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ABSTRACT

Kollazhi Manghat, Surya. M.S.E.C.E., Purdue University, December 2019. Multi
Sensor Multi Object Tracking in Autonomous Vehicles. Major Professor: Mohamed
El-Sharkawy.

Self driving cars becoming more popular nowadays, which transport with it’s own

intelligence and take appropriate actions at adequate time. Safety is the key factor

in driving environment. A simple fail of action can cause many fatalities. Computer

Vision has major part in achieving this, it help the autonomous vehicle to perceive

the surroundings. Detection is a very popular technique in helping to capture the

surrounding for an autonomous car. At the same time tracking also has important

role in this by providing dynamic of detected objects. Autonomous cars combine

a variety of sensors such as RADAR, LiDAR, sonar, GPS, odometry and inertial

measurement units to perceive their surroundings. Driver-assistive technologies like

Adaptive Cruise Control, Forward Collision Warning system (FCW) and Collision

Mitigation by Breaking (CMbB) ensure safety while driving.

Perceiving the information from environment include setting up sensors on the

car. These sensors will collect the data it sees and this will be further processed for

taking actions. The sensor system can be a single sensor or multiple sensor. Different

sensors have different strengths and weaknesses which makes the combination of them

important for technologies like Autonomous Driving. Each sensor will have a limit of

accuracy on it’s readings, so multi sensor system can help to overcome this defects.

This thesis is an attempt to develop a multi sensor multi object tracking method to

perceive the surrounding of the ego vehicle. When the Object detection gives infor-

mation about the presence of objects in a frame, Object Tracking goes beyond simple

observation to more useful action of monitoring objects. The experimental results
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conducted on KITTI dataset indicate that our proposed state estimation system for

Multi Object Tracking works well in various challenging environments.
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1. INTRODUCTION

1.1 Introduction to Autonomous Vehicles

Autonomous cars have started as distant dream of researchers and automotive

industry. An autonomous car can be seen as a huge system with various sensors

attached to it and various algorithms running to take an adequate at precise time.

This is also known as driver-less car or self driving car where all the actions of a

driver is done by the autonomy implemented in the car. Computer vision has major

role in making this possible. Autonomous vehicles sense their surroundings with

various sensors attached and the algorithms interpret the raw data from sensors to

identify presence and dynamic nature of obstacles in the navigation paths. There

are mainly 3 primary sensors such as LiDAR, RADAR and camera for autonomous

vehicles, These sensors together update the surrounding visual information for the

vehicle in real-time, allowing the vehicles to be aware of their positions in unknown

environments. There are additional sensors which gives the ego vehicle information on

yaw, pitch, roll. Others which gives the map of its surroundings like travel path, and

the vehicles relative position in space. In order to come up with this, an autonomous

car uses sensor equipment such as Light Detection And Ranging Sensors (LiDAR),

Radar sensors, Cameras, GPS Units, Ultrasound Sensor and Inertial Measurement

Unit (IMU). LiDAR is continuously rotating LiDAR kept on top of the car to get

the 3D view of the surrounding. The measurements from LiDAR combined with

other sensors are used to get the complete view of the surrounding. GPS units in the

car is used to determine the car’s position in Global Positioning System units. This

is perceived by using 3 satellites. Cameras are commonly used technology for lane

detection and obtaining other information. The advancement in the image processing

gives the details of the sign boards, lights and vehicles in ego vehicle’s surrounding.
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There are short range and long range radars available in the market. It uses time of

flight for operation and it is an active sensor which can derive the actual location of

objects in the surrounding in world coordinates.

The perception task of vehicle is collecting information from surrounding using

multiple sensors which can be a visual data or dynamic information and interpreting

the surrounding using the collected data. The collected data will be in reference with

the vehicle position or sensor position. Further processing of this information using

mathematical model will give the actual information of ego vehicle’s surrounding.

At the same time human driver can perceive this by looking in to the scene. Recent

works in computer vision uses data from multi sensor technologies and advanced deep

learning model can fuse this to interpret the environment.

1.2 Motivation

Self driving vehicles are the future of automotive domain. Computer Vision plays

major role in achieving this. Recently, a lot progress has been made in Autonomous

Driving field [10] [26], but complete autonomy is still challenging. A complete au-

tonomous system should have the ability to perceive its surrounding environments,

then make decisions based on what it perceives and finally manipulate the environ-

ment or actuate a movement. The ADAS system in Autonomous Vehicle’s such as

Forward Collision Warning (FCW), Auto Cruise Control (ACC) etcetera not only

detect the but also keep track of the surrounding vehicles.

There are several algorithms present for object detection, with YOLO and SSD

among the most popular. Detecting objects in every frame is like throwing all the

information that you have from previous frames and starting it all over again. In

object tracking we use image measurements to estimate position of object, but also

incorporate position predicted by dynamics. This can reduce the noise in the mea-

surements added due to the sensor degree of error. Moreover, tracking reduces the

work to look for the object as it restrict the search area with the prediction. But,
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object detection in every frame then you have to search over whole scale space. An

object tracking method will be able track even when viewpoint changes, an object

detection method can not do it if not trained for. Using series of measurements in

each video frame made over time, motion tracking can estimate, predict present and

future locations [1] [39] [40]. This help the tracking to predict the position of object

which is failed to detect in the sensors.

