
HIGHER ORDER OPTIMIZATION TECHNIQUES FOR MACHINE LEARNING

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Sudhir Babu Kylasa

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2019

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Charlie Y. Hu

School of Electrical and Computer Engineering

Dr. Ananth Y. Grama

School of Computer Science

Dr. David F. Gleich

School of Computer Science

Dr. Petros Drineas

School of Computer Science

Dr. Mithuna S. Thottethodi

School of Electrical and Computer Engineering

Approved by:

Dr. Dimitrios Peroulis

School of Electrical and Computer Engineering

iii

To my son,

Tanmay Kylasa

iv

ACKNOWLEDGMENTS

I would like to thank my advisor, Prof. Ananth Grama, for helping me towards

my thesis. I have enjoyed working with Prof. Grama for the last 7 years which I will

cherish for the rest of my life. His continuous motivation and insightful guidance are

the main contributing factors because of which I am able to complete my PhD. I have

benefitted immensely with his knowledge and suggestions and I will continue to look

up to them throughout my professional career.

I would also like to thank Purdue University for giving me an opportunity to be a

part of its student community and I am glad that I embarked on this opportunity at

the right time. I am thankful to all the Professors for providing me an opportunity to

participate in their courses. I have enjoyed learning new skills and gaining knowledge

in these courses. Also, I am indebted to my doctoral committee advisors for their

continuous guidance and valuable discussions during the development of my thesis.

I would like to thank my collaborators Dr. Hasan Metin Aktulga, Dr. Giorgois

Kollais, Dr. Shahin Mohammadi and Dr. Fred Roosta for working with me on

research publications these past years. I consider myself honored working along with

these smart people and have learned new skills and gained knowledge interacting with

them. Particularly I am indebted to Mr. Chih-Hao Fang for collaborating with me

and extending all the help in last couple of research articles, which are a significant

part of this thesis.

And last but not least to my family for their unwavering support and encourage-

ment throughout my PhD.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . x

SYMBOLS . xii

ABSTRACT . xvi

1 INTRODUCTION . 1

1.1 Function Approximation . 2

1.2 Characteristics of a solution . 3

1.2.1 Necessary and Sufficient conditions of a local minimizer 3

1.3 Direct vs. Iterative Solvers . 5

1.4 Significance of GPUs in optimization 6

1.5 Iterative solutions for unconstrained minimization problems 10

1.6 Line Search Methods . 10

1.6.1 Steepest Descent or Gradient Descent 10

1.6.2 Newton Direction . 12

1.6.3 Step-size Estimation for Line search Methods 14

1.7 Trust-region Methods . 17

2 GPU ACCELERATED SUB-SAMPLED NEWTON’S METHOD 19

2.1 Introduction . 20

2.2 Related Work . 23

2.3 Theory, Algorithms and Implementation Details 24

2.3.1 Sub-Sampled Newton’s Method 24

2.3.2 Multi-Class classification . 25

2.3.3 Implementation Details . 29

2.4 Experimental Results . 35

vi

Page

2.4.1 Experimental Setup and Data 37

2.4.2 Parameterization of Various Methods 37

2.4.3 Computing Platforms . 38

2.4.4 Performance Comparisons . 38

2.4.5 Sensitivity to Hyper-Parameter Tuning 43

2.5 Conclusions And Future Work . 44

2.6 More Details On Softmax Function eq. (3.2) 45

2.6.1 Relationship to Logistic Regression with ±1-labels 45

2.7 Tensorflow’s Performance Comparison on Various Compute Platforms . 47

2.8 Additional Performance Comparisons with Quasi-Newton methods . . . 51

2.8.1 Covertype Dataset . 51

2.8.2 Gisette and Real-Sim Datasets 51

3 NEWTON-ADMM: A DISTRIBUTED GPU-ACCELERATED OPTIMIZER
FOR MULTICLASS CLASSIFICATION PROBLEMS 52

3.1 Introduction . 52

3.1.1 Related Research . 54

3.2 Problem Formulation and Algorithm Details 56

3.2.1 Problem Formulation . 56

3.2.2 ADMM Framework . 57

3.2.3 Inexact Newton-CG Solver . 60

3.3 Experimental Evaluation . 62

3.4 Conclusions and Future Directions . 70

3.5 Appendix . 70

3.5.1 On GPU Utilization . 71

3.5.2 Hessian Vector Product . 73

3.5.3 Newton-type method as a highly efficient subproblem solver for
ADMM: . 74

3.5.4 Algorithms Parameter Settings 76

vii

Page

4 FITRE: FISHER INFORMED TRUST-REGION METHOD FOR TRAIN-
ING DEEP NEURAL NETWORKS . 77

4.1 Introduction and Motivation . 78

4.2 Related Work . 80

4.3 FITRE . 82

4.3.1 Computational Model . 84

4.3.2 Algorithm . 92

4.4 Experiments . 92

4.5 Conclusions and Future Work . 110

4.6 Appendix . 111

4.6.1 Memory Layout . 111

4.6.2 Helper functions . 111

4.7 Neural Network Operations . 113

4.7.1 Gradient computation . 113

4.7.2 Hessian Vector Operation on Neural Networks 117

4.7.3 Loss Functions . 122

4.7.4 Activation Functions . 124

4.7.5 Pooling Functions . 125

4.7.6 Batch Normalization . 127

REFERENCES . 132

viii

LIST OF TABLES

Table Page

2.1 Description of the datasets. L indicates the Lipschitz Constant of the dataset.36

2.2 Performance comparison between first-order and second-order methods.
FullNewton uses the entire dataset for gradient and Hessian evaluations. . 39

2.3 Performance comparison between first-order and second-order methods
on CPU-only and 1-GPU-1-CPU-core compute platforms for covertype
dataset. Batch-size 128 first order methods are compared with second or-
der methods using full gradient and hessian sample size set to 5%. Batch-
size 20% first order methods are compared with second order methods
using sample sizes of 20% and 5% for gradient and hessian computations
respectively. 49

2.4 Performance comparison between our proposed methods and existing quasi-
newton methods. 50

3.1 Description of the datasets. 63

3.2 GPU Speedup for Newton-ADMM and SGD. 65

3.3 Performance comparison of Newton-ADMM and GIANT – we present the
number of epochs for a solver to reach θ < 0.05. The speedup ratio is
defined as the fraction of time taken by GIANT to achieve a specified
value of θ to the corresponding time taken by Newton-ADMM on the
same hardware platform. 70

4.1 Description of the datasets used in our experiments 94

4.2 Various Convolution Neural Networks used in our experiments. α is 512
when CIFAR10 and CIFAR100 are used, and for Imagenet, it is 2048.
β is 10 for CIFAR10, 100 for CIFAR100, and 200 for ImageNet. These
networks can be easily adapted for embedding BatchNormalization layers
(typically after the convolution layer). 95

4.3 Comparison of VGG11 using ImageNet dataset 96

4.4 Comparison of VGG16 using ImageNet dataset 97

4.5 Comparison of VGG11 using cifar100 dataset 101

4.6 Comparison of VGG16 using cifar100 dataset 102

ix

Table Page

4.7 Comparison of VGG19 using cifar100 dataset 103

4.8 Comparison of VGG16 using cifar100 dataset with a quasi-Newton Method
(L-BFGS). 106

4.9 Behavior of FITRE and SGD without regularization on CIFAR100 dataset.
FITRE method uses an update frequency of 5 and “KFAC + gradient”
option is turned off in these set of simulations. VGG networks in this table
does not use batch-normalization function. 108

4.10 Reparameterization Invariance results for SGD and FITRE methods. VGG
networks in these experiments use 0 regularization. And for FITRE method
we use the KFAC update frequency of 5 and use only the natural gradient
direction as the descent direction (KFAC + gradient option is not used in
these experiments). 109

x

LIST OF FIGURES

Figure Page

1.1 Architectural overview of CPU and GPU. 6

1.2 CUDA Streaming Multiprocessor Microarchitecture. Provides a birds-eye
level view of the components included in a typical SM. 8

1.3 CUDA programming model. 9

2.1 Sensitivity of various first-order methods with respect to the choice of
the step-size, i.e., learning-rate. It is clear that, too small a step-size
can lead to slow convergence, while larger step-sizes cause the method to
diverge. The range of step-sizes for which some of these methods perform
reasonably, can be very narrow. This is contrast with Newton-type, which
come with a priori “natural” step-size, i.e., α = 1 , and only occasionally
require the line-search to intervene . 44

3.1 Training objective function and test accuracy as functions of time for
Newton-ADMM and synchronous SGD, both with GPU enabled and GPU
disabled, with 4 workers. Overall, Newton-ADMM favors GPUs, enjoys
minimal communication overhead, and enjoys faster convergence com-
pared to synchronous SGD. 65

3.2 Training objective function and test accuracy comparison over time for
Newton-ADMM, GIANT, InexactDANE, and AIDE on MNIST dataset
with λ = 10−5. We run both Newton-ADMM and GIANT for 100 epochs.
Since the computation times per epoch for InexactDANE and AIDE are
high, we only run 10 epochs for these methods. We present details of
hyperparameter settings in 3.5.4. 66

3.3 Avg. Epoch Time for Strong and Weak Scaling for Newton-ADMM and
GIANT. 68

3.4 log10(θ) as a function of time for Newton-ADMM and GIANT on MNIST,
CIFAR-10, and HIGGS datasets. Newton-ADMM can reach lower θ, given
the same amount of time, compared to GIANT. Note that for the HIGGS
dataset, both methods can reach low θ soon. 69

xi

Figure Page

3.5 Training objective function and test accuracy as function of time for
Newton-ADMM and GIANT on E18 dataset using 32 nodes. We note
that GIANT lingers at higher objective values in the initial iterations,
while Newton-ADMM drops to lower objective values rapidly. 69

3.6 Training Objective function comparison over time for different choice of
inner-solve for ADMM. For the inner solver, we compare the performance
of Inexact Newton solver with L-BFGS (with history size 25, 50, 100).
The step size of Inexact Newton method is chosen by linesearch follow-
ing Armijo rule, whereas the step size of L-BFGS is chosen by linesearch
satisfying Strong Wolfe condition. We can see that the per-iteration com-
putation cost of L-BFGS is lower than Inexact Newton with the exception
on HIGGS dataset. This is because L-BFGS is sensitive to the scale of
step size so that more iterations of Strong Wolfe linesearch procedure are
required to satisfy the curvature condition. In general, we observe that
L-BFGS performs well on binary class problems, while the performance
degrades on multiclass problems, when the number of compute nodes in-
creases. 75

4.1 CNN model and layer composition. 84

xii

SYMBOLS

v Vectors in lower-case bold letters

V Matrices in upper-case bold letters

∇f(x) Gradient of a function, f , evaluated at x

∇2f(x) Hessian of a function, f , evaluated at x

x(k) Superscript denote iteration count

xi Subscript denotes the local -value of the vector x at

the ith compute node in a distributed setting

otherwise specifically mentioned

S Collection of indices drawn from a set {1, 2, · · · , n}

|S| Cardinality of a set S

[v; w] ∈ R2p Vertical stacking of two column vectors v,w

[v,w] a p by 2 matrix Matrix formed by two column vectors v,w ∈ R2p

‖x‖ Vector `2 norm of x

< u,v >= uTv Dot product of vectors u and v

A�B Element-wise multiplication of matrices A and B

1(x) Indicator function x ∈ {True,False} which evaluates

to 1 if x = True and 0 otherwise

D Input dataset

Fi(x) Objective function, F (x), evaluated at point

x using ith− observation

FD(x) Objective function evaluated on the entire dataset D

(x, y) Sample point and its target (ground truth)

C Total no. of classes in the dataset

f(x, y) Function of the network

xiii

z Prediction of the network w.r.t x

L Loss function

g Gradient of the network

H Hessian of the network

F Fisher information matrix of the network

p Natural gradient direction

`, (1, . . . , `) No. of layers in the neural network

al−1 Input to layer l

Ãl−1 Mini-batch input to layer l

āl−1 Input to layer l, augmented with homogeneous

coordinate

al Output of layer l

Wl Weights of layer l

bl Bias of layer l

W̄l Weights and bias folded into single parameter of layer l

[vec(W̄1)ᵀ, . . . , vec(W̄`)
ᵀ]ᵀ Parameters of the network, θ

sl Output of the convolution function (and input to the

activation function) of layer l

pl Output of activation function (and input to

pool function) of layer l

al Output of pool function of layer l

aout(= a`) Output of the neural network

aloss Output of the loss function

∂L
∂θ

= ∂L
∂θ

Derivative of the loss function w.r.t a parameter, θ

gloss =
(

∂L
∂aout

)
Gradient terms propagated from the loss function

gpl

(
= ∂L

∂pl

)
Gradient terms propagated from the pool function

of layer l

gal

(
= ∂L

∂sl

)
Gradient terms propagated from the activation

function of layer l

xiv

gconvl

(
= ∂L

∂al

)
Gradient terms propagated from the

convolution function of layer l

Al−1 Input to the convolution function of layer l

Ãl−1 Mini-batch input to the convolution function of layer l

(ĩs used to indicate mini-batch processing of a

given matrix)

Cl Input to the activation function of layer l

Pl Input to the pool function of layer l

Al Output of layer l (and input to the layer l + 1)

Aout Output of the neural network

Aloss Output of the loss function

Gloss

(
= ∂L

∂Aout

)
Gradient terms propagated from the loss function

Gp
l

(
= ∂L

∂Pl

)
Gradient terms propagated from the pool function

of layer l

Ga
l

(
= ∂L

∂Cl

)
Gradient terms propagated from the activation

function of layer l

Gconv
l

(
= ∂L

∂Al

)
Gradient terms propagated from the convolution

function of layer l

Rv {Al} Input to convolution function of layer l of the

neural network

Rv {Cl} Input to activation function of layer l of the

neural network

Rv {Pl} Input to pool function of layer l of the neural network

Rv {aout} Output of the neural network

Rv {Gloss} Rv {} terms propagated from the loss function

Rv {Gp
l } Rv {} terms propagated from the pool function

of layer l

Rv {Ga
l } Rv {} terms propagated from the activation function

of layer l

xv

Rv {Gconv
l } Rv {} terms propagated from the convolution function

of layer l

xvi

ABSTRACT

Kylasa, Sudhir Babu Ph.D., Purdue University, December 2019. Higher Order Opti-
mization Techniques for Machine Learning. Major Professor: Charlie Y. Hu.

First-order methods such as Stochastic Gradient Descent are methods of choice

for solving non-convex optimization problems in machine learning. These methods

primarily rely on the gradient of the loss function to estimate descent direction.

However, they have a number of drawbacks, including converging to saddle points

(as opposed to minima), slow convergence, and sensitivity to parameter tuning. In

contrast, second order methods that use curvature information in addition to the

gradient, have been shown to achieve faster convergence rates, theoretically. When

used in the context of machine learning applications, they offer faster (quadratic)

convergence, stability to parameter tuning, and robustness to problem conditioning.

In spite of these advantages, first order methods are commonly used because of their

simplicity of implementation and low per-iteration cost. The need to generate and

use curvature information in the form of a dense Hessian matrix makes each iteration

of second order methods more expensive.

In this work, we address three key problems associated with second order methods

– (i) what is the best way to incorporate curvature information into the optimization

procedure; (ii) how do we reduce the operation count of each iteration in a second or-

der method, while maintaining its superior convergence property; and (iii) how do we

leverage high-performance computing platforms to significant accelerate second order

methods. To answer the first question, we propose and validate the use of Fisher

information matrices in second order methods to significantly accelerate convergence.

The second question is answered through the use of statistical sampling techniques

that suitably sample matrices to reduce per-iteration cost without impacting conver-

xvii

gence. The third question is addressed through the use of graphics processing units

(GPUs) in distributed platforms to deliver state of the art solvers.

Through our work, we show that our solvers are capable of significant improvement

over state of the art optimization techniques for training machine learning models.

We demonstrate improvements in terms of training time (over an order of magnitude

in wall-clock time), generalization properties of learned models, and robustness to

problem conditioning.

1

1. INTRODUCTION

The availability of large datasets, combined with ever increasing processing power

of current hardware platforms, has motivated a number of new applications in com-

puter vision, natural language processing, recommender systems, optical character

recognition, and autonomous vehicles, among others. Optimization has become one

of the main tools in data science to train models of the physical world around us

to extract meaningful insights from it. At a high level, optimization techniques are

used to parametrize models from data with the goal of minimizing error, maximizing

generalizability beyond training set, while satisfying application constraints. Given

the diversity of applications and models, there is no universal optimization procedure

that can be used across all applications and data regimes. Choosing the right model,

objective function for optimization, and optimization technique, are critical aspects

of machine learning. Optimization methods can be broadly classified as:

Continuous vs. Discrete Optimization problems where variables can only take

certain types of data (for instance, integers) are called discrete optimization prob-

lems. In contrast, if variables are allowed to take real numbers, the problem is called

continuous. Note that discrete optimization problems are relatively difficult to solve

because of the hardness of underlying computational problems.

Constrained vs. Unconstrained Optimization problems where restrictions (or

constraints) are imposed on the variables used in the underlying model are called

constrained optimization problems. In contrast, models without any constraints on

the variables are referred to as unconstrained optimization problems. When the

function and all its constraints are linear functions in variables, then the problem

2

is called a linear program. Likewise non-linear programs contain atleast one of the

constraints or the function that is non-linear.

Convex vs. Non-Convex This is one of the fundamental properties of functions

that influences the choice of the optimization technique. A function, f , is convex if

its domain , S, is a convex set. That is, for any two points x and y in S(= Rn), the

following property is satisfied:

f(αx + (1− α)y) ≤ αf(x) + (1− α)f(y), for all α ∈ [0, 1]

Convex programming is used to describe optimization problems where the func-

tion and constraints are all convex functions. Because of the above property convex

problems are easier to solve relative to non-convex problems. In the convex regime,

a local solution is always a global solution, while in non-convex regime there exist

many local solutions, and identifying global solutions is hard for high-dimensional

problems.

1.1 Function Approximation

Taylor series approximations of functions are commonly used in optimization prob-

lems primarily as a means to approximate a function around a point to estimate a

solution when traversed along a certain direction in its neighborhood. Suppose that

f : Rn → R is continuously differentiable, and that p ∈ Rn. Then we have:

f(x + p) = f(x) +∇f(x + tp)Tp

for some t ∈ (0, 1). Moreover, if f is twice continuously differentiable, we have:

f(x + p) = f(x) +∇f(x)Tp +
1

2
pTf(x + tp)p

3

1.2 Characteristics of a solution

In this subsection, we briefly discuss the conditions which a solution of a mini-

mization problem needs to satisfy in general. More elaborate discussion on the solu-

tion characteristics and related theorems and proofs are discussed in Jorge Nocedals’

work [1]. Some of the proofs are discussed here for completeness.

A point x∗ is a global minimizer if f(x∗) ≤ f(x) for all x.

where x ranges all over Rn. The global minimizer is difficult to find because

our knowledge of f is local. Since the complete knowledge of f is unavailable, most

algorithms only seek to find local minimizers, which is a point that achieves the

smallest value of f in a neighborhood. Formally, this is defined as:

A point x∗ is a local minimizer if there is a neighborhood N of x∗ such that

f(x∗) ≤ f(x) for all x ∈ N.

1.2.1 Necessary and Sufficient conditions of a local minimizer

We briefly discuss the necessary and sufficient conditions that must be satisfied by

any solution of a minimization problem. More elaborate discussion on the associated

theorems and proofs can be found in [1–3]. We discuss some important properties of

the solution, and their proofs are included here for completeness.

Theorem 1.2.1 (First order Necessary Conditions) If x∗ is a local minimizer

and f is a continuously differentiable function in the open neighborhood of x∗ then

∇f(x∗) = 0.

Proof Suppose ∇f(x∗) 6= 0, by contradiction. Define a vector in the opposite

direction of the gradient

p = −∇f(x∗), and note that pT∇f(x∗) = −||f ∗||2a < 0.

Because ∇f is continuous near x∗ there is a scalar T (> 0) such that:

4

pT∇f(x∗ + tp) < 0, for all t ∈ [0, T] (1.1)

For any t̂ ∈ (0, T], now using the Taylor series approximation we have:

f(x∗ + t̂p) < f(x∗) + t̂pT∇f(x∗ + tp) for some t ∈ (0, t̂) (1.2)

Therefore, f(x∗ + t̂p) < f(x∗), for all t̂ ∈ (0, T]. This means that we have found

a direction away from x∗ along which f decreases, so x∗ cannot be a local minimizer.

Theorem 1.2.2 (Second order necessary conditions) If x∗ is a local minimizer

of f and ∇2f exists and is continuous in the neighborhood of x∗, then ∇f(x∗) = 0

and ∇2f(x∗) is positive semidefinite.

Proof We already know that ∇f(x∗ = 0. Again by contradiction assume that

∇2f(x∗) is not positive semidefinite. Then choose a vector p such that pT∇2f(x∗)p <

0, because ∇2f is continuous near x∗, then there is a scalar T > 0 such that

pT∇2f(x∗ + tp)p < 0 for all t ∈ [0, T].

By using the Taylor series approximation around x∗, we have for all t̂ ∈ (0, T] and

some tin(0, t̂) that:

f(x∗ + t̂p) < f(x∗) + t̂pT∇f(x∗ + tp) +
1

2
t̂2pT∇2f(x∗ + tp)p < f(x∗) (1.3)

This indicates that we have found a direction p away from x∗ along which f is

decreasing. Hence x∗ is not a local minimizer anymore.

Theorem 1.2.3 (Second order sufficient conditions) Suppose that ∇2f is con-

tinuous in the open neighborhood of x∗ and that ∇f(x∗) = 0 and ∇2f(x∗) is positive

definite. Then x∗ is the strict local minimizer of f .

5

Proof Because Hessian is continuous and positive definite at x∗, we can choose a

radius, r > 0 , so that ∇2f(x∗) remains positive definite for all x in the open ball

D = {z|||z − x∗|| < r}. Then taking an nonzero vector p with ||p|| < r, we have

x∗ + p ∈ D, and therefore:

f(x∗ + p) = f(x∗) + pT∇f(x∗) +
1

2
pT∇2f(z)p

= f(x∗) +
1

2
pT∇2f(z)p

Here, z = x∗+ tp for some t ∈ (0, 1). Since z ∈ D, we have 1
2
pT∇2f(z)p > 0, and

therefore f(x∗ + p) > f(x∗), giving the necessary result.

Theorem 1.2.4 When f is convex, any local minimizer x∗ is a global minimizer of

f . If in addition, f is differentiable (smooth), then any stationary point x∗ is a global

minimizer of f .

Non-smooth Problems In this thesis, we only consider smooth optimization prob-

lems, by which we mean functions whose first (and second) derivatives exist and are

continuous. However, there exist many functions that are either non-smooth (whose

derivatives does not exist) and/or are discontinuous. In such cases, functions may be

a combinations of smooth segments with discontinuities between them. In such cases,

minimizers can be found by identifying the individual smooth segments. Subgradients

are used in cases where a function is continuous everywhere but non differentiable at

some points.

1.3 Direct vs. Iterative Solvers

Optimization problems can be solved by using either a direct method, where an

analytical solution exists for the underlying problem, or an iterative method, where a

6

closed form solution does not exist or it is impractical to solve. For instance, consider

a linear system of equations Ax = b inRn. A direct solution can be obtained by using

LU decomposition (square matrices), cholesky factorization (symmetric positive def-

inite matrices) and QR factorization (non-singular matrices). Each of these solution

techniques has different computational complexity for obtaining a solution, and in

high-dimensional space, n >> 1, using any of these methods may become impractical

because of amount of time required to obtain a solution and/ or the availability of

resources needed for execution. In many high-dimensional problems, matrix A might

not be available, or be impractical to store in physical memory, and only operations

on this matrix are supported, such as matrix-vector products. Iterative solvers form

a suitable alternative in such scenarios, where a solution vector xk, also known as

an iterate, is formed initially and repeatedly updated in each iteration of the solver.

In contrast to direct solvers, xk is always available and the iterative process can be

stopped, without running it to completion, if a satisfactory solution is arrived during

this process. Iterative solvers can be designed in such a way that the matrix A is not

needed for updating the iterative solution, and only operations such as matrix-vector

products, Axk, are used.

1.4 Significance of GPUs in optimization

(a) High level view of a typical CPU and
its components.

(b) High level view of a typical GPU and
its components.

Fig. 1.1.: Architectural overview of CPU and GPU.

7

Conventional processors, which we also refer to as CPUs, have been the go-to

number crunching hardware platform until recent times. With the availability of

Graphical Processing Units (GPUs), the landscape of high-performance hardware

has drastically changed, mainly because of the throughput of floating point operations

these devices can handle. Conventional CPUs contain one or more processing cores

that are made up of processing units (known as Arithmetic and Logic Units (ALUs)),

Control Unit, which is responsible for scheduling hardware-level instructions, and a

low-latency cache known (or a hierarchy of caches); as shown in 1.1. This central

processor is aided by the off-chip high latency random-access memory (RAM) and a

high capacity very high latency disk memory. A state-of-the-art CPU can support

16 to 32 thread level parallelism and a motherboard can support up to 8 CPUs.

Such a hardware platform is designed to execute instructions operating on dat from

low-latency caches rapidly, yielding maximum throughput. Sophisticated control unit

with pipelined speculative execution consumes much of the real-estate on the die in a

typical CPU. Note that at any instant of time only a limited number of threads (few

hundreds) can be in execution state, because of number of ALUs available on the

processor itself. Compute intensive operations such as large matrix-vector products,

ubiquitous in many optimization problems, form the main bottleneck in such hardware

platforms.

GPUs have been primarily used for rendering images on to the display units

(computer monitors) until recently. Processing images by applying an operation on

each pixel (arithmetic or a boolean operation) in very short time period, and delivering

these images to be displayed on to the monitor was the primary task of a typical

graphical processor. Over the years it has been shown that graphics processors can be

used to perform compute intensive tasks such as matrix operations with better speed,

relative to conventional CPUs. This lead to the evolution of GPUs over the past

decade, and have now become the main work-horse in high-performance computing.

GPUs consist of streaming multiprocessors, also known as SM’s, and an on-chip

memory unit. Each SM, shown in Fig. 1.2 consists of processing units (potentially

8

Fig. 1.2.: CUDA Streaming Multiprocessor Microarchitecture. Provides a birds-eye
level view of the components included in a typical SM.

few hundreds), which take up much of the physical space on the dye, along with

associated control-unit, registers and cache memory. The processing unit itself is

relatively simple, and can typically handle limited arithmetic operations. Special

function units (SFUs) are provided to handle complex arithmetic and logic operations,

and are shared by the SM. Various types of memory such as L1/L2 cache, shared

memory, register file are available for a streaming multiprocessor, and a high-capacity

high-latency off-chip global memory is shared by all the SMs. This hardware platform

is optimized for data-parallel high-through computations such as matrix operations

9

Fig. 1.3.: CUDA programming model.

in an optimization toolkit. The micro-architecture is tolerant to memory latency

associated with computations on thousands of processing cores on the GPU. GPUs

offer Single-instruction-multi-thread, SIMT, programming semantics, which enables

the system software to spawn thousands of threads simultaneously. Scheduling and

dispatching is done in units of a small number (typically 32) threads, known as warps.

Multiple warps form thread blocks, which can be grouped to form a grids, which are

executed inside a kernel, as shown in Fig. 1.3. Once a kernel, which defines the number

of grids and thread-blocks, is triggered, low-level threads grouped in thread-blocks are

instantiated and scheduled onto an SM. A thread-block resides on an SM throughout

10

its lifetime, and its memory reads/writes are scheduled per half-warp because of the

bus width connecting the processing cores and the memory unit.

1.5 Iterative solutions for unconstrained minimization problems

In this work, we are interested in iterative solutions to unconstrained minimization

problems for both convex and non-convex optimization. We present a brief discussion

on the two well-known iterative solutions for unconstrained minimization problems,

which we use in our research. We show that these methods, when coupled with

highly efficient implementations on GPUs, yield significantly better results compared

to other alternatives.

1.6 Line Search Methods

While minimizing a function , f(x), we need a search direction, p, and the length

of the step along p to be traversed, to update the solution iterate, xk, which represents

the solution x in the kth iteration of the solver. Two popular search directions are

steepest descent and Newton directions. We briefly discuss these two search directions

and the behavior of the solver when these directions are used during the minimization

process.

1.6.1 Steepest Descent or Gradient Descent

The steepest descent direction, −∇fk, is the most obvious choice for search direc-

tion, because it represents the direction along which f decreases most rapidly among

all the possible directions from xk. Using the Taylor series approximation, we know

the following:

f(xk + αp) = f(xk) + αpT∇fk +
1

2
α2pT∇2f(xk + tp)p, for some t ∈ (0, α)

11

where α is the step size. The rate of change of f along the direction of p is given

by the coefficient of α, which is pT∇fk (by ignoring the higher order terms of α).

Hence the unit direction of p of most rapid decrease is the solution to the following

problem:

min
p

pT∇fk, subject to: ||p|| = 1

Since pT∇fk = ||p||||fk||cosθ = ||fk||cosθ, where θ is the angle between p and

∇fk. The minimizer is obtained when cosθ = −1, which is:

p = − ∇fk
||∇fk||

Please note that since the computation of this search direction only uses the gra-

dient, ∇fk, of the function f , the associated methods are called first-order methods.

Convergence Analysis of Steepest Descent Consider the ideal case, where the

objective function is convex quadratic and line searches are exact. Suppose that:

f(x) =
1

2
xTQx− bTx (1.4)

where Q is symmetric and positive definite. The gradient is given by ∇f(x) =

Qx−b, and the minimizer x∗ is the unique solution given by the linear solve Qx = b.

In order to compute step lengths αk, which minimize f(xk−α∇fk) we differentiate

the following function:

f(xk − α∇fk) =
1

2
(xk − α∇fk)Q(xk − α∇fk)− bT (xk − α∇fk)

w.r.t α and set it to zero, which gives:

αk =
∇fTk ∇fk
∇fTk Q∇fk

Thus, we have the iterates using the steepest descent as:

12

xk+1 = xk −
(
∇fTk ∇fk
∇fTk Q∇fk

)
∇fk

In order to quantity the rate of convergence, let us define ||x||2Q = xTQx, we have:

1

2
||x− x∗||2Q = f(x)− f(x∗)

Now, given the above equations, we can establish the convergence relation as

follows:

||xk+1 − x∗||2Q =

{
1−

(
∇fTk ∇fk

)2

(∇fTk Q∇fk) (∇fTk Q−1∇fk)

}
||xk − x∗||2Q (1.5)

This equation is difficult to interpret, but can be rewritten in the following form

(using eigenvalues of the symmetric positive definite matrix, Q) as:

||xk+1 − x∗||2Q ≤
(
λn − λ1

λn + λ1

)
||xk − x∗||2Q

assuming 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λnare the eigenvalues of Q.

This suggests that steepest descent method using exact line searches tends to make

slow progress in the neighborhood of the minimizer, x∗, and this does not improve

even when inexact line search is used to estimate the step size. Also, the convergence

is sensitive to problem ill-conditioning. For this reason, regularization plays a crucial

role in its convergence.

1.6.2 Newton Direction

Newton’s method was originally formulated for root finding of a uni-variate func-

tion, φ(x), x ∈ R such that:

φ(x∗) = 0

13

For that, it uses a linear approximation (truncated Taylor series). Assuming that

we have some t close to t∗, we have:

φ(t+ ∆t) = φ(t) +∇φ(t)∆t+ o(|∆t|)

Equating φ(t+ ∆t) = 0, results in the following linear equation:

φ(t) +∇φ(t)∆x = 0

Assuming that the displacement, ∆t is a good approximation of the optimal dis-

placement (∆t∗ = t∗ − t), Newton method’s iterates can be written as:

tk+1 = tk −
φ(tk)

∇φ(tk)
tk+1 = tk − (∇φ(tk))

−1φ(tk)

Hence, the Newton’s method for optimization problems can be written in the

following form:

xk+1 = xk −
[
∇2f(xk)

]−1∇f(xk) (1.6)

[∇2f(xk)]
−1] is commonly known as the Newton- direction, which is primarily used

in second-order optimization methods, since the second derivative is used to compute

the descent direction.

Note that this can also be obtained by using the Taylor series approximation of

f(xk + p), which is:

f(xk + p) ≈ fk + pT∇fk +
1

2
pT∇2fkp

def
= mk(p)

By setting the derivative of mk(p) to 0, we obtain the Newton direction as we had

earlier.

Newton direction can be used in line search methods because it is a descent di-

rection. Consider the following:

∇Tfkp
N
k = −pNk

T∇2fkp
N
k = −αk||pNk ||2 (1.7)

14

for some αk > 0. Since ∇Tfkp
N
k is −ve, pk is a descent direction. Note that ∇2fk

may not always be positive definite so the Newton direction may not exist. A positive

definite approximation of the Hessian can be defined by using either rank-1 (SR-1)

or rank-2 (BFGS, DFP) or Gauss-Newton matrices. These methods, also known as

Quasi-Newton methods, are some of the work-arounds to handle the complexities

associated with Hessian computation.

