
DEEP LEARNING BASED USER MODELS FOR INTERACTIVE

OPTIMIZATION OF WATERSHED DESIGNS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Andrew Paul Hoblitzell

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2019

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Snehasis Mukhopadhyay, Chair

School of Computer and Information Science

Dr. Arjan Durresi

School of Computer and Information Science

Dr. Ananth Grama

School of Computer and Information Science

Dr. Jennifer Neville

School of Computer and Information Science

Approved by:

Clifton W. Bingham

Head of the School Graduate Program

iii

To my parents: Paul and Elaine

To my sibling: William

Thanks for always being there for me.

iv

ACKNOWLEDGMENTS

I would especially like to thank my mentor and advisor, Dr. Snehasis Mukhopad-

hyay for his encouragement and guidance during my studies. He has shown me, by

his example, what a good scientist should be. I want to acknowledge my doctoral

committee members Dr. Arjan Durresi, Dr. Ananth Grama, and Dr. Jennifer Neville

for reviewing and providing feedback on my dissertation. Each of the members of

my Dissertation Committee has provided me professional guidance and taught me a

great deal about scientific research.

Nobody has been more important to me in the pursuit of this journey than the

members of my family. I am grateful to my parents and sibling, who have provided

me moral and emotional support in my life. I am also grateful to friends who have

supported me along the way.

Thank you all for all your encouragement!

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

SYMBOLS . xii

ABBREVIATIONS . xiii

ABSTRACT . xv

1 INTRODUCTION . 1

1.1 Overview of Problem . 1

1.2 Background . 2

1.3 Scope, Expected Outcome, and Limitations 3

1.4 Remaining Dissertation Structure . 4

2 EVALUATION OF MACHINE LEARNING APPROACHES 6

2.1 Abstract . 6

2.2 Classification measures . 6

2.2.1 Classical measures . 7

2.2.2 AUROC . 7

2.2.3 Cohen’s kappa . 9

2.3 Regression measures . 11

2.3.1 RMSE . 11

2.3.2 MSE . 11

2.3.3 MAE . 13

2.3.4 F1 Score . 13

2.4 Clustering measures . 14

2.4.1 Rand index . 14

2.4.2 Mutual Information . 15

vi

Page

2.5 Information retrieval measures . 16

2.5.1 Average precision . 16

2.5.2 Precision at K . 17

2.5.3 Discounted cumulative gain . 17

2.5.4 Mean Reciprocal Rank . 18

2.6 Other measures . 19

2.6.1 Concordance and discordance 19

3 WRESTORE AND IGAMI2 . 20

3.1 Abstract . 20

3.2 WRESTORE . 20

3.2.1 Wetlands . 21

3.2.2 Filter Strips . 22

3.2.3 Grassed Waterways . 22

3.2.4 Crop Rotation . 23

3.2.5 No-till . 24

3.2.6 Strip Cropping . 25

3.2.7 Cover Crops . 26

3.2.8 Conservation Programs . 27

3.3 IGAMI2 . 29

4 COMPARISON OF NEURAL METHODS FOR LIMITED DATA USER
MODELING IN WETLAND DESIGN . 31

4.1 Abstract . 31

4.2 Introduction . 31

4.2.1 Related Work . 32

4.3 Methodology . 34

4.3.1 Neural Networks . 35

4.3.2 Deep Learning . 40

4.3.3 Experimental setup . 44

vii

Page

4.3.4 Inputs and outputs of the models 45

4.4 Results . 45

4.5 Conclusion . 48

5 FUZZY ANDDEEP LEARNING APPROACHES FOR USERMODELING
IN WETLAND DESIGN . 49

5.1 Abstract . 49

5.2 Introduction . 49

5.3 Related Work . 49

5.4 Methodology . 52

5.4.1 Artificial Neural Networks . 52

5.4.2 Fuzzy Logic . 54

5.4.3 Deep Learning . 54

5.4.4 Experimental setup . 54

5.4.5 Inputs and outputs of the models 56

5.5 Results . 56

5.5.1 Discussion of results . 56

5.6 Conclusion . 59

6 UNCERTAINTY BASED DEEP LEARNING NETWORKS FOR LIMITED
DATA WETLANDS USER MODELS . 60

6.1 Abstract . 60

6.2 Introduction . 60

6.3 Background Literature . 61

6.4 Methodology . 62

6.4.1 Experimental setup . 64

6.4.2 Inputs and outputs of the models 64

6.5 Results . 65

6.5.1 Discussion of results . 66

6.6 Conclusion . 67

viii

Page

7 NON-STATIONARY REINFORCEMENT-LEARNING BASED DIMEN-
SIONALITY REDUCTION FOR MULTI-OBJECTIVE OPTIMIZATION
OF WETLAND DESIGN . 68

7.1 Abstract . 68

7.2 Introduction . 68

7.3 Background Work . 68

7.4 Methodology . 69

7.4.1 Boltzmann Sampling . 71

7.4.2 Thompson Sampling . 71

7.5 Results . 74

7.5.1 Design of experiment . 74

7.5.2 Discussion of results . 74

7.6 Conclusion . 75

8 CONCLUSION . 76

8.1 Conclusions . 76

8.2 Contribution . 77

8.3 Future Work . 78

REFERENCES . 80

A DATABASE DESIGN . 89

B SOFTWARE DESIGN . 97

VITA . 104

ix

LIST OF TABLES

Table Page

4.1 Performance of neural network (non-enriched) 46

4.2 Performance of fuzzy logic (non-enriched) 46

4.3 Performance of deep learning (non-enriched) 46

4.4 Performance of deep learning with enriched data 47

A.1 CBM Tables . 89

A.2 Fitness Function Tables . 90

A.3 SDM Tables . 90

A.4 User Tables . 91

A.5 WRESTORE and IGAMI2 Tables . 91

A.6 Action Tables . 92

A.7 Miscellaneous Tables . 93

A.8 INSERT Stored Procedures . 94

A.9 GET Stored Procedures . 95

A.10 DELETE Stored Procedures . 95

A.11 SELECT, SEARCH, and UPDATE Stored Procedures 96

A.12 Miscellaneous Stored Procedures . 96

x

LIST OF FIGURES

Figure Page

2.1 Classical measures . 8

2.2 Additional classical measures . 9

2.3 Additional classical measures . 10

3.1 Filter Strips . 23

3.2 Grassed Waterways . 24

3.3 Crop Rotation . 25

3.4 No-till . 26

3.5 Strip Cropping . 27

3.6 Cover Crops . 28

4.1 WRESTORE system . 34

4.2 NN Design . 37

4.3 ANFIS architecture . 37

5.1 Water basins in WRESTORE . 51

5.2 Feedforward network . 53

5.3 NN Results . 57

5.4 Validation Performance . 58

6.1 Stability sampling vs. Random sampling training error 61

6.2 Stability sampling vs. Random sampling test error 61

6.3 Deep learning network architecture . 63

6.4 Uncertainty sampling vs. Random sampling training error 65

6.5 Uncertainty sampling vs. Random sampling test error 65

7.1 RL-based feature selection process . 70

7.2 Thompson Sampling . 71

7.3 Boltzmann Sampling . 74

xi

Figure Page

B.1 IMAGI2 . 97

B.2 NSGA2 . 98

B.3 Select Packages . 99

B.4 RecommendationSystem . 100

B.5 IntrospectionManager . 100

B.6 EmailManager . 101

B.7 Interfaces . 102

B.8 DistributedSystem . 102

B.9 Additional Interfaces . 103

xii

SYMBOLS

κ Cohen’s kappa

ρc concordance correlation coefficient

∞ infinity∫
integral

µ mean

σ standard deviation∑
sum

xiii

ABBREVIATIONS

ACM Association for Computing Machinery

ANN Artificial neural network

AUROC Area under receiver operating characteristic

AveP Average precision

CNTK Cognitive Toolkit

CRP Conservation Reserve Program

CSP Conservation of Security Program

CUDA Compute Unified Device Architecture

cuDNN CUDA Deep Neural Network library

DCG Discounted cumulative gain

ECW Eagle Creek Watershed

EQIP Environmental Quality Incentive Program

FPR False Positive Rate

GIS Geographical Information System

GPU Graphical processing unit

HPC High Performance Computing

IEEE Institute of Electrical and Electronics Engineers

IGAMI2 Interactive genetic algorithm with mixed-initiative 2

IM Introspection Manager

INFORMS Institute for Operations Research and the Management Sciences

MAE Mean Absolute Error

MCDM Multi-Criteria Decision-Making

MIM Mixed-Initiative Manager

MRR Mean reciprocal rank

xiv

MSCDM Multi-Stakeholder Consensus Decision-Making

MSE Mean Squared Error

NDCG Normalized discounted cumulative gain

NRCS Natural Resources Conservation Services

NSGA Non-dominated sorting genetic algorithm

OM Optimization Manager

P@K Prediction at k

pip PIP installs packages

RL Reinforcement Learning

RMSE Root Mean Squared Error

SDM Simulated Decision Maker

SDMM Simulated Decision Maker Manager

SWAT Soil and Water Assessment Tool

TPR True Positive Rate

USDA United States Department of Agriculture

WHIP Wildlife Habitat Incentives Program

WRESTORE Watershed REstoration using Spatio-Temporal Optimization of

REsources

WRP Wetlands Reserve Program

xv

ABSTRACT

Hoblitzell, Andrew Ph.D., Purdue University, December 2019. Deep Learning Based
User Models for Interactive Optimization of Watershed Designs. Major Professor:
Snehasis Mukhopadhyay.

This dissertation combines stakeholder and analytical intelligence for consensus

decision-making via an interactive optimization process. This dissertation outlines

techniques for developing user models of subjective criteria of human stakeholders

for an environmental decision support system called WRESTORE. The dissertation

compares several user modeling techniques and develops methods for incorporating

such user models selectively for interactive optimization, combining multiple objective

and subjective criteria.

This dissertation describes additional functionality for our watershed planning

system, called WRESTORE (Watershed REstoration Using Spatio-Temporal Opti-

mization of REsources) (http://wrestore.iupui.edu). Techniques for performing the

interactive optimization process in the presence of limited data are described. This

work adds a user modeling component that develops a computational model of a

stakeholder’s preferences and then integrates the user model component into the de-

cision support system.

Our system is one of many decision support systems and is dependent upon stake-

holder interaction. The user modeling component within the system utilizes deep

learning, which can be challenging with limited data. Our work integrates user mod-

els with limited data with application-specific techniques to address some of these

challenges. The dissertation describes steps for implementing accurate virtual stake-

holder models based on limited training data.

xvi

Another method for dealing with limited data, based upon computing training

data uncertainty, is also presented in this dissertation. Results presented show more

stable convergence in fewer iterations when using an uncertainty-based incremental

sampling method than when using stability based sampling or random sampling. The

technique is described in additional detail.

The dissertation also discusses non-stationary reinforcement-based feature selec-

tion for the interactive optimization component of our system. The presented results

indicate that the proposed feature selection approach can effectively mitigate against

superfluous and adversarial dimensions which if left untreated can lead to degradation

in both computational performance and interactive optimization performance against

analytically determined environmental fitness functions.

The contribution of this dissertation lays the foundation for developing a frame-

work for multi-stakeholder consensus decision-making in the presence of limited data.

1

1. INTRODUCTION

1.1 Overview of Problem

"In an extreme view, the world can be seen as only connections, nothing

else. We think of a dictionary as the repository of meaning, but it defines

words only in terms of other words. I liked the idea that a piece of infor-

mation is really defined only by what it’s related to, and how it’s related.

There really is little else to meaning. The structure is everything. There

are billions of neurons in our brains, but what are neurons? Just cells.

The brain has no knowledge until connections are made between neurons.

All that we know, all that we are, comes from the way our neurons are

connected."- Tim Berners Lee

With complex problems involving multiple stakeholders, there is not always a

single objectively correct solution. Many users collaborate together on the optimal

solution, each with their own partial perspective and viewpoint, synthesizing these

perspectives into a single decision can become complicated. Providing a viewpoint

fusion mechanism is a non-trivial task involving negotiation and consensus building.

In addition, each stakeholder may have individual decisions that could serve their

group’s best interests so a proper fusion mechanism should also encourage decisions

which will provide other characteristics such as fairness.

Joint machine-user decision making allows machines to recommend analytically

sound designs while also allowing stakeholders to provide more information to the

decision-making process based on their knowledge and subjective preferences. Multi-

stakeholder consensus decision-making involves gathering several solutions, evaluating

and sorting them objectively, and then providing the best competing alternatives to

stakeholders. The viewpoints of stakeholders and stakeholder groups can be learned

2

over time to bootstrap the multi-objective interactive optimization process, leading

to consensus negotiations which require less input and negotiation from stakeholders

whose time can often be a resource constraint.

1.2 Background

"Real cognitive science, however, is necessarily based on experimental in-

vestigation of actual humans or animals. We will leave that for other

books, as we assume the reader has only a computer for experimentation."-

Peter Norvig, Artificial Intelligence: A Modern Approach

This dissertation discusses work performed for an environmental planning system

namedWRESTORE, which performs modeling on the Eagle Creek Watershed in Indi-

ana. Eagle Creek Watershed is divided into total 2,953 potential wetlands. Droughts

and flooding can be common which can decrease the quality of drinking water, impact

crop production, and cause other undesirable outcomes. WRESTORE enables stake-

holders to visualize the wetland space and conduct improved environmental planning

to alleviate some of these issues.

Interactive optimization can be used as a method of solving problems where the

search space is very large. Machines using the Soil and Water Assessment tool can

keep the system in a Pareto optimum, while stakeholder’s preferences can capture

additional subjective criteria and domain knowledge.

Some issues arise in human-guided search, one of the more important being the

issue of interaction fatigue. There are multiple methods of relieving interaction fa-

tigue, some of which will be examined in greater detail later in the dissertation. A

Simulated Decision Maker (SDM), or virtual user model, can be trained to learn the

preferences of a stakeholder, but training can be difficult when the environment being

learned is stochastic and non-stationary.

A distributed system of several machines over multiple sites is utilized in WRE-

STORE, with clusters to run resource-intensive environmental models. The system

3

has been designed with the resource characteristics of the problem in mind. More

description of the distributed system is available in previous work. More information

about the WRESTORE system is available later in the dissertation.

The goal of this dissertation is to contribute to an interactive decision support

system that can arrive at stakeholder-optimal solutions in shorter timeframes. This

dissertation thus compares different methods for building user models, suggests reli-

able ways for training user models with limited input, integrates user models into an

interactive multi-objective system, and allows for the selection of specific user models

when many different user models are present.

1.3 Scope, Expected Outcome, and Limitations

"We will make machines that can reason, think and do things better than

we can."- Sergey Brin

This dissertation focuses on developing a framework that supports multi-stakeholder

consensus building. Human and machine involvement is used in the decision-making,

with the machine guiding stakeholders during negotiations. This dissertation expects

to develop user models which are reliable with less input, integrate these methods into

the existing system, and develop methods for user selection during the optimization

process.

This dissertation builds a simulator for stakeholder simulation and consensus

building. This dissertation does not include performing an analysis of individual

stakeholder’s personal best interests, and some of the proposed solutions may not

always adequately handle concepts like fairness and trustworthiness. There is work

from others in our group that examines some of the ideas which are outside the scope

of this individual dissertation.

4

1.4 Remaining Dissertation Structure

"Zero information is preferred to misleading or false information"- Jimmy

Wales

• Chapter 1 "Introduction". Chapter 1 provides an overview of the dissertation,

background, goals of the dissertation, the scope of the dissertation, and a struc-

ture for the remainder of the dissertation.

• Chapter 2 "Evaluation of Machine Learning Approaches". Chapter 2 discusses

some of the many approaches to evaluating machine learning tasks so that we

can consider what proper evaluation should look like for our system.

• Chapter 3 "WRESTORE and IGAMI2". Chapter 3 provides background infor-

mation about the existing use case which will be expanded upon through the

remainder of the dissertation.

• Chapter 4 "Comparison of Neural Methods for User Modeling in Wetland De-

sign". Chapter 4 builds a user modeling component employing a deep learning

neural network approach and examines why working with limited data is a

complex task.

• Chapter 5 "Fuzzy and Deep Learning Approaches for User Modeling in Wet-

land Design". Chapter 5 presents approaches to dealing with limited data in the

user modeling task. The originality of this approach involves application-specific

data augmentation and the human-computer collaborative problem-solving ap-

proach.

• Chapter 6 "Uncertainty-Based Deep Learning for Wetland Design". Chapter 6

presents a method for dealing with limited data in deep networks based on the

sampling of remaining training data with uncertainty based modeling.

• Chapter 7 "Non-Stationary Reinforcement-Learning Based Dimensionality Re-

duction for Multi-objective Optimization of Wetland Design". Chapter 7 studies

5

non-stationary reinforcement-based learning for feature selection, with the goal

of performing fusion on multiple stakeholder groups to simplify the interactive

optimization process.