The advancement in the detection methods would help to implement a more ac-

curate and less complex MOT system. There are a lot of research are going on to

implement a real time tracker with good accuracy. This thesis is a humble trial to

implement a lean MOT system using multi sensor data with better accuracy.

1.3 Contribution

This thesis implements a Multi Object Tracking methodology using multi sensor

data. The method uses Camera and LiDAR data. The tracking methodology goes

beyond simple observation by detection, it allows to know the position and dynamic

information of all the moving objects present in the environment. This thesis imple-

ments a multi target tracking method by following a lean way of multi-target tracking

implementation. The thesis has done in two steps. As the first step MOT has im-

plemented on the camera data from KITTI [4] dataset. The 2D tracker results are

converted to 3D coordinates. The second step is implementing 3D Multi Object Track-

ing on LiDAR data and fusing the outputs of both sensors. This method improved

the MOT accuracy and resulted in an high grade MOT system. Object Tracking is

an integral part of environment sensing, which enables the vehicle to estimate the

surrounding objects trajectories to accomplish motion planning. The advancement in

the object detection methods [7] [9] greatly benefits when following the tracking by

detection approach. This thesis implements an online tracking method by following

tracking by detection approach. In contrast to the other works which tend to focus

more on accuracy of the system than system complexity, this thesis focuses on to de-
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velop an accurate, simple and real-time MOT system. We show that our work which

implemented in lean way works good compared to the state-of-the-art performance

available on the KITTI [4] dataset. The lean way of implementing our system results

in running the system at a rate 200 frames per second.
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2. OVERVIEW OF AUTOMOTIVE SENSOR

TECHNOLOGIES

This chapter gives a brief overview of the various sensor technologies applied in au-

tonomous vehicles and the concept of sensor fusion. The first part presents the most

common sensors that build up the perception systems: Ultrasonic, RADAR, LiDAR,

cameras, IMU and GNSS.

2.1 Various Sensor Technologies

Various sensor technologies introduced here are approached in a different way by

exploring the physical foundations behind each sensor’s operation. Electromagnetic

spectrum that are used by various sensors are different. So studying these by consid-

ering these spectra of operation will give deep understanding about the technologies.

2.1.1 LiDAR - Light Detection and Ranging

One of the mostly used technology for 3D mapping of environment is LiDAR

sensor. It uses time of flight criteria for the measurement operation. Light from

the laser diode is emitted and received back by receiver. The time taken by this is

counted towards measurement. The light emitted are in infrared range (905 nm or

1550 nm). The energy level is different for these rays. The first one requires less

energy than the second. LiDARs are classified according to the information they

provide. It can be 1D, 2D or 3D LiDAR. The 1D LiDAR measures the distance to

the object using one coordinate system. 3D is a rotating LiDAR which can give 3D

map of the environment.
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Fig. 2.1. Different Spectra used in Perception Systems.

Fig. 2.2. Various LiDARs (a) Spinning 2D LiDAR, (b) Spinning 3D
LiDAR, (c) SSD 3D LiDAR
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2.1.2 Camera

Camera can be classified to 2 types according to the wavelength it is operating

on. It can be a visible light based camera or Infrared based camera. Cameras can

give colored images or grey scale. The colored images will have less resolution. The

usual cameras will be 2D representation of the capturing 3D environment. It can

not give actual distance measurement of the object. Camera can be a 2D camera or

stereoscopic camera. The second one uses 2 cameras to capture the same scene and

from the disparity information it gives the depth to the object in world coordinates.

2.1.3 RADAR (Radio Detection and Ranging)

Radar which is Radio Detection and Ranging uses radio waves or microwave to

measure the surrounding object’s location. Radar has started it’s presence in military

applications first. This can be used to detect any objects with long range. The

absorption by the environment will be comparatively low in this. Radar measure the

distance to the object by emitting the radio waves and calculating the time of flight of

these signals and the received signal in the receiver. Radar is an active sensor, it not

only give the distance to the targets but also provide the speed and angle of direction

of the targets precisely. Radars are widely used in autonomous car for various ADAS

systems in combination with other sensors. In self driving cars radar are kept as an

array of antennas which will generate lobes that allow the car to increase the coverage

and see targets.

2.1.4 Ultrasonic Sensor

Ultrasonic senors are another category of sensor found in self driving cars. As the

name indicates it uses sonic waves for it’s operation. The wavelength used by the

emitted rays are in Kilo Hertz. This sensor also work on the time of flight principle.

Sonic waves are emitted from the emitter and receive back by receiver.
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d = c2 × ToF (2.1)

The c velocity of the wave is in meters per second and ToF is time of flight in

seconds. This calculates the distance to the object.

2.1.5 IMU- Inertial Measurement Unit

Inertial measurement unit is a proprioceptive sensor which gives the information

of it’s own. It measures force, angular measurements and magnetic field of the car.It

is composed of a three axis gyroscope and accelerometer, together the IMU will act

as 6-axis IMU. 3 axis magnetometer can be added to this to make the IMU 9 axis.

Fig. 2.3. Six Degrees of Freedom

2.1.6 Global Positioning Systems

Global Navigation Satellite System (GNSS) is the most widely used technology

for vehicle positioning on land, sea and air. The operation of GPS is on time of

flight principle. It provides an absolute position of a antenna using 3 fixed satellites

orbiting approximately 20,000 km from the earth surface. The satellites emit signals
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containing information on satellite, its position, orbital parameters, etc. The receptor

receives this and process to come up with the location information.