Convergence rate of Newton’s Method On the convergence rate of Newton’s

method, we have the following theorem:

Theorem 1.6.1 Let f(x) be a smooth and twice differentiable function which is

1. gradient is Lipschitz continuous, ||f ′(x)− f ′(y)|| ≤ L||x− y||

2. Hessian is Lipschitz continuous, ||f ′′(x)− f ′′(y)|| ≤M ||x− y||

3. Hessian is positive definite, f
′′
(x∗) ≥ lIn

Suppose that the initial starting point, x0 is close enough to x∗:

||x0 − x∗|| ≤ r̄

(
2l

3M

)

Then ||xk − x∗|| < r̄ for all k, and the Newton method converges quadratically:

||xk+1 − x∗|| ≤ M ||xk − x∗||2

2(l −M ||xk − x∗||)

Proof The details of the proof can be found in [1]

1.6.3 Step-size Estimation for Line search Methods

Once we have a descent direction, pk, (either the anti-gradient or Newton direc-

tion) we need to find the step size along this direction so that we can achieve a certain

reduction in the objective function. The exact distance needed to traverse along pk

is obtained by solving the following problem:

15

min
α>0

f (xk + αpk) (1.8)

Ideally, we would like to solve the above problem with minimum compute effort

possible. Often, the exact step size is not needed, and in some cases it might lead to

divergence or very slow convergence (as in the case of quadratic convex function dis-

cussed earlier). Two popular strategies used for this purpose are: Armijo conditions,

Armijo-Wolfe conditions, and in some cases polynomial interpolation.

Backtracking line search : For inexact step size computation while finding

the approximate solution for the eq. 1.8, following conditions can be enforced; suf-

ficient decrease and curvature conditions. When computing the next iterate, xk+1,

sufficient decrease condition is used to control the amount of decrease in the objective

function value achieved by the estimated step size, as given by:

f(xk + αpk) ≤ f(xk) + c1α∇fTk pk

for some constant c1 ∈ (0, 1). Note that it uses the first-order Taylor series

approximation at the next iterate.

Using the sufficient decrease condition (also known as Armijo- condition), a simple

back-tracking line search method can be formulated as follows:

The typical initial value for ¯alpha is 1 and it is iteratively decreased by a factor of

ρ until the sufficient decrease condition is satisfied, which explains the backtracking

nature of this algorithm. Computationally, note that for every line search iteration

we only need to evaluate the function value in the near neighborhood of the current

iterate, xk. Usually in implementation, α is decreased only for a maximum number

of line search iterations. This simple mechanism is well suited for Newton method,

in practice.

To rule out unacceptably short steps, curvature condition is used, which requires

αk to satisfy:

16

Algorithm 1: Backtracking Linesearch Method

Input : xk - current iterate;
pk - descent direction;
ᾱ - initial step size;
ρ - backtracking constant ∈ (0, 1);
c - amount of decrease control

parameter, ∈ (0, 1)
Result: αk - step size to update the parameters
α = ᾱ
while f(xk + αpk) > f(xk) + c1α∇fTk pk do

α = ρα
end
αk = α

∇f(xk + αkpk)
Tpk ≥ c2∇fTk pk

Note that this is a derivative of φ(α), with left hand side indicating the slope

at a step length of αk and right hand side indicating the slope at α = 0. Using the

curvature condition, we are trying to enforce that the slope of the function at the next

iterate xk+1 is greater by a factor of c2 relative to the slope at xk. If the slope, φ
′
(α),

is largely negative then it is known that we can further reduce the function value by

taking a large step along that direction. On the other hand, if it is slightly negative or

positive, then there wouldn’t be any significant reduction in the function value along

that direction. This condition is popularly know as Wolfe-condition, and is used

typically with quasi-Newton methods. More sophisticated conditions like Goldstein-

conditions and polynomial-interpolation have been proposed in literature to control

the amount of minimum decrease required by the step length. Empirically, these

more advanced conditions are computationally expensive because of the repeated

evaluation of the gradient. Furthermore, in a mini-batch setting, gradients can be

noisy, which makes these advanced conditions difficult to use in practice.

17

1.7 Trust-region Methods

Another common strategy for computing successive iterates in unconstrained opti-

mization problems is the trust-region method. Here, we model the objective function

at the current iterate, xk, using a target function mk. As we move farther away from

the current iterate, xk, this approximation might deviate and fail to represent the

original objective function well. A trust-region of some radius around xk is used to

restrict the search of the minimizer of mk. Mathematically we find the minimizer of

mk around xk to use as the descent direction.

min
p

mk(xk + p), where xk + p lies inside the trust region

Trust region radius is iteratively changed depending on the candidate solution, p.

If it is a good solution (resulting in expected decrease in the objective function) we

increase the trust region and a bad solution will result in decreasing the trust region.

Usually the trust region is defined as a ball defined by ||p||2 ≤ ∆, where ∆ is the

trust region radius.

The model mk is usually the quadratic approximation of the Taylor series approx-

imation of the objective function itself at the current iterate, i.e.,

mk(xk + p) = fk + pT∇kf +
1

2
pTBp,

where fk is the function value at xk, ∇kf the gradient vector and B is the Hessian

(or some approximation of it) matrix of the objective function evaluated at xk.

Note that, if the model approximation is used as the first-order Taylor series

approximation of the objective function, using the euclidean norm ball for the trust

region radius, the trust region subproblem becomes:

min
p

fk + pT∇fk, where subject to: ||p||2 ≤ ∆

and the analytical solution to this problem is given by,

18

pk = −∆k∇fk
||∇fk||

(1.9)

This is the steepest descent direction, and the step size is determined by the trust

region radius. The trust region and line search approaches coincide in this particular

case.

A simple iterative trust-region algorithm can be formulated as follows:

Algorithm 2: Trust-region framework

Input : xk - current iterate;
pk - descent direction;
∆̄ - trust-region radius;
η - minimum model reduction parameter,

∈ [0, 1
4
);

c - amount of decrease control parameter,
∈ (0, 1)
Result: ∆ - step size to update the parameters
Choose ∆0 ∈ (0, ∆̂)
for k = 0, 1, 2, . . . do

pk = min
p

mk(xk + p)

ρk = f(xk)−f(xk+pk)
mk(0)−mk(pk)

if ρk >
3
4

then
∆k + 1 = min {2∆k,∆}

end
else

∆k+1 = ∆k

end
if ρk > η then

xk+1 = xk + pk
end
else

xk+1 = xk
end

end

19

2. GPU ACCELERATED SUB-SAMPLED NEWTON’S

METHOD

First order methods, which solely rely on gradient information, are commonly used

in diverse machine learning (ML) and data analysis (DA) applications. This is at-

tributed to the simplicity of their implementations, as well as low per-iteration com-

putational/storage costs. However, they suffer from significant disadvantages; most

notably, their performance degrades with increasing problem ill-conditioning. Fur-

thermore, they often involve a large number of hyper-parameters, and are notoriously

sensitive to parameters such as the step-size. By incorporating additional informa-

tion from the Hessian, second-order methods, have been shown to be resilient to many

such adversarial effects. However, these advantages of using curvature information

come at the cost of higher per-iteration costs, which in “big data” regimes, can be

computationally prohibitive.

In this chapter, we show that, contrary to conventional belief, second-order meth-

ods, when implemented appropriately, can be more efficient than first-order alterna-

tives in many large-scale ML/ DA applications. In particular, in convex settings, we

consider variants of classical Newton’s method in which the Hessian and/or the gra-

dient are randomly sub-sampled. We show that by effectively leveraging the power

of GPUs, such randomized Newton-type algorithms can be significantly accelerated,

and can easily outperform state of the art implementations of existing techniques in

popular ML/ DA software packages such as TensorFlow. Additionally these random-

ized methods incur a small memory overhead compared to first-order methods. In

particular, we show that for million-dimensional problems, our GPU accelerated sub-

sampled Newton’s method achieves a higher test accuracy in milliseconds as compared

with tens of seconds for first order alternatives.

20

2.1 Introduction

Optimization techniques are at the core of many ML/DA applications. First-order

methods that rely solely on gradient of the objective function, have been methods

of choice in these applications. The scale of commonly encountered problems in

typical applications necessitates optimization techniques that are fast, i.e., have low

per-iteration cost and require few overall iterations, as well as robust to adversar-

ial effects such as problem ill-conditioning and hyper-parameter tuning. First-order

methods such as stochastic gradient descent (SGD) are widely known to have low per-

iteration costs. However, they often require many iterations before suitable results

are obtained, and their performance can deteriorate for moderately to ill-conditioned

problems. Contrary to popular belief, ill-conditioned problems often arise in machine

learning applications. For example, the “vanishing and exploding gradient problem”

encountered in training deep neural nets [4], is a well-known and important issue.

What is less known is that this is a consequence of the highly ill-conditioned nature

of the problem. Other examples include low-rank matrix approximation and spectral

clustering involving radial basis function (RBF) kernels when the scale parameter

is large [5]. A subtle, yet potentially more serious, disadvantage of most first-order

methods is the large number of hyper-parameters, as well as their high sensitivity

to parameter-tuning, which can significantly slow down the training procedure and

often necessitate many trial and error steps [6, 7].

Newton-type methods use curvature information in the form of the Hessian matrix,

in addition to the to gradient. This family of methods has not been commonly

used in the ML/ DA community because of their high per-iteration costs, in spite

of the fact that second-order methods offer a range of benefits. Unlike first-order

methods, Newton-type methods have been shown to be highly resilient to increasing

problem ill-conditioning [8–10]. Furthermore, second-order methods typically require

fewer parameters (e.g., inexactness tolerance for the sub-problem solver or line-search

parameters), and are less sensitive to their specific settings [6, 7]. By incorporating

21

curvature information at each iteration, Newton-type methods scale the gradient

such that it is a more suitable direction to follow. Consequently, although their

iterations may be more expensive than those of the first-order counterparts, second-

order methods typically require much fewer iterations.

In this context, by reducing the cost of each iteration through efficient approx-

imation of curvature, coupled with hardware specific acceleration, one can obtain

methods that are fast and robust. In most ML applications, this typically translates

to achieving a high test-accuracy early on in the iterative process and without signifi-

cant parameter tuning ; see Section 2.4. This is in sharp contrast with slow-ramping

trends typically observed in training with first-order methods, which is often preceded

by a lengthy trial and error procedure for parameter tuning. Indeed, the aforemen-

tioned properties, coupled with efficiency obtained from algorithmic innovations and

implementations that effectively utilize all available hardware resources, hold promise

for significantly changing the landscape of optimization techniques used in ML/DA

applications.

With the long-term goal of achieving this paradigm shift, we focus on the com-

monly encountered finite-sum optimization problem

min
x∈Rd

F (x) ,
n∑
i=1

fi(x), (2.1)

where each fi(x) is a smooth convex function, representing a loss (or misfit) corre-

sponding to ith observation (or measurement) [11–13]. In many ML applications, F

in eq. (3.1) corresponds to the empirical risk [14], and the goal of solving eq. (3.1) is

to obtain a solution with small generalization error, i.e., high predictive accuracy on

“unseen” data. We consider eq. (3.1) at scale, where the values of n and d are large –

millions and beyond. In such settings, the mere computation of the Hessian and the

gradient of F increases linearly in n. Indeed, for large-scale problems, operations on

the Hessian, e.g., matrix-vector products involved in the (approximate) solution of

the sub-problems of most Newton-type methods, typically constitute the main com-

22

putational bottleneck. In such cases, randomized sub-sampling has been shown to be

highly successful in reducing computational and memory costs to be effectively inde-

pendent of n. For example, a simple instance of eq. (3.1) is when the functions fi’s

are quadratics, in which case one has an over-constrained least squares problem. For

these problems, randomized numerical linear algebra (RandNLA) techniques rely on

random sampling, which is used to compute a data-aware or data-oblivious subspace

embedding that preserves the geometry of the entire subspace [15]. Furthermore,

non-trivial practical implementations of algorithms based on these ideas have been

shown to beat state-of-the-art numerical techniques [16–18]. For more general prob-

lems, theoretical properties of sub-sampled Newton-type methods, for both convex

and non-convex problems of the form in eq. (3.1), have been recently studied in a series

of efforts [8–10,19–22]. However, for real ML/ DA applications beyond least squares,

practical and hardware-specific implementations that can effectively draw upon all

available computing resources, are lacking.

Contributions: Our contributions in this chapter can be summarized as follows:

Through a judicious mix of statistical techniques, algorithmic innovations, and highly

optimized GPU implementations, we develop an accelerated variant of the classical

Newton’s method that has low per-iteration cost, fast convergence, and minimal mem-

ory overhead. In the process, we show that, for solving eq. (3.1), our accelerated ran-

domized method significantly outperforms state of the art implementations of existing

techniques in popular ML/DA software packages such as TensorFlow [23], in terms

of improved training time, generalization error, and robustness to various adversarial

effects.

This chapter is organized as follows. Section 2.2 provides an overview of related

literature. Section 3.2 presents technical background regarding sub-sampled Newton-

type methods, Softmax classifier as a practical instance of eq. (3.1), along with a

description of the algorithms and their implementation. Section 2.4 compares and

contrasts GPU based implementations of sub-sampled Newton-type methods with

23

first order methods available in TensorFlow. Conclusions and avenues for future

work are presented in Section 3.4.

2.2 Related Work

The class of first-order methods includes a number of techniques that are com-

monly used in diverse ML/DA applications. Many of these techniques have been

efficiently implemented in popular software packages. For example, TensorFlow, [23],

has enjoyed considerable success among ML practitioners. Among first-order meth-

ods implemented in TensorFlow for solving (3.1) are Adagrad [24], RMSProp [25],

Adam [26], Adadelta [27], and SGD with/ without momentum [28]. Excluding SGD,

the rest of these methods are adaptive, in that they incorporate prior gradients to

choose a preconditioner at each gradient step. Through the use of gradient history

from previous iterations, these adaptive methods non-uniformly scale the current

gradient to obtain an update direction that takes larger steps along the coordinates

with smaller derivatives and, conversely, smaller steps along those with larger deriva-

tives. At a high level, these methods aim to capture non-uniform scaling of Newton’s

method, albeit, using limited curvature information.

Theoretical properties of a variety of randomized Newton-type methods, for both

convex and non-convex problems of the form eq. (3.1), have been recently studied in

a series of results, both in the context of ML applications [6, 8–10, 19–22], as well as

scientific computing applications [29–31].

GPUs have been successfully used in a variety of ML applications to speed up com-

putations [32–35]. In particular, Raina et al. [33] demonstrate that modern GPUs

can far surpass the computational capabilities of multi-core CPUs, and have the

potential to address many of the computational challenges encountered in training

large-scale learning models. Most relevant to this chapter, Ngiam et al. [35] show

that off-the-shelf optimization methods such as Limited memory BFGS (L-BFGS)

and Conjugate Gradient (CG), have the potential to outperform variants of SGD in

24

deep learning applications. It was further demonstrated that the difference in perfor-

mance between LBFGS/CG and SGD is more pronounced if one considers hardware

accelerators such as GPUs. Extending similar results to full-fledged second-order

algorithms, such Newton’s method, is a major motivating factor for our work here.

2.3 Theory, Algorithms and Implementation Details

2.3.1 Sub-Sampled Newton’s Method

For the optimization problem eq. (3.1), in each iteration, consider selecting two

sample sets of indices from {1, 2, . . . , n}, uniformly at random with or without re-

placement. Let Sg and SH denote the sample collections, and define g and H as

g(x) ,
n

|Sg|
∑
j∈Sg

∇fj(x), (2.2a)

H(x) ,
n

|SH|
∑
j∈SH

∇2fj(x), (2.2b)

to be the sub-sampled gradient and Hessian, respectively.

It has been shown that, under certain bounds on the size of the samples, |Sg|

and |SH|, one can, with high probability, ensure that g and H are “suitable” approx-

imations to the full gradient and Hessian, in an algorithmic sense [8, 9]. For each

iterate x(k), using the corresponding sub-sampled approximations of the full gradient,

g(x(k)), and the full Hessian, H(x(k)), we consider inexact Newton-type iterations of

the form

x(k+1) = x(k) + αkpk, (2.3a)

where pk is a search direction satisfying

‖H(x(k))pk + g(x(k))‖ ≤ θ‖g(x(k))‖, (2.3b)

25

for some inexactness tolerance 0 < θ < 1 and αk is the largest α ≤ 1 such that

F (x(k) + αpk) ≤ F (x(k)) + αβpTk g(x(k)), (2.3c)

for some β ∈ (0, 1). The requirement in eq. (3.11c) is often referred to as Armijo-type

line-search [1], and eq. (3.11b) is the θ-relative error approximation condition of the

exact solution to the linear system

H(x(k))pk = −g(x(k)), (2.4)

which is similar to that arising in classical Newton’s Method. Note that in (strictly)

convex settings, where the sub-sampled Hessian matrix is symmetric positive definite

(SPD), conjugate gradient (CG) with early stopping can be used to obtain an approx-

imate solution to eq. (3.12) satisfying eq. (3.11b). It has also been shown [8, 9], that

to inherit the convergence properties of the, rather expensive, algorithm that employs

the exact solution to eq. (3.12), the inexactness tolerance, θ, in eq. (3.11b) can only

be chosen in the order of the inverse of the square root of the problem condition

number. As a result, even for ill-conditioned problems, only a relatively moderate

tolerance for CG ensures that we indeed maintain convergence properties of the exact

update (see also examples in Section 2.4). Putting all of these together, we obtain

Algorithm 3, which under specific assumptions, has been shown [8, 9] to be globally

linearly convergent1 with problem-independent local convergence rate 2.

2.3.2 Multi-Class classification

For completeness, we now briefly review multi-class classification using softmax

and cross-entropy loss function, as an important instance of the problems of the form

described in eq. (3.1). Consider a p dimensional feature vector a, with corresponding

1It converges linearly to the optimum starting from any initial guess x(0).
2If the iterates are close enough to the optimum, it converges with a constant linear rate independent
of the problem-related quantities.

26

Algorithm 3: Sub-Sampled Newton Method

Input : Initial iterate, x(0)

Parameters: 0 < ε, β, θ < 1
1 foreach k = 0, 1, 2, . . . do
2 Form g(x(k)) as in eq. (2.2a)

3 Form H(x(k)) as in eq. (2.2b)

4 if ‖g(x(k))‖ < ε then
STOP

end

5 Update x(k+1) as in eq. (2.3)

end

labels b, which can belong to one of C classes. In such a classifier, the probability

that a belongs to a class c ∈ {1, 2, . . . , C} is given by Pr (b = c | a,w1, . . . ,wC) =

e〈a,wc〉/
∑C

c′=1 e
〈a,wc′ 〉, where wc ∈ Rp is the weight vector corresponding to class c.

Since probabilities must sum to one, there are in fact only C − 1 degrees of free-

dom. Consequently, by defining xc , wc − wC , c = 1, 2, . . . , C − 1, for train-

ing data {ai, bi}ni=1 ⊂ Rp × {1, . . . , C}, the cross-entropy loss function for x =

[x1; x2; . . . ; xC−1] ∈ R(C−1)p can be written as

F (x) ,F (x1,x2, . . . ,xC−1)

=
n∑
i=1

(
log

(
1 +

C−1∑
c′=1

e〈ai,xc′ 〉

)
−

C−1∑
c=1

1(bi = c)〈ai,xc〉

)
. (2.5)

Note that here, d = (C − 1)p. It then follows that the full gradient of F with respect

to xc is

∇xcF (x) =
n∑
i=1

(
e〈ai,xc〉

1 +
∑C−1

c′=1 e
〈ai,xc′ 〉

− 1(bi = c)

)
ai. (2.6)

27

Similarly, for the full Hessian of F , we have

∇2
xc,xc

F =

n∑
i=1

 e〈ai,xc〉

1 +
∑C−1

c′=1 e
〈ai,xc′ 〉

− e2〈ai,xc〉(
1 +

∑C−1
c′=1 e

〈ai,xc′ 〉
)2

 aia
T
i , (2.7a)

and for ĉ ∈ {1, 2, . . . , C − 1} \ {c}, we get

∇2
xc,xĉ

F =
n∑
i=1

− e〈ai,xĉ+xc〉(
1 +

∑C−1
c′=1 e

〈ai,xc′ 〉
)2

 aia
T
i . (2.7b)

Sub-sampled variants of the gradient and Hessian are obtained similarly. Finally,

after training phase, a new data a is classified as

b = arg max


{

e〈a,xc〉∑C−1
c′=1 e

〈a,xc′ 〉

}C−1

c=1

, 1− e〈a,x1〉∑C
c′=1 e

〈a,xc′ 〉

 .

Numerical Stability

To avoid over-flow in the evaluation of exponential functions in (3.2), we use

the “Log-Sum-Exp” trick [36]. Specifically, for each data point ai, we first find the

maximum value among 〈ai,xc〉, c = 1, . . . , C − 1. Define

M(a) = max
{

0, 〈a,x1〉, 〈a,x2〉, . . . , 〈a,xC−1〉
}
, (2.8)

and

α(a) := e−M(a) +
C−1∑
c′=1

e〈a,xc′ 〉−M(a). (2.9)

28

Note that M(a) ≥ 0, α(a) ≥ 1. Now, we have 1 +
∑C−1

c′=1 e
〈ai,xc′ 〉 = eM(ai)α(ai). For

computing (3.2), we use log
(

1 +
∑C−1

c′=1 e
〈ai,xc′ 〉

)
= M(ai) + log

(
α(ai)

)
. Similarly,

for (2.6) and (2.7), we use

e〈ai,xc〉

1 +
∑C−1

c′=1 e
〈ai,xc′ 〉

=
e〈ai,xc〉−M(ai)

α(ai)
.

Note that in all these computations, we are guaranteed to have all the exponents

appearing in all the exponential functions to be negative, hence avoiding numerical

over-flow.

Hessian Vector Product

Given a vector v ∈ Rd, we can compute the Hessian-vector product without

explicitly forming the Hessian. For notational simplicity, define

h(a,x) :=
e〈a,x〉−M(x)

α(a)
,

where M(x) and α(x) were defined in eqs. (3.13) and (3.14), respectively. Now using

matrices

V =


〈a1,v1〉 〈a1,v2〉 . . . 〈a1,vC−1〉

〈a2,v1〉 〈a2,v2〉 . . . 〈a2,vC−1〉
...

...
. . .

...

〈an,v1〉 〈an,v2〉 . . . 〈an,v(C−1)〉


n×(C−1)

, (2.10)

and

W =


h(a1,x1) h(a1,x2) . . . h(a1,xC−1)

h(a2,x1) h(a2,x2) . . . h(a2,xC−1)
...

...
. . .

...

h(an,x1) h(an,x2) . . . h(an,xC−1)


n×(C−1)

, (2.11)

29

we compute

U = V �W −W �
((

(V �W) e
)
eT
)
, (2.12)

to get

Hv = vec
(
ATU

)
, (2.13)

where v = [v1; v2; . . . ; vC−1] ∈ Rd, vi ∈ Rp, i = 1, 2, . . . , C − 1, e ∈ RC−1 is a vector

of all 1’s, and each row of the matrix A ∈ Rn×p is a row vector corresponding to the

ith data point, i.e, AT =
[
a1, a2, . . . , an

]
.

Remark 1 Note that the memory overhead of our accelerated randomized sub-sampled

Newton’s method is determined by matrices U, V, and W, whose sizes are dictated

by the Hessian sample size, |SH|, which is much less than n. This small memory

overhead enables our Newton-type method to scale to large problems, inaccessible to

traditional second order methods.

2.3.3 Implementation Details

We present a brief overview of the algorithmic machinery involved in the imple-

mentation of iterations described in eq. (2.3) and applied to the function defined in

eq. (3.2) with an added `2 regularization term, i.e., F (x) + λ‖x‖2/2. Here, λ is the

regularization parameter. We note that for all the algorithms in this section, we

assume that matrices are stored in column-major ordering.

Conjugate Gradient For the sake of self-containment, in Algorithm 4, we depict

a slightly modified implementation of the classical CG, to approximately solve the

linear system in eq. (3.12), i.e., Hp = −g, to satisfy eq. (3.11b). This routine takes a

function (pointer), H(.), which computes the matrix-vector product as H(v) = Hv,

as well as the right-hand side vector, �. Lines 2, and 3 initializes the residual vector

30

Algorithm 4: Conjugate-Gradient

Input :
H(.) - Pointer to Algorithm 9 to compute
Hessian-vector product, H(v) = Hv
g - Gradient

Parameters:
θ - Relative residual tolerance
T - Maximum no. of iterations

Result: pbest, an approximate solution to Hp = −g
1 p0 = 0
2 r0 = −g // initial residual vector

3 s0 = r0 // initial search direction

4 pbest = s0 // best solution so far

5 rbest = r0

6 foreach k = 0, 1, . . . , T do
7 αk = rTk rk/s

T
kH(sk)

8 pk+1 = pk + αksk
9 rk+1 = rk − αkH(sk)

10 if ‖rk+1‖ ≤ ‖rbest‖ then
rbest = rk+1

pbest = pk+1

end
11 if ‖rk+1‖ ≤ θ‖g‖ then

break
end

12 sk+1 = rk+1 +
‖rk+1‖22
‖rk‖22

sk

end

r, and search direction s, respectively, while the best residual is initialized on line 5.

Iterations start on line 6, which maintains a counter for maximum allowed iterates to

compute. Step-size α for CG iterations is computed on line 7, which is used to update

the solution vector, p and residual vector, r. The minor modification comes from

line 10, which stores the best solution vector thus far. The termination condition

eq. (3.11b) is evaluated on line 11. Finally, the search direction, s, is updated in

line 12.

31

Algorithm 5: Line Search

Input :
x - Current point
p - Newton’s direction
F (.) - Function pointer
g(x) - Gradient

Parameters:
α - Initial step size
0 < β < 1 - Cost function reduction constant
0 < ρ < 1 - back-tracking parameter
imax - maximum line search iterations

1 α = 1
2 i = 0
3 while F (x + αp) > F (x) + αβpTg(x) do
4 if i > imax then
5 break

end
6 i = i+ 1
7 α← ρα

end

Line Search method We use a simple back-tracking line search, shown in Al-

gorithm 12 for computing the step size in eq. (3.11c). Step size, α, is initialized in

line 1, which is typically set to the “natural” step-size of Newton’s method, i.e., α = 1.

Iterations start at line 3 by checking the exit criteria, and if required, successively

decreasing the step size until the “loose” termination condition is met. In each of

these iterations, if the objective function does not reduce by a specified amount, β,

step size is reduced by a fraction, ρ, of its current value, until the termination con-

dition is met or specified iterations have been exceeded. It has been shown [8] that

this process will terminate after a certain number of iterations, i.e., we are always

guaranteed to have α ≥ α0 > 0 for some fixed α0.

CUDA utility functions Bulk of the work in evaluating the softmax function

is done by ComputeExp subroutine, shown in Algorithm 6. This function takes a

32

Algorithm 6: ComputeExp

input : Â - where Âi,j =
aTi xj,∀i ∈ {1 . . . n},∀j ∈ {1 . . . C − 1}
b - Training classes
maxPart- memory pointer to store eq. (2.14)
sumExpPart- memory pointer to store eq. (2.15)
linearPart- memory pointer to store eq. (2.16)
n - no. of rows in Â
C - no. of classes

output: maxPart, sumExpPart, linearPart

1 Init. idx ; // thread-id

if idx < n then
2 i ← idx % n ; // row no.

3 maxParti = linearParti = sumExpParti = 0
4 foreach j in 1 : C − 1 do

if maxParti < Âi,j then

maxParti = Âi,j

end

end
5 foreach j in 1 : C − 1 do
6 if bi == j then

linearParti = Âi,j

end

7 sumExpParti += exp (Âi,j - maxParti)

end

end

matrix, as an input, and computes the following data structures: “maxParti” stores

the maximum component in each of the rows of the input matrix, “linearParti” stores

the partial summation of the term ΣC−1
j=1 1(bi = j)(aTi xj), and “sumExpPart” stores

the summation in eq. (2.15). Input matrix, Â ∈ Rn×(C−1) , is the product of A

and X matrices, where X ∈ Rp×(C−1) is a matrix whose ith column is xi ∈ Rp, i.e.,

X = [x1,x2, . . . ,xC−1], and A is as in eq. (3.18). Line 1 initializes the idx, thread-id

of a given thread. In the for loop in line 4, we compute the maximum coordinate

per row of the input matrix, and the result is stored in array “maxPart”. Line 5

33

computes “linearPart” and “sumExpPart” arrays, which are later used by functions

invoking this algorithm.

Algorithm 7: ComputeFX

input : A- Training features
b - Training classes
x - Weights vector
λ - Regularization
n - no. of rows in A
p - no. of cols in A
C - no. of classes

output: F (x) - Objective function evaluated at x

1 Initialize maxPart, linearPart, sumExpPart to store
eqs. (2.14)–(2.16),

2 Form X = [x1,x2, . . . ,xC−1]p×(C−1)

3 Â = A×X ; // matrix-matrix multiplication

4 ComputeExp(Â, b , maxPart, sumExpPart, linearPart, n, C)
5 Reduce(linearPart, pLin, n, t(z) = z)
6 Reduce(maxPart, pMax, n, t(z) = z)
7 Reduce(sumExpPart, pExp, n, t(z) = z)
8 temp ← maxPart + sumExpPart
9 Reduce(temp, pLog, n, t(z) = log(z))

10 F (x) ← (pMax + pLog - pLin) + λ ‖ x ‖2 /2

Softmax function evaluation Subroutine ComputeFX, shown in Algorithm 7, de-

scribes the evaluation of objective function at a given point, x = [x1; x2; . . . ; xC−1] ∈

Rd. Line 2 initializes the memory to store partial results, and line 3 computes the

matrix-matrix product between training set, A, and weight matrix, X. By invok-

ing the CUDA function, ComputeExp, we compute the partial results, maxPart,

sumExpPart, linearPart, as described in eqs. (2.14)–(2.16). Lines 5, 6 and, 7 compute

the sum of the temporary arrays, and store the partial results in pLin, pMax, pExp,

respectively. Reduce operation takes a transformation function, t(.), which is applied

to the input argument before performing the summation. Reduce is a well known

34

function and many highly optimized implementations are readily available. We use a

variation of the algorithm described in [37]. pLog is computed at line 9. Finally, the

objective function value is computed at line 10, by adding intermediate results, pLin,

pMax, pExp, pLog and the regularization term, i.e.,

F (x) = (pMax + pLog− pLin) +
λ

2
‖x‖2

=
n∑
i=1

(maxParti + logParti − linearParti) +
λ

2
‖x‖2,

where

maxParti = M(ai) (cf. eq. (3.13)), (2.14)

sumExpParti =
C−1∑
c=1

e〈ai,xc〉−maxParti , (2.15)

linearParti =
C−1∑
c=1

1(bi = c)〈ai,xc〉, (2.16)

logParti = log
(
e−maxParti + sumExpParti

)
. (2.17)

Algorithm 8: Compute ∇F
input : A- Training features

b - Training classes
x - Weights vector
λ - Regularization

output: ∇F (x) - gradient evaluated at x
1 Initialize BInd(n×C−1)

2 Form X = [x1,x2, . . . ,xC−1]p×(C−1)

3 Compute BIndi,c = e〈ai,xc〉

1+
∑C−1

z=1 e
〈ai,xz〉

− 1(bi = c), similar to Alg. 6

4 ∇F (x)← vec(AT BInd+ λ X)

Softmax gradient evaluation Subroutine Compute ∇F , shown in Algorithm 8,

describes the computation of∇F (x). Line 1 initializes the memory to store temporary

35

results. Algorithm 6 can be easily modified to compute BInd. Line 4 computes

the gradient of the objective function by matrix multiplication and addition of the

regularization term.

Algorithm 9: Compute Hessian-Vector Product,
∇2F (x)q

input : A- Training dataset
λ - Regularization
x - Weights vector
q - Vector to compute ∇2F (x)q
n - no. of sample points
p - no. of features
C - no. of classes

output: Hq: ∇2F (x)q, Hessian-vector product

1 Init. idx ; // thread-id

2 Form Q = [q1,q2, . . . ,qC−1]p×(C−1)

3 V = A×Q
4 W← compute as shown in (3.16), similar to kernel

Alg.6
5 U← ComputeU (V, W, n, p, C)
6 Hq← vec(ATU + λQ)

Softmax Hessian-vector evaluation For a given vector, q, Algorithm 9, com-

putes the Hessian-vector product, ∇2F (x)q. Algorithm 9 is heavily used in CG to

solve the linear system Hx = −g. Line 1 computes V, as shown in eq. (3.15), a

matrix multiplication operation. Line 4 computes W using a function similar to Al-

gorithm 6, and U is computed using Alg. 10 at line 5. Finally Hq is computed by

multiplying AT and U, and adding the regularization term in line 6.

2.4 Experimental Results

We present a comprehensive evaluations of the performance of Newton-type meth-

ods presented in this chapter. We compare our methods to various first-order methods

36

Algorithm 10: ComputeU

input : V- matrix V as in eq. (3.15)
W- matrix W as in eq. (3.16)
n - no. of sample points
p - no. of features
C - no. of classes

output: U : matrix U as shown in (3.17)

Initialize idx ; // thread-id

sum = 0
if idx < n then

i = idx % n ; // row no.

foreach j in 1 : C − 1 do
sum += Vi,j ×Wi,j;

end
foreach j in 1 : C − 1 do

Ui,j = Vi,j ×Wi,j −Wi,j× sum;
end

end

– SGD with momentum (henceforth referred to as Momentum) [28], Adagrad [24],

Adadelta [27], Adam [26] and RMSProp [25] as implemented in Tensorflow [23]. We

describe our benchmarking setup, software used for development, and provide a de-

tailed analysis of the results. The code used in this work along with the processed

datasets are publicly available [38]. Additionally, raw datasets are also available from

the UCI Machine Learning Repository [39].

