable soils information. Our visits to the Kenya Soil Survey in the spring of 2016 suggested 
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that existing Kenyan legacy soil data was not used to its full potential. The majority of the data 

exist as paper maps and reports stored on library shelves, some data are in private collections of 

retired soil scientists, while digital formats seem to be used only internally.  

The use of legacy data for DSM is determined by the type of data available. There are two 

broad groups of legacy soil data: (i) data existing as maps of soil types or soil properties, and (2) 

data existing as soil profile descriptions and tables of physical and chemical characterization data. 

When soil maps are the only source of data, they can be disaggregated and downscaled to produce 

new soil maps at a finer scale (McBratney, 1998) with the aim of mapping constituent classes of 

the soil map units individually (Thompson et al., 2010). On the other hand, when soil profile data 

is available, it can be used as inputs to many statistical, geostatistical, and machine learning 

methods to predict soil properties at unsampled locations (McBratney et al., 2003).  

The work of the Africa Soil Information Service (AfSIS) is one example of the use of 

legacy soil data to map soil properties (Hengl et al., 2015). AfSIS developed the Africa Soil Profile 

Database (AfSP), a collection of rescued legacy soil profile data, together with additional soil data 

from 60 sentinel sites, for use in continent-wide digital soil mapping projects for Sub-Saharan 

Africa (Leenaars, 2012, 2013, 2014). The AfSP data has been used for the spatial prediction of an 

array of soil properties at a resolution of 250 m, or ~6.25 ha (Hengl et al., 2017). These maps are 

the first attempt to provide some level of detail for regional and/or local spatial distribution of soil 

properties to guide sustainable soil use and management decisions for rural smallholder farmers.  

Two concerns still persist in the quest to predict soil properties using legacy soil data. First, 

it is not clear which of the various interpolation methods performs best with the very limited data 

that might be mined from legacy soil data. Second, the current spatial resolution of predicted maps 
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is too coarse for practical land management for rural smallholder farmers in Africa whose 

landholdings are often less than a hectare (Sanchez et al., 2009).  

Providing scientific answers to precision agriculture in quantitative terms is often very 

difficult because of lack of data (Council for Agricultural Science and Technology, 2019). This is 

a common problem in Africa where soils data is sparse, or in many cases nonexistent, making it 

difficult or impossible to make site specific recommendations on sustainable land use and 

management (Tully et al., 2015).  

The objective of this study was to determine whether existing legacy soil data for a selected 

portion of Kenya could be used to quantitatively predict soil properties at a higher spatial resolution 

than current maps by using DSM techniques without conducting additional field work. We chose 

to evaluate three DSM techniques, ordinary kriging, stepwise multiple linear regression (SMLR), 

and the Soil Land Inference Model (SoLIM), to determine which would produce the “best” soil 

property maps. These techniques require two types of inputs: (1) point data from quantitatively 

analyzed soil profiles, and (2) rasterized spatial data derived from elevation models, remotely 

sensed imagery, and climate models.  

4.2 Materials and Methods 

 Geographical Setting 

This study focuses on the Busia area of western Kenya. It encompasses an ~30' x 30' 

quadrangle bound by the equator to the south, latitude 0° 30' N to the north, longitude 34° 30' E to 

the east, and the Kenya-Uganda border to the west (Fig. 4.1). The study area is comprised of about 

279,800 hectares including Lake Namboyo, Lake Kanyaboli and part of Lake Victoria. The 

elevation ranges from 1127 on the shores of Lake Victoria to 1564 m in the Samia Hills. Mean 

annual rainfall increases from 925 mm in the southwest around Lake Victoria, to 1990 mm in the 
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northeast. Average annual temperature ranges from 20 to 23° C. The Busia area was selected for 

this study because: (1) it has accessible legacy soil data at a scale of 1:100,000 (Rachilo and 

Michieka, 1991), (2) agriculture is the main economic activity (Onywere et al., 2011), (3) high 

population and poverty densities have strained existing natural resources (Kenya National Bureau 

of Statistics, 2010), and (4) we are personally familiar with the area and can draw on our own field 

observations for additional context.   

 

Figure 4.1: Geographical location of the Busia area. 

 Spatial Prediction Framework 

The spatial prediction framework is summarized in Fig. 4.2 and consisted of data assembly, 

spatial prediction by ordinary kriging, spatial prediction by stepwise multiple linear regression 
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analysis, spatial prediction using the Soil Land Inference Model (SoLIM), and a common 

evaluation framework. Although evaluation of the spatial predictions occurs at the end, we will 

describe the common evaluation framework first, followed by detailed descriptions of each of the 

prediction models. 

 Data Sources 

Soil Profile Data Sources 

Soil data were mined from the Reconnaissance Soil Survey Report of the Busia Area 

(quarter degree sheet No. 101) (Rachilo and Michieka, 1991). The available data consist of: (1) a 

soil map of the area that shows the spatial distribution of the soils at a scale of 1:100,000, (2) 

detailed soil chemical and physical laboratory data, (3) a land evaluation key used for determining 

the land use, and (4) a soil engineering map for determining development activities. 

The data in this report are the result of fieldwork carried out by the Kenya Soil Survey 

mostly during October 1980 by two soil survey teams. Auger borings and profile pits were dug to 

depths ranging between 120 and 200 cm or to refusal, depending on the depth to the parent material. 

The sites were selected based on photo-interpretation and possible changes in land and/or soil 

characteristics as observed in the field. Soil profile descriptions were prepared according to the 

Guidelines for Soil Profile Description (FAO, 1977) and horizons were sampled for later chemical 

and physical analyses in the laboratory. Land
 

and soil properties were recorded on standard soil 

profile description forms following recommendations of the Kenya Soil Survey. Two sets of soil 

chemical and physical laboratory data were available.



 

 

7
9
 

 

Figure 4.2: Schematic representation of legacy soil data-driven spatial prediction framework used for predicting soil properties.
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Data Set A 

(1) Data Set A consists of data for 76 georeferenced locations for which the A and B 

horizons were sampled, presumably by auger borings (Appendix 4 in Rachilo and Michieka, 1991). 

Composite samples of the A horizon were collected between depths of 0 - 30 cm for soil fertility 

analysis, while the B horizon was sampled to an unspecified depth. Soil properties recorded 

include: texture, Munsell color, structure, consistence, the presence or absence of clay cutans, clay 

type, bulk density, porosity, soil classification according to both the FAO-UNESCO Soil Map of 

the World and Soil Taxonomy (FAO/UNESCO, 1974), soil organic carbon (SOC), base saturation 

(at pH 7 and 8.2), exchangeable sodium percentage at pH 8.2 (ESP), and electrical conductivity 

(Rachilo and Michieka, 1991). The laboratory procedures for Both Data Set A and B are 

summarized in Table 4.1. For more details see Hinga et al. (1980). Of these properties, data for 

SOC for the A-Horizon, texture of the A and B horizons, B/A clay ratio, and soil classification 

were available for all of the 76 locations. Latitude and longitude for the sampling points were 

extracted from the scanned and georeferenced map, titled ‘location of soil profile pits and 

augerings’ in the survey report (Fig. 11 in Rachilo and Michieka, 1991).  

Data Set A Descriptive Statistics 

On average, SOC for the study was low and ranged between 0.18% and 2.86%. Ferralsols 

were the most common soils in the study area. The soils with relatively high SOC included (i) 

Nitosols, (ii) Cambisols, (iii) some soil mapping units found in Acrisols and Luvisols, (iv) some 

soil mapping units found in terraces, minor valleys, bottomlands, and swamps, which include 

Fluvisols, Gleysols, Histosols, Vertisols, and Solonchaks. Those with relatively low SOC include 

Acrisols, Fluvisols, Solonchaks, and Lithosols. On average, clay and sand contents were higher 

than silt content and clay content increased with depth as shown by the B/A clay ratio (Table 4.1).  
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Table 4.1: Descriptive statistics of selected soil properties for the A and B horizons of Data Set 

A. 

Horizon Soil Parameter Mean Minimum Maximum Std1 CV (%)2 Skew 

 

 

A-Horizon 

SOC (%) 1.16 0.18 2.86 0.54 46.6 0.68 

Clay (%) 43.0 8.0 78.0 16.1 37.4 0.14 

Silt (%) 20.1 4.0 39.0 9.0 44.8 -0.01 

Sand (%) 36.9 6.4 80.8 17.7 48.0 0.36 

 

B-Horizon 
Clay (%) 51.0 8.0 84.0 18.2 35.7 -0.23 

Silt (%) 16.1 3.6 39.6 7.8 48.4 0.64 

Sand (%) 32.9 6.4 76.6 18.5 56.3 0.45 

B/A Clay Ratio  1.21 0.4 1.8 0.2 17.8 -0.24 

SOC = Soil organic carbon; 1 = Standard deviation; 2 = Coefficient of variation. 

Data Set B 

(2) Data Set B consists of detailed soil profile descriptions and analytical data for 48 

georeferenced profiles presumably sampled from pits (pages 158 to 256 in Rachilo and 

Michieka, 1991). Fifteen soil properties were provided including pH (water and KCl), electrical 

conductivity, SOC, total N, CEC at pH 8.2, Ca, Mg, K, Na, exchangeable acidity, sum of cations, 

base saturation, texture, P, and Mn at different soil horizon depths. Latitude and longitude (in 

West Africa War System of Coordinates Traverse Mercator projection, belt I on the Arc 1960 

datum) are recorded with the soil profile descriptions (see page159 in Rachilo and Michieka, 

1991 as an example).  

Fitting Mass Preserving Splines  

The two datasets cannot be directly compared because Data Set A was sampled as a 

composite from 0 – 30 cm, while Data Set B was sampled by horizons with variable thickness. An 

equal area quadratic smoothing spline function (Ponce-Hernandez et al., 1986; Bishop et al., 1999; 

Malone et al., 2009) in the ithir package in R statistical software (Malone et al., 2017) was used to 
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predict soil attributes for Data Set B over the interval 0 – 30 cm, allowing Data Set B to be 

compared with Data Set A. 

Table 4.2: Soil laboratory analyses methods for the Busia soils (source: Rachilo and Michieka, 

1991). 

Soil Property Method 

Texture Hydrometer method (Bouyoucos, 1962). 

pH - H2O or a 1M KCl 1:2.5 soil-water/salt suspension measured with a pH-meter. 

Electrical conductivity (EC2.5) 1:2.5 soil-water suspension. Soils with an EC2.5 of over 0.85 

mmhos/cm at 25°C, a saturation extract was prepared and the 

pH and EC were measured in the saturation extract. 

Soil organic carbon Walkley and Black method (Walkley and Black, 1934). 

% N (on A-horizon only) Semi-micro Kjeldahl method (Fawcett, 1954). 

Cation exchange capacity 

(CEC) 

Successive leaching of the sample with 1N ammonium acetate 

at pH 7.0 solution, 95% ethyl alcohol, 1N sodium acetate at pH 

8.2 solution, 95% ethyl alcohol and lastly with ammonium 

acetate at pH 7.0 solution. CEC was determined in the last 

leachate by measuring the Na concentration with a flame-

photometer (Tucker, 1974). 

Exchangeable cations (Ca, 

Mg, K and Na) 

Determined in the first ammonium leachates by flame 

photometer/atomic absorption spectrophotometer, respectively 

in the presence of a lanthanum chloride solution for Ca and Mg. 

Exchange acidity (Hp) Determined titrimetrically in an unbuffered 0.6 N barium 

chloride solution. 

Mass analysis for available 

nutrients (on A-horizon only) 

Soils were extracted by shaking for 1 hour at a 1:5 ratio with 0.1 

N HCl/0.025 N H2SO4. Then Ca, Mg, K and Na determined with 

a flame-photometer, after an anion resin treatment for Ca was 

done. Mg, P and Mn were determined calorimetrically. 

Mineralogical analysis 0.2µm fraction separated after pretreatments with H2O2 and 

dispersion with (NaPO3)6. X-ray diffraction analysis was carried 

out on samples saturated with Mg and K, using standard clay 

minerals for semi quantitative estimation. Peak area ratios, 

rather than peak height ratios were considered. Techniques 

involving solvation with ethylene glycol and heating to 500°C 

were employed as well. Apparatus - Phillips direct recording X-

ray diffractometer, using copper, Kα radiation (Theisen et al., 

1962, 1964). 
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Remote Sensing and Climate Repositories  

Selection of Environmental Covariates 

A raster stack of environmental covariates primarily based on remote sensing was used for 

predicting soil property maps (Fig. 4.3). These covariates were selected to represent the factors of 

soil formation and included the following. (1) The 1 Arc-Second (30 m) NASA shuttle Radar 

Topographic Mission (SRTM) global elevation dataset downloaded from the USGS Earth 

Explorer (USGS, 2017a). (2) Eight terrain attributes (TAs), namely, Multiresolution Index of 

Valley Bottom Flatness (MRVBF), Multiresolution Ridge Top Flatness (MRRTF), plan curvature, 

profile curvature, relief intensity, slope, topographic position index (TPI), and SAGA wetness 

index (TWI), all based on the 30 m SRTM elevation dataset. (3) Annual average precipitation and 

temperature derived from monthly averages over the years 1970 – 2000 obtained from WorldClim 

ver. 1 at https://www.worldclim.org, all at a spatial resolution of ~1 km (Hijmans et al., 2005). (4) 

All eleven bands from Landsat 8 OLI (Operational Land Imager) and TIRS (Thermal Infrared 

Sensor) level 2 images of identification number 

LC08_L1TP_170060_20171226_20180103_01_T1 of path 170 and row 60 with an acquisition 

date of 26 December 2017 downloaded from the USGS Earth Explorer (USGS, 2017b). These two 

sensors provide seasonal coverage of the global landmass at a spatial resolution of 30 m for the 

visible, near infrared, and short wavelength infrared; 100 m for the thermal infrared sensor; and 

15 m for the panchromatic band. (5) The normalized difference vegetation index (NDVI) 

calculated from the Landsat 8 level two data as a proxy for the vegetation (organisms) soil forming 

factor. All soils data, Data Set A and Data Set B, environmental covariates, and intermediate rasters 

used in this study are available for download from Minai and Schulze (2019).  

These twenty-three environmental covariates were projected to the WGS84 Web Mercator 

(Auxiliary Sphere) coordinate system. This coordinate system was deemed fit for this study due to 

https://www.worldclim.org/
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its ability to preserve the shape of the area without significant distortion especially around the 

equator. 

 

Figure 4.3: Examples covariates used to generate the soil property maps. 
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Data Processing  

Study Area Buffer 

The Reconnaissance Soil Map of the Busia Area was used to create a buffer of the study 

area.  

Elevation  

The DEM was preprocessed in ArcGIS 10.6. The Focal Statistics tool using a 5 x 5-pixel 

rectangular neighborhood around the central pixel was used to recalculate the mean of each pixel 

to reduce any noise and produce a smoother elevation surface. This study area buffer was used as 

a mask to extract the elevation raster. TAs indicated in section 4.2.3.2.1 were calculated using the 

System for Automated Geoscientific Analyses (SAGA-GIS) (Conrad, 2015). 

Climate Data 

The extract by mask tool in ArcGIS 10.6 was used to extract World Climate data using the 

buffer for the study area. These raster data were resampled using the bilinear interpolation 

resampling technique in ArcMap version 10.6 to a resolution of 30 m. 

Landsat Data  

The study area buffer was used to extract Landsat data using the extract by mask tool in 

ArcGIS 10.6. The resulting rasters were resampled using the bilinear interpolation resampling 

technique in ArcMap version 10.6 to a resolution of 30 m. The normalized difference vegetation 

index (NDVI) data was calculated using the raster calculator tool in ArcGIS 10.6 using the 

equation below: 

NDVI =
NIR − Red

NIR + Red
                                                                          [4.1] 
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where NIR is the near infrared band (Landsat band 5) and Red is the red band (Landsat Band 4). 

 Evaluation of Prediction Accuracy 

The prediction accuracy for each numerical model was evaluated by cross-validation by 

looking at the differences between the observed and predicted values. The root mean square error 

(RMSE) (Eqn. 4.2), bias (Eqn. 4.3), correlation coefficient (r) (Eqn. 4.4), and concordance (ρc) 

(Eq. 4.5) performance statistics were computed: 

RMSE =
√∑ (pred𝑖

𝑛
𝑖=1 − obs𝑖)2

𝑛
                                              [4.2] 

Bias =
∑ (pred𝑖 − 𝑜𝑏𝑠𝑖

𝑛
𝑖=1 )

𝑛
                                                      [4.3] 

𝑟 =
∑ (obs𝑖 − 𝑜𝑏𝑠̅̅ ̅̅ ̅𝑛

𝑖=1 )(pred𝑖 − pred̅̅ ̅̅ ̅̅ )

√∑ (𝑜𝑏𝑠𝑖
𝑛
𝑖=1 − obs)2 √(pred𝑖 − 𝑝𝑟𝑒𝑑̅̅ ̅̅ ̅̅ ̅)2

                                    [4.4] 

ρ𝐶 =
2𝜌𝜎𝑝𝑟𝑒𝑑𝜎𝑜𝑏𝑠

𝜎2
𝑝𝑟𝑒𝑑 + 𝜎2

𝑜𝑏𝑠 + (µ𝑝𝑟𝑒𝑑– µ𝑜𝑏𝑠)2
                                              [4.5] 

where µpred and µobs are the means of the predicted and observed values respectively and σ2
pred and 

σ2
obs are the corresponding variances, ρc is the correlation coefficient (r) between the predictions 

and observations, and n equals the number of validation points, 48.  

