
LOCALLY CONNECTED NEURAL NETWORKS

FOR IMAGE RECOGNITION

A Thesis

Submitted to the Faculty

of

Purdue University

by

Shakti N. Wadekar

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

December 2019

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF THESIS APPROVAL

Dr. Kaushik Roy, Chair

School of Electrical and Computer Engineering

Dr. Anand Raghunathan

School of Electrical and Computer Engineering

Dr. Vijay Raghunathan

School of Electrical and Computer Engineering

Approved by:

Dr. Dimitrios Peroulis

Head of the School of Electrical and Computer Engineering

iii

ACKNOWLEDGMENTS

I am thankful to all my committee members, Prof. Kaushik Roy, Prof. Anand

Raghunathan and Prof. Vijay Raghunathan for being supportive throughout the

my Master’s degree. I specially thank Prof Kaushik Roy for his crucial guidance

during this master’s thesis research work. I am grateful to all my colleagues in lab

for extending there help whenever needed and my family members who were always

there for me.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

ABBREVIATIONS . viii

ABSTRACT . ix

1 INTRODUCTION . 1

2 LOCALLY CONNECTED NEURAL NETWORKS 5

2.1 Locally connected neural networks . 5

2.2 Partially-Local connected networks . 7

2.2.1 Network . 8

2.2.2 P-LCN results on CIFAR-100 and CIFAR-10 9

2.2.3 Discussion on improved result 11

2.2.4 Network architecture details: . 12

2.3 Full-Locally connected networks . 16

2.3.1 Batch Normalization for Locally connected networks 16

2.4 Convolution BN layer as a regularizer in P-LCN: 21

2.5 Regularization of Locally connected neural networks 21

3 LADDER NETWORKS . 23

3.1 Why to choose this network and learning methods for regularization? . 23

3.2 Network . 23

3.3 Normalizing Lagrange Multipliers . 27

3.4 Results on Pavia-University dataset . 28

4 SUMMARY . 29

5 RECOMMENDATIONS . 30

REFERENCES . 33

v

LIST OF TABLES

Table Page

1.1 T-CNN and CNN comparison on NORB dataset 2

2.1 Accuracy table of CNN and P-LCN with VGG-16 architecture on CI-
FAR100 and CIFAR10 . 9

2.2 Accuracy table of CNN and LCN with VGG-9 architecture on CIFAR10
and CIFAR100 . 21

3.1 Accuracy comparison of different networks on Pavia-University dataset . . 28

vi

LIST OF FIGURES

Figure Page

1.1 NORB dataset . 3

2.1 Input is an coloured image with 3 channels (Red, Green and Blue). Figure
a shows the output activations map when we convolve kernel over the
entire image. Convolutional layer shows 6 maps which are generated by
6 different kernels. Figure b shows output activations generated in locally
connected layer. Each map has 9 activations and there are 6 such maps,
therefore 54 activations generated from all different kernels. 6

2.2 Vgg-16 P-LCN architecture. Convolutional layers (Conv.) and LCN lay-
ers act as feature extractor part of architecture and at the end we have
classifier to classify the input RGB image. First 7 layers are convolutional
layers and next 6 are Locally Connected layers (LCN layers). Classifier
consists of 2 fully connected layers with 4096 neurons in each and last
layer is the output softmax layer. 8

2.3 CIFAR10 Images. 10

2.4 CIFAR100 Images. 11

2.5 ReLU activation function. 13

2.6 Fully Connected Neural Network with Dropout. The dashed lines or con-
nections between the neurons are connections which are masked when
dropout is used. Different connections are dropped at random during the
complete training procedure. This figure is an example of how the network
looks when few connections are masked. The connections or weights which
are masked are not updated during back-propagation since they did not
contribute to the activation of neuron in the forward pass. 14

2.7 Log loss function . 15

2.8 Vgg-9 LCN architecture. 17

2.9 Batch of input images is given to a convolutional layer. Each kernel rep-
resented by kernel 1: blue, 2: red and 3: green generates activations for
that entire batch. All the activations generated in layer 1 by kernel 1 are
represented in green, kernel 2 by yellow and kernel 3 by orange block. The
batch normalization in CNN is done on each of these blocks independently ,
hence the output activation correlation is maintained. 18

vii

Figure Page

2.10 Batch normalization for LCN layer. Output activations generated by Ker-
nel X,Y and Z belongs to a specific location in the image over batch of
images. All the activation generated by kernel Z are taken together and
normalized. So the normalization of output activations of Kernel X, Ker-
nel Y and Kernel Z are independent from each other. 19

2.11 Comparison of LCN training accuracy with (blue) and without (orange)
modified batch normalization. 20

3.1 Ladder network concept [16]. Noisy image is fed into encoder. Each layer
adds a Gaussian noise [N (0, σ2)] to the output activations and image label
ỹ is predicted at the last layer. Supervised cost Csupervised is calculated if
the image has a label. The decoders input layer receives input from last
layer of encoder and now decoder tries to reconstruct the image by passing
information from last layer to first. Noise to the outputs of decoder are
added by doing a dot product g(.) between the encoder layer’s output and
decoder layer’s output. Reconstruction cost Creconstruction at each layer
of decoder is calculated by subtracting the noiseless encoder output with
decoder’s output of that layer. 24

3.2 Convolutional Ladder network [17]. 25

5.1 Multi-tasking network with convolutional layers. 30

5.2 Multi-tasking network with locally connected layers. 31

viii

ABBREVIATIONS

LCN Locally Connected Network

P-LCN Partially-Local Connected Network

CNN Convolutional Neural Network

VC Dimension Vapnik–Chervonenkis Dimension

BN Batch Normalization

LN Ladder Network

SSL Semi-Supervised Learning

ix

ABSTRACT

Wadekar, Shakti N. Master’s, Purdue University, December 2019. Locally Connected
Neural Networks for Image Recognition. Major Professor: Kaushik Roy.