• Chapter 8 Conclusions and Future Work. Chapter 8 describes the findings of

the dissertation and provides areas for future work and extensions to the work.

6

2. EVALUATION OF MACHINE LEARNING
APPROACHES

2.1 Abstract

"Most improved things can be improved."- Mokokoma Mokhonoana

Many approaches exist for machine learning for solving problems of different types.

Objective functions, also known as cost functions or loss functions, offer one method

of quantifying the performance of machine learning methods on some of these tasks.

This chapter identifies some of the ways to measure machine learning algorithms on

common tasks so that we can consider the way to measure the best outcomes for our

system.

2.2 Classification measures

"An algorithm must be seen to be believed."- Donald Knuth, Leaders in

Computing: Changing the digital world

Classification is the statistical problem of identifying the type label to apply to an

unlabeled instance, for example providing a medical diagnosis. In machine learning

and mathematical optimization, classifier measures are typically loss functions repre-

senting the cost of an inaccurate prediction, considering factors like the likelihood of

an incorrect decision and subsequent costs of an incorrect prediction.

7

2.2.1 Classical measures

"The only truly secure system is one that is powered off, cast in a block

of concrete and sealed in a lead-lined room with armed guards."- Gene

Spafford

Several classical measures exist for measuring classification accuracy. The miss

rate tells us the number of false negatives divided by the number of total positive

instances and represents a false negative rate. The fall-out represents the number of

false positives divided by the total number of total negative instances and represents

the false positive rate. The number of false positives divided by all positives is known

as the false discovery rate, while the number of false negatives over the number of

total negatives is known as the false omission rate.

The number of true positives divided by all known positives is known as the true

positive rate, or also as the recall. The number of true negatives divided by all of the

known negatives is known as the true negative rate, or also as the selectivity. The

number of true positives divided by all predicted positives is known as the positive

predictive value or precision, while the number of true negatives divided by all known

negatives is known as the negative predictive value.

Accuracy is defined as the number of true positives and true negatives divided by

all samples. The F1 score is a widely used metric which is the harmonic average of

the precision and recall. Informedness is a single metric which summarizing the per-

formance of a diagnostic test for a multi-class case. The sum of the positive predictive

value and negative predictive value minus one gives us the markedness metrics. When

we are dealing with binary classification problems, we can also look at the Matthews

correlation coefficient as a class imbalance resistant correlation coefficient.

2.2.2 AUROC

"We have to stop optimizing for programmers and start optimizing for

users."- Jeff Atwood

8

Figure 2.1.: Classical measures

Area under the ROC curve (usually called AUROC) provides a metric for whether a

classifier will rank a randomly chosen positive instance higher than a randomly chosen

negative one. [1] This is formally given by

A =

∫ 1

x=0

TPR(FPR−1(x)) dx =

∫ −∞
∞

TPR(T)FPR′(T) dT

=

∫ ∞
−∞

∫ ∞
−∞

I(T ′ > T)f1(T
′)f0(T) dT ′ dT = P (X1 > X0)

where X1 is a positive instance score, X0 is a negative instance score, f0 and f1 are

probability densities, FPR is the false positive rate (on the independent axis) and

TPR is the true positive rate (on the dependent axis).

9

Figure 2.2.: Additional classical measures

2.2.3 Cohen’s kappa

"Where is the ’any’ key?"- Homer Simpson, in response to the message,

"Press any key"

Cohen’s kappa considers the agreement between two classifiers rating N items

being classified into C categories. κ is formally described by:

κ ≡ po − pe
1− pe

= 1− 1− po
1− pe

,

10

Figure 2.3.: Additional classical measures

where p0 represents relative observed agreement among the classifiers and pe repre-

sents the hypothetical probability of chance agreement between the classifiers. When

κ = 1, the raters are in complete agreement, when κ = 0 it means the agreement

between classifiers is purely random, and when κ < 0 [2] it means the agreement be-

tween classifiers is worse than random. Some issues with Cohen’s κ include indices of

agreement interpretability, oversimplification with a single metric, and the fact that

it can become undefined when the denominator evaluates to zero.

11

2.3 Regression measures

"Before software should be reusable, it should be usable."- Ralph Johnson

Regression is the statistical problem of understanding how one or more dependent

variables change in the presence of one or more independent variables, for example

sales forecasting. Regression measures in machine learning are used as a benchmark

of the predicted error between prediction and reality. They are optimized against

to find more ideal results. Many assumptions are made in the case of regression

problems, including consistent, unbiased, and efficient estimators, uncorrelated and

homoscedastic error, etc. that may not always translate well to actual datasets.

2.3.1 RMSE

"Make everything as simple as possible, but not simpler."- Albert Einstein

Root mean squared error is a regression measure that compares forecasting errors of

models for a singular dataset.

The RMSE of an estimator θ̂ for an estimated parameter θ is given by the square

root of the mean square error:

RMSE(θ̂) =

√
MSE(θ̂) =

√
E((θ̂ − θ)2).

The RMSE is never negative and lower values are considered ideal. A few issues

exist with RMSE, including the fact that it is scale-dependent and also sensitive to

outliers [3].

2.3.2 MSE

"On two occasions I have been asked, ’If you put into the machine wrong

figures, will the right answers come out?’ I am not able rightly to appre-

hend the kind of confusion of ideas that could provoke such a question."-

Charles Babbage

12

The mean squared error (MSE) regression metric assesses the quality of a model

with respect to the difference between the predicted and observed values. The most

general form of the MSE is called a predictor and compares a function mapping

arbitrary inputs to samples from a random variable.

MSE is formally given by

MSE =
1

n

n∑
i=1

(Yi − Ŷi)2.

where n is the number of predictions on all variables and Y is the vector of observed

values of the variable being predicted.

If q points are held back for cross-validation, we can compute the mean squared

prediction error (MSPE) as

MSPE =
1

q

n+q∑
i=n+1

(Yi − Ŷi)2.

MSE is particularly notable in the machine learning community because it per-

fectly illustrates the trade-off between bias and variance; further, in the case of unbi-

ased estimators, the MSE and variance are equivalent [4]. The relation between MSE

and bias and variance is given below:

MSE(θ̂) = Eθ

[
(θ̂ − θ)2

]
= Eθ

[(
θ̂ − Eθ[θ̂]

)2
+ 2

(
θ̂ − Eθ[θ̂]

)(
Eθ[θ̂]− θ

)
+
(
Eθ[θ̂]− θ

)2]
= Eθ

[(
θ̂ − Eθ[θ̂]

)2]
+ 2

(
Eθ[θ̂]− θ

)
Eθ

[
θ̂ − Eθ[θ̂]

]
+
(
Eθ[θ̂]− θ

)2
1

= Eθ

[(
θ̂ − Eθ[θ̂]

)2]
+
(
Eθ[θ̂]− θ

)2
= Varθ(θ̂) + Biasθ(θ̂, θ)

2

MSE is very widespread in its usage, but this is more due to its notable and

convenient mathematical properties than its translation to empirical use cases. Like

many other metrics it is somewhat arbitrary outside of this mathematical convenience,

and it also has drawbacks with its usage including but not limited to an even higher

sensitivity to outliers than RMSE.

13

2.3.3 MAE

"I think computer viruses should count as life. I think it says something

about human nature that the only form of life we have created so far is

purely destructive. We’ve created life in our own image."- Stephen Hawk-

ing

Mean absolute error (MAE) is a regression metric given by the difference between

two continuous variables. MAE is formally described as

MAE =

∑n
i=1 |yi − xi|

n
=

∑n
i=1 |ei|
n

. [5]

where n is the number of samples, ei is the error for this particular instance, yi is the

observed value, xi is the predicted value, and i is the currently considered instance.

If we wish to allow the error to become negative for our use case, the Mean Error

(ME) is given by:

ME =

∑n
i=1 yi − xi
n

. [6]

MAE can be used as a forecast error in time series analysis, offering a way to

compare forecasts with eventual outcomes. One of the main advantages of MAE

over MSE and RMSE is the simplicity it is calculated with makes it much more

interpretable.

2.3.4 F1 Score

"In an information economy, the most valuable company assets drive

themselves home every night. If they are not treated well, they do not

return the next morning."- Peter Chang

The F1 score, also sometimes referred to as the F-score or F-measure, is a metric for

considering the accuracy of classification tasks. The F1 score is given by

F1 =
2 ∗ p ∗ r
p+ r

.

14

where the precision p is the number of correct positive results divided by the

number of all positive results and the recall r is the number of correct positive results

divided by the number of samples which should have been identified as positive. The

F1 score is a harmonic average between these two numbers. An F1 score of 1 indicates

perfect precision and recall, while an F1 score of 0 indicates the worst case F1 score.

Common criticisms of F1 score include ease of interpretability, the equal weighting

of precision and recall which may not be appropriate for certain use cases, and the

focus on a singular number rather than a more comprehensive outlook of how users

will utilize the classifier and its output.

2.4 Clustering measures

"The most important property of a program is whether it accomplishes the

intention of its user."- C.A.R. Hoare

In machine learning and data science, clustering involves grouping points or data in-

stances into two or more groupings where the similarity within groups is higher than

the similarity across groups. Common metrics for clustering can include external eval-

uation, internal evaluation, and cluster tendency. Clustering can be used for different

rationales, thus evaluating clustering is highly subjective and in some instances even

thought of as a multi-objective optimization problem.

2.4.1 Rand index

"The question of whether a computer can think is no more interesting than

the question of whether a submarine can swim."- Edsger W. Dijkstra

The Rand index is a clustering metric which measures the similarity between two

clusters. The Rand index R [7] can formally be defined as

R =
a+ b(
n
2

) .

15

where we have n elements in set S = {o1, . . . , on} and two partitions of S to

compare, X = {X1, . . . , Xm}, a partition of S into m subsets, and Y = {Y1, . . . , Yl},

a partition of S into l subsets, a is the number of pairs of in the same subset in X

and in the same subset in Y and b is the number of pairs in different subsets in X

and in different subsets in Y .

A Rand index of 0 means clusters do not agree on any pair of points while 1

indicates that the two clusters are exactly the same. Corrected and adjusted values

of the Rand index also exist.

2.4.2 Mutual Information

"What one programmer can do in one month, two programmers can do in

two months."- Fred Brooks

Mutual information is a clustering metric which quantifies the amount of information

obtained about one variable by observing the other variable. The mutual information

can be formally given as [8]

I(X;Y) =
∑
y∈Y

∑
x∈X

p(x, y) log

(
p(x, y)

p(x) p(y)

)
where X and Y are two discrete random variables, p(x, y) is the joint probability

function of X and Y , and p(x) and p(y) are the marginal probability distribution

functions of X and Y .

For continuous random variables, this can be rewritten as: [8]

I(X;Y) =

∫
Y

∫
X
p(x, y) log

(
p(x, y)

p(x) p(y)

)
dx dy,

Several variations of mutual information exist. Mutual information has found

usage in many applications, including search engines and physics.

16

2.5 Information retrieval measures

"The business we’re in is more sociological than technological, more depen-

dent on workers’ abilities to communicate with each other than their abil-

ities to communicate with machines."- Tom DeMarco, Peopleware: Pro-

ductive Projects and Teams

Information retrieval (IR) is the task of obtaining resources from a collection

and often involves text searching and content-based indexing. IR metrics attempt

to quantify the ability of an IR system to meets the needs of its users and have a

simplified notion of ground truth relevancy built in. Other metrics for IR systems can

be concerned with popular queries, revenue generated, latency, efficiency, usability,

or even trustworthiness.

2.5.1 Average precision

"In theory there is no difference between theory and practice. In practice

there is."- Yogi Berra

In information retrieval tasks, precision is the fraction of relevant resources retrieved

divided by the number of retrieved documents. We can formally define average pre-

cision over a continuous space as

AveP =

∫ 1

0

p(r)dr

but because our documents or resources are often discrete we can rewrite this as

AveP =
n∑
i=1

P (k)∆r(i)

where i is the rank in the sequence of retrieved documents, n is the number of retrieved

documents, and P (i) is the precision at cutoff i in the list. This function also has other

representations within literature [9] with some authors interpolating the probability

17

function to simplify the curve obtained [10, 11] while others assume decision values

follow a Gaussian distribution [12].

When considering a set of queries, the mean average precision is given by

MAP =

∑Q
q=1 AveP(q)

Q

where Q is the number of queries.

R-Precision is a special kind of precision where precision is equal to recall at the

R-th position [13]. It is usually correlated strongly with mean average precision. [11]

2.5.2 Precision at K

"The purpose of computing is insight, not numbers."- Richard Hamming

In systems where there massive amounts of resources, it may be that a user will

put significantly higher importance on the top k resources than on the bottom (n-

k) resources. Precision at k (P@k) is useful for these types of problems because it

does not provide weighting to resources a user will never view or be interested in.

Drawbacks of P@k are that it ignores position within the top k and for queries with

fewer relevant results than k obtaining a score of 1 becomes impossible. [13]

2.5.3 Discounted cumulative gain

"Considering the current sad state of our computer programs, software

development is clearly still a black art, and cannot yet be called an engi-

neering discipline."- William Jefferson Clinton

Discounted cumulative gain (DCG) is an information retrieval metric motivated

by the premise that the further up a search list you go the more important the results

are to a user and the lower down the search list you go the less important the results

are to the user. DCG utilizes a graded relevance to give the gain of a resource based

on its result position. DCG is formally defined by

18

DCGp =

p∑
i=1

reli
log2(i+ 1)

.

The normalized version of DCG (nDCG) sorts documents of a result list by rele-

vance, producing an ideal DCG at position p (IDCGp). nDCG is given by

nDCGp =
DCGp

IDCGp
.

nDCG values can average several queries to obtain rankings for an IR algorithm.

An nDCG of 1 indicates an ideal IR algorithm, while an nDCG of 0 indicates a worst-

case scenario. nDCG is motivated by the idea that different queries and systems will

return result sets of different sizes. One of the principal challenges with nDCG is that

sometimes ideal ordering of results is not always available.

2.5.4 Mean Reciprocal Rank

"Controlling complexity is the essence of computer programming."- Brian

Kernighan

The mean reciprocal rank (MRR) is an information retrieval metric for evaluating

processes that produce a list of responses to a sample of queries. Mean reciprocal

rank is formally given by

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
.

where ranki is the rank position of the first relevant document of the i -th query.

The reciprocal rank of a query is 1 divided by the rank of the first correct answer,

or the multiplicative inverse of the correct answer (thus, it is undefined when the

correct answer is not returned). The MRR’s reciprocal value corresponds to the

harmonic mean of the ranks. [14, 15]

19

2.6 Other measures

"It is possible to invent a single machine which can be used to compute

any computable sequence."- Alan Turing

2.6.1 Concordance and discordance

"Computers are good at following instructions, but not at reading your

mind."- Donald Knuth

Concordance measures the agreement between two variables, with the concordance

correlation coefficient ρc given by

ρc =
2ρσxσy

σ2
x + σ2

y + (µx − µy)2
,

where µx and µy are the means for the two variables and σ2
x and σ2

y are the corre-

sponding variances. ρ gives us the correlation coefficient between the two variables.

While an ordinary correlation coefficient is unaffected by whether biased or unbi-

ased estimations of variance are used, the concordance correlation coefficient is not.

Different methods exist for normalizing the coefficient exist [16] [17].

20

3. WRESTORE AND IGAMI2

3.1 Abstract

"AI is akin to building a rocket ship. You need a huge engine and a lot of

fuel. The rocket engine is the learning algorithms but the fuel is the huge

amounts of data we can feed to these algorithms."- Andrew Ng

This chapter provides background information about the existing use case which will

be expanded upon through the remainder of the dissertation. Watershed REstoration

using Spatio-Temporal Optimization of Resources (WRESTORE) is a decision sup-

port system for the interactive optimization of watershed designs. The second version

of the Interactive Genetic Algorithm with Mixed-Initiative (IGAMI2) is a distributed

algorithm used in WRESTORE. This chapter outlines the decision-making framework

and may be useful in increasing understanding and comprehension of the remainder of

the dissertation. Additional information about these systems is available in previous

work.

3.2 WRESTORE

"A deep learning system doesn’t have any explanatory power."- Geoffrey

Hinton

WRESTORE is a user-friendly, interactive, decision support system that helps landown-

ers and other stakeholders in the implementation of conservation practices. The in-

teractive nature of the system provides decision-makers the ability to learn about the

possible physical and socio-economic impacts of implementing different solutions on

their watershed.

21

Eagle Creek Watershed (ECW) is a flat-land covering around 162 square miles

about 10 miles northwest of downtown Indianapolis. Among many uses, ECW is

used as a water drinking supply. It stretches over four different counties: Marion,

Hendricks, Boone, and Hamilton. It is located in an agriculture-dominant area with

mostly the growth of corn and soybeans. The watershed is divided into approximately

130 sub-basins connected to one another, although these can be further subdivided.