The uncertainty of the map prediction was estimated using the 95% confidence interval. 

C. I. =  �̅� ± 𝑧 ∗
𝜎

√𝑛
                                                                       [4.6] 

where �̅� is the sample mean, z is the z score, σ is the standard deviation, and n is the sample size. 

The z score is dependent on the confidence interval range and sample size and is 1.96 for a C.I. of 

95%. 
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4.3 Soil Prediction Models  

The three prediction models were all derived from the basic scorpan model (Eqn. 2.2) used 

to predict selected soil properties. Data Set A was used for model fitting because of its larger 

sample size, whereas Data Set B was used for model evaluation. Spatial prediction was made for 

SOC and soil texture (percent sand, silt, and clay) for the A-horizon (0 - 30 cm) because only these 

two soil properties had complete data for all 76 locations in Data Set A.  

The sections that follow will be ordered by the prediction model and discuss the 

preprocessing of the necessary data, the prediction model, the prediction results, and prediction 

evaluation. Finally, the ‘best’ prediction model will be selected.   

 Ordinary Kriging 

Data Set A was the sole input for ordinary kriging. The data for SOC and sand, silt, and 

clay for the A horizon were subjected to the square root transformation to ensure they followed a 

normal distribution.   

The Ordinary Kriging Model   

Ordinary kriging is a prediction model whereby soil properties are predicted using the spatial 

arrangement of measured soil properties (Tobler, 1970). Ordinary kriging uses the equation 

𝑍(𝑥0) = ∑ 𝜆𝑖 . Z(𝑥𝑖)

𝑛

𝑖=1

                                                                 [4.7] 

where Z(𝑥0) is the soil property to be predicted at an ith location, λi is the unknown weight for the 

measured soil property at the ith location, 𝑥0 is the prediction location, and n is the sample size. λi, 

depends on the: (1) fitted model to the measured points, (2) distance to the prediction location, and 

(3) spatial relationships among the measured values around the prediction location. The spatial 
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dependency of soil properties was first modeled by describing the spatial structure of sampled 

points using the geostatistical technique of semi-variogram analysis. Calculation and 

modelling/fitting of the spatial structure was followed by kriging estimates for unsampled points 

and was performed using the variogram estimation and spatial prediction plus error (VESPER) 

software version 1.62 (Minasny et al., 2005). 

Ordinary Kriging Results  

Three spatial prediction structures were deemed fit for ordinary kriging soil property 

prediction: Gaussian, spherical, and exponential (Table 4.3).  

Table 4. 3: Spatial prediction structures for ordinary kriging of selected soil properties for 

the A-horizon 

Soil Property C0 C1 C0/(C0+C1) Range (m) RMSE AIC Model 

SOC 0.3 103 0.0025 2,566,598 0.05 -67.8 Gaussian 

Clay 100.2 160 0.3843 12,561 34.59 332.2 Spherical 

Silt 68.5 10,000 0.0068 22,099,722 10.75 259.7 Exponential 

Sand 242.5 10,000 0.0237 4,343,753 56.85 363.0 Exponential 

SOC = Soil organic carbon; C0 = Nugget; C1 = Partial sill; RMSE = Root mean square error; AIC 

= Akaike information. 

The predicted maps from ordinary kriging showed very little detail in terms of soil property 

variability (Fig. 4.4a and Fig. 4.5a, d, and g) and this is reflected by the fact that the overall ranges 

of the spatial dependence were very wide (Table 4.3). Ordinary kriging results underestimated the 

prediction of soil properties. The prediction ranges were 0.26% for SOC, 46.6% for clay, 3.4% for 

silt, and 18.6% for sand compared to Data Set A ranges which were 2.68% for SOC, 70.0% for 

clay, 74.4% for silt, and 35.0% for sand. 
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Ordinary Kriging Evaluation 

Ordinary kriging is a special case of the scorpan model, where only the n (location) factor 

is considered. Predictions are made by modelling the spatial dependence between neighboring 

observations as a function of their distance only. The underestimation observed in kriging is due 

to the poor estimation of the spatial prediction models (Table 4.3). The ranges for SOC, silt, and 

sand were very large, indicating that the spatial structures do not effectively capture the variation 

within the study area. Ordinary kriging relies heavily on the data quality especially density and 

distribution. If the points used for modelling are biased, for instance if they do not capture the soil 

and landscape variability, ordinary kriging prediction might perform poorly (Hengl, 2009). For 

effective ordinary kriging, the study area must have an adequate and even distribution of data 

points for variogram modelling and point pairs must be available at various spacings. If the points 

represent only a portion of the study area, such as the case of the Busia area where most of the 

points occurred in the south western part of the study area (Fig.4.1), poor estimation of the model 

and spatial prediction will be expected. This explains the underestimation observed in kriging 

(Table 4.4). 
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Figure 4.4: Predicted SOC and 95% C.I. ranges from three prediction models: OK = ordinary kriging, SMLR = stepwise multiple 

linear regression, and SoLIM = soil and landscape inference model.
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Figure 4.5: Predicted soil texture for the A horizon from three prediction models: OK = ordinary kriging, SMLR = stepwise multiple 

linear regression, and SoLIM = soil and landscape inference model.
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Table 4.4: Prediction model evaluation. 

Soil Property Prediction Model R2 Concordance RMSE Bias 
 
 

SOC 

OK 0.09 0.07 0.02 0.002 

SoLIM 0.03 0.011 0.52 0.07 

SMLR 0.11 0.255 1.05 0.15 
 

Clay 
OK 0.80 0.797 0.32 -0.05 

SoLIM 0.09 0.010 17.1 -2.5 

SMLR 0.17 1.948 23.6 -4.1 
 

Silt 
OK 0.02 0.023 0.10 -0.01 

SoLIM 0.04 0.001 10.48 -1.51 
 

Sand 
OK 0.12 0.16 0.32 0.05 

SoLIM 0.0012 0.0004 26.98 3.89 

SMLR 0.0013 0.019 0.113 0.016 

SOC = soil organic carbon; OK = ordinary kriging; SoLIM = soil land inference model; SMLR = 

stepwise multiple linear regression; RMSE = rot mean square error.  

The variants of ordinary kriging that incorporate both the deterministic and stochastic 

components include cokriging and regression kriging. In comparison to other statistical and 

geostatistical models, Bishop and McBratney (2001) demonstrated regression kriging to be 

superior. Cokriging and regression kriging were not used in this study because of the low sampling 

density of the Busia calibration dataset (Fig. 4.1).  

 Stepwise Multiple Linear Regression  

Pre-processing of Environmental Covariates for SMLR 

Pearson Test for Multicollinearity 

Most prediction models assume that predictor variables are independent of each other 

(Neter et al., 1996). Therefore, before environmental covariates could be used as predictors for 

stepwise multiple linear regression, there was need to account for multicollinearity effects between 

covariates (Hengl, 2009). Pearson correlation between 12 randomly selected covariates from the 

23 covariates in the raster stack showed that the covariates were not entirely independent (Table 

4.5). Many approaches have been proposed and used for multivariate soil prediction mapping to 
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optimize sample locations and to ensure that landscape variability is captured in the sampling 

scheme (Hengl et al., 2004, 2007; Hengl, 2009; Vašát et al., 2010). However, to ensure that 

multivariate covariates are independent of each other, Gobin (2000) used principal components 

instead of the original environmental covariates as predictors to improve on the prediction for soil-

landscape modelling.  

Principal Component Analysis 

Accordingly, all the original 23 environmental covariates within the raster stack were 

subjected to a standardized principal component analysis (PCA) to generate a small number of 

standardized linear combinations that capture most of the variation within the raster stack as a 

whole (Crawley, 2012). RStudio version 3.5.1 was used to conduct a standardized PCA using the 

RStoolbox package (Leutner and Horning, 2017). Standardization used a Z score expressed as:  

𝑍𝑖𝑗 =
𝑥𝑖𝑗 −  µ𝑗

𝜎𝑗
                                                                         [4.8] 

where Zij is the Z score of pixel i in the covariate layer j, xij is the untransformed value of pixel i 

of covariate layer j, µj is the mean of the covariate layer j, and σj is the standard deviation of the 

covariate layer j.  

The Kaiser rule, which recommends that PCs with eigenvalues greater than one should be 

retained (Kaiser, 1958), was used to determine the appropriate number of PCs. Six of the twenty-

three PCs accounted for 80.9% of the variation within the raster stack (Table 4.6) and were retained 

(Fig. 4.6).
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Table 4.5: Pearson correlation coefficient matrix between some selected soil covariates at 76-soil profile pit locations (Data Set A). 

Covariate DEM MRRTF MRVBF NDVI PCurv PPTN PrCurv RI Slope TEMP TPI TWI 

DEM   1.00            

MRRTF   0.19 1.00           

MRVBF -0.40** 0.19 1.00          

NDVI  0.47** 0.02 -0.18    1.00         

PCurv   0.26 0.08 -0.19    0.10  1.00        

PPTN   0.76** 0.12 -0.32  0.50**  0.13   1.00       

PrCurv   0.34 0.12 -0.12    0.06 0.56**   0.28   1.00      

RI   0.16    -0.39**    -0.50**    0.13  0.19  -0.03  -0.18   1.00     

Slope   0.02     -0.27    -0.43**    0.03  0.19  -0.09  -0.23  0.67**   1.00    

TEMP  -0.94** -0.11 0.36 -0.50** -0.19  -0.79**  -0.30  -0.12   0.04 1.00   

TPI  0.39** 0.15    -0.34    0.21  0.65**   0.29  0.51**   0.28   0.13 -0.35 1.00  

TWI  -0.06 0.24     0.50**   -0.12 -0.32   0.01    0.05  -0.56** -0.85**  0.00 -0.31 1.00 

Significance level: ** = p ≤ 0.001, α = 0.05. DEM = digital elevation model, MRRTF = Multiresolution Ridge Top Flatness, MRVBF 

= Multiresolution resolution valley bottom flatness, NDVI = Normalized Difference Vegetation Index, PCurv = Planform Curvature, 

PrCurv = Profile Curvature, PPTN = Precipitation, RI = Relief Intensity, TEMP = Temperature, TPI = Topographic Position Index, 

TWI = SAGA Wetness Index. 
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Interpretation of principal components was based on finding which covariate layers are 

most strongly correlated with each PC, i.e., which of the loadings are large in magnitude and the 

farthest from zero in the either the positive or negative direction. The highest loadings were based 

on those that were highest for each PC, with loadings greater than 0.340 (Table 4.6) indicating the 

most important variable(s) in each PC.  

PC1 accounted for 32.7% of the total variance within the raster stack. Landsat Band 4 was 

the most important metric and had the highest loading of -0.345. PC2 accounted for 16.1% of the 

total variance. Highest loadings were from MRVBF (-0.426), temperature (-0.348), and relief 

intensity (0.341). High PC2 values were observed on erosional areas that had high relief intensities, 

whereas low PC2 values were observed in depositional areas such as alluvial plains, bottomlands, 

and swamps where the values of both MRVBF and temperature were low. PC3 accounted for 10.4% 

of the total variance with the highest negative loadings from planform curvature (-0.505), profile 

curvature (-0.509), and TPI (-0.561). High PC3 values were observed in areas where the values of 

these TAs decreased. PC4 described 8.4% of the total variance with the highest negative loading 

from slope (-0.421). High PC4 values were observed in areas with steep slopes such as valleys and 

hillsides whereas low PC4 values were observed in areas with very gentle slopes such as uplands. 

PC5 accounted for 7.5% of the total variance with the strongest negative loadings from Landsat 

Band 5 (-0.651), whereas PC6 accounted 5.2% of the total variance with the strongest negative 

loading from Landsat band 9 (-0.588). 

In summary, the 23 original covariates were transformed into 6 independent soil predictive 

components whose attributes make them ideal to improve on soil spatial prediction (Fig. 4.6). 

These attributes include (1) the ability to explicitly capture soil forming factors, (2) the ability to 

account for the majority of the variation within the raster stack, (3) independence and orthogonality 
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to each other, and (4) reduction to a smaller dataset (six) compared to the twenty-three covariates 

initially selected for soil and landscape modelling.  

Table 4.6: Proportion of variance contributed by the first six principal components (PCs) and 

Eigenvalues (loading) within each PC. 

  PC1 PC2 PC3 PC4 PC5 PC6 

Standard Deviation 2.7 1.9 1.5 1.4 1.3 1.1 

Proportion of Variance (%) 32.7 16.1 10.4 8.9 7.5 5.2 

Cumulative Proportion (%) 32.7 48.8 59.3 68.2 75.7 80.9 

 Environmental Covariate Eigenvector Values 

Landsat Band 1 -0.321 -0.074 -0.005 -0.008 -0.203 -0.213 

Landsat Band 2 -0.333 -0.037 0.012 0.018 -0.194 -0.178 

Landsat Band 3 -0.328 0.029 0.069 0.055 -0.258 -0.067 

Landsat Band 4 -0.345 0.091 0.027 0.041 -0.036 -0.023 

Landsat Band 5 0.046 -0.01 0.164 0.094 -0.615 0.381 

Landsat Band 6 -0.319 0.111 0.088 0.082 -0.131 0.144 

Landsat Band 7 -0.340 0.109 0.046 0.058 -0.018 0.078 

Landsat Band 8 -0.288 0.052 0.040 0.034 -0.117 -0.005 

Landsat Band 9 -0.004 0.058 0.065 0.321 -0.008 -0.588 

Landsat Band 10 -0.267 0.092 -0.041 -0.044 0.332 0.311 

Landsat Band 11 -0.260 0.117 -0.030 -0.031 0.336 0.336 

Elevation 0.122 0.387 0.078 0.276 0.024 0.090 

MRRTF -0.022 -0.165 -0.224 0.259 0.046 0.004 

MRVBF 0.012 -0.426 0.002 -0.013 -0.066 -0.109 

NDVI 0.263 -0.059 0.084 0.034 -0.369 0.285 

Planform Curvature 0.010 0.123 -0.505 0.011 -0.137 -0.036 

Precipitation 0.086 0.311 0.162 0.417 0.049 -0.123 

Profile Curvature 0.001 0.078 -0.509 0.170 -0.099 0.083 

RI 0.033 0.341 0.045 -0.335 -0.060 -0.036 

Slope 0.057 0.311 -0.022 -0.421 -0.126 -0.193 

Temp -0.141 -0.348 -0.159 -0.298 -0.017 -0.051 

TPI 0.005 0.128 -0.561 0.105 -0.115 0.030 

TWI -0.033 -0.319 0.055 0.363 0.119 0.155 

MRRTF = Multiresolution Ridge Top Flatness, MRVBF = Multiresolution Valley Bottom Flatness, 

NDVI = Normalized Difference Vegetation Index, RI = Relief Intensity, TPI = Topographic 

Position Index, TWI = SAGA Wetness Index. Highlighted values represent loadings greater than 

0.340 indicating the most important variable(s) in each PC.
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Figure 4.6: Principal component rasters used to predict soil properties for the Busia area.
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Stepwise Multiple Linear Regression Model   

Both forward and backward selection SMLR were used to predict soil properties using the 

MASS package in R (Ripley et al., 2013). The six principal components rasters described in section 

2.3.1 above and Data Set A were the inputs into the SMLR. The significance of the principle 

components for predicting soil properties was assessed using the Akaike Information Criteria 

(AIC).  

AIC = 2K + 𝑁𝑙𝑛(𝐿)                                                                          [4.9] 

where K is the number of the estimated parameters included in the model (in this case the 6 

principal components), and L is the maximized likelihood function for the estimated model 

(Akaike, 1974). In cases, however, where a number of models have similarly low AICs, the one 

with the fewest predictor variables was chosen.  

Stepwise Multiple Linear Regression Results 

Among the six PCs, PC4 was the only significant predictor for SOC based on the AIC 

criterion, during SMLR modelling (Eqn. 4.10). PCs 1, 3, and 5 were significant in predicting clay 

(Eqn. 4.11) whereas PCs 1, 3, 5, and 6 were significant in predicting sand (Eqn. 4.12). No PC 

predicted silt. 

lm (formula = √SOC) = 1.07 +  0.02 ∗ PC4                                   [4.10] 

lm (formula = √Clay) = 6.56 + 0.11∗ PC1 +  0.26 ∗ PC3 +  0.26 ∗ PC5         [4.11] 

lm (formula = √Sand) = 5.69 − 0.16 ∗ PC1 − 0.30 ∗ PC3 − 0.29 ∗ PC5 − 0.34 ∗ PC6    [4.12] 

 SMLR results overestimated the predicted soil properties (Fig. 4.4b and Fig. 4.5b and e). 