Weight-sharing property in convolutional neural network (CNN) is useful in re-

ducing number of parameters in the network and also introduces regularization effect

which helps to gain high performance. Non-weight-shared convolutional neural net-

works also known as Locally connected networks (LCNs) has potential to learn more

in each layer due to large number of parameters without increasing number of in-

ference computations as compared to CNNs. This work explores the idea of where

Locally connected layers can be used to gain performance benefits in terms of ac-

curacy and computations, what are the challenges in training the locally connected

networks and what are the techniques that should be introduced in order to train

this network and achieve high performance. Partially-local connected network (P-

LCN) VGG-16 which is hybrid of convolutional layers and Locally connected layers

achieves on average 2.0% accuracy gain over VGG-16 full convolutional network on

CIFAR100 and 0.32% on CIFAR10. Modified implementation of batch normalization

for Full LCNs (all layers in network are locally connected layers) gives improvement

of 50% in training accuracy as compared to using CNN batch normalization layer in

full LCN. Since L1, L2 and Dropout regularization does not help improve accuracy of

LCNs, regularization methods which focuses on kernels rather than individual weight

for regularizing the network were explored. Ladder networks with semi-supervised

learning achieves this goal. Training methodology of ladder networks was modified to

achieve ∼2% accuracy improvement on Pavia-University hyper-spectral image dataset

with 5 labels per class.

1

1. INTRODUCTION

Convolutional neural networks (CNNs) [1] have surpassed human level accuracy [2]

on image recognition datasets like imagenet [3]. But these networks perform poorly

when the same image is scaled, rotated or translated by a large amount, but a human

vision can still identify an object even with these variations. So CNNs have not truly

surpassed the ability of human vision system. The local receptive fields and weight

sharing of kernels in CNNs embeds the prior knowledge or assumption that local

features are translational invariant, these assumptions may be true in the initial layers

but hard to justify in the deeper layers. Weight sharing indeed reduces number of

parameters, but it also limits the learning capacity of a layer due to fewer parameters.

A solution to less number of parameters is to increase number of output maps in

each layer, but it increases number of computations during training and inference.

Non-weight-sharing convolutional neural networks called as Locally Connected Neural

Networks (LCNs) provides an alternative solution to this parameter and computations

problem. So if we keep the number of output maps of each layer same and only remove

weight-sharing constraint in CNNs, number of parameters in a layer increases without

increasing number of output maps, hence capacity of the network is now increased

without increase in number of computations during inference as compared to weight-

shared CNN. So now question arises that what happens to learning in the network

when we do not share weights? Does the high capacity network due to increased

number of parameters because of not sharing weights help to obtain high accuracy?

If not why? and if we do not obtain high accuracy, how do we change the training

methodologies to gain high accuracy from this high capacity network?. These are the

questions this work tries to address. This work explores Locally Connected Neural

Network (LCN) a non-weight-sharing version of convolutional neural network.

2

Prior works which explored locally connected networks best to my knowledge are

Tiled Convolutional Neural Networks [4] (T-CNN), Facebook’s DeepFace network [5]

and Google’s speaker recognition network [6].

T-CNN also called as diluted convolutional network since it shares kernel weights

after a certain number of strides. This paper argues that, CNNs have hard-coded

translational invariance due to weight sharing and pooling over outputs belonging to

same kernels, so in order to allow the network to learn more complex invariances,

pooling over different kernels should be done and variety of different kernels can be

learned by not sharing the weights after each stride. This paper evaluated CNN and

T-CNN on NORB dataset [7] which contains images of 5 categories which are taken

at 18 different azimuths, 9 different elevations and 6 different lightning conditions.

T-CNN achieved ∼2% higher accuracy than CNN. Also the kernels learned by the

network were scale and rotationally invariant. Therefore allowing the network to learn

different weight at different location and pooling over these different kernel outputs

allowed network to capture the invariances in the dataset which weight shared CNN

could not capture.

Table 1.1.
T-CNN and CNN comparison on NORB dataset

CNN Deep T-LCN

NORB 94.4% 96.1%

DeepFace network is a combination of convolutional and locally connected layers

used for face recognition. The first two layers are convolutional, next three layers

are locally connected layers and last two Fully connected layers forms a classifier.

This paper states that, since local statistics of face is important for face recognition

and locally connected layers helps to capture this local statistics by learning ker-

nels which are independent of the other kernels learned in different locations, this

DeepFace architecture achieves high performance in terms of accuracy on face recog-

3

Fig. 1.1. NORB dataset

nition. DeepFace achieved state of the art accuracy of 97.35% on Labeled Faces in

the Wild (LFW) [8] dataset. These locally connected layers when used instead of con-

volutional layers helped improve the accuracy on Labeled Faces in the Wild (LFW)

dataset, therefore it indicates that a locally connected layer has potential to capture

more than a convolutional layer.

Google’s speaker recognition system (2015) used locally connected layer as its first

layer. The system observed an decrease in error rate to 3.60% as compared to the fully

connected network which had 3.88% on the Text-Dependent Speaker Verification (TD-

SV) task. CNN which had comparable number of parameters as the fully connected

network with first layer as LCN, achieved 3.52% accuracy, but the number of output

maps in each layer were more, therefore number of computations (multiplications)

were significantly higher. Hence performance gain was achieved without increasing

number of computations in the network by using locally connected layer.