Table 2.1.: Description of the datasets. L indicates the Lipschitz Constant of the
dataset.

Classification Dataset Train Size (n) Test Size Features (p) Classes (C) L

Multi-Class

Covertype 450000 131012 54 7 1.92
Drive Diagnostics 50000 8509 48 11 3.95

MNIST 38000 38000 785 10 28.67
CIFAR-10 50000 10000 3072 10 534.92

Newsgroups20 10142 1127 53975 20 128.79

Binary
Gisette 6000 6500 5000 2 751.19

Real-Sim 65078 7231 20958 2 206.76

37

2.4.1 Experimental Setup and Data

Newton-type methods are implemented in C/C++ using CUDA/8.0 toolkit. For

matrix operations, matrix-vector, and matrix-matrix operations, we use cuBLAS

and cuSparse libraries. First order-methods are implemented using Tensorflow/1.2.1

python scripts. All results are generated using an Ubuntu server with 256GB RAM,

48-core Intel Xeon E5-2650 processors, and Tesla P100 GPU cards. For all of our

experiments, we consider the `2-regularized objective F (x) + λ‖x‖2/2, where F is as

in eq. (3.2) and λ is the regularization parameter. Seven real datasets are used for

performance comparisons. Table 2.1 presents the datasets used, along with the Lips-

chitz continuity constant of ∇F (x), denoted by L. Recall that, an (over-estimate) of

the condition-number of the problem, as defined in [8], can be obtained by (L+λ)/λ.

As it is often done in practice, we first normalize the datasets such that each column

of the data matrix A ∈ Rn×p (as defined in Section 3.2.1), has Euclidean norm one.

This helps with the conditioning of the problem. The resulting dataset is, then, split

into training and testing sets, as shown in the Table 2.1.

2.4.2 Parameterization of Various Methods

The Lipschitz constant, L, is used to estimate the learning rate (step-size) for

first order methods. For each dataset, we use a range of learning rates from 10−6/L

to 106/L, in increments of 10, a total of 13 step sizes, to determine the best per-

forming learning rate (one that yields the maximum test accuracy). Rest of the

hyper-parameters required by first-order methods are set to the default values, as

recommended in Tensorflow. Two batch sizes are used for first-order methods: a

small batch size of 128 (empirically, it has been argued that smaller batch sizes

might lead to better performance [40]), and a larger batch size of 20% of the dataset.

For Newton-type methods, when the gradient is sampled, its sample size is set to

|Sg| = 0.2n.

38

We present results for two implementations of second-order methods: (a) Full-

Newton, the classical Newton-CG algorithm [1], which uses the exact gradient and

Hessian, and (b) SubsampledNewton, sub-sampled variant of Newton-CG using uni-

form sub-sampling for gradient/Hessian approximations. When compared with first-

order methods that use batch size of 128, SubsampledNewton uses full gradient and

5% for Hessian sample size, referred to as SubsampledNewton-100. When first-order

methods’ batch size is set to 20%, SubsampledNewton uses 20% for gradient and 5%

for Hessian sampling, referred to as SubsampledNewton-20. CG-tolerance is set to

10−4. Maximum CG iterations is 10 for all of the datasets except Drive Diagnostics

and Gisette, for which it is 1000. λ is set to 10−3 and we perform 100 iterations

(epochs) for each dataset.

2.4.3 Computing Platforms

For benchmarking first order methods with batch size 128, we use CPU-cores

only and for the larger batch size 1-GPU and 1-CPU-core are used. For brevity we

only present the best performance results (lowest time-per-epochs); see 2.7 for more

detailed discussion on performance results on various compute platforms. Newton-

type methods always use 1-GPU and 1-CPU-core for computations.

2.4.4 Performance Comparisons

Table 2.2 presents all the performance results. Columns 1 and 3 show the plots

for cumulative-time vs. test-accuracy and columns 2 and 4 plot the numbers for

cumulative-time vs. objective function (training). Please note that x-axis in all the

plots is in “log-scale”.

39

Table 2.2.: Performance comparison between first-order and second-order methods.
FullNewton uses the entire dataset for gradient and Hessian evaluations.

Time vs. Accuracy Time vs. Misfit Time vs. Accuracy Time vs. Misfit
First Order Batch Size = 128 First Order Batch Size = 20%

Alg. 3 Gradient Sample Size = 100% Alg. 3 Gradient Sample Size = 20%
Alg. 3 Hessian Sample Size = 5% Alg. 3 Hessian Sample Size = 5%

Momentum

Adam

Adagrad

Adadelta

RMSProp SubSampledNewton FullNewton

10-2 10-1 100 101 102 103

Time in (seconds)

0

10

20

30

40

50

60

70

Te
st

 A
cc

ur
ac

y

step size: (Adam: 1.00e+01, Adadelta: 1.00e+04,
Adagrad: 1.00e+03, RMSProp: 1.00e+01,

Momentum: 1.00e-02)

10-2 10-1 100 101 102 103

Time (seconds)

300000

400000

500000

600000

700000

800000

900000
O

bj
ec

tiv
e

Fu
nc

tio
n

- T
ra

in
in

g

step size: (Adam: 1.00e+01, Adadelta: 1.00e+04,
Adagrad: 1.00e+03, RMSProp: 1.00e+01,

Momentum: 1.00e-02)

10-2 10-1 100 101 102

Time in (seconds)

0

10

20

30

40

50

60

70

Te
st

 A
cc

ur
ac

y

step size: (Adam: 1.00e+02, Adadelta: 1.00e+04,
Adagrad: 1.00e+02, RMSProp: 1.00e+01,

Momentum: 1.00e+00)

10-2 10-1 100 101 102

Time (seconds)

300000

400000

500000

600000

700000

800000

900000

O
bj

ec
tiv

e
Fu

nc
tio

n
- T

ra
in

in
g

step size: (Adam: 1.00e+02, Adadelta: 1.00e+04,
Adagrad: 1.00e+02, RMSProp: 1.00e+01,

Momentum: 1.00e+00)

Covertype

10-2 10-1 100 101 102

Time in (seconds)

0

10

20

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y

step size: (Adam: 1.00e+00, Adadelta: 1.00e+03,
Adagrad: 1.00e+02, RMSProp: 1.00e+00,

Momentum: 1.00e-02)

10-2 10-1 100 101 102

Time (seconds)

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

O
bj

ec
tiv

e
Fu

nc
tio

n
- T

ra
in

in
g

step size: (Adam: 1.00e+00, Adadelta: 1.00e+03,
Adagrad: 1.00e+02, RMSProp: 1.00e+00,

Momentum: 1.00e-02)

10-2 10-1 100 101

Time in (seconds)

0

10

20

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y

step size: (Adam: 1.00e+01, Adadelta: 1.00e+04,
Adagrad: 1.00e+01, RMSProp: 1.00e+00,

Momentum: 1.00e+00)

10-2 10-1 100 101

Time (seconds)

30000

40000

50000

60000

70000

80000

90000

100000

110000

120000

O
bj

ec
tiv

e
Fu

nc
tio

n
- T

ra
in

in
g

step size: (Adam: 1.00e+01, Adadelta: 1.00e+04,
Adagrad: 1.00e+01, RMSProp: 1.00e+00,

Momentum: 1.00e+00)

Drive Diagnostics

10-2 10-1 100 101 102 103

Time in (seconds)

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y

step size: (Adam: 1.00e-01, Adadelta: 1.00e+03,
Adagrad: 1.00e+01, RMSProp: 1.00e-01,

Momentum: 1.00e-02)

10-2 10-1 100 101 102 103

Time (seconds)

0

20000

40000

60000

80000

100000

120000

140000

O
bj

ec
tiv

e
Fu

nc
tio

n
- T

ra
in

in
g

step size: (Adam: 1.00e-01, Adadelta: 1.00e+03,
Adagrad: 1.00e+01, RMSProp: 1.00e-01,

Momentum: 1.00e-02)

10-2 10-1 100 101 102

Time in (seconds)

10

20

30

40

50

60

70

80

90

100

Te
st

 A
cc

ur
ac

y

step size: (Adam: 1.00e+00, Adadelta: 1.00e+04,
Adagrad: 1.00e+01, RMSProp: 1.00e+00,

Momentum: 1.00e-01)

10-2 10-1 100 101 102

Time (seconds)

0

20000

40000

60000

80000

100000

120000

140000

O
bj

ec
tiv

e
Fu

nc
tio

n
- T

ra
in

in
g

step size: (Adam: 1.00e+00, Adadelta: 1.00e+04,
Adagrad: 1.00e+01, RMSProp: 1.00e+00,

Momentum: 1.00e-01)

MNIST

10-2 10-1 100 101 102 103

Time in (seconds)

10

15

20

25

30

35

40

45

Te
st

 A
cc

ur
ac

y

step size: (Adam: 1.00e-02, Adadelta: 1.00e+02,
Adagrad: 1.00e+00, RMSProp: 1.00e-02,

Momentum: 1.00e-04)

10-2 10-1 100 101 102 103

Time (seconds)

80000

85000

90000

95000

100000

105000

110000

115000

120000

O
bj

ec
tiv

e
Fu

nc
tio

n
- T

ra
in

in
g

step size: (Adam: 1.00e-02, Adadelta: 1.00e+02,
Adagrad: 1.00e+00, RMSProp: 1.00e-02,

Momentum: 1.00e-04)

10-2 10-1 100 101 102

Time in (seconds)

10

15

20

25

30

35

40

45

Te
st

 A
cc

ur
ac

y

step size: (Adam: 1.00e-01, Adadelta: 1.00e+01,
Adagrad: 1.00e-01, RMSProp: 1.00e-02,

Momentum: 1.00e-02)

10-2 10-1 100 101 102

Time (seconds)

80000

85000

90000

95000

100000

105000

110000

115000

120000

O
bj

ec
tiv

e
Fu

nc
tio

n
- T

ra
in

in
g

step size: (Adam: 1.00e-01, Adadelta: 1.00e+01,
Adagrad: 1.00e-01, RMSProp: 1.00e-02,

Momentum: 1.00e-02)

CIFAR-10

10-2 10-1 100 101 102 103

Time in (seconds)

0

10

20

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y

step size: (Adam: 1.00e-01, Adadelta: 1.00e+02,
Adagrad: 1.00e+00, RMSProp: 1.00e-01,

Momentum: 1.00e-03)

10-2 10-1 100 101 102 103

Time (seconds)

0

5000

10000

15000

20000

25000

30000

35000

O
bj

ec
tiv

e
Fu

nc
tio

n
- T

ra
in

in
g

step size: (Adam: 1.00e-01, Adadelta: 1.00e+02,
Adagrad: 1.00e+00, RMSProp: 1.00e-01,

Momentum: 1.00e-03)

10-2 10-1 100 101 102

Time in (seconds)

0

10

20

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y

step size: (Adam: 1.00e-01, Adadelta: 1.00e+02,
Adagrad: 1.00e+00, RMSProp: 1.00e-01,

Momentum: 1.00e-01)

10-2 10-1 100 101 102

Time (seconds)

0

5000

10000

15000

20000

25000

30000

35000

O
bj

ec
tiv

e
Fu

nc
tio

n
- T

ra
in

in
g

step size: (Adam: 1.00e-01, Adadelta: 1.00e+02,
Adagrad: 1.00e+00, RMSProp: 1.00e-01,

Momentum: 1.00e-01)

newsgroups

10-2 10-1 100 101 102

Time in (seconds)

50

60

70

80

90

100

Te
st

 A
cc

ur
ac

y

step size: (Adam: 1.00e-02, Adadelta: 1.00e+02,
Adagrad: 1.00e+00, RMSProp: 1.00e-02,

Momentum: 1.00e-03)

10-2 10-1 100 101 102

Time (seconds)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

O
bj

ec
tiv

e
Fu

nc
tio

n
- T

ra
in

in
g

step size: (Adam: 1.00e-02, Adadelta: 1.00e+02,
Adagrad: 1.00e+00, RMSProp: 1.00e-02,

Momentum: 1.00e-03)

10-2 10-1 100 101 102

Time in (seconds)

50

60

70

80

90

100

Te
st

 A
cc

ur
ac

y

step size: (Adam: 1.00e-01, Adadelta: 1.00e+02,
Adagrad: 1.00e-01, RMSProp: 1.00e-02,

Momentum: 1.00e-03)

10-2 10-1 100 101 102

Time (seconds)

0

1000

2000

3000

4000

5000

6000

O
bj

ec
tiv

e
Fu

nc
tio

n
- T

ra
in

in
g

step size: (Adam: 1.00e-01, Adadelta: 1.00e+02,
Adagrad: 1.00e-01, RMSProp: 1.00e-02,

Momentum: 1.00e-03)

Gisette

10-2 10-1 100 101 102

Time in (seconds)

70

75

80

85

90

95

100

Te
st

 A
cc

ur
ac

y

step size: (Adam: 1.00e-03, Adadelta: 1.00e+01,
Adagrad: 1.00e-01, RMSProp: 1.00e-03,

Momentum: 1.00e-05)

10-2 10-1 100 101 102

Time (seconds)

0

10000

20000

30000

40000

50000

O
bj

ec
tiv

e
Fu

nc
tio

n
- T

ra
in

in
g

step size: (Adam: 1.00e-03, Adadelta: 1.00e+01,
Adagrad: 1.00e-01, RMSProp: 1.00e-03,

Momentum: 1.00e-05)

10-2 10-1 100 101 102

Time in (seconds)

70

75

80

85

90

95

100

Te
st

 A
cc

ur
ac

y

step size: (Adam: 1.00e-01, Adadelta: 1.00e+02,
Adagrad: 1.00e+00, RMSProp: 1.00e-02,

Momentum: 1.00e-03)

10-2 10-1 100 101 102

Time (seconds)

0

10000

20000

30000

40000

50000

O
bj

ec
tiv

e
Fu

nc
tio

n
- T

ra
in

in
g

step size: (Adam: 1.00e-01, Adadelta: 1.00e+02,
Adagrad: 1.00e+00, RMSProp: 1.00e-02,

Momentum: 1.00e-03)

real-sim

40

Covertype Dataset

The first row in Table 2.2 shows the plots for Covertype dataset. From the first two

columns (batch size 128), we note the following: (i) Newton-type methods minimize

the objective function to ≈ 3.4e5 in a smaller time interval (FullNewton: 0.9 secs,

SubsampledNewton-20 : 0.24 secs), compared to first-order alternatives (Adadelta - 91

secs, Adagrad - 183 secs, Adam - 57 secs, Momentum - 285 secs, RMSProp - 40 secs);

(ii) Compared to first order algorithms, Newton-type methods achieve equivalent test

accuracy, 68%, in a significantly shorter time interval, i.e., 0.9 secs compared with

tens of seconds for first order methods (Adadelta: 201 secs, Adagrad: 72 secs, Adam:

285 secs, Momentum: 128 secs, RMSProp: 111 secs); (iii) SubsampledNewton-100

achieves relatively higher test accuracy earlier compared to the FullNewton method

in a relatively short time interval (FullNewton: 68% in 1.5 secs, SubsampledNewton-

100 : 68% in 204 millisecs). For well-conditioned problems (such as this one), a

relaxed CG-tolerance and small sample sizes (5% Hessian sample size) yield desirable

results quickly.

Columns 3 and 4 present the performance of first-order methods with batch size

20%. Randomized Newton method, SubsampledNewton-20, achieves higher test accu-

racy, 68%, in a very short time, 1.05 secs, compared to any of the first order methods

as shown in column 3 (Adadelta: 65% in 21 secs, Adagrad: 65% in 19 secs, Adam:

68% in 20 secs, Momentum: 68% in 18 secs, RMSProp: 65% in 21 secs). First order

methods, with batch size 20%, are executed on GPUs resulting in smaller time-per-

epoch; see 2.7. This can be attributed to processing larger batches of the dataset by

the GPU-cores, yielding higher efficiency.

Drive Diagnostics Dataset

Results for the Drive Diagnostics dataset are shown in the second row of Table 2.2.

These plots clearly indicate that Newton-type methods achieve their lowest objective

function value , 3.75e4, much earlier compared to first order methods (FullNewton -

41

1.3 secs, SubsampledNewton-20 - 0.8 secs, SubsampledNewton-100 - 0.2 secs). Cor-

responding times for batch size 128 for first order methods are : Adadelta - 16 secs,

Adagrad - 34 secs, Adam - 25 secs, Momentum - 32 secs, RMSProp - 35 secs (lowest

objective function value for these methods are ≈ 3.8e5). For batch size 20%, except

for Adadelta and Momentum, other first order methods achieve their lowest objective

function values, which are significantly higher compared to Newton-type methods, in

≈ 3 seconds. Momentum is the only first order method that achieves almost equiva-

lent objective function value, 3.8e5 in 0.6 seconds, as Newton-type methods.

All first order methods, with batch size 128, achieve test accuracy of 87% which

is same as Newton-type methods but take much longer: FullNewton - 0.2 secs,

SubsampledNewton-20 - 0.3 secs, SubsampledNewton-100 - 0.15 secs vs. Adadelta

- 30 secs, Adagrad - 36 secs, Adam - 7 secs, Momentum - 32 secs, RMSProp - 7 secs.

Here, except Momentum, none of the first order methods with batch size 20% achieve

87% test accuracy in 100 epochs.

MNIST and CIFAR-10 Datasets

Rows 3 and 4 in Table 2.2 present plots for MNIST and CIFAR-10 datasets,

respectively. Regardless of the batch size, Newton-type methods clearly outperform

first-order methods. For example, with MNIST dataset, all the methods achieve a test

accuracy of 92%. However, Newton-type methods do so in ≈ 0.2 seconds, compared

to ≈ 4 seconds for first order methods with batch size of 128.

CIFAR results are shown in row 4 of Table 2.2. We clearly notice that first

order methods, with batch size 128, make slow progress towards achieving their low-

est objective function value (and test accuracy) taking almost 100 seconds to reach

8.4e4 (40% test accuracy). Newton-type methods achieve these values in signifi-

cantly shorter time (FullNewton - 10 seconds, SubsampledNewton-20 - 4.2 seconds,

SubsampledNewton-100 - 2.6 seconds). The slow progress of first order methods is

much more pronounced when batch size is set to 20%. Only Adam and Momentum

42

methods achieve a test accuracy of ≈ 40% in 100 epochs (taking ≈ 60 seconds). Note

that CIFAR-10 represents a relatively ill -conditioned problem. As a result, in terms

of lowering the objective function on CIFAR-10, first-order methods are negatively

affected by the ill-conditioning, whereas all Newton-type methods show a great degree

of robustness. This demonstrates the versatility of Newton-type methods for solving

problems with various degrees of ill-conditioning.

Newsgroups20 Dataset

Plots in row 5 of Table 2.2 correspond to Newsgroups20 dataset. This is a sparse

dataset, and the largest in the scope of this work (the Hessian is ≈ 1e6 × 1e6). Here,

FullNewton and SubsampledNewton-100 achieve, respectively, 87.22% and 88.46%

test accuracy in the first few iterations. Smaller batch sized first order methods

can only achieve a maximum test accuracy of 85% in 100 epochs. Note that aver-

age time per epoch for first order methods is ≈ 1 sec compared to 75 millisecs for

SubsampledNewton-100 iteration. When 20% gradient is used, as shown in column 3,

we notice that the SubsampledNewton-20 method starts with a lower test accuracy

of ≈ 80% in the 5th iteration and slowly ramps up to 85.4% as we near the allotted

number of iterations. This can be attributed to a smaller gradient sample size, and

sparse nature of this dataset.

Gisette and Real-Sim Datasets

Rows 6 and 7 in Table 2.2 show results for Gisette and Real-Sim datasets, re-

spectively. FullNewton method for Gisette dataset converges in 11 iterations and

yields 98.3% test accuracy in 0.6 seconds. SubsampledNewton-100 takes 34 itera-

tions to reach 98% test accuracy, whereas first order counterparts, except Momentum

method, can achieve 97% test accuracy in 100 iterations. When batch size is set to

20%, we notice that all first order methods make slow progress towards achieving

lower objective function values. Noticeably, none of the first order methods can lower

43

the objective function value to a level achieved by Newton-type methods, which can

be attributed to the ill-conditioning of this problem; see Table 2.1.

For Real-Sim dataset, relative to first order methods and regardless of batch size,

we clearly notice that Newton-type methods achieve similar or lower objective func-

tion values, in a comparable or lower time interval. Further, FullNewton achieves

97.3% in the 2nd iteration whereas it takes 11 iterations for SubsampledNewton-20.

2.4.5 Sensitivity to Hyper-Parameter Tuning

The “biggest elephant in the room” in optimization using, almost all, first-order

methods is that of fine-tuning of various underlying hyper-parameters, most notably,

the step-size [6, 7]. Indeed, the success of most such methods is tightly intertwined

with many trial and error steps to find a proper parameter settings. It is highly

unusual for these methods to exhibit acceptable performance on the first try, and it

often takes many trials and errors before one can see reasonable results. In fact, the

“true training time”, which almost always includes the time it takes to appropriately

tune these parameters, can be frustratingly long. In contrast, second-order optimiza-

tion methods involve much less parameter tuning, and are less sensitive to specific

choices of their hyper-parameters [6, 7].

Here, to further highlight such issues, we demonstrate the sensitivity of several

first-order methods with respect to their learning rate. Figure 2.1 shows the results

of multiple runs of SGD with Momentum, Adagrad, RMSProp and Adam on News-

groups20 dataset with several choices of step-size. Each method is run 13 times using

step-sizes in the range 10−6/L to 106/L, in increments of 10, where L is the Lipschitz

constant; see Table 2.1.

It is clear that small step-sizes can result in stagnation, whereas large step sizes can

cause the method to diverge. Only if the step-size is within a particular and often

narrow range, which greatly varies across various methods, one can see reasonable

performance.

44

Remark 2 For some first-order methods, e.g., momentum based, line-search type

techniques simply cannot be used. For others, the starting step-size for line-search is,

almost always, a priori unknown. This is sharp contrast with randomized Newton-type

methods considered here, which come with a priori “natural” step-size, i.e., α = 1 ,

and furthermore, only occasionally require the line-search to intervene; see [8, 9] for

theoretical guarantees in this regard.

10-2 10-1 100 101 102 103

Time (seconds)

102

103

104

105

106

107

108

109

1010

1011

O
b
je

ct
iv

e
 F

u
n
ct

io
n
 -

 T
ra

in
in

g

(a) SGD with Mo-
mentum

10-2 10-1 100 101 102 103

Time (seconds)

102

103

104

105

106

107

108

O
b
je

ct
iv

e
 F

u
n
ct

io
n
 -

 T
ra

in
in

g

(b) Adagrad

10-2 10-1 100 101 102 103

Time (seconds)

102

103

104

105

106

107

108

109

O
b
je

ct
iv

e
 F

u
n
ct

io
n
 -

 T
ra

in
in

g

(c) RMSProp

10-2 10-1 100 101 102 103

Time (seconds)

102

103

104

105

106

107

108

109

O
b
je

ct
iv

e
 F

u
n
ct

io
n
 -

 T
ra

in
in

g

(d) Adam

Step Sizes

1.0e-09

1.0e-08

1.0e-07

1.0e-06

1.0e-05

1.0e-04

1.0e-03

1.0e-02

1.0e-01

1.0e+00

1.0e+01

1.0e+02

1.0e+03

Fig. 2.1.: Sensitivity of various first-order methods with respect to the choice of the
step-size, i.e., learning-rate. It is clear that, too small a step-size can lead to slow
convergence, while larger step-sizes cause the method to diverge. The range of step-
sizes for which some of these methods perform reasonably, can be very narrow. This
is contrast with Newton-type, which come with a priori “natural” step-size, i.e., α = 1
, and only occasionally require the line-search to intervene

2.5 Conclusions And Future Work

In this chapter, we demonstrate that sampled variants of Newton’s method, when

implemented appropriately, present compelling alternatives to popular first-order

methods for solving convex optimization problems in machine learning and data

analysis applications. We discussed, in detail, the GPU-specific implementation of

Newton-type methods to achieve similar per-iteration costs as first-order methods. We

experimentally showcased their advantages, including robustness to ill-conditioning

and higher predictive performance. We also highlighted the sensitivity of various

first-order methods with respect to their learning-rate.

45

Extending our results and implementations to non-convex optimization problems

and targeting broad classes of machine learning applications, is an important avenue

for future work.

2.6 More Details On Softmax Function eq. (3.2)

2.6.1 Relationship to Logistic Regression with ±1-labels

Sometimes, in the literature, for the two-class classification problem, instead of

{0, 1} the labels are marked as ±1. In this case, the corresponding logistic regression

is written as

F (x) =
n∑
i=1

log
(

1 + e−bix
T ai

)
.

In this case, we have

F (x) =
n∑
i=1

log

(
e
−xT ai

2 + e
xT ai

2

)
− bix

Tai
2

=
n∑
i=1

log

(
e
−xT ai

2

(
1 + ex

T ai

))
− bix

Tai
2

=
n∑
i=1

log
(

1 + ex
T ai

)
− (1 + bi)x

Tai
2

=
n∑
i=1

log
(

1 + ex
T ai

)
− b̃ixTai,

where b̃i ∈ {0, 1}. Hence this formulation co-incides with (3.2).

46

Softmax Multi-Class problem is (strictly) convex

Consider the data matrix X ∈ Rn×d where each row, aTi , is a row vector corre-

sponding to the ith data point. The Hessian matrix can be written as

∇2L = XTWX,

where

X =


X 0 . . . 0

0 X . . . 0
...

. . .
...

0 0 . . . X


(n×(C−1))×(d×(C−1))

,

W =


W1,1 W1,2 . . . W1,C−1

W2,1 W2,2 . . . W2,C−1

...
. . .

...

WC−1,1 WC−1,2 . . . WC−1,C−1

 ,

47

and each Wc,c and Wc,b is a n×n diagonal matrix corresponding to (2.7a) and (2.7b),

respectively. Note that since e〈ai,xc〉

1 +
∑C−1

c′=1 e
〈ai,xc′ 〉

− e2〈ai,xc〉(
1 +

∑C−1
c′=1 e

〈ai,xc′ 〉
)2

−
C−1∑
b=1
b 6=c

e〈ai,xĉ+xc〉(
1 +

∑C−1
c′=1 e

〈ai,xc′ 〉
)2

=

 e〈ai,xc〉

1 +
∑C−1

c′=1 e
〈ai,xc′ 〉

− e2〈ai,xc〉(
1 +

∑C−1
c′=1 e

〈ai,xc′ 〉
)2


− e〈ai,xc〉

1 +
∑C−1

c′=1 e
〈ai,xc′ 〉

C−1∑
b=1
b 6=c

e〈ai,xĉ〉

1 +
∑C−1

c′=1 e
〈ai,xc′ 〉


=

 e〈ai,xc〉

1 +
∑C−1

c′=1 e
〈ai,xc′ 〉

− e2〈ai,xc〉(
1 +

∑C−1
c′=1 e

〈ai,xc′ 〉
)2


− e〈ai,xc〉

1 +
∑C−1

c′=1 e
〈ai,xc′ 〉

(
1− 1 + e〈ai,xc〉

1 +
∑C−1

c′=1 e
〈ai,xc′ 〉

)

=
e〈ai,xc〉(

1 +
∑C−1

c′=1 e
〈ai,xc′ 〉

)2 > 0,

the matrix W is strictly diagonally dominant, and hence it is symmetric positive

definite. So the problem is convex (in fact it is strictly-convex if the data matrix X

is full column rank).

2.7 Tensorflow’s Performance Comparison on Various Compute Plat-

forms

Columns 1 and 2 of table 2.3 plots the results for covertype dataset, when batch

size is set to 128, using CPU-only cores (row 1) and 1-GPU-1-CPU-core (row 2) for

first-order tensorflow implementations. Note that newton-type methods always use 1-

48

GPU-1-CPU-core as the compute platform irrespective of any of the hyper-parameter

settings. We clearly notice that the first-order methods takes ≈ 600 seconds when

GPU cores are used compared to ≈ 350 seconds when CPU cores are used. This

can be attributed to the small batch size used for first-order methods. Smaller batch

size results in computing the gradient, a compute-intensive operation, much more

frequently compared to a large batch size. For the plots shown in table 2.3 training

size for covertype is set to 450,000. This means gradient is computed ≈ 3516 times

to complete each of the training epochs in this instance. Since the batch size is

very small most of the GPU cores are idle during every computation of the gradient

resulting in low GPU occupancy (which is the ratio of active warps on an SM and

maximum allowed warps). Also with each invocation of gradient computation there

is CUDA kernel instantiation overhead which accumulates as well. Because of above

reasons small batch sizes yield high time per epoch for first-order methods.

Columns 3 and 4 of table 2.3 plots for the results for covertype dataset using a

large batch size, of 20% of the dataset. Note that batch size for first-order methods is

same as the gradient sample size for newton-type methods for these plots. We clearly

notice that first-order tensorflow methods takes ≈ 55 seconds when CPU-only cores

are used as the compute platform compared to ≈ 22.5 seconds when 1-GPU-1-CPU-

core is used, a speedup of 2× over CPU only compute platform. In this instance,

during each epoch of first-order methods gradient is evaluated only 5 times. Because

of the large batch size, ≈ 90,000 points, are processed by the GPU resulting in higher

utilization of the GPU cores (compared to the same computation using smaller batch

size). This explains why GPU-cores yield shorter time per epoch when large batch

size are used for first-order methods.

49

Table 2.3.: Performance comparison between first-order and second-order methods on CPU-only and 1-GPU-1-CPU-core
compute platforms for covertype dataset. Batch-size 128 first order methods are compared with second order methods using
full gradient and hessian sample size set to 5%. Batch-size 20% first order methods are compared with second order methods
using sample sizes of 20% and 5% for gradient and hessian computations respectively.

Time vs. Accuracy Time vs. Misfit Time vs. Accuracy Time vs. Misfit
Batch Size = 128 Batch Size = 20%

Gradient Sample Size = 100% Gradient Sample Size = 20%
Hessian Sample Size = 5% Hessian Sample Size = 5%

Momentum

Adam

Adagrad

Adadelta

RMSProp SubSampledNewton FullNewton

10-2 10-1 100 101 102 103

Time in (seconds)

0

10

20

30

40

50

60

70

Te
st

 A
cc

ur
ac

y

step size: (Adam: 1.00e+01, Adadelta: 1.00e+04,
Adagrad: 1.00e+03, RMSProp: 1.00e+01,

Momentum: 1.00e-02)

10-2 10-1 100 101 102 103

Time (seconds)

300000

400000

500000

600000

700000

800000

900000

O
bj

ec
ti

ve
 F

un
ct

io
n

-
Tr

ai
ni

ng

step size: (Adam: 1.00e+01, Adadelta: 1.00e+04,
Adagrad: 1.00e+03, RMSProp: 1.00e+01,

Momentum: 1.00e-02)

10-2 10-1 100 101 102

Time in (seconds)

0

10

20

30

40

50

60

70

Te
st

 A
cc

ur
ac

y

step size: (Adam: 1.00e+02, Adadelta: 1.00e+04,
Adagrad: 1.00e+02, RMSProp: 1.00e+01,

Momentum: 1.00e+00)

10-2 10-1 100 101 102

Time (seconds)

300000

400000

500000

600000

700000

800000

900000

O
bj

ec
ti

ve
 F

un
ct

io
n

-
Tr

ai
ni

ng

step size: (Adam: 1.00e+02, Adadelta: 1.00e+04,
Adagrad: 1.00e+02, RMSProp: 1.00e+01,

Momentum: 1.00e+00)

Using CPU-only cores for Tensorflow implementations. Newton-type methods use 1-GPU-1-CPU-core.

10-2 10-1 100 101 102 103

Time in (seconds)

0

10

20

30

40

50

60

70

Te
st

 A
cc

ur
ac

y

step size: (Adam: 1.00e+01, Adadelta: 1.00e+04,
Adagrad: 1.00e+03, RMSProp: 1.00e+01,

Momentum: 1.00e-02)

10-2 10-1 100 101 102 103

Time (seconds)

300000

400000

500000

600000

700000

800000

900000

O
bj

ec
ti

ve
 F

un
ct

io
n

-
Tr

ai
ni

ng

step size: (Adam: 1.00e+01, Adadelta: 1.00e+04,
Adagrad: 1.00e+03, RMSProp: 1.00e+01,

Momentum: 1.00e-02)

10-2 10-1 100 101 102

Time in (seconds)

0

10

20

30

40

50

60

70

Te
st

 A
cc

ur
ac

y

step size: (Adam: 1.00e+02, Adadelta: 1.00e+04,
Adagrad: 1.00e+02, RMSProp: 1.00e+01,

Momentum: 1.00e+00)

10-2 10-1 100 101 102

Time (seconds)

300000

400000

500000

600000

700000

800000

900000

O
bj

ec
ti

ve
 F

un
ct

io
n

-
Tr

ai
ni

ng

step size: (Adam: 1.00e+02, Adadelta: 1.00e+04,
Adagrad: 1.00e+02, RMSProp: 1.00e+01,

Momentum: 1.00e+00)

Using 1-GPU-1-CPU-core for Tensorflow implementations. Newton-type methods use 1-GPU-1-CPU-core.