The prediction ranges were 2.73% for SOC, 84.2% for clay, and 97.1% for sand compared to Data 

Set A ranges which were 2.68% for SOC, 70.0% for clay, and 35.0% for sand. 
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Stepwise Multiple Linear Regression Evaluation 

SMLR assumes that there is one global linear model that can explain the variation of the 

selected soil property within the study area. The drawback with this assumption is that with low 

sampling density, an appropriate relationship between a selected soil property and soil forming 

factors cannot be achieved. Predictors must have a consistent physical relationship with the target 

variable in all parts of the study area, otherwise predictions can be biased. The overestimation 

observed in SMLR may be due to the large number of predictors (6 principal components) and a 

small sample size (76). Pearson correlation between Data Set A and selected covariates showed 

very weak correlations of less than 0.5 (Table 4.5). Therefore, the established SMLR models 

between the point observations and selected environmental covariates used to predict soil 

properties may not explain all the variability within the study area.  

This also explains the wide C.I. ranges of the soil prediction maps (Figs. 4.4e, 4.7b and e). 

Strong relationships can only be achieved when there is an adequate number of sample points 

evenly distributed throughout the study area capable of capturing the variability. This is a common 

challenge when using soil property data from legacy soil data: the lack of an appropriate statistical 

design when sampling. Results from SMLR should therefore be taken with caution. Nevertheless, 

SMLR was used to predict soil properties because: (1) it has the ability to manage large numbers 

of potential predictor variables; (2) the model can be fine-tuned to choose the best predictor 

variables from the available options; and (3) it is faster than other automatic model selection 

methods.
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Figure 4.7: 95% C.I. range maps for the predicted soil texture maps from Figure 4.5.
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 The Soil Land Inference Model (SoLIM) 

When mapping soil properties using SoLIM, only TAs are used because SoLIM assumes 

that soil property variability is solely explained by topography.  

Preprocessing of Environmental Covariates for SoLIM 

Selection of Least Correlated Terrain Attributes  

The most relevant TAs were selected by omitting highly correlated TAs (Table 4.5). This 

resulted in six TAs for input into the SoLIM model, MRVBF, MRRTF, planform curvature, profile 

curvature, TPI, and TWI.  

Terrain Attributes Clustering and Generation of Zonal Statistics 

SAGA-GIS (Conrad et al., 2015) was used to perform the K-means clustering on the six 

TAs to partition them into k (≤ n) sets using the hill climbing method, where n is the number of 

TAs used for clustering (Rubin, 1967). TA clustering was intended to mimic the geometry of ‘fully 

developed slopes’ observed within the landscape (Wood, 1942; King, 1957). These clusters were 

considered to be ‘ideal soil types’ as discussed in section 4.3.3.2 below. To determine the sets of 

rules to use for each ‘ideal soil type’, zonal statistics for each cluster were calculated in SAGA-

GIS to obtain the range of values for each TA to generate rule values for soil type landscape 

relationships in the study area (Table 4.7).   

SoLIM Prediction Model  

SoLIM is based on the premise that soil properties can be inferred from soil-related 

environmental conditions. It requires TAs that depicts the environmental conditions indicative of 

soil conditions (Zhu et al., 2001). SoLIM’s inference engine links the TAs with a knowledge base 
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to calculate similarity values. An example of soil-environment relationship knowledge could be 

expressed as rule sets like, "If the elevation is 1000 m and slope is 12%, then the soil is Soil Type 

1". The inference engine uses the TAs to identify all the locations where elevation values are 1000 

m and slope values are 12%, and then assigns full membership (similarity) to those locations 

because the soils at these locations are typical cases of Soil Type 1. 

Not all locations, however, will satisfy the conditions set for Soil Type 1. For instance, Soil 

Type 1 occurs in areas with elevation from 500 m to 1500 m and slope from 6% to 18%. This does 

not mean that all places within this range of values will have soils similar to Soil Type 1. SoLIM 

acknowledges that places within this range will be more or less similar to another soil type, Soil 

Type 2, depending on the environmental variables. Also, soils in areas just a bit outside this range 

may still bear some similarity to Soil Type 1. For these locations, SoLIM will assign partial 

membership values based on how similar the environmental conditions at other locations are to 

the conditions stated above. This is accomplished by adopting a rule expressed as a function that 

defines how changes in an environmental variable affect the optimality of that environmental 

variable for a specific soil type. The optimality function describes how the similarity of a typical 

soil type changes as the environmental conditions deviate from the ideal conditions. This 

procedure is then repeated for all defined soil types, yielding a vector of similarity values 

(membership values) for each pixel.  

 SoLIM predicts soil properties using a linear and additive weighting function (Zhu et al., 

2001) to predict soil properties for each pixel in the database. 

𝐷𝑖𝑗 =
∑ 𝑆𝑖𝑗

𝑘  .  𝐷𝑘𝑛
𝑘=1

∑ 𝑆𝑖𝑗
𝑘𝑛

𝑘=1

                                                             [4.13] 
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where Dij is the soil property at site (i,j), Sij
k is the similarity measure between the soil at site (i,j) 

and soil type k, Dk is the prescribed soil property of soil type k, and n is the total number of 

prescribed soil types in the study area.
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Table 4.7: Rules used for terrain-based clustering (soil-landscape relationship). 

 

Cluster 

MRRTF MRVBF Plan Curvature Profile Curvature TPI TWI 

Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max Mean Min Max 

1 0.45 -0.94 6.85 1.44 -0.89 7.72 -0.000063 -0.00626 0.0047 -0.000072 -0.0059 0.0045 -0.44 -11.91 9.95 6.03 2.50 11.18 

2 0.08 -0.28 3.23 0.01 -0.05 1.05 0.003246 -0.00805 0.0193 0.003353 -0.0090 0.0191 27.31 -14.83 88.19 3.50 2.01 8.84 

3 1.42 -1.52 8.06 0.78 -0.64 7.38 0.000375 -0.00676 0.0118 0.00036 -0.0066 0.0069 2.83 -12.03 33.59 5.82 2.02 10.91 

4 0.06 -0.28 6.20 1.68 -1.33 8.31 -0.000521 -0.00851 0.0119 -0.000834 -0.0152 0.0064 -5.63 -70.34 18.16 5.80 1.81 11.83 

5 2.00 -1.82 8.53 5.50 -1.39 8.63 0.000012 -0.00187 0.0022 -0.000026 -0.0025 0.0026 -0.13 -9.78 9.87 6.44 3.08 11.04 
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The six TAs selected for soil and landscape analysis (section 4.3.3.1.1) and the mean soil 

property values of Data Set A occurring in each soil type were inputs into the SoLIM model. The 

similarity vectors were developed from a knowledge-based strategy in SoLIMSolutions 2015 

software using the concept of Jenny (1941, 1980), which postulates that relationships exist between 

soils and their formative environment, which in turn can be used to predict soil properties.  

SoLIM Results  

The five clusters (Fig. 4.8) resulted from k-means clustering were used as ‘ideal soil types’ 

for computing similarity vector values for the study area. These clusters mimicked different slope 

positions viz. summit (cluster 2), shoulder (cluster 3), backslope (cluster 1), toeslope (cluster 4), 

and footslope (cluster5) (Figs.4.8 and 4.9). These slope positions directly and/or indirectly 

influence geomorphic processes such as weathering, pedogenesis, and water runoff which in turn 

influence erosion-sedimentation determining the type of soils and landforms that evolve from these 

processes (Ruhe, 1975).  
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Figure 4. 8: K-Means clusters representing ‘ideal soil types’ within the landscape. 

Figure 4. 9: Schematic representation of where each cluster occurred on ‘fully developed slopes’ 

within Busia landscape: 1 = Backslope (BS), 2 = Summit (SU), 3 = Shoulder (SH), 4 = Footslope 

(FS), and 5 = Toeslope (TS) (after Wysocki et al., 2000 and Schoeneberger et al., 2012). 
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SoLIM greatly underestimated the prediction of soil properties (Fig. 4.4c, Fig. 4.5c, f, and 

h). The prediction ranges were 0.26% for SOC, 9.6% for clay, 1.9% for silt, and 10.3% for sand 

compared to Data Set A ranges which were 2.68% for SOC, 70.0% for clay, 74.4% for silt, and 

35.0% for sand.  

SoLIM Evaluation  

SoLIM heavily underestimated the prediction of properties because the model used the 

mean of all the soil property values found within each ‘ideal soil type’ for prediction instead of 

the individual soil property values (Table 4.8). This collapsed all the variation within the soil 

property intended for prediction into one value for each ‘ideal soil type’ and explained the very 

low prediction ranges. 

Table 4.8: Soil properties within each ‘ideal soil type’ used for SoLIM prediction. 

Ideal Soil Type % SOC  % Clay % Silt % Sand 

1 0.995 46.824 18.753 34.424 

2 0.970 50.000 20.000 30.000 

3 1.118 42.000 19.003 38.997 

4 1.245 44.083 21.250 34.667 

5 1.218 31.667 18.533 49.800 

  

SoLIM uses the expert knowledge of an experienced soil scientist to formalize the 

relationships between soil characteristics and environmental covariates. This explains the level of 

detail from SoLIM predictions relative to ordinary kriging (Fig. 4.4c, 4.5 c, f, and h). The drawback 

is that a soil scientist’s expert knowledge is subjective and lacks statistical grounds of inference. 

In addition, the accuracy of the clusters generated when identifying different slope positions (Fig. 

4.9) that occur within the landscape depend on the resolution of the DEM. A 30 m DEM might not 

be suitable to generate clusters in areas with very gentle relief such as swamps. A higher resolution 
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DEM would presumably lead to better results. Moreover, adequate distribution of the sampled data 

points within slope positions is necessary for effective soil property prediction. Some clusters were 

over represented with sampled data points, whereas other clusters were under represented, thus 

affecting the prediction results. This explains the low correlation between the prediction and 

observed values (Fig. 4.10). Also, a greater number of soil types that capture the range of soil 

property variability would potentially increase the range of predictions values. However, the 

ability to assign property values for each soil type could be diminished with sparse point data. 
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Figure 4.10: Correlation (density) plots produced as a result of cross-validation. See also Table 

4.4 for more results. 

 Model Tradeoffs  

From a statistical standpoint, ordinary kriging performed better than SoLIM and SMLR in 

predicting SOC (RMSE = 0.02), clay (RMSE = 0.32), and silt (RMSE = 0.10) whereas SMLR 

performed better than SoLIM and ordinary kriging for predicting sand content (RSME = 0.11) 

(Table 4.4). 
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The 95% C.I. ranges were narrowest for ordinary kriging (Fig. 4.4d and Fig. 4.7a, d, and 

g), followed by SoLIM (Figs. 4.4f, 4.7e, f, and h), and widest for SMLR (Figs. 4.4e, 4.7b and e) 

indicating that we are more confident of ordinary kriging predictions and least confident about the 

predictions from SMLR. From a pedological standpoint, SoLIM provided a better prediction 

model because it not only incorporates more soil forming factors compared to ordinary kriging but 

also has low C.I. ranges compared to SMLR. For example, SOC prediction from SMLR (Fig. 4.4b) 

predicted high OC on the sharp ridges in the southwestern part of the study area, which does not 

make pedological sense. This is supported by the large C.I. range on these areas (Fig. 4.4e). SoLIM 

on the other hand predicts low SOC on these ridges (Fig. 4.4c) with low C.I. ranges (Fig. 4.4f). 

However, regardless of the variety of models used to predict soil properties, Austin et al. 

(2003) emphasized that in ecological modelling, the most important consideration is not the 

statistical model employed, but the ecological knowledge and statistical skill of the analyst. 

Minasny and McBratney (2007) likewise concluded that improved spatial prediction of soil 

characteristics will result from accumulating better soil data, rather than more sophisticated 

statistical models.    

4.4 Discussion  

The objective of this study was to determine whether existing legacy soil data for a selected 

portion of Kenya can be used to predict soil properties at a higher spatial resolution than current 

maps by using DSM techniques without conducting additional field work. Currently, the best soil 

property maps for the Busia area based on DSM techniques are at 250 m resolution (Hengl et al., 

2017). Results from our study predicted soil properties at 30 m resolution, which should be more 

appropriate for smallholder farmers whose average landholding is less than a hectare (Sanchez et 

al., 2009). For research studies such as of nutrient cycling, finer resolution might be needed also. 
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DSM, however, requires a different sampling strategy which would be driven more by sampling 

the feature space rather than finding the extent or characterizing individual soil polygons. 

A number of legitimate concerns, however, exist when using legacy soil data. The most 

immediate and significant concern is the data quality that affects the accuracy and usability of the 

initial soil property predictions. We used a calibration dataset, Data Set A, that was sampled to 

support soil classification (Appendix 4 in Rachilo and Michieka, 1991). The criteria used to 

determine the selected location of profile pits were not described explicitly in the soil survey report, 

although we can assume that the goal was to sample the most extensively cultivated soil types. 

Rachilo and Michieka (1991) stratified the Busia area into eight geomorphic units viz. hills, 

footslopes, uplands, plains, river terraces and floodplains, minor valleys, bottomlands, and swamps. 

Data Set A, however, is biased towards the uplands where 67% of the sampled points occur. Hills 

and swamps had no representative samples. Similarly, using the slope positions, the point density 

by slope position showed that 96% of the dataset occurred on shoulders, backslopes, and footslopes. 

Only one sample occurred on a summit within the entire study area which was not adequate to 

make useful predictions. This challenge has been highlighted by our predictions which exhibited 

lower accuracy on summits, as expected, due to the low sampling density. 

On the other hand, for Data Set B used for evaluation, we applied an equal area quadratic 

smoothing spline function (section 2.2.1.2.1) to generate continuous depth function of soil 

properties. The approach not only reduced the variability (Odgers et al., 2012), but introduced 

additional errors during the evaluation of the prediction models. Compounded by the fact that this 

dataset was also not collected using any statistical design and/or probability and sampling criteria, 

the results from model evaluation possibly carry the same sampling bias (Savtchenko, 2004).  
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The initial bias of sampling designs coupled with the scarcity of the points highlight one 

of the major limitations of the methods used in our study. Sparse coverage of quantitative 

observations could introduce considerable spatial uncertainty (Mayr et al., 2010). Most of the 

methods used in this study are data demanding. Accurate prediction of soil properties, especially 

for spatial interpolation methods, depends not only on a higher sampling density but also on the 

spatial distribution. Our study fell short on meeting both criteria, and thus may not have captured 

the variability. A limitation of any model development is that the training dataset must contain and 

represent the full range of variation in the landscape of the study area for which the predictions are 

made (McBratney et al., 2003). This limitation was obvious for all the prediction models used in 

our study.  

With regards to the input data, the prediction models used in this study can be improved or 

replaced once better sampling schemes are identified, and adequate sampling density is achieved. 

The fact that Data Set A did not capture the spatial variation within the study area, constitutes a 

future challenge to select a similar number of sample sites that can better capture the spatial 

variation. To enable this, we propose using the Conditioned Latin Hypercube Sampling technique 

(cLHS) (Minansy and McBratney, 2006). Given a set of environmental covariates, the cLHS 

provides a full coverage of the range of each environmental covariate by maximally stratifying the 

marginal distribution. The cLHS not only selects site locations that can be used to optimize the 

fitting of a spatial regression model but also are representative of the total spatial variation for the 

targeted soil property or properties (Minasny and McBratney, 2010a). The cLHS was run using 

the clhs package in R Studio (Roudier, 2017). In this example, the six PCs were used as the 

environmental covariates with 10,000 iterations to achieve an optimal solution. Sampling sites 

chosen by cLHS are given in Fig. 4.11. 
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Figure 4. 11: Location of sample points determined by cLHS (red) relative to Data Set A (white). 

The assumption when predicting soil properties for the Busia area is that they are strongly 

dependent on topography. A profile graph of a section of soil map unit UGb3M found in the 

uplands, where 67% of the calibration data set occurred, shows high topographic variability with 

no trend over very short distances (Fig. 4.12). Although the topography varied substantially over 

short distances, parent material differences, which were not identified in this study, might have 

also introduced another source of variability that contributed to poor predictions.  
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Figure 4. 12. UGb3M profile graph. 

Even though ordinary kriging performed better when evaluating the prediction models, this 

result should be taken with a lot of caution. The large ranges resulted from fitting the spatial 

prediction models showed that there was weak spatial dependence (Table 4.3). Significant 

proportion of spatial variation for most soil properties occurs within relatively short distances 

(Heuvelink et al., 2001; Antonić et al., 2003; Scharlemann et al., 2014). It is therefore unreasonable 

to expect for any model to explain more than 50% of the total observed variation (Hengl et al., 

2014).  