So we explore Locally Connected Neural Network (LCN) and individual locally

connected layers in different architectures which will try to benefit from the non-

weight sharing property. Initially effect of individual locally connected layers on the

network is explored. A hybrid architecture of convolutional layers and locally con-

4

nected layers together called as Partially-local connected network (P-LCN) is studied

on CIFAR100 [9] and CIFAR10 [9] datasets. A VGG-16 architecture of P-LCN which

has last 6 feature layers as locally connected layers and rest feature layers as convolu-

tional achieved an improvement of ∼2.0% and ∼0.32% on CIFAR100 and CIFAR10

respectively. Next, VGG-9 architecture of a full LCN (all layers are locally connected

layers) was trained to observe that the training accuracy saturated close to 40%. The

reason was batch-normalization layer. Convolutional batch-normalization layer is not

compatible for batch-normalizing a locally connected layer. To train a Full-LCN

(all the layers in the network are locally connected layers), batch-normalization layer

implementation has to be changed. In 300 epochs the modified batch-normalization

implementation reaches 90% accuracy as opposed to normal implementation which

saturates at 40%, hence 50% training accuracy improvement. The conventional reg-

ularization techniques such as L1, L2 regularization and Dropout regularization did

not help to improve the testing accuracy of LCN. Testing accuracy for Full LCN is

∼10% less than its CNN counterpart on CIFAR100 even after we achieve the train-

ing performance improvement by modifying batch normalization layer. There is a

need of a new or unconventional regularization technique for locally connected lay-

ers. Semi-supervised learning and Multitask learning serves as regularizers which

focuses on kernels as whole as opposed to L1 and L2 which focuses on individual

weights for regularizing the network. Semi-supervised learning on Ladder Network

(LN) was explored in search of regularization for LCNs. State of the art performance

on Pavia-University hyper-spectral image dataset was achieved by improving train-

ing methodology of ladder network. Semi-supervised learning and Multitask learning

has potential to be effective methods to regularize networks with large parameters

such as LCNs. This work can be extended further by evaluating the semi-supervised

and multi-task learning more and developing methodologies to effectively apply it to

LCNs.

5

2. LOCALLY CONNECTED NEURAL NETWORKS

2.1 Locally connected neural networks

Nobel prize winning work done by Hubel and Weisel [10] showed that each neuron

in primary visual cortex has a specific receptive field i.e, local receptive field and can

detect certain specific orientations, also there exists hierarchy between simple and

complex cells. This local receptive field motivated the convolutional neural networks,

where each neuron in a layer is connected to only few neurons is the previous layer.

The additional constraint was to share parameter i.e, weight sharing or kernel weight

sharing in order to reduce the number of learnable parameters. This allowed the layer

to use same kernel to be convolved over the entire image and multiple such kernels

are used to learn the features from input images. In convolutional neural networks,

due to weight sharing, huge reduction in learning parameters is possible, which is

beneficial in terms of memory consumption.

Weight sharing is not bio-plausible and this problem is know as weight trans-

port problem [11]. Locally connected neural network (LCN) is convolutional neural

network with weight sharing constraint removed. Hence, locally connected neural net-

works are more bio-plausible as compared to convolutional neural network. The work

here explores how these networks can be trained, where and how locally connected

layers can be useful to improve performance and what are the trade-offs.

Figure 2.1 shows the difference in the output activation maps between convolu-

tional and locally connected layer in a and b respectively. Each output activation map

generated in CNNs belongs to one kernel, while in LCN layer each output activation

is generated by different kernel.

The input in figure 2.1 has 3 channels and number of output channels or maps

are 6. In CNNs, each output channel is generated by a kernel of size [(kernel-height)

6

(a) Convolutional Neural Network

(b) Locally Connected Neural Network

Fig. 2.1. Input is an coloured image with 3 channels (Red, Green and
Blue). Figure a shows the output activations map when we convolve
kernel over the entire image. Convolutional layer shows 6 maps which
are generated by 6 different kernels. Figure b shows output activations
generated in locally connected layer. Each map has 9 activations and
there are 6 such maps, therefore 54 activations generated from all
different kernels.

* (kernel-width) * (input-channels)] and since we have 6 output maps, we have in

total 6 such kernels. Each kernel is convolved over the entire image with certain

number of strides which can overlap or do not overlap with previous stride. In LCNs,

each output activation in each map is generated by different kernel. The figure has 9

outputs in each map, therefore total number of output activations are 54. Number of

kernels in LCNs are equal to number of output activations, hence number of kernels

7

required are 54. So each kernel size is same as the kernel size of CNNs, but the number

of kernels increases and in this case its 54 and number of parameters are [(kernel-

height) * (kernel-width) * (input-channels) * (Number-of-activations-in-each-map) *

(Number-of-maps)].

2.2 Partially-Local connected networks

When we use both convolutional layers and locally connected layers in a hybrid

manner in the network, we call these networks as Partially-Local Connected Net-

works (P-LCN). Each convolutional neural network is made up of two parts, first is

a feature extractor and second is classifier. Feature extractor is made up of stacked

convolutional layers. In the case of P-LCN, its feature extractor consists of stack

of convolutional and locally connected layers. The locally connected layers are con-

nected after a stack of convolutional layers and the classifier is connected after the

locally connected layers. Classifier layer consists of multiple fully connected layers

and a softmax layer.

The inspirations for P-LCN network architecture comes from DeepFace network

architecture. Facebook’s DeepFace network for face recognition has last three convo-

lutional layers replaced with locally connected layers, which help the network to gain

improvement in accuracy on LFW dataset. The paper argues that different regions of

face images has different local statistics [5]. Eye region has very different appearance

than the eyebrow region. Hence in order to capture these different local statistics,

locally connected layers are better because by not sharing weights we are allowing

features to be combined locally and independent of the other location. In contrast,

CNNs assume that features present in an location are also present through out the

image. This assumption may not be true in the deeper layers as seen experimentally

with this network. Therefore locally connected layers help to improve the accuracy

of DeepFace network.

8

The same argument can taken forward to the other image recognition tasks.

Datasets such has CIFAR-10, CIFAR-100 and MNIST has single objects or digits

in it, therefore as we allow local features to be combined independently of the other

location due to non-weight-sharing in locally connected layers connected in deeper

layers of the network, then it might help us learn or capture the details which convo-

lutional layer might not capture.

So now we explore P-LCN with VGG-16 architecture on CIFAR100 and CIFAR10

dataset.

2.2.1 Network

Fig. 2.2. Vgg-16 P-LCN architecture. Convolutional layers (Conv.)
and LCN layers act as feature extractor part of architecture and at
the end we have classifier to classify the input RGB image. First 7
layers are convolutional layers and next 6 are Locally Connected layers
(LCN layers). Classifier consists of 2 fully connected layers with 4096
neurons in each and last layer is the output softmax layer.