3.2.1 Wetlands

"More importantly, it is difficult to study minds because we are mental be-

ings. We have our own minds to maintain and protect, and may not wish

to discover facts that force us to change, or make us question our own

being in the world, or conflict with our sense of right and wrong. We have

not discussed belief systems known as religions to any extent in this book.

However, particularly threatening are facts that run counter to our reli-

gious beliefs, especially if those beliefs are strongly held. Further, scientists

have hopes, standards, and ethical beliefs, and they... like anybody... are

not eager to find that their beliefs are invalid."- James Kennedy, Swarm

Intelligence

Wetlands are usually situated on the edge of the aquatic and terrestrial landscape and

act as a unique bionetwork. They support local crops and the vegetation by keeping

the soil saturated. Their ecological characteristics may include hydrologic, soil and

biotic conditions, and they can produce soil that can support hydrophytic plantation.

Wetland soil is low in oxygen and disrupts the growth of microorganisms.

Wetlands provide several ecological benefits including storing flood waters, reduc-

ing peak flow, dissipating wave energy and stabilizing shorelines, and absorbing excess

fertilizers, septics, eroded soil particles, and pollutants. Wetlands also have intangible

benefits to the community, such as hunting, fishing, hiking, and nature photography.

22

Wetlands also provide an ecological research opportunity and have been shown to

boost the value of nearby land.

3.2.2 Filter Strips

"In the history of ideas, it’s repeatedly happened that an idea, developed

in one area for one purpose, finds an unexpected application elsewhere.

Concepts developed purely for philosophy of mathematics turned out to be

just what you needed to build a computer. Statistical formulae for under-

standing genetic change in biology are now applied in both economics and

in programming."- Patrick Grim

Filter strips are located at the lower edges of a landscape and remove residue, organic

materials, and various other pollutants from wastewater. They act as a buffer between

the water and the fields so that the pesticides and other pollutants do not spread as

far. Filter strips decrease the overall maintenance of a wetland and improve the

aesthetic value. Filter strips also reduce stream-bank cutting and provide access all

year long. The effects of filter strips are captured in Figure 3.1.

3.2.3 Grassed Waterways

"A common mistake that people make when trying to design something

completely foolproof is to underestimate the ingenuity of complete fools."-

Douglas Adams

Grassed waterways are naturally constructed channels used to carry the runoff from

rigorous flow without causing soil erosion. They act as habitats for quails, pheas-

ants, rabbits, and other wildlife. They provide additional surface water from natural

drainage systems and reduce pesticides and other soluble nutrients in surface water.

They also decrease sediments and other chemicals in surface water; thereby, increasing

23

Figure 3.1.: Filter Strips

the dissolved oxygen for the growth of aquatic life. The effects of grassed waterways

are captured in Figure 3.2.

3.2.4 Crop Rotation

"The rise of Google, the rise of Facebook, the rise of Apple, I think are

proof that there is a place for computer science as something that solves

problems that people face every day."- Eric Schmidt

Crop rotation involves the planting of crops in a planned sequence, usually a period

of just two to three years. It involves rotating food crops with various field crops.

For example, barley can be grown after wheat, grain crops can be grown after pulses,

etc. Crop rotation reduces runoff, erosion, and pests, and increases organic matter,

24

Figure 3.2.: Grassed Waterways

soil tilth, moisture efficiency, and yield. The effects of crop rotation are captured in

Figure 3.3.

3.2.5 No-till

"A distributed system is one in which the failure of a computer you didn’t

even know existed can render your own computer unusable."- Leslie Lam-

port

No-till leaves stems, leaves, seed pods, etc. unhindered from harvesting through

planting and can be beneficial with most crops if managed properly. No-till can reduce

labor costs, greenhouse gases, and soil erosion. No-till increases organic matter in the

soil and increases earthworm population, soil quality, and water infiltration. No-till

25

Figure 3.3.: Crop Rotation

reduces runoff due to increased organic matter and also optimizes soil moisture for

crop growth in dry seasons. The effects of no-till are captured in Figure 3.4.

3.2.6 Strip Cropping

"Computer science is no more about computers than astronomy is about

telescopes."- Edsger Dijkstra

Strip cropping involves the systematic arrangement of strips across fields in order

to lessen soil erosion by water and the wind. It is mainly used on recreational and

farming land. Irregular strips of grass are replaced and strips are laid out with a

correspondence to the slope of the land to help with erosion. To deal with wind

erosion, strips are laid out perpendicularly to the dominant wind direction. Strip

26

Figure 3.4.: No-till

cropping also reduces dust emissions in the air and increases soil moisture and water

quality. The effects of strip cropping are captured in Figure 3.5.

3.2.7 Cover Crops

"Artificial intelligence is nowhere near attaining actual sentience or aware-

ness. And without awareness it’s simply a mechanical device, which may

pretend to show emotions and sentience, if it is programmed to do so, and

thus it may be able to fool the humans as being alive, but in its own inter-

nal circuitry, it’d simply be following its preprogrammed tasks through the

flowchart of an algorithm."- Abhijit Naskar

27

Figure 3.5.: Strip Cropping

Cover crops include rye-grass, crimson, oats, etc., and are grown between regular

crops like corn and soybeans to protect the soil. Cover crops are especially useful

during summer when primary crops are damaged. Cover crops improve soil structure

by increasing organic matter and root penetration. They use nitrogen left in the soil

and increase nutrient availability for corn, soybeans, and other crops. Cover crops

also increase the biodiversity of soil and suppress weeds. The effects of cover crops

are captured in Figure 3.6.

3.2.8 Conservation Programs

"People think that computer science is the art of geniuses but the actual

reality is the opposite, just many people doing things that build on each

other, like a wall of mini stones."- Donald Knuth

28

Figure 3.6.: Cover Crops

The United State Department of Agriculture (USDA) and Natural Resources Con-

servation Services (NRCS) have several programs for improving water quality and

preventing erosion. Some of these related programs include

• Conservation Reserve Program (CRP): CRP assists landowners with cost assis-

tance for preventing soil erosion.

• Environmental Quality Incentive Program (EQIP): EQIP assists landowners

with planning, implementation, and maintenance of agricultural areas Wetlands

Reserve Program (WRP): WRP assists landowners who converted their private

wetlands to agricultural areas before 1985.

29

• Wildlife Habitat Incentives Program (WHIP): WHIP is a voluntary program for

people who want to improve the wildlife habitat in areas not under any other

program.

• Conservation of Security Program (CSP): CSP encourages producers to imple-

ment conservation activities on their land.

3.3 IGAMI2

"To my knowledge, nobody, no one who is publishing papers in the main

field of AI, is even working on consciousness. I think there are some

neuroscientists who are trying to understand it, but I’m not aware that

they’ve made any progress. As far as AI people, nobody is trying to build

a conscious machine, because no one has a clue how to do it, at all. We

have less clue about how to do that than we have about build a faster-than-

light spaceship."- Stuart Russell

IGAMI2, the second version of the Interactive Genetic Algorithm with Mixed-Initiative,

is a distributed algorithm used in our system to run environmental models, with feed-

back from stakeholders, to perform interactive multi-objective optimization. Feedback

from stakeholders is used to train the virtual user models or simulated decision makers

(SDMs). Feedback from stakeholders is fed into the interactive optimization process

and the process loops iteratively until satisfactory results have been settled upon.

The IGAMI2 Kernel manages different components of the system and includes a

Mixed-Initiative Manager (MIM), an SDM Manager (SDMM), an HPC Controller,

an Optimization Manager (OM), and an Introspection Manager (IM). The database

server is responsible as acting for a data layer for the entire system. Both the kernel

and the database server run on the master computer.

The external view of the system involves stakeholders signing in through a web ap-

plication and starting their search by specifying their preferences. The kernel initiates

searches for each user with default designs being used for the first search. Stakeholders

30

provide ratings for generated designs, and then non-dominated sorting and an initial

search begins. When evaluation finishes, results are given back to stakeholders for

rounds of feedback. Interactions are saved in the database server for future reference

and for learning in subsequent iterations.

The distributed system contains several machines with different roles. The system

contains a high performance computing component which is used to run analytical

environmental models for determining the quantifiable characteristics of different de-

signs. The HPC controller runs on the same machine as the kernel, while virtual

agents (VAs) run Soil and Water Assessment Tool evaluations on each of the designs.

The capacity of the system has varied over time, but currently supports thousands

of concurrent model evaluations running, allowing dozens of users to use the system

at a time. The system has been designed in a way that it can be scaled to handle

additional users and environmental model runs. More details about IGAMI2 and the

components mentioned above are available in previous work.

The algorithm and system allow users to test competing designs in a simulated

environment. Stakeholders can identify designs that are matched to their individual

needs. An iterative search method is used so that stakeholders who wish to experiment

can discover the impact of several different choices on the overall watershed. The tool

is useful from several angles: driving stronger environmental outcomes, increasing

understanding and awareness of the importance of watersheds in the community, and

driving environmentally sound and consensus-driven decision-making.

31

4. COMPARISON OF NEURAL METHODS FOR LIMITED
DATA USER MODELING IN WETLAND DESIGN

4.1 Abstract

The WRESTORE (Watershed REstoration using Spatio-Temporal Optimization

of REsources) (http://wrestore.iupui.edu) online environmental decision support sys-

tem allows stakeholders to design solutions for preventing or reducing pollution on a

watershed landscape. This is accomplished by utilizing an interactive optimization

algorithm that breaks down the problem-solving process into several stages. WRE-

STORE uses the Soil and Water Assessment Tool hydrologic model for simulating the

impact of landscape decisions on watershed methods. WRESTORE is one of many

interactive systems that changes in direct relation to the quality and quantity of user

feedback data. The user modeling component employs a deep learning neural net-

work approach. Limited data in user modeling is a common issue, one we will examine

to improve the outcomes of our interactive optimization process. The innovation of

our method is combining user models with insufficient data with application-specific

augmentation. This chapter has three goals: i) explain the WRESTORE system, ii)

describe current work in user modeling with insufficient data, and iii) describe our

work in implementing specific virtual stakeholder models based on limited training

samples.

4.2 Introduction

Even though researchers have debated the effectiveness of big data solutions, some

problems are inherently restricted to limited-size datasets [18] [19] [20]. Small data

appears in domains such as small enterprise solutions and black swan event modeling.

32

When processing small data, common problems can arise like how to deal with outliers

and anomalies, over-fitting to training or test or validation data, and the cost of

acquiring new data.

Possible strategies for dealing with limited data are to find experts familiar with

small sample experiments in that field, to consult a statistician, to reduce the degrees

of freedom, to reduce the number of possible hypotheses, or to reduce the models’

complexity. More advanced techniques for dealing with reduced-size datasets include

using pre-trained models, attempting to transfer models from other domains [21], find-

ing application-specific ways to perturb and augment data [22], or creating synthetic

minority class examples [23].

When working with small data, it is important to keep certain techniques in mind,

such as: data cleansing, augmenting data with external sources, removing irrelevant

characteristics, and being aware of the uncertainty associated with the predictions and

communicating this uncertainty to the intended audience. Reporting uncertainty is

important because stakeholders may incorrectly place too much faith in the system.

The WRESTORE web application helps communities of stakeholders to get user-

centric solutions for the allocation of conservation practices in a watershed landscape.

User models, interactive optimization problem formulation, and the distributed hy-

drology model based on the USDA’s Soil and Water Assessment Tool [24] were built

for the entire test bed site of Eagle Creek Watershed. The system identifies the

optimal locations to apply best management practices in the watershed.

4.2.1 Related Work

Corani developed an alternative Naive Bayes approach [25] which allows a general

and flexible treatment of incomplete data, while others [26] have proposed a context

tree generalization because it provides more structural flexibility. Researchers at

Intel [27] used an A-S learning process and the guard-band concept to achieve a

sample size reduction of 10 to 20 times. Onisko proposed a method [28] that uses

33

Noisy-OR gates to reduce the data requirements in learning conditional probabilities.

Shaikhina has worked with multiple runs of neural networks and decision trees to

refine accuracy on small datasets in the medical domain [29].

In order to identify and mitigate outliers without removing relevant data, some

researchers have dealt with limited data in high-dimensional feature spaces using

ordered if-then-else lists of rules [30]. Other approaches have experimented with

the adaptive local hyperplane algorithm on small medical datasets [31]. Another

technique used data-fuzzifying, domain range expansion, and adaptive-network-based

fuzzy inference systems (ANFIS) to handle limited-size scheduling datasets [32]. In

another study, researchers used a mega-trend-diffusion technique to estimate the do-

main range of a small dataset and produce artificial samples for training artificial

neural networks [33].

In a 2014 paper, researchers constructed virtual samples using mega-trend diffu-

sion functions and using back-propagation neural networks [34]. Researchers have also

discussed several techniques including attribute construction, the bootstrap method,

the incremental method, and different diffusion functions [35] and concluded that data

augmentation can boost classification accuracy. Other researchers have studied hu-

man face recognition and proposed perturbations and mutations to create additional

test data when datasets are limited [36]. Simulation-based data has been applied to

reinforcement learning-based approaches with success as well [37].

Some researchers have created new learning samples to fill gaps in their original

datasets and used a neural network learning method based on the posterior prob-

ability [38]. One study compared the learning surfaces of several algorithms in an

attempt to discover which feature selection methods and models should be used [39],

and found that careful visualization of the learning surface’s different regions is key

to discovering the correct combination. A budget-sensitive progressive sampling algo-

rithm for selecting points from the training set to deal with class imbalance has also

been proposed [40]. Meignan presented a review of interactive optimization includ-

34

ing interactive reoptimization, interactive multi-objective optimization, interactive

evolutionary algorithms, and other approaches [41].

Figure 4.1.: WRESTORE system

Figure 4.1 shows part of the human-computer interface of the WRESTORE

system. Since the human brain is skilled at visualizing data for analysis [42], it is only

reasonable to utilize human-guided search based on interactive optimization. Tasks

in consulting positions should be performed by humans when the problems require

visualization of large search spaces [43]. However, one common limitation with this

approach is user fatigue [44] which can be addressed using a simulated decision maker

(SDM) based on neural networks and other linear/non-linear modeling techniques.

Because of the small number of inputs that a typical user can provide, training SDMs

is a limited-data problem.

4.3 Methodology

We examined three predictive models for user modeling: neural networks, fuzzy

logic, and deep learning.

35

4.3.1 Neural Networks

Our artificial neural network uses a feed-forward design defined by inputs sent

through hidden layers to a final output layer [45]. The general neural network design

is depicted in Figure 4.2. The input layer is comprised of wetlands design data and

our output layer is the prediction of the user model based on the input.

The activation state of each unit within each layer, Xi, was given by a value of

0 for not activated and a value of 1 for activated. The weight given between unit i

and unit j is given by weight Wij. The activation of a unit is given by the sum of the

products of output Yj and weight Wij along with the bias term, bj:

Xi =
∑
j

WijYj + bj.

Given activation Xi, output Yi is computed using the activation function. We

used the logistic sigmoid function which takes the activation state Xi for each unit

to generate output Yi given by

Yi =
1

1 + e−Xi
.

Output Yi is propagated in a feedforward fashion to the next layer until it reaches

the output layer.

Pseudo-code for creating one NN configuration in Matlab is found below:

Adaptive Neuro-fuzzy Inference System

Fuzzy logic is based upon Zadeh’s theory of fuzzy sets [46]. An adaptive neuro-

fuzzy inference system is based on a Takagi-Sugeno fuzzy inference system. The

technique comprises integrating fuzzy logic and artificial neural networks. We trained

our system using a hybrid algorithm with a forward and backward pass. The least-

squares method finds consequent parameters in the forward pass; gradient descent

optimizes error values and premise parameters in the backward pass [47]. The ANFIS

architecture is depicted in Figure 4.3.