The DSM techniques used in this study provide a blue-print for future soil property 

mapping using data from legacy soil data. These results offer the best possible soil property 

predictions at finer resolutions (30 m raster grids) than the ones currently available (250 m raster 

grids). Similar prediction models and soil and landscape relationships can be refined and used in 

future studies. The expectation is that these issues and concerns can gradually be addressed in a 

systematic way as more data become available. 



 

115 

 Conclusion  

This study demonstrates use of legacy soil data for predicting SOC, clay, silt, and sand and 

emphasizes the importance of such finite resources. One challenge, however, still remains when 

utilizing such data: low sampling density. We demonstrated that DSM can be used to predict soil 

properties mined from legacy soil data at finer spatial resolutions, 30 m for this study. We hope 

that by demonstrating how to effectively utilize legacy soil data for soil property prediction, we 

will encourage efforts to map specific soil properties in areas with existing legacy soil data.
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CHAPTER 5. DISAGGREGATION OF THE 1:100,000 

RECONNAISSANCE SOIL MAP OF THE BUSIA AREA USING A SOIL 

LANDSCAPE RULE-BASED APPROACH 

Abstract  

A 1:100,000 soil map of the Busia area in western Kenya published in 1991 is the main 

source of soil information for the area, but the map is outdated and unsuitable for new emerging 

demands. We disaggregated the Reconnaissance Soil Map of the Busia Area (quarter sheet No. 

101) into individual soil classes to produce a soil class map that may better meet current needs. 

The soil landscape rule-based model was used to disaggregate the soil map units by exploiting 

information in the map legend and the map unit descriptions. These descriptions were used to 

generate rules that were applied to a fuzzy soil class map generated from a parent material map 

and a K-means cluster map generated from six terrain attributes, namely, multiresolution ridgetop 

flatness (MRRTF), multiresolution valley bottom flatness (MRVBF), topographic wetness index 

(TWI), topographic position index (TPI), planform curvature, and profile curvature. The result 

was a soil class map with a spatial resolution of 30 m with an overall accuracy of 58% and a 

Kappa coefficient of 0.54. The soil landscape rule-based approach provides an opportunity to 

disaggregate traditional soil maps in cases where there is no adequate dataset. The drawback with 

this approach, however, is that it relies heavily on the resolution of the DEM and the type of 

information contained within the soil survey report describing the soil classes within the soil map 

units.  

5.1 Introduction 

A 1:100,000 soil map of the Busia area in western Kenya published in 1991 (Rachilo and 

Michieka, 1991) is the main source of soil information for the area. It is used for a variety of 
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purposes, such as agriculture and environmental policy making and soil and water conservation 

planning. Almost three decades later, however, the map has become outdated and unsuitable for 

emerging demands. Large-scale changes in land use and water resource management have 

occurred in the area since the soil survey was conducted, and the existing soil map does not provide 

the level of detailed needed today.  

Although the need for updating this map is recognized, soil surveys are very expensive, 

labor intensive, and time consuming (Arrouays et al., 2017). One way of updating existing soil 

maps is by using digital soil mapping (DSM) techniques (McBratney et al., 2003) with data 

extracted from existing legacy soil survey reports (Bui et al., 1999; Bui and Moran, 2001; Odgers 

et al., 2014). 

Traditional, polygon-based soil maps often describe soil classes within the map units but 

lack explicit indications of where particular soil classes occur. Mapping soil classes as opposed to 

map units is important because specific soil classes can effectively inform and improve sustainable 

soil use and management at a finer scale (Brungard et al., 2015). Disaggregating broad soil map 

units into individual soil classes has the potential to make existing soil maps more useful for 

meeting current needs.    

 Spatial Disaggregation 

Spatial disaggregation of soil classes within existing map units refers to downscaling of 

information to produce new information at a finer scale than the original source (McBratney, 1998; 

Thompson et al., 2010). The result is a rasterized prediction of the spatial distribution of soil classes 

occurring within the original soil map units.  

Different methods have been tested in an attempt to disaggregate traditional soil maps. 

These include: (1) the soil landscape rule-based approach (Bui et al., 1999; Bui and Moran, 2001; 
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Zhu et al., 2007, 2008; Thompson et al., 2010; Nauman et al., 2012), (2) decision trees / rule 

induction (Bui et al. 1999; Bui and Moran, 2001; Thompson et al., 2010; Wei et al., 2010; Häring 

et al., 2012; Subburayalu et al., 2014; Odgers et al., 2014), (3) area to point kriging (Kerry et al., 

2012), (4) multinomial logistic regression (Hengl et al., 2007; Kempen et al., 2009; Hengl et al., 

2017), (5) regression kriging (Hengl et al., 2007), and probabilistic approach (Cheney et al., 2016). 

The majority of these methods, however, require an adequate calibration dataset of point data for 

effective disaggregation.  

In cases where there is a lack of adequate point data, legacy soil survey reports remain the 

only source of information for disaggregating soil map units (Minasny and McBratney, 2010b). 

Legacy soil data in the form of soil maps and associated reports from traditional soil mapping 

approaches are rooted in the catena concept formalized by Milne (1936). These maps divide the 

landscape into map units consisting of one or more soil classes that occur in predictable and 

repeating patterns (Soil Science Division Staff, 2017). 

The soil landscape model offers an opportunity to disaggregate soil map units by exploiting 

information in the map legend and the soil map unit descriptions (Bui and Moran, 1991; Lagacherie 

et al., 1995; Mayr et al., 2001). These descriptions reflect the mental models used by soil surveyors 

when the map was made, and they describe the association between soil map units and other 

environmental and spatial data.  

The objective of this study was to spatially disaggregate the best available soil map for the 

Busia area of western Kenya into individual soil classes to produce a soil map that may better meet 

current needs. The procedures developed for this study may also be useful for disaggregating 

similar soil maps available for other parts of Kenya. 
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From our initial evaluation of the soil map and associated report for the Busia area, we 

concluded that there were insufficient point data to apply any of the statistically based procedures 

mentioned above and that the soil landscape rule-based approach was the most likely to result in a 

useful soil map. 

The soil landscape rule-based approach for disaggregating soil map units has four major 

steps (Fig. 5.1). First, the mental soil landscape models used by the original soil surveyor(s) must 

be extracted from the available descriptive information and quantified by a set of rules. Second, a 

digital model must be developed that represents the landscape and environmental conditions of the 

landscape. Third, the rules that describe the locations of different soil classes in the landscape must 

be applied to the digital model to place the soil classes in their most likely position(s) in the 

landscape. Fourth, the resulting map should be evaluated in some way. 

 

Figure 5.1: Soil landscape rule-based model for disaggregating soil map units. 

The distribution of soil classes within soil map units like hydrological processes, is often 

assumed to be either stochastic or deterministic (Seyfried and Wicox, 1995), i.e., the distribution 

of soil classes is either random or it follows a certain pattern. In soil surveys, these situations are 

described as associations and complexes, respectively (Soil Science Division Staff, 2017). 
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Deterministic patterns can be associated with specific landscape positions that are captured in the 

map unit descriptions but are not spatially represented on the map (Bui and Moran, 2001; Nauman 

et al., 2012). Stochastic patterns cannot be associated with specific landscape positions. 

Examination of the legend and map unit descriptions for the Busia area soil map showed that the 

map units were described deterministically, providing some assurance that the soil landscape rule-

based approach would likely be successful.  

Digital elevation model data was available for the area and sufficient information was 

available in the soil survey report to extract a soil parent material map. Thus, it would be possible 

to develop a digital model to represent the landscape and environmental conditions. Sufficient data, 

therefore, were available for the objective of this paper to apply the soil landscape rule-based 

approach to disaggregating the Busia area soil map. 

5.1 Materials and Methods 

5.1.1 Study Area 

The study area is located in the western part of Kenya and bound by the equator to the 

south, latitude 0° 30’ N to the north, longitude 34° 30’ E to the east and the Kenya-Ugandan border 

in the west. It has an area of 2,798 km2 and an elevation ranging from 1,127 to 1,564 m. Mean 

annual rainfall increases to the northeast from 925 to 1,990 mm. The average annual temperature 

ranges from 20 to 23° C. 

5.1.2 Data Sources 

The Reconnaissance Soil Map of the Busia Area (quarter degree sheet No. 101) at a scale 

of 1:100,000 (Rachilo and Michieka, 1991), the “Busia soil survey report,” was used as the primary 

source of data. The digital elevation model (DEM) data was from the 1 Arc-Second (30 m) Shuttle 
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Radar Topography Mission (SRTM) global elevation dataset (USGS, 2017). It was projected to 

the WGS84 Web Mercator (auxiliary sphere) coordinate system before further processing. This 

coordinate system was chosen for this study because of its ability to preserve the shape of the area 

without distortion, especially around the equator (ESRI, 2010).   

Soil Tabular Data 

The Busia soil survey report contains tabular descriptions and corresponding soil 

classifications according to the FAO-UNESCO nomenclature for the Soil Map of the World 

(FAO/UNESCO, 1974) for 76 geo-located soil profile pits occurring within specific soil map units 

(Appendix 4 in Rachilo and Michieka, 1991). 

Soil Spatial Data  

The soil polygon map that is part of the Busia soil survey report comprises 348 polygons 

that belong to 52 soil map units (Fig. 5.3). The map units are soil associations consisting of one or 

more soil classes explicitly described within the Busia soil survey report.  
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Figure 5.2: Busia soil polygon map and location within Kenya (arrow). 

Systematic Nomenclature of the Soil Map Units  

The legend for the soil map units consisted of three categories. The highest category was 

the physiographic unit on which the soil map unit occurs, such as hills, foothills, uplands, etc. At 

the second level, the physiographic units were subdivided according to the underlying parent 

material such as igneous rocks, granite, alluvium, etc. At the third level, the soil map units were 

subdivided based on important characteristics of the soil profile, such as drainage conditions, depth, 

color, consistency, texture, etc. This was followed by the soil classification using the Legend for 

the Soil Map of the World. For example, a soil map unit designated as “HIP (Lithosols, stony 

phase)” is described as soils found on hills (H), of igneous parent material (I), with very shallow 

soils overlying bedrock with soil depth ranging between 0-50 cm (P). Such descriptions make it 

easier to disaggregate soil map units.  
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Soil Classes 

Twenty-six different soil classes occur within Busia area and they are grouped 

hierarchically into soil orders in Table 5.1. The most common soil orders in the Busia area are 

Cambisols (21.4%), Acrisols (16.1%), Gleysols (14.3%), and Ferralsols (14.3%).  

Table 5.1: Soil classes of the Busia area. 

Soil order Soil classes 

Frequency (%) of occurrence 

within soil map units  

Acrisols 
Chromic Acrisols 

16.1 
Orthic Acrisols 

Cambisols 

Chromic Cambisols 

21.4 

Dystric Cambisols 

Eutric Cambisols 

Ferralic Cambisols 

Vertic Cambisols 

Vertisols 
Chromic Vertisols 

7.1 
Pellic Vertisols 

Gleysols 

Dystric Gleysols 

14.3 

Eutric Gleysols 

Humic Gleysols 

Plinthic Gleysols 

Vertic Gleysols 

Lithosols Dystric Lithosols 7.1 

Nitosols 
Dystric Nitosols 

7.1 
Eutric Nitosols 

Fluvisols 
Eutric Fluvisols 

3.6 
Vertic Fluvisols 

Histosols Eutric Histosols 1.8 

Arenosols Ferralic Arenosols 3.6 

Solonchaks Gleyic Solonchaks 1.8 

Ferralsols 

Orthic Ferralsols 

14.3 Plinthic Ferralsols 

Rhodic Ferralsols 

Luvisols Orthic Luvisols 1.8 
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5.1.3 Soil Land Inference Model (SoLIM) 

The soil land inference model (SoLIM) was used to map fuzzy soil classes occurring within 

the Busia landscape. SoLIM is based on the concept that soil classes can be spatially inferred from 

soil-related environmental conditions. This approach employs a set of rules depict environmental 

conditions indicative of soil types. SoLIM uses an inference engine to link a GIS database, which 

stores the environmental covariates, with a knowledge base to calculate similarity values (Zhu and 

Burt, 2011).  

For example, soil-environment relationship knowledge could be the statement, "If the 

elevation is 1000 m, slope is 12%, and parent is type X, then Soil Class A is most likely to 

occur." In this case, the inference engine will use the GIS database to identify all the locations 

where these conditions are met, and then assign full membership to Soil Class A for those locations 

where soils are typical for Soil Class A. Not all locations in the area, however, will meet the 

conditions perfectly for Soil Class A. For example, "Soil Class A occurs in areas with elevation 

from 500 m to 1500 m and slope from 6% to 18% and underlying granite parent material.” This 

does not mean that all places with this range of values will have the same soil. Instead, SoLIM 

acknowledges that places within that range will be more or less similar to another soil class, Soil 

Class B, depending on the values of the environmental variables for Soil Class B. In addition, soils 

in areas just a bit outside of the range may still bear some similarity to Soil Class A; these soils 

will not be perfect examples of typical Soil Class A, but they will not be totally dissimilar to Soil 

Class A either. 

For these locations, which constitute the majority of the landscape, SoLIM will assign 

partial membership values based on how similar the environmental conditions at other locations 

are to the conditions stated above. This is accomplished by adopting a rule which is expressed as 

a function that defines how changes in an environmental variable affect the optimality of that 
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specific soil class occurring at that particular location. This procedure is repeated for all defined 

soil classes, yielding a vector of similarity values for each pixel. 

5.1.4 Disaggregation Approach  

The disaggregation approach was achieved using 12 steps (Fig. 5.3). These steps expand 

on the soil landscape rule-based approach for disaggregating soil map units introduced in section 

1.1 and illustrated in Fig. 5.1.  

Extract mental model and develop mapping rules 

Create List of Soil Classes from Soil Survey Report 

The soil map units in the Busia soil survey report have information on the total area, agro-

climatic zone, parent material, meso- and macro-relief, erosion, land use, surface rockiness, 

general soil description, color, texture, structure, consistence, chemical properties, clay 

minerology, diagnostic properties, and soil classification. A list of all soil classes in the Busia soil 

survey report was first created (step 1 in Fig. 5.3, Table 5.1). 

Extract Soil Class Definitions from The Legend of The Soil Map of The World 

The legend of the Soil Map of the World (FAO/UNESCO, 1974) was used to extract 

definitions of the soil classes (step 2 in Fig. 5.3). The Busia soil survey report was also used (i) as 

an additional source of information in cases where soil classes were explicitly defined, (ii) in cases 

where soil class definitions did not exist within the legend of the Soil Map of the World, and (iii) 

to generate a separate database showing the soil classes within each soil map unit.
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Figure 5.3: Schematic flow chart for dissaggregating of soil map units using legend and map unit desciptions.
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Develop Soil Class Mapping Rules  

Soil class definitions contained indicators that could be used to associate these soil classes 

to specific landscape positions (step 3 in Fig. 5.3). For example, according to the soil map legend, 

Eutric Nitosols are described as having “a base saturation of 50% or more throughout the argillic 

B horizon within 125 cm of the surface.” Within the landscape, such soil classes will most likely 

be found on depositional areas where soluble materials washed from upslope areas will likely 

accumulate. Similarly, Dystric Nitosols are described to have “a base saturation of less than 50% 

in at least a part of the argillic B horizon within 125 cm of the surface and lack high OM content.” 

Within the landscape, such soil classes will most likely be associated with upslope areas where 

soluble nutrients are washed away.  

In very few cases, soil classes within the Busia soil survey report were explicitly described. 

For example, within the valleys, the report describes soil classes occuring in specific soil map units 

as “soils of the valley sides” and “soils of the valley bottom.” In these cases, the descriptions were 

used to associate these soil classes with their corresponding slope positions. Valley sides are areas 

that occur on shoulders and backslopes whereas the bottomlands are areas that occur on footslopes 

and toeslopes. The process of sifting through the soil class definitions in the legend and soil map 

unit descriptions and associating soil classes with specific landscape positions led to the generation 

of rules for mapping each soil class.  

Examples of Rules to Associate Soil Classes Within Specific Map Units to Landscape 

Positions  

Table 5.2 shows an example of part of the database created to generate rules to map soil 

classes to their most likely landscape positions within specific soil map units. We discuss the 

generation of rules for three map units only.
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Table 5.2: Examples of rules for mapping soil classes within soil map units. Italicized text are key indicators of where soil classes 

would most likely occur within the landscape.
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Map Unit VXC1 

This map unit occurs on valleys with granites and grits as the underlying parent material 

and is an association of two classes, Ferralic Arenosols and Eutric Gleysols. The Busia soil survey 

describes Ferralic Arenosols as “soils of the valley sides” whereas Eutric Gleysols are described 

as “soils of the valley bottom” (Table 5.2). In this example, the explicit soil class descriptions were 

sufficient to associate these soil classes to specific landscape positions. “Valley sides” and ‘valley 

bottoms’ are key slope position indicators. “Valley sides” are associated with shoulders and 

backslopes characterized by steep slopes with soil drainage class ranging between excessively well 

drained to well drained. Erosion is quite intense and therefore soils are shallow (Figs. 5.4 and 5.5). 