50

Table 2.4.: Performance comparison between our proposed methods and existing quasi-newton methods.

Time vs. Accuracy Time vs. Misfit Time vs. Accuracy Time vs. Misfit
Alg. 1 Gradient Sample Size = 100% Alg. 1 Gradient Sample Size = 20%

Alg. 1 Hessian Sample Size = 5% Alg. 1 Hessian Sample Size = 5%
BFGS-25

BFGS-50

BFGS-100

SR1-25

SR1-50

SR1-100

NonLinearCG SubSampledNewton FullNewton

10-2 10-1 100 101 102

Time in (seconds)

0

10

20

30

40

50

60

70
T
e
st

 A
cc

u
ra

cy

10-2 10-1 100 101 102

Time (seconds)

400000

500000

600000

700000

800000

900000

O
b
je

ct
iv

e
 F

u
n
ct

io
n
 -

 T
ra

in
in

g

10-2 10-1 100 101 102

Time in (seconds)

0

10

20

30

40

50

60

70

T
e
st

 A
cc

u
ra

cy

10-2 10-1 100 101 102

Time (seconds)

400000

500000

600000

700000

800000

900000

O
b
je

ct
iv

e
 F

u
n
ct

io
n
 -

 T
ra

in
in

g

Covertype

10-2 10-1 100 101

Time in (seconds)

50

60

70

80

90

100

T
e
st

 A
cc

u
ra

cy

10-2 10-1 100 101

Time (seconds)

1000

2000

3000

4000

O
b
je

ct
iv

e
 F

u
n
ct

io
n
 -

 T
ra

in
in

g

10-2 10-1 100 101 102

Time in (seconds)

0

20

40

60

80

100

T
e
st

 A
cc

u
ra

cy

10-2 10-1 100 101 102

Time (seconds)

1000

2000

3000

4000

O
b
je

ct
iv

e
 F

u
n
ct

io
n
 -

 T
ra

in
in

g

Gisette

10-2 10-1 100 101 102

Time in (seconds)

20

30

40

50

60

70

80

90

100

T
e
st

 A
cc

u
ra

cy

10-2 10-1 100 101 102

Time (seconds)

10000

20000

30000

40000

O
b
je

ct
iv

e
 F

u
n
ct

io
n
 -

 T
ra

in
in

g

10-2 10-1 100 101 102

Time in (seconds)

0

20

40

60

80

100

T
e
st

 A
cc

u
ra

cy
10-2 10-1 100 101 102

Time (seconds)

10000

20000

30000

40000

O
b
je

ct
iv

e
 F

u
n
ct

io
n
 -

 T
ra

in
in

g

real-sim

51

2.8 Additional Performance Comparisons with Quasi-Newton methods

2.8.1 Covertype Dataset

Row 1 of Table. 2.4 plots the results for the Covertype dataset. We clearly notice

that Newton-type methods outperform quasi-Newton methods and achieve superior

generalization results throughout the simulation irrespective of the gradient sample

size. We also notice that with the smaller gradient sample size quasi-Newton methods

are negatively affected (achieve higher obj function values compared to their full

gradient counterparts) and, some of the quasi-Newton methods, BFGS-25, display

divergent behavior in minimizing the objective function. On the other hand, Newton-

type methods are robust to such changes in gradient sample sizes.

2.8.2 Gisette and Real-Sim Datasets

Rows 2 and 3 plot the results for datasets Gisette and Real-Sim, respectively in Ta-

ble. 2.4. When full-gradient is used BFGS-25 and NonlinearCG achieve comparable

objective function values to Newton-type methods at the very end of the simulation.

However, for the Gisette dataset, we notice that NonlinearCG and function value

during the first few epochs. When subsampled gradient is used SR1 variants diverge

for both these datasets. With Real-Sim dataset, NonlinearCG and BFGS variants

lower objective function value with FullNewton achieving the lowest value during the

later part of the simulation.

52

3. NEWTON-ADMM: A DISTRIBUTED

GPU-ACCELERATED OPTIMIZER FOR MULTICLASS

CLASSIFICATION PROBLEMS

First-order optimization methods, such as SGD and its variants, are widely used in

machine learning tasks due to their simplicity and low per-iteration costs. However,

they often require larger numbers of iterations, with associated communication costs

in distributed environments. In contrast, Newton-type methods, while having higher

per-iteration costs, typically require a significantly smaller number of iterations, which

directly translates to reduced communication costs.

In this chapter, we present a novel distributed optimization method, which inte-

grates a GPU-accelerated Newton-type solver with the global consensus formulation

of Alternating Direction of Method Multipliers (ADMM). By leveraging the com-

munication efficiency of ADMM, GPU-accelerated inexact-Newton solver, and spec-

tral penalty parameters selection strategy, we show that our proposed method (i)

yields better generalization performance on several classification tasks; (ii) outper-

forms state-of-the-art methods in distributed time to solution; and (iii) offers better

scaling on large distributed platforms.

3.1 Introduction

Estimating the parameters of a model from a given dataset is a critical component

of a wide variety of machine learning applications. The parameter estimation problem

is often translated to one of finding a minima of a suitably formulated objective

function. The key challenges in modern “big-data” problems relate to very large

numbers of model parameters (which translates to high dimensional optimization

problems), large training sets, and learning models with low generalization errors.

53

Recognizing the importance of the problem, a significant amount of research effort

has been invested into addressing these challenges.

The most commonly used optimization technique in machine learning is gradient

descent and its stochastic version, stochastic gradient descent (SGD). Algorithms

such as gradient descent, that solely rely on gradient information, are often referred

to as first-order methods. Recent results [7–9, 41] have shown that use of curvature

information in the form of Hessian, or approximations thereof, can lead to significant

improvements in terms of performance as manifest in their convergence rate, time,

and quality of solutions.

A key challenge in optimization for machine learning problems is the large, often,

distributed nature of the training dataset. It may be infeasible to collect the entire

training set at a single node and process it serially because of resource constraints (the

training set may be too large for a single mode), privacy (data may be constrained to

specific locations), or the need for reducing optimization time. In each of these cases,

there is a need for optimization methods that are suitably adapted to the parallel and

distributed computing environments.

Distributed optimization solvers adopt one of two strategies – (i) executing each

operation in conventional solvers (e.g., SGD or (quasi) Newton) in a distributed envi-

ronment, e.g., [42–49]; or (ii) executing an ensemble of local optimization procedures

that operate on their own data, with a coordinating procedure that harmonizes the

models over iterations, e.g., [50, 51]. The trade-offs between these two methods are

relatively well understood in the context of existing solvers – namely that the com-

munication overhead of methods in the first class is higher, whereas, the convergence

rate of the second class of methods is compromised. For this reason, methods in the

first class are generally preferred in tightly coupled data-center type environments,

whereas methods in the latter class are preferred for wide area deployments.

Alternating Direction Method of Multipliers (ADMM), is a well known method

in distributed optimization for solving consensus problems [52]. To achieve superior

convergence and efficient solution of the corresponding sub-problems, the choices of

54

the penalty parameter and inner sub-problem solver are critical. In particular, the

quality of inner sub-problem solutions dictates the accuracy of the descent direc-

tion computed by ADMM; see Appendix 3.5.3. To this end, we use the Spectral

Penalty Selection (SPS) [50] for setting the penalty parameters and employ a variant

of Newton’s method as sub-problem solver. This is motivated by the observation

that first-order solvers are known to suffer from slow convergence rates, and are no-

toriously sensitive to problem ill-conditioning and the choice of hyper-parameters. In

contrast, Newton-type methods are less sensitive to such adversarial effects. However,

this feature comes with increased per-iteration computation cost. In our solution, we

leverage lower iteration counts to minimize communication cost and efficient GPU

implementations to address increased computational cost.

Contributions: Our contributions can be summarized as follows:

• We propose a novel distributed, GPU-accelerated Newton-type method based on

an ADMM framework that has low communication overhead, good per-iteration

compute characteristics through effective use of GPU resources, superior conver-

gence properties, and minimal resource overhead.

• Using a range of real-world datasets (both sparse and dense), we demonstrate

that our proposed method yields significantly better results compared to a variety

of state-of-the-art distributed optimization methods.

• Our pyTorch implementation is publicly available and can be readily used for

practical applications by data scientists and it can be easily adopted to other

well-known tools like Tensoflow.

3.1.1 Related Research

First-order methods [53,54] – gradient descent and its variants are commonly used

in ML applications. This is mainly because these methods are simple to implement

and have low per-iteration costs. However, it is known that these methods often take

55

a large number of iterations to achieve reasonable generalization. This is primarily

attributed to their sensitivity to problem ill-conditioning. Second-order methods

make use of curvature information, in the form the Hessian matrix, and as a result

are more robust to problem ill-conditioning [8, 9], and to hyper-parameter tuning

[6,7]. However, they can have higher memory and computation footprints due to the

application of the Hessian matrix. In this context, quasi-Newton methods [1] can be

used to approximate the Hessian by using the history of gradients. However, a history

of gradients must be stored in order to approximate the Hessian matrix, and extra

computation cost is incurred to satisfy the strong Wolfe condition. In addition, these

methods are observed to be unstable when used on mini-batches [41].

Several distributed solvers have been developed recently [42–49]. Among these,

[42–45] are classified as first-order methods. Although they incur low computa-

tional costs, they have higher communication costs due to a large number of mes-

sages exchanged per mini-batch and high total iteration counts. Second-order vari-

ants [46–49, 55] are designed to improve convergence rate, as well as to reduce com-

munication costs. DANE [47], and the accelerated scheme AIDE [48] use SVRG [56]

as the subproblem solver to approximate the Newton direction. These methods are

often sensitive to the fine-tuning of SVRG. DiSCO [49] uses distributed precondi-

tioned conjugate gradient (PCG) to approximate the Newton direction. The number

of communications across nodes per PCG call is proportional to the number of PCG

iterations. In contrast to DiSCO, GIANT [46] executes CG at each node and approx-

imates the Newton direction by averaging the solution from each CG call. Empirical

results have shown that GIANT outperforms DANE, AIDE, and DiSCO. The solver

of Dunner et al. [57] is shown to outperform GIANT, however, it is restricted to sparse

datasets. More recently, DINGO [55] has been developed, which unlike GIANT, can

be applied to a class of non-convex functions, namely invex [58], that includes con-

vexity as a special sub-class. However, in the absence of invexity, the method can

converge to undesirable stationary points.

56

A popular choice in distributed settings is ADMM [52], which combines dual

ascent method and the method of multipliers. ADMM only requires one round of

communication per iteration. However, ADMM’s performance is greatly affected by

the selection of the penalty parameter [50,51] as well as the choice of local subproblem

solvers.

3.2 Problem Formulation and Algorithm Details

In this section, we describe the optimization problem formulation, and present

our proposed Newton-ADMM optimizer.

3.2.1 Problem Formulation

Consider a finite sum optimization problem of the form:

min
x∈Rd

F (x) ,
n∑
i=1

fi(x) + g(x), (3.1)

where each fi(x) is a smooth convex function and g(x) is a (strongly) convex and

smooth regularizer. In ML applications, fi(x) can be viewed as loss (or misfit) corre-

sponding to the ith observation (or measurement) [11–13,59]. In our study, we choose

multi-class classification using soft-max and cross-entropy loss function, as an impor-

tant instance of finite sum minimization problem. Consider a p dimensional feature

vector a, with corresponding labels b, drawn from C classes. In such a classifier, the

probability that a belongs to a class c ∈ {1, 2, . . . , C} is given by:

Pr (b = c | a,x1, . . . ,xC) =
e〈a,xc〉∑C
c′=1 e

〈a,xc′ 〉
,

where xc ∈ Rp is the weight vector corresponding to class c. Recall that there are

only C − 1 degrees of freedom, since probabilities must sum to one. Consequently,

57

for training data {ai, bi}ni=1 ⊂ Rp × {1, 2, . . . , C}, the cross-entropy loss function for

x = [x1; x2; . . . ; xC−1] ∈ R(C−1)p can be written as:

F (x) , F (x1,x2, . . . ,xC−1)

=
n∑
i=1

(
log

(
1 +

C−1∑
c′=1

e〈ai,xc′ 〉

)
−

C−1∑
c=1

1(bi = c)〈ai,xc〉

)
. (3.2)

Note that d = (C − 1)p. After the training phase, a new data instance a is classified

as:

b = arg max


{

e〈a,xc〉∑C−1
c′=1 e

〈a,xc′ 〉

}C−1

c=1

, 1− e〈a,x1〉∑C
c′=1 e

〈a,xc′ 〉

 .

3.2.2 ADMM Framework

Let N denote the number of nodes (compute elements) in the distributed envi-

ronment. Assume that the input dataset D is split among the N nodes as D =

D1 ∪ D2 . . . ∪ DN . Using this notation, (3.1) can be written as:

min
N∑
i=1

∑
j∈Di

fj(xi) + g(z) (3.3)

s.t. xi − z = 0, i = 1, . . . ,N ,

where z represents a global variable enforcing consensus among xi’s at all the nodes.

In other words, the constraint enforces a consensus among the nodes so that all the

local variables, xi, agree with global variable z. The formulation (3.3) is often referred

to as a global consensus problem. ADMM is based on an augmented Lagrangian

framework; it solves the global consensus problem by alternating iterations on primal/

dual variables. In doing so, it inherits the benefits of the decomposability of dual

ascent and the superior convergence properties of the method of multipliers.

58

ADMM methods introduce a penalty parameter ρ, which is the weight on the

measure of disagreement between xi’s and global consensus variable, z. The most

common adaptive penalty parameter selection is Residual Balancing [52], which tries

to balance the dual norm and residual norm of ADMM. Recent empirical results using

SPS [50], which is based on the estimation of the local curvature of subproblem on

each node, yields significant improvement in the efficiency of ADMM. Using the SPS

strategy for penalty parameter selection, ADMM iterates can be written as follows:

xk+1
i = arg min

xi

fi(xi) +
ρki
2
||zk − xi +

yki
ρki
||22, (3.4a)

zk+1 = arg min
z

g(z) +
N∑
i=1

ρki
2
||z− xk+1

i +
yki
ρki
||22, (3.4b)

yk+1
i = yki + ρki (z

k+1 − xk+1
i). (3.4c)

With `2−regularization, i.e., g(x) = λ‖x‖2/2, (3.4b) has a closed-form solution given

by

zk+1(λ+
N∑
i=1

ρki) =
N∑
i=1

[
ρki x

k+1
i − yki

]
, (3.5)

where λ is the regularization parameter.

Algorithm 11 presents our proposed method incorporating the above formulation

of ADMM.

Steps 11-11 initialize the multipliers, y, and consensus vectors, z, to zeros. In

each iteration, Single Node Newton method, Algorithm 13, is run with local xi, yi,

and global z vectors. Upon termination of Algorithm 13 at all nodes, resulting local

Newton directions, xki , are gathered at the master node, which generates the next

iterates for vectors y and z using spectral step sizes described in [50]. These steps

are repeated until convergence.

Remark 3 Note that in each ADMM iteration only one round of communication is

required (a “gather” and a “scatter” operation), which can be executed in O(log(N))

time. Further, the application of the GPU-accelerated inexact Newton-CG Algorithm

59

Algorithm 11: ADMM method (outer solver)

Input : x(0) (initial iterate), N (no. of nodes)
Parameters: β, λ and θ < 1
Initialize z0 to 0
Initialize y0

i to 0 on all nodes.
foreach k = 0, 1, 2, . . . do

Perform Algorithm 13 with, xki , yki , and zk on all nodes
Collect all local xk+1

i

Evaluate zk+1 and yk+1
i using (3.4b) and (3.4c).

1 Distribute zk+1 and yk+1
i to all nodes.

Locally, on each node, compute spectral step sizes and
penalty parameters as in [50]

end

13 at each node significantly speeds-up the local computation per epoch. The com-

bined effect of these algorithmic choices contribute to the high overall efficiency of the

proposed Newton-ADMM Algorithm 11, when applied to large datasets.

ADMM Residuals and Stopping Criteria

The consensus problem (3.3) can be solved by iterating ADMM subproblems

(3.4a), (3.4c), and (3.4b). To monitor the convergence of ADMM, we can check

the norm of primal and dual residuals, rk and dk, which are defined as follows:

rk =


rk1
...

rkN

 ,dk =


dk1
...

dkN

 (3.6)

where ∀i ∈ {1, 2, . . . ,N},

rki = zk − xki ,d
k
i = −ρki (zk − zk−1) (3.7)

60

As k → ∞, zk → z∗ and ∀i,xki → z∗. Therefore, the norm of primal and dual

residuals, ||rk|| and ||dk||, converge to zero. In practice, we do not need the solution

to high precision, thus ADMM can be terminated as ||rki || ≤ εpri and ||dki || ≤ εdual .

Here, εpri and εdual can be chosen as:

εpri =
√
N εabs + εrel max{

N∑
i=1

||xki ||2,N||zk||2} (3.8)

εdual =
√
dεabs + εrel max{

N∑
i=1

||yki ||2} (3.9)

The choice of absolute tolerance εabs depends on the chosen problem and the choice

of relative tolerance εrel for the stopping criteria is, in practice, set to 10−3 or 10−4.

3.2.3 Inexact Newton-CG Solver

For the optimization problem (3.1), in each iteration, the gradient and Hessian

are given by

g(x) ,
∑
j∈D

∇fj(x) +∇g(x),

(3.10a)

H(x) ,
∑
j∈D

∇2fj(x) +∇2g(x).

(3.10b)

At each iterate x(k), using the corresponding Hessian, H(x(k)), and the gradient,

g(x(k)), we consider inexact Newton-type iterations of the form:

x(k+1) = x(k) + αkpk, (3.11a)

61

where pk is a search direction satisfying:

‖H(x(k))pk + g(x(k))‖ ≤ θ‖g(x(k))‖, (3.11b)

for some inexactness tolerance 0 < θ < 1 and αk is the largest α ≤ 1 such that

F (x(k) + αpk) ≤ F (x(k)) + αβpTk g(x(k)), (3.11c)

for some β ∈ (0, 1).

Requirement (3.11c) is often referred to as Armijo-type line-search [1]. To compute

the step-size, α in eq. (3.11c), we use a backtracking line search, as shown in algorithm

12. This function takes parameters, α as initial step-size, which in our case is always

set to 1, β < 1, p is the Newton-direction, and the gradient vector is g. The loop at

line 12 is repeated until desired reduction is achieved along the Newton-direction, p,

by successively decreasing the step-size by a factor γ < 1.

Condition (3.11b) is the θ-relative error approximation of the exact solution to

the linear system:

H(x(k))pk = −g(x(k)), (3.12)

Note that in (strictly) convex settings, where the Hessian matrix is symmetric positive

definite (SPD), conjugate gradient (CG) with early stopping can be used to obtain

an approximate solution to (3.12) satisfying (3.11b). In [8,9], it has been shown that

a mild value for θ, in the order of inverse of square-root of the condition number, is

sufficient to ensure that the convergence properties of the exact Newton’s method

are preserved. As a result, for ill-conditioned problems, an approximate solution

to (3.12) using CG yields good performance, comparable to an exact update (see

examples in Section 3.3). Putting all of these together, we obtain Algorithm 13,

which is known to be globally linearly convergent, with problem-independent local

convergence rate [8, 9].

62

Algorithm 12: Line Search

Input :
x - Current point
p - Newton’s direction
F (.) - Function pointer
g(x) - Gradient vector

Parameters:
α - Initial step size
0 < β < 1 - Sufficient descent constant
0 < γ < 1 - Back-tracking parameter
imax - Maximum line search iterations

α = 1
i = 0
while F (x + αp) > F (x) + αβpTg(x) do

if i > imax then
1 break

end
i = i+ 1
α← γα

end

Algorithm 13: Inexact Newton-type Method

Input : x(0)

Parameters: 0 < β, θ < 1
foreach k = 0, 1, 2, . . . do

Form g(x(k)) and H(x(k)) as in (3.10)
if ‖g(x(k))‖ < ε then

STOP
end

Update x(k+1) as in (3.11)
end

3.3 Experimental Evaluation

In this section, we evaluate the performance of Newton-ADMM as compared with

several state-of-the-art alternatives.

63

Table 3.1.: Description of the datasets.

Classes Dataset Train Size Test Size Dims

2 HIGGS 10,000,000 1,000,000 28
10 MNIST 60,000 10,000 784
10 CIFAR-10 50,000 10,000 3,072
20 E18 1,300,128 6,000 279,998

Experimental Setup and Data: All algorithms are implemented in PyTorch re-

lease ”0.3.0.post4” with Message Passing Interface (MPI) backend. We test perfor-

mance of the methods on two hardware platforms. The first platform is a server with

384 Intel Xeon Platinum 8168 processors and 8 Tesla P100 GPU cards. The second

platform is a CentOS 7 cluster with 15 nodes with 100 Gbps Infiniband interconnect.

Each node has 96GB RAM, two 12-Core Intel Xeon Gold processors, and 3 Tesla

P100 GPU cards. We validate our proposed method using real-world datasets, de-

scribed in Table 3.1, and compare with state-of-the-art first-order and second-order

optimizers. These datasets are chosen to cover a wide range of problem characteristics

(problem-conditioning, features, problem-size). MNIST is a widely used dataset for

validation – it is relatively well-conditioned. CIFAR-10 is 3.9x larger than MNIST

and is relatively ill-conditioned. HIGGS is a low-dimensional dataset, however is the

largest (in terms of problem size) compared to the rest. This dataset is easy to solve

for our algorithm, but is harder for first-order variants because of high communication

overhead. The largest data set, E18 , in terms of dimension and number of samples,

is used to highlight the scalability of our proposed method.

Comparison with Distributed First-order Methods. While the per-iteration

cost of first-order methods is relatively low, they require larger number of iterations,

increasing associated communication overhead, and CPU-GPU transactions, if GPUs

are used (Please see detailed discussion in section 3.5.1). In this experiment, we

demonstrate that these drawbacks of first order methods are significant, in the context

of MNIST, CIFAR-10, HIGGS, and E18 datasets using 4 workers for Newton-ADMM

64

and synchronous SGD, both with the GPUs enabled and GPUs disabled. The results

are shown in Figure 3.1. Specifically, we note that GPU-accelerated Newton-ADMM

method with minimal communication overhead yields significantly better results –

over an order of magnitude faster in most cases, when compared to synchronous

SGD.

We present the ratio of CPU time to GPU time for Newton-ADMM and SGD

in Table 3.2. We observe that for both Newton-ADMM and SGD, the CPU-GPU

time ratio is proportional to the dimensions of datasets. For example, on the dataset

with the lowest dimension (HIGGS), the CPU-GPU time ratio is the least for both

Newton-ADMM and SGD, whereas on the dataset with the highest dimension (E18),

the CPU-GPU time ratios are the highest for both Newton-ADMM and SGD. In all

cases, the use of GPUs results in highest speedup for Newton-ADMM. The gain in

GPU utilization is compromised by large number of CPU-GPU memory transfers for

SGD. As a result, SGD shows meaningful GPU acceleration only for the E18 dataset.

Second, we observe that Newton-ADMM has much lower communication cost,

compared to SGD. This can be observed from the Figure 3.1. In all cases, SGD

takes longer than Newton-ADMM with GPUs enabled. This is mainly because SGD

requires a large number of gradient communications across nodes. As a result, we

observe that Newton-ADMM is 4.9x, 6.3x, 22.6x, and 17.8x, times faster than SGD

on MNIST, CIFAR-10, HIGGS, and E18 datasets, respectively.

Finally, we conclude that Newton-ADMM has superior convergence properties

compared to SGD. This is demonstrated in Figure 3.1 for the HIGGS dataset. We

observe that Newton-ADMM converges to low objective values in just few iterations.

On the other hand, the objective value, even at 100-th epoch for SGD, is still higher

than Newton-ADMM.

Comparison with Distributed Second-order Methods. We compare Newton-

ADMM against DANE [47], AIDE [48], and GIANT [46], which have been shown

in recent results to perform well. In each iteration, DANE [47] requires an exact

65

0 100 101 102

Time (seconds)

1

2

Tr
ai

ni
ng

 O
bj

. F
un

ct
io

n MNIST

0 100 101 102

Time (seconds)

25

50

75

Te
st

 A
cc

ur
ac

y

MNIST

0 100 101 102

Time (seconds)

1.8

2.0

2.2

Tr
ai

ni
ng

 O
bj

. F
un

ct
io

n CIFAR-10

0 100 101 102

Time (seconds)

10

20

30

40

Te
st

 A
cc

ur
ac

y

CIFAR-10

0100 101 102 103

Time (seconds)

0.64

0.66

0.68

Tr
ai

ni
ng

 O
bj

. F
un

ct
io

n HIGGS

0100 101 102 103

Time (seconds)

55

60

Te
st

 A
cc

ur
ac

y

HIGGS

0100 101 102 103 104

Time (seconds)

0

1

2

3

Tr
ai

ni
ng

 O
bj

. F
un

ct
io

n E18

0100 101 102 103 104

Time (seconds)

20

40

60

80

Te
st

 A
cc

ur
ac

y

E18

Newton-ADMM-GPU Newton-ADMM-CPU SGD-GPU SGD-CPU

Fig. 3.1.: Training objective function and test accuracy as functions of time for
Newton-ADMM and synchronous SGD, both with GPU enabled and GPU disabled,
with 4 workers. Overall, Newton-ADMM favors GPUs, enjoys minimal communica-
tion overhead, and enjoys faster convergence compared to synchronous SGD.

Table 3.2.: GPU Speedup for Newton-ADMM and SGD.

CPU/GPU
Time Ratio

Newton-ADMM SGD

MNIST 44.7345904 0.47896507

CIFAR-10 112.670178 0.8212862

HIGGS 11.842679 0.26789652

E18 154.425688 1.54673642

solution of its corresponding subproblem at each node. This constraint is relaxed

in an inexact version of DANE, called InexactDANE [48], which uses SVRG [56] to

approximately solve the subproblems. Another version of DANE, called Accelerated

Inexact DanE (AIDE), proposes techniques for accelerating convergence, while still

using InexactDANE to solve individual subproblems [48]. However, using SVRG to

solve subproblems is computationally inefficient due to its double loop formulation,

with the outer loop requiring full gradient recalculation and several stochastic gradient

calculations in inner loop.

66

Figure 3.2 shows the comparison between these methods on the MNIST dataset

with λ = 10−5. Although InexactDANE and AIDE start at lower objective function

values, the average epoch time compared to Newton-ADMM and GIANT is orders

of magnitude higher (order of 1000x). For instance, to reach an objective function

value less than 0.25 on the MNIST dataset, Newton-ADMM takes only 2.4 seconds,

whereas InexactDANE consumes an hour and a half. Since InexactDANE and AIDE

are significantly slower than Newton-ADMM and GIANT (on other datasets as well

– for which we do not show results here), we restrict our discussion of results on

performance and scalability to Newton-ADMM and GIANT in the rest of this section.

Fig. 3.2.: Training objective function and test accuracy comparison over time
for Newton-ADMM, GIANT, InexactDANE, and AIDE on MNIST dataset with
λ = 10−5. We run both Newton-ADMM and GIANT for 100 epochs. Since the
computation times per epoch for InexactDANE and AIDE are high, we only run 10
epochs for these methods. We present details of hyperparameter settings in 3.5.4.

Scalability of Newton-ADMM. Figure 3.3 presents strong- and weak-scaling re-

sults for Newton-ADMM and GIANT. In strong-scaling experiments, we keep the

67

number of training samples constant, while increasing the number of workers, and

for weak-scaling, the number of the training samples per node is kept constant. For

strong-scaling, as number of workers increases, average epoch time for both Newton-

ADMM and GIANT decreases. For all the datasets, as the number of workers is

doubled, the average epoch time halved for both methods. For weak scaling, as the

number of workers doubles, the average epoch time nearly remains constant for both

methods. Both Newton-ADMM and GIANT use CG to compute Newton directions.

However, compared to GIANT, Newton-ADMM has lower epoch times for the fol-

lowing reasons: first, to guarantee global convergence on non-quadratic problems,

GIANT uses a globalization strategy based on line search. For this, the i-th worker

computes the local objective function values fDi
(xi + αp) for all α’s in a pre-defined

set of step-sizes S = {20, 2−1, ..., 2−k}, where k is the maximum number of line search

iterations. Thus, for each epoch, all workers need to compute a fixed number of ob-

jective function values. In contrast, Newton-ADMM performs line search only locally,

allowing each worker to terminate line search before reaching the maximum number

of line search iterations, and hence reducing the overhead of redundant computations.

Second, Newton-ADMM only requires one round of messages per iteration, whereas

GIANT needs three. Our experiments are performed on a Gigabit-interconnet clus-

ter, where communication fabric is highly optimized. However, in environments with

lower bandwidth and higher latency, we expect Newton-ADMM to perform signifi-

cantly better compared to GIANT.

We now compare the convergence of Newton-ADMM with GIANT in a distributed

setting. Instead of comparing the test accuracy or objective value over time, we

compare how close the objective value obtained from the solver is to the optimal

objective value. Specifically, define θ = (F (xk)− F (x∗))/F (x∗), we measure θ as a

function of time. (Here, F (.) denotes the objective function, xk is the approximate

solution obtained by the solver at the k-th iterate, and the “optimal” solution vector

x∗ is obtained by running Newton’s method on a single node to high precision). Figure

3.4 shows θ, in log scale, as a function of time for MNIST, CIFAR-10, and HIGGS

68

ADMM-E18 ADMM-MNIST ADMM-CIFAR ADMM-HIGGS
GIANT-E18 GIANT-MNIST GIANT-CIFAR-10 GIANT-HIGGS

0

500

1000

1500

2000

2500

3000

s1 s2 s4 s8

Av
g.
	E
po

ch
	T
im

e(
m
s)

0

500

1000

1500

2000

2500

w1 w2 w4 w8

Av
g.
	E
po

ch
	T
im

e(
m
s)

Fig. 3.3.: Avg. Epoch Time for Strong and Weak Scaling for Newton-ADMM and
GIANT.

using 8 compute nodes. From Figure 3.4, we observe that, given the same amount of

time, Newton-ADMM can reach lower θ in each case. We also measure the number of

epochs taken by the solver to reach θ < 0.05. Table 3.3 shows the number of epochs for

Newton-ADMM and GIANT to reach θ < 0.05 on 8 nodes. From Table 3.3, we can see

that Newton-ADMM converges to optimal solution significantly faster than GIANT.

Specifically, to reach θ ≤ 0.05, for the MNIST dataset, Newton-ADMM takes 252

epochs while GIANT takes 1086 epochs. For the CIFAR-10 dataset, Newton-ADMM

takes 1204 epochs while GIANT takes 3215 epochs. The speed up ratio on MNIST

and CIFAR-10 is 5.15 and 11.14, respectively. Both Newton-ADMM and GIANT

behave well on HIGGS. It only takes 1 epoch for both solvers to reach θ ≤ 0.05. We

note that the superior performance of these methods on HIGGS does not carry over

to first-order methods.

Finally, we stress that Newton-ADMM scales well on large datasets in large-scale

distributed environments. From Figure 3.5, we note that Newton-ADMM takes sig-

nificantly smaller amount of time to achieve lower objective values and higher test

accuracy on E18 running on 32 compute nodes. The large dimensionality of E18

(280K) highlights the memory- and compute-efficient formulation of our Hessian-

vector products and subproblem solves on GPUs (please see Appendix 3.5.2 for full

69

GPU utilization characteristics of our solvers) – the average epoch time for the E18

dataset on 32 nodes is only 1.98 seconds!

0 100 101 102

Time (seconds)

1.5

1.0

0.5

0.0

0.5

1.0
lo

g 1
0(

)
MNIST

0 100 101 102

Time (seconds)

4

3

2

1

lo
g 1

0(
)

CIFAR-10
Newton-ADMM GIANT

0 100

Time (seconds)

4.0

3.5

3.0

2.5

2.0

1.5

1.0

lo
g 1

0(
)

HIGGS

Fig. 3.4.: log10(θ) as a function of time for Newton-ADMM and GIANT on MNIST,
CIFAR-10, and HIGGS datasets. Newton-ADMM can reach lower θ, given the same
amount of time, compared to GIANT. Note that for the HIGGS dataset, both meth-
ods can reach low θ soon.

0 100 101 102

Time (seconds)

20

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y

E18 Newton-ADMM GIANT

0 100 101 102

Time (seconds)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

ni
ng

 O
bj

. F
un

ct
io

n

E18

Fig. 3.5.: Training objective function and test accuracy as function of time for
Newton-ADMM and GIANT on E18 dataset using 32 nodes. We note that GIANT
lingers at higher objective values in the initial iterations, while Newton-ADMM drops
to lower objective values rapidly.

70

Table 3.3.: Performance comparison of Newton-ADMM and GIANT – we present the
number of epochs for a solver to reach θ < 0.05. The speedup ratio is defined as the
fraction of time taken by GIANT to achieve a specified value of θ to the corresponding
time taken by Newton-ADMM on the same hardware platform.