Fig. 2.4. General Architecture of the Perception Task [21]

2.2 Sensor Fusion

Perception of environment gives the data to the autonomous car algorithm to take

action according to presence and absence of obstacles in it’s path. So the perception

should be accurate to make sure that the car is taking appropriate action in expected

and unexpected hazardous situations. Using a single sensor will not be adequate as

each sensor has it’s own accuracy and degree of error. So this includes a variety of sen-

sors placed in different arrangements to get accurate knowledge of the surroundings.

Incomplete and inaccurate information can result in fatal scenarios.

Sensor fusion can be explained as the process of combining incomplete and in-

accurate information together and coming up with a more detailed and accurate

information; which gives better understanding of the surrounding of ego vehicle. It is

unreasonable to assume there is a single sensor with accurate and detailed informa-

tion.
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Fig. 2.5. General Blocks of the Perception Task

Fig. 2.6. Comparison of Sensor Technologies [15]

There are many sources of information such as characteristic of a particular state,

prior beliefs about possible states, or knowledge about certain constraints and re-

lations, which can be used to obtain the required knowledge. In order to use the

information from sensors effectively we should be able to describe the information

accurately and how it can be used to present the actual information. Three elements

- the state, the observation model and the decision rule, are the essential components



11

of the data fusion problem. In data fusion problems the crucial step is to adopt a

model with desired uncertainty associated with it. These models will have a state and

observation variable to represent each targets. Probability method is the mostly used

method for describing and manipulating the uncertainties. Estimation is an integral

part of sensor fusion process. It gives an optimum estimate of the quantity. This is

based on a decision principle by taking the measurements as input and coming up

with an estimate. We receive a number of observations from multiple sensors and

using this information we find estimate of the true state of the environment.

In automotive sensor fusion applications, there are different kind of classification

available for sensor fusion. Depending on the level of abstraction there are two types

of fusion methods. The first is low level fusion. Here the fusion is done on the raw data

collected form the sensor before processing it. The second method is the high level

fusion. This method fuse the data after prepossessing sensor data, after collecting

features and information from raw data. The hybrid method make use of advantages

of the above two methods. Other category of classification is based on how sensors

are organised to perceive the surrounding. It can be complementary arrangement,

competitive arrangement or collaborative arrangement. The inaccurate information

by single sensor can be the result of sensor related issues it can be a hardware fault,

calibration problem or accuracy of sensor. Other issues are occlusions, climate issues.

Fig. 2.7. Low Level Fusion
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Fig. 2.8. High Level Fusion

Fig. 2.9. Hybrid Level Fusion
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3. CONCEPTS OF MULTI TARGET TRACKING

Object Detection and Tracking are the main methods of computer vision to infer

information from sensors. When the Object Detection gives information about the

presence of objects in a frame, Object Tracking goes beyond simple observation to

more useful action of monitoring objects. An autonomous vehicle should have knowl-

edge of position and other information about all the objects in it’s surrounding to

take appropriate action. By utilizing the information from a sequence of frames which

measured with timestamp, autonomous vehicle can come up with an estimate of the

positions of object in future timestamp. In forward collision avoidance, camera based

object tracking helps to distinguish the potential collision threats in terms of their

relevance to the decided path of the vehicle. The knowledge of moving objects around

the vehicle enables a driver assistant system to alert a driver of potential collisions

and dangers.

Target tracking has been studied for decades with numerous applications [1] [16].

Many methods has been introduced to solve the real time efficiency [1] and the occlu-

sion problem [14]. There are offline tracking algorithms [22] which evaluate on past

and future frames to generate efficient tracklets. But when comes to real time appli-

cations tracking should be online tracking methods [1, 2, 5]. With recent approaches

in the detection domains including CNN based [24] and traditional approaches with

feature vectors, the missed detections can be decreased, the precise bounding box

can be reported. The advancement in the detection and higher frame rates simpli-

fies the tracking method. The simple IOU tracker [11] introduced a method of data

association without using visual information, thus reported a decrease in the compu-

tational complexity and processing time. The method proposed by Bochinski, Erik

et al. integrated visual information too to handle longer occlusion with the increase

of complexity in computation. Many ADAS techniques are using object detection
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Fig. 3.1. Object Tracking Summary

and tracking as major part of the perceiving system. The knowledge of presence of

obstacles and their position are important for an autonomous vehicle. The vehicle

take control actions according to the presence, location and state of the object. The

tracking has major role in finding the dynamic motion of these objects. The ability

of tracker to track pedestrian motion will help the vehicle in appropriate breaking

action.

The object tracking method widely uses tracking by detection method [2] [3]. This

is the less complex and real-time method of tracking. Online tracking methodology

help the tracker to update it’s tracker accordingly, this makes the method less complex

and popular. The first stage of tracking by detection is detection from the sensor data.

On detection stage, the raw measurement is translated in to meaningful features, in

other words objects are located through detection. After this the located objects are

fed to the filter.

The state of the object in the surrounding are represented using random variable

concept. As this variable possess different states with probability assigned to it.