Vgg-16 architecture is used with replacing last 6 convolutional layers with locally

connected layers. Each locally connected layer has 512 maps and every activation in

each map belongs to different kernel. A convolutional VGG-16 architecture has ∼15

9

million parameters and P-LCN VGG-16 architecture has ∼124 million parameters

i.e, ∼8x more number of parameters. More details about the input layer, data nor-

malization, non-linear activation function, initialization, training algorithm and data

augmentation is detailed in 2.2.4 section.

2.2.2 P-LCN results on CIFAR-100 and CIFAR-10

Max accuracy improvement by 2.32% was achieved on CIFAR-100 by the P-LCN

Vgg-16 architecture as compared to the Vgg-16 CNN baseline. On average ∼2%

accuray improvement is observed with different initialization.

Table 2.1.
Accuracy table of CNN and P-LCN with VGG-16 architecture on
CIFAR100 and CIFAR10

Vgg-16 CNN Vgg-16 P-LCN

cifar100 65.21% 67.53%

cifar10 91.03% 91.32%

Here P-LCN has ∼8x more number of parameters than the CNN, but number of

computations during inference remains same. The reason why computations does not

increases is when a convolutional layer is changed to Locally connected layer, due to

non-weight-sharing, only parameters in each layer are increased and not the number

of output channels, therefore number of computations remains same. So we achieve

accuracy improvement by ∼2% without increasing number of computations during

inference with the trade-off of increases number of parameters.

It can be argued that accuracy can be improved on the CNN by increasing number

of kernels in each layer or few layers. But, for that accuracy improvement we are now

increasing number of parameters and number of output maps which increases number

of computations during inference. Hence, for the accuracy gain we trade-off number

of parameters and number of computations in CNNs, but P-LCN provides accuracy

10

Fig. 2.3. CIFAR10 Images.

gain by keeping the number of computations during inference same and only trade-off

with increases in number of parameters.

There are variations in floating point computations with different gpus and differ-

ent versions of drivers of the same gpu. The results here vary when the this architec-

ture is run on different gpu versions. So reproducibility is a challenge as is the case in

overall deep learning networks. Also other possible reason would be related to where

the optimization functions has found it optimum parameter values. If the minima is

too narrow, then the results even due to small changes can be significantly different

and specially it more likely here due the high number of parameters in the network

due to locally connected layers.

11

Fig. 2.4. CIFAR100 Images.

2.2.3 Discussion on improved result

The central question is why do we get the accuracy gain?. The answer lies in the

increase of capacity of the network. As the number of parameters in the network

has increased, it allows the network layer to learn more complex function or decision

boundaries i.e, hypothesis space of that layer has increased. Hence this new increased

hypothesis space provides ability to that layer to explore or learn a function that is

able to classify data more accurately than its counterpart convolutional layer which

has less parameters given the constraint that number of computations during inference

does not increase.

VC dimension is a measure of capacity of a network or classifier i.e, how large is

the hypothesis space of the network. The number of parameters can be related to VC

dimension. Hypothesis space is number of different functions the network can learn.

12

So larger the hypothesis space, larger is the capacity of network. So, as the number

of parameters increases, the network can learn more complex functions, therefore

hypothesis space of the network has increased i.e, capacity of network has increased,

hence VC dimension of network increases.

2.2.4 Network architecture details:

Input layer: 3-channel RGB images of 32x32x3 pixels each. CIFAR100 and

CIFAR10 has 50000 training images and 10000 test images of 32x32x3 pixels each.

CIFAR100 has images with 100 classes and CIFAR10 has images with 10 classes in

it. All the input images are normalized using the following equation,

xnormalized =
xdata − µ

σ + 0.0000001
(2.1)

µ here is the mean of all input pixel values of the input images and σ is the

standard deviation. A constant is added in the denominator to avoid division by

zero.

Convolutional layer: This is the layer where the convolution operation with

weight sharing occurs. The kernel with specific size is convolved over the entire

image with a fixed stride to produce the convolution output. A non-linear activation

function is applied on the convolution output. Here ReLU activation [2] function is

used as non-linear activation.

Locally connected layer: local convolution without weight sharing happens

in this layer. Each activation in this layer is generated by different kernel. Hence,

number of activations is equal to number of kernels learnt in this layer. This layer also

uses a non-linear activation function. In the experiments ReLU is used as non-linear

activation function for this layer.

Batch-normalization layer: The output activations of each convolutional and

locally connected layer is batch-normalized i.e, values are scaled down mostly between

-1 to 1. This is mainly done to reduce the internal co-variance shift [12] of activa-

13

Fig. 2.5. ReLU activation function.

tions of each layer before these activations are given as input to the next layer. This

technique accelerates training as it allows higher learning rate in the initial epochs

of training. The batch-normalization layer used in this architecture is same for con-

volutional and locally connected layers, but we will see in the coming sections that

the batch-normalization implementation has to be changed for the locally connected

layers. Also, we will see that convolutional batch-normalization layer is in some cases

is useful when used for locally connected layer.

Pooling layer: Max-pooling layer is used in this architecture which has size of

2x2 and does stride of (2,2). Therefore there is no overlap with previous units which

were used for pooling.

L2 regularizer: Convolutional layers here uses L2 regularization [13] but the

locally connected layers do not. Testing accuracy of this system decreases when L2

regularization is used in locally connected layers.

Ctotal = CCrossEntropy + λ ∗ Cregularizer (2.2)

14

Ctotal = CCrossEntropy + λ ∗ 1

2
∗ ‖w‖2 (2.3)

L2 regularizer is a constraint on the cost or loss function. This regularization

pushes most of the weights of in the network towards zero, but not completely make

them zero as it is in the case when L1 regularization is applied. λ is the scaling factor

which determines the amount of contribution of L2 regularization cost (Cregularizer)

to the major or main cost function.

Dropout layer: Dropout layer [14] is used to regularize the network along with

L2 regularization. The output activations in each layer are dropped randomly during

each forward pass during the entire training. Every time a dropout mask is applied

to the network, different structure of the network is trained. Hence, at the end

of training we have an ensemble of different network structure embedded into one

neural network structure. This creates the regularization effect which helps network

to generalize better and have high testing accuracy.