36

Algorithm create Neural Net Classifier
1: procedure createNeuralNetClassifier(trainData, testData, hiddenLayerSize, numEpochs,maxFails)

2: numTrainingDimensions = length(trainData(:, 1))− 1

3: trainingDataPoints = trainData(2 : numTrainingDimensions, :)

4: trainingLabels = trainData(1, :)

5: testDataPoints = testData(2 : numTrainingDimensions, :)

6: testLabels = testData(1, :)

7: trainingLabelPoints = length(trainingLabels)

8: numberOfTrainingLabels = max(trainingLabels)

9: trainingLabelMatrix = zeros(numberOfTrainingLabels, trainingLabelPoints)

10: testLabelPoints = length(testLabels)

11: numberOfTestLabels = numberOfTrainingLabels

12: testLabelMatrix = zeros(numberOfTestLabels, testLabelPoints)

13: for (i = 1 : trainingLabelPoints) do

14: trainingLabelMatrix(trainingLabels(i), i) = 1

15: end for

16: for (i = 1 : testLabelPoints) do

17: testLabelMatrix(testLabels(i), i) = 1

18: end for

19: net = patternnet()

20: net = patternnet(hiddenLayerSize)

21: net.divideParam.trainRatio = 75/100

22: net.divideParam.valRatio = 15/100

23: net.divideParam.testRatio = 15/100

24: net.trainParam.epochs = numEpochs

25: net.trainParam.show = 5

26: net.trainParam.mingrad = 1e− 8

27: net.trainParam.maxfail = maxFails

28: net.trainParam.sigma = 5.0e− 7

29: net.trainParam.lambda = 5.0e− 9

30: net.performFcn =′ mse′

31: net.performParam.regularization = 0.01

32: net = train(net, trainingDataPoints, trainingLabelMatrix)

33: outputdata = net(testDataPoints)

34: perf = mse(net, testLabelMatrix, outputdata)

35: mserror = perf

36: classes = vec2ind(outputdata)

37: bestnet = net

38: errorsSet = perf

39: errorAbsNN = perf

40: end procedure

37

Figure 4.2.: NN Design

Figure 4.3.: ANFIS architecture

The output of our fuzzy logic process can be written as

f =
w1

w1 + w2

f1 +
w2

w1 + w2

f2

f = w1(p1x+ q1y + r1) + w2(p2x+ q2y + r2)

f = (w1x)p1 + (w1y)q1 + (w1)r1i+

(w2x)p2 + (w2y)q2 + (w2)r2

38

where f is assumed to be linear over the parameters pi, qi, ri.

Pseudo-code for creating one ANFIS configuration in Matlab is found below:

39

Algorithm creating one ANFIS configuration in Matlab
1: procedure createAdaptiveNeuroFuzzyInferenceSystem(trainData, testData, epochs, targetError, stepSize)

2: cols = length(trainData(1, :))

3: rows = length(trainData(:, 1))

4: temp = trainData(:, 1)

5: trainData(:, 1) = trainData(:, cols)

6: trainData(:, cols) = temp

7: minimumTrainClass = min(trainData(:, cols))

8: maximumTrainClass = max(trainData(:, cols))

9: trainData(:, cols) = (trainData(:, cols) − minimumTrainClass)/ (maximumTrainClass −

minimumTrainClass)

10: temp = testData(:, 1)

11: testData(:, 1) = testData(:, cols)

12: testData(:, cols) = temp

13: testData(:, cols) = (testData(:, cols) − minimumTrainClass)/ (maximumTrainClass −

minimumTrainClass)

14: mfType =′ gbellmf ′

15: trnOpt = [epochstargetErrorstepSize0.71.1]

16: in_fis = genfis1(trainData, 4,mfType,mfType)

17: outfis = anfis(trainData, inf is, trnOpt)

18: [anfisPredictions] = evalfis(testData(:, 1 : (cols− 1)), outfis)

19: anfisPredictions = (anfisPredictions ∗ (maximumTrainClass − minimumTrainClass)) +

minimumTrainClass

20: for i = 1 : length(anfisPredictions) do

21: if (anfisPredictions(i) < minimumTrainClass) then

22: anfisPredictions(i) = minimumTrainClass

23: end if

24: if (anfisPredictions(i) > maximumTrainClass) then

25: anfisPredictions(i) = maximumTrainClass

26: end if

27: anfisPredictions(i) = round(anfisPredictions(i))

28: end for

29: testData(:, cols) = (testData(:, cols) ∗ (maximumTrainClass −minimumTrainClass))+

minimumTrainClass

30: testData(:, cols)

31: anfisPredictions

32: anfisRmse = sqrt(sum((testData(:, cols)− anfisPredictions(:)).2)/ numel(testData(:, cols)))

33: end procedure

Adaptive neuro-fuzzy inference systems use a neural network based on a Tak-

agi–Sugeno fuzzy inference system. The technique involves the integration of tech-

niques from both fuzzy logic as well as artificial neural networks. Our system is

40

trained using a forward and backward pass in a hybrid algorithm. The least-squares

method finds consequent parameters in the forward pass; error values and premise

parameters are optimized with gradient descent in the backward pass.

4.3.2 Deep Learning

Deep neural networks (i.e., neural networks with over one hidden layer) are used for

mail classification [48]. Popular approaches with deep neural networks learn several

layers of representation [49].

Deep neural networks, neural networks with more than one hidden layer, have

been used successfully with several use cases. There has been much work on dealing

with training sets of constrained size, some of which we adapted here, primarily

through data cleaning and augmentation. Two very important things for researchers

and practitioners to do is to make sure they validate the integrity of the design of

their experiments and make sure they do not lose any valid noise which is present in

the data. Comparing the learning surfaces implementations is another way to boost

the understandability and accuracy of the models which are utilized.

Pseudo-code for creating one DL configuration in Matlab is found below:

41

Algorithm create Deep Data Sets
1: procedure createDeepDataSets(data)

2: X = getDeepNormalizedWithRank(data)

3: c = length(data(1, :))

4: data1 = zeros(120, c)

5: data2 = zeros(120, c)

6: data3 = zeros(120, c)

7: data4 = zeros(240, c)

8: data5 = zeros(360, c)

9: for i = 1 : 120 do

10: data1(i, :) = X(i, :)

11: end for

12: for i = 121 : 240 do

13: id = i− 120

14: data2(id, :) = X(i, :)

15: end for

16: for i = 241 : 360 do

17: id = i− 240

18: data3(id, :) = X(i, :)

19: end for

20: data4 = [data1; data2]

21: data5 = [data4; data3]

22: dataDeep = zeros(length(X(:, 1)), c− 1)

23: for i = 1 : c− 1 do

24: dataDeep(:, i) = X(:, i)

25: end for

26: end procedure

42

Algorithm Analyze Data Deep
1: procedure AnalyseDataDeep(dataDeep,X)

2: nout = max(nargout, 1)− 1

3: errorsSetDeep = zeros(7, 1)

4: pos = length(X(1, :))

5: len = length(X(:, 1))

6: targetNN = zeros(len, 3)

7: target = zeros(len, 1)

8: traindata = zeros(len, pos− 1)

9: for i = 1 : len do

10: posRank = X(i, pos)

11: if then(posRank == 0)

12: posRank = 1

13: end if

14: targetNN(i, posRank) = 1

15: target(i) = posRank

16: end for

17: for i = 1 : pos− 1 do

18: traindata(:, i) = X(:, i);

19: end for

20: inputData = transpose(traindata)

21: targetData = transpose(target)

22: testData = inputData

23: testDataRnk = targetData

24: targetNN = transpose(targetNN)

25: dataDeep = transpose(dataDeep)

26: SOMNets = cell(7, 1)

27: DeepNets = cell(7, 1)

28: SOMNodes = zeros(7, 1)

29: SOMNodes(1, 1) = 10

30: SOMNodes(2, 1) = 25

31: SOMNodes(3, 1) = 50

32: SOMNodes(4, 1) = 100

33: SOMNodes(5, 1) = 200

34: SOMNodes(6, 1) = 250

35: SOMNodes(7, 1) = 500

36: trialNos = 10

37: for i = 1 : 7 do

38: [SOMNets{i}] = createSOM(dataDeep, SOMNodes(i))

39: varargout{i+ 7} = SOMNets{i}

40: [rankData{i}] = createDeepNeuralNetClassifier(inputData, targetNN, testData, testDataRnk,

SOMNets{i}, trialNos)

41: end for

42: for i = 1 : 7 do

43: varargout{i} = rankData{i}

44: end for

45: end procedure

43

Algorithm create Deep Neural Net Classifier
1: procedure createDeepNeuralNetClassifier(inputData, targetData, testData, testDataRnk, nnsom, trialNos)

2: trainPer = 75

3: valPer = 15

4: testPer = 10

5: len = length(targetData)

6: bestnet = 0

7: errorsmin = length(inputData(1, :))

8: errorsSet = zeros(trialNos, 1)

9: x1 = nnsom(inputData)

10: for k = 1 : trialNos do

11: net = patternnet()

12: net.trainParam.maxfail = 200

13: net.divideParam.trainRatio = trainPer/100

14: net.divideParam.valRatio = valPer/100

15: net.divideParam.testRatio = testPer/100

16: net.trainParam.showWindow = false

17: [net] = train(net, x1, targetData)

18: x2 = nnsom(testData)

19: outputdata = net(x2)

20: len = length(x1(1, :))

21: rankdata = zeros(1, len)

22: for i = 1 : len do

23: maxx = 0

24: for j = 1 : 3 do

25: if (maxx < outputdata(j, i))) then

26: maxx = outputdata(j, i)

27: rankdata(1, i) = j

28: end if

29: end for

30: end for

31: errorRMS = 0

32: for i = 1 : len do

33: val = testDataRnk(i)− rankdata(i)

34: errorRMS = errorRMS + abs(val)

35: end for

36: errorRMS = errorRMS/len

37: errorRMS = errorRMS/2

38: if (errorRMS < errorsmin) then

39: bestnet = net

40: errorsmin = errorRMS

41: end if

42: errorsSet(k) = errorRMS

43: end for

44: end procedure

44

Deep learning models are similar to the representation of neural networks which

was already presented. For representing deep learning models, we simply have two

or more layers of nodes or neurons N = {u1, u2, . . . , } and a finite set H ⊆ N ×N of

directed edges or connections between nodes which we represent as an acyclic graph.

The i-th layer (i > 1) is the set of all nodes u ∈ N such that there is an edge path

of length i− 1 (but no longer path) between some input unit and u where shortcuts

may exist from a previous layer to a subsequent layer. The model’s behaviour is

determined by a set of real-valued weights wi (i = 1, . . . , n) which are determined

empirically by the context of the learning problem presented.

4.3.3 Experimental setup

Our data came from SQL Server instances which are further described in the ap-

pendix. In a previous workshop, 20 participants volunteered to find watershed-scale

plans that agreed with their individual subjective preferences, including 14 from In-

diana University and Oregon State University and six stakeholder users consisting of

state/federal agency personnel, nongovernmental organization personnel, and water-

shed individuals.

One limitation of the approach is that the 14 stakeholders are not personally in-

volved in the watershed, but all of them are from a community which is directly

impacted by the watershed. To address this, several stakeholders more closely associ-

ated with Eagle Creek Watershed via land ownership or professional responsibilities

were also included in the workshop. Several challenges were encountered in testing

and implementing novel decision support tools in real-world conditions, some of which

will be addressed through the remainder of the dissertation.

We preprocessed the data to remove near zero variance users and users who showed

negative or small correlation with one or more of the objective fitness functions previ-

ously described. In addition, we also created synthetic user data with known behaviors

45

and preferences to validate that our models would have as expected when given users

with known goals.

4.3.4 Inputs and outputs of the models

Four physically based environmental objective functions (Peak Flow Reduction,

Sediment Reduction, Nitrates Reduction, and Cost Revenue function) were estimated

by the Soil and Water Assessment Tool at the entire watershed scale and at the local

level for each sub-basin, these acted as the input for each model.

Peak flow reduction represents is the maximum difference between the peak flows

of the baseline model and the peak flow of the new model which has been found, it

represents a decrease in flooding for the watershed. Sediment Reduction represents

the loss of fertile soil from the landscape across all sub-basins. Nitrate Reduction

represents loss in nitrates via runoff across all sub-basins. Finally, the Cost Revenue

function considers the costs and revenues generated by the conservation practice over

model time period.

The output layer here consists of the predicted user rating for a virtual user model

or simulated decision maker. The architecture and configuration of each model (size

of the hidden layers, regularization parameters, etc.) was determined empirically

through hyperparameter optimization.

4.4 Results

The performance of a linear model, neural networks, fuzzy logic, and deep learning

for the user are compared with RMSE:

Root Mean Square Error =

√∑
(Pest − Ptrue)

2

n
.

The neural network obtained the results in Table 4.1.

Fuzzy logic obtained the results in Table 4.2.

Deep learning obtained the results in Table 4.3.

46

Table 4.1.: Performance of neural network (non-enriched)

Sample size RMSE

N=25 0.23

N=50 0.07

N=100 0.15

N=360 0.08

Table 4.2.: Performance of fuzzy logic (non-enriched)

Sample size RMSE

N=25 0.40

N=50 0.30

N=100 0.28

N=360 0.12

Table 4.3.: Performance of deep learning (non-enriched)

Sample size RMSE

N=25 0.58

N=50 0.14

N=100 0.12

N=360 0.11

47

Table 4.4.: Performance of deep learning with enriched data

Sample size RMSE

N=25 (1500 total) 0.11

N=50 (3000 total) 0.094

N=100 (6000 total) 0.085

N=360 (12000 total) 0.079

Deep learning with enriched training data obtained the results in Table 4.4.

Many complexities appeared during testing with stakeholders, including limited

data points, significant noise in experiment data, and the variety of preferences present

among the stakeholders. The holdout test data used in our validation process con-

firmed that our data augmentation technique offered a measurable improvement over

standard techniques. The holdout test data did not go through the same augmen-

tation technique as the incoming training data. We chose RMSE as our objective

function because of its prevalence in environmental systems analysis.

RMSE is helpful in measuring the overall fit between the predicted and actual data;

however, since RMSE only considers the magnitude of an error without considering

the potential human cost it is ineffective at dealing with outliers and other issues.

Although it was susceptible to noise, the traditional neural network performed the

best without enriched data. The deep learning approach behaved accurately and

consistently when adding the enriched data. Additional work that remains includes

finding additional ways to deal with limited data in user modeling and integrating

these results into the interactive optimization process.

48

4.5 Conclusion

Complex techniques can produce incorrect results due to issues coming from lim-

ited size datasets. Future areas of work include finding additional domain-specific

ways to augment data, additional validation and verification, dealing with untrustwor-

thy stakeholders, providing a way to capture uncertainty, and providing transparency

into the prediction space.

49

5. FUZZY AND DEEP LEARNING APPROACHES FOR
USER MODELING IN WETLAND DESIGN

5.1 Abstract

Several factors must be considered in the process of designing optimal watersheds.

Some of these criteria come from community stakeholders that provide feedback on

different designs. The Watershed Restoration Using Spatial Temporal Optimization

of Resources (WRESTORE) project, at (http://wrestore.iupui.edu), allows members

of the community to be a part of the watershed design process. This chapter examines

the performance of several different user modeling techniques that have limited data

to train upon. A deep learning user model is integrated back into our interactive

optimization process to drive improve watershed design outcomes.

5.2 Introduction

WRESTORE utilizes the Soil and Water Assessment Tool hydrological model for

its watershed simulations. Most of the controls are done in a virtual, interactive

genetic algorithm, with deep learning user models providing input into the process.

The existing user modeling component was redeveloped with additional capacity for

dealing with limited data. This chapter explains our work implementing reliable and

stable predictive models for the purpose of boosting system efficiency and improving

interactive optimization performance for stakeholders.

5.3 Related Work

In previous work, our group used user modeling techniques and an interactive ge-

netic algorithm to solve a multi-objective optimization problem [50]. Other work has

50

found it is possible to use domain experts to capture qualitative information which

otherwise may not be available, while visualization can lead to a more globally optimal

solution [51] [52]. Different implementations of user modeling exist [53] [54] [55] [56],

some even to solve water quality modeling problems. Some of these approaches used

a web interface to reach out to a wider range of stakeholders [57]. Genetic algorithms

have been used to search exponential search spaces where other optimization tech-

niques traditionally failed due to the complexity of the search space [58] and graphical

representations also have a history of usage in interactive genetic algorithms [59].

Kisi used fuzzy logic and neural networks to estimate sediment concentration [60].

Researchers have found that neural networks are regarded as good models for express-

ing nonlinear decisions [61]. The use of neural network variants for user modeling and

adaptive learning is well studied [54] [62] [63], and it also has been used in hydrology

and multi-criteria decision making [64] [65] [66]. Previous work in WRESTORE also

showed significant peak flow reductions with fewer sites and smaller wetlands via a

GIS-simulation optimization based approach [67].

In order to perform optimization in a time efficient manner, distributed computing

was utilized to adopt a divide and conquer approach. A decision support system was

used due to the complexity of the problem space (i.e., environmental issues, planning,

and design are difficult tasks considering the number of conflicting and/or subjective

issues that can arise with different key stakeholders), an area where decision support

systems traditionally show success [68]. The watershed design dilemma directly relies

on space, which has an exponentially large number of possible solutions. Human-

guided search is a known method of solving problems which incorporates a feature

space that is not easily modeled via mathematical equations. Problems with large

data search spaces involving real-time visualization of the problem are typically best

managed when humans serve an advisory role. A depiction of a design shown to

stakeholders is present in Figure 5.1.

