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ABSTRACT 

 Thermoelectric (TE) devices are useful in niche applications that require reliability and 

durability, including energy harvesters for sensors, cooling electronics, and power generation at 

high temperatures. Assessing, optimizing, and implementing materials into practical TE devices 

and systems have been difficult theoretical and engineering problems.  The goal of this research 

is to develop a first-principles informed approach to analyze thermoelectric materials for 

potential practical applications. 

 TE materials and devices are traditionally quantified using a material figure of merit (FOM), 

zT, and device FOM, ZT. Using full numerical descriptions of band structures and solutions to 

the Boltzmann transport equation (BTE) in the relaxation time approximation (RTA), we 

examine how band convergence may or may not increase zT depending on the relative strength 

of intra- and inter-band scattering.  We compute zT vs. a generalized TE quality factor (b-factor) 

and examine a dozen complex TE materials showing none exceeds the performance of a simple, 

parabolic energy band.  In fact, a plot of zT vs. b-factor appears to be universal. We test this 

conclusion based on RTA solutions to the BTE using a simple treatment of scattering against 

more rigorous first-principles approaches.  

 In addition, we theoretically assess a low-cost TE oxide (2H-CuAlO2), which has durability 

at high temperatures and is earth abundant, making it attractive for applications. Finally, with an 

eye towards minimizing the $cost/kW-hr of thermoelectric energy generation, we discuss our 

approach to a few specific high temperature environments and discuss their viability as practical 

system level applications. 

  



 12 

1 INTRODUCTION 

1.1 Motivation 

 Thermoelectric (TE) devices are solid-state devices with applications in energy generation 

and cooling, however to date, as robust and reliable as these devices are, they have been limited 

by low conversion efficiencies [1]–[5]. The past three decades have witnessed the thermoelectric 

material figure of merit, zT, being raised from under a value of one to over two [5]. These gains 

have been primarily driven by a reduction in the lattice thermal conductivity of materials through 

the use of nano-structuring [6]–[12], and novel materials that have an inherently low thermal 

conductivity due to large discrepancies in the masses of their constituent elements or also so 

called “rattler” materials.  These advances, however, have not translated into working devices 

[13], due to a variety of practical issues that include but are not limited to; electrical contacts, 

doping feasibility, maintaining thermal gradients, material quality, packaging of the device, 

thermal contacts, and material costs just to name a few. As we approach the lower limit of the 

lattice thermal conductivity for common and even complex TE materials at room temperature 

and above, the variety of avenues forward for the field of thermoelectrics is being narrowed.  

 Despite recent advances in TE materials research, there have been limited, if any, 

demonstrations of materials or devices with figure of merit values greater than one for 

commercial use. The best opportunity for TE materials lies in specific niche applications by co-

development of new devices and systems. In this work, we theoretically assess the TE potential 

of a low-cost metal oxide (2H-CuAlO2), which has durability at high temperatures and is earth 

abundant, making it attractive for applications. Finally, with an eye towards minimizing the 

$cost/kW-hr of thermoelectric energy generation, we discuss our approach to a few specific high 

temperature environments and discuss their viability as practical system level applications.  

1.2 Status of Thermoelectrics 

 Because of their low conversion efficiency of at best around ~10% for TE devices, 

thermoelectrics have not found wide spread applications.  In instances where the reliability rather 

than the cost is a major consideration, such as in NASA spacecraft [14], or applications where 

the overall power generation needed is small, such as using waste heat to power low power 
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sensors and wireless electronics [15], thermoelectrics have found somewhat of a home.  The 

development of new thermoelectric materials with high efficiency is paramount to expanding the 

use of TEs beyond certain niche applications. Progress in thermoelectrics had all but halted until 

new ideas for nano-structuring of materials to lower the lattice thermal conductivity were 

introduced in the 1990’s, the effect of which can be seen in Figure 1.1 [13], [16] .  

 

  
Figure 1.1. (a)General overview of the efficiency of thermoelectric materials and structures over 
time. (b) zT versus time for best near room temperature thermoelectric materials. 

 With the use of nano-structuring, substantial progress in increasing an important efficiency 

figure of merit, zT, has been achieved [10], [17], [18], however many of the data points in figure 

1.1 have been viewed with considerable skepticism for a variety of reasons. zT values of above 

1.5 have been demonstrated with some degree of reproducibility, however there have been 

questions about some of the recently reported results above a zT of 2 [19]. Much of this can be 

attributed to the difficulty in achieving accurate experimental thermal and electrical 

characterization techniques, with many papers skirting some of the unresolved issues. SnSe has 

been a popular and successful material in reaching high zT values, however even with its 

success, some of the data points are still in question.  Some of the recently introduced cuprate 

materials have achieved “high” zTs in both high and low temperature ranges with some degree 

of reproducibility, but measurement and the theoretical conclusions from these high 

measurement values remains an issue. Current trends in thermoelectrics are directed more 

towards room temperature applications, however as can be seen in Fig 1.1(b), little progress has 

been made in increasing the device zT above a value of one.  The materials that have gained 

recent interest in the room temperature range continue to be Bismuth based materials utilizing 
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nanostructuring with a variety of doping elements and methodologies, with novel materials 

different from Bi/Sb/Te in this temperature range remaining elusive.      