According to the probability value, the state of the system is given importance. These

variables will have the data which gives the state of the system. Statistical theories

are mostly used to design these kind of system, in that Bayes filtering [39] is highly
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Fig. 3.2. Object Tracking Flow

used to find the trajectories of object’s in motion. Here the state of the target is a

random variable with adequate uncertainties added, each possible state is represented

with a probability assigned with it in this scenario.

The feature based object tracking can be in to the steps as depicted in Figure

4.3. Raw data is collected by the sensors in the first step. The next step is filtering

the data from measurements of the environment. The data association stage finds

correspondence between measurement and tracks. Many methods exist for association

of tracked objects with measurements. The update stage of the object’s state estimate

is the backbone of the tracking procedure. The object management module decides

whether objects should be tracked When the measurements are missing. When new

detections are triggered the management module decides whether it should be added

as new tracker.

3.1 Bayes Theorem in Object Tracking

Measurement state of each objects are modelled as random variable in object

tracking problems along with the uncertainties from environment. Bayes filtering

approach is fundamental of complex methods used to solve object tracking problems.

Multi object tracking calculates the number of object present in the frame and it also
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Fig. 3.3. Basic Steps of the Object Tracking Procedure [15]
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calculate the objects states over time making use of measurement data z(k) (which

is inaccurate, noisy or occluded) from various sensors and the estimate using process

model allotted for dynamics of the object (Z|X), where X are all object states [18].

Applying the Bayesian rule with knowledge of all measurements Z(1:k) = (z(1), . . .

, z(k) )T until time k, knowledge base at time k can be computed using:

p(x(k)|Z(1 : k)) =
p(Z(1 : k)|x(k))p(x(k))

p(Z(1 : k)) (3.1)

p(x(k)|Z(1 : k)) =
p(z(k)|Z(1 : k), x(k))p(x(k)|Z(1 : k − 1))

p(z(k)|Z(1 : k − 1)) (3.2)

The probability distribution function in Equation 3.2 depends on all preceding

measurements until time point k. Here the assumption is that current It is assumed

that the current measurement depends only on the current state and not on the state

history or measurement history. So the equation can be simplified as follows:

p(x(k)|Z(1 : k)) =
p(z(k)|x(k))p(x(k)|Z(1 : k − 1))∫

p(z(k)|x(k))p(x(k)|Z(1 : k − 1))dx(k) (3.3)

3.1.1 Kalman Filter

Kalman filter algorithm works using 2 procedures. First is prediction and the

second is update. Kalman filter will have a process model allotted to the targets in

motion. In the first step which is prediction, using process model the filter calcu-

lates the current estimate of the state along with uncertainties. In the second step

filter uses the measurement data from the sensors available and the estimate will be

updated using this data in weighted average. Kalman filter is a recursive algorithm.

It runs using the estimate from previous frame and the current measurement. Data
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Association has a major role in the update step, as it finds the association between

estimate and measurement. The below equation explain the algorithm:

Xn = FXn-1 +Bun + wn
(3.4)

Zn = HXn + vn
(3.5)

in this X n ∈ Rn, zn∈ Rm and un∈Rp are the track state, observation, and control

input vectors, respectively, at the time tn ; vn ∈ Rq and wk ∈ Rm are the process

and measurement noise sequences with co-variance matrices Q(t) ∈ Rq × q and R(t)

∈ Rm×n respectively; and F ∈Rn× n, B ∈Rn×p and Hn ∈Rm×n are the discrete-time

transition matrix, input gain, noise gain and measurement matrix, respectively.

The kalman filter solution can be found by following the below methods:

Predicted state:

X̂(n|n− 1) = FX(n− 1|n− 1) +Bun
(3.6)

where X̂(n |n-1) predicts the state X(n) based on the previous estimate of X(n-1).

This is the first of kalman filter with a process model assigned according to the motion

or trajectory of the target. At the time of missing detection one can come up with

the estimate of object location from this step.

Predicted measurement:

Ẑ(n|n− 1) = HX̂(n|n− 1)
(3.7)

where Ẑ(n|n-1) represents the predicted measurement at n th iteration based on

the sensor model and predicted state information.

Kalman gain:

K(n) = P (n+ 1|n)HTS(n+ 1)-1

(3.8)
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where K(n) represents the optimal Kalman gain that decides the importance of

the sensor data over the predicted state estimate using process model.

Updated state estimate:

X̂(n|n) = X̂(n|n) +K(n)ϑ (n)
(3.9)

Updated co-variance:

P (n|n) = P (n|n− 1)−K(n)S(n)KT(n)
(3.10)

After update with the measurement data the state will be the optimum possible

result with minimum error. This will be again a possible state with co-variance

associated with it.

3.2 Data Association Methods

One of the most significant step of Multi Object Tracking is Data Association.

This is mandatory when the vehicles are continuously going in and out of the sensor

coverage. Data association can be seen as a problem which find the correspondence

between measurement and existing tracks. A perfect data-association method is re-

quired to keep track of the continuously changing objects.

The Data Association should satisfy the following to be a good algorithm:

1. It should be able to find the appropriate track-measurement pairs in a clutter

environment and other unexpected conditions.

2. It should be able maintain a set of tracked trajectories (vehicles going in and

out of the sensor coverage).