NT-ADMM
Epochs

GIANT
Epochs

Speedup

MNIST 252 1086 5.15

CIFAR-10 1204 3215 11.14

HIGGS 1 1 1.35

3.4 Conclusions and Future Directions

We have developed a novel distributed Inexact Newton method based on a global

consensus ADMM formulation. We compare our method with state-of-the-art op-

timization methods and show that our method has much lower distributed over-

head, achieves superior generalization errors, and has significantly lower epoch-times

on standard benchmarks. We have also shown that our method can handle large

datasets, while delivering sub-second epoch times – establishing desirable scalability

characteristics of our method. Our results establish Inexact Newton-ADMM as the

new benchmark for performance of distributed optimization techniques.

3.5 Appendix

We discuss GPU utilization, numerical stability of the cross-entropy loss function,

and introduce our highly optimized implementation of Hessian Vector products. We

also demonstrate that ADMM with Newton-type inner solver outperforms ADMM

with L-BFGS inner solver. Finally, a detailed description of parameter settings in all

experiments is discussed.

71

3.5.1 On GPU Utilization

Our proposed methods use Inexact Newton-type iterates, with a linear-quadratic

convergence rate for strongly convex sub-problems (3.4a). Besides theoretical per-

formance guarantees, our proposed method has practical implications resulting in

significantly lower computation time. In practice, mini-batch stochastic gradient de-

scent is widely used over full-batch gradient descent and other methods. However,

this method requires a large number of epochs to achieve good generalization er-

rors. Furthermore, the mini-batch update scheme results in significantly lower GPU

occupancy (idle GPU cores because of smaller batch sizes). The number of CPU-

GPU memory transfers per epoch for mini-batch SGD is n
m

, where n is the size of

dataset, and m is the size of mini-batch. Usually, n >> 1 and m is typically be-

tween a hundred and a thousand. In contrast, Newton’s method utilizes the complete

dataset for computing direction. Therefore, there is only one CPU-GPU memory

transfer for computing Newton direction, which greatly increases utilization of the

GPU for reasonably sized datasets. With the judicious mix of statistical methods

and carefully formulated Hessian-vector operations, we are able to transform this

computation-heavy operation into an efficient and highly scalable GPU-accelerated

operation with low memory overhead, please see details in Appendix 3.5.2. For this

reason, Newton’s method, in general, is more suitable for high GPU utilization, due

to low CPU-GPU data transfer cost, compared to SGD. Furthermore, in distributed

implementations, Synchronous SGD induces a communication overhead of nd log(N)
mN ,

where usually d >> 1.

72

Numerical Stability

To avoid over-flow in the evaluation of exponential functions in (3.2), we use

the “Log-Sum-Exp” trick [36]. Specifically, for each data point ai, we first find the

maximum value among 〈ai,xc〉, c = 1, . . . , C − 1. Define:

M(a) = max
{

0, 〈a,x1〉, 〈a,x2〉, . . . , 〈a,xC−1〉
}
, (3.13)

and

α(a) := e−M(a) +
C−1∑
c′=1

e〈a,xc′ 〉−M(a). (3.14)

Note that M(a) ≥ 0, α(a) ≥ 1. Now, we have:

1 +
C−1∑
c′=1

e〈ai,xc′ 〉 = eM(ai)α(ai).

For computing (3.2), we use:

log

(
1 +

C−1∑
c′=1

e〈ai,xc′ 〉

)

= M(ai) + log

(
e−M(ai) +

C−1∑
c′=1

e〈ai,xc′ 〉−M(ai)

)
= M(ai) + log

(
α(ai)

)
.

Note that in all these computations, we are guaranteed to have all the exponents

appearing in all the exponential functions to be negative, hence avoiding numerical

over-flow.

73

3.5.2 Hessian Vector Product

Given a vector v ∈ Rd, we can compute the Hessian-vector product without

explicitly forming the Hessian. For notational simplicity, define

h(a,x) :=
e〈a,x〉−M(x)

α(a)
,

where M(x) and α(x) were defined in eqs. (3.13) and (3.14), respectively. Now using

matrices

V =


〈a1,v1〉 〈a1,v2〉 . . . 〈a1,vC−1〉

〈a2,v1〉 〈a2,v2〉 . . . 〈a2,vC−1〉
...

...
. . .

...

〈an,v1〉 〈an,v2〉 . . . 〈an,v(C−1)〉


n×(C−1)

, (3.15)

and

W =


h(a1,x1) h(a1,x2) . . . h(a1,xC−1)

h(a2,x1) h(a2,x2) . . . h(a2,xC−1)
...

...
. . .

...

h(an,x1) h(an,x2) . . . h(an,xC−1)


n×(C−1)

, (3.16)

we compute

U = V �W −W �
((

(V �W) e
)
eT
)
, (3.17)

to get

Hv = vec
(
ATU

)
, (3.18)

74

where v = [v1; v2; . . . ; vC−1] ∈ Rd, vi ∈ Rp, i = 1, 2, . . . , C − 1, e ∈ RC−1 is a vector

of all 1’s, and each row of the matrix A ∈ Rn×p is a row vector corresponding to the

ith data point, i.e, AT =
[
a1, a2, . . . , an

]
.

Remark 4 Note that the memory overhead of our GPU-accelerated Newton-type

method is determined by the dimensions of the matrices U, V and W, which are

determined by the local dataset size and number of classes in multi-class classification

problem at hand. With reasonably sized GPU clusters this memory footprint can be

easily managed for significantly large datasets. This enables Newton-type method to

scale to large problems inaccessible to traditional second-order methods.

3.5.3 Newton-type method as a highly efficient subproblem solver for

ADMM:

We establish (GPU-accelerated) Newton-type optimizer as a highly efficient inner

solver for ADMM by comparing its performance against an ADMM-L-BFGS solver.

The per-iteration computation cost and memory footprint of L-BFGS is lower than

our Newton-type method because of the rank-2 approximation of the Hessian matrix.

This, however, comes at the cost of a worse convergence rate for L-BFGS. While

Newton-type methods compute matrix vector products with the full Hessian, we use a

Conjugate Gradient method with early stopping to solve the linear system, Hx = −g.

In our experiments we use no more than 10 CG iterations and a tolerance level of

10−3. This resulting Inexact Newton-type method is GPU-accelerated, and with an

efficient implementation of Hessian-vector product, we show that in practice, ADMM

method suitably aided by efficient implementation of Newton-type subproblem solvers

yield significantly better results compared to the state-of-the-art. Furthermore, the

use of true Hessian in our inexact solver, a second-order method, makes it resilient to

problem ill-conditioning and immune to hyper-parameter tuning. These results are

shown in Figure 3.6. We clearly notice that the performance gap between L-BFGS

and Inexact Newton-type method becomes larger when number of compute nodes is

75

increased. The only exception is on HIGGS dataset. This is because the dimension of

the HIGGS datasets is only 28 and it is a binary classification problem such that the

dimension of Hessian is significantly lower than among all the datasets. In this case,

L-BFGS solver yields similar results compared to our Inexact Newton method. Most

importantly, we note the following key results: (i) Inexact Newton yields performance

improvements from 0 (MNIST) to 550% (HIGGS and CIFAR-10) over L-BFGS on a

single node; (ii) when using 8 compute nodes, the performance of L-BFGS-ADMM

never catches up with that of Newton-ADMM (in terms of training objective function)

in three of four benchmarks (MNIST, CIFAR-10, and E18), conclusively establishing

the superiority of our proposed method over L-BFGS-ADMM.

103 104 105

Time (ms)

0.6

0.8

1.0

wo

rk
er

s =
 1

Bi
na

ry
 C

la
ss

Tr
ai

ni
ng

 O
bj

. F
un

ct
io

n

HIGGS

101 102 103 104

Time (ms)

0

1

2

3

M
ul

ti.
 C

la
ss

Tr
ai

ni
ng

 O
bj

. F
un

ct
io

n

MNIST

102 103 104

Time (ms)

2.0

2.5

3.0
Tr

ai
ni

ng
 O

bj
. F

un
ct

io
n

CIFAR-10
Newton L-BFGS_ls_25 L-BFGS_ls_50 L-BFGS_ls_100

102 103 104 105

Time (ms)

0

1

2

3

4

Tr
ai

ni
ng

 O
bj

. F
un

ct
io

n

E18

103 104

Time (ms)

0.6

0.8

1.0

wo

rk
er

s =
 8

Bi
na

ry
 C

la
ss

Tr
ai

ni
ng

 O
bj

. F
un

ct
io

n

HIGGS

102 103

Time (ms)

0

1

2

3

M
ul

ti.
 C

la
ss

Tr
ai

ni
ng

 O
bj

. F
un

ct
io

n

MNIST

102 103

Time (ms)

2.0

2.5

3.0

Tr
ai

ni
ng

 O
bj

. F
un

ct
io

n

CIFAR-10

103 104 105

Time (ms)

0

1

2

3

4

Tr
ai

ni
ng

 O
bj

. F
un

ct
io

n

E18

Fig. 3.6.: Training Objective function comparison over time for different choice of
inner-solve for ADMM. For the inner solver, we compare the performance of Inexact
Newton solver with L-BFGS (with history size 25, 50, 100). The step size of Inexact
Newton method is chosen by linesearch following Armijo rule, whereas the step size
of L-BFGS is chosen by linesearch satisfying Strong Wolfe condition. We can see that
the per-iteration computation cost of L-BFGS is lower than Inexact Newton with the
exception on HIGGS dataset. This is because L-BFGS is sensitive to the scale of
step size so that more iterations of Strong Wolfe linesearch procedure are required to
satisfy the curvature condition. In general, we observe that L-BFGS performs well on
binary class problems, while the performance degrades on multiclass problems, when
the number of compute nodes increases.

76

3.5.4 Algorithms Parameter Settings

We generated all the experiment results using the following settings:

• Synchronous SGD : we tune the step size from 10−4 to 104 and select the best

result to report.

• Newton-ADMM : We used 10 CG iterations along with 10−4 CG tolerance to

compute Newton direction at each compute node. The step size was chosen by

line search with 10 iterations.

• GIANT : The configurations for CG and linesearch are the same as the config-

urations use in Newton-ADMM.

• Inexact DANE : we use learning rate η = 1.0 and regularization term µ = 0.0

for solving subproblems as prescribed in [47]. We set SVRG iterations to 100

and update frequency as 2n, where n is the number of local sample points. We

run SVRG step size from the set 10−4 to 104 in increments of 10 and select the

best value to report.

• AIDE : The configurations for SVRG is the same as the configurations used in

Inexact DANE. As to the additional hyper-parameter introduced in AIDE, τ ,

we also run τ from the set 10−4 to 104 and select the best to report.

77

4. FITRE: FISHER INFORMED TRUST-REGION

METHOD FOR TRAINING DEEP NEURAL NETWORKS

Convolutional neural networks are critical components of a diverse class of appli-

cations. Enhancing their performance through improved training procedures has

tremendous potential impact. First-order methods in general, and stochastic gradi-

ent descent in particular, have been the workhorse methods for a large subset of these

problems. This is primarily because alternatives such as Newton-type methods either

have larger memory requirements, or involve computationally intensive kernels. In

view of these considerations, many stochastic variants of higher-order methods have

been proposed, which alleviate noted shortcomings to varying extents. Among the

most successful of these higher order methods are variants of the classical trust-region

method and those that rely on the natural gradient.

In this chapter, we propose an efficient new method for training deep neural net-

works. Our method leverages advantages of both trust-region and natural gradient

methods, by employing natural gradient direction as a way to approximately solve

the trust-region sub-problems. We show that our method performs favorably com-

pared with well-tuned first-order and quasi-Newton methods in both generalization

error and wall-clock times on a range of deep network architectures. In particu-

lar, our method converges much faster than the alternative methods in terms of data

efficiency and iterations and yielding orders of magnitude of relative speedup. We fur-

ther demonstrate the robustness of our method to different hyper-parameters, which

results in an easy-to-tune method in practice. We provide an open-source GPU accel-

erated CUDA implementation of our solver for use in general deep network training.

78

4.1 Introduction and Motivation

Significant growth in the availability of large datasets, coupled with growth in

the processing capacity of hardware has motivated new applications that rely on

analyzing massively large datasets quickly, often in real time. Optimization in such

applications involves iterating over a large dataset multiple times and learning model

parameters until some predefined criteria of convergence is achieved. These processes

may take hours for each iteration over the complete dataset, which translates to

learning procedures that can take up to weeks. For instance, on the ImageNet dataset

[60], which contains about 1.4 million samples, stochastic gradient descent (SGD) can

take upwards of 30 hours for each pass over the dataset and weeks to train a deep

neural network such as ResNet [61] or VGGNet [62]. In spite of this significant

training time, SGD and its distributed variants are the methods of choice in training

of deep learning models.

The popularity of SGD, to a great extent, is attributed to its computationally in-

expensive model parameter updates. Indeed, SGD’s iterations involve computing the

gradient of the objective function on a mini-batch, using back-propagation [63, 64],

followed by scaling by a predetermined learning rate and, possibly accelerated by

momentum [3]. The simplicity of SGD allows for its application to a wide variety of

learning tasks, e.g., auto-encoders [65, 66] and reinforcement learning [67, 68]. How-

ever, even though, in theory, it has been argued that SGD can avoid undesirable

saddle-points [69], realizing this in practice is more involved [6]. In fact, without

significant fine-tuning in terms of learning rate, initialization, and mini-batch size,

SGD’s performance (with or without momentum) can diverge significantly from ide-

alized theoretical bounds. On the other hand, by leveraging curvature information,

in the form of the Hessian matrix, many second-order methods come with the inher-

ent ability to navigate their way out of flat regions including saddle points [70–75].

However, these advantages come at the cost of significantly more computations per it-

eration as compared with SGD. Towards this end, stochastic variants of many of these

79

methods have recently been proposed, which, by introducing various approximations,

can navigate the objective landscape more efficiently [19, 76, 77]. Furthermore, and

in sharp contrast to SGD, many of these methods are resilient to the choices of their

hyper-parameters, and hence are easy to tune.

A method that occupies the middle ground between first and second order methods

relies on the natural gradient [78–80], proposed by Shun-chin Amari. This work posits

that in fitting probabilistic models, the underlying parametric distributions can be

thought of as belonging to a manifold, whose geometry is governed by the Fisher

information matrix. Under this hypothesis, scaling the gradient using the Fisher

information matrix can result in more effective directions for navigating the manifold

of the parametric probability densities. However, in high-dimensional settings, using

the exact Fisher matrix can be intractable. To remedy this, Martens et. al [81, 82],

proposed a method, called Kronecker Factored Approximated Curvature (KFAC),

to approximate the Fisher information matrix and its inverse-vector product, and

applied it to applications in neural networks and reinforcement learning. It was

shown that KFAC can significantly outperform many of the first-order alternatives.

In this work, we propose an algorithm that combines the advantages of the stochas-

tic trust region method proposed in [19] with those of KFAC, to obtain a Fisher

Informed Trust REgion method (FITRE) that is shown to be well-suited for op-

timization of deep learning models in general, and convolutional neural networks

(CNN), in particular. We also leverage the power of GPUs in accelerating various

steps of FITRE to deliver excellent performance. We make the following contribu-

tions:

1. We present a novel stochastic variant of the trust region method, in which the

approximations to the sub-problems are informed by directions obtained from

KFAC.

2. By employing KFAC directions to inform trust-region sub-problems, we show

that the proposed method inherits the robustness as well as invariance to re-

parameterizations of KFAC.

80

3. We show that highly optimized GPU implementation perform better than well-

tuned SGD, and quasi-Newton alternatives, in terms of generalization errors,

convergence rates, as well as wall-clock times. With appropriately tuned hyper

parameters, in some cases, we show that our proposed method consumes less

wall-clock time compared to alternatives even for the same number of passes

over the dataset.

4. We show that the proposed method is resilient to the choice of batch size and

tuning of the underlying hyper parameters.

5. As a broader contribution to the user community, we provide an open-source

GPU accelerated CUDA optimization framework for CNN’s with a first-of-its-

kind R-operator for Hessian-vector computations.

The rest of this chapter is organized as follows: Section 4.2 provides an overview

of state-of-the-art methods along with a comparison of the proposed method in this

context. A detailed discussion of the proposed methods is given in Section 4.3. Eval-

uation of our methods as compared with a well-tuned SGD as well as BFGS [1, 83]

is provided in Section 4.4. Section 4.5 discusses avenues for future work. Section 4.6

provides detailed discussion on the implementation of our proposed method.

4.2 Related Work

SGD [84] is the most commonly used first-order method, owing to its simplicity

and inexpensive per-iteration cost. Iterations require computation of the gradient

on a mini-batch scaled by a predetermined learning schedule and possibly Nesterov-

accelerated momentum [3]. It has been argued that high-dimensional non-convex

functions such as those arising in deep learning are riddled with undesirable sad-

dle points [69, 85–87]. For instance, convolutional neural networks, CNNs, display

structural symmetry in their parameter space, which leads to an abundance of saddle

points [82,88,89]. First-order methods, such as SGD, are known to “zig-zag” in high

curvature areas and “stagnate” in low curvature regions [69,88].

81

One of the primary reasons for the susceptibility of first-order methods to getting

trapped in saddle points or nearly flat regions is their reliance on gradient informa-

tion. Indeed, navigating around saddle points and plateau-like regions can become

a challenge for these methods because the gradient is close to zero in most direc-

tions [69]. To this end, a number of alternate methods have been proposed in recent

times, which, using history of gradients aim to approximate curvature information,

and hence maintaining the simplicity of SGD. Such methods include Adam [26] and

Adagrad [24]. However, such approximations of the Hessian do not always properly

scale the gradient according to the entire curvature information, and hence these

methods suffer from similar deficiencies near saddle points and flat regions. More ef-

fective variants of these curvature approximations are those in quasi-Newton methods

such as SR1 [1], DFP [1], and BFGS [1,90], which use rank-1 and rank-2 updates to it-

eratively approximate the Hessian. Aided by line search methods, typically satisfying

strong-wolfe [1] conditions, these methods yield good results compared to first-order

methods for convex problems [91] but still remain topics of active investigation in the

non-convex regime.

Newton-type optimizers have been developed as alternatives to first-order meth-

ods. These optimizers can effectively navigate the steep and flat regions of the op-

timization landscape. By incorporating curvature information in the form of the

Hessian matrix, e.g., negative curvature directions, these methods can escape saddle

points [19,77,85,87,92–94]. To avoid explicitly forming the Hessian matrices, Hessian-

free methods [76,95–97] have been proposed, which only require Hessian-vector prod-

ucts. Arguably, a highly effective, if not the most effective, among these methods is

the trust-region based method that comes with attractive theoretical guarantees and

is relatively easy to implement [6, 19, 70,77].

Lying on the spectrum between first and second order methods is Amari’s natural

gradient method [78, 80]. This method provided a new direction in the context of

high-dimensional optimization of probabilistic models. In his seminal work, Amari

showed that natural gradient descent yields Fisher efficient estimate of the parame-

82

ters; he subsequently applied the method to multi-layer perceptrons for solving blind

source detection problems. However, computing Fisher matrix and its inverse in high-

dimensional settings is computationally intractable both in terms of memory and

computational resources. RMSProp [25, 98] methods use a diagonal approximation

of Fisher matrix of the objective function to compute the descent direction. These

methods incur little overhead with regards to diagonal approximation but neverthe-

less fail to make progress relative to SGD in some cases. Martens et al. [81, 82, 89]

proposed the KFAC method, which approximates the natural gradient using kro-

necker products of smaller matrices formed during back-propagation. KFAC method

and its distributed counterpart [88] have been shown to outperform well tuned SGD

in many applications.

In this work, we couple the advantages of trust region and KFAC methods, and

propose a stochastic optimization framework involving trust region objective com-

puted on a mini-batch, constrained to directions that are aligned with those obtained

from KFAC. Major computational tasks in updating the parameters in our method

are Hessian-vector products involving the solution of the trust region sub-problem, as

well as finding the KFAC direction. Our Hessian-vector products can be computed at

a similar cost as that of gradient computation using back-propagation. Furthermore,

the Fisher matrix approximation and its inverse are only needed once every few mini

batches thus reducing average iteration cost significantly.

4.3 FITRE

We now present our method, FITRE, which is inspired by [81] and [19, 77], and

is formally described in Algorithm 14. At the heart of FITRE lies the stochastic

trust-region method using a local quadratic approximation:

min
‖s‖≤∆t

mt(s) = 〈gt, s〉+
1

2
〈s,Hts〉 . (4.1)

83

We employ the approach proposed by [77] and use stochastic estimation of the

gradient gt and Hessian Ht. The application of Hessian estimate, Ht, which contains

information regarding the curvature of the optimization landscape, has been shown to

offer many advantages, including resilience to hyper-parameter tuning and problem

ill-conditioning [6, 19]. The step-length, which is governed by the trust-region radius

∆t is automatically adjusted based on the quality of the quadratic approximation and

the amount of descent in the objective function. In practice, (4.1) is approximated

by restricting the problem to lower dimensional spaces, e.g., Cauchy condition, which

amounts to searching in a one-dimensional space spanned by the gradient. Here, we

do the same, however by restricting the sub-problem to the space spanned by the

KFAC direction, or its combination with the gradient.

Our choice is motivated by the following observation: when the objective function

involves probabilistic models, as is the case in many deep learning applications, nat-

ural gradient1 direction amounts to the steepest descent direction among all possible

directions inside a ball measured by KL-divergence between the underlying parametric

probability densities. On the contrary, the (standard) gradient represents the direc-

tion of steepest descent among all directions constrained in a ball measured by the

Euclidean metric [82], which is less informative than the former, though much easier

to compute. To alleviate the computational burden of working with the Fisher infor-

mation matrix and its inverse, Kronecker-product based approximations [81,89] have

shown success in simultaneously preserving desirable properties of the exact Fisher

matrix such as invariance to reparametarization and resilience to large batch sizes.

Indeed, many empirical studies have confirmed that the natural gradient provides an

effective descent direction for optimization of neural networks [76,81,82,89].

84

Gradient	Passes	

Hv	Passes	

Lay
er	
1	

Lay
er	
2	

Lay
er	
l	

Loss	
Func
t
ion	

Σ	

A0
A1 Al-2 Al-1

G0 G1 Gl-1 Gl-2

…...
Rv{A0} Rv{A1} Rv{Al-2} Rv{Al-1}

Rv{G0} Rv{G1} Rv{Gl-1} Rv{Gl-2}

W1, b1 W2, b2 Wl, bl

L Layers

(a) Model of a typical CNN.

Co
nv
ol
u'

on
	(W

l,	b
l)	

Ac
'v
a'

on
	

Po
ol
	

Al-1 Sl Pl Al

Gl-1
con

v

Gl
a

 Gl
p

 Gl

RV{Al-1
}

RV{Sl} RV{Pl} RV{Al}

RV{Gconv
l-1} RV{Ga

l} RV{Gp
l} RV{Gl}

(b) Components of a typical layer in our CNN.

Fig. 4.1.: CNN model and layer composition.

4.3.1 Computational Model

In this work, we consider a typical CNN architecture, as shown in Figure 4.1(a).

We assume that the network contains ` layers, and each layer can be either a con-

volution layer or a linear layer. A convolutional layer is composed of convolution

and activation functions. It may also optionally contain pooling functions and batch-

normalization layers as shown in Figure 4.1(b). Likewise, a linear layer is composed

of a linear function and optionally can have activation functions within it as well.

These layers are stacked together, so that the output of one layer forms the input of

the next layer. The last layer, i.e., `th layer, is connected to the loss function. In this

work, we use softmax cross-entropy for our loss function, denoted as L.

Gradient computation is performed in two passes over the network, shown in the

top half of the Figure 4.1(a), using the back-propagation algorithm. In the forward

pass for the gradient computation, al−1 and al are, respectively, the input to and the

output from the layer l. We bundle a set of sample points, also known as mini-batch,

which forms the input to the first layer, Ã0. For detailed discussion on memory

layout of the input data to the network, Ã0, and its processing through out the

underlying network we refer readers to the appendix section (4.6). Please note that

for analysis purposes all the equations in this section use one sample point for lth-

convolution layers (i.e., Al, a matrix of dimensions samples × channels) as well

1In the following section we discuss in detail the definition of the Fisher matrix and its computation
using the KFAC approximations.

85

as mth-linear layers (i.e., am, a vector), and a detailed discussion is presented in

appendix section 4.6. The following equation summarize the operations performed

during the forward pass for each of the layers in the network, as shown in Figure

4.1(b).

Convolution: Cl = W̄lāl−1 (4.2a)

Activation: Pl = φ (Cl) (4.2b)

Pool: Al = P (Pl) (4.2c)

The convolution operation is represented as a matrix multiplication, as described

in (4.2a), where W̄l and Al−1 are the matrix of weights and input sample point.

Note that the weights matrix, Wl and bias vector, bl, associated with the lth layer of

the network are folded into a single matrix W̄l(= [Wlbl]) by appending the column

vector bl into Wl. The output of the convolution operation, Cl, forms the input

to the non-linearity function φ and its output, Pl, is passed to the down sampling

function, P . The output of the pool function , Al, forms the input to the next layer

l+ 1 in the model shown in Figure 4.1(a). During the backward pass of the gradient

computation, the partial derivatives with respect to inputs to each layer (referred

to as gradients throughout this document) are passed in the backward (opposite)

direction though the network as shown in Figure 4.1(a). Partial derivatives of layer

l, Gconv
l , are fed to the preceding layer l − 1 through the network. Inside layer l, the

incoming gradient terms Gconv
l+1 are passed through the down sampling, non-linearity

and convolution functions in a daisychained fashion producing outputs Gp
l , Ga

l and

Gconv
l respectively; see Figure 4.1(b). Along similar lines, the equations for linear

layer are as follows:

86

Linear transformation: sl = W̄lā
ᵀ
l−1 (4.3a)

Activation: al = φ (sl) (4.3b)

eqs. 4.3a and 4.3b represent the linear transformation and activation function

performed by the linear layer during the forward pass of the network. And, during the

backward pass we use gdl−1 and gal represent the gradient terms propagated backwards

by the linear transformation and activation function within the linear layer.

The framework developed for gradient computations can also be adapted to com-

pute the Hessian-vector products by using the “R-Operator” approach first introduced

in [99]. Specifically, the gradient and Hessian of a function, f , are related by:

∇f(θ + δθ) = ∇f(θ) +∇2f(θ)δθ + o(‖δθ‖2).

By choosing δθ = rv for some r ∈ R, Hessian-vector product, ∇2f(θ)v, can be

obtained using:

∇2f(θ)v = lim
r→0

∇f(θ + rv)−∇f(θ)

r
=

d

dr
∇f(θ + rv)

∣∣∣∣
r=0

. (4.4)

Now, by defining

Rv {u(θ)} =
d

dr
u(θ + rv)

∣∣∣∣
r=0

, (4.5)

for any vector valued function u, we have ∇2f(θ)v = Rv {∇f(θ)}. Therefore, by

applying Rv to all the equations evaluated during the gradient computation of the

given network, we can compute∇2f(θ)v of the loss function associated with the given

network. The forward and backward passes through the neural network associated

with Hessian-vector computation are shown in the bottom half of Figures 4.1(a) and

4.1(b).

87

Define θ = [vec(W̄1)ᵀ, , vec(W̄2)ᵀ, . . . , vec(W̄`)
ᵀ]ᵀ, which is a vector of all the

network’s parameters,concatenated together and vec operator is used to flatten the

matrices by stacking columns together. The loss function, denoted by L(y, z), is used

to measure the disagreement between a prediction z and a target y corresponding to

the input-output pair (x, y). The training objective function h(θ) is the average of

losses L(y, f(x,θ)) over all input-target pairs (x, y), i.e.,

h(θ) :=
1

n

n∑
i=1

L(yi, f(xi,θ)).

For a given (x, y), its corresponding loss is given by the negative log likelihood asso-

ciated with a conditional distribution of y given z = f(x,θ) as

L(y, z) = − log r(y|f(x,θ)) := − log p(y|x,θ).

Here, p(y|x,θ) is the conditional distribution of y given x that is implied by the

neural network and parameterized by θ. Here the parameters are not assumed to be

random, but one can extend this model to include priors on θ and effectively have a

Bayesian model. Minimizing the objective function h(θ) is identical to maximizing

the likelihood p(y|x,θ) over the training dataset.

Natural Gradient Computation

For completeness we present an overview of the approximations involved in es-

timating the natural gradient direction (in the context of linear layers and similar

arguments can be made for convolution layer as well). We refer readers to [81,82] for

a detailed discussion on estimation of Fisher information matrix and approximations

used in deriving the natural gradient direction.

88

We define,

Dθ :=
dL(y, f(x,θ))

dθ
= −d log p(y|x,θ)

dθ
,

gal := Dsl,

where Dθ is the gradient of the loss function, which is computed using the conven-

tional back-propagation algorithm and gal represents the gradients of the loss function

w.r.t. the pre-activation inputs of layer l. Since the network defines a conditional

distribution p(y|x,θ), its associated Fisher information matrix is given by

F(θ) = E

[
∂ log p(y|x,θ)

∂θ

(
∂ log p(y|x,θ)

∂θ

)ᵀ
]

= E
[
Dθ (Dθ)

ᵀ]
(4.6)

Natural gradient is defined as F−1(θ)∇h(θ). It defines the direction in parameter

space that gives the largest change in the objective function per unit change in the

model, as measured by the KL-divergence which is measured between the model

output distribution and the true label distribution. In the context of this discussion,

for simplicity, we drop the dependence of F and h on θ.

Kronecker-factored Fisher approximation(s) Computating F−1 or F−1∇h is

not practical in commonly encountered high-dimensional problems. To this end,

Martens et al. propose suitable approximations [81,82]. We summarize these approx-

imations in the following paragraphs for completeness:

F = E
[
Dθ (Dθ)

ᵀ]

=


E
[
vec(DW̄1)vec(DW̄1)ᵀ

]
. . . E

[
vec(DW̄1)vec(DW̄`)

ᵀ]
E
[
vec(DW̄2)vec(DW̄1)ᵀ

]
. . . E

[
vec(DW̄2)vec(DW̄`)

ᵀ]
...

. . .
...

E
[
vec(DW̄`)vec(DW̄1)ᵀ

]
. . . E

[
vec(DW̄`)vec(DW̄`)

ᵀ]



89

Thus, F can be viewed as an ` × ` block matrix with the (i, j)-th block Fi,j given

by Fi,j = E
[
vec(DW̄i)vec(DW̄j)

ᵀ]. Noting that DW̄i = gai ā
ᵀ
i−1and that vec(uvᵀ) =

v⊗u for any two vectors u and v, we have DW̄i = vec(gai ā
ᵀ
i−1) = āᵀ

i−1⊗gai and thus

we can rewrite Fi,j as

Fi,j = E
[
vec(DW̄i)vec(DW̄j)

ᵀ]
= E

[
(āi−1 ⊗ gai)(āj−1 ⊗ gaj)

ᵀ]
= E

[
(āi−1ā

ᵀ
j−1 ⊗ gai g

a
j
ᵀ
)
]

where A⊗B denotes the Kronecker product between two matrices.

The approximation of F by F̃ is defined as follows:

Fi,j = E
[
(āi−1ā

ᵀ
j−1 ⊗ gai g

a
j
ᵀ] ≈ E

[
āi−1ā

ᵀ
j−1

]
⊗E

[
gai g

a
j
ᵀ]

= Ki−1,j−1⊗Ga
i,j = F̃ (4.7)

where Ai−1,j−1 = E
[
āi−1ā

ᵀ
j−1

]
and Ga

i,j = E
[
gai g

a
j
ᵀ]

.

This gives the following:

F̃ =


K0,0 ⊗Ga

1,1 K0,1 ⊗Ga
1,2 . . . K0,`−1 ⊗Ga

1,`

K1,0 ⊗Ga
2,1 K1,1 ⊗Ga

2,2 . . . K1,`−1 ⊗Ga
1,`

...
...

. . .
...

K`−1,0 ⊗Ga
`,1 K`−1,1 ⊗Ga

`,2 . . . K`−1,`−1 ⊗Ga
`,`

 , (4.8)

which has the form of what is known as a Khatri-Rao product in multivariate statis-

tics.

Note that the expectation of Kronecker product is not equal to Kronecker product

of expectations. The above approximation, F̃ ≈ F, is a major approximation, but

nevertheless works well in practice.