Conversely, “valley bottoms” are associated with footslopes and toeslopes or bottomlands 

characterized with gentle topography. Soils within these slope positions are poorly drained because 

water accumulates (Figs. 5.4 and 5.5).  

 

Figure 5. 4: Variation of soil classes within soil map unit VXC1. 
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Figure 5. 5: (a) very shallow Ferralic Arenosols overlying petroplinthite on the valley sides and 

(b) poorly drained Eutric Gleysols found on the valley bottoms. 

 

Map Unit SAC1 

Map unit SAC1 occurs in swamps of alluvial parent material. Soils classes in this map unit 

include Chromic Vertisols, Vertic Fluvisols, Eutric Histosols, and Humic Gleysols (Table 5.2). 

There was no explicit description of this map unit in the Busia soil survey report, and therefore 

only the definitions of these soil classes from the legend of Soil Map of the World were used. 

Chromic Vertisols are described as Vertisols that have high chroma values. High chroma colors 

(yellow and red to brown) are a result of iron oxide minerals that are commonly found in well 

drained areas where soils are not seasonally saturated and reduced and are commonly associated 

with summits, shoulders, and backslopes. There was no unique indicator from the Eutric Histosols 

definition that could be used to associate it with a specific landscape position. In this case, the 

formative element “eutric,” was used. Eutric is derived from the Greek word eu, meaning good, 

eutrophic, and/or fertile with a high base saturation (Buol et al., 2011). Fertile soils with high base 

saturations are common in areas where there are enough soil nutrients for plants and commonly 
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associated with depositional areas where soil nutrients have washed in from upslope areas. Within 

the landscape, this soil class would most likely occur on footslopes. Similarly, Humic Gleysols are 

described as having an umbric epipedon, characterized by a dark colored surface horizon with low 

natural base saturation. The dark surface soil color is the result of organic matter accumulation. 

Gleysols are saturated with water and reduced at some period during the year and there are 

indicators that reduction of Fe occurs. Typical slope position for this soil class would be footslopes 

where there is periodic flooding.   

On the other hand, Vertic Fluvisols are soils developed from recent alluvial deposits with 

vertic properties. Vertic soil properties are commonly associated with smectitic clays, which are 

sticky and subject to shrinking and swelling on drying and wetting. Conditions conducive for the 

formation and stability of smectites in soil environments include high amounts of Si and Mg 

activity, basic pH, and poor drainage (Reid-Soukup and Ulery, 2002). Poor drainage is associated 

with toeslopes, which are almost always under aquic conditions (Fig. 5.6).   

 

Figure 5.6: Variation of soil classes within soil map unit SAC1. 
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Map Unit UVC2 

Map unit UVC2 occurs on uplands with an underlying dolerite parent material and includes 

four soil classes: Orthic Acrisols, Plinthic Acrisols, Chromic Acrisols, and Ferralic Cambisols 

(Table 5.2). Chromic Acrisols are described as Acrisols with chromas >1.5 and an ochric epipedon. 

High chroma (yellow and red to brown colors) result from iron oxide minerals found in well-

drained areas. Typical slope position of such soil classes would be summits, shoulders and 

backslopes. Similarly, Ferralic Cambisols are described as having an ochric epipedon that lack 

both hydromorphic and vertic properties. Typical slope positions would be shoulders and 

backslopes. Orthic Acrisols also have an ochric epipedon and lack hydromorphic properties similar 

to the Ferralic Cambisols and would be found on similar landscape positions. Plinthic Acrisols are 

described as Acrisols characterized by the presence of plinthite within 125 cm below the soil 

surface. Conditions necessary for plinthite formation are common on summits, shoulders, and 

backslopes (van Wambeke, 1992; Eze et al., 2014). This map unit could not be disaggregated 

because soil classes occurred on similar landscape positions; i.e., this soil map unit is a complex 

rather than an association (Fig. 5.7). In cases where complexes occurred, soil classes were “lumped” 

together. 
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Figure 5.7: Variation of soil classes within soil map unit UVC2. 

Develop Digital Landscape and Environmental Model 

Generate Terrain Attributes from Digital Environmental Model 

Terrain attributes were computed using the System for Automated Geoscientific Analyses 

(SAGA) Geographical Information System (GIS) software (Conrad et al., 2015) using the 30 m 

DEM data. Eight terrain attributes were computed: Multiresolution Index of Valley Bottom 

Flatness (MRVBF), Multiresolution Ridge Top Flatness (MRRTF), planform curvature, profile 

curvature, relief intensity, slope, topographic position index (TPI), and SAGA topographic wetness 

index (TWI) (step 4 in Fig. 5.3). Pearson correlation coefficients between the 8 selected terrain 

attributes at the 76 soil profile pit locations showed that they were not entirely independent. Only 

terrain attributes with correlation values of less than 0.70 were selected for use in the landscape 

model, resulting in six terrain attributes namely MRVBF, MRRTF, planform curvature, profile 

curvature, TPI, and TWI.  
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Terrain Attribute Clustering  

The 6 selected terrain attributes were subjected to K-means clustering (step 5 in Fig. 5.3) 

performed in SAGA-GIS using the hill-climbing method (Rubin, 1967). This process was intended 

to mimic the geometry of “fully developed slopes” observed within the landscape (Fig 5.8) (Wood, 

1942; King, 1957).  

 

Figure 5.8: On the left, K-means clusters representing different slope positions within the 

landscape. On the right, a close-up of the cluster map. White lines are soil map unit boundaries 

from the Busia survey report. 

Examination of the K-means cluster map by overlaying it on the satellite imagery showed 

that the clusters correspond to different slope positions viz. summit, shoulder, backslope, toeslope, 

and footslope (Fig. 5.9). These slope positions influence geomorphic processes, such as weathering, 

pedogenesis, and soil water movement, which relate to erosion-sedimentation processes; thus, they 

determine soil classes and landforms that evolve from these processes (Ruhe, 1975). This theory 
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applies directly to soils classes occurring on landscapes and matches the catena concept (Milne, 

1936).  

Figure 5.9: Schematic representation of where each cluster occurred on ‘fully developed slopes’ 

within the Busia landscape: 1 = Backslope, 2 = Summit, 3 = Shoulder, 4 = Footslope, and 5 = 

Toeslope (after Wysocki et al., 2000 and Schoeneberger et al., 2012). Summits, shoulders, and 

backslopes have shallow well drained soils overlying petroplinthite. Soils on footslopes range 

from deep to very deep with well-developed soils. Soils on the toeslopes are poorly drained and 

may have vertic properties. 
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Extract Parent Material Component from Soil Polygon Map 

A soil parent material map was extracted from the Busia soil polygon map and rasterized 

to 30 m resolution (step 6 in Fig 4). This was possible because, as described in section 2.2.2.1, 

information on the soil parent material was imbedded in the design of the soil map units (Fig. 5.10).   

 

Figure 5.10: Busia soil parent material map. 

Generate New Raster from Parent Material and Cluster Maps 

The K-means cluster map (Fig. 5.8) was combined with the parent material map (Fig. 5.10) 

using the raster calculator in ArcMap version 10.6 to generate a new raster map showing all 

landscape positions occurring within each parent material (step 7 in Fig. 5.3 and Fig. 5.11). This 

new raster could have up to 45 classes (9 parent materials x 5 slope positions), but since not all 
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combinations of parent material and slope are represented, there were only 44 classes. This process 

mimics the “physiographic soil survey” methodology developed by the Kenya Soil Survey, which 

helps to delineate and assist in visualizing the complex relation between landforms, parent material, 

and soils (Muchena et al., 1982). In the legend, the first digit indicates the parent material (Table 

5.3) and the second digit indicates the slope position (Fig. 5.9). For example, code 11 represents 

soil classes that occur on alluvial parent material (code 10) and occur on backslopes (code 1). 

Similarly, code 65 represents soil classes occurring on igneous parent material (code 60) and 

toeslopes (5). 

Table 5.3: Parent material codes 

Geology Code number  

Alluvium 10 

Andesite 20 

Conglomerate 30 

Dolerite 40 

Granite 50 

Intermediate igneous rocks 60 

Mudstone 70 

Sandstone 80 

Various parent materials 90 

Generate Zonal Statistics in SAGA-GIS 

Zonal statistics were computed for each fuzzy soil class in SAGA-GIS (Conrad et al., 2015) 

(step 8 in Fig. 5.3) to determine the general distribution of each terrain attribute within each fuzzy 

soil class (Table 5.4). The statistical values were used to develop rules for associating, spatially 

and quantitively, soils classes within their respective slope positions (see section 5.2.4.2.2).   

  



 

138 

Harden Fuzzy Soil Class Map 

This process used the zonal statistics computed for each fuzzy soil class (Table 5.4) and 

assigned each pixel an overall membership to the class that had the highest value in the similarity 

value (Zhu et al., 1996, 2010). This was computed using SoLIM Solutions 2015 software (step 9 

in Fig. 5.3 and Fig. 5.12).  

Overlay Soil Map on Hardened Map 

For visualization, the original soil polygon map was overlaid on the hardened soil class 

map (step 10 in Fig. 5.3 and Fig. 5.12).
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Figure 5.11: Fuzzy soil class map resulted from combining the parent material and the K-means cluster maps.
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Table 5.4: Zonal statistics for hardening the fuzzy soil class map (soil landscape relationship). 

Soil Class 
MRRTF MRVBF PlanCurv ProfCurv TPI TWI 

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std 

11 0.251 0.551 2.124 1.213 -0.00003 0.00033 -0.00017 0.00036 -1.022 1.449 6.197 0.614 

12 0.000 0.000 0.000 0.000 0.00382 0.00122 0.00267 0.00191 18.028 3.834 3.082 0.093 

13 1.256 1.101 0.983 1.190 0.00040 0.00039 0.00031 0.00039 2.758 1.474 5.844 0.694 

14 0.126 0.640 2.790 1.234 -0.00033 0.00042 -0.00063 0.00058 -4.833 2.106 6.188 0.684 

15 1.857 1.664 5.921 1.123 0.00002 0.00024 -0.00002 0.00027 -0.042 1.562 6.451 0.759 

21 0.198 0.558 1.074 0.729 -0.00010 0.00049 -0.00007 0.00044 -0.565 1.457 5.816 0.606 

22 0.541 0.724 0.063 0.121 0.00231 0.00150 0.00303 0.00134 19.518 2.994 4.354 0.632 

23 0.671 1.027 0.518 0.491 0.00056 0.00072 0.00054 0.00068 4.260 3.063 5.424 0.766 

24 0.017 0.054 0.727 0.713 -0.00098 0.00106 -0.00103 0.00105 -7.383 4.264 5.492 0.714 

25 3.227 1.395 5.192 1.093 0.00007 0.00032 0.00017 0.00042 1.170 1.706 6.559 0.734 

31 0.266 0.766 1.081 0.605 -0.00011 0.00044 -0.00002 0.00045 -0.383 1.395 5.818 0.537 

32 0.257 0.446 0.002 0.003 0.00297 0.00015 0.00094 0.00034 17.834 1.424 3.832 0.325 

33 1.029 1.380 0.679 0.513 0.00039 0.00048 0.00042 0.00050 3.405 1.904 5.707 0.643 

34 0.020 0.060 0.764 0.622 -0.00085 0.00080 -0.00082 0.00075 -5.980 2.742 5.585 0.629 

35 4.759 0.097 2.529 0.282 -0.00035 0.00036 0.00004 0.00023 -0.848 0.906 6.126 0.310 

41 0.337 0.863 1.238 0.665 -0.00009 0.00040 -0.00005 0.00040 -0.436 1.397 5.956 0.544 

42 0.400 0.547 0.017 0.033 0.00229 0.00115 0.00229 0.00128 19.094 3.380 3.993 0.601 

43 1.255 1.427 0.710 0.566 0.00039 0.00048 0.00039 0.00047 3.138 1.947 5.798 0.702 

44 0.038 0.233 1.304 0.915 -0.00076 0.00071 -0.00071 0.00062 -5.763 2.533 5.878 0.598 

45 3.866 1.067 3.989 1.657 -0.00002 0.00029 -0.00003 0.00034 0.009 1.714 6.507 0.677 

51 0.490 1.030 1.337 0.661 -0.00009 0.00039 -0.00005 0.00039 -0.345 1.373 6.003 0.541 

52 0.281 0.458 0.004 0.008 0.00305 0.00121 0.00268 0.00121 22.474 5.061 3.892 0.538 

53 1.573 1.527 0.770 0.611 0.00035 0.00042 0.00035 0.00042 2.830 1.665 5.922 0.686 

54 0.039 0.219 1.598 0.887 -0.00070 0.00059 -0.00064 0.00050 -5.236 1.967 6.055 0.506 

55 3.646 1.521 3.600 1.162 0.00001 0.00033 0.00004 0.00036 0.425 1.627 6.481 0.673 

61 0.303 0.732 1.245 0.725 -0.00004 0.00041 -0.00009 0.00044 -0.578 1.467 5.882 0.649 

62 0.056 0.203 0.004 0.033 0.00369 0.00242 0.00372 0.00253 29.983 11.471 3.426 0.419 

63 1.119 1.297 0.595 0.592 0.00048 0.00078 0.00028 0.00072 3.364 2.915 5.567 1.057 

64 0.032 0.110 0.947 1.042 -0.00047 0.00088 -0.00120 0.00109 -7.179 4.726 4.974 1.028 

65 2.162 1.556 4.250 0.880 0.00004 0.00032 0.00002 0.00033 0.153 1.713 6.428 0.644 

71 0.474 1.039 1.332 0.654 -0.00009 0.00040 -0.00005 0.00040 -0.349 1.397 5.973 0.530 

73 1.439 1.457 0.724 0.578 0.00035 0.00042 0.00036 0.00042 2.820 1.582 5.891 0.665 

74 0.040 0.262 1.437 0.913 -0.00077 0.00063 -0.00071 0.00056 -5.511 2.188 5.921 0.471 

75 3.831 1.409 3.530 1.093 0.00000 0.00032 0.00000 0.00035 0.004 1.597 6.426 0.652 

81 0.893 1.413 1.624 0.654 -0.00006 0.00034 -0.00004 0.00036 -0.251 1.299 6.125 0.553 

83 2.244 1.585 0.811 0.704 0.00027 0.00034 0.00029 0.00035 2.236 1.286 6.081 0.679 

84 0.126 0.647 1.992 0.942 -0.00058 0.00047 -0.00055 0.00040 -4.637 1.338 6.077 0.468 

85 3.811 1.519 4.456 1.462 0.00002 0.00031 0.00002 0.00033 0.289 1.514 6.365 0.636 
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Table 5.4 continued 

Soil Class 
MRRTF MRVBF PlanCurv ProfCurv TPI TWI 

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std 

91 0.187 0.401 1.737 1.205 -0.00002 0.00038 -0.00017 0.0004 -0.999 1.478 6.054 0.603 

92 0.259 0.495 0.020 0.061 0.00272 0.00164 0.00285 0.00168 23.347 6.455 3.900 0.508 

93 0.681 0.888 0.595 0.707 0.00052 0.00054 0.00041 0.00054 3.204 2.311 5.591 0.760 

94 0.046 0.250 2.277 1.388 -0.00046 0.00057 -0.00080 0.00059 -5.529 2.250 6.081 0.604 

95 1.555 2.007 4.665 0.914 -0.00001 0.00029 -0.00009 0.00032 -0.756 1.647 6.514 0.686 

Soil class = specific soil type due to the weathering of a specific parent material occurring on a 

specific topographic position. The first digit represents geology/parent material. The second digit 

represent slope positions (1 – backslope; 2 – summit; 3 – shoulder; 4 – footslope; 5 – toeslope). 

For example, soil class 11 denotes a soil of alluvial parent material (code 10) occurring on 

backslope (code 1). Similarly, soil class 65 denotes a soil of igneous parent material (code 60) 

found on toeslopes/ bottomlands (code 5). 

Soil Class Map 

Use Rules to Map Soil Classes within each Soil Map Unit  

To map out the soil classes within each soil map unit, each soil map unit was clipped from 

the hardened soil map. The rules generated in step 3 of Fig. 5.3 were then used to map soil classes 

to the hardened soil classes. For example, the HIP map unit in Fig. 5.12 has one soil class, namely 

Lithosols, stony phase. All hardened soil classes occurring on summits (62), shoulders (63), and 

backslopes (61) were remapped as Lithosols. This mapping process was repeated separately for 

each of the 52 soil map units because different soil classes occurred in different soil map units. 