Interactive optimization is performed using Simulated Decision Makers (SDMs),

which act as virtual users that model actual users’ behaviors and preferences. Inter-

51

Figure 5.1.: Water basins in WRESTORE

52

active genetic algorithms are a modified genetic algorithm technique that we elected

to use to take account of user preferences in the design process due to previous

successes [69]. Neural networks, fuzzy logic, and deep learning were applied in the

user modeling task of the watershed design optimization. Artificial neural networks

(ANNs) are inspired by biological neural networks and are known to be universal ap-

proximators. Fuzzy logic is based upon classical logic theory but allows for a multiple-

valued logic for degrees of certainty rather than a definite true or false. Deep learning

usually involves layers of representation learning [46]. After considering several mod-

eling procedures, multi-layer neural networks proved to provide the best virtual user

models. A system that uses the scalable computing power of distributed computing

was utilized [70].

5.4 Methodology

We examined three predictive models for user modeling: neural networks, fuzzy

logic, and deep learning.

5.4.1 Artificial Neural Networks

Our neural network user model was tested with a variety of feedforward design

which transferred signals on the input layer to the hidden layer and then to the output

layer.

The input layer is composed of output from our SWAT models. The output unit

layer represents the prediction made by the neural network. The particular activation

state of each unit Xi in a layer is defined as a value between 0 for not activated and

1 for fully activated. The weight between a unit j and another unit i is represented

by weight Wij. The activation of a unit is given by the sum of the products of each

unit’s output Yj and weight Wij along with a constant bias term bj.

The activation state Xi for each unit and the corresponding output value for a

unit Yi is computed using an activation function. Many such activation functions

53

are available including identity functions, binary step functions, ramp functions, sig-

moidal functions, and radial basis functions. One popular activator is the logistic

sigmoid function which takes the activation state Xi for each unit in order to gen-

erate the output by which Yi is given. The output Yi may then be propagated in a

feedforward fashion to the next layer of the neural network, whether it is a hidden

layer or an output layer. This process is depicted in Figure 5.2. The pseudo-code for

the neural network here matches the pseudo-code which is found in Chapter 4.

Figure 5.2.: Feedforward network

54

5.4.2 Fuzzy Logic

Fuzzy logic extends classical logic theory with degrees of certainty rather than a

certain true or false output value. Adaptive neuro-fuzzy inference systems have been

used before in ecology and water resource management problems [71]. Our ANFIS

implementation used a Kalman filter and gradient descent algorithm [72]. Adaptive

neuro-fuzzy inference systems are a type of fuzzy logic that involve the integration of

methods from both fuzzy logic and artificial neural networks.

5.4.3 Deep Learning

Deep learning is a structured platform of learning that usually involves meth-

ods based on learning representations of data. These models use several non-linear

transformations. Several researchers have used deep learning with different imple-

mentations and different use cases [73] [74] [75]. In our implementation, a multi-

layer feedforward artificial neural network was used with back-gradient propagation.

Pseudo-code for the deep learning hyperparameter optimization is found below:

5.4.4 Experimental setup

As previously discussed, data came from SQL Server instances described in the

appendix. 20 participants volunteered to find watershed-scale plans that agreed with

their individual subjective preferences. One limitation of the approach is that 14 of

the stakeholders were not personally involved in the watershed, but all of them are

from a community which is directly impacted by the watershed. To address this,

several stakeholders more closely associated with Eagle Creek Watershed via land

ownership or professional responsibilities were also included in the workshop.

55

Algorithm Pseudo-code for the deep learning hyperparameter optimization
1: hiddenSizes← c(1, 10, 30, 50, 70, 120, 160, 200, 400, 800)

2: dropoutRatios← c(0.01, 0.05, 0.1, 0.2, 0.3, 0.4)

3: l1s← c(1e− 8, 5e− 8, 1e− 7, 5e− 7, 1e− 6, 5e− 6, 1e− 5, 5e− 5, 4e− 8)

4: numEpochs← c(1, 10, 20, 40, 100, 200)

5: i=0

6: for hiddenSize in hiddenSizes do

7: for dropoutRatio in dropoutRatios do

8: for l1Value in l1s do

9: for epoch in numEpochs do

10: r ← NULL

11: attempt← 1

12: i = i+ 1

13: while is.null(r) && attempt ≤ 7 do

14: attempt← attempt+ 1

15: tryCatch(

16: r ← deep_train_may_fail(hiddenSize, dropoutRatio, l1V alue, epoch, i)

17: error = function(e)print(e)

18:)

19: end while

20: end for

21: end for

22: end for

23: end for

56

5.4.5 Inputs and outputs of the models

As previously discussed, our physically based environmental objective functions

(Peak Flow Reduction, Sediment Reduction, Nitrates Reduction, and Cost Revenue

function) were estimated by the Soil and Water Assessment Tool at the entire wa-

tershed scale and at the local level for each sub-basin, these acted as the input for

each model. The output layer here consists of the predicted user rating for a virtual

user model or simulated decision maker. The architecture and configuration of each

model (size of the hidden layers, regularization parameters, etc.) was determined

empirically through hyperparameter optimization.

5.5 Results

5.5.1 Discussion of results

Several experiments were carried out with virtual users of the system. Because

our feature space was already reduced, we did not use an autoencoder [76]. A grid

search was performed over the number of nodes in the hidden layers, the dropout

ratio used, the L1 regularization value, and the number of epochs used in training,

in order to obtain maximum performance. Complementary random search may have

allowed for increased performance on optimization of the objective function [77].

There are several different activator functions available to choose from. In this

case, we make use of the rectifier which is given by f(i) = max(o,i) because we believe

it to be closer to a biological process [78]. Test users were given a pre-defined goal

for optimization, and some were machine-written virtual users that were given a pre-

defined goal for optimization. Both of these cases were shown to be trivial cases

to learn. Dropout randomly removed the values of certain nodes in the network to

act as a form of regularization [79]. The data gathered was split into 240 known

training designs and 120 test designs for evaluation. Root mean square was used as

the objective function.

57

Figure 5.3.: NN Results

The network was trained with backpropagation using a hybrid approach of learning

rate annealing and momentum training and may be found in Fig. 5.3. As was

expected, actual users of the system were the most difficult category of prediction;

on the other hand, the users who were given a predefined goal for optimization were

the easiest category of prediction. The performance on a trivial virtual user may be

found in Fig. 5.4.

58

Figure 5.4.: Validation Performance

The goal of the overall WRESTORE system is to act as a web-based collaborative

problem-solving tool to help stakeholders design and analyze conservation practices

on the Eagle Creek Watershed. Genetic algorithms are used to search exponential

search spaces where other optimization techniques traditionally fail [80]. The system

offers several goals which stakeholders may optimize towards: decreasing the overall

net costs, decreasing the overall flooding, decreasing the overall fertilizer losses, and

59

decreasing the overall erosion losses. Integrating user models back into the interac-

tive genetic algorithm increased user satisfaction while also increasing other fitness

functions. Additional work in this area would deal with using several stakeholders at

once, or stakeholders with conflicting satisfaction goals or stakeholders who are not

trustworthy.

5.6 Conclusion

WRESTORE helps stakeholders design the mixture of landscape practices that

minimize soil erosion, fertilizer loss, and maintain the water quality of the region

while also maximizing stakeholders’ satisfaction and revenue. Distributed computing

and human-guided search are both utilized to deal with the complex problem space.

Several user modeling approaches were compared and integrated back into the in-

teractive optimization process. Work remains to explore additional ways of dealing

with limited data and to simplify the interactive optimization process when several

stakeholders are present.

60

6. UNCERTAINTY BASED DEEP LEARNING
NETWORKS FOR LIMITED DATA WETLANDS USER

MODELS

6.1 Abstract

This chapter conveys a method for utilizing limited data approaches on deep net-

works. This is based on the calculation of the level of uncertainty that is associated

with a sample of remaining training data. The method was developed for the Water-

shed Restoration using Spatio-Temporal Optimization of Resources (WRESTORE)

system. WRESTORE acts as an interactive decision support system designed for

performing multi-criteria decision analysis with a distributed system of conservation

practices. The system is used on the Eagle Creek Watershed in Indiana, USA. Results

show more ideal convergence when applying uncertainty-based incremental sampling.

6.2 Introduction

Existing work in the system uses a standard random incremental sampling method.

The goal of this chapter is to provide an explanation of the existing method and

our new method. WRESTORE is a user-friendly, virtual, interactive online decision

support system that assists land-owners and other key stakeholders (e.g., the local

government, investors) in watershed design. The system is applied on Eagle Creek

Watershed which covers approximately 160 square miles of area in central Indiana.

This area is situated more than ten miles northwest of downtown Indianapolis, USA.

61

Figure 6.1.: Stability sampling vs. Random sampling training error

6.3 Background Literature

Luo used empirical eigenfunctions and neural networks to approximate optimal

control [81], while others used a cerebellar model arithmetic computer neural network

Figure 6.2.: Stability sampling vs. Random sampling test error

62

for optimal control [82]. Researchers have developed an interactive machine learning

toolkit and applied it to several examples [83], while another study worked a number

of low-latency, high-throughput uses cases with incremental model learning [84].

One paper developed a method for fuzzy neural networks which minimizes the next

mean step error [85], while another compared several different models and dealt with

model efficiency but not in a way that improves an individual model’s efficiency [86].

Langkvist developed a human-in-the-loop intelligent system that allows the algorithm

and user to collaborate [87]. Cauwenberghs demonstrated an online recursive algo-

rithm for support vector machines (SVMs) [88]. Amershi showed the importance of

studying the users of interactive machine learning systems [89].

Carpenter presented an architecture for utilizing fuzzy logic and Adaptive Reso-

nance Theory (ART) for developing a new mini-max learning rule. Several training

attempts were performed to minimize predictive error and improve accuracy, with

the approach providing accuracy. The approach did encounter some issues with let-

ter image data and also ran into issues with voting criteria [90].

6.4 Methodology

Eagle Creek Watershed is divided into 130 different sub-basins based on its geog-

raphy. The utilized map assists in accurately measuring the direct flow of the water

level in the district region. Wetlands are beneficial to the local environment for sev-

eral reasons. For example, wetlands reduce the overall threat of flooding by reducing

peak water from overflowing. The U.S. Department of Agriculture has created several

programs for improving wetlands, such as the Wetlands Reserve Program (WRP).

Filter strips remove excess residue, organic materials, and various other environ-

mental pollutants from wastewater. They also provide numerous additional bene-

fits like removing excess residue before the water supply enters the waterway area.

Grassed waterways carry run-off from excessive water flow and effectively minimizes

soil erosion. Crop rotation control acts to stabilize the actively growing field crops

63

Figure 6.3.: Deep learning network architecture

and offers benefits like reduction of crop run-offs. Strip cropping provides increased

soil moisture and higher water quality. Cover crops, main ryegrass and oats, and are

grown between regular crops for the purpose of improving the overall productivity

of farmers’ crops. More information is available in the cited papers [91] [92] [50].

WRESTORE helps recommend combinations of BMPs for wetland designs.

It is frequently too expensive to obtain the amount of feedback necessary in order

to resolve user-related issues (for example, user fatigue). Incremental user sampling

minimizes user fatigue. Our uncertainty-based method includes a level of uncertainty

which is used for determining the next point in the feature space to query. One of

the most apparent challenges with this approach is limited training data; nonetheless,

this challenge was partially addressed with the incorporation of domain knowledge

and dataset augmentation. After integrating user models back into WRESTORE we

noted a decrease in user fatigue and an increase in recommendation power [93].

64

The uncertainty method used could work by taking any of the following: the most

uncertain training examples from the softmax function within each mini-batch, by

taking the most uncertain examples from predictions which change with increasing

L1 and L2 regularization over separate runs, by taking the most uncertain examples

from a dropout based technique [31], and by taking the most uncertain examples from

early termination over several runs. The optimal method for us seemed to best be

determined empirically dependent on the use case and data set present.

6.4.1 Experimental setup

As previously discussed, data came from SQL Server instances described in the

appendix. 20 participants volunteered to find watershed-scale plans that agreed with

their individual subjective preferences. One limitation of the approach is that 14 of

the stakeholders were not personally involved in the watershed, but all of them are

from a community which is directly impacted by the watershed. To address this,

several stakeholders more closely associated with Eagle Creek Watershed via land

ownership or professional responsibilities were also included in the workshop.

6.4.2 Inputs and outputs of the models

As previously discussed, our physically based environmental objective functions

(Peak Flow Reduction, Sediment Reduction, Nitrates Reduction, and Cost Revenue

function) were estimated by the Soil and Water Assessment Tool at the entire wa-

tershed scale and at the local level for each sub-basin, these acted as the input for

each model. The output layer here consists of the predicted user rating for a virtual

user model or simulated decision maker. The architecture and configuration of each

model (size of the hidden layers, regularization parameters, etc.) was determined

empirically through hyperparameter optimization.

65

6.5 Results

Figure 6.4.: Uncertainty sampling vs. Random sampling training error

Figure 6.5.: Uncertainty sampling vs. Random sampling test error

66

6.5.1 Discussion of results

Our implementation makes use of a unified dataflow graph [94] to represent both

computation and state. Nodes represent operations that need to be performed, while

edges represent data flowing along a graph. The advantages of this approach in-

clude massive parallelization and lazy evaluation. Our implementation of stochastic

gradient descent made use of the first order gradient-based Adam optimizer [95].

TensorFlow is a reference implementation commonly used for diverse use cases

including computer vision, NLP, and other applications. The input layer to our

network consisted of environmental fitness functions and the output layer was the

prediction of the user model. The architecture utilized is pictured in Figure 6.3.

The reshape, shape, slice, and concat functions are all dimensionality manipulators

utilized while RELU, gradients, sub, add, mat mul, sqrt, neg, mean, init, beta1 power,

beta2 power, and Adam are all data mutators. Placeholder, variable, W1, and save

are all internal development features of TensorFlow.

Zheng developed a general stability training method [96] to stabilize deep net-

works against extreme instability against contrived input perturbations commonly

known as adversarial examples. They developed a parameterized Gaussian weighted

stability noise factor which we replicate the logic of here for comparison against

a new uncertainty-based sampling method inspired by similar approaches in the

field [74] [97].

The mean absolute error (MAE) is given by:

1

N

N∑
i=1

|Ti − Ci|

where N is the number of samples in the test set, Ti is the true label of the i-th sample

and Ci is the predicted label.

Mean absolute error has the benefit of offering the average absolute difference

between Ci and Ti, while it has the drawback of being a scale-dependent accuracy

measure which cannot be used to make comparisons between series of different scales.

67

As can be seen in Figures 6.1 and 6.2, stability based incremental sampling out-

performed random sampling. Also, as can be seen in Figures 6.4 and 6.5, uncertainty-

based incremental sampling also outperformed random sampling. Experiments were

ran with micro batch size = 1 and learning rate = 0.008.

Comparing the uncertainty-based incremental sampling and the stability-based

incremental sampling, our uncertainty-based sampling method was able to converge

with half of the training data of the stability-based approach.

Random feature space sampling, parameterized exploration versus exploitation

sampling, sampling methods which optimize prediction stability, and sampling meth-

ods that minimize prediction generalization error are all designs of experiment-based

techniques that remain to be explored further. Other techniques also exist in the

community which could be further compared to this work.

Practically, we also place a great emphasis on embedding these techniques back

into our wetland decision support system where integration would yield faster con-

vergence to Pareto-optimal solutions. This would drive better community and stake-

holder outcomes.

6.6 Conclusion

WRESTORE more efficiently deals with the expensive task of user querying

through the use of an uncertainty-based sampling technique. The proposed uncertainty-

based sampling method showed faster convergence than either a random sampling

technique or a stability-based sampling technique. This technique allows for faster

convergence to a Pareto-optimal solution. This research ultimately drives more favor-

able outcomes for the community and key stakeholders. Areas remaining for future

work including comparison against other sampling techniques.

68

7. NON-STATIONARY REINFORCEMENT-LEARNING
BASED DIMENSIONALITY REDUCTION FOR

MULTI-OBJECTIVE OPTIMIZATION OF WETLAND
DESIGN

7.1 Abstract

This chapter presents a non-stationary, reinforcement-based method for feature

selection. The primary contribution of this chapter is an RL-based feature selection

technique for interactive optimization watershed designs.

7.2 Introduction

Wetlands are considered a mass area of land that have saturated soil and re-

duced peak water-flow levels during flooding. Best management practices for wet-

lands include the following: filter strips, grassed waterways, crop rotation, no-till,

strip cropping, and covering crops. WRESTORE balances the interests in competing

key stakeholder groups by using a combination of a strictly quantitative approach

and a learned quantitative approach.

Reinforcement learning is considered a type of machine learning, with common use

cases including optimal control, dynamic programming, approximation, and action

selection. Reinforcement learning [98] [99] has been studied with several use cases,

such as neuroscience, robotics, deep learning, etc.