The scenarios which need data association in multi object tracking are Clutter

Scenario and Dynamic Dataset Scenario. Great care has to be taken when dealing

with objects with overlapping measurement data. The bad association will result in

loss of efficiency, this can result in ID switches.
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Fig. 3.4. Summary of Different Data Association Methods
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4. OBJECT DETECTION

The process of finding the location of an object and classifying it in to different

categories, is called object detection. Human eye can very easily locate and classify

the objects present in the images. The visual system is very complex and it can

perform various complex task fast and accurate. The pipeline of object detection

model has different stages: region selection, feature extraction and classification.

Fig. 4.1. Object Detection Pipeline [12]

The first and foremost step of Tracking by Detection methods are detecting the objects

in each frame. The quality of detected object region is a necessary component of

MOT system. The below sections briefly explains the Object Detection adopted by

for the data from camera and LiDAR. For the better accuracy and fastness of the

MOT system detection is done using state-of-the-art detectors from official KITTI [4]

leader-board.
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4.1 3D Detection on LiDAR Point Cloud

Our Multi Object tracking system uses the data from the LiDAR data. The data

needs to go through the detection system before tracking the targets. This helps

the MOT to detect and delete unnecessary targets from tracking. Deep Learning

has achieved high progress in recent years for the detection of objects in 2D and

other segmentation applications. 3D object detection is crucial in many real world

applications. Recently proposed 2D object detections has the capability to understand

the varying pose and background clutters. 3D detection still faces many challenges.

One of the main sensors in autonomous vehicles for 3D data is LiDAR. This gives 3D

point clouds to capture the 3D structures of the scenes. PointRCNN [24] is used for

Fig. 4.2. 3D Proposals from LiDAR Raw Data [24]

3D object detection from point cloud data. PointRCNN [24] is a precise and powerful

method for 3D detection. This method work on 3D Point clouds for detecting the

objects. The structure of this method contains two steps. The initial step generates

3 Dimensional box in a bottom-up manner. Using this 3 Dimensional bounding

boxes the initial step segments the foreground points. Then it produce a number of

bounding box proposals from the segmented points. The next step of this method

does canonical 3D box refinement.

PointRCNN [24] outperforms other methods with remarkable performance and it has
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Fig. 4.3. The method of Object Detection from LiDAR 3D Data [24]

high rank on the KITTI [4] dataset. Choosing a high accuracy detection will result

in higher accuracy of tracker while following the Tracking by Detection method. This

method achieves better performance by using only LiDAR point cloud data compared

to the other methods which used LiDAR and RGB image. This method showed poor

performance compared to the methods which used multiple sensors on pedestrian

data. This due to the fact that dimension of the pedestrians is small. An image can

capture high characteristics than an image also be a reason for poor performance on

pedestrian.

4.2 2D Detection on RGB Images

Faster R-CNN consists of two networks, region proposal network and a convolution

neural network. Region proposal network is responsible for proposing the regions or

the bounding box whereas the CNN is responsible for the classification. The faster

R-CNN architecture makes use of feature maps to generate region proposals. As this



24

Fig. 4.4. Sample Detections on Point Cloud

approach reuses the feature map generated through CNN and does not use a brute

force technique such as the sliding window the computation cost is low The further

section discusses the components of faster R-CNN.
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Fig. 4.5. Sample Detections on RGB Images

Anchors:

The anchor is the most crucial components in faster R-CNN [17]. Anchors are

boxes in faster R-CNN configuration with different aspect ratios of 1:1, 1:2, 2:1. It

is a very direct approach to train a neural network with four output Xi, Yi, Hi,

Wi to detect the bounding box of the object but this approach fails when there are

multiple objects in the image. This issue can be resolved by running the anchors at

each spot on feature maps generated by CNN [17]. The object detection accuracy

is measured using Intersection Over Union (IOU), so at the time IOU of a specific

anchor and ground truth label have a large intersection, the regression associated

with that anchor provides fine-tuned bounding box.
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Region Proposal network:

The features learned from the convolution neural network will be passed through

the Region Proposal Network. The RPN has 2 objectives; it is responsible for provid-

ing class scores, which is whether the object present or not present for each anchor.

Secondly, it is responsible for predicting the bounding box coordinates for the object

present in the image for each anchor, e.g., if the input feature map is 100×100. RPN

generates 2× 9× 100× 100 class scores for whether the object is present or not and

also generate 4× 9× 100× 100 coordinates for bounding boxes Xi, Yi, Hi, Wi.

Lloc(t
u, v) =

∑
SmoothLi

(tu − vi) (4.1)

where,

SmoothLi
(x) ={ 0.5x2 if | x |< 1 | x | −0.5 otherwise, (4.2)

The above formula is the loss function for regressors [17].

The Classifier:

The classifier is an important part of the Faster R-CNN network,and the CNN

is responsible for extracting features from the image and classifying the image. This

part of faster R-CNN can be modified, and various other CNN architectures can be

used to extract features for RPN. This network of CNN and RPN can be trained

jointly to classify images and predict bounding box. Object detection pipeline uses

region of interest pooling layer. It is used to find the region of interest. It scales the

image to a defied size.