The 52 disaggregated raster maps were then merged together again to generate the final soil class 

map for the study area (step 11 in Fig. 5.3; Fig. 5.12). 
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Figure 5.12: A close up of the Busia soil polygon map overlaid on the hardened soil class map.
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Evaluate Soil Class Map using Soil Profile Data Mined from Soil Survey Report  

The disaggregated soil class map (Fig. 5.13) was evaluated (step 12 in Fig. 5.3) by using 

the Kappa coefficient, K, to measure the fidelity between the observed soil classes for the 76 soil 

profiles (see section 5.2.2.1) and predicted soil classes from the disaggregated soil map (Fig.  5.13) 

(Landis and Koch, 1977). The Kappa coefficient is based on the difference between how much 

agreement there is between what is actually present, the “observed” agreement, and how much 

agreement would be expected to be present by chance alone. The “expected,” agreement, K, is 

calculated from equation: 

K =
Po − Pe

1 − Pe
                                                                            [5.1] 

where Po is the overall or observed accuracy, and Pe is the expected accuracy. Expected accuracy 

is calculated from the equation below: 

Pe = ∑ (
𝑐𝑜𝑙𝑠𝑢𝑚𝑖

𝑁
) + (

𝑟𝑜𝑤𝑠𝑢𝑚𝑖

𝑁
)                                                   [5.2] 

𝑛

𝑖 =1

 

where N is the total number of observations, n is the number of classes, colsumi refers to the total 

number of observations for each soil class, and rowsumi refers to the total number of predictions 

for each soil class.  

5.2 Results  

 Disaggregated Soil Class Map  

Not all soil map units could be disaggregated. Some soil map units had complex soil classes 

(see section 2.4.1.3.1.3). In such cases, soil classes had to be “lumped” together. Of the 76 soil 

profile data, only 48 could be used for evaluation because they occurred on completely 

disaggregated soil map units. The overall accuracy of the disaggregated soil class map was 58% 
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with a Kappa coefficient of 0.54, indicating moderate agreement between the actual soil classes 

and the predicted soil classes, i.e., how much agreement was actually present, compared to how 

much agreement would be expected by chance alone (Fig. 5.13).  

These results, however, do not take into consideration similarity between soil classes. For 

example, if a soil class is predicted as a Pellic Vertisol while the observation made was a Chromic 

Vertisol, there is very little distinction between the two soil classes except for color. Pellic 

subgroups are darker that the Chromic subgroups. Statistically, the prediction is wrong, but the 

soil classes are both Vertisols and exhibit shrink swell properties, which in this case, are more 

important than slight differences in color. A similar case applies to Orthic and Chromic Acrisols. 
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Figure 5.13: Disaggregated soil class map of the Busia area.
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5.3 Discussion 

In this study we demonstrate how information within a legacy soil survey report can be 

used to disaggregate a traditional soil polygon map into its component soil classes using a DSM 

approach. Our approach focused on using the information describing map unit polygons to create 

a raster-based map of soil classes across the landscape.  

A number of challenges arose from this approach. The order in which we discuss each 

challenge does not reflect its importance. We start with the descriptions of the soil classes within 

the legacy soil data.  

The first challenge was that disaggregation relied heavily on the descriptions within the 

legacy soil survey report because these descriptions were used to discern where a given soil class 

was most likely to occur on the landscape. Three types of information existed within the legacy 

survey report. First, in most cases, soil class descriptions were not explicit, and as a result the soil 

class’ definitions based on the legend of the Soil Map of the World (FAO/UNESCO, 1974) had to 

be used to discern where soil classes would most likely occur on the landscape. This may have 

introduced errors since our interpretation of where the soil classes occurred with the map units 

may have differed from that of the soil scientists who made the original survey. Second, in two 

soil map units, soil classes were explicitly described in such a way that the information could be 

used to disaggregate soil map units using the map unit description alone (see section 5.2.4.1.3.1.1 

for an example). This was an ideal situation with regards to disaggregation. Third, in five cases, 

soil classes occurring within soil map units were not mentioned within the soil survey report. In 

these cases, the homosoil methodology (Mallavan et al., 2010) was implemented. This involved 

extrapolating soil information from areas with similar soil forming factors to areas of interest 

where no prior soil information existed. For example, within the legacy soil survey report, map 

unit SAC1 is described as having four soil classes (section 5.2.4.1.3.1.2) whereas soil classes 
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existing within map unit SAC2 were not mentioned. Since both soils have similar soil-forming 

factors, i.e., occur in swamps and are of alluvial parent material, the soil classes that occur within 

SAC1 were assumed to likely occur in SAC2 as well. One soil map unit (PSrM), however, could 

not be disaggregated because not only was the soil class(es) existing within this map unit not 

mentioned but also the homosoil approach could not be applied.  

The second challenge was related to surveyor bias and the amount of detail that the 

surveyors described. Soil surveyors are commonly described as either “splitters” or “lumpers” 

(McKenzie et al., 2008). Splitters try to map all the variation they observe in the field, whereas 

lumpers believe it is important to place closely associated soil classes together as a single class 

because the soil classes may function similarly and there is less risk of being incorrect if they are 

mapped together. Both cases were observed (sections 5.2.4.1.3.1.1 and 5.2.4.1.3.1.3). The main 

challenge was to disaggregate more than three soil classes within a soil map unit, and this was 

related to the resolution of the 30 m DEM used in this study. Areas with high relief, such as hills 

and valleys, performed best because in these cases it was possible to associate soil classes with 

their respective slope positions. In areas where the relief was gentle, as in swamps and uplands, 

the DEM failed to provide enough topographic detail for disaggregation. 

The disaggregation of the Busia soil map also highlighted two other challenges associated 

with disaggregating a traditional soil map. Firstly, with the polygon-based model, only soil bodies 

that were large enough to be delineated and labeled clearly were shown on the resulting map. 

Therefore, the level of detail was limited by the scale of the map, not by what the soil scientist 

observed. This was evident for soil classes within soil map units that extended to other adjacent 

map units. This is understandable because traditional soil mapping was mainly manual, in which 

soil surveyors had to delineate the extent of soil bodies based on visual interpretation of 
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environmental conditions using aerial photographs or fairly low-resolution topographic maps. As 

a result, the delineation of soil landscape units may not reflect the complete knowledge of the 

surveyor. Secondly, soil polygons were depicted as discrete polygon units within definite 

boundaries (Zhu et al., 2004; Odgers et al., 2014). This affected the disaggregation process because 

soil classes occurring within a soil map unit were assumed to occur only within the geographic 

extent of that specific polygon.   

 Conclusion  

Spatial disaggregation provides an opportunity for representing the variation of soil types 

within soil map units. This study presented an approach for disaggregating a traditional soil 

polygon map, the Reconnaissance Soil Map of the Busia Area, utilizing digital soil mapping 

techniques together with descriptions within a soil survey report. It was possible to disaggregate 

areas of interest by careful interpretations of the soil class descriptions within the soil survey report, 

but the approach relies heavily on the resolution of the DEM and the type of information available 

within the soil survey report.
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CHAPTER 6. DELIVERY OF SPATIALLY EXPLICIT SOILS 

INFORMATION FOR THE BUSIA AREA, KENYA. 

Abstract  

As population continues to rise, smallholder farmers in Sub-Saharan Africa face increasing 

challenges for obtaining sufficient food, fiber, and fuel. Efficient and effective extension services 

are needed to improve Africa’s agriculture. This study explored how to leverage the 

Reconnaissance Soil Survey of the Busia Area (quarter degree sheet No. 101) to deliver useful 

agronomic information via an easy to use cellphone app. We tested the feasibility of delivering 

one of these maps in the field in rural western Kenya using the Soil Explorer app installed on an 

iPad Mini that accessed a server via the cell phone network. The Soil Explorer platform provides 

the ability to deliver soils information on the go. Voluminous reports and unwieldy maps were 

reduced to portable maps at one’s fingertips that can be zoomed, panned, queried to provide 

information to end users. Mobile information delivery platforms like Soil Explorer open up the 

possibility of delivering timely and useful agronomic information to farmers at low cost compared 

to traditional agricultural extension. 

6.1 Introduction 

Africa currently has the highest prevalence of the world’s undernourished people and has 

among the lowest agricultural yields in the world (Africa Progress Panel, 2015). By 2050, the 

continent is expected double in population, when it will be home to about one quarter of the 

World’s people (United Nations Department of Economic and Social Affairs Population Division, 

2019). As population continues to rise, smallholder farmers in Sub-Saharan Africa will face 

increasing challenges to obtaining sufficient food, fiber, and fuel. More than half of Africa’s 
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population is directly or indirectly involved in agricultural production (Alliance for a Green 

Revolution in Africa, 2018). Many are smallholder farmers who own small plots of land and grow 

one or two cash crops that rely almost exclusively on family labor. These farmers often lack 

adequate access to the resources needed to increase yields on their farms.  

Technology and innovation offer unique opportunities to ease the access of farmers to 

resources and information. In Kenya, for example, innovations such as M-Pesa (Mas and Radcliffe, 

2010), Hello Tractor (Ströh de Martínez et al., 2016), iCow (http://www.icow.co.ke/ accessed on 

2/15/2019), m-farm (West, 2012), and Kilimo Salama (Kilimo Salama, 2011), demonstrate the key 

role technology can play in increasing agricultural resources such as access of rural smallholder 

farmers to finance, market, labor, and seeds.  

Even though these technological advances are addressing some of the agronomic 

challenges facing the continent, the majority of the technologies and innovations are tailored in 

such a way that they contain technical information that farmers cannot understand. Farmers just 

want to know what crop(s) is/are suitable for planting on their farms or what fertilizers to use to 

increase yields (personal conversations with Dr. Joseph J. Mamlin, director emeritus, AMPATH, 

Eldoret, Kenya, 4/20/2016).  

Technologies, however, that deliver soil information still lag behind. Available soils 

information in Kenya hosted by government agencies and various research institutions is mostly 

free for public access, although some requires an access fee. This information, however, is often 

under-used or even neglected because soil maps, legends and reports are not presented in an 

accessible, purpose-oriented, user friendly format. Soil maps, for example, are frequently difficult 

to use because of excessive cartographic detail that obscures the more general soil distribution 

patterns and potentials. In some cases, the style of presentation and reproduction, as black and 

http://www.icow.co.ke/
https://www.techxlab.org/solutions/mfarm-m-farm
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white copies, lacks appeal, leading the user to underestimate the quality of information available. 

Soil maps also get misused for solving problems and making decisions outside the range of the 

project objectives (Zinck, 1995). Map legends and soil survey reports are difficult to comprehend 

because of the complex language used to name soils. Non-soil specialist users should be given 

only interpretive maps with simple legends for specific purposes (Geitner et al., 2017).   

If farmers have access to useful soil information such as how to farm a given soil type, 

crop productivity could increase significantly. There is therefore an urgent need to get the right 

information into the hands of those who need it, when they need it, and in a way that they can use 

it. To address this challenge, farmers need accurate and timely agronomic information on crop 

suitability, fertilizer application, and sustainable land use at low or no cost. Archived soils data 

contains considerable agronomic information that can be repackaged in a simple manner to inform 

farmers to make agronomically sound decisions on their farms that will increase yields and 

therefore household income (Minai et al., 2018).  

6.2 The Soil Explorer App and Website  

The Soil Explorer mobile app and website (https://soilexplorer.net/) was originally 

developed to aid in teaching in soil, crop, and environmental sciences courses to undergraduate 

and graduate students at Purdue University within the Department of Agronomy in a way that they 

can understand (Schulze et al., 2010). Soil Explorer allows anyone, anywhere in the world to 

access information about soils, landscapes, and natural and man-made features. Maps for ten US 

states, Kenya, and the Arequipa region of Peru are currently available. One of the focuses of Soil 

Explorer is on the spatial aspects of soil properties, i.e. how soil properties are distributed over 

large areas. The app allows one to see and understand spatial patterns within the landscape without 

spending years mapping soils in the field. It consists of maps from different sources, all of which 

https://soilexplorer.net/
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are georeferenced so that each point on each map corresponds to its equivalent latitude and 

longitude on the Earth’s surface. The app successfully delivers soils information in a way that 

students can understand the key concepts of soils and landscapes. This study exploits the Soil 

Explorer platform to deliver spatially explicit soils information on soils, land use, crop suitability, 

predicted soil property maps, and the disaggregated soil map for the Busia area in a manner that is 

easy to understand.   

6.3 Methodology 

6.3.1 Soil Data Source 

Soil data was mined from the Reconnaissance Soil Survey Report of the Busia Area 

(quarter degree sheet No. 101) (Rachilo and Michieka, 1991). The Busia legacy soil data consisted 

of: (1) a soil map of the area that shows the spatial distribution of the soils, (2) detailed geo-located 

soil laboratory data for a number of profile pits at specific soil depths or for specific soil horizons, 

(3) a land evaluation key, and (4) crop suitability maps which can be used to determine the potential 

land use of an area.  

6.3.2 Soil Data Capture and Display  

Descriptive text within the Busia soil survey report was studied and a list of categories of 

information that could be mined from the report was made. These categories included 

physiographic position, total acreage, agro-climatic zone, parent material, meso and micro reliefs, 

erosion, land use, surface rockiness, general soil description, soil color, soil texture, consistence, 

chemical properties, clay minerology, diagnostic properties, and soil classification. An example of 

what is available is shown in Fig. 6.1.  
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Figure 6.1: Categories of soil information within map unit HIP (Rachilo and Michieka,1991). 

All these categories were entered into a spreadsheet as column headers. Given that the 

structure of information available for each map unit was the same, each row in the spreadsheet was 

assigned to a soil map unit. These rows were then filled with their corresponding information 

mined from the map unit descriptions (Fig. 6.2). 
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Figure 6.2: Soil information mined and organized in a spreadsheet. The first column represents 

the soil map unit. Each row corresponds to a soil map unit with corresponding information mined 

from the survey report. 

Data captured in each row was reformatted into a Hypertext Markup Language (HTML) 

text string that would display as a popup in Soil Explorer app (Fig. 6.3).  

 

Figure 6.3: Captured soil information displayed on a portable device showing specific soil 

information of a soil map unit. 
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This approach was used to display available information for the Busia area including land 

quality maps, crop suitability maps, predicted soil property maps, and disaggregated soils map of 

the area using the Soil Explorer app (Fig. 6.4).  

 

Figure 6.4: Examples of soils information displayed using the Soil Explorer app. (a) 

Reconnaissance soil map of the Busia Area, (b) availability of moisture for plant growth (c), 

suitability classification of soils for rainfed maize (Zea mays L.), and (d) suitability classification 

of soils for rainfed beans (Phaseolus spp.). 

6.1 Results 

The feasibility of this approach was successfully tested in rural western Kenya (Minai et 

al., 2016) using the Soil Explorer app on an iPad Mini equipped with a cellular modem (Fig. 6.5). 

Broadband is available over as much as 30% of Kenya, with up to 88% of Kenya’s 
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population having access to the Internet through their cellphones, thanks to cheaper data plans and 

the ubiquitous use of mobile money platforms like Mpesa (Communications Authority of Kenya, 

2017). This makes the applicability of this approach feasible because the infrastructure is available.  

 

Figure 6.5: Testing the feasibility of the Soil Explorer app in rural western Kenya. Photo by D.G. 

Schulze, CC-BY 4.0. 

6.3.3 Implications of the Soil Explorer Platform 

The Soil Explorer platform provides the ability to deliver soils information on the go. 

Traditional methods of storing soils information in books stored in libraries hinders ease of access 

of information to the rural smallholder farmers who need it. Soils information commonly exists in 

big voluminous soil survey reports (i.e., Rachilo and Micheieka, 1991) that are hard to use for non-

soil scientists. Mobile apps like Soil Explorer make it possible to take information currently locked 
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up in paper soil survey reports and maps and reformat it and display it in a manner that is easier to 

comprehend. Voluminous reports and unwieldy maps are reduced to portable maps at one’s 

fingertips that can be zoomed, panned, and queried to provide information to end users. 

Agricultural outreach encompasses a wide range of supportive programs that exist around 

farmers to help them to utilize research findings and newer agricultural innovations and 

technologies. It includes training, advisory services and technology transfer schemes. The 

challenge is that current extension services in Kenya are demand driven. Even if the information 

is freely available, farmers have to request the information from an extension officer. In some 

cases, farmers have to pay for the information from an extension officer. In both of these scenarios, 

the access of information to the farmer is reduced. Mobile information delivery platforms like Soil 

Explorer open up the possibility of delivering timely and useful agronomic information to farmers 

at low cost compared to traditional agricultural extension. The ability of a farmer to access 

agronomic information at the touch of a button could be a game changer with respect to current 

agricultural extension services.  

6.4 Conclusion 

We leveraged existing legacy soils data to impart useful agronomic data via an easy to use 

mobile app currently available for both Android and Apple products. By doing so, we proved that 

spatially explicit, legacy soils data could be delivered via a portable electronic device.
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CHAPTER 7. CONCLUSION AND RECOMMENDATIONS 

7.1 Introduction 

“Data and information are essential building blocks of science. Many types of data, 

including extant historical data which have newly appreciated scientific importance for the 

analysis of changes over time, are not being used for research because they are not available in 

digital formats” (International Council for Science, 2004).  