7.3 Background Work

This section provides an overview of reinforcement learning and its applications

to dimensionality reduction.

69

Mnih outlines a deep reinforcement learning algorithm [100] which is given pixels

as input and trained to play a game. The algorithm uses replay memory and random

sampling for performing updates. Another paper developed several improvements

for deep reinforcement learning in a method called Rainbow. Rainbow addresses

the high number of hyperparameters present being through a restricted calibration

hyperparameter search [101].

The Arcade Learning Environment is a benchmark for some current algorithms

in reinforcement learning with several game modes and best practices [102]. Russo

provides a tutorial on Thompson sampling. Thompson sampling chooses actions

that address the famous exploration-exploitation problem in the multi-armed bandit

problem [103].

One study outlined a goal driven dimensionality reduction of objects with rein-

forcement learning on image pixels; however, in a simulation they found that model-

based learning is superior [104]. Other research uses reinforcement learning to perform

probabilistic non-linear dimensionality reduction [105].

Some research has examined a reinforcement driven dimensionality reduction

(RDDR) model and combined experimental and theoretical results to show the effi-

cacy of the model for dimensionality reduction [106]. Rusch summarized the relation-

ship between attention and learning and shows that including attention in RL-based

techniques will improve overall performance [107].

7.4 Methodology

Each of the methods provided (e.g., Random, Boltzmann, Thompson, Omniscient

process) is expected to show a monotonically increasing reward. Random sampling

represents a completely naive approach, while omniscient sampling represents an

above optimal sampling method because it is already always aware of the optimal

policy decision.

70

Figure 7.1.: RL-based feature selection process

Boltzmann sampling is chosen as a greedy approach, while Thompson sampling

is used as more of a Bayesian approach. In addition to the total data accumulated

reward, the function of the Root Mean Square Error (RMSE) between the actual util-

ity and estimated utility can be used as a measure of exploration versus exploitation.

The approach used for reinforcement based learning feature selection is illustrated in

Figure 7.1.

71

7.4.1 Boltzmann Sampling

Boltzmann sampling draws from a Gibbs distribution in a greedy fashion. This

process is commonly known as "softmax action selection." Boltzmann sampling de-

fines the probability of a certain state S as a function of that state’s energy and

temperature of the system to which the distribution is applied. The Gibbs distribu-

tion is the distribution that maximizes the entropy.

Pseudo-code for Boltzmann sampling is found below:

7.4.2 Thompson Sampling

Thompson sampling has been proven to converge [108], instantaneously correct-

ing itself. This method has received new-found interest in various applications (for

example, in dueling bandit problems [109]).

Pseudo-code for Thompson sampling is found below:

Figure 7.2.: Thompson Sampling

72

Algorithm Pseudo-code for Boltzmann sampling
1: procedure boltzmann(x, temperature)

2: exponent = np.true_divide(x− np.max(x), temperature)

3: returnnp.exp(exponent)/np.sum(np.exp(exponent))

4: end procedure

5: procedure return_boltzmann_action(temperature, reward_counter_array)

6: tot_arms = reward_counter_array.shape[0]

7: boltzmann_distribution = boltzmann(reward_counter_array, temperature)

8: returnnp.random.choice(tot_arms, p = boltzmann_distribution)

9: end procedure

10: procedure main

11: reward_distribution = [0, 0.6, 0, 0, 0.1, 0.1, 0, 0, 0.05, 0.05]

12: temperature_start = 0.1

13: temperature_stop = 0.0001

14: epsilon = 0.1

15: tot_arms = 10

16: tot_episodes = 1000

17: tot_steps = 359

18: cumulated_rewardlist = list()

19: average_utilityarray = np.zeros(tot_arms)

20: temperature_array = np.linspace(temperature_start, temperature_stop, num = totsteps)

21: print(”StartingBoltzmannagent...”)

22: for episode in range(tot_episodes): do

23: my_bandit =WRestoreMABandit(reward_probability_list = reward_distribution)

24: cumulated_reward = 0

25: reward_counter_array = np.zeros(tot_arms)

26: action_counter_array = np.full(tot_arms, 1.0e− 5)

27: for step in range(tot_steps): do

28: temperature = temperature_array[step]

29: action = return_boltzmann_action(temperature, np.truedivide(reward_counter_array, action_counter_array))

30: reward = mybandit.step(action)

31: reward_counter_array[action]+ = reward

32: actioncounterarray[action]+ = 1

33: cumulatedreward+ = reward

34: end for

35: cumulated_reward_list.append(cumulated_reward)

36: utility_array = np.true_divide(reward_counter_array, action_counter_array)

37: average_utility_array+ = utility_array

38: print(”AccumulatedReward : ” + str(cumulated_reward))

39: print(”UtilityRMSE : ” + str(return_rmse(utility_array, reward_distribution)))

40: end for

41: end procedure

73

Algorithm Pseudo-code for Boltzmann sampling
1: procedure return_rmse(predictions, targets)

2: return np.sqrt(((predictions - targets)**2).mean())

3: end procedure

4: procedure return_thompson_action(success_counter_array, failure_counter_array)

5: beta_sampling_array = np.random.beta(successcounterarray, failurecounterarray)

6: return np.argmax(beta_sampling_array)

7: end procedure

8: procedure main

9: reward_distribution = [0, 0.6, 0, 0, 0.1, 0.1, 0, 0, 0.05, 0.05]

10: tot_arms = 10

11: tot_episodes = 1000

12: tot_steps = 359

13: print_every_episodes = 1

14: average_utility_array = np.zeros(tot_arms)

15: for episode in range(tot_episodes): do

16: my_bandit =WRestoreMABandit(reward_probability_list = reward_distribution)

17: cumulated_reward = 0

18: success_counter_array = np.ones(tot_arms)

19: failure_counter_array = np.ones(tot_arms)

20: action_counter_array = np.full(tot_arms, 1.0e− 5)

21: for step in range(tot_steps): do

22: action = return_thompson_action(success_counter_array, failure_counter_array)

23: reward = my_bandit.step(action)

24: if reward > 0: then

25: success_counter_array[action]+ = 1

26: elsereward == 0:

27: failure_counter_array[action]+ = 1

28: end if

29: action_counter_array[action]+ = 1

30: cumulated_reward+ = reward

31: end for

32: cumulated_reward_list.append(cumulatedreward)

33: utility_array = np.true_divide(success_counter_array, action_counter_array)

34: average_utility_array+ = utility_array

35: print(”AccumulatedReward : ” + str(cumulatedreward))

36: print(”UtilityRMSE : ” + str(returnrmse(utility_array, reward_distribution)))

37: end for

38: end procedure

74

Figure 7.3.: Boltzmann Sampling

7.5 Results

7.5.1 Design of experiment

As previously discussed, our data came from SQL Server instances described in

the appendix. User data came from previously held workshops and we preprocessed

the data to remove near zero variance users and users who showed negative or small

correlation with one or more of the objective fitness functions previously described.

Synthetic user data with known behaviors and preferences was also utilized to validate

that our models would behave as expected when given users with known goals.

7.5.2 Discussion of results

The study has provided four different user RL-based techniques: Random sam-

pling, Thompson sampling, Boltzmann sampling, and Omniscient sampling. Random

75

sampling was utilized by implementing a strategic plan, such as an unknowing gambler

choosing each lever from a stationary and uniform distribution. Thompson sampling

and the Boltzmann sampling were implemented with the characteristics described in

the previous section. Omniscient sampling is directed to an oracle platform which

acts how an ideal agent would execute the given command.

Ten agents were initially utilized, but the goal was to eventually reduce it down to

three agents respectively. Hyper-parameter optimization was performed with a mix-

ture of grid search and random search. As seen in Figure 7.2, Thompson sampling

outperformed random selection and underperformed against omniscient sampling. As

seen in Figure 7.3, Boltzmann sampling also noticeably outperformed random selec-

tion but still underperformed against omniscient sampling. Both sampling methods

were able to generate a significant reward.

Root Mean Square Error is given by

Root Mean Square Error =

√∑
(Pest.ut.dist. − Ptr.ut.dist.)

2

n
.

in which we are taking the difference between the optimal utility distribution and the

average estimation of the data utility distribution. RMSE is used here as an indirect

measure of exploration versus exploitation. The random agent had a negligible RMSE

while Thompson sampling and Boltzmann sampling methods returned larger values

for the RMSE due to the fact that they performed much more exploitation than the

random sampling.

7.6 Conclusion

Thompson sampling and Boltzmann sampling provided a significant improvement

over random sampling. The Boltzmann sampling method outperformed Thompson

sampling, although it was possible for either technique to outperform the other, de-

pending on the choice of distributions and parameter initialization. This chapter

developed a functional, non-stationary RL-based feature data selection technique for

an interactive, multi-objective optimization system.

76

8. CONCLUSION

This dissertation developed a framework for multi-stakeholder consensus decision-

making taking into consideration the subjective preferences of stakeholders as well as

quantifiable environmental fitness functions.

8.1 Conclusions

"The promise of artificial intelligence and computer science generally vastly

outweighs the impact it could have on some jobs in the same way that,

while the invention of the airplane negatively affected the railroad indus-

try, it opened a much wider door to human progress."- Paul Allen.

• Chapter 1 "Introduction". In Chapter 1, an overview of the problem of the

dissertation is provided, helping multiple stakeholders collaborate effectively on

designing optimal solutions and synthesizing their perspectives into group deci-

sions. It also provides additional background information about the dissertation

as well as information about research goals and assumptions and limitations.

Finally, the chapter provides an outline for the remainder of the dissertation.

• Chapter 2 "Evaluation of Machine Learning Approaches". Several approaches

exist in machine learning for solving different use cases. Cost functions quantify

your performance on a task so the problem can be modeled as an optimization

process to minimize or maximize against. This chapter examines several differ-

ent metrics to help learn lessons for arriving at a set of suitable metrics for our

study.

• Chapter 3 "WRESTORE and IGAMI2". Chapter 3 provided additional back-

ground about the use case, WRESTORE, and IGAMI2. The information was

77

useful for the remainder of the dissertation. Additional background information

is also found within the appendices.

• Chapter 4 "Comparison of Neural Methods for User Modeling in Wetland De-

sign" builds a user modeling component and shows why working with limited

data is a difficult task. Complex techniques can produce incorrect results due

to issues coming from limited size datasets, this chapter examines several ap-

proaches and finds that deep networks performed the best.

• Chapter 5 "Fuzzy and Deep Learning Approaches for User Modeling in Wetland

Design". Chapter 5 presents an original approach to dealing with limited data

involving application-specific data augmentation. Additional work remained

to explore additional ways of dealing with limited data and to deal with the

presence of several stakeholders.

• Chapter 6 "Uncertainty-Based Deep Learning for Wetland Design". Chapter

6 presented a method for deep networks that samples remaining training data

with uncertainty based modeling. The technique showed faster convergence

than either a random sampling technique or a stability-based sampling technique

and allowed faster converge to a Pareto optimum.

• Chapter 7 "Non-Stationary Reinforcement-Learning Based Dimensionality Re-

duction for Multi-objective Optimization of Wetland Design". Chapter 7 studies

non-stationary reinforcement-based learning for interactive optimization feature

selection. Thompson sampling and Boltzmann sampling are shown to provide

an effective method of feature selection.

8.2 Contribution

"Real knowledge is to know the extent of one’s ignorance."- Confucius

This dissertation describes contributions that were made to an existing interactive de-

cision support system. Contributions to the system include techniques for increasing

78

the reliability of user models in the presence of limited data, more efficient learning

in the presence of limited data via an uncertainty based sampling technique, and a

reinforcement-based learning technique for choosing user models that are known to

lead to more objectively measurable optimal outcomes. The limited data techniques

developed here can be applied to other use cases, while the reinforcement-based user

model selection developed here could also be given a different reward function to

optimize for other characteristics such as novelty or diversity.

8.3 Future Work

"Making AI more sensitive to the full scope of human thought is no sim-

ple task. The solutions are likely to require insights derived from fields

beyond computer science, which means programmers will have to learn to

collaborate more often with experts in other domains."- Fei-Fei Li.

This dissertation addressed issues of both limited data and verifying validity with

a variety of stakeholders. Future work will tackle users with conflicting goals and can

also spend time developing ways to deal with untrustworthy stakeholders.

Additional work for dealing with limited data could include integrating exter-

nal domain knowledge, examining application-specific ways of reducing degrees of

freedom, transferring models from other domains, and additional data augmentation

techniques.

A key consideration for human-in-the-loop machine learning systems is making

sure that qualitative information and preferences are captured, that predictions are

accurate, and that stakeholders understand and acknowledge the uncertainty associ-

ated with the system’s current predictions. Transparency and uncertainty quantifi-

cation are additional areas of future work.

When dealing with multiple stakeholders, multiple issues arise including fairness,

negotiation, prediction complexity, trust, etc. Additional work for dimensionality

reduction of user models in interactive optimization includes an examination of dif-

79

ferent fusion techniques, including linear and nonlinear combinations of users, and

the impact on the issues already cited.

REFERENCES

80

REFERENCES

[1] T. Fawcett, “An introduction to roc analysis,” Pattern Recognition Letters,
vol. 27, pp. 861–874, 2006.

[2] J. Sim and C. C. Wright, “The kappa statistic in reliability studies: Use, inter-
pretation, and sample size requirements,” Physical Therapy, vol. 85, no. 3, pp.
257–268, 03 2005.

[3] R. J. Hyndman and A. B. Koehler, “Another look at measures of forecast accu-
racy,” International Journal of Forecasting, vol. 22, pp. 679–688, 2006.

[4] D. Wackerly, W. Mendenhall, and R. Scheaffer, Mathematical Statistics
with Applications, ser. Mathematical Statistics with Applications. Thomson
Higher Education, 2008. [Online]. Available: https://books.google.gr/books?
id=d6IMnwEACAAJ

[5] C. J. Willmott and M. Kenji, “Advantages of the mean absolute error (mae)
over the root mean square error (rmse) in assessing average model performance,”
Climate Research, vol. 30, pp. 79–82, Dec 2005.

[6] R. G. Pontius, O. Thontteh, and H. Chen, “Components of information for
multiple resolution comparison between maps that share a real variable,”
Environmental and Ecological Statistics, vol. 15, no. 2, pp. 111–142, Jun 2008.
[Online]. Available: https://doi.org/10.1007/s10651-007-0043-y

[7] L. Hubert and P. Arabie, “Comparing partitions,” Journal of Classification,
vol. 2, no. 1, pp. 193–218, Dec 1985. [Online]. Available: https:
//doi.org/10.1007/BF01908075

[8] T. Cover and J. Thomas, Elements of Information Theory. Wiley, 2006.
[Online]. Available: https://books.google.gr/books?id=Pgr3uAEACAAJ

[9] A. Turpin and F. Scholer, “User performance versus precision measures for
simple search tasks,” in Proceedings of the 29th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, ser.
SIGIR ’06. New York, NY, USA: ACM, 2006, pp. 11–18. [Online]. Available:
http://doi.acm.org/10.1145/1148170.1148176

[10] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman,
“The pascal visual object classes (voc) challenge,” International Journal of
Computer Vision, vol. 88, no. 2, pp. 303–338, Jun 2010. [Online]. Available:
http://pascallin.ecs.soton.ac.uk/challenges/VOC/pubs/everingham10.pdf

[11] C. D. Manning, P. Raghavan, and H. Schütze, Introduc-
tion to Information Retrieval. Cambridge University Press, 2008.
[Online]. Available: http://nlp.stanford.edu/IR-book/html/htmledition/
evaluation-of-ranked-retrieval-results-1.html

81

[12] K. Brodersen, C. Ong, K. Stephan, and J. Buhmann, “The binormal
assumption on precision-recall curves,” in Proceedings of the 20th International
Conference on Pattern Recognition, 2010, pp. 4263–4266. [Online]. Available:
url=https://web.archive.org/web/20121208201457

[13] C. D. Manning, P. Raghavan, and H. Schütze. (2009) Chapter 8: Evaluation in
information retrieval. [Online]. Available: https://nlp.stanford.edu/IR-book/
pdf/08eval.pdf

[14] E. Voorhees, “Proceedings of the 8th text retrieval conference,” in TREC-8
Question Answering Track Report, 1999, pp. 77–82.

[15] D. R. Radev, H. Qi, H. Wu, and W. Fan, “Evaluating web-based question
answering systems,” in Proceedings of LREC, 2002.

[16] L. I.-K. Lin, “A concordance correlation coefficient to evaluate reproducibility,”
Biometrics (journal), vol. 45, pp. 255–268, 3 1989.

[17] C. A. E. Nickerson, “A note on "a concordance correlation coefficient to evaluate
reproducibility,” Biometrics (journal), vol. 53, pp. 1503–1507, 12 1997.