27

5. MOT SYSTEM DESIGN

This section gives the explanation of Multi Object Tracking implementation on a

publicly available camera and LiDAR data. The camera based MOT system uses 2D

detection results from faster R-CNN and LiDAR MOT system uses 3D bounding box

detection results from the PointRCNN [24]. Generally, there are two types of MOT

systems. The first is offline tracking, which uses tracker results from current and

future frames. Tracklets are generated by linking the detections from the frames and

associating iteratively to construct the trajectory of objects in the entire sequence.

But Online MOT algorithms [1] [2] estimate the trajectory using the detections from

past and current frames, are more applicable to real time applications such as ADAS,

FCW and Navigation.

5.1 2D Tracking on Camera Data

The tracking can be viewed as combination of as combination of Object Detection,

Propagating the detection using Motion Model, Data Association and Managing the

Tracklets. The 2D object detector uses KITTI right camera images as the input and

output the best t bounding box of the detected objects. The major online tracking

methodology is tracking by detection. The major input of this tracking methodology

is detection results from the sensor data. The efficiency of this tracker highly depend

on the efficiency of detection method used. As discussed in the Section 5.2 the faster

R-CNN [17] method gives the detections on the image input. The input from the

detector is 2D bounding box data in KITTI tracking data format which is extreme

left, top, right and bottom coordinates of the detected objects. This coordinates are

used to find the center pixel, width and height of the bounding box to feed to the

state estimation algorithm.
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5.1.1 State Estimation

The Estimation Model represents the target motion from frame to frame. Knowing

the likely position of target in the future frame reduces the search area, hence increases

the accuracy of association. The popular motion models are categorized in to linear

and non-linear motion models. The linear motion model follows a linear movement

with constant velocity or constant turn rate. The non-linear model can represent a

non linear model accurately than linear one. A standard Kalman lter is an optimum

estimator when the state transitions are linear. This works under the assumptions

that the noise is Gaussian. If the model is not linear and the noise is Gaussian,

Extended Kalman Filter yields good results [40].

Fig. 5.1. Estimation Model [1]
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The proposed system uses Particle Filter, which is a sampling based recursive

Bayesian algorithm with each of the particle is selected to represent a possible state.

The filter starts with an assumption of a uniform distribution of the particles. The

particle Filter which is also known as bootstrap lter or survival of the ttest, represent

the posterior density function using a set of random samples with associated weights

and compute the estimate with these samples and the weights. It predicts and corrects

the future states and optimal possible state is found with smallest possible variance

error. As the number of samples increase, this becomes an equivalent representation

of posterior probability function and the estimate approaches the optimum value.

Prediction of lter model provides a reliable region which helps decreasing the missed

rate and reduced uncertainty of measured noise. The state of each particle is modelled

as [x, y, w, h, xvel, yvel, wvel, hvel], where x and y represent the horizontal and vertical

pixel location of the center of the target, while the scale w and h represent the width

and height of the targets bounding box respectively.

5.1.2 Data Association

The core of Multi Target Tracking is data association and track to track associa-

tion methods. The goal is to identify a correspondence between the sensor measure-

ments/detections and the pre-existing tracks. Erroneous assignment of newly detected

objects to the existing tracks will result in significant drop of accuracy. Generally,

multi-scan methods are preferable in situations where there are a lot of false alarms

and missed detections. However delaying the association to include future information

will negatively affect the real-time capabilities.

IOU(a, b) = Area(a)∩Area(b)
Area(a)∪Area(b)

When using sufficiently high frame rates, detections of an object in consecutive frames

have high overlap IOU (intersection-over-union) [1]. If the above requirements are

met, tracking becomes simpler and can be implemented even without using image
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Fig. 5.2. Data Association Between Multiple Frames. Unique ID has
given for Unique Tracker.

information. We use a simple IOU tracker which essentially continues a track by

associating the detection with the highest IOU to the tracklets predicted from the

previous frame, if a certain threshold IOU is met. The overall complexity of this

method is very low compared to other trackers. As no visual information used it will

result in fast ltering procedure. As shown in the Figure 6.2 unique tracks has given

unique ID which is mapped to a unique color for the bounding box. This way the ego

vehicle can have the dynamic nature of the moving object.

5.1.3 Tracklet Management

When new objects enter the frame and leave, unique identities need to be created

and destroyed accordingly. Any detection with overlap less than σ IOU (The minimum

criteria for the association) is considered as an not tracked object and created a new

identity for it. The tracker is initialized with the bounding box parameters such as

[x, y, w, h] with velocity set to zero. Tracks which are not detected for Nlost frames

are terminated. This will prevent the growth in number of tracks and accumulating

error from the prediction with out having any detection to correct. The Nlost is set
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to 3 frames for object re-identication if available and did not make it a high value as

this will increase the total tracks, thus computation of the tracks which might have

left the frame already.

Fig. 5.3. Track Management for Online Tracking

Fig. 5.4. Sample Frames for New Track Creation
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5.2 3D Tracking with Point Cloud Data and Image Data

We use 3D detector described in Section 4.1 to obtain bounding boxes of the

objects present in LiDAR point cloud data. Then 3D Kalman filter has used for the

state estimation of each tracks for the next time frame. Later Hungarian algorithm

[11] has adopted for data association. All the modules in the process are standard

and we made sure to use this way to make the model to run as real time. As in the

previous camera based MOT method, the 3D tracking explained here is not in 2D

image space. This method does the tracking in complete 3D domain. The standard

MOT benchmark from KITTI supports only 2D MOT evaluation. The convention

to evaluate the 3D MOT is to project the 3D MOT tracker outputs to image plane.