In Africa, the primary concern is long-term food security and food production through 

smallholder farmers, while conserving the environment and sustaining the capacity of the land 

resource base: soil (Gobin, 2000). Information on existing soil resources, especially for Africa, is 

sparse. Kenya fortunately has considerable soils information in the form of traditional soil maps, 

soil survey reports, soil survey manuals, land evaluation frameworks, soil profile descriptions, and 

farm management handbooks, collectively known as legacy soil data. These types of data, however, 

remain in libraries in analogue formats and the probability of such data being lost is very high 

(Arrouays et al., 2017). Legacy data can be used as meaningful sources of soil information to 

support digital soil mapping and/or as major components of national environmental programs.  

The overall objective of this research was to bring legacy soil data for a selected portion of 

Kenya ‘back to life’ using digital soil mapping techniques. Methodologies were developed and 

evaluated for the Busia area in western Kenya to achieve this objective. The Busia area was 

selected as a suitable setting for this study because: (1) it has accessible legacy soil data at a scale 

of 1:100,000, (2) agriculture is the main economic activity, (3) high population and poverty 

densities have strained existing natural resources, and (4) we are personally familiar with the area 

and can draw on our own field observations for additional context. The specific conclusions of this 
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thesis are grouped into four major parts distinguished on the basis of the methodologies developed 

in the respective chapters. 

7.1.1 Renewal of Archival Legacy Soil Data  

The first specific objective was to transform the best available legacy soil survey of a 

selected portion of Kenya into a digital format (Chapter 3). The Reconnaissance Soil Survey of the 

Busia Area (quarter degree sheet No. 101) was used as the legacy soil data for this study. This 

legacy soil data was brought back to life in three steps. The first step, data archeology, involved 

locating and cataloging all historical legacy soil data for the Busia area by contacting various 

agricultural institutions. This process required numerous site visits and assistance of individuals 

familiar with the desired legacy soil data. The second step, data rescue, entailed converting paper 

copies of data into a digital format by scanning the maps, narrative descriptions, and tables, and 

storing the information in a database. In the third step, data renewal, all the renewed data was 

brought to modern standards by taking advantage of technological and conceptual advances in 

geo-information technology.  

Careful interpretation of the agronomic information contained within the Busia soil survey 

report identified the decision matrices used by the original soil surveyors to generate land quality 

maps and associated crop suitability maps based on the soil map (Rachilo and Michieka, 1991) 

and the agro-climatic zone map of Kenya (Sombroek et al., 1982). These decision matrixes were 

carefully reinterpreted and used to generate 10 land quality maps (Appendix A) that showed the 

ability of the land to perform specific functions without being degraded. Additionally, based on 

the land quality maps, 19 crop suitability maps (Appendix B) were also generated for the Busia 

area. 
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7.1.2 Spatial Prediction of Soil Properties from Archival Legacy Soil Data 

The second specific objective was to make spatial predictions of selected soil functional 

properties by using DSM techniques by using soil profile data mined from the legacy soil survey 

report (Chapter 4). Soil properties mined from the Busia soil survey report, together with a set of 

environmental covariates, were used to test three interpolation models: ordinary kriging, stepwise 

multiple linear regression, and the Soil Land Inference Model. Two types of point soil data were 

used in this study (Section 4.2.3). Data Set A, which was a collection of data for the A horizons of 

76 sampling points, was used as the calibration dataset, and Data Set B, a collection of 48 detailed 

soil profile descriptions and analytical data, was used as the evaluation dataset.  

All three prediction models were based on the scorpan model (Section 2.6.1.2) that 

postulates that one can predict soil properties based on a set of soil forming factors and a numerical 

model (McBratney et al., 2003). The three prediction models differed in that for ordinary kriging 

only the soil property data was used to predict soil properties, for the stepwise multiple linear 

regression, both soil property data and a collection of 23 environmental covariates were used for 

prediction, and for the Soil Land Inference Model, both the soil property data and a selection of 

terrain attributes were used for prediction. Environmental covariates were carefully selected based 

on a review of the literature and reflected the soil forming factors (Section 4.2.3).  

Soil organic carbon and soil texture were predicted at a resolution of 30 m. This resolution 

was better than the currently available 250 m resolution from the AfSIS project (Hengl et al., 2017). 

Statistically, ordinary kriging performed best in predicting soil organic carbon, clay, and silt, but 

there was almost no spatial detail. On the other hand, stepwise multiple linear regression performed 

best in predicting sand. The 95% confidence interval maps showed that the predictions made from 

ordinary kriging had the highest confidence, while the predictions made from stepwise multiple 



 

 

161 

linear regression had the lowest confidence. Pedologically, the Soil Land Inference Model (SoLIM) 

was best in capturing soil variability that followed landscape positions.  

The limitation, however, of using legacy soil data for digital soil mapping in this study was 

that the number of data points available limits the use of the numerical models. The three prediction 

models require more points than were available in order to create a strong relationship between the 

calibration dataset and the environmental/ terrain attributes used for model calibration. This is a 

major limitation when using soil property data mined from legacy soil data.    

7.1.3 Disaggregation of a Traditional Soil Polygon Map Using a Soil Landscape Rule-

Based Approach 

The third specific objective was to improve the spatial resolution of the legacy soil map of 

the study area-using DSM techniques (Chapter 5). The lack of an adequate calibration dataset 

limited the use of statistical models to downscale the soil polygon map. Therefore, the legend and 

soil map unit descriptions were used to generate rules that were used to associate soil types with 

the most likely landscape positions. The soil landscape rule-based model was used to map soil 

types within soil map units in a process known as disaggregation. This was achieved by exploiting 

the information in the map legend and the soil map unit descriptions. These rules were applied to 

a fuzzy soil class map generated from a parent material map and a K-means cluster map and six 

terrain attributes, namely, multiresolution valley bottom flatness, multi resolution ridgetop flatness, 

topographic wetness index, topographic positin index, planform curvature, and profile curvature. 

Terrain attributes were generated from the 30 m SRTM digital elevation model using SAGA-GIS. 

The result was a soil class map at a resolution of 30 m with an overall accuracy of 58% and a 

Kappa coefficient of 0.54. The challenge, however, with the soil landscape rule-based method was 
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that it relies heavily on the soil class descriptions contained within the soil survey report and the 

resolution of the digital elevation model.  

7.1.4 Delivery of Spatially Explicit Soils Information 

The fourth specific objective was to develop a prototype platform that could deliver 

spatially explicit soil and agricultural information for the area of the legacy soil survey on a smart 

phone or tablet (Chapter 6). Digital agronomic soil maps, including the renewed Busia soil map, 

generated land quality maps, crop suitability maps, and predicted soil property maps, were all put 

on a portable electronic device using the Soil Explorer app and tested in rural western Kenya. This 

was a proof of concept that agronomic information can be relayed to the end-user when they need 

it and in a form that they can understand. The mobile device used in this study was an Apple iPad 

mini that used the cellphone network to access the data on a server at Purdue University.  

7.2 General Recommendations 

Legacy soil data can provide basic information on soil and land characteristics useful for 

various purposes such as determining the suitability for various types of agriculture. The ability to 

generate maps that demarcate which soils are suitable for specific crops, which soils are susceptible 

to specific limiting factors such as flooding, salinization, soil erosion etc. (Appendix A), is key to 

not only improving agricultural production within a region, but also to bolstering efforts to 

bringing legacy soil survey reports to modern standards using the latest GIS technologies (Chapter 

3).  

Soil data and reliable soil maps are imperative for environmental management, 

conservation, and policy. Soil property data existing within legacy soil data may not have 

necessarily been collected for used in digital soil mapping. In cases, however, where the legacy 

soil data is geo-located, methods are required to utilize these historical soil data to produce 
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quantitative soil property maps to assess spatial and temporal trends and also to determine where 

future sampling is required (see Chapter 4). The predictions serve as a basis for judgment about 

land use and management for areas ranging from small scale (30 m pixel) to large scale (Busia 

area). These predictions, however, must be evaluated along with economic, social, and 

environmental considerations before they can be used to make valid recommendations for land use 

and management.   

Legacy soil survey reports are an important part of information used to make workable 

plans for land management. Such information must, however, be interpreted and presented in a 

format that is useable to end users. This is because current soil survey reports, even though useful, 

exist in formats that are not user friendly to non-soil scientists. Mobile platforms such as the Soil 

Explorer app make it possible to not only relay interpretive maps to end users, but also open the 

possibility of delivering timely and useful agronomic information to rural smallholder farmers at 

low cost compared to traditional extension approaches (Chapter 5).   

Efforts should, therefore, be made to develop a central open-access portal for Kenya where 

all existing legacy soil data can be accessed. The literature review revealed that there is no central 

point where such information can currently be accessed (Chapter 2). There is a lot of duplicity in 

where to access such data. This makes it hard to find the authoritative data source one is looking 

for. In certain cases, legacy soil data can exist in more than three different databases. This shouldn’t 

be the case. An authoritative central database should be created by the relevant ministry. A very 

good example is that of the United States’ Department of Agriculture - Natural Resource 

Conservation Service archived soil survey database 

(https://www.nrcs.usda.gov/wps/portal/nrcs/soilsurvey/soils/survey/state/ accessed 9/8/2019). In 

this database, legacy soil survey reports are digitally archived according to the state, and within 

https://www.nrcs.usda.gov/wps/portal/nrcs/soilsurvey/soils/survey/state/
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each state, legacy soil survey reports are archived according to county. Such organization eases 

the access of such data. The Kenya soil survey should strive to have all existing legacy soil survey 

data in a central database.  

The limitation of legacy soil survey reports is that information contained within such legacy 

data cannot replace site-specific details that require onsite investigation. Nevertheless, legacy soil 

data is a valuable tool when onsite data collection is not feasible or cost prohibitive, or as a tool 

for planning future onsite investigations. Understanding the capability and limitations of the 

different types of legacy soil data is essential for making the best conservation-planning decisions. 

7.2.1 Specific Recommendations 

Legacy soil data are at risk of not being used for scientific research because the majority 

are not available in digital formats or are in danger of being lost because the media on which they 

are recorded may decay, become corrupted, or be superseded by new software. Therefore, soil 

scientists need to inventory major collections of extant legacy soil data and set priorities for their 

rescue and permanent preservation.  

For digital soil mapping, more soil property data needs to be mined from existing legacy 

soil data for other parts of Kenya and added to the Africa Soil Profile (AfSP) database to promote 

the use of existing soil property data. 

More research is needed on how to best deliver spatially explicit soils information using 

mobile platforms. Success in the use of the Soil Explorer app to deliver agronomic information in 

rural western Kenya demonstrated that there is a huge potential in delivering soils information 

using mobile platforms.  
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Legacy soil data security and integrity must be addressed in the context of procedures for 

data management. Professional information technology staff is required for both archives and data 

centers if the maintenance of adequate system and database security and integrity is to be achieved.    
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APPENDIX A: BUSIA LAND QUALITY MAPS 

A.1: Availability of Foothold for Roots (AoF). 

This land quality is related to the depth of the soil and can be evaluated according to soil 

depth being overserved. The rating criteria used for this study was not included in the survey report. 

This land quality, however, reflects the ability of the soil to have deep well drained soils to hold 

up plants for growth. Areas with high ratings for this land quality indicating the areas with deep 

soils whereas those with shallow soils have a low rating.  
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A.2: Availability of Nutrients for Plant Growth (AoN). 

This land quality represents the ability of soils to supply the required plant nutrients for 

optimum growth. For the availability of nutrients, the topsoil was taken from 0 to 30 cm (Table 

A.2). Salinity and sodicity were not considered within the fertility rating system.  

Table A.1: Rating land quality availability of nutrients for plant growth 

 

 

Rating 

 

 

CEC 

me/100g 

 

%SOC in 

temperature 

zone 1,2,3 

Available P (ppm) 

 

 

 

Exch. 

K 

 

 

Exch. 

Ca 

 

 

Exch. 

Mg 

 

 

pH-H2O (1:2.5) 

Mehlich Olsen 

1,2,3 
    

1. High >16 >2.0 >60 >20 >0.5 >6.0 >3.0 5.6-6.8 

2. Moderate 6-16 1.2-2.0 21-60 11-20 0.21-0.5 3.0-6.0 1.1-3.0 4.8-5.5 or 6.9-7.5 

3. Low 3-5.9 0.5-1.0 10-20 5-10 0.10-

0.20 

1.0-2.9 0.5-1.0 4.0- 4.7 

4. Very low <3 <0.5 <10 <5 <0.10 <1.0 <0.5 <4.0 or >8.7 
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A.3: Availability of Oxygen in the Root Zone (Ox). 

Availability of oxygen to the plant roots is described in terms of drainage conditions of the 

soil (Table A.3). Mottles and dark grey colors in the subsoil are used as indicators of poor drainage, 

and are usually qualitatively regarded as the basis for rating drainage conditions. 

Table A.2: Rating land quality availability of oxygen 

 

 

 

Rating Soil draining class 

1. Very High Well to excessively drained 

2. High Moderately well drained 

3. Moderate Imperfectly drained 

4. Low Poorly drained 

5. Very Low Very poorly drained 
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A.4: Flooding Hazard (FH). 

Flooding hazard shows the damage resulted by floods through the mechanical forces of 

moving water. The frequency of the occurrence of the floods during the period in which the plants 

are on the field was an important criterion that was used. Depth of the flooding as well might have 

to be considered for the assessment of the risk. The effects of pounding resulting in phenomena 

similar to drainage problems are described and evaluated under the land quality availability of 

Oxygen. 

Table A.3: Rating land quality, Flooding Hazard during the growing season. 

Ratting  Flooding frequency Inundation frequency/duration 

1. Very low  every 10 years or more None 

2. Low every 5 to 10 years 1-2 months, every 3-5 years 

3. Moderate every 3 to 5 years 2-3 months in 5 out of 10 years 

4. High every 1 to 3 years 2-4 months, almost every year 

5. Very high every year more than 4 months every year 
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A.5: Hazard of Salinity (SH). 

High levels of salt in the soil may lead to the dying of plant roots owing to the difficulty 

with which plant roots absorb water from the soil. Two different depth zones were used to for the 

interpretation. Within each depth zone, the highest value of saturation extract was classified as 

being the determinant critical characteristic for this land quality (Table A.5). 

Table A.4: Rating land quality hazard of salinity 

Ratting  0 – 30 cm 30 – 100 cm 

1. Very low  < 2.0 < 4.0 

2. Low 2.0 – 4.0 4.0 – 8.0 

3. Moderate 4.1 - 8.0 8.1 – 15.0 

4. High 8.1 – 15.0 15.1 – 30.0 

5. Very high >15.0 > 30.0 
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A.6: Hazard of Sodicity (Sod). 

High levels of sodium in the soil will cause dispersion of structural aggregates which may 

result in poor aeration in the soil. This land quality was determined by the most limiting factor 

method, applied to the two different soil depth zones. Within each depth, the highest value of the 

ESP was classified, and the most limiting rating used as the final classification (Table A.6). 

Table A.5: Rating land quality hazard of sodicity 

Ratting 0 – 30 cm 30 – 100 cm 

1. Very low  < 6.0 < 6.0 

2. Low 6.0 – 10.0 6.0 – 15.0 

3. Moderate 10.1 -15.0 15.1 – 40.0 

4. High 15.1 – 40.0 >40.0 

5. Very high >40.0 >40.0 
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A.7: Possibilities for Seedbed Preparation and Cultivation (SPC). 

This land quality reflects the possibilities for seedbed preparation and cultivation as far as 

the use of different kinds of implements is concerned. Low and high level of technology 

implements from hoe to tractor for ploughing were considered for assessment. The factors 

considered to be of major importance were: steepness of slope, stoniness or rockiness of the topsoil, 

depth of soil, consistence, presence of termite mounds, and size and form of the fields. 
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A.7: Susceptibility to Erosion (SE). 

The following factors were considered to generate this land quality: the Moore’s equation 

(Moore, 1979) relating to climate factor (rainfall erosivity), slope, and the soil.  This land quality 

was obtained through the simulation of the individual factor ratings and the final result was 

expressed in terms of very high, high, moderate, low, and very low resistance to erosion for bare 

surfaces. The conditions of the plant cover will be assessed within the context of the land utilization 

type requirements. 
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APPENDIX B: BUSIA CROP SUITABILITY MAPS 

Most of the arable land in the survey area are farmed in a traditional way. Some farmers, 

however, already apply intermediate technology. It is hoped that agriculture in the survey area will 

have to be intensified to cope with the rapid population growth and resulting land pressure. 

Therefore, smallholder rainfed ‘intermediate technology’ was used to develop crop suitability 

maps for the Busia area. Intermediate level of technology is defined as ‘that level of technology 

where certain inputs such as fertilizers, insecticides, mechanized land preparation are used on a 

modest scale’ (Rachilo and Michieka, 1991). Crops growing under intermediate technology 

implies:  

• Timely and proper seedbed preparation.  

• Use of selected (improved) planting material.  

• Better crop spacing.  

• Weed control measures.  

• A certain measure of disease and pest control.  

• Use of ox-plough and sometime hired tractor service.  

• Timely harvesting.  
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B.1: Suitability Classification of Soils for Rainfed Beans. 