[18] V. N. Gudivada, R. Baeza-Yates, and V. V. Raghavan, “Big data: Promises
and problems,” Computer, no. 3, pp. 20–23, Mar 2015.

[19] M. Banko and E. Brill, “Scaling to Very Very Large Corpora for Natural
Language Disambiguation,” in Proceedings of the 39th Annual Meeting on
Association for Computational Linguistics, ser. ACL ’01. Stroudsburg, PA,
USA: Association for Computational Linguistics, Jul 2001, pp. 26–33. [Online].
Available: https://doi.org/10.3115/1073012.1073017

[20] A. Halevy, P. Norvig, and F. Pereira, “The Unreasonable Effectiveness of Data,”
IEEE Intelligent Systems, vol. 24, no. 2, pp. 8–12, Mar 2009.

[21] S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira, “Analysis of represen-
tations for domain adaptation,” in Advances in neural information processing
systems, Jan 2007, pp. 137–144.

[22] H. Bunke and T. M. Ha, “Off-Line, Handwritten Numeral Recognition
by Perturbation Method,” IEEE Transactions on Pattern Analysis &
Machine Intelligence, vol. 19, pp. 535–539, May 1997. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/34.589216

[23] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE:
synthetic minority over-sampling technique,” Journal of artificial intelligence
research, vol. 16, pp. 321–357, Jun 2002.

[24] Texas A & M University, “Soil and Water Assessment Tool,” 2017, http:
//blackland.tamu.edu/files/2012/09/SWAT.2012.pdf. Accessed Jan 17, 2019.
[Online]. Available: http://blackland.tamu.edu/files/2012/09/SWAT.2012.pdf.

[25] G. Corani and M. Zaffalon, “Learning reliable classifiers from small or incom-
plete data sets: the naive credal classifier 2,” Journal of Machine Learning
Research, vol. 9, no. Apr, pp. 581–621, Apr 2008.

82

[26] R. Eggeling, M. Koivisto, and I. Grosse, “Dealing with small data: On the gen-
eralization of context trees,” in International Conference on Machine Learning,
Jun 2015, pp. 1245–1253.

[27] W. Lee and S.-C. Ong, “Learning from small data sets to improve assembly
semiconductor manufacturing processes,” in 2010 The 2nd International Con-
ference on Computer and Automation Engineering (ICCAE), vol. 2, Feb 2010,
pp. 50–54.

[28] A. Oniśko, M. J. Druzdzel, and H. Wasyluk, “Learning Bayesian network pa-
rameters from small data sets: Application of Noisy-OR gates,” International
Journal of Approximate Reasoning, vol. 27, no. 2, pp. 165–182, Aug 2001.

[29] T. Shaikhina, D. Lowe, S. Daga, D. Briggs, R. Higgins, and N. Khovanova,
“Machine learning for predictive modelling based on small data in biomedical
engineering,” IFAC-PapersOnLine, vol. 48, no. 20, pp. 469–474, Jan 2015.

[30] A. Tengli, A. Dubrawski, and L. Chen, “Learning Predictive Models from Small
Sets of Dirty Data,” in International Conference on Information and Automa-
tion, 2005.

[31] T. Yang and V. Kecman, “Adaptive local hyperplane algorithm for learning
small medical data sets,” Expert Systems, vol. 26, no. 4, pp. 355–359, Sep 2009.

[32] D.-C. Li, C. Wu, and F. M. Chang, “Using data-fuzzification technology in
small data set learning to improve FMS scheduling accuracy,” The International
Journal of Advanced Manufacturing Technology, vol. 27, no. 3, pp. 321–328,
Dec 2005. [Online]. Available: https://doi.org/10.1007/s00170-003-2184-y

[33] D.-C. Li, C.-S. Wu, T.-I. Tsai, and Y.-S. Lina, “Using mega-trend-
diffusion and artificial samples in small data set learning for early flexible
manufacturing system scheduling knowledge,” Computers & Operations
Research, vol. 34, no. 4, pp. 966 – 982, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0305054805001693

[34] D.-C. Li and I.-H. Wen, “A genetic algorithm-based virtual sample generation
technique to improve small data set learning,” Neurocomputing, vol. 143,
pp. 222–230, Nov 2014. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0925231214007462

[35] N. H. Ruparel, N. M. Shahane, and D. P. Bhamare, “Learning from small data
set to build classification model: A survey,” in Proc. IJCA Int. Conf. Recent
Trends Eng. Technol.(ICRTET), May 2013, pp. 23–26.

[36] P. Niyogi, F. Girosi, and T. Poggio, “Incorporating prior information in machine
learning by creating virtual examples,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2196–2209, Nov 1998.

[37] V. Rieser and O. Lemon, “Learning and Evaluation of Dialogue Strategies
for New Applications: Empirical Methods for Optimization from Small Data
Sets,” Comput. Linguist., vol. 37, no. 1, pp. 153–196, Mar 2011. [Online].
Available: http://dx.doi.org/10.1162/coli_a_00038

83

[38] R. Mao, H. Zhu, L. Zhang, and A. Chen, “A New Method to Assist Small Data
Set Neural Network Learning,” in Sixth International Conference on Intelligent
Systems Design and Applications, vol. 1, Oct 2006, pp. 17–22.

[39] G. Forman and I. Cohen, “Learning from little: Comparison of classifiers given
little training,” in Knowledge Discovery in Databases: PKDD 2004, J.-F. Bouli-
caut, F. Esposito, F. Giannotti, and D. Pedreschi, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, Sep 2004, pp. 161–172.

[40] G. M. Weiss and F. Provost, “Learning when training data are costly: The
effect of class distribution on tree induction,” Journal of Artificial Intelligence
Research, vol. 19, pp. 315–354, Oct 2003.

[41] D. Meignan, S. Knust, J.-M. Frayret, G. Pesant, and N. Gaud, “A Review
and Taxonomy of Interactive Optimization Methods in Operations Research,”
ACM Trans. Interact. Intell. Syst., vol. 5, no. 3, pp. 17:1–17:43, Sep 2015.
[Online]. Available: http://doi.acm.org/10.1145/2808234

[42] M. Tory and T. Moller, “Human factors in visualization research,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 10, no. 1, pp. 72–84, Jan
2004.

[43] H. Takagi, “Interactive evolutionary computation: fusion of the capabilities of
EC optimization and human evaluation,” Proceedings of the IEEE, vol. 89, no. 9,
pp. 1275–1296, Sep 2001.

[44] X. Llorà, K. Sastry, D. E. Goldberg, A. Gupta, and L. Lakshmi, “Combating
user fatigue in iGAs: partial ordering, support vector machines, and synthetic
fitness,” in Proceedings of the 7th annual conference on Genetic and evolutionary
computation. ACM, Jun 2005, pp. 1363–1370.

[45] D. Kneller, F. Cohen, and R. Langridge, “Improvements in protein secondary
structure prediction by an enhanced neural network,” Journal of Molecular
Biology, vol. 214, no. 1, pp. 171 – 182, Jul 1990. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/002228369090154E

[46] Stanford, “Fuzzy Logic,” Stanford encyclopedia of philosophy, Stanford Univer-
sity, 2010.

[47] J. R. Jang, “ANFIS: adaptive-network-based fuzzy inference system,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 23, no. 3, pp. 665–685,
May 1993.

[48] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel, “Backpropagation Applied to Handwritten Zip Code
Recognition,” Neural Computation, vol. 1, no. 4, pp. 541–551, Dec 1989.
[Online]. Available: https://doi.org/10.1162/neco.1989.1.4.541

[49] G. E. Hinton, “Learning multiple layers of representation,” Trends in Cognitive
Sciences, vol. 11, no. 10, pp. 428 – 434, Oct 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1364661307002173

84

[50] M. Babbar-Sebens and B. S. Minsker, “Interactive Genetic Algorithm
with Mixed Initiative Interaction for multi-criteria ground water monitoring
design,” Applied Soft Computing, vol. 12, no. 1, pp. 182–195, Jan
2012. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1568494611003371

[51] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist mul-
tiobjective genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary
Computation, vol. 6, no. 2, pp. 182–197, Apr 2002.

[52] D. Anderson, E. Anderson, N. Lesh, J. Marks, K. Perlin, D. Ratajczak, and
K. Ryall, “Human-guided simple search: combining information visualization
and heuristic search,” in Proceedings of the 1999 workshop on new paradigms in
information visualization and manipulation in conjunction with the eighth ACM
internation conference on Information and knowledge management. ACM, Nov
1999, pp. 21–25.

[53] A. Kobsa, “User modeling: Recent work, prospects and hazards,” Human Fac-
tors in Information Technology, vol. 10, pp. 111–111, 1993.

[54] A. Jennings and H. Higuchi, “A personal news service based on a user model
neural network,” IEICE Transactions on Information and Systems, vol. 75,
no. 2, pp. 198–209, Mar 1992.

[55] J. A and H. Higuchi, “A user model neural network for a personal news
service,” User Modeling and User-Adapted Interaction, vol. 3, no. 1, pp. 1–25,
Mar 1993. [Online]. Available: https://doi.org/10.1007/BF01099423

[56] R. Zou, W.-S. Lung, and J. Wu, “An adaptive neural network embedded
genetic algorithm approach for inverse water quality modeling,” Water
Resources Research, vol. 43, no. 8, Aug 2007. [Online]. Available:
https://doi.org/10.1029/2006WR005158

[57] J. Putnam, “Genetic Programming of Music,” New Mexico Institute of Mining
and Technology, Tech. Rep., 1994.

[58] D. Goldberg and R. Lingle, “Proceedings of the Second International Conference
on Genetic Algorithms,” in Mahwah, NJ: Lawrence Eribaum Associates, 1985.

[59] P. Beyls, “Selectionist musical automata: Integrating explicit instruction and
evolutionary algorithms,” in IX Brazilian Symposium on Computer Music.
Brazilian Computing Society, 2003.

[60] K. Özgür, “Evolutionary fuzzy models for river suspended sediment
concentration estimation,” Journal of Hydrology, vol. 372, no. 1, pp. 68–79,
Jun 2009. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0022169409002170

[61] I. Zukerman and D. W. Albrecht, “Predictive Statistical Models for User
Modeling,” User Modeling and User-Adapted Interaction, vol. 11, no. 1, pp.
5–18, Mar 2001. [Online]. Available: https://doi.org/10.1023/A:1011175525451

[62] Y. Ishiwaka, H. Yokoi, and Y. Kakazu, “Adaptive learning interface used phys-
iological signals,” in Smc 2000 conference proceedings, 2000 ieee international
conference on systems, man and cybernetics, vol. 1, Oct 2000, pp. 32–37.

85

[63] Q. Chen and A. F. Norcio, “A neural network approach for user modeling,” in
Conference Proceedings 1991 IEEE International Conference on Systems, Man,
and Cybernetics, Oct 1991, pp. 1429–1434 vol.2.

[64] F. Chiari, M. Delhom, J. F. Santucci, and J. B. Filippi, “Prediction of the
hydrologic behavior of a watershed using artificial neural networks and geo-
graphic information systems,” in Smc 2000 conference proceedings, 2000 ieee
international conference on systems, man and cybernetics, vol. 1, Oct 2000, pp.
382–386.

[65] R. Yasdi, “A Literature Survey on Applications of Neural Networks for Human-
Computer Interaction,” Neural Computing & Applications, vol. 9, no. 4, pp.
245–258, Dec 2000. [Online]. Available: https://doi.org/10.1007/s005210070002

[66] G. Ghinea, G. D. Magoulas, and C. Siamitros, “Multicriteria decision making for
enhanced perception-based multimedia communication,” IEEE Transactions on
Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 35, no. 6,
pp. 855–866, Nov 2005.

[67] M. Babbar-Sebens, R. C. Barr, L. P. Tedesco, and M. Anderson, “Spatial
identification and optimization of upland wetlands in agricultural watersheds,”
Ecological Engineering, vol. 52, pp. 130–142, Mar 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0925857412004478

[68] R. H. Bonczek, C. W. Holsapple, and A. B. Whinston, Foundations of decision
support systems. Academic Press, 2014.

[69] H.-S. Kim and S.-B. Cho, “Application of interactive genetic algorithm
to fashion design,” Engineering Applications of Artificial Intelligence,
vol. 13, no. 6, pp. 635 – 644, Dec 2000. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0952197600000452

[70] C. A. Stewart, “Big Data, Big Red II, Data Capacitor II, Wrangler, Jetstream,
and Globus Online,” Presented to Microsoft, Inc. visiting group, Indiana Uni-
versity, Bloomington IN, 2015.

[71] F.-J. Chang and Y.-T. Chang, “Adaptive neuro-fuzzy inference system
for prediction of water level in reservoir,” Advances in Water Resources,
vol. 29, no. 1, pp. 1 – 10, Jan 2006. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0309170805001338

[72] J.-S. R. Jang et al., “Fuzzy Modeling Using Generalized Neural Networks and
Kalman Filter Algorithm,” in AAAI, vol. 91, Jul 1991, pp. 762–767.

[73] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp.
436 EP –, May 2015. [Online]. Available: https://doi.org/10.1038/nature14539

[74] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting,” The Jour-
nal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, Jan 2014.

[75] M. D. Zeiler, “ADADELTA: An Adaptive Learning Rate Method,” CoRR, vol.
abs/1212.5701, 2012. [Online]. Available: http://arxiv.org/abs/1212.5701

86

[76] Y. Bengio, “Learning Deep Architectures for AI,” Foundations and Trends R©
in Machine Learning, vol. 2, no. 1, pp. 1–127, Nov 2009. [Online]. Available:
http://dx.doi.org/10.1561/2200000006

[77] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,”
Journal of Machine Learning Research, vol. 13, pp. 281–305, Feb 2012.

[78] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in
Proceedings of the fourteenth international conference on artificial intelligence
and statistics, Jun 2011, pp. 315–323.

[79] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting,” The Jour-
nal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, Jan 2014.

[80] S. Louisy, G. McGrawy, and R. O. Wyckoy, “CBR Assisted Explanation of GA
Results,” Computer Science, vol. 812, pp. 855–6486y, 1992.

[81] B. Luo and H. Wu, “Approximate Optimal Control Design for Nonlinear One-
Dimensional Parabolic PDE Systems Using Empirical Eigenfunctions and Neu-
ral Network,” IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), vol. 42, no. 6, pp. 1538–1549, Dec 2012.

[82] Y. H. Kim and F. L. Lewis, “Optimal design of CMAC neural-network controller
for robot manipulators,” IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), vol. 30, no. 1, pp. 22–31, Feb 2000.

[83] B. Jiang and J. Canny, “Interactive Machine Learning via a GPU-accelerated
Toolkit,” in Proceedings of the 22Nd International Conference on Intelligent
User Interfaces, ser. IUI ’17. New York, NY, USA: ACM, 2017, pp. 535–546.
[Online]. Available: http://doi.acm.org/10.1145/3025171.3025172

[84] C. Mayer, R. Mayer, and M. Abdo, “StreamLearner: Distributed Incremental
Machine Learning on Event Streams: Grand Challenge,” in Proceedings of the
11th ACM International Conference on Distributed and Event-based Systems,
ser. DEBS ’17. New York, NY, USA: ACM, Jun 2017, pp. 298–303. [Online].
Available: http://doi.acm.org/10.1145/3093742.3095103

[85] H.-H. Tsai and P.-T. Yu, “On the optimal design of fuzzy neural networks with
robust learning for function approximation,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), vol. 30, no. 1, pp. 217–223, Feb
2000.

[86] T. Choi, C. Hui, S. Ng, and Y. Yu, “Color Trend Forecasting of Fashionable
Products with Very Few Historical Data,” IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews), vol. 42, no. 6, pp. 1003–
1010, Nov 2012.

[87] M. Längkvist, M. Alirezaie, A. Kiselev, and A. Loutfi, “Interactive Learning
with Convolutional Neural Networks for Image Labeling,” in International Joint
Conference on Artificial Intelligence (IJCAI) :, Jul 2016.

[88] G. Cauwenberghs and T. Poggio, “Incremental and decremental support vector
machine learning,” in Advances in neural information processing systems, 2001,
pp. 409–415.

87

[89] S. Amershi, M. Cakmak, W. B. Knox, and T. Kulesza, “Power to the people:
The role of humans in interactive machine learning,” AI Magazine, vol. 35, no. 4,
pp. 105–120, Dec 2014.

[90] G. A. Carpenter, S. Grossberg, N. Markuzon, J. H. Reynolds, and D. B. Rosen,
“Fuzzy ARTMAP: A neural network architecture for incremental supervised
learning of analog multidimensional maps,” IEEE Transactions on Neural Net-
works, vol. 3, no. 5, pp. 698–713, Sep 1992.