The 3D MOT system implemented has the same steps as in previous 2D MOT. The

difference is in the domain tracking is implemented. As the method tracks in 3D space,

the design includes 3D appearance and motion in 3D plane. As our system is an online

method at each stage of estimation and association it uses the state parameters from

the current time and the tracker information form the previous frame. The 3D MOT

is then associated with the previous 2D MOT after converting the 2D MOT to 3D

in point cloud plane. The architecture utilizes both a deep network and geometric

optimization method. ResNet-34 CNN extracts a feature vector from the image.

These are then fed to a fully-connected network with three layers to output the 3D

box As discussed in Section 4, the advancement in the detection methods contribute

highly to Tracking by Detection method. The object detection used here gives a set

of 3D bounding box at each time frame. Each detection can be represented as (x, y,

z, l, w, h, , s).

5.2.1 State Estimation

The 3D MOT uses standard Kalman FIlter for the state estimation. The system

has modelled using 9 parameters T = (x, y, z, l, w, h, vx, vy, vz). A complete

mathematical explanation of the Kalman Filter is given Section 3.1.1. The state of
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Fig. 5.5. LiDAR and Camera Based 3D MOT System Overview

Fig. 5.6. Format of 3D Detection Result from LiDAR Point Cloud

the system is propagated through time using constant velocity model. The parameter

in state representation are as follows:

x - X coordinate of the center 3D of bounding box

y - Y coordinate of the center 3D of bounding box

z - Z coordinate of the center 3D of bounding box

l - Length of 3D box

w - Width of 3D box

h - Height of 3D box

vx - Velocity along X coordinate

vy - Velocity along Y coordinate

vz- Velocity along Z coordinate
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5.2.2 Data Association

As in the case 2D Multi Object Tracking, Data Association plays a crucial role

in 3D Multi Object Tracking methods also. The data from the detections has to

be matched with the predicted trackers for the updation of prediction with sensor

measurements. We use Hungarian method [11] for data association in our 3D MOT

on LiDAR data. The affinity matrix is calculated for an n×mdimension, where n and

m are the count of detections and predicted trackers respectively. This computation

is done by finding out the 3D IOU between each pair of detection and tracker. Then,

the bipartite graph matching problem can be solved using hungarian algorithm in

polynomial time. We have set an IOU min to reject the matching when the IOU is

less than this value.

Fig. 5.7. Sample Results of Data Association Between Frames

5.2.3 Tracklet Management

This stage take care of the memory used while implementing an online Tracking

methodology. When an existing object leaves the frame and another one enters,

the tracklet management should be able to remove the first and add the second to

the memory. We consider all the unmatched detections are as new object coming

in to the sensor field of view. But to reduce the tracking of false positives, new

trajectories will not be created until it has been continually detected in the next Fmin

frames. When the new object has detected more than Fmin, it would be added to
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the trackers with a new unique ID and the state of the tracker is initialized with

the position coordinates from the detection and velocities are set to zero. We also

consider unmatched trajectories as objects leaving the sensor FOV. To avoid deleting

true positives which is result of missing detection in certain frames, we keep tracking

these object for a Age max before deleting it from the memory. This can reduce the

multi object tracking accuracy.
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6. MOT METRICS AND DATASET

6.1 MOT Performance Metrics

The evaluation of performance of multi object is done using available evaluated

MOT benchmark metrics proposed by Milan et. al [5]. The evaluation metrics defined

and utilised are described below.

6.1.1 Multi Object Tracking Accuracy (MOTA)

Multi Object Tracking Accuracy accounts for the FP ( False Positve), FN (False

Negative) and Identity Switches (IDSW) to measure the total performance of the

implemented tracking methodology.

MOTA = 1− Σt(FN t + FP t + IDSW t)

ΣtGT t

(6.1)

where t is time stamp and Ground Truth is represented using GT.

6.1.2 Multi Object Tracking Precision (MOTP)

Multi Object Tracking Precision calculates the preciseness of the location esti-

mated by the tracked and the ground truth. This calculates the overlap region be-

tween the estimation and Ground Truth.

MOTP =
Σt,gdt,g

Σgd
(6.2)

dt,g is the overlap quantity between tracked object with it’s Ground Truth. The

overlap is calculated using intersection over union.
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6.1.3 Track Quality Issue

This calculates in total how many trajectories are precisely tracked and how many

are lost from the tracking. A method is adopted by diving the track comparing with

ground truth trajectories. Mostly Tracked (MT) correspond to at least 80% coverage,

and Mostly Lost (ML) are the track which is tracked for less than 20%.

6.2 KITTI Dataset

Fig. 6.1. KITTI Data Recording Platform Setup [4]

After implementing an algorithm it is crucial to test the algorithm in real time data.