 

Table B.1: Decision matrix for the suitability classification of soils for rainfed beans growing 

under intermediate technology. 

Suitability Class Temp AoM AoN SH Sod SE Ox FH SPC 

Highly Suitable(S1) 3,4 2-3 2-3 1 1 1-2 1-2 1 1-2 

Moderately Suitable (S2) 2,5,6 4 4 1 1 3-4 3 2-3 3-4 

Marginally Suitable (S3) 1,7,8 1 4 2 2-3 5 4 4 5 

Unsuitable (NS) 9 1 4 3-4 4-5 5 5 5 5 

Temp = Temperature; AoM = Availability of moisture; AoN = Availability of nutrients; SH = 

salinity hazard; Sod = Sodicity; SE = susceptibility of erosion; Ox = oxygen; FH = Flooding hazard; 

SPC = suitability for seedbed preparation.  
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B.2: Suitability Classification of Soils for Rainfed Cabbages and Kales. 

 

Table B.2: Decision matrix for the suitability classification of soils for rainfed cabbages and 

kales growing under intermediate technology. 

Suitability Class Temp AoM AoN SH Sod SE Ox FH SPC 

Highly Suitable(S1) 4, 5 2 2-3 1 - 1-2 1-2 1-2 1-2 

Moderately Suitable (S2) 3, 6 3 4 2 - 3-4 3-4 3-4 3-4 

Marginally Suitable (S3) 2, 7 4, 1 4 3 - 5 5 5 5 

Unsuitable (NS) 1, 8, 9 4, 5 4 4 - 5 5 5 5 

Temp = Temperature; AoM = Availability of moisture; AoN = Availability of nutrients; SH = 

salinity hazard; Sod = Sodicity; SE = susceptibility of erosion; Ox = oxygen; FH = Flooding hazard; 

SPC = suitability for seedbed preparation.  
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B.3: Suitability Classification of Soils for Rainfed Cassava. 

 

Table B.3: Decision matrix for the suitability classification of soils for rainfed cassava growing 

under intermediate technology. 

Suitability Class Temp AoM AoN SH Sod SE Ox FH SPC 

Highly Suitable(S1) 1,2,3 1-2 2-3 1 1 1-2 1-2 1 1-2 

Moderately Suitable (S2) 4 3 4 2-3 2-3 3-4 3 2 3-4 

Marginally Suitable (S3) 5 4 4 4 4 5 4 3-4 5 

Unsuitable (NS) 6 4 4 4 5 5 5 5 5 

Temp = Temperature; AoM = Availability of moisture; AoN = Availability of nutrients; SH = 

salinity hazard; Sod = Sodicity; SE = susceptibility of erosion; Ox = oxygen; FH = Flooding hazard; 

SPC = suitability for seedbed preparation.  
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B.4: Suitability Classification of Soils for Rainfed Citrus Guava. 

 

Table B.4: Decision matrix for the suitability classification of soils for rainfed citrus guava 

growing under intermediate technology. 

Suitability Class Temp AoM AoN SH SoD SE Ox FH SPC 

Highly Suitable(S1) 2 1-2 2-3 1 1 1-2 1 1 1 

Moderately Suitable (S2) 1, 3, 4 3 4 2 - 3 2 3-4 2-3 2-3 3-4 

Marginally Suitable (S3) 5, 6, 7 4 4 4 3 - 4 5 4 4 5 

Unsuitable (NS) 8 4 4 4 5 5 5 5 5 

Temp = Temperature; AoM = Availability of moisture; AoN = Availability of nutrients; SH = 

salinity hazard; Sod = Sodicity; SE = susceptibility of erosion; Ox = oxygen; FH = Flooding hazard; 

SPC = suitability for seedbed preparation.  
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B.5: Suitability Classification of Soils for Rainfed Cotton. 

 

Table B.5: Decision matrix for the suitability classification of soils for rainfed cotton growing 

under intermediate technology. 

Suitability Class Temp AoM AoN SH Sod SE Ox FH SPC 

Highly Suitable(S1) 1,2,3 2 2-3 1-2 1 1-2 1-2 1 1-2 

Moderately Suitable (S2) 4 3 4 3 2-3 3-4 3 2-3 3-4 

Marginally Suitable (S3) 5 4,1* 4 4 4 5 4 4 5 

Unsuitable (NS) 6 1* 4 4 5 5 5 5 5 

Temp = Temperature; AoM = Availability of moisture; AoN = Availability of nutrients; SH = 

salinity hazard; Sod = Sodicity; SE = susceptibility of erosion; Ox = oxygen; FH = Flooding hazard; 

SPC = suitability for seedbed preparation. *Too much moisture is not good for cotton growing 

may encourage much vegetative growth, at the expense of boll formation, especially in the mono-

modal varieties.  
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B.6: Suitability Classification of Soils for Rainfed Fingermillet. 

 

Table B.6: Decision matrix for the suitability classification of soils for rainfed fingermillet 

growing under intermediate technology. 

Suitability Class Temp AoM AoN SH Sod SE Ox FH SPC 

Highly Suitable(S1) 1, 2, 3 1-2 2-3 1-2 1-2 1-2 1-2 1-2 1 

Moderately Suitable (S2) 4 3 4 3 3 3-4 3 3 2 

Marginally Suitable (S3) 5 4 4 4 4 5 4 4 3-4 

Unsuitable (NS) 6 4 4 4 5 5 5 5 5 

Temp = Temperature; AoM = Availability of moisture; AoN = Availability of nutrients; SH = 

salinity hazard; Sod = Sodicity; SE = susceptibility of erosion; Ox = oxygen; FH = Flooding hazard; 

SPC = suitability for seedbed preparation.  
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B.7: Suitability Classification of Soils for Fodder Crops. 

 

Table B.7: Decision matrix for the suitability classification of soils for rainfed fodder crops 

(nappier grass and maize) growing under intermediate technology. 

Suitability Class Temp AoM AoN SH Sod SE Ox FH SPC 

Highly Suitable(S1) 1,2,3 1-2 2-3 1 1 1-2 1-2 1-2 1-2 

Moderately Suitable (S2) 4 3 4 2-3 2-3 3-4 3-4 3-4 3-4 

Marginally Suitable (S3) 4,5,6 4 4 4 4 5 5 5 5 

Unsuitable (NS) 7 4 4 4 5 5 5 5 5 

Temp = Temperature; AoM = Availability of moisture; AoN = Availability of nutrients; SH = 

salinity hazard; Sod = Sodicity; SE = susceptibility of erosion; Ox = oxygen; FH = Flooding hazard; 

SPC = suitability for seedbed preparation.  
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B.8: Suitability Classification of Soils for Forestry. 

 

Table B.8: Decision matrix for the suitability classification of soils for rainfed forest* growing, 

under intermediate technology. 

Suitability Class Temp AoM AoN SH Sod SE Ox FH SPC AoF 

Highly Suitable(S1) 2,3,6 2-3 2-3 1 1 1-2 1 1 1-2 1-2 

Moderately Suitable (S2) 4,5 4 4 2-3 2-3 3-4 2 2 3-4 3 

Marginally Suitable (S3) 1,7,8 4 4 4 4 5 3-4 3-4 5 3 

Unsuitable (NS) 9 4 4 4 5 5 5 5 5 3 

Temp = Temperature; AoM = Availability of moisture; AoN = Availability of nutrients; SH = 

salinity hazard; Sod = Sodicity; SE = susceptibility of erosion; Ox = oxygen; FH = Flooding hazard; 

SPC = suitability for seedbed preparation. *Forest are mainly restricted to hills and trees are of 

indigenous species. Some exotic tree species are planted around homesteads for timber and act as 

windbreaks. 
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B.9: Suitability Classification of Soils for Grazing. 

 

Table B.9: Decision matrix for the suitability classification of soils for grazing. 

Suitability Class Temp AoM AoN SH Sod SE Ox FH SPC 

Highly Suitable(S1) 1,2,3 1-2 2-3 1-2 1-2 1-2 1-2 1-2 n.a1) 

Moderately Suitable (S2) 4 3 4 3 3-4 3-4 3-4 3-4 n.a 

Marginally Suitable (S3) 5,6 4 4 4 5 5 5 5 n.a 

Unsuitable (NS) 7 4 4 4 5 5 5 5 n.a 

Temp = Temperature; AoM = Availability of moisture; AoN = Availability of nutrients; SH = 

salinity hazard; Sod = Sodicity; SE = susceptibility of erosion; Ox = oxygen; FH = Flooding hazard; 

SPC = suitability for seedbed preparation; 1)n.a = not applicable, since the grazing is mainly free 

grazing in fallow and wet or bottom land areas, SPC is not considered for it. 
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B.10: Suitability Classification of Soils for Rainfed Groundnuts. 

 

Table B.10: Decision matrix for the suitability classification of soils for rainfed groundnuts 

growing under intermediate technology. 

Suitability Class Temp AoM AoN SH Sod SE Ox FH SPC 

Highly Suitable(S1) 1, 2 4 2-3 1-2 1 1-2 1 1 1-2 

Moderately Suitable (S2) 3 3 -2 4 3 2-3 3-4 1 2 3-4 

Marginally Suitable (S3) 4 1 4 4 4 5 2-3 3-4 5 

Unsuitable (NS) 5 1 4 4 5 5 4-5 5 5 

Temp = Temperature; AoM = Availability of moisture; AoN = Availability of nutrients; SH = 

salinity hazard; Sod = Sodicity; SE = susceptibility of erosion; Ox = oxygen; FH = Flooding hazard; 

SPC = suitability for seedbed preparation. In this case, the highest number is the best rating and 

the lowest is the worst. 
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B.11: Suitability Classification of Soils for Rainfed Onion. 

 

Table B.11: Decision matrix for the suitability classification of soils for rainfed onions growing 

under intermediate technology. 

Suitability Class Temp AoM AoN SH Sod SE Ox FH SPC 

Highly Suitable(S1) 4, 5 1-2 2-3 1 1 1-2 1-2 1-2 1-2 

Moderately Suitable (S2) 3, 6 3 4 2-3 2-3 3-4 3-4 3-4 3-4 

Marginally Suitable (S3) 2, 7 4 4 4 4 5 5 5 5 

Unsuitable (NS) 1, 8, 9 5 4 4 5 5 5 5 5 

Temp = Temperature; AoM = Availability of moisture; AoN = Availability of nutrients; SH = 

salinity hazard; Sod = Sodicity; SE = susceptibility of erosion; Ox = oxygen; FH = Flooding hazard; 

SPC = suitability for seedbed preparation.  
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B.12: Suitability Classification of Soils for Robusta Coffee. 

 

Table B.12: Decision matrix for the suitability classification of soils for rainfed Robusta Coffee 

growing under intermediate technology. 

Suitability Class Temp AoM AoN SH Sod SE Ox FH SPC 

Highly Suitable(S1) 3,4 1-2 2-3 1 1 1-2 1-2 1 1-2 

Moderately Suitable (S2) 2,5 3 4 1 1 3-4 3 2-3 3-4 

Marginally Suitable (S3) 1,6,7 3 4 2 2-3 5 4 4 5 

Unsuitable (NS) 8 4 4 3-4 4-5 5 5 5 5 

Temp = Temperature; AoM = Availability of moisture; AoN = Availability of nutrients; SH = 

salinity hazard; Sod = Sodicity; SE = susceptibility of erosion; Ox = oxygen; FH = Flooding hazard; 

SPC = suitability for seedbed preparation.  
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B.13: Suitability Classification of Soils for Sorghum. 

 

Table B.13: Decision matrix for the suitability classification of soils for rainfed sorghum growing 

intermediate technology. 

Suitability Class Temp AoM AoN SH Sod SE Ox FH SPC 

Highly Suitable(S1) 1, 2, 3 1-2 2-3 1-2 1-2 1-2 1-2 1-2 1-2 

Moderately Suitable (S2) 4 3 4 3 3-4 3-4 3-4 3-4 3-4 

Marginally Suitable (S3) 5 4 4 3 5 5 5 5 5 

Unsuitable (NS) 6 4 4 4 5 5 5 5 5 

Temp = Temperature; AoM = Availability of moisture; AoN = Availability of nutrients; SH = 

salinity hazard; Sod = Sodicity; SE = susceptibility of erosion; Ox = oxygen; FH = Flooding hazard; 

SPC = suitability for seedbed preparation.  
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B.14: Suitability Classification of Soils for Sugarcane. 

 

Table B.14: Decision matrix for the suitability classification of soils for rainfed Sugarcane 

growing under intermediate technology. 

Suitability Class Temp AoM AoN SH Sod SE Ox FH SPC 

Highly Suitable(S1) 1, 2 1 2-3 1 1 1 1-2 1-2 1-2 

Moderately Suitable (S2) 3, 4 2 4 2 2 2-3 3-4 3-4 3-4 

Marginally Suitable (S3) 5, 6 3 4 3 3 4 5 5 5 

Unsuitable (NS) 7 4 4 4 4-5 4 5 5 5 

Temp = Temperature; AoM = Availability of moisture; AoN = Availability of nutrients; SH = 

salinity hazard; Sod = Sodicity; SE = susceptibility of erosion; Ox = oxygen; FH = Flooding hazard; 

SPC = suitability for seedbed preparation. 
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B.15: Suitability Classification of Soils for Sunflower. 

 

Table B.15: Decision matrix for the suitability classification of soils for rainfed sunflower 

growing under intermediate technology. 

Suitability Class Temp AoM AoN SH Sod SE Ox FH SPC 

Highly Suitable(S1) 2,3,4 1-2 2-3 1 1 1-2 1-2 1-2 1-2 

Moderately Suitable (S2) 1,5,6 3 4 2-3 2-3 3-4 3 3 3-4 

Marginally Suitable (S3) 7 4 4 4 4 5 4 4 5 

Unsuitable (NS) 8,9 4 4 4 5 5 5 5 5 

Temp = Temperature; AoM = Availability of moisture; AoN = Availability of nutrients; SH = 

salinity hazard; Sod = Sodicity; SE = susceptibility of erosion; Ox = oxygen; FH = Flooding hazard; 

SPC = suitability for seedbed preparation.  



 

 

211 

B.16: Suitability Classification of Soils for Tomato. 

 

Table B.16: Decision matrix for the suitability classification of soils for rainfed tomato growing 

under intermediate technology. 

Suitability Class Temp AoM AoN SH Sod SE Ox FH SPC 

Highly Suitable(S1) 2, 3, 4 1-2 2-3 1 1 1 1 1-2 1 

Moderately Suitable (S2) 1, 5 3 4 2 3 2-3 2-3 2-3 2-3 

Marginally Suitable (S3) 6 4 4 3 4 4 4 4 4 

Unsuitable (NS) 7, 8, 9 4 4 4 5 5 5 5 5 

Temp = Temperature; AoM = Availability of moisture; AoN = Availability of nutrients; SH = 

salinity hazard; Sod = Sodicity; SE = susceptibility of erosion; Ox = oxygen; FH = Flooding hazard; 

SPC = suitability for seedbed preparation.  
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B.17: Suitability Classification of Soils for Upland Rice. 

 

Table B.17: Decision matrix for the suitability classification of soils for upland rice growing 

under intermediate technology. 

Suitability Class Temp AoM AoN SH Sod SE Ox FH SPC 

Highly Suitable(S1) 2 3 3 1 1-2 1 1-2 1-2 1-2 

Moderately Suitable (S2) 3 2 4 2 3 2-3 3 3-4 3-4 

Marginally Suitable (S3) 4 1 4 2 4 4 5 3 5 

Unsuitable (NS) 5 1,4 3-4 5 5 5 5 5 5 

The rating for upland rice is reversed with rating 3 being the best and 1 being the worst for land 

quality AoM. For land quality Ox, for wetland rice, the best rating is 5 and the worst is 1. In the 

case of land quality FH for wetland rice, the best rating is 5 and the worst is 2-1.
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B.18: Suitability Classification of Soils for Wetland Rice. 

 

Table B.18: Decision matrix for the suitability classification of soils for wetland rice growing 

under intermediate technology. 

Suitability Class Temp AoM AoN SH Sod SE Ox FH SPC 

Highly Suitable(S1) 1,2 1 2-3 1 1 1 5 5 1- 

Moderately Suitable (S2) 3 2 4 2 3 2-3 4 4 3-4 

Marginally Suitable (S3) 4 3 4 2 4 4 2-3 2-3 5 

Unsuitable (NS) 5 4 4 5 5 1 1 1 5 

Temp = Temperature; AoM = Availability of moisture; AoN = Availability of nutrients; SH = 

salinity hazard; Sod = Sodicity; SE = susceptibility of erosion; Ox = oxygen; FH = Flooding hazard; 

SPC = suitability for seedbed preparation. The rating for upland rice is reversed with rating 3 being 

the best and 1 being the worst for land quality AoM. For land quality Ox, for wetland rice, the best 

rating is 5 and the worst is 1. In the case of land quality FH for wetland rice, the best rating is 5 

and the worst is 2-1. 