[91] M. Babbar-Sebens, S. Mukhopadhyay, V. B. Singh, and A. D. Piemonti,
“A web-based software tool for participatory optimization of conservation
practices in watersheds,” Environmental Modelling & Software, vol. 69, pp. 111
– 127, Jul 2015. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S1364815215000912

[92] A. D. Piemonti, M. Babbar-Sebens, S. Mukhopadhyay, and A. Kleinberg,
“Interactive genetic algorithm for user-centered design of distributed
conservation practices in a watershed: An examination of user preferences
in objective space and user behavior,” Water Resources Research, vol. 53,
no. 5, pp. 4303–4326, May 2017. [Online]. Available: https://doi.org/10.1002/
2016WR019987

[93] A. Hoblitzell, M. Babbar-Sebens, and S. Mukhopadhyay, “Fuzzy and deep learn-
ing approaches for user modeling in wetland design,” in 2016 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), Oct 2016, pp. 002 133–
002 138.

[94] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard et al., “Tensorflow: a system for large-scale machine
learning,” in OSDI, vol. 16, Nov 2016, pp. 265–283.

[95] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
CoRR, vol. abs/1412.6980, Dec 2014. [Online]. Available: http://arxiv.org/
abs/1412.6980

[96] S. Zheng, Y. Song, T. Leung, and I. Goodfellow, “Improving the Robustness
of Deep Neural Networks via Stability Training,” in The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Jun 2016.

[97] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in Proceedings of The 33rd
International Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, M. F. Balcan and K. Q. Weinberger, Eds., vol. 48. New
York, New York, USA: PMLR, 20–22 Jun 2016, pp. 1050–1059. [Online].
Available: http://proceedings.mlr.press/v48/gal16.html

[98] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press, 2018.

[99] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, Sep 2013. [Online]. Available: https:
//doi.org/10.1177/0278364913495721

88

[100] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen,
C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra,
S. Legg, and D. Hassabis, “Human-level control through deep reinforcement
learning,” Nature, vol. 518, pp. 529 EP –, Feb 2015. [Online]. Available:
https://doi.org/10.1038/nature14236

[101] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney,
D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow: Combining improve-
ments in deep reinforcement learning,” in Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

[102] M. C. Machado, M. G. Bellemare, E. Talvitie, J. Veness, M. J. Hausknecht,
and M. Bowling, “Revisiting the Arcade Learning Environment: Evaluation
Protocols and Open Problems for General Agents,” CoRR, vol. abs/1709.06009,
Sep 2017. [Online]. Available: http://arxiv.org/abs/1709.06009

[103] D. J. Russo, B. V. Roy, A. Kazerouni, I. Osband, and Z. Wen,
“A Tutorial on Thompson Sampling,” Foundations and Trends R© in
Machine Learning, vol. 11, no. 1, pp. 1–96, 2018. [Online]. Available:
http://dx.doi.org/10.1561/2200000070

[104] S. Parisi, S. Ramstedt, and J. Peters, “Goal-driven dimensionality reduction
for reinforcement learning,” in 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Sep 2017, pp. 4634–4639.

[105] S. Bitzer, M. Howard, and S. Vijayakumar, “Using dimensionality reduction to
exploit constraints in reinforcement learning,” in 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Oct 2010, pp. 3219–3225.

[106] I. Bar-Gad, G. Morris, and H. Bergman, “Information processing, dimen-
sionality reduction and reinforcement learning in the basal ganglia,” Progress
in Neurobiology, vol. 71, no. 6, pp. 439–473, Dec 2003. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0301008203001928

[107] T. Rusch, C. W. Korn, and J. Gläscher, “A Two-Way Street between Attention
and Learning,” Neuron, vol. 93, no. 2, pp. 256–258, Jan 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0896627317300065

[108] H. Wu and X. Liu, “Double Thompson Sampling for Dueling Bandits,”
in Advances in Neural Information Processing Systems 29, D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, Eds. Curran
Associates, Inc., 2016, pp. 649–657. [Online]. Available: http://papers.nips.cc/
paper/6157-double-thompson-sampling-for-dueling-bandits.pdf

[109] O. Granmo, “Solving two-armed Bernoulli bandit problems using a Bayesian
learning automaton,” International Journal of Intelligent Computing and
Cybernetics, vol. 3, no. 2, pp. 207–234, Jun 2010. [Online]. Available:
https://doi.org/10.1108/17563781011049179

APPENDICES

89

A. DATABASE DESIGN

Tables

Table A.1.: CBM Tables

CBM Tables

‘igmi2db‘.‘cbm‘

‘igmi2db‘.‘cbmInitial‘

‘igmi2db‘.‘cbmInitialF0‘

‘igmi2db‘.‘cbmInitialF1‘

‘igmi2db‘.‘cbmInitialF2‘

‘igmi2db‘.‘cbmInitialF3‘

‘igmi2db‘.‘cbmInitialF4‘

‘igmi2db‘.‘computerclusterinfo‘

90

Table A.2.: Fitness Function Tables

Fitness Function Tables

‘igmi2db‘.‘f0‘

‘igmi2db‘.‘f1‘

‘igmi2db‘.‘f2‘

‘igmi2db‘.‘f3‘

‘igmi2db‘.‘f4‘

‘igmi2db‘.‘f5‘

‘igmi2db‘.‘f6‘

Table A.3.: SDM Tables

SDM Tables

‘igmi2db‘.‘sdm‘

‘igmi2db‘.‘sdmData‘

‘igmi2db‘.‘sdmModellingData‘

‘igmi2db‘.‘sdmModellingDataRandomdata‘

‘igmi2db‘.‘sdmModellingDataRandomdatacumnew‘

91

Table A.4.: User Tables

User Tables

‘igmi2db‘.‘users‘

‘igmi2db‘.‘users_activity‘

‘igmi2db‘.‘usersFeedback‘

‘igmi2db‘.‘usersFeedbackTiming‘

‘igmi2db‘.‘usersFeedbackTimingNew‘

‘igmi2db‘.‘userstartexperimentsession‘

‘igmi2db‘.‘userstats‘

‘igmi2db‘.‘userstatsFeedbackTiming‘

‘igmi2db‘.‘userstatsFeedbackTimingNew‘

‘igmi2db‘.‘userwatershedmapping‘

‘igmi2db‘.‘userloginsession‘

Table A.5.: WRESTORE and IGAMI2 Tables

WRESTORE and IGAMI2 Tables

‘igmi2db‘.‘hdmarchiveNondominated‘

‘igmi2db‘.‘igami2EventMaster‘

‘igmi2db‘.‘igami2EventServer‘

‘igmi2db‘.‘watershed‘

‘igmi2db‘.‘wrestorefriends‘

‘igmi2db‘.‘wrestoregrouprequests‘

‘igmi2db‘.‘wrestoregroups‘

‘igmi2db‘.‘wrestorelogs‘

92

Table A.6.: Action Tables

Action Tables

‘igmi2db‘.‘abortSearch‘

‘igmi2db‘.‘abortUserThread‘

‘igmi2db‘.‘abortsearch‘

‘igmi2db‘.‘newUser‘

‘igmi2db‘.‘newfeedlikes‘

‘igmi2db‘.‘newscomments‘

‘igmi2db‘.‘newsfeed‘

‘igmi2db‘.‘newuser‘

‘igmi2db‘.‘takefeedback‘

‘igmi2db‘.‘takefeedbackModified‘

‘igmi2db‘.‘takefeedbacknew‘

‘igmi2db‘.‘takefeedbackupdate‘

‘igmi2db‘.‘takefeedbackwarmup‘

93

Table A.7.: Miscellaneous Tables

Miscellaneous Tables

‘igmi2db‘.‘fusiontableTest_1‘

‘igmi2db‘.‘hdmarchiveChildren‘

‘igmi2db‘.‘kendallstats‘

‘igmi2db‘.‘kendallstatsUserData‘

‘igmi2db‘.‘newuserParamters‘

‘igmi2db‘.‘sessionInfo‘

‘igmi2db‘.‘shareddesignmapping‘

‘igmi2db‘.‘biasindvdata‘

94

Stored Procedures

Table A.8.: INSERT Stored Procedures

INSERT Stored Procedures

‘igmi2db‘.‘InsertComment‘

‘igmi2db‘.‘InsertFriendRequest‘

‘igmi2db‘.‘InsertGroupRequest‘

‘igmi2db‘.‘InsertNewGroup‘

‘igmi2db‘.‘InsertNewsFeed‘

‘igmi2db‘.‘InsertRatings‘

‘igmi2db‘.‘InsertSharedDesign‘

‘igmi2db‘.‘InsertUserDetails_Updated‘

‘igmi2db‘.‘InsertUserWatershedMapping‘

95

Table A.9.: GET Stored Procedures

GET Stored Procedures

‘igmi2db‘.‘GetAllGroups‘

‘igmi2db‘.‘GetAllUserNames‘

‘igmi2db‘.‘GetFriendList‘

‘igmi2db‘.‘GetFriendListForDropdown‘

‘igmi2db‘.‘GetFriendRequests‘

‘igmi2db‘.‘GetGroupJoiningRequests‘

‘igmi2db‘.‘GetGroupList‘

‘igmi2db‘.‘GetGroupUserDetails‘

‘igmi2db‘.‘GetUserGroupList‘

Table A.10.: DELETE Stored Procedures

DELETE Stored Procedures

‘igmi2db‘.‘DeleteComment‘

‘igmi2db‘.‘DeleteFriendRequest‘

‘igmi2db‘.‘DeleteGroupDetails‘

‘igmi2db‘.‘DeleteGroupRequest‘

‘igmi2db‘.‘DeleteUserWatershedMapping‘

96

Table A.11.: SELECT, SEARCH, and UPDATE Stored Procedures

SELECT, SEARCH, and UPDATE Stored Procedures

‘igmi2db‘.‘SearchFriends‘

‘igmi2db‘.‘SearchGroups‘

‘igmi2db‘.‘selectAllDataUser‘

‘igmi2db‘.‘selectAllDataUserComplete‘

‘igmi2db‘.‘UpdateFriendRequest‘

‘igmi2db‘.‘UpdateGroupDetails‘

‘igmi2db‘.‘UpdateUserDetails_Updated‘

Table A.12.: Miscellaneous Stored Procedures

Miscellaneous Stored Procedures

‘igmi2db‘.‘AcceptGroupRequest‘

‘igmi2db‘.‘CheckDuplicateGroupName‘

‘igmi2db‘.‘CheckDuplicateUserName‘

‘igmi2db‘.‘DislikeNews‘

‘igmi2db‘.‘LikeNews‘

‘igmi2db‘.‘movedata‘

‘igmi2db‘.‘purgeUserData‘

‘igmi2db‘.‘RejectGroupRequest‘

‘igmi2db‘.‘warmup‘

‘igmi2db‘.‘whileLoopProc‘

97

B. SOFTWARE DESIGN

IGAMI2

Figure B.1.: IMAGI2

98

Figure B.2.: NSGA2

99

Figure B.3.: Select Packages

100

Figure B.4.: RecommendationSystem

Figure B.5.: IntrospectionManager

101

Figure B.6.: EmailManager

102

Figure B.7.: Interfaces

Figure B.8.: DistributedSystem

103

Figure B.9.: Additional Interfaces

VITA

104

VITA

Andrew Hoblitzell

Summary

Enthusiastic and experienced technology worker seeking the opportunity to apply

problem-solving skills in a challenging and engaging IT environment.

Core
Strengths

• Big Data/Full Hadoop Stack/NoSQL

• Machine Learning/Data Mining

• Java/C#

• Data Science/Intelligent Systems

Specific
Technology
Skills

Languages: Java*, Python*, C#*, Ruby*, C# ASP.NET*, .Net Framework*,

SQL*, XML/XSD*, Visual Basic*, HTML, JavaScript, PERL, Python, R, Scala/S-

park

Software: IntelliJ*, Eclipse*, Microsoft Visual Studio*, Oracle 11G*, Microsoft

SQL Server, Apache Hadoop, Apache Kafka/Pig/Hive/HBase/Phoenix, Apache Spark,

Cascading, Dreamweaver, Microsoft Office* (Word, Excel, PowerPoint, Access), Mi-

crosoft Windows*, Redhat Linux*, Solaris Unix* (*- well acquainted)

105

Work
Experience

Senior Member of Technical Staff, Salesforce January 2016 - Present

Working on Salesforce Einstein to:

• Manage integrations with Google, IBM, and external partners for enhanced pre-

diction capacity.

• Design and implement scalable, reliable, and intelligent software for e-mail mar-

keting predictions

• Working on the Salesforce Marketing Cloud’s Big Data team using a Hadoop

stack, HBase, Kafka, etc. to build Marketing Cloud platform services.

• Design and implement scalable, reliable, and efficient software that performs

search and analytics over multi-billion record distributed datasets

Overall responsibilities:

• Develop and follow team coding best practices and participate in peer code

review

• Ensure quality software which meets integration and unit test coverage metrics.

• Create and maintain development tasks in JIRA for tracking work

• Coordinate and participate in release and sprint planning meetings and daily

stand-ups

• Perform peer code reviews to uncover potential bugs and ensure code conforms

to development standards

• Collaborate with other scrum teams to ensure alignment

• Troubleshoot escalations and provide root cause analysis when necessary

Developer Senior Sensitive, Anthem NGS March 2012 - December 2015

Working on the US Government’s National Fraud Prevention Program which is re-

sponsible for saving tens of millions of dollars per year. The main focuses I have been

106

responsible for is ETL and the creation of ’big data’ analytical software. Primarily

responsible for:

• Writing source code (with Pig, Hive, Cascading, etc.), adapting existing compo-

nents, compiling, linking and testing the developed components as units creating

test stubs and test data as necessary

• Maintaining healthcare business domain knowledge necessary for job responsi-

bilities, as well as a background in predictive modeling Fixing defects identified

during unit testing and re-executing unit tests to verify the expected behavior

• Ensuring design meets performance, usability, reliability and scalability require-

ments in addition to the functional requirements

• Performing analysis and conceptual design on moderate to complex system com-

ponents

Software Engineer, Availity 2010 - 2012

• Involved in backend integration and in object-oriented component design and

development for real-time claim adjudication projects Used .C/#, ASP.NET,

.NET Framework, XML/XSD, Oracle, and MSMQ in ETL process for claims

and patient statement generation and integrated with other internal projects

• Interacted with business analysts, client account managers, quality assurance

workers, and project managers through HelpDesk, Project Tracking System,

and other technologies to improve medical practice administrative workflows

University Fellow, Purdue 2008 - Ongoing

JTE Technologies, Atlanta, GA

• Worked for the Business Intelligence Team using C# ASP.NET and the Business

Objects Enterprise XI .NET Software Development Kit

– Wrote use cases

– Developed administrative web forms

– Performed simple unit and regression testing

107

– Composed documentation

– Utilized Microsoft SharePoint for collaboration purposed

Computer Program Specialist, IU Cancer Center Summer 2007

• Extracted publicly available bioinformatics data from an online PDB database

• Wrote GCC/Unix programs to transform the data into a suitable format

• Perform relevant computations from a common lab framework for usage in a dry

lab setting

Education

Purdue University, West Lafayette, IN

University Fellow

Doctorate of Science in Computer Science (December 2019)

Indiana University-Purdue University Indianapolis, Indianapolis, IN

University Fellow, Thesis: Transitive Biomedical Literature Mining

Master of Science in Computer Science (August 2010)

Memberships

Data Science Indy (Co-organizer) Indy Big Data (Member)

108

Academic
Work

Hoblitzell, Andrew, Meghna Babbar-Sebens, and Snehasis Mukhopadhyay. "

Multi-Criteria, Interactive Optimization for Design of Watershed Plans." INFORMS

Annual Meeting, 2016. Nashville, TN. 2016 DAS Best Practice Finalist Award

Hoblitzell, Andrew, Meghna Babbar-Sebens, and Snehasis Mukhopadhyay. "Fuzzy

and deep learning approaches for user modeling in wetland design." Systems, Man,

and Cybernetics (SMC), 2016 IEEE International Conference on. IEEE, 2016.

Omkar Tilak, Andrew Hoblitzell, Snehasis Mukhopadhyay, Qian You, Shiaofen

Fang, Yuni Xia, Joseph Bidwell, Multi-Level Text Mining for Bone Biology, Concur-

rency and Computation: Practice and Experience. June 2011. DOI: 10.1002/cpe.1788

Andrew Hoblitzell, Snehasis Mukhopadhyay, Qian You, Shiaofen Fang, Yuni Xia,

and Joseph Bidwell. 2010. Text mining for bone biology. In Proceedings of the

19th ACM International Symposium on High Performance Distributed Computing

(HPDC ’10). ACM, New York, NY, USA, 522-530. DOI=10.1145/1851476.1851552

http://doi.acm.org/10.1145/1851476.1851552 (nearly 40% acceptance rate)

Hoblitzell, A. (2010). Biomedical literature mining with transitive closure and

maximum network flow. Retrieved August 10, 2015.