For an autonomous vehicle environment testing in synthetic data will not give an

accurate results. The verification in this case is done using on-synthetic data. The

dataset - KITTI [4] which is a publicly available dataset, provides real world recording

using various sensors on the car drove in Karlsruhe, Germany. The KITTI dataset
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contains 21 training and 29 testing video sequences. For each sequence it has LiDAR

point cloud, RGB images and calibration matrices of each sensor. The total number

of frames available is 8008 and 11095 for training and testing. KITTI gives a 2D Multi

Object Tracking Evaluation, in this the evaluation is done using 2D boxes projected

in the image plane. If the tracker is a 3D tracker the evaluation is done by projecting

the points on the image plane.
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7. RESULTS AND DISCUSSIONS

7.1 Camera 2D MOT

This method tracks the detected ’Car’ in the surroundings of ego vehicle in im-

age plane. The results are in 2D coordinates in the image plane. This method uses

constant velocity model to propagate the tracker. Most of the complex Multi Ob-

ject Tracking methods achieve high efficiency at the cost of run time performance.

But for an autonomous vehicle the real time processing is critical. The method of

implementation here is taken care this. The system proposed is considered this in

every stage of its implementation and reduced the processing complexity by removing

appearance features from tracker algorithm. The proposed model used one camera

sensor for tracking. This method put forward a low cost method for tracking by using

a single sensor data. The proposed tracker method can run at 250 Hz (frames per

second) on Intel i7 2.5GHz machine.

7.1.1 Results

Fig. 7.1. The Tracklets with Unique Identity has given Unique Color.
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Fig. 7.2. The Tracklet with Occlusion in Camera due its Orientation
Against Ego Vehicle has been Tracked

Fig. 7.3. The Tracklet with Missing Detection has been Tracked

Figures 7.2 and 7.3 gives sample scenarios where tracker could go beyond detection for

detecting the presence of objects in the frames. The below table provides quantitative

results of the MOT system. The evaluation is based on CLEARMOT metrics. The

definition of CLEARMOT metrics are given in Section 6.1. The comparatively low
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Fig. 7.4. Results of 2D MOT on KITTI Video Sequence-0056 of City Category

Table 7.1.
Results for 2D MOT on Camera Data

Tracker Name MOTA (%) MOTP(%) MT(%) ML(%)

Proposed 2D Tracker 32.2 71.2 10.8 30.8

accuracy and precision accounts for the false positive tracks, false negative tracks and

the association issues. The model has implemented using camera data, which will

have a degree of error. The result can be modified using multi sensor technology.

The multi sensor technique gives the system capability to compensate the error of

one sensor with the other. As a result high accuracy and precision can be achieved.

7.2 3D MOT with Multi Sensor Data

This method uses LiDAR data detections and the tracked trajectories from cam-

era data projected to 3D coordinates. The fusion of two sensor help to reduce the

measurement uncertainties of each sensor and gives an accurate detections than when

use a single sensor. In addition to this fusion of multiple trackers can produce a better
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output in accuracy and dependability. The 3D MOT system implemented is tested on

data available KITTI dataset and evaluated on CLEARMOT metrics. As the tracking

system does not need any training, we used training sequences for evaluation.

7.2.1 Results

Fig. 7.5. 3D MOT in Cluttered City Traffic

7.2.2 Comparison with the Benchmarks

The quantitative comparison of our system and previous state-of-the-art shows

that our MOT system with LiDAR and Camera perform good in all MOT evaluation

metrics. Moreover our proposed system runs at a rate of 180 frames per second

on Intel i7 2.7GHz machine. The MOTA scores reflect that the tracker has high

degree of accuracy with 84.62%. The MOTA is lowered chiefly by the false positives

which are tracked even the object leaves sensor FOV. The number of FP and IDSW

are comparatively low. The MOTP score is also shows improvement compared to

the state of art system on KITTI benchmark board. Despite perfect tracking, this
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Fig. 7.6. Scenario of ID Switching Illustrated

Fig. 7.7. Results of 3D MOT on KITTI City Category
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Table 7.2.
Results for 3D MOT on LiDAR + Camera Data

Method Type MOTA(%) MOTP(%) MT(%) ML(%)

Proposed 3D MOT 3D 84.62 85.81 74.1 2.48

BeyondPixels 2D 84.24 85.73 73.23 2.77

3D-CNN/PMBM 2.5D 80.39 81.26 62.77 6.15

extraCK 2D 79.99 82.46 62.15 5.54

DSM 3D 76.15 83.42 60.00 8.31

account for the partial overlap of tracker with the GT. Partial information is available

when object enters frame from a long distance. This causes the MOTP to 85.81%.
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8. SUMMARY

The motivation behind this thesis has been the development 3D Multi Object Track-

ing using the sensor data from camera and LiDAR. During this thesis the tracking

has done in camera images first with 2D bounding box detection and then assigning

a dynamic model to it for the state estimation. The predicted object locations are

updated with the measurement at each time frame. The estimation model used is

particle filter which is based on Bayesian theorem. The data association has done by

finding affinity score from the intersection over union. The object tracklets is then

converted to 3D box having 8 co-ordinates. This method implemented a lean way of

tracking with a single sensor technology, which is a single camera sensor. Later the

same procedure has implemented on LiDAR point cloud from the same data set. This

tracker is an 3D tracker in 8 co-ordinate system with constant velocity dynamic mod-

elling. The state estimation has done using Kalman filter algorithm. The predicted

states of objects are associated to the measurements using Hungarian algorithm. Both

trackers associated with simple fusion technique for better accuracy. The system has

evaluated on CLEARMOT [5] metrics. Chapter 7 in the thesis highlights the results

for both 2D tracking and 3D tracking.
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