Fig. 2.6. Fully Connected Neural Network with Dropout. The dashed
lines or connections between the neurons are connections which are
masked when dropout is used. Different connections are dropped at
random during the complete training procedure. This figure is an
example of how the network looks when few connections are masked.
The connections or weights which are masked are not updated during
back-propagation since they did not contribute to the activation of
neuron in the forward pass.

15

Softmax layer:

R(yi) =
eyi∑
i

eyi
(2.4)

Cross-entropy Loss: Multi-class cross-entropy loss is given by equation 2.5

CCrossEntropy = −
C∑
k=1

y(l,k)log(R(l,k)) (2.5)

Fig. 2.7. Log loss function

C is total number of classes and also equal to number of output units of last layer

in classifier. y is the label of lth output for the kth class of the input image. y(l,k) is

generally 1 or 0 if the output is one-hot coded. R is the prediction generated by lth

neuron in the last layer i.e, softmax layer.

Figure 2.7 shows how the log-loss changes with the prediction (output of softmax

unit). If the prediction is accurate i.e, close to 1 then the loss is minimum. Loss

grows exponentially higher as the prediction diverges from the actual label.

Training algorithm: Stochastic gradient descent algorithm with nestrov mo-

mentum [15] is used with Back-propagation algorithm to train this deep neural net-

work.

16

vnew = αvold − η ∗ ∇θL(θ + αvold) (2.6)

θnew = θold + vnew (2.7)

η and α are hyperparameters. vnew an vold are new and old velocities respectively

and θ is network parameter or weight. The P-LCN network is trained for 700 epochs

with data augmentation.

2.3 Full-Locally connected networks

Further we explore full-locally connected network i.e, all layers in the network are

locally connected layers. They are referred to as LCNs. LCN of VGG-9 architecture is

used throughout the following experiments for training and testing the performance

of LCNs on CIFAR100 and CIFAR10. During training the LCNs, it is observed

that batch-normalization layer of CNN is not suitable as batch-normalization layer

of LCNs. The CNN batch-normalization layer introduces error in the network, which

then does not allow the training accuracy to increases above 40%. Following sec-

tion discusses how the CNN batch-normalization layer introduces error and what is

alternate implementation of batch-normalization layer for LCNs.

2.3.1 Batch Normalization for Locally connected networks

Now as all the network layers are changed from convolutional layers to locally

connected layers, high training accuracy is not achieved while training LCNs, hence

test accuracy suffers. The reason for this is the Batch Normalization layer. We will

now see what problem this layer poses and how can we resolve it to improve training

accuracy.

17

Fig. 2.8. Vgg-9 LCN architecture.

Problem:

Normalizing the activations of each layer [12],

x̂i =
xi − E[xi,k]√
V ar[xi,k] + ε

(2.8)

E[xi,k] is mean of all the activations generated by the specific kernel k in a layer

l i.e, it is mean of output channel belonging to kernel k. V ar[xi,k] is the variance in

activations of that output channel and ε is a small positive value added to variance to

avoid the denominator to become zero. Each output activation value xi is normalized

to obtain x̂i.

In Batch normalization of convolutional neural networks, normalization is done by

grouping activation values which belong to same kernel i.e, each channel is normalized

independently. Therefore the correlation between the output activation values in each

channel is preserved even after scaling down values due to normalization.

In Locally connected network each and every output is obtained from different

kernel. Therefore, when we normalize over these different kernel outputs within on

18

Fig. 2.9. Batch of input images is given to a convolutional layer. Each
kernel represented by kernel 1: blue, 2: red and 3: green generates
activations for that entire batch. All the activations generated in layer
1 by kernel 1 are represented in green, kernel 2 by yellow and kernel
3 by orange block. The batch normalization in CNN is done on each
of these blocks independently , hence the output activation correlation
is maintained.

channel, we are introducing noise or error by not preserving the correlation between

outputs while scaling it down. So important outputs or activations may get scaled

down to zero, hence crucial classification information is lost. Hence network, due to

this normalization error, suffers from low training accuracy.

Solution:

The problem can be fixed by together normalizing the output activation values

which belong to the same kernel within each channel.

19

x̂i =
xi − E[xi,k]√
V ar[xi,k] + ε

Now, kernels are specific to a location, so k is kernel of that specific location and xi

is the output activation generated by that kernel k. So we normalize across the batch

in a channel for a particular location.

Fig. 2.10. Batch normalization for LCN layer. Output activations
generated by Kernel X,Y and Z belongs to a specific location in the
image over batch of images. All the activation generated by kernel Z
are taken together and normalized. So the normalization of output
activations of Kernel X, Kernel Y and Kernel Z are independent from
each other.

Specific location on image dimensions has same kernel over the batch of images

and output activations of this kernel are related to each other, hence we normalize

these values together. So output activations of each location over the batch of im-

ages are normalized together and activations from different kernels are normalized

independently, hence the correlation between activations is preserved even after nor-

20

malization. This solution works and we get the training accuracy improvement as

shown in figure 2.7.

Improved results with this solution:

Figure 2.7 shows the training accuracy improvement by over 50% in 300 epochs of

training on CIFAR-100 with the modified batch-normalization implementation. Now

a full LCN is fully trained and we can test network on test images.

Fig. 2.11. Comparison of LCN training accuracy with (blue) and
without (orange) modified batch normalization.

Since the batch-normalization layer was used in each layer, error is propagated

further during forward propagation and amplified. The error introduced by batch-

normalization layer is removed with the new implementation of batch-normalization

for locally connected layers. We will see in the next section that how this error is

small in last layers and this error can potentially act regularizer in the P-LCN.

21

2.4 Convolution BN layer as a regularizer in P-LCN:

The convolution batch normalization layer introduces error in the locally con-

nected layer output. This error acts as noise for this layer. Since noise acts as a good

regularizer in neural networks, the convolutional batch normalization layer is acting

as a regularizer for P-LCN.

Now, as we replace all convolution layers with locally connected layers and use

convolutional batch normalization layer with it, error is introduced in each layer and

gets amplified as the activations are forward propagated down the network. This

amplified error hinders the training of network and causes the low training accuracy.