90

Approximating F̃−1 as block-diagonal is equivalent to approximating F̃ as block-

diagonal. A natural choice of such approximation, F̆ ≈ F̃, is to take the block-

diagonal of F̆ to be that of F̃. This gives the matrix

F̆ = diag
(
F̃1,1, F̃2,2, . . . , F̃`−1,`−1

)
= diag

(
K0,0 ⊗Ga

1,1,K1,1 ⊗Ga
2,2, . . . ,K`−1,`−1 ⊗Ga

`,`,
)

Using the identity, (A⊗B)−1 = A−1 ⊗B−1, the inverse of F̆ is given by

F̆−1 = diag
(
K−1

0,0 ⊗Ga
1,1
−1,K1,1 ⊗Ga

2,2
−1, . . . ,K`−1,`−1 ⊗Ga

`,`
−1
)

(4.9)

Thus computing F̆−1 amounts to computing inverses of 2` smaller matrices. Then ap-

proximated natural-gradient, u = F̆−1v, is given by the following (using the identity

(A⊗B) vec (X) = vec (BXAᵀ)):

Ui = Ga
i,i
−1ViK

−1
i−1,i−1 (4.10)

where v maps to (V1,V2, . . . ,V`) and u maps to (U1,U2, . . . ,U`) and θ maps to(
W̄1,W̄2, . . . ,W̄`

)
Natural gradient using Kronecker Factored Approximate Curvature ma-

trix: We define:

E
[
vec
(
DW̄l

)
vec
(
DW̄l

)ᵀ]
≈ Ψl−1 ⊗ Γl , F̆l (4.11)

where Ψl−1 = E
[
āl−1ā

ᵀ
l−1

]
and Γl = E [gal g

a
l
ᵀ
] denote the second moment matrices of

the activation and pre-activation derivatives, respectively.

To invert F̆, we use the fact that: (i) we can invert a block-diagonal matrix by

inverting each of the blocks, and (ii) the Kronecker product satisfies the identity

(A⊗B)−1 = A−1 ⊗B−1:

91

F̆−1 =


Ψ−1

0 ⊗ Γ−1
1 0

. . .

0 Ψ−1
`−1 ⊗ Γ−1

`−1

 (4.12)

The approximate natural gradient F̆−1∇h can be computed as follows:

F̆−1∇h =


vec

(
Γ−1

1 (∇W̄1
h) Ψ−1

0

)
...

vec
(
Γ−1
`

(
∇W̄`

h
)
Ψ−1
`−1

)
 (4.13)

A common multiple of the identity matrix is added to F for two reasons: First, as a

regularization parameter, which corresponds to a penalty of 1
2
λθᵀθ. This translates to

F+λI to approximate the curvature of the regularized objective function. The second

reason is to use it as a damping parameter to account for multiple approximations used

to derive F̆, which corresponds to adding γI to the approximate curvature matrix.

Therefore, we aim to compute:
[
F̆ + (λ+ γ) I

]−1

∇h.

Since adding the term (λ + γ)I breaks the Kronecker factorization structure, an

approximated version is used for computational purposes, which is as follows:

F̆` + (λ+ γ) I ≈
(
Ψ`−1 + π`

√
λ+ γI

)
⊗
(

Γ` +
1

π`

√
λ+ γI

)
(4.14)

for some π`.

Updating KFAC Block Matrices Block matrices, Ψl and Γl, are typically up-

dated using a momentum term to capture the variance in input samples across succes-

sive mini batches. If sample points across the dataset are well correlated, with little

variance among the sample points, the the inverse block matrices, Ψ−1
l and Γ−1

l , need

not be updated for every mini batch. “KFAC Update Frequency” is the frequency

with which these inverse block matrices are updated is typically decided based on the

size of the input dataset as well as the correlation among the sample points. For boot

strapping the optimizer, we could either use a larger sample of the dataset, like 5 ×

92

the mini-batch size, or use the very first mini batch itself for computing the block

inverses.

4.3.2 Algorithm

Algorithm. 14, describes a realization of our proposed method in trust-region

settings. First, the natural gradient direction, pt is computed and used in determining

the step-size using the quadratic approximation of the objective function at pt, whose

closed form solution is (∆/ ‖Htpt + gt‖) (Htpt + gt) (Note that gradient, gt, can also

be used to estimate the step size and may yield a better descent direction in some

cases). Once the step-size, η is determined, ρt is computed over the same mini-batch

to determine the trust-region radius as well as the iterate update. These steps are

repeated until desired generalization is achieved. Note that we can compare the

efficiency of natural-gradient direction with that of the standard gradient and use the

appropriate one at each iteration, this is referred to as “KFAC + gradient” in this

algorithm.

4.4 Experiments

In this section, we present results from our experiments with the proposed method.

In the following paragraphs we provide an in-depth analysis about the behavior of

our proposed methods and compare it with well-tuned Nesterov-accelerated SGD as

well as a quasi-Newton method in the context of well known CNNs.

Hardware and Software Platform for Experiments. All our simulations are

executed on NVIDIA’s Tesla V100 GPUs configured with 16GB global RAM on

CUDA 9.0 runtime platform. These machines are configured with Intel Xeon CPUs

with 192 GB of RAM. Our code is implemented in C++ and we primarily used cublas

for GEMM operations. SGD results are executed on pyTorch 1.0.0 installation with

python 3.1 as the front-end. The code base is available for download at [100].

93

Algorithm 14: KFAC-STR Method

Input :
- Starting point x0

- Initial trust-region radius: 0 < ∆0 <∞
- KFAC parameters: damping parameter (γ ≥ 0), moving

average (0 < θ < 1)
Result: xt - direction to be used to update model parameters.
foreach t = 0, 1, . . . do

Set the approximate gradient gt and Hessian Ht

/* Compute the approximated Inverse Fisher × gradient,

a.k.a natural-gradient */

Obtain natural-gradient direction rt, as described in [81,82]
Case 1: KFAC

ηt = arg min ‖ηrt‖ ≤ ∆tm(ηpt) = ηgᵀ
t rt + η2

2
rᵀtHtrt

st = ηtrt
Case 2: KFAC + Gradient

ηt = arg min ‖ηrt‖ ≤ ∆tm(ηpt) = ηgᵀ
t rt + η2

2
rᵀtHtrt

αt = arg min ‖αgt‖ ≤ ∆tm(ηgt) = αgTt gt + α2

2
gTt Htgt

st = arg min s ∈ {ηtrt, αtgt}m(s)

Set ρt ,
ht(θt)−ht(θt+st)

−m(st)
, (ht(.)

are evaluated on the same mini-batch as gt and Ht).
if ρt ≥ 0.75 then

wt+1 = wt + st and ∆t+1 = min{2∆t,∆max}
end
else if ρt ≥ 0.25 then

wt+1 = wt + st and ∆t+1 = ∆t

end
else

wt+1 = wt and ∆t+1 = ∆t/2
end

end

Datasets. We use CIFAR10, CIFAR100 [101], and tiny ImageNet [60] datasets for

validating KFAC-STR method using several CNNs mentioned below. The details of

each of these datasets are described in Table 4.1. CIFAR10 is a well conditioned

dataset, whereas ImageNet is the largest dataset we experiment with. CIFAR100

is conditioned between CIFAR10 (relatively well conditioned) and ImageNet (ill-

conditioned).

94

Table 4.1.: Description of the datasets used in our experiments

Dataset Features No. of Training Samples No. of Testing Samples

CIFAR-10 3096 50,000 10,000
CIFAR-100 3096 50,000 10,000
Tiny ImageNet 12288 100,000 9,000

Hyper-parameter Tuning. Our proposed method has two easily tunable param-

eters – damping parameter (γ) and maximum trust-region radius (δ). All ex-

periments presented here use (with increments of 10) γ ∈ {1e−3, . . . , 1e2} and δ ∈

{1e−2, . . . , 1e2}. Regularization term (λ) is set to the following values {1e−4, 1e−5, 1e−6}.

Trust-region radius, ∆, is capped by δ and is doubled when ρ, ratio of observed model

reduction and expected model reduction, is ≥ 0.75 and is halved when it is < 0.25;

otherwise it remains the same. SGD uses learning rate as the hyper-parameter, which

is in the following range {1e−6, . . . , 1e2}. Both methods use the Nesterov-accelerated

momentum term as 0.9. All the experiments are run for 50 epochs except for Ima-

genet dataset, where maximum number of epochs is set to 25. Mini-batch size is set

to 200 for both the methods.

Plots presented in this section are selected as follows: SGD curves in all the plots

always use the learning rate that yields highest test accuracy among all the learning

rates. FITRE curves always use the selection of hyper-parameters that yield the

maximum average test accuracy.

Convolutional Neural Networks. We experiment with VGG11, VGG16, and

VGG19 CNN’s for our validation purposes. Each of these CNN’s architectures is

described in Table 4.2.

95

Table 4.2.: Various Convolution Neural Networks used in our experiments. α is 512
when CIFAR10 and CIFAR100 are used, and for Imagenet, it is 2048. β is 10 for
CIFAR10, 100 for CIFAR100, and 200 for ImageNet. These networks can be easily
adapted for embedding BatchNormalization layers (typically after the convolution
layer).

CNN Layer Description

AlexNet

Conv(3, 64), Swish, MaxPool conv kernel(k=5,s=1,p=2),
pool kernel(k=3,
s=2,p=1)

Conv(64, 64), Swish, MaxPool
Linear(4096, 384), Swish
Linear(384, 192), Swish
Linear(192, β)

VGG11

Conv(3, 64), Swish, MaxPool

conv kernel(k=3,s=1,p=1),
pool kernel(k=2,s=2)

Conv(64, 128), Swish, MaxPool
Conv(128, 256), Swish
Conv(256, 256), Swish, MaxPool
Conv(256, 512), Swish
Conv(512, 512), Swish, MaxPool
Conv(512, 512), Swish
Conv(512, 512), Swish, MaxPool
Linear(α, β)

VGG16

Conv(3, 64), Swish

conv kernel(k=3,s=1,p=1),
pool kernel(k=2,s=2)

Conv(64, 64), Swish, MaxPool
Conv(64, 128), Swish
Conv(128, 128), Swish, MaxPool
Conv(128, 256), Swish
Conv(256, 256), Swish, MaxPool
Conv(256, 512), Swish
Conv(512, 512), Swish, MaxPool
Conv(512, 512), Swish
Conv(512, 512), Swish, MaxPool
Linear(α, β)

VGG19

Conv(3, 64), Swish

conv kernel(k=3,s=1,p=1),
pool kernel(k=2,s=2)

Conv(64, 64), Swish, MaxPool
Conv(64, 128), Swish
Conv(128, 128), Swish, MaxPool
Conv(128, 256), Swish
Conv(256, 256), Swish
Conv(256, 256), Swish
Conv(256, 256), Swish, MaxPool
Conv(256, 512), Swish
Conv(512, 512), Swish
Conv(512, 512), Swish
Conv(512, 512), Swish, MaxPool
Conv(512, 512), Swish
Conv(512, 512), Swish
Conv(512, 512), Swish
Conv(512, 512), Swish, MaxPool
Linear(α, β)

96

Table 4.3.: Comparison of VGG11 using ImageNet dataset

Time vs. Likelihood Epoch vs. Likelihood Time vs Test Accuracy Epoch vs. Test Accuracy
KFAC Update Freq = 5

0 2000 4000 6000 8000 10000 12000 14000
Time in (seconds)

10-2

10-1

100

101

Tr
ai

n
Li

ke
lih

oo
d

0 5 10 15 20 25
Epoch No.

10-2

10-1

100

101

Tr
ai

n
Li

ke
lih

oo
d

0 2000 4000 6000 8000 10000 12000 14000
Time in (seconds)

20

25

30

35

40

45

50

55

Te
st

 A
cc

ur
ac

y

0 5 10 15 20 25
Epoch No.

20

25

30

35

40

45

50

55

Te
st

 A
cc

ur
ac

y

SGD (lr: 1e-02, BN: 1, Reg: 1e-04)

FITRE: (DampFactor: 1e-02, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 1e-04)

SGD (lr: 1e-02, BN: 1, Reg: 1e-05)

FITRE: (DampFactor: 1e-02, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 1e-05)

SGD (lr: 1e-02, BN: 1, Reg: 1e-06)

FITRE: (DampFactor: 1e-02, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 1e-06)

KFAC Update Freq = 25

D
ef

au
lt

0 2000 4000 6000 8000 10000 12000 14000
Time in (seconds)

10-2

10-1

100

101

Tr
ai

n
Li

ke
lih

oo
d

0 5 10 15 20 25
Epoch No.

10-2

10-1

100

101

Tr
ai

n
Li

ke
lih

oo
d

0 2000 4000 6000 8000 10000 12000 14000
Time in (seconds)

20

25

30

35

40

45

50

55

Te
st

 A
cc

ur
ac

y

0 5 10 15 20 25
Epoch No.

20

25

30

35

40

45

50

55

Te
st

 A
cc

ur
ac

y

SGD (lr: 1e-02, BN: 1, Reg: 1e-04)

FITRE: (DampFactor: 1e-02, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 25, Reg: 1e-04)

SGD (lr: 1e-02, BN: 1, Reg: 1e-05)

FITRE: (DampFactor: 1e-02, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 25, Reg: 1e-05)

SGD (lr: 1e-02, BN: 1, Reg: 1e-06)

FITRE: (DampFactor: 1e-02, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 25, Reg: 1e-06)

KFAC Update Freq = 5

0 2000 4000 6000 8000 10000 12000 14000
Time in (seconds)

10-2

10-1

100

101

Tr
ai

n
Li

ke
lih

oo
d

0 5 10 15 20 25
Epoch No.

10-2

10-1

100

101

Tr
ai

n
Li

ke
lih

oo
d

0 2000 4000 6000 8000 10000 12000 14000
Time in (seconds)

15

20

25

30

35

40

45

50
Te

st
 A

cc
ur

ac
y

0 5 10 15 20 25
Epoch No.

15

20

25

30

35

40

45

50

Te
st

 A
cc

ur
ac

y

SGD (lr: 1e-02, BN: 1, Reg: 1e-04)

FITRE: (DampFactor: 1e-02, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 1e-04)

SGD (lr: 1e-02, BN: 1, Reg: 1e-05)

FITRE: (DampFactor: 1e-02, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 1e-05)

SGD (lr: 1e-02, BN: 1, Reg: 1e-06)

FITRE: (DampFactor: 1e-02, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 1e-06)

KFAC Update Freq = 25

K
ai

m
in

g

0 2000 4000 6000 8000 10000 12000 14000
Time in (seconds)

10-2

10-1

100

101

Tr
ai

n
Li

ke
lih

oo
d

0 5 10 15 20 25
Epoch No.

10-2

10-1

100

101

Tr
ai

n
Li

ke
lih

oo
d

0 2000 4000 6000 8000 10000 12000 14000
Time in (seconds)

15

20

25

30

35

40

45

50

Te
st

 A
cc

ur
ac

y

0 5 10 15 20 25
Epoch No.

15

20

25

30

35

40

45

50

Te
st

 A
cc

ur
ac

y

SGD (lr: 1e-02, BN: 1, Reg: 1e-04)

FITRE: (DampFactor: 1e-02, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 25, Reg: 1e-04)

SGD (lr: 1e-02, BN: 1, Reg: 1e-05)

FITRE: (DampFactor: 1e-02, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 25, Reg: 1e-05)

SGD (lr: 1e-02, BN: 1, Reg: 1e-06)

FITRE: (DampFactor: 1e-02, MaxTrustRad: 1e+01,
CheckGrad: 0, BatchNorm: 1, Frequency: 25, Reg: 1e-06)

97

Table 4.4.: Comparison of VGG16 using ImageNet dataset

Time vs. Likelihood Epoch vs. Likelihood Time vs Test Accuracy Epoch vs. Test Accuracy
KFAC Update Freq = 5

0 5000 10000 15000 20000 25000
Time in (seconds)

10-2

10-1

100

101

Tr
ai

n
Li

ke
lih

oo
d

0 5 10 15 20 25
Epoch No.

10-2

10-1

100

101

Tr
ai

n
Li

ke
lih

oo
d

0 5000 10000 15000 20000 25000
Time in (seconds)

10

15

20

25

30

35

40

45

50

55

Te
st

 A
cc

ur
ac

y

0 5 10 15 20 25
Epoch No.

10

15

20

25

30

35

40

45

50

55

Te
st

 A
cc

ur
ac

y

SGD (lr: 1e-02, BN: 1, Reg: 1e-04)

FITRE: (DampFactor: 1e-02, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 1e-04)

SGD (lr: 1e-02, BN: 1, Reg: 1e-05)

FITRE: (DampFactor: 1e-02, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 1e-05)

SGD (lr: 1e-02, BN: 1, Reg: 1e-06)

FITRE: (DampFactor: 1e-02, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 1e-06)

KFAC Update Freq = 25

D
ef

au
lt

0 5000 10000 15000 20000 25000
Time in (seconds)

10-2

10-1

100

101

Tr
ai

n
Li

ke
lih

oo
d

0 5 10 15 20 25
Epoch No.

10-2

10-1

100

101

Tr
ai

n
Li

ke
lih

oo
d

0 5000 10000 15000 20000 25000
Time in (seconds)

10

15

20

25

30

35

40

45

50

55

Te
st

 A
cc

ur
ac

y

0 5 10 15 20 25
Epoch No.

10

15

20

25

30

35

40

45

50

55

Te
st

 A
cc

ur
ac

y

SGD (lr: 1e-02, BN: 1, Reg: 1e-04)

FITRE: (DampFactor: 1e-02, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 25, Reg: 1e-04)

SGD (lr: 1e-02, BN: 1, Reg: 1e-05)

FITRE: (DampFactor: 1e-02, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 25, Reg: 1e-05)

SGD (lr: 1e-02, BN: 1, Reg: 1e-06)

FITRE: (DampFactor: 1e-02, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 25, Reg: 1e-06)

KFAC Update Freq = 5

0 5000 10000 15000 20000 25000
Time in (seconds)

10-2

10-1

100

101

Tr
ai

n
Li

ke
lih

oo
d

0 5 10 15 20 25
Epoch No.

10-2

10-1

100

101

Tr
ai

n
Li

ke
lih

oo
d

0 5000 10000 15000 20000 25000
Time in (seconds)

15

20

25

30

35

40

45

50

55
Te

st
 A

cc
ur

ac
y

0 5 10 15 20 25
Epoch No.

15

20

25

30

35

40

45

50

55

Te
st

 A
cc

ur
ac

y

SGD (lr: 1e-02, BN: 1, Reg: 1e-04)

FITRE: (DampFactor: 1e-02, MaxTrustRad: 1e+01,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 1e-04)

SGD (lr: 1e-02, BN: 1, Reg: 1e-05)

FITRE: (DampFactor: 1e-02, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 1e-05)

SGD (lr: 1e-02, BN: 1, Reg: 1e-06)

FITRE: (DampFactor: 1e-02, MaxTrustRad: 1e+01,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 1e-06)

KFAC Update Freq = 25

K
ai

m
in

g

0 5000 10000 15000 20000 25000
Time in (seconds)

10-2

10-1

100

101

Tr
ai

n
Li

ke
lih

oo
d

0 5 10 15 20 25
Epoch No.

10-2

10-1

100

101

Tr
ai

n
Li

ke
lih

oo
d

0 5000 10000 15000 20000 25000
Time in (seconds)

15

20

25

30

35

40

45

50

55

Te
st

 A
cc

ur
ac

y

0 5 10 15 20 25
Epoch No.

15

20

25

30

35

40

45

50

55

Te
st

 A
cc

ur
ac

y

SGD (lr: 1e-02, BN: 1, Reg: 1e-04)

FITRE: (DampFactor: 1e-02, MaxTrustRad: 1e+01,
CheckGrad: 0, BatchNorm: 1, Frequency: 25, Reg: 1e-04)

SGD (lr: 1e-02, BN: 1, Reg: 1e-05)

FITRE: (DampFactor: 1e-02, MaxTrustRad: 1e+01,
CheckGrad: 0, BatchNorm: 1, Frequency: 25, Reg: 1e-05)

SGD (lr: 1e-02, BN: 1, Reg: 1e-06)

FITRE: (DampFactor: 1e-02, MaxTrustRad: 1e+01,
CheckGrad: 0, BatchNorm: 1, Frequency: 25, Reg: 1e-06)

98

Results on the Imagenet Dataset. Tables. 4.3 and 4.4 show the plots for the

Imagenet dataset using VGG11 and VGG16 CNNs, respectively. In these tables, we

show the generalization errors plotted against wall-clock time and against number of

epochs in Columns 3 and 4, respectively, and negative log-likelihood (NLL) using soft-

max cross-entropy loss function against wall-clock time and against number of epochs

in Columns 1 and 2, respectively. KFAC update frequency is set to 5 (mini-batches)

for the first row and for the second row, it is set to 25. All plots (in the first two

rows) use default initialization, as defined in pyTorch which is a uniform distribution,

in these two tables. Corresponding results using kaiming initialization [102], on a

high-level this initialization is based on random gaussian distribution, are shown in

Rows 3 and 4 of both the tables.

The following conclusions can be made from the plots in Tables. 4.3 and 4.4:

(i) FITRE method minimizes the likelihood function to a significantly smaller value

compared to well-tuned SGD, and at any given wall-clock instance (FITRE method

yields better NLL value compared to SGD), (ii) kaiming initialization yields superior

generalization errors compared to default initialization of the CNNs, (iii) contrary to

expectations KFAC update frequency of 25 yields better generalization errors relative

to more frequent updates, (iv) with increasing network complexity, VGG16 compared

to VGG11, FITRE method yields significantly better generalization errors compared

to SGD, showcasing its superior scaling characteristics compared to SGD; and (v)

default initialization is relatively immune to `2 regularization compared to kaiming

initialization.

For VGG16 network with kaiming initialization and KFAC update frequency of

25 we observe that to attain 50% test accuracy FITRE (with 1e-6 regularization)

takes ≈ 6500 seconds compared to ≈ 20500 seconds for SGD (for all regularizations

used); a speedup of 3.2 over SGD. Furthermore, when regularization is set to 1e−4

FITRE achieves 53.5% test accuracy whereas SGD fails to obtain similar accuracy.

Similar arguments can be made for the VGG11 network as well. This shows that

even though FITRE is computationally more expensive on a per-iteration basis, it

99

yields significantly better results in shorter time compared to SGD. This can be at-

tributed to better descent direction (SGD’s gradient vs. FITRE ’s natural gradient)

and an adaptive second-order approximated learning rate computation within the

trust-region framework used by the FITRE method. Contrary to expectations we no-

tice that for VGG11 CNN and default initialization, FITRE ’s execution of 50 epochs

takes less time compared to SGD for KFAC update frequency 25. FITRE makes two

passes over the network (one forward and backward pass for gradient computation

and another pass for Hessian-vector product computation used to compute the learn-

ing rate in the trust-region framework). One would expect that SGD is atleast twice

as fast as FITRE on the wall-clock time(one a per-iteration basis). We note that

SGD’s pyTorch implementation uses auto-differentiation to compute the gradient of

the given network, whereas our implementation of the FITRE method is R-operator

based (as proposed by Perlmutter et. al [99]). At a finer level, we note from our

previous experience with the pyTorch platform [91, 103], that memory management

on the GPU is not efficient. pyTorch allocates and frees memory very often and

tends to persist very little information on the device. Even though FITRE makes two

passes over the network and computes inverses of smaller matrices at each layer of

the network (for computing the inverse of the KFAC block matrices) our implemen-

tation persists relevant information on the GPU memory. Coupled with our efficient

implementation of the R-operator based Hessian-vector product, we can significantly

reduce the computation cost associated with each mini-batch. In addition, our pro-

posed method is a true stochastic online method in which there is no dependence on

any part of the dataset other than the current mini-batch during its entire execution

time, compared to state-of-the-art existing second-order methods [64,83].

We notice that default initialization is immune to regularization for both networks

(VGG11 and VGG16), and for both methods (FITRE and SGD). These two meth-

ods show negligible changes in NLL function values (as well as generalization errors)

while the FITRE method yields superior results compared SGD for significant part of

the execution. At the end of the execution SGD tends to achieve similar generaliza-

100

tion errors compared to FITRE but on minimizing the NLL function FITRE always

achieves superior results. However, when using kaiming initialization, based on ran-

dom gaussian distribution, for both the networks, we notice that regularization helps

in achieving superior generalization errors for FITRE method (with VGG11 network,

KFAC update frequency set to 25 and regularization of 1e−6) compared to SGD.

But in all cases, FITRE method yields superior results when the underlying model

does not use any regularization. Compared to the FITRE method, SGD is relatively

immune to kaiming initialization as well, as shown in plots in columns 1 and 2 of

Tables. 4.3 and 4.4. Notice that there is very little change in objective function value

throughout the simulations.

KFAC update frequency is a hyper parameter used to control the frequency with

which the block matrix inverses are computed at each layer of the network. These

block inverses are used to compute the natural gradient direction eventually for each

mini-batch. Since these blocks approximate the Fisher matrix of the loss function,

they are updated once every few mini-batches. Martens et. al. [81, 82] argues that

more frequent updates of these block inverses makes them too rigid and may lead to

overfitting. Using larger values for this update frequency has the effect of a regularizer

on the underlying model, and helps in avoiding overfitting. As an added advantage,

this dependence of the FITRE method reduces its computation cost (note also that the

computation of block inverses can be delegated to slave processing units, if available,

further reducing the computation cost thereby decreasing the time for processing each

mini-batch). This is also one of the reasons why our proposed method scales well with

increasing network complexity. We note that for VGG16 (with kaiming initialization),

a larger and more complex network compared to VGG11, FITRE method yields

superior generalization errors as well as minimizing objective function compared to

SGD.

101

Table 4.5.: Comparison of VGG11 using cifar100 dataset

Time vs. Likelihood Epoch vs. Likelihood Time vs Test Accuracy Epoch vs. Test Accuracy
KFAC Update Freq = 5

0 1000 2000 3000 4000 5000
Time in (seconds)

10-2

10-1

100

101

T
ra

in
 L

ik
e
li
h
o
o
d

0 10 20 30 40 50
Epoch No.

10-2

10-1

100

101

T
ra

in
 L

ik
e
li
h
o
o
d

0 1000 2000 3000 4000 5000
Time in (seconds)

10

20

30

40

50

60

70

T
e
st

 A
c
c
u
ra

c
y

0 10 20 30 40 50
Epoch No.

10

20

30

40

50

60

70

T
e
st

 A
c
c
u
ra

c
y

SGD (lr: 1e-02, BN: 1, Reg: 0e+00)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 0e+00)

SGD (lr: 1e-01, BN: 1, Reg: 1e-04)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 1e-04)

SGD (lr: 1e-01, BN: 1, Reg: 1e-05)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 1e-05)

SGD (lr: 1e-01, BN: 1, Reg: 1e-06)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 1e-06)

KFAC Update Freq = 25

D
ef

au
lt

0 1000 2000 3000 4000 5000 6000
Time in (seconds)

10-2

10-1

100

101

T
ra

in
 L

ik
e
li
h
o
o
d

0 10 20 30 40 50
Epoch No.

10-2

10-1

100

101

T
ra

in
 L

ik
e
li
h
o
o
d

0 1000 2000 3000 4000 5000 6000
Time in (seconds)

10

20

30

40

50

60

70

T
e
st

 A
c
c
u
ra

c
y

0 10 20 30 40 50
Epoch No.

10

20

30

40

50

60

70

T
e
st

 A
c
c
u
ra

c
y

SGD (lr: 1e-02, BN: 1, Reg: 0e+00)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 10, Reg: 0e+00)

SGD (lr: 1e-01, BN: 1, Reg: 1e-04)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 10, Reg: 1e-04)

SGD (lr: 1e-01, BN: 1, Reg: 1e-05)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 10, Reg: 1e-05)

SGD (lr: 1e-01, BN: 1, Reg: 1e-06)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 1, BatchNorm: 1, Frequency: 10, Reg: 1e-06)

KFAC Update Freq = 5

0 1000 2000 3000 4000 5000
Time in (seconds)

10-2

10-1

100

101

T
ra

in
 L

ik
e
li
h
o
o
d

0 10 20 30 40 50
Epoch No.

10-2

10-1

100

101

T
ra

in
 L

ik
e
li
h
o
o
d

0 1000 2000 3000 4000 5000
Time in (seconds)

10

20

30

40

50

60

70

T
e
st

 A
c
c
u
ra

c
y

0 10 20 30 40 50
Epoch No.

10

20

30

40

50

60

70

T
e
st

 A
c
c
u
ra

c
y

SGD (lr: 1e-01, BN: 1, Reg: 0e+00)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 0e+00)

SGD (lr: 1e-01, BN: 1, Reg: 1e-04)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 1e-04)

SGD (lr: 1e-01, BN: 1, Reg: 1e-04)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 1e-05)

SGD (lr: 1e-02, BN: 1, Reg: 1e-06)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 1e-06)

KFAC Update Freq = 10

K
ai

m
in

g

0 1000 2000 3000 4000 5000
Time in (seconds)

10-2

10-1

100

101

T
ra

in
 L

ik
e
li
h
o
o
d

0 10 20 30 40 50
Epoch No.

10-2

10-1

100

101

T
ra

in
 L

ik
e
li
h
o
o
d

0 1000 2000 3000 4000 5000
Time in (seconds)

10

20

30

40

50

60

70

T
e
st

 A
c
c
u
ra

c
y

0 10 20 30 40 50
Epoch No.

10

20

30

40

50

60

70

T
e
st

 A
c
c
u
ra

c
y

SGD (lr: 1e-01, BN: 1, Reg: 0e+00)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 10, Reg: 0e+00)

SGD (lr: 1e-01, BN: 1, Reg: 1e-04)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 10, Reg: 1e-04)

SGD (lr: 1e-01, BN: 1, Reg: 1e-04)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 10, Reg: 1e-05)

SGD (lr: 1e-02, BN: 1, Reg: 1e-06)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 10, Reg: 1e-06)

102

Table 4.6.: Comparison of VGG16 using cifar100 dataset

Time vs. Likelihood Epoch vs. Likelihood Time vs Test Accuracy Epoch vs. Test Accuracy
KFAC Update Freq = 5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time in (seconds)

10-2

10-1

100

101

T
ra

in
 L

ik
e
li
h
o
o
d

0 10 20 30 40 50
Epoch No.

10-2

10-1

100

101

T
ra

in
 L

ik
e
li
h
o
o
d

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time in (seconds)

0

10

20

30

40

50

60

70

T
e
st

 A
c
c
u
ra

c
y

0 10 20 30 40 50
Epoch No.

0

10

20

30

40

50

60

70

T
e
st

 A
c
c
u
ra

c
y

SGD (lr: 1e-02, BN: 1, Reg: 0e+00)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 0e+00)

SGD (lr: 1e-01, BN: 1, Reg: 1e-04)

FITRE: (DampFactor: 1e+00, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 1e-04)

SGD (lr: 1e-01, BN: 1, Reg: 1e-05)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+02,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 1e-05)

SGD (lr: 1e-01, BN: 1, Reg: 1e-06)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 1e-06)

KFAC Update Freq = 25

D
ef

au
lt

0 1000 2000 3000 4000 5000 6000 7000 8000
Time in (seconds)

10-2

10-1

100

101

T
ra

in
 L

ik
e
li
h
o
o
d

0 10 20 30 40 50
Epoch No.

10-2

10-1

100

101

T
ra

in
 L

ik
e
li
h
o
o
d

0 1000 2000 3000 4000 5000 6000 7000 8000
Time in (seconds)

0

10

20

30

40

50

60

70

T
e
st

 A
c
c
u
ra

c
y

0 10 20 30 40 50
Epoch No.

0

10

20

30

40

50

60

70

T
e
st

 A
c
c
u
ra

c
y

SGD (lr: 1e-02, BN: 1, Reg: 0e+00)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+02,
CheckGrad: 0, BatchNorm: 1, Frequency: 10, Reg: 0e+00)

SGD (lr: 1e-01, BN: 1, Reg: 1e-04)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+02,
CheckGrad: 0, BatchNorm: 1, Frequency: 10, Reg: 1e-04)

SGD (lr: 1e-01, BN: 1, Reg: 1e-05)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+02,
CheckGrad: 0, BatchNorm: 1, Frequency: 10, Reg: 1e-05)

SGD (lr: 1e-01, BN: 1, Reg: 1e-06)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 10, Reg: 1e-06)

KFAC Update Freq = 5

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time in (seconds)

10-2

10-1

100

101

T
ra

in
 L

ik
e
li
h
o
o
d

0 10 20 30 40 50
Epoch No.

10-2

10-1

100

101

T
ra

in
 L

ik
e
li
h
o
o
d

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time in (seconds)

0

10

20

30

40

50

60

70

T
e
st

 A
c
c
u
ra

c
y

0 10 20 30 40 50
Epoch No.

0

10

20

30

40

50

60

70

T
e
st

 A
c
c
u
ra

c
y

SGD (lr: 1e-01, BN: 1, Reg: 0e+00)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 0e+00)

SGD (lr: 1e-01, BN: 1, Reg: 1e-04)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 1e-04)

SGD (lr: 1e-01, BN: 1, Reg: 1e-04)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 1e-05)

SGD (lr: 1e-01, BN: 1, Reg: 1e-06)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+02,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 1e-06)

KFAC Update Freq = 10

K
ai

m
in

g

0 1000 2000 3000 4000 5000 6000 7000 8000
Time in (seconds)

10-2

10-1

100

101

T
ra

in
 L

ik
e
li
h
o
o
d

0 10 20 30 40 50
Epoch No.

10-2

10-1

100

101

T
ra

in
 L

ik
e
li
h
o
o
d

0 1000 2000 3000 4000 5000 6000 7000 8000
Time in (seconds)

0

10

20

30

40

50

60

70

T
e
st

 A
c
c
u
ra

c
y

0 10 20 30 40 50
Epoch No.