 

 The approach of increasing zT by nano-structuring is reaching its limits over the last 20-30 

years, and still higher zT’s are needed to expand the use of thermoelectrics to a more prominent 

role in mainstream applications. The focus is now shifting from reducing the lattice thermal 

conductivity to the exploration of ways to improve the electronic and device performance of 

thermoelectric systems.  Many ideas to improve the electronic performance have been introduced 

over the past 60 years, but there has been little progress.  The number of papers on this topic 

continues to increase, but progress has been elusive. A large amount of effort has been made into 

researching and developing novel materials with high efficiency and subsequently high zT values 

at a variety of temperatures [6], [7], [20]–[26].   However, the translation of high efficiency 

materials into working devices has been elusive. If material gains cannot be translated into actual 

devices, much of the research into high zT materials will be for naught.  

1.2.1 Devices and Applications 

Thermoelectric materials and devices can be used as both solid-state coolers and electric 

power generators. As shown in Fig. 1.2, these devices consist of n and p type semiconductors 

(with a two “legs” shown in fig. 1.2a as one unit) with multiple units that are electrically 

connected in series to form typical TE modules in fig 1.2b.  With this setup, the device is 

thermally connected in parallel. By applying a current to the device, the top contact (or bottom 

contact depending on the direction of current applied) cools below the ambient temperature of 

the device.  Conversely by applying heat on one side and a heat sink to the other contact, electric 

power is generated. Even with relatively low conversion efficiencies of ~10% for TE devices 

when used as electric power generators, these devices do offer advantages for some applications.  

They have no moving parts, are reliable and robust at a variety of temperatures (depending on 

the material), and have long operating life times. To design devices for optimum efficiency and 

space requirements, a TE leg length, and a Fill Factor (FF) (i.e. the ratio of the module surface 

area to the total surface) are generally used to take into account electrical and thermal properties 

and device geometries of both the n and p legs to design the device, with performance and cost 

optimization as manufacturing constraints [3], [27]–[32] being considerations as well.   
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a) 

b)  

Figure 1.2. Fig. 1.2a is the general layout of a thermoelectric cooler and generator designed in 
Sentaurus. Fig. 1.2b on the left is a TEG module design done in Comsol with a 100 K 
temperature difference.  The left graphic shows the VOC distribution in color, while the graphic 
on the bottom right shows the same module with colors representing temperature distribution.   

 Figure 1.2a is general schematic for TE modules in Synopsys® Sentaurus Device with 

module level device performance simulated using packages such as Comsol Multiphysics® [33] 

in Fig. 1.2b.  An interesting byproduct of these simulations is that simple, back of the envelope 

calculations can be relatively accurate estimations of the overall power output of a TEG 

(especially when considering an “infinite” heat sink and heat source temperatures).  For example, 

using basic TE equations with simplified and reasonable input material parameters for the above 

structures one can estimate an overall power density of 6  µW cm2 , while the value from 

simulation is found to be 10  µW cm2 . However, the reality of the tightly coupled material 

parameters, shown next in section 1.3, in tandem with device considerations (i.e. fill factor, 

operating temperature, temperature differences, etc) makes maximizing the efficiency and cost a 

difficult challenge indeed. 
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1.3 Thermoelectric Basics 

1.3.1 Thermoelectricity  

In 1820, Thomas Johann Seebeck was the first to recognize the thermoelectric effect using a 

loop of two different metals with the two junctions being kept at different temperatures [34]. 

When he brought a compass close to the loop, the needle would deflect depending on the 

orientation and direction of the loop and compass. Seebeck incorrectly deduced that temperature 

differences produced a constant magnetic field [35] within the loop, when in reality, the 

temperature difference generated a current, with the current producing a voltage in the loop, the 

effect appropriately named the “Seebeck effect”. The current in the loop produced the magnetic 

field that Seebeck detected.  Just as in a gas or liquid, when a temperature gradient is maintained 

between the ends or junctions of a material, the carriers on the hot side will want to diffuse to the 

cold side.  When two different materials are used, or a single material is in open circuit 

conditions, a Seebeck voltage will be produced [19]. The ratio of the open-circuit voltage to the 

applied temperature gradient is called the Seebeck coefficient (S), 

 ΔVoc = −SΔT  .          (1.1) 

The negative sign in front of the Seebeck coefficient produces a positive voltage on the higher 

temperature side when the carriers are negatively charged, as in the case for electrons, whereas 

for positive holes, the Seebeck coefficient is positive, and the overall voltage is negative.  