In the case of P-LCN the output dimensions of of LCN layers are small compared to

the initial layers, hence the error due to batch-normalization layer is not significant

as compared to the error that is generated in the first layers due to large dimensions.

Therefore, this small error is acting as noise and noise regularizes the P-LCN network.

2.5 Regularization of Locally connected neural networks

Following table shows the performance of LCN (all layers are locally connected

layers) on CIFAR10 and CIFAR100. The network performance degrades by 8% and

13%.

Table 2.2.
Accuracy table of CNN and LCN with VGG-9 architecture on CI-
FAR10 and CIFAR100

Vgg-9 CNN Vgg-9 LCN

cifar10 78.51% 70.29%

cifar100 60.33% 47.17%

What locally connected neural networks lack is a good regularization technique.

Due to large parameter space, the effective regularization techniques for deep neural

22

networks such as L1, L2 regularization and dropout doesn’t provide performance bene-

fit here. New regularization techniques suitable to LCN needs to be explored to achieve

performance gain.

In P-LCN, due to noise by batch normalization layer, a regularization effect was

introduced and a good accuracy performance is achieved. But noise is not a good

regularizer when we use all layers as locally connected layer since error is amplified

in the network and training accuracy degrades.

In the search of new or non-conventional ways of regularizing neural networks,

we look towards semi-supervised learning and Multi-task learning. Semi-supervised

learning with ladder network is explored in next chapter.

23

3. LADDER NETWORKS

3.1 Why to choose this network and learning methods for regularization?

The widely used regularization techniques such as L2 and L1 regularization focuses

on magnitude of weight values. Experimentally, these regularization techniques are

not very useful in improving performance of locally connected neural networks. So

focusing on regularizing features as a whole i.e, focusing on what kernels are learned,

rather than only magnitude of individual weights, might help to improve performance.

Semi-supervised learning and Multi-task learning has a potential to achieve this kind

of regularization of features. Ladder networks uses semi-supervised learning for its

classification task, therefore ladder networks were explored here.

3.2 Network

Ladder network consists of two branches , one is the encoder path and second is

decoder path. Encoder path is made up of stacked denoising Auto-encoder whose

purpose is to learn features in a supervised way to predict label of the input image.

Decoder path takes input from last layer of encoder path and tries to reconstruct

the image in an unsupervised way as it propagates information in reverse manner i.e,

last layer to first layer. It has same number of neurons in each layer as its encoder

counterpart. The parameters of encoder and decoder paths are shared, hence features

learnt in the network are contributed by both supervised learning and unsupervised

learning. This allows learning in a semi-supervised way since we can now have few

labelled images which will generate the supervised cost and unlabelled images will

generate the reconstruction cost.

24

Fig. 3.1. Ladder network concept [16]. Noisy image is fed into en-
coder. Each layer adds a Gaussian noise [N (0, σ2)] to the output ac-
tivations and image label ỹ is predicted at the last layer. Supervised
cost Csupervised is calculated if the image has a label. The decoders
input layer receives input from last layer of encoder and now decoder
tries to reconstruct the image by passing information from last layer
to first. Noise to the outputs of decoder are added by doing a dot
product g(.) between the encoder layer’s output and decoder layer’s
output. Reconstruction cost Creconstruction at each layer of decoder is
calculated by subtracting the noiseless encoder output with decoder’s
output of that layer.

CNN-ladder network is used here. In the experiments our encoder path is con-

volutional neural network and decoder path is same convolutional neural network

but now the information flows from last layer of to first layer instead of first to last

as in the encoder path. The same parameters or kernels used for encoder path are

transposed and used for in the decoder path.

The parameter sharing between encoder and decoder path is the key of learning

general features to achieve high performance due to regularization effect, but even

if different parameters are used, the network can still perform better in terms of

classification with few labelled images because we are making optimizer’s job easy by

25

Fig. 3.2. Convolutional Ladder network [17].

removing parameter sharing constraint across tasks. So if we want more regularized

kernels, parameters should be shared across the encoder and decoder but it is not

necessary to do so if expected high performance is achieved without adding constraints

on optimizer. If only convolutional network were to be used, it learns certain set of

kernels, but when this network is used along with the decoder path, the network has

to learn those general features which are useful for both paths to minimize overall

cost of the network. In the experiments here the parameters are not shared across the

encoder and decoder since we allow the network to learn features independently. Here

the goal is to achieve high performance using as few labels as possible by learning in

unsupervised way. But, if the goal is to regularize the kernels, the parameters should

be shared across the encoder and decoder path.

x is the input image fed to encoder with noise,

h̃(0) = x+ noise (3.1)

26

This input is now multiplied by the weights W 1 of first layer, output activations

are batch-normalized and a small noise is added to the outputs. These computations

are done for each layer l,

z̃(l) = batchnorm(W l h̃(l−1)) + noise (3.2)

h̃(l) = Relu(γ ∗ (z̃ (l) + β(l))) (3.3)

h̃(l) is output of the each layer l. We denote h̃(L) as the output of last layer of the

encoder.

Now for the decoder path computations are as follows, for last layer,

u(L) = batchnorm(h̃(L)) (3.4)

for rest of the layers,

u(l) = batchnorm(V (l+1)ẑ (l+1)) (3.5)

ẑ(l+1) = g(z̃(l+1), u(l+1)) (3.6)

g(.) is point-wise multiplication function.

Supervised cost for the encoder is,

Csupervised = − 1

N

∑
i

log(P (ỹi = ti|xi)) (3.7)

Unsupervised cost i.e, reconstruction cost of decoder layer is given by,

Creconstruction =
∑
l

λl
∥∥z(l) − ẑ(l)∥∥2 (3.8)

Total cost is given by,

Ctotal = Csupervised + Creconstruction

Ctotal = − 1

N

∑
i

log(P (ỹi = ti|xi)) +
∑
l

λl
∥∥z(l) − ẑ(l)∥∥2 (3.9)

27

Reconstruction cost of each layer is considered and scaled with λl, where l is layer

number. Error in the top layer where the activations of output units of encoder layer

as passed to decoder layer should be weighed more since that error is propagated

through all the layers. Therefore λl for the top layer is larger than the λl of other

layers. Also, the magnitude of the λl values does play an important role in terms

accuracy performance, therefore the next section talks about a technique to modify

λl values for achieving high performance.