0

10

20

30

40

50

60

70

T
e
st

 A
c
c
u
ra

c
y

SGD (lr: 1e-01, BN: 1, Reg: 0e+00)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 10, Reg: 0e+00)

SGD (lr: 1e-01, BN: 1, Reg: 1e-04)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 10, Reg: 1e-04)

SGD (lr: 1e-01, BN: 1, Reg: 1e-04)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 10, Reg: 1e-05)

SGD (lr: 1e-01, BN: 1, Reg: 1e-06)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 10, Reg: 1e-06)

103

Table 4.7.: Comparison of VGG19 using cifar100 dataset

Time vs. Likelihood Epoch vs. Likelihood Time vs Test Accuracy Epoch vs. Test Accuracy
KFAC Update Freq = 5

0 2000 4000 6000 8000 10000 12000
Time in (seconds)

10-2

10-1

100

101

T
ra

in
 L

ik
e
li
h
o
o
d

0 10 20 30 40 50
Epoch No.

10-2

10-1

100

101

T
ra

in
 L

ik
e
li
h
o
o
d

0 2000 4000 6000 8000 10000 12000
Time in (seconds)

0

10

20

30

40

50

60

70

T
e
st

 A
c
c
u
ra

c
y

0 10 20 30 40 50
Epoch No.

0

10

20

30

40

50

60

70

T
e
st

 A
c
c
u
ra

c
y

SGD (lr: 1e-02, BN: 1, Reg: 0e+00)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 0e+00)

SGD (lr: 1e-01, BN: 1, Reg: 1e-04)

SGD (lr: 1e-01, BN: 1, Reg: 1e-05)

SGD (lr: 1e-01, BN: 1, Reg: 1e-06)

KFAC Update Freq = 25

D
ef

au
lt

0 2000 4000 6000 8000 10000 12000
Time in (seconds)

10-2

10-1

100

101

T
ra

in
 L

ik
e
li
h
o
o
d

0 10 20 30 40 50
Epoch No.

10-2

10-1

100

101

T
ra

in
 L

ik
e
li
h
o
o
d

0 2000 4000 6000 8000 10000 12000
Time in (seconds)

0

10

20

30

40

50

60

70

T
e
st

 A
c
c
u
ra

c
y

0 10 20 30 40 50
Epoch No.

0

10

20

30

40

50

60

70

T
e
st

 A
c
c
u
ra

c
y

SGD (lr: 1e-02, BN: 1, Reg: 0e+00)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+01,
CheckGrad: 0, BatchNorm: 1, Frequency: 10, Reg: 0e+00)

SGD (lr: 1e-01, BN: 1, Reg: 1e-04)

SGD (lr: 1e-01, BN: 1, Reg: 1e-05)

SGD (lr: 1e-01, BN: 1, Reg: 1e-06)

KFAC Update Freq = 5

0 2000 4000 6000 8000 10000 12000
Time in (seconds)

10-2

10-1

100

101

T
ra

in
 L

ik
e
li
h
o
o
d

0 10 20 30 40 50
Epoch No.

10-2

10-1

100

101

T
ra

in
 L

ik
e
li
h
o
o
d

0 2000 4000 6000 8000 10000 12000
Time in (seconds)

0

10

20

30

40

50

60

70

T
e
st

 A
c
c
u
ra

c
y

0 10 20 30 40 50
Epoch No.

0

10

20

30

40

50

60

70

T
e
st

 A
c
c
u
ra

c
y

SGD (lr: 1e-01, BN: 1, Reg: 0e+00)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 0e+00)

SGD (lr: 1e-01, BN: 1, Reg: 1e-04)

SGD (lr: 1e-01, BN: 1, Reg: 1e-04)

SGD (lr: 1e-01, BN: 1, Reg: 1e-06)

KFAC Update Freq = 10

K
ai

m
in

g

0 2000 4000 6000 8000 10000 12000
Time in (seconds)

10-2

10-1

100

101

T
ra

in
 L

ik
e
li
h
o
o
d

0 10 20 30 40 50
Epoch No.

10-2

10-1

100

101

T
ra

in
 L

ik
e
li
h
o
o
d

0 2000 4000 6000 8000 10000 12000
Time in (seconds)

0

10

20

30

40

50

60

70

T
e
st

 A
c
c
u
ra

c
y

0 10 20 30 40 50
Epoch No.

0

10

20

30

40

50

60

70

T
e
st

 A
c
c
u
ra

c
y

SGD (lr: 1e-01, BN: 1, Reg: 0e+00)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 10, Reg: 0e+00)

SGD (lr: 1e-01, BN: 1, Reg: 1e-04)

SGD (lr: 1e-01, BN: 1, Reg: 1e-04)

SGD (lr: 1e-01, BN: 1, Reg: 1e-06)

104

CIFAR100 Dataset Results Table 4.5 shows plots for VGG11 network using the

CIFAR100 dataset. We show the generalization errors plots vs. wall clock time and

vs. number of epochs in Columns 3 and 4 respectively, and NLL vs. wall-clock time

and vs. number of epochs in Columns 1 and 2, respectively. Note that the first

row uses the KFAC update frequency of 5 (mini-batches) and the second row uses

the KFAC update frequency of 10. All of these plots (in the first two rows) use

default initialization for the respective CNNs. Corresponding results using kaiming

initialization are shown in Rows 3 and 4. Tables. 4.6 and 4.7 show plots for VGG16

and VGG19 CNNs.

From the VGG19 networks results shown in Table. 4.7, we clearly notice that the

use of `2-regularization adversely affects the behavior of SGD optimizer when default

initialization is used. We notice that the behavior of SGD optimizer, in the objective

function and generalization error plots, without any regularization yields superior re-

sults compared to SGD optimizer using non-zero regularization terms. However, for

kaiming initialization we do not see any noticeable changes in the behavior of SGD

with and without using any regularization terms. From the generalization error plots,

we see that the FITRE method achieves ≈ 5× speedup over SGD in the case of kaim-

ing initialization (irrespective of the KFAC update frequency) and, the corresponding

speedup in the case of default initialization is ≈ 4×. However, notice that in the NLL

plots for both types of initializations, FITRE method achieves significantly better re-

sults compared to SGD (an order of magnitude better). Furthermore, as seen in the

results for the Imagenet dataset, we see that higher KFAC update frequency lowers

the time for processing the mini-batches, as well as the time per epoch. Notice that

the simulation completion time for FITRE method is lower for KFAC update fre-

quency of 10 compared to the other frequency irrespective of the type of initialization

used by the networks. Similar to VGG19 results, `2−regularization plays similar role

in the behavior of VGG16, as can be seen in Table. 4.6 for both types of initializa-

tion. The FITRE method achieves a speedup of ≈ 4× to ≈ 5× over SGD for this

network. Table. 4.5 shows the results for the VGG11. Contrary to results from the

105

other two networks we notice that for VGG11 the objective function values of both

methods are closer, indicating that SGD optimizer yielding results similar to that of

FITRE method at the end of the simulation as seen in columns 1 and 2. However note

that FITRE method achieves superior results in the first few epochs, irrespective of

the KFAC update frequency and network initialization type, compared to SGD and

as simulation progress SGD tends to achieve similar results at those of FITRE at the

end of the simulations.

Remark 5 The quality of natural-gradient descent direction is effective and second-

order approximated trust-region constrained optimization yields larger step sizes at the

beginning of the execution. Aided by these two factors, the FITRE method produces

better parameter updates in the same amount of wall-clock time compared to SGD,

and achieves significantly better generalization errors in the first few epochs. The

FITRE method only needs a few epochs to attain near saturation results compared to

SGD which needs a larger number of epochs to match the results of FITRE . Efficient

implementation and effective use of GPU resources establishes our FITRE method, a

truly second-order method, as a suitable alternative to widely used first-order methods

like SGD.

106

Table 4.8.: Comparison of VGG16 using cifar100 dataset with a quasi-Newton Method (L-BFGS).

Time vs. Likelihood Epoch vs. Likelihood Time vs Test Accuracy Epoch vs. Test Accuracy
KFAC Update Freq = 5

0 10000 20000 30000 40000 50000 60000 70000 80000
Time in (seconds)

10-2

10-1

100

101

T
ra

in
 L

ik
e
li
h
o
o
d

0 10 20 30 40 50
Epoch No.

10-2

10-1

100

101

T
ra

in
 L

ik
e
li
h
o
o
d

0 10000 20000 30000 40000 50000 60000 70000 80000
Time in (seconds)

20

30

40

50

60

70

T
e
st

 A
c
c
u
ra

c
y

0 10 20 30 40 50
Epoch No.

20

30

40

50

60

70

T
e
st

 A
c
c
u
ra

c
y

BFGS (BN: 1, Reg: 0e+00)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 0e+00)

BFGS (BN: 1, Reg: 1e-04)

FITRE: (DampFactor: 1e+00, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 1e-04)

BFGS (BN: 1, Reg: 1e-05)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+02,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 1e-05)

BFGS (BN: 1, Reg: 1e-06)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 1e-06)

KFAC Update Freq = 10

D
ef

au
lt

0 10000 20000 30000 40000 50000 60000 70000 80000
Time in (seconds)

10-2

10-1

100

101

T
ra

in
 L

ik
e
li
h
o
o
d

0 10 20 30 40 50
Epoch No.

10-2

10-1

100

101

T
ra

in
 L

ik
e
li
h
o
o
d

0 10000 20000 30000 40000 50000 60000 70000 80000
Time in (seconds)

20

30

40

50

60

70

T
e
st

 A
c
c
u
ra

c
y

0 10 20 30 40 50
Epoch No.

20

30

40

50

60

70

T
e
st

 A
c
c
u
ra

c
y

BFGS (BN: 1, Reg: 0e+00)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+02,
CheckGrad: 0, BatchNorm: 1, Frequency: 10, Reg: 0e+00)

BFGS (BN: 1, Reg: 1e-04)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+02,
CheckGrad: 0, BatchNorm: 1, Frequency: 10, Reg: 1e-04)

BFGS (BN: 1, Reg: 1e-05)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+02,
CheckGrad: 0, BatchNorm: 1, Frequency: 10, Reg: 1e-05)

BFGS (BN: 1, Reg: 1e-06)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 10, Reg: 1e-06)

KFAC Update Freq = 5

0 10000 20000 30000 40000 50000 60000 70000 80000
Time in (seconds)

10-2

10-1

100

101

T
ra

in
 L

ik
e
li
h
o
o
d

0 10 20 30 40 50
Epoch No.

10-2

10-1

100

101

T
ra

in
 L

ik
e
li
h
o
o
d

0 10000 20000 30000 40000 50000 60000 70000 80000
Time in (seconds)

20

30

40

50

60

70

T
e
st

 A
c
c
u
ra

c
y

0 10 20 30 40 50
Epoch No.

20

30

40

50

60

70

T
e
st

 A
c
c
u
ra

c
y

BFGS (BN: 1, Reg: 0e+00)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 0e+00)

BFGS (BN: 1, Reg: 1e-04)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 1e-04)

BFGS (BN: 1, Reg: 1e-05)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 1e-05)

BFGS (BN: 1, Reg: 1e-06)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+02,
CheckGrad: 0, BatchNorm: 1, Frequency: 5, Reg: 1e-06)

KFAC Update Freq = 10

K
ai

m
in

g

0 10000 20000 30000 40000 50000 60000 70000 80000
Time in (seconds)

10-2

10-1

100

101

T
ra

in
 L

ik
e
li
h
o
o
d

0 10 20 30 40 50
Epoch No.

10-2

10-1

100

101

T
ra

in
 L

ik
e
li
h
o
o
d

0 10000 20000 30000 40000 50000 60000 70000 80000
Time in (seconds)

25

30

35

40

45

50

55

60

65

70

T
e
st

 A
c
c
u
ra

c
y

0 10 20 30 40 50
Epoch No.

25

30

35

40

45

50

55

60

65

70

T
e
st

 A
c
c
u
ra

c
y

BFGS (BN: 1, Reg: 0e+00)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 10, Reg: 0e+00)

BFGS (BN: 1, Reg: 1e-04)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 10, Reg: 1e-04)

BFGS (BN: 1, Reg: 1e-05)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 10, Reg: 1e-05)

BFGS (BN: 1, Reg: 1e-06)

FITRE: (DampFactor: 1e-01, MaxTrustRad: 1e+00,
CheckGrad: 0, BatchNorm: 1, Frequency: 10, Reg: 1e-06)

107

Comparison with quasi-Newton Method (L-BFGS) In this paragraph we

elaborate on the comparison of FITRE method against a widely known quasi-Newton

method, which is L-BFGS. Our BFGS implementation is in pyTorch and it uses a his-

tory of 20 prior gradients in generating the Hessian approximation used in computing

the descent direction. And for step size estimation we use cubic interpolation method

as described in section 3.4 of the book from Jorge Nocedal [1]. In the plots shown

in Table. 4.8 we describe the comparison results between FITRE and L-BFGS meth-

ods. For FITRE method, we keep the KFAC update frequency and regularization

constant and select the best performing set of hyper parameters yielding the highest

test accuracy for comparison against the BFGS method.

From the plots in Table. 4.8 we clearly notice that FITRE method is orders of

magnitude faster compared to BFGS method, ≈ 8× faster in almost all cases. This

is because FITRE uses our CUDA framework while BFGS method is implemented

in pyTorch. Both these methods use GPUs for computation but in a significantly

contrasting manner. pyTorch is a general purpose framework which is optimized for

multi-user multi-process environment which inherently optimizes the GPU device us-

age for simultaneous use GPUs for many users. In that process, all the operations

on GPUs are executed in a transactional manner. This means that whenever GPU

computation is deemed necessary all the associated data is moved on to the GPU de-

vice and computation is initiated and once completed the results are moved back to

the CPU memory space. Because of this reason, which is repeated hundreds of times

over the course of the simulation, we notice a significant deterioration with the py-

Torch version of BFGS solver (resulting in 8× slower compared to FITRE method).

In addition, FITRE method uses better tuning of thread block size for individual

CUDA kernels, highly optimized implementation of convolution, activation and pool-

ing functions along with their first- and second-derivatives which are used during the

computation of Fisher information statistics as well as Hessian-vector products.

In terms of test accuracy, we clearly notice that irrespective of parameter initial-

ization method and KFAC update frequency FITRE method achieves significantly

108

superior test accuracy compared to BFGS method. This can attributed the quality

of natural gradient as estimated by the kronecker approximated Fisher information

matrix as well as the crude estimation of the Hessian used in estimation the descent

direction during the optimization of the objective function. Apart from the above

mentioned differences between BFGS and FITRE methods we also notice that regu-

larization term does not play a significant role in either improving the generalization

error or time consumed during the course of the simulation for either of the optimizers.

Table 4.9.: Behavior of FITRE and SGD without regularization on CIFAR100
dataset. FITRE method uses an update frequency of 5 and “KFAC + gradient”
option is turned off in these set of simulations. VGG networks in this table does not
use batch-normalization function.

SGD with various learning rates on VGG Networks

0 10 20 30 40 50
Epoch No.

0.0

0.1

0.2

0.3

0.4

0.5

T
e
s
t
 A

c
c
u
r
a
c
y

LearningRate: 0.0001

LearningRate: 0.001

LearningRate: 0.01

LearningRate: 0.1

0 10 20 30 40 50
Epoch No.

0.0070

0.0075

0.0080

0.0085

0.0090

0.0095

0.0100

0.0105

T
e
s
t
 A

c
c
u
r
a
c
y

LearningRate: 0.0001

LearningRate: 0.001

LearningRate: 0.01

0 10 20 30 40 50
Epoch No.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

T
e
s
t
 A

c
c
u
r
a
c
y

LearningRate: 0.0001

LearningRate: 0.001

LearningRate: 0.01

LearningRate: 0.1

VGG11 VGG16 VGG19

FITRE with varying trust-region radius on VGG Networks

0 10 20 30 40 50
Epoch No.

0

10

20

30

40

50

60

T
e
s
t
 A

c
c
u
r
a
c
y

TrustRadius: 0.100000

TrustRadius: 100.000000

TrustRadius: 10.000000

TrustRadius: 1.000000

0 10 20 30 40 50
Epoch No.

0

10

20

30

40

50

60

T
e
s
t
 A

c
c
u
r
a
c
y

TrustRadius: 0.100000

TrustRadius: 100.000000

TrustRadius: 10.000000

TrustRadius: 1.000000

0 10 20 30 40 50
Epoch No.

0

10

20

30

40

50

60

T
e
s
t
 A

c
c
u
r
a
c
y

TrustRadius: 0.100000

TrustRadius: 1.000000

TrustRadius: 10.000000

TrustRadius: 100.000000

VGG11 VGG16 VGG19

Robustness Results. The FITRE method’s two main hyper-parameters – damp-

ing term and maximum trust-region radius can be easily estimated. Typical values

109

Table 4.10.: Reparameterization Invariance results for SGD and FITRE methods.
VGG networks in these experiments use 0 regularization. And for FITRE method we
use the KFAC update frequency of 5 and use only the natural gradient direction as
the descent direction (KFAC + gradient option is not used in these experiments).

VGG11 VGG16 VGG19
F

IT
R

E

w/o BN

0 10 20 30 40 50
Epoch No.

0

10

20

30

40

50

60

T
e
st

 A
c
c
u
ra

c
y

TrustRadius: 0.100000

TrustRadius: 100.000000

TrustRadius: 10.000000

TrustRadius: 1.000000

0 10 20 30 40 50
Epoch No.

0

10

20

30

40

50

60

T
e
st

 A
c
c
u
ra

c
y

TrustRadius: 0.100000

TrustRadius: 100.000000

TrustRadius: 10.000000

TrustRadius: 1.000000

0 10 20 30 40 50
Epoch No.

0

10

20

30

40

50

60

T
e
st

 A
c
c
u
ra

c
y

TrustRadius: 0.100000

TrustRadius: 1.000000

TrustRadius: 10.000000

TrustRadius: 100.000000

w. BN

0 10 20 30 40 50
Epoch No.

20

25

30

35

40

45

50

55

60

65
T
e
st

 A
c
c
u
ra

c
y

TrustRadius: 0.100000

TrustRadius: 100.000000

TrustRadius: 10.000000

TrustRadius: 1.000000

0 10 20 30 40 50
Epoch No.

10

20

30

40

50

60

70

T
e
st

 A
c
c
u
ra

c
y

TrustRadius: 0.100000

TrustRadius: 100.000000

TrustRadius: 10.000000

TrustRadius: 1.000000

0 10 20 30 40 50
Epoch No.

10

20

30

40

50

60

70

T
e
st

 A
c
c
u
ra

c
y

TrustRadius: 0.100000

TrustRadius: 1.000000

TrustRadius: 10.000000

TrustRadius: 100.000000

S
G

D

w/o BN

0 10 20 30 40 50
Epoch No.

0.0

0.1

0.2

0.3

0.4

0.5

T
e
st

 A
c
c
u
ra

c
y

LearningRate: 0.0001

LearningRate: 0.001

LearningRate: 0.01

LearningRate: 0.1

0 10 20 30 40 50
Epoch No.

0.0070

0.0075

0.0080

0.0085

0.0090

0.0095

0.0100

0.0105

T
e
s
t

A
c
c
u
ra

c
y

LearningRate: 0.0001

LearningRate: 0.001

LearningRate: 0.01

0 10 20 30 40 50
Epoch No.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

T
e
st

 A
c
c
u
ra

c
y

LearningRate: 0.0001

LearningRate: 0.001

LearningRate: 0.01

LearningRate: 0.1

w. BN

0 10 20 30 40 50
Epoch No.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
e
st

 A
c
c
u
ra

c
y LearningRate: 0.0001

LearningRate: 0.001

LearningRate: 0.01

LearningRate: 0.1

LearningRate: 1.0

LearningRate: 10.0

0 10 20 30 40 50
Epoch No.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
e
st

 A
c
c
u
ra

c
y LearningRate: 0.0001

LearningRate: 0.001

LearningRate: 0.01

LearningRate: 0.1

LearningRate: 1.0

LearningRate: 10.0

0 10 20 30 40 50
Epoch No.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
e
st

 A
c
c
u
ra

c
y

LearningRate: 0.0001

LearningRate: 0.001

LearningRate: 0.01

LearningRate: 0.1

LearningRate: 1.0

LearningRate: 10.0

for trust-region radius are between 1e-1 and 10. Similarly, damping parameter’s

well behaved region is between 1e-2 and 10. For most of the combinations, the

FITRE method behaves in a consistent manner, and can yield almost identical re-

sults, as shown in This behavior contributes significantly to the resilient behavior

of the FITRE method w.r.t to minor changes in the hyper-parameters Table. 4.9.

However, we notice that SGD’s behavior changes significantly with slight changes in

learning rate. This is one of the major challenges that a developer runs into with

first-order methods, namely hyper-parameter space that is difficult to tune.

Invariance to Re-parameterization. With the computation of block inverses and

ultimately the natural gradient itself, expectation of the inputs and outputs of the

convolution layer is deeply embedded into the KFAC approximation itself. Because

110

of this, additional batch normalizations are irrelevant to the FITRE method’s perfor-

mance in minimizing the objective function. However, first-order methods like SGD

need to have batch normalization layers embedded into the underlying model itself

(typically right after the convolution layer). These results are presented in Table. 4.10.

We notice that without the use of batch normalization layers, the SGD method tends

to diverge or does not make significant progress in optimizing the likelihood of the un-

derlying model. However, the FITRE method is robust, insensitive to small changes

in its hyper-parameters, as well as invariant to re-parameterization. Typically, imple-

mentation of batch normalization is computationally expensive, and as the network

complexity increases, its execution time contributes significantly to the over all sim-

ulation time. There is no need for such layers in case of the FITRE method, which

significantly helps reduce the processing time for each mini batch (and simulation

time for the network).

4.5 Conclusions and Future Work

In this work we proposed an online second-order stochastic method for optimizing

non-convex objective functions (likelihood functions). Through extensive experiments

using real world datasets, we have shown that our proposed method outperforms ex-

isting first-order methods in wall-clock time and convergence rates. We have also

shown that our proposed method achieves significantly better generalization errors

and minimizes the objective function, beyond those achieved by a well-tuned SGD

method. With computationally expensive operations and limited availability of mem-

ory on GPUs single node applications can only be used with small batch sizes. This

provides us an opportunity to extend our proposed method to distributed environ-

ments, and by deploying large batch-sizes, our proposed method can yield significantly

better results in much shorter times, which would be extremely hard to realize using

existing first-order methods.

111

4.6 Appendix

4.6.1 Memory Layout

All the matrices are stored in column-major order. Input data, typically images,

for neural networks is 4-dimensional in nature i..e., samples× channels×height×

width. This matrix is stored in memory as a (samples× height× width)× channels

matrix. Basically, per channel information is stored in column-major order for each

sample point. And multiple samples are stacked vertically on top of each other. For

instance, 1st channel information of 1st image is stored in first column in column-major

order likewise cth column information is stored in cth column. And if more than one

sample points are present, then 2nd images’ 1st column is stacked below the 1st images’

1st column and likewise cth channel information of the 2nd image is stacked below the

cth channel information of the 1st image in the cth column. Weights associated with

each layer of the network can be either a 4-dimensional matrix, as in the case of a

convolution function, or a 2-dimension matrix, as in the case of a linear (or dense)

function. The 4-dimensional weights matrix of shape (cout × cin × k × k) is treated

as a (cin × k × k) × cout matrix with individual k × k filters stored in column-major

format. And at times it is also reordered such that it represents a (cout × k × k)× cin

matrix, particularly during the back-propagation algorithm, indicated by W̆l (weights

associated with the lth of the network.

4.6.2 Helper functions

Img2Col Function

A typical convolution operation can either be computed by overlaying filter maps

(or weights) on top of the input data and computing the output in a serial fashion

or by converting the input data into a suitable form (typically an enlarged matrix)

and performing an efficient matrix multiplication, i..e GEMM operation, with the

filter (weights) matrix. Using the former results in redundant transfer of data among

112

memory layers of the GPU device resulting in inefficient use of GPU device coupled

with poor locality of reference(note that the same k×k filter map may be transferred

from CPU to GPU multiple times). And using the latter (because of the enlarged

matrix) results in redundant storage of the input matrix. For our work we use the

latter approach for performing the convolution operation and we use GEMM opera-

tions as defined in the cublas library for this purpose. GEMM operations are highly

efficient and bandwidth optimized for large matrices.

Img2Col (∗) operation converts the input data from shape m× cin×hin×win to

(m×hout×wout)×(cin×k×k), where k is the convolution filter map size. Note that the

convolution function is associated with a set of filter maps of shape cout× cin× k× k,

where cout is the channels of the output of the convolution operation and cin are the

input channels, k is the filter map size, hin, win and hout, wout are the height and

width of the images in each of the associated channels of the input and output data

respectively. Stride , s, indicates the number of pixels to step ahead along each

dimension when applying the filter map whereas Padding , p, indicates the number

of pixels to be used for padding the input during the convolution operation. hin and

hout are tied together with the following equation (same relation can be used to relate

win and wout):

hout =
hin + 2p− s

k
+ 1 (4.15)

Convolution operation is the process of overlaying filter maps onto the input data

and summing the resultant element-wise products. This is repeated over the entire

image for all channels by moving the filter map along each dimension (height or width)

by stride pixels. And prior to the convolution operation per channel information is

padded with zeros by padding pixels. Note that because of this operation the size of

the input data may change and superscripts in and out are used to indicate the input

113

and out data to and from the convolution function respectively. Mathematically, we

represent convolution operation as follows:

Cl = Img2Col (Al−1) Wl + bl (4.16)

In eq. 4.16 Img2Col (.) operator is used to enlarge the input matrix, Al−1, so

that the resultant matrix can be used in a GEMM operation with Wl matrix for the

convolution function. We use JAl−1K to refer to the enlarged matrix. Bias term, bl

can be folded into the Wl by appending it as a row vector. Note that Wl is treated

as a 2-dimensional matrix of shape (cinl × kl × kl)× coutl and the result of folding the

bias vector will result into W̄l of shape (cinl × kl × kl + 1) × coutl . We also append

a column of ones, e, to the enlarged matrix, JAl−1K, and the resulting matrix is

denoted by JAl−1KH (the use of the subscript H, homogenous coordinate, indicates

that a column of ones, e, has been appended).With this change, a concise form of the

convolution operation is given by the following equation:

Cl = JAl−1KHW̄l

4.7 Neural Network Operations

4.7.1 Gradient computation

Convolution Function

Convolution function is associated with a set of filters (or weights) Wl, and bias

,bl, variables which are learned during the minimization of the loss function associated

with the neural network. Typically these variables are initialized with suitable values

as defined by the various schemes [102,104,105] discussed in current literature. These

initialization schemes take into account the mean and the variance of the input and

114

output data of a convolution function and attempt to maintain them as constants

throughout the neural network. Some initialization methods like [102] also take into

account the type of non-linearity stacked after the convolution function whereas [104]

approximate the non-linearity functions to be constants.

Forward Pass Forward pass through a convolution function is the process of over-

laying set of filter maps on top of the input data and summing up the resultant

element-wise products, typically known as convolution function. This is repeated

over the entire image. This operation can be treated as a GEMM operation by en-

larging the input data so that each row (or column) represents a particular filter map

and the no. of rows (or columns) indicating the number of times a filter map is ap-

plied on the incoming sample point per channel. Note that bias term can be folded

into the weights variable by suitably altering the weights and input data matrices.

Mathematically, convolution function can be represented as follows:

Cl = JAl−1KHW̄l

Backward Pass Gradient terms associated with the convolution function, DW̄l,

as well as those terms which are propagated further up through the neural network

during back-propagation, Gconv
l , are computed as follows:

∂L
∂Wl

= Ga
l
ᵀJAl−1KH

∂L
∂Al−1

= JGa
l KW̆l = Gconv

l

Activation Function

Activation functions, for instance swish, sigmoid, log-softmax etc.., are used after

the convolution function to transform the input data in a non-linear fashion so as

115

to differentiate (or classify) among the output’s components. After the inputs to

the neural network are passed through sufficient non-linearity functions, depending

on the design of the network, outputs of the network are used to compute the class

probabilities which are used to make predictions of the associated input sample point

to the network. Non-linearity functions are employed to aid this classification process.

Note that each sample point to the activation function in the linear layer is a

vector while in the convolution layer it is a matrix. We present below the relation-

ship between inputs and outputs to the non-linearity functions in the context of

linear layers, and by replacing the sample points representation from vectors with

corresponding notation in matrices similar equations can be derived for activation

functions in convolution layers.

Forward Pass In the forward pass, for gradient computation, the non-linear

function F (.) is applied to individual components of the input vector sl resulting in

the corresponding output components in pl.

al = F (sl)

Backward Pass During the backward pass, the incoming gradient terms (gpl

) from the pool function are scaled by the first-order derivative of the activation

function, co-ordinate wise, resulting in the gradient terms gal to be back-propagated

to the functions preceding the activation function. Mathematically, this relationship

can be formed as:

gal = F ′ (sl)� gpl

116

Pooling Function

Pool functions are used to down-sample the inputs so as to reduce the input size.

These functions are associated with Stride (s), Padding (p) and kernel size (k)

which are used by the down-sampling procedure when computing the output of the

pool function. The height and width of the output of the pool functions are related

to its inputs in the same way as defined for the convolution function as shown in

eq. 4.15.

Forward Pass In the forward pass, the input feature maps are down-sampled

channel-wise individually according to the stride, padding and kernel size specifi-

cations. For average pool the average of the input feature map is produced as output

and for max pool the largest component of the input feature map is spit out as the

output of the pool operation for a specific feature map. This process is repeated over

the all the channels for each sample point in the input. Following equation captures

this behavior:

Al = P (Pl)

Backward Pass During the backward pass in the back-propagation algorithm, the

gradient terms to be back-propped Gp
l are produced feature-map-wise. The derivative

of the pool function and incoming gradient terms from the next layer in the network,

Gconv
l+1 , are used in element-wise product operation for this purpose as shown in the

below equation.

Gp
l = P ′ (Pl)� Gconv

l+1

117

Linear (Dense) Function

Apart from convolution function, linear or dense functions are also used to

transform the inputs by performing a weighted summation and a bias term to move

the center of the input data. Typically in the context of convolution neural networks

linear functions are used for classification purposes at the end of the network. This

function is associated with Wl and bl parameters whose dimensions are f outl ×f inl and

f outl × 1 respectively, where subscript l indicates the layer number and superscripts

in, out indicate the no. of input features and output features associated with the layer

l.

Forward Pass Forward pass for the linear function involves a GEMM operation

between the weights associated with this function and the incoming data āl−1 as

shown below:

sl = W̄lā
ᵀ
l−1

Backward Pass During back-propagation the out-going gradient terms, ∂L
∂al−1

, and

gradients w.r.t weights parameters, ∂L
∂Wl , are computed using GEMM operations as

shown below:

∂L
∂Wl

= gal ā
ᵀ
l−1

∂L
∂al−1

= gdl = Wl
ᵀ
gal

4.7.2 Hessian Vector Operation on Neural Networks

Similar to gradient computation on the neural network, Hessian-vector computa-

tion requires two additional passes over the given network. During the forward pass,

we store the required data in the auxiliary variable, Rv {al} (and Rv {Al}) , for each

118

layer l. And during the backward pass, we use the variable Rv {al} during forward

pass as well as al and Gl stored during the gradient computation on the network to

compute the Hessian-vector product w.r.t to a given vector.

Properties of the Rv {.} operator are used extensively for the remainder of this

section to produce the intermediate results during the two passes to compute Hessian-

vector product. For each function we use the equations used during the gradient

computation and apply the Rv {.} operator resulting the intermediate results as well

as the Hessian-vector product of the underlying neural network. The vector v w.r.t

which the Rv {.} operator is used in this section is of the same size as θ and Dθ.

Now we define the forward and backward pass used to compute Hessian-vec com-

putation on the neural network for each function involved.

Linear (Dense) Function

In this section we discuss the application of Rv {.} operator on the equations used

during the gradient computation of the linear function.

Forward Pass In the forward pass of the Hv-computation, we apply the Rv {.}

to the equation used in the gradient computation as shown below. Note that Rv {.}

operator obeys the multiplication-rules of the derivative calculus. Using this we can

easily compute the Rv {sl} as shown below. Rv

{
W̄l

}
is the W̄l component in vector

v and Rv {āl} would have already computed when previous layers were processed.

Rv {sl} = Rv

{
W̄lā

ᵀ
l

}
= Rv

{
W̄l

}
ā
ᵀ
l + W̄lRv {āl}

ᵀ

Backward Pass Here we apply the Rv {.} operator to the equations used to com-

pute gdl and ∂L
∂Wl to generate Rv

{
gdl
}

and Rv

{
∂L
∂Wl

}
. The former term is back-

119

propagated to the previous layers and the latter, Rv

{
∂L
∂Wl

}
, is the Hv component for

the parameters associated with the linear layer .i.e.., W̄l.

Rv

{
gdl
}

= Rv

{
Wl

ᵀ
gal
}

= Rv

{
Wl

ᵀ}
gal + Wl

ᵀRv {gal }

Rv

{
∂L
∂Wl

}
= Rv

{
gal ā

ᵀ
l−1

}
= Rv {gal } ā

ᵀ
l−1 + galRv {āl−1}

ᵀ

Note that gal and Rv {gal } were already computed during the backward pass of

gradient evaluation and current pass respectively, W̄l and Rv

{
W̄l

}
are the network’s

parameters and current layers components in v respectively, and āl−1 and Rv {al−1}

were computed during the forward passes of gradient and Hv computation respec-

tively.