3.3 Normalizing Lagrange Multipliers

λl are called lagrange multipliers which are hyperparameters here and contribute

by scaling reconstruction cost of a layer in decoder path. Since we account cost of each

layer from the decoder path in the total, the cost magnitude can reach high values

during training even when majority number of layers has lower cost magnitude but

one layer has high cost. So control over Lagrange multipliers λl is essential in order

to control the magnitude of total cost. Therefore Lagrange multipliers are normalized

in the following way to obtain higher performance.

λnewl =
λl
L∑
i=1

λi

(3.10)

Therefore,
L∑
l=1

λnewl = 1 (3.11)

λl is initially randomly chosen value to weight each layer such that λl for top layer

is higher than the later layers. Now by normalizing these λl values using equation

3.10 and 3.11 we obtain new scaling factors λnewl by preserving the relation between

different λl values. Hence, we scale down the magnitude of cost and still preserve

the relation between λl values of each layer. Next section shows the improved results

with this technique.

28

3.4 Results on Pavia-University dataset

Table 3.1.
Accuracy comparison of different networks on Pavia-University dataset

5 labels per class 10 labels per class

CNN-Ladder (with normalization) 90.38 ±3.18 % 95.71 ±1.73%

CNN-Ladder (w/o normalization) 88.92 ±2.97% 93.13 ±2.03%

CDL-MD-L 72.85% 82.61 ±2.95%

Co-DC-CNN 83.47 ±3.01% 94.99 ±1.49%

Co-DC-Res 86.69 ±2.94% 96.16 ±1.05%

PNGrow 88.11 ±2.87% 93.85 ±2.23%

TT-AL-MSH-MKE 79.04 ±3.95% 86.00 ±3.04%

S2CoTraC 50.76 ±1.68% 80.75 ±0.35%

FC-Ladder 71.2 ±1.5% 77.4 ±1.0%

Table 3.1 compares our CNN-ladder network (with and without normalization)

accuracy with other competing network accuracies on Pavia-University hyper-spectral

dataset which are CDL-MD-L [18], Co-DC-CNN [19], Co-DC-Res [20], PNGrow [21],

TT-AL-MSH-MKE [22], S2CoTraC [23], CNN [24].

CNN-ladder network achieves 90.38% accuracy in 5 labels per class category. The

second highest accuracy other than CNN-ladder network is 88.11% achieved by PN-

Grow network. Therefore accuracy improvement of 2% is achieved with CNN-ladder

network with lagrange multiplier normalization on Pavia-University dataset.

The normalization of lagrange multipliers may also apply to the multi-task learn-

ing because the optimization function looks similar to the ladder network cost function

with the reconstruction cost replaced with cost of different tasks.

29

4. SUMMARY

This work explored Locally Connected Neural Networks which are a non-weight-

sharing version of Convolutional Neural Networks. A hybrid network of convolutional

layers and locally connected layers called as P-LCN achieved average accuracy gain

of 2% on CIFAR100 and 0.32% on CIFAR10. While training a full-LCN (all layers

are locally connected layers) it was observed that in order to train the network and

achieve more than 90% training accuracy, batch-normalization implementation has

to be modified. Modified batch-normalization improved training accuracy from 40%

to 90% i.e, 50% improvement. The testing accuracy of LCN is still lower than its

CNN baseline by 13% and 8% on CIFAR100 and CIFAR10 respectively because LCNs

lack suitable regularization method. Experimentally it is observed that L1, L2 and

Dropout regularization does not improve performance of LCNs, hence new or non-

conventional regularization methods were explored in this work. Multi-tasking and

Semi-supervised learning are the learning techniques which can regularize the features

on kernel level rather than individual weights, which can be beneficial since large

number of kernels are learnt in LCNs as compared to CNNs. Ladder network using

semi-supervised learning which achieves the kernel level regularization was explored

here. Training methodology of ladder network was modified to achieve 2% accuracy

improvement with 5 labels per class on Pavia-University dataset.

30

5. RECOMMENDATIONS

Multi-Tasking and Semi-Supervised Learning can be explored further for regularizing

LCNs. Also, the LCNs can help improve performance of various multi-tasking net-

works. A multi-task network [25] has various architectures. The architecture where

the LCNs can be relevant is shown in figure 5.1.

Fig. 5.1. Multi-tasking network with convolutional layers.

Figure 5.1 shows a Multi-task network which uses shared CNN layers. Both the

tasks when optimized will push the shared network to learn features which are relevant

to both tasks and allows the network to learn more general features as compared to the

features when only one task is learned. Now, in the CNN layers, the parameters are

31

shared across the images and across the tasks therefore can be under-parameterized.

One way to over come the problem is increases number of parameters or kernels which

will increase number of maps in the network. This increases number of computations

during inference and also memory, therefore we trade-off memory and computations

to increase the capacity of CNN layers. Instead, when an Locally Connected layer is

used in place of CNN layers with same number of output maps, we increases number

of parameters in the network without increasing number of computations during

inference. Hence we only trade-off memory to achieve increase in capacity of shared

layers. Multi-task networks needs high capacity layers in it and locally connected

layers provides a suitable alternative to convolutional layers.

Fig. 5.2. Multi-tasking network with locally connected layers.

Figure 5.2 shows multi-task network with locally connected layers in the shared

network. The objective function is as follows,

32

Ctotal = Ctask1 + λ ∗ Ctask2 (5.1)

Ctask1 and Ctask2 are the cost functions of task 1 and task 2 respectively. The λ

is a hyper-parameter used to determine the effect of cost on total cost (Ctotal). If the

number of task are more than two, then the cost function can be modified to equation

5.2.

Ctotal =
T∑
i=1

λi ∗ Ci (5.2)

Ci is the cost of each ith task, λi is the scaling factor and T is the number of tasks

being learned.

Multi-tasking networks allow general features to be learned and locally connected

layers has potential improve the performance of these network by increasing the ca-

pacity of network without increasing number of inference computations.

REFERENCES

33

REFERENCES

[1] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–
2324, Nov 1998.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Information
Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1097–1105. [Online].
Available: http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-
convolutional-neural-networks.pdf

[3] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei, “Imagenet: A
large-scale hierarchical image database,” in 2009 IEEE Conference on Computer
Vision and Pattern Recognition, June 2009, pp. 248–255.

[4] J. Ngiam, Z. Chen, D. Chia, P. W. Koh, Q. V. Le, and A. Y. Ng,
“Tiled convolutional neural networks,” in Advances in Neural Information
Processing Systems 23, J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor,
R. S. Zemel, and A. Culotta, Eds. Curran Associates, Inc., 2010,
pp. 1279–1287. [Online]. Available: http://papers.nips.cc/paper/4136-tiled-
convolutional-neural-networks.pdf

[5] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap
to human-level performance in face verification,” in 2014 IEEE Conference on
Computer Vision and Pattern Recognition, June 2014, pp. 1701–1708.

[6] Y. hsin Chen, I. L. Moreno, T. Sainath, M. Visontai, R. Alvarez, and C. Parada,
“Locally-connected and convolutional neural networks for small footprint speaker
recognition,” in Interspeech, 2015.

[7] Y. LeCun, F. Huang, and L. Bottou, “Learning methods for generic object recog-
nition with invariance to pose and lighting,” in Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition, vol. 2,
2004.

[8] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled faces in the
wild: A database for studying face recognition in unconstrained environments,”
University of Massachusetts, Amherst, Tech. Rep. 07-49, October 2007.

[9] A. Krizhevsky, “Learning multiple layers of features from tiny images,” Univer-
sity of Toronto, Technical Report, 2009.

[10] W. T. HUBEL DH, “Receptive fields of single neurones in the cat’s striate cor-
tex,” The Journal of physiology, vol. 148, no. 3, p. 574–591, 1959.

34

[11] S. Grossberg, “Competitive learning: From interactive activation to adaptive
resonance,” Cognitive Science, vol. 11, no. 1, pp. 23–63, 1987. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1551-6708.1987.tb00862.x

[12] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proceedings of the 32Nd
International Conference on International Conference on Machine Learning -
Volume 37, ser. ICML’15. JMLR.org, 2015, pp. 448–456. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3045118.3045167

[13] A. Krogh and J. A. Hertz, “A simple weight decay can improve generalization,”
in Advances in Neural Information Processing Systems 4, J. E. Moody,
S. J. Hanson, and R. P. Lippmann, Eds. Morgan-Kaufmann, 1992, pp.
950–957. [Online]. Available: http://papers.nips.cc/paper/563-a-simple-weight-
decay-can-improve-generalization.pdf

[14] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting,” Journal
of Machine Learning Research, vol. 15, pp. 1929–1958, 2014. [Online]. Available:
http://jmlr.org/papers/v15/srivastava14a.html

[15] Y. E. NESTEROV, “A method for solving the convex programming problem
with convergence rate,” Dokl. Akad. Nauk SSSR, vol. 269, pp. 543–547, 1983.
[Online]. Available: https://ci.nii.ac.jp/naid/10029946121/en/

[16] A. Rasmus, H. Valpola, M. Honkala, M. Berglund, and T. Raiko, “Semi-
supervised learning with ladder network,” CoRR, vol. abs/1507.02672, 2015.
[Online]. Available: http://arxiv.org/abs/1507.02672

[17] J. Büchel and O. K. Ersoy, “Ladder networks for semi-supervised hyperspectral
image classification,” CoRR, vol. abs/1812.01222, 2018. [Online]. Available:
http://arxiv.org/abs/1812.01222

[18] X. Ma, H. Wang, and J. Wang, “Semisupervised classifica-
tion for hyperspectral image based on multi-decision labeling and
deep feature learning,” ISPRS Journal of Photogrammetry and Re-
mote Sensing, vol. 120, pp. 99 – 107, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0924271616303124

[19] H. Zhang, Y. Li, Y. Zhang, and Q. Shen, “Spectral-spatial classification of
hyperspectral imagery using a dual-channel convolutional neural network,”
Remote Sensing Letters, vol. 8, no. 5, pp. 438–447, 2017. [Online]. Available:
https://doi.org/10.1080/2150704X.2017.1280200

[20] B. Fang, Y. Li, H. Zhang, and J. C.-W. Chan, “Semi-supervised deep
learning classification for hyperspectral image based on dual-strategy sample
selection,” Remote Sensing, vol. 10, no. 4, 2018. [Online]. Available:
https://www.mdpi.com/2072-4292/10/4/574

[21] M. Romaszewski, P. G lomb, and M. Cholewa, “Semi-supervised hy-
perspectral classification from a small number of training samples us-
ing a co-training approach,” ISPRS Journal of Photogrammetry and
Remote Sensing, vol. 121, pp. 60 – 76, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0924271616303446

35

[22] K. Tan, J. Zhu, Q. Du, L. Wu, and P. Du, “A novel tri-training technique
for semi-supervised classification of hyperspectral images based on diversity
measurement,” Remote Sensing, vol. 8, no. 9, 2016. [Online]. Available:
https://www.mdpi.com/2072-4292/8/9/749

[23] A. Appice, P. Guccione, and D. Malerba, “A novel spectral-spatial co-training
algorithm for the transductive classification of hyperspectral imagery data,”
Pattern Recognition, vol. 63, pp. 229 – 245, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0031320316303259

[24] Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, “Deep feature extraction and
classification of hyperspectral images based on convolutional neural networks,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 54, no. 10, pp. 6232–
6251, Oct 2016.

[25] S. Ruder, “An overview of multi-task learning in deep neural networks,” CoRR,
vol. abs/1706.05098, 2017. [Online]. Available: http://arxiv.org/abs/1706.05098