Convolution Function

In this section we describe the application of R-operator on the equations de-

rived for gradient computation for the convolution operation. Note that compared to

gradient computation, which only needs one GEMM operation, computation of con-

volution function’s component of Hessian-vector product requires atleast two GEMM

operations.

Forward Pass During the computation of forward pass, which is used to evalu-

ate Rv {Cl}, the terms W̄l and Rv

{
W̄l

}
are known values (former is the weights

parameter associated with the convolution function and the latter term is the W̄l-

component in the vector v). Also note that a column of ones, e, is added to the

expanded matrix JRv {Al−1}K resulting in JRv {Al−1}KH .

120

Cl = JAl−1KHW̄l

Rv {Cl} = JRv {Al−1}KHW̄l + JAl−1KHRv

{
W̄l

}
Backward Pass For a convolution function, we computeRv

{
∂L
∂Wl

}
andRv {Gconv

l }

during the Hv backward pass. Evaluation of Rv

{
∂L
∂Wl

}
is straight forward and bears

resemblance to the equations in the forward-pass as shown in the previous paragraph.

However, evaluation of Rv {Gconv
l } requires the expansion of the matrix Rv {Ga

l }

which is multiplied with the weights matrix. This is because the height and width of

the input data, Rv {Ga
l } might change compared to output data, Rv {Gconv

l }

Rv

{
∂L
∂Wl

}
= Rv

{
[Ga

l]
ᵀ JAl−1KH

}
= Rv {Ga

l }
ᵀ JAl−1KH + [Ga

l]
ᵀ JRv {Al−1}KH

Rv {Gconv
l } = Rv

{
JGa

l K
ᵀ
W̆l

}
= JRv {Ga

l }K
ᵀ
W̆l + JGa

l K
ᵀRv

{
W̆l

}

Activation Function

In this paragraph we derive the equations used in computing the activation func-

tions’ component in the Hessian-vector product in the context of a convolution layer.

Similar equations can be easily derived for linear layer as well by replacing the matrix

notation with vector notation and using gdl+1 instead of Gp
l as inputs to this func-

tion during the backward pass. The equations to compute Rv {Pl} and Rv {Ga
l } are

straight-forward as they are simple applications of the R-operator.

121

Forward Pass

Rv {Pl} = Rv {F (Cl)}

= F ′ (Cl)� Rv {Cl}

Backward Pass

Rv {Ga
l } = Rv

{
F ′ (Cl)� Gp

l

}
= F ′′ (Cl)� Rv {Cl}� Gp

l + F ′ (Cl)� Rv {Gp
l }

Pooling Function

Hv-passes for pool function used to compute Rv {Al} and Rv {Gp
l } are shown

below:

Forward Pass Evaluation of Rv {Al} involves the application of pool function on

the input data Rv {Pl}.

Rv {Al} = P (Rv {Pl})

Backward Pass Rv {Gp
l } is computed during the backward pass as shown below.

(Note that for both types of pool functions supported in our implementation, namely

max-pooling and average-pooling, the second derivative of the pool function does not

exist thus simplifying the evaluation of Rv {Gp
l }.)

Rv {Gp
l } = Rv

{
P ′ (Pl)� Gconv

l+1

}
= P ′′ (Pl)� Rv {Pl}� Gconv

l+1 + P ′ (Pl)� Rv

{
Gconv
l+1

}

122

4.7.3 Loss Functions

We use softmax cross-entropy as the loss function, L, for the scope of this docu-

ment. Other loss functions can be easily adapted within our framework.

Softmax Cross Entropy Function

Gradient Forward Pass In the forward pass, the output of the network is used

to compute the output of the loss function.

L = −
c∑
i=0

yilog (qi) , where, qi =
e[aout]i∑
j

e[aout]j

Gradient Backward Pass In the backward pass, the error terms, used in the

back-propagation, are computed as shown below. For the case of a single sample i and

j indices indicate the position of the component in the output of the network, aout.

∂qi
∂ [aout]j

=

 qi [1− qi] ; i = j

−qiqj ; i 6= j

The general equation for the error terms propagated through the network is given

by the following equation. Indices i, j and k indicate the position in the output vector

for each sample point. (Note that here y is assumed to be one-hot encoded2.)

2One-hot encoding of a scalar, y, is a vector of all zeros and the yth position is marked with a 1.
Usually, ey is used to indicate such a vector and subscript y indicates the component of the vectors
which contains a 1.

123

[
∂L
∂aout

]
i

=


−

c∑
k=1

yk [1− qk] ; i = k

c∑
k=1

ykqk ; i 6= k

= qi − yi

Hessian-vec Backward Pass

Rv

{
∂L
∂aout

}
i

= Rv {qi} −Rv {yi}

= Rv {qi}

Rv {qi} can be computed as follows:

qi =
e[aout]i∑
j

e[aout]j

Rv {qi} =
e[aout]i∑
j

e[aout]j
Rv {aout}i +

e[aout]i[∑
j

e[aout]j

]2 (−1)
∑
j

[
ejRv {aout}j

]

= qiRv {aout}i − qi
∑
j

qjRv {aout}j

Now we can rewrite the equation tused to back-propagate the gradient terms as

follows:

Rv

{
∂L
∂aout

}
i

= qiRv {aout}i − qi
∑
j

qjRv {aout}j

124

4.7.4 Activation Functions

Our framework support some of the popular activation functions whose first- and

second-derivatives are shown in the following paragraphs. These derivatives can be

hooked into the equations derived in the previous sections to compute the gradient

and Hessian-vector products of a neural network. Note that each of the activation

functions described below takes a scalar, x, as its input.

Sigmoid Function

F (x) =
1

1 + e−x

F ′ (x) = F (x)F (−x)

F ′′ (x) = F ′ (x)F (−x)−F (x)F ′ (−x)

log-Softmax Function

F (x) = log (1 + ex)

F ′ (x) =
1

1 + e−x

F ′′ (x) =

(
1

1 + e−x

)(
1

1 + ex

)

Swish Function

F (x) =
x

1 + e−x

F ′ (x) =
1

1 + e−x
+

xe−x

(1 + e−x)2

F ′′ (x) =

[
1

1 + e−x

][
1

1 + ex

]
+

e−x

(1 + e−x)2

[
(1− x)− 2x

1 + e−x

]

125

4.7.5 Pooling Functions

Average Pool Function

Gradient Forward Pass During the forward pass for the gradient computation,

the input indices, (i, j), and output indices, (i
′
, j
′
) are linked through the eq. 4.15.

Average pool function is itself defined by the eq 4.18 shown below. Here we describe

how each cell of the output, Al+1, is computed using the input, Pl

[Al]i′j′ =
1

k2

i+k∑
a=i

{
j+k∑
b=j

[Pl]ab

}

Gradient Backward Pass During the backward pass of the back-propagation

algorithm for the Average Pool function the source indices (i
′
, j
′
) and the destination

indices (i, j) are related by the eq. 4.15. Also note that the dimensions of the matrices

(inputs and outputs) may change because of the down sampling functionality of the

pool function. The back-propagation of the gradient terms for the Average Pool

function is defined by the eq. 4.18.

[Gp
l]i,j =

1

k2

[
Gconv
l+1

]
i′j′

Hessian-vec Forward Pass In the Hessian-vec forward pass, we apply the R-

operator to the equations used in the forward pass in gradient computation of the

network; as shown below.

Rv {Al}i′j′ =
1

k2

i+k∑
a=i

{
j+k∑
b=j

Rv {Pl}ab

}

126

Hessian-vec Backward Pass

Rv {Gp
l }ij =

1

k2
Rv

{
Gconv
l+1

}
i′j′

Max Pool Function

For the forward pass of gradient computation, this function computes the maxi-

mum value from the input, Pl, for each filter map as defined by the stride, padding

and kernel size parameters. And during the back-propagation, the derivative of the

max pool function is computed w.r.t to the input data, Pl. Hence (i, j) location in

the output matrix Gp
l is set to

[
Gconv
l+1

]
i′j′

. Note that the locations (i, j) and (i
′
, j
′
)

are related by eq. 4.15. Similar to average pooling, we develop the equations to be

used for gradient and Hessian-vector product computation below:

Gradient Forward Pass

[Al]i′j′ =
i+k,j+k
max
i,j

[Pl]ij

Gradient Backward Pass

[Gp
l]i′j′ =


[
Gconv
l+1

]
i′j′

; i′, j′refer to the location which is
i+k,j+k
max
i,j

[Pl]ij

0 ; otherwise

In this equation we assume that the (l + 1)th is a convolution layer as well. If

the following layer is a linear/dense layer then this equation can be easily adopted

by appropriately conversion between vectors coming out the dense layer to matrices

feeding into the current layer.

Hessian-vec Forward Pass

Rv {Al}ij =
i′+k,j′+k

max
i′,j′

Rv {Pl}i′j′

127

Hessian-vec Backward Pass

Rv {Gp
l }i′j′ =

 Rv

{
Gconv
l+1

}
ij

; i′, j′refer to the location which is
i+k,j+k
max
i,j
Rv {Pl}ij

0 ; otherwise

As described in the case of gradient backward-pass, this above equation can be

easily adopted to the case when the (l + 1)th layer is a linear/dense layer.

4.7.6 Batch Normalization

Batch Normalization is used to center the incoming data w.r.t to its mean and

variance so that the output is centered at 0 with a variance of 1. Because of this acti-

vation function, which typically follows a batch normalization function, can operate

in meaningful zones (avoiding saturation zones of the activation functions).

The batch normalization function, Bl = B(Cl), takes the input matrix, Cl, and

computes the mean (µi) and variance (σ2
i) for all channels, c. We assume that batch

normalization function is present in convolution layers and is between the convolution

function and activation function of each layer for the scope of this section.

Please note that the subscripts c
′
, i and j for matrices in this paragraph indicate

the channel, c
′
, row i and column j of the said matrix. Also note that Σ indicates

the summation of all the components of an image in the mini batch channel-wise

(resulting in a vector whose length is the number of channels in the mini batch).

Gradient Forward Pass As described above, for the forward pass during gradient

computation the output of the batch normalization function B̃l is computed such that

the mean for a given channel, c′, is zero and variance is 1. The following equations

captures this process :

128

[
B̃l

]
c′ ij

=

[
C̃l

]
c′ ij
− µc′√

σ2
c′

+ ε
, and

µc′ =
1

m

∑
i,j

[
C̃l

]
c′ ij

σ2
c′

=
1

m

∑
i,j

[[
C̃l

]
c′ ij
− µc′

]2

where c
′ ∈ [1 . . . c]

Gradient Backward Pass By using the chain rule of the derivatives, we can

express the gradient terms of the batch normalization function as shown in eq. 4.18.

[
G̃bn
l

]
c′

=

[
∂L
∂C̃l

]
c′

=

[
∂L
∂B̃l

]
c′

[
∂B̃l

∂C̃l

]
c′

+
∂L
∂µc′

∂µc′

∂
[
C̃l

]
c′

+
∂L
∂σ2

c′

∂σ2
c′

∂
[
C̃l

]
c′

=
[
G̃a
l

]
c′

[
∂B̃l

∂C̃l

]
c′

+
∂L
∂µc′

∂µc′

∂
[
C̃l

]
c′

+
∂L
∂σ2

c′

∂σ2
c′

∂
[
C̃l

]
c′

All the terms in the above equation can be easily computed as follows:

• Using eq. 4.18 we can easily compute
[
∂B̃l

∂C̃l

]
c′

as

[
∂B̃l

∂C̃l

]
c′

=
1√
σ2
c′ + ε

,

129

• Using chain-rule from differential calculus, we have

∂L
∂µc′

∂µc′

∂
[
C̃l

]
c′

=

[
∂L
∂B̃l

]
c′

∂
[
B̃l

]
c′

∂µc′

∂µc′

∂
[
C̃l

]
c′

=
[
G̃a
l

]
c′

−1√
σ2
c′

+ ε

[
1

m

]

= −

[
G̃a
l

]
c′

m
√
σ2
c′

+ ε

• For the gradient terms w.r.t the variance, we have the following:

∂L
∂σ2

c′
=

∑ ∂L

∂
[
B̃l

]
c′

∂
[
B̃l

]
c′

∂σ2
c′

∂
[
B̃l

]
c′

∂σ2
c′

=

[[
C̃l

]
c′
− µc′

]
1[

σ2
c′

+ ε
]1.5

−1

2

∂L
∂σ2

c′
= −

∑[
G̃a
l

]
c′

2

[
C̃l

]
c′
− µc′[

σ2
c
′ + ε

]1.5

Using the above equations, we can write:

∂L
∂σ2

c′

∂σ2
c′

∂
[
C̃l

]
c′

= − 1

m

[∑[
G̃a
l

]
c′

[
C̃l

]
c′
− µc′[

σ2
c′

+ ε
]1.5

][∑[[
C̃l

]
c′
− µc′

]]

130

Using all the above intermediate results, we conclude with the following:

[
∂L
∂C̃l

]
c′

=
[
G̃bn
l

]
c′

=

[
G̃a
l

]
c′√

σ2
c′

+ ε
−

[
G̃a
l

]
c′

m
√
σ2
c′

+ ε

− 1

m

[∑[
G̃a
l

]
c′

[
C̃l

]
c′
− µc′[

σ2
c′

+ ε
]1.5

][∑[[
C̃l

]
c′
− µc′

]]

Hessian-vec Forward Pass During Hv-product forward pass we compute the

term Rv {Bl}c′ , for all channels c′ ∈ [1..c] by applying the R-operator to each of the

individual equations described in the corresponding gradient computation earlier.

Rv

{
B̃l

}
c′

= Rv


[
C̃l

]
c′
− µc′√

σ2
c′

+ ε


= Rv

 1√
σ2
c′

+ ε

[[C̃l

]
c′
− µc′

]
+

1√
σ2
c′

+ ε
Rv

{[
C̃l

]
c′
− µc′

}

= −

[
C̃l

]
c′
− µc′

m [σ2
c + ε]1.5

∑[[[
C̃l

]
c′
− µc′

][
Rv

{
C̃l

}
c′
− 1

m

∑[
C̃l

]
c′

]]

+
1√

σ2
c′

+ ε

[
Rv

{
C̃l

}
c′
− 1

m

∑
Rv

{
C̃l

}
c′

]

Hessian-vec Backward Pass Finally, during the Hv-product backward pass we

compute the term Rv

{
G̃bn
l

}
c′

, for a given channel c′ as shown below.

131

Rv

{
Gbn
l

}
c′

= Rv

{
1

m
√

σ2

c
′+ε

[
m
[
G̃a
l

]
c′
−
∑[

G̃a
l

]
c′
−
[
B̃l

]
c′

∑[
G̃a
l

]
c′

[
C̃l

]
c′

]}
= Rv {I} II + I Rv {II}

Rv {I} = −1

m
[
σ2

c
′+ε

]1.5 ∑[([
C̃l

]
c′
− µc′

)(
Rv

{
C̃l − 1

m

∑
Rv

{
C̃l

}}
c′

)]
Rv {II} = mRv

{
G̃a
l

}
c′
−
∑
Rv

{
G̃a
l

}
c′
−Rv

{
B̃l

}
c′

∑(
G̃a
l B̃l

)
c′

−
[
B̃l

]
c′

∑[
Rv

{
G̃a
l

}
c′

[
B̃l

]
c′

+
[
G̃a
l

]
c′
Rv

{
B̃l

}
c′

]

REFERENCES

132

REFERENCES

[1] J. Nocedal and S. Wright, Numerical optimization. Springer Science & Business
Media, 2006.

[2] N. I. M. Gould, An introduction to algorithms for continuous optimization.
Oxford University Computing Laboratory, 2006.

[3] Y. Nesterov, Introductory lectures on convex optimization. Springer Science &
Business Media, 2004, vol. 87.

[4] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with
gradient descent is difficult,” IEEE transactions on neural networks, vol. 5,
no. 2, pp. 157–166, 1994.

[5] A. Gittens and M. W. Mahoney, “Revisiting the Nyström method for im-
proved large-scale machine learning,” The Journal of Machine Learning Re-
search, vol. 17, no. 1, pp. 3977–4041, 2016.

[6] P. Xu, F. Roosta-Khorasani, and M. W. Mahoney, “Second-Order Optimiza-
tion for Non-Convex Machine Learning: An Empirical Study,” arXiv preprint
arXiv:1708.07827, 2017.

[7] A. S. Berahas, R. Bollapragada, and J. Nocedal, “An Investigation of Newton-
Sketch and Subsampled Newton Methods,” arXiv preprint arXiv:1705.06211,
2017.

[8] F. Roosta-Khorasani and M. W. Mahoney, “Sub-sampled Newton methods I:
globally convergent algorithms,” arXiv preprint arXiv:1601.04737, 2016.

[9] ——, “Sub-sampled Newton methods II: Local convergence rates,” arXiv
preprint arXiv:1601.04738, 2016.

[10] P. Xu, J. Yang, F. Roosta-Khorasani, C. Ré, and M. W. Mahoney, “Sub-
sampled newton methods with non-uniform sampling,” in Advances in Neural
Information Processing Systems, 2016, pp. 3000–3008.

[11] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning.
Springer series in statistics Springer, Berlin, 2001, vol. 1.

[12] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization methods for large-scale
machine learning,” arXiv preprint arXiv:1606.04838, 2016.

[13] S. Sra, S. Nowozin, and S. J. Wright, Optimization for machine learning. Mit
Press, 2012.

[14] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From
theory to algorithms. Cambridge university press, 2014.

[15] M. W. Mahoney, “Randomized algorithms for matrices and data,” Foundations
and Trends® in Machine Learning, vol. 3, no. 2, pp. 123–224, 2011.

[16] H. Avron, P. Maymounkov, and S. Toledo, “Blendenpik: Supercharging LA-
PACK’s least-squares solver,” SIAM Journal on Scientific Computing, vol. 32,
no. 3, pp. 1217–1236, 2010.

133

[17] X. Meng, M. A. Saunders, and M. W. Mahoney, “LSRN: A parallel iterative
solver for strongly over-or underdetermined systems,” SIAM Journal on Scien-
tific Computing, vol. 36, no. 2, pp. C95–C118, 2014.

[18] J. Yang, X. Meng, and M. W. Mahoney, “Implementing randomized matrix
algorithms in parallel and distributed environments,” Proceedings of the IEEE,
vol. 104, no. 1, pp. 58–92, 2016.

[19] P. Xu, F. Roosta, and M. W. Mahoney, “Newton-type methods for non-convex
optimization under inexact hessian information,” Mathematical Programming,
pp. 1–36, doi: 10.1007/s10107-019-01405-z.

[20] R. Bollapragada, R. Byrd, and J. Nocedal, “Exact and inexact subsampled
Newton methods for optimization,” arXiv preprint arXiv:1609.08502, 2016.

[21] R. H. Byrd, G. M. Chin, J. Nocedal, and Y. Wu, “Sample size selection in
optimization methods for machine learning,” Mathematical programming, vol.
134, no. 1, pp. 127–155, 2012.

[22] M. A. Erdogdu and A. Montanari, “Convergence rates of sub-sampled newton
methods,” in Advances in Neural Information Processing Systems 28, 2015, pp.
3034–3042.

[23] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-scale machine
learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[24] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for on-
line learning and stochastic optimization,” The Journal of Machine Learning
Research, vol. 12, pp. 2121–2159, 2011.

[25] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude,” COURSERA: Neural Networks for
Machine Learning, vol. 4, 2012.

[26] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[27] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv preprint
arXiv:1212.5701, 2012.

[28] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of ini-
tialization and momentum in deep learning,” in International conference on
machine learning, 2013, pp. 1139–1147.

[29] F. Roosta-Khorasani, K. van den Doel, and U. Ascher, “Stochastic algorithms
for inverse problems involving PDEs and many measurements,” SIAM J. Sci-
entific Computing, vol. 36, no. 5, pp. S3–S22, 2014.

[30] ——, “Data completion and stochastic algorithms for PDE inversion problems
with many measurements,” Electronic Transactions on Numerical Analysis,
vol. 42, pp. 177–196, 2014.

[31] K. v. d. Doel and U. Ascher, “Adaptive and stochastic algorithms for EIT and
DC resistivity problems with piecewise constant solutions and many measure-
ments,” SIAM J. Scient. Comput., vol. 34, p. DOI: 10.1137/110826692, 2012.

[32] A. Coates, P. Baumstarck, Q. Le, and A. Y. Ng, “Scalable learning for object
detection with gpu hardware,” in Intelligent Robots and Systems, 2009. IROS
2009. IEEE/RSJ International Conference on. IEEE, 2009, pp. 4287–4293.

134

[33] R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale deep unsupervised learn-
ing using graphics processors,” in Proceedings of the 26th annual international
conference on machine learning. ACM, 2009, pp. 873–880.

[34] A. Coates, B. Huval, T. Wang, D. Wu, B. Catanzaro, and N. Andrew, “Deep
learning with cots hpc systems,” in International Conference on Machine Learn-
ing, 2013, pp. 1337–1345.

[35] J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, Q. V. Le, and A. Y. Ng, “On op-
timization methods for deep learning,” in Proceedings of the 28th international
conference on machine learning (ICML-11), 2011, pp. 265–272.

[36] K. P. Murphy, Machine learning: a probabilistic perspective. The MIT Press,
2012.

[37] S. B. Kylasa, H. M. Aktulga, and A. Y. Grama, “Puremd-gpu: A reactive
molecular dynamics simulation package for gpus,” Journal of Computational
Physics, vol. 272, pp. 343–359, September 2014.

[38] S. B. Kylasa, “Newton-cg cuda implementa-
tion download (scripts/code/tensorflow-python-scripts),”
https://github.com/kylasa/NewtonCG, February 2018.

[39] UCI, “Uci machine learning repository,” http://archive.ics.uci.edu/ml/index.php,
02 2018.

[40] L. Bottou and Y. LeCun, “Large scale online learning,” Advances in neural
information processing systems, vol. 16, p. 217, 2004.

[41] S. B. Kylasa, F. Roosta-Khorasani, M. W. Mahoney, and A. Grama, “GPU Ac-
celerated Sub-Sampled Newton’s Method,” in SIAM International Conference
on Data Mining (SDM), 2019, accepted.

[42] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting dis-
tributed synchronous sgd,” arXiv preprint arXiv:1604.00981, 2016.

[43] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch sgd: training ima-
genet in 1 hour,” arXiv preprint arXiv:1706.02677, 2017.

[44] P. H. Jin, Q. Yuan, F. Iandola, and K. Keutzer, “How to scale distributed deep
learning?” arXiv preprint arXiv:1611.04581, 2016.

[45] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior,
P. Tucker, K. Yang, Q. V. Le et al., “Large scale distributed deep networks,”
in Advances in neural information processing systems, 2012, pp. 1223–1231.

[46] S. Wang, F. Roosta-Khorasani, P. Xu, and M. W. Mahoney, “GIANT: Globally
Improved Approximate Newton Method for Distributed Optimization,” in Ad-
vances in Neural Information Processing Systems (NIPS), 2018, pp. 2338–2348.

[47] H. Daneshmand, A. Lucchi, and T. Hofmann, “DynaNewton-Accelerating New-
ton’s Method for Machine Learning,” arXiv preprint arXiv:1605.06561, 2016.

[48] S. J. Reddi, J. Konečnỳ, P. Richtárik, B. Póczós, and A. Smola, “AIDE:
Fast and communication efficient distributed optimization,” arXiv preprint
arXiv:1608.06879, 2016.

[49] Y. Zhang and X. Lin, “Disco: Distributed optimization for self-concordant
empirical loss,” in International conference on machine learning, 2015, pp. 362–
370.

135

[50] Z. Xu, G. Taylor, H. Li, M. Figueiredo, X. Yuan, and T. Goldstein,
“Adaptive consensus admm for distributed optimization,” arXiv preprint
arXiv:1706.02869, 2017.

[51] Z. Xu, M. A. Figueiredo, X. Yuan, C. Studer, and T. Goldstein, “Adaptive re-
laxed admm: Convergence theory and practical implementation,” in 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE,
2017, pp. 7234–7243.

[52] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Distributed opti-
mization and statistical learning via the alternating direction method of multi-
pliers,” Foundations and Trends® in Machine learning, vol. 3, no. 1, pp. 1–122,
2011.

[53] A. Beck, First-Order Methods in Optimization. SIAM, 2017, vol. 25.

[54] S. Bubeck et al., “Convex optimization: Algorithms and complexity,” Founda-
tions and Trends® in Machine Learning, vol. 8, no. 3-4, pp. 231–357, 2015.

[55] R. Crane and F. Roosta, “Dingo: Distributed newton-type method for gradient-
norm optimization,” in Advances in Neural Information Processing Systems,
2019.

[56] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent using pre-
dictive variance reduction,” in Advances in Neural Information Processing Sys-
tems, 2013, pp. 315–323.

[57] C. Dünner, A. Lucchi, M. Gargiani, A. Bian, T. Hofmann, and M. Jaggi,
“A distributed second-order algorithm you can trust,” arXiv preprint
arXiv:1806.07569, 2018.

[58] B. Craven, “Invex functions and constrained local minima,” Bulletin of the
Australian Mathematical society, vol. 24, no. 03, pp. 357–366, 1981.

[59] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of
the Royal Statistical Society. Series B (Methodological), pp. 267–288, 1996.

[60] “Tiny imagenet dataset,” https://tiny-imagenet.herokuapp.com/, October
2019. [Online]. Available: https://tiny-imagenet.herokuapp.com/

[61] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-
nition,” arXiv preprint arXiv:1512.03385, 2015.

[62] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” arXiv preprint arXiv:1409.1556, 2015.

[63] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Muller, “Efficient backprop,” Neural
Networks: tricks of the trade, 1998.

[64] G. Montavon, G. B. Orr, and K.-R. Muller, Neural Networks: Tricks of the
Trade, 2nd ed. Springer, September 2012.

[65] D. Wu, M. Nekovee, and Y. Wang, “Deep learning based autoencoder for in-
terference channel,” arXiv preprint arXiv:1902.06841, 2019.

[66] T. Dumas, A. Roumy, and C. Guillemot, “Autoencoder based image com-
pression: Can the learning be quantization independent?” arXiv preprint
arXiv:1802.0937, 2018.

[67] Y. Rao, J. Lu, and J. Zhou, “Attention-aware deep reinforcement learning for
video face recognition,” The IEEE International Conference on Computer Vi-
sion (ICCV), pp. 3931–3940, 2017.

136

[68] Z. Lu, L. Li, J. Gao, X. He, J. Chen, L. Deng, and J. He, “Recurrent reinforce-
ment learning: A hybrid approach,” arXiv preprint arXiv:1509.03044, 2015.

[69] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio,
“Identifying and attacking the saddle point problem in high-dimensional non-
convex optimization,” arXiv:1406.2572v1, 2014.

[70] A. R. Conn, N. I. Gould, and P. L. Toint, Trust region methods. SIAM, 2000,
vol. 1.

[71] C. Cartis, N. I. Gould, and P. L. Toint, “On the complexity of steepest descent,
Newton’s and regularized Newton’s methods for nonconvex unconstrained opti-
mization problems,” Siam journal on optimization, vol. 20, no. 6, pp. 2833–2852,
2010.

[72] ——, “Adaptive cubic regularisation methods for unconstrained optimization.
Part I: motivation, convergence and numerical results,” Mathematical Program-
ming, vol. 127, no. 2, pp. 245–295, 2011.

[73] ——, “Adaptive cubic regularisation methods for unconstrained optimization.
Part II: worst-case function-and derivative-evaluation complexity,” Mathemat-
ical programming, vol. 130, no. 2, pp. 295–319, 2011.

[74] F. E. Curtis, D. P. Robinson, and M. Samadi, “A Trust Region Algorithm with
a Worst-Case Iteration Complexity of O(ε−3/2) for Nonconvex Optimization,”
Mathematical Programming, vol. 162, no. 1-2, pp. 1–32, 2017.

[75] C. W. Royer, M. O’Neill, and S. J. Wright, “A newton-cg algorithm with com-
plexity guarantees for smooth unconstrained optimization,” Mathematical Pro-
gramming, pp. 1–38, 2019.

[76] J. Martens, “Deep learning via Hessian-free optimization,” in Proceedings of
the 27th International Conference on Machine Learning (ICML-10), 2010, pp.
735–742.

[77] Z. Yao, P. Xu, F. Roosta-Khorasani, and M. W. Mahoney, “Inexact non-convex
Newton-type methods,” arXiv preprint arXiv:1802.06925, 2018.

[78] S. ichi Amari, “Natural gradient works efficiently in learning,” Neural Compu-
tation, vol. 10, no. 251-276, 1988.

[79] H. H. Yang and S. ichi Amari, “The efficiency and the robustness of natural gra-
dient descent learning rule,” in Neural Information Processing Systems, 1997,
pp. 385–391.

[80] S. ichi Amari, R. Karakida, and M. Oyizumi, “Fisher information and natural
gradient learning of random deep networks,” arXiv preprint: 1808.07172v1,
2018.

[81] J. Martens and R. Grosse, “Optimizing neural networks with kronecker-factored
approximate curvature,” arXiv:1503.05671v6, 2016.

[82] R. Grosse and J. Martens, “A kronecker-factored approximate fisher matrix for
convolution layers,” arXiv:1602.01407v2, 2016.

[83] J. Nocedal, “Updating quasi-Newton matrices with limited storage,” Mathe-
matics of computation, vol. 35, no. 151, pp. 773–782, 1980.

[84] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in
Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–186.

[85] Y. Dauphin, H. de Vries, and Y. Bengio, “Equilibrated adaptive learning rates
for non-convex optimization,” in Advances in Neural Information Processing
Systems, 2015, pp. 1504–1512.

137

[86] C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, and M. I. Jordan, “How to escape
saddle points efficiently,” arXiv preprint arXiv:1703.00887, 2017.

[87] Z. Allen-Zhu and Y. Li, “Neon2: Finding local minima via first-order oracles,”
in Advances in Neural Information Processing Systems, 2018, pp. 3720–3730.

[88] J. Ba, R. Grosse, and J. Martens, “Distributed second-order optimization using
kronecker-factored approximations,” ICLR, 2017.

[89] J. Martens, “New insights and perspectives on the natural gradient method,”
arXiv preprint: arXiv:1412.1193v9, 2017.

[90] D. C. Liu and J. Nocedal, “On the limited memory BFGS method for large
scale optimization,” Mathematical programming, vol. 45, no. 1-3, pp. 503–528,
1989.

[91] S. B. Kylasa, F. R. Khorasani, M. W. Mahoney, and A. Y. Grama, “Gpu
accelerated sub-sampled newton’s method for convex classification problems,”
in Proceedings of the 2019 SIAM International Conference on Data Mining,
SIAM, Ed. SIAM, 2019, pp. 702–710.

[92] Y. Yu, D. Zou, and Q. Gu, “Saving gradient and negative curvature computa-
tions: Finding local minima more e ciently,” arXiv:1712.03950v1, 2017.

[93] Y. Xu, J. Rong, and T. Yang, “First-order stochastic algorithms for escaping
from saddle points in almost linear time.” in Advances in Neural Information
Processing Systems, 2018.

[94] Y. Yu, P. Xu, and Q. Gu, “Third-order smoothness helps: Even faster stochastic
optimization algorithms for finding local minima,” arXiv:1712.06585v1, 2017.

[95] O. Chapelle and D. Erhan, “Improved preconditioner for hessian free opti-
mization,” in In NIPS Workshop on Deep Learning and Unsupervised Feature
Learning, 2011.

[96] W. R. Morrow, “Hessian-free methods for checking the second-order sufficient
conditions in equality-constrained optimization and equilibrium problems,”
arXiv preprint arXiv:1106.0898, 2011.

[97] H. Zhang, C. Xiong, J. Bradbury, and R. Socher, “Block-diagonal
hessian-free optimization for training neural networks,” arXiv preprint:
arXiv:1712.07296v1, 2017.

[98] G. Hinton, “Neural networks for machine learning,” Coursera, video lectures.
307, 2012.

[99] B. A. Pearlmutter, “Fast exact multiplication by the hessian,” Neural Compu-
tation, 1993.

[100] S. B. Kylasa, “Cuda non-convex framework for fitre opti-
mizer,” https://github.com/kylasa/NewtonCG, 10 2019. [Online]. Available:
https://github.com/kylasa/NewtonCG

[101] “Cifar datasets,” https://www.cs.toronto.edu/ kriz/cifar.html, 10 2019.
[Online]. Available: https://www.cs.toronto.edu/∼kriz/cifar.html

[102] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Sur-
passing human-level performance on imagenet classification,” arXiv preprint
arXiv:1502.01852, 2015.

[103] C.-H. Fang, S. B. Kylasa, F. Roosta-Khorasani, M. W. Mahoney, and
A. Grama, “Distributed second-order convex optimization,” arXiv preprint
arXiv:1807.07132, 2018.

138

[104] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feed-
forward neural networks,” AISTATS, JMLR, 2010.

[105] pyTorch, “Default initialization pytorch,”
https://pytorch.org/docs/stable/ modules /torch/nn/modules/linear.html.
[Online]. Available: https://pytorch.org/docs/stable/\ modules/torch/nn/
modules/linear.html