In 1834 the “dual” effect was discovered when Jean Charles Athanase Peltier found a 

temperature difference was created when a current was forced through two different metals.  The 

heat carried by an electron or hole was emitted or absorbed at the junction due to the difference 

in energy levels of carriers for the two different metals [36]. When the current direction was 

reversed, the junction went from either heating to cooling, or vice versa. This rate of cooling or 

heating is directly proportional to the current flowing through the junction, which is given by, 

!
Q = π A −πB( )I = IΔπ .          (1.2) 

The difference in the Peltier coefficients, defined as (Δπ ), can be thought of as the difference in 

the amount of energy carried per unit charge for two particular materials.  
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In 1851 William Thomson found what is referred to as the Thomson effect [37].  Sometimes 

considered a separate effect, in fact this effect is simply due to the temperature dependence of the 

Seebeck coefficient. Thomson showed that the ratio of the Peltier and Seebeck coefficients is 

equal to the temperature as, 

 π = TS .           (1.3) 

There are additional effects to those described above that take place within a thermoelectric 

material or device that can be important as well.  Two of these are Joule heating and heat 

conduction, which can be described by Fourier’s law [37] and is due to heat being carried by 

phonons diffusing from the hot to cold side. Fourier's law relates the heat current density   
!q  to 

the temperature gradient by the thermal conductivity κ  as, 

  
!q = −κ

!
∇T .             (1.4) 

By forcing a current 
  
Jx =

1
A

Ix , with Jx being the current density, through a thermoelectric 

material with a temperature gradient, a voltage difference can be produced which can be related 

to the electric field as, 

 Jx =σ Ex −σ S∇T  .           (1.5) 

The total amount of heat that is transported through a material is carried by, electrons, holes, and 

phonons and is called the heat current density. By combing the above equations eqns. (1.3-1.6) 

with the total thermal conductivity, κ , given by the sum of the lattice thermal conductivity,  κ L , 

and the electronic thermal conductivity  κ e , yields the total heat current density,  

 qx = π Jx − κ L +κ e( )∇T = π Jx −κ∇T  .       (1.6) 

Eqn. (1.6) can be used to show the correspondence between how the application of a temperature 

gradient can produce a voltage difference through the Seebeck effect, or how an applied current 

can produce a temperature gradient through the Peltier effect. Due to the Onsager reciprocity 

[38], all the above thermoelectric equations are reversible.  However, once Joule heating is 
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included, the symmetry of the thermoelectric equations is broken, and the overall heat 

transported is no longer conserved in the above equations.  

1.3.2 zT and Power Factor (PF) 

We will see next how these parameters intertwine when trying to optimize the efficiency and 

overall power generation or cooling capability of a thermoelectric material or device.  Since each 

of these electronic parameters is inexorably linked, trying to optimize one will lead to a reduction 

or increase in another.  A further difficulty involves the lattice thermal conductivity  κ L  of a 

material, normally assumed to be independent of the electrical parameters, can in fact be 

dependent on the same quantities as the electronic components as well. This makes sorting out 

the best strategy for optimizing a material or device challenging. We now look to quantify an 

actual thermoelectric device’s performance, focusing on optimizing the efficiency for a 

thermoelectric generator (TEG) of a single material (i.e. only n or p type), with similar results 

extending to a thermoelectric cooler, albeit with a different form of the same general result [35].  

In a TEG the amount of heat flowing into and out of a device using equations (1.1-1.6) can be 

written as (including Joule heating), 

  

qin = ST1I +κ T1 −T2( )− 1
2

RI 2

qout = ST2I +κ T1 −T2( ) + 1
2

RI 2

 .        (1.7) 

with T1 and T2 being the temperatures of the two contacts, and R the resistance of the material in 

between. 

The overall electrical power generated can be written as, 

  
Pgen,el = qin − qout = SI T1 −T2( )− RI 2 .        (1.8) 

For a TEG to power a load, a load resistance must be including in the analysis, with basic voltage 

division giving the output power as, 
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Pgen =
ΔVoc

2

R
Rload R

Rload R +1( )2 ,         (1.9) 

with the open circuit voltage given by (1.1). The overall efficiency of the device is now given by, 

  

η =
Pgen

qin

= ΔT
T1

M

M +1+
M +1( )2

S 2 Rκ( )T1

− 1
2
ΔT
T1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

.      (1.10) 

with  M = Rload R  being the load ratio and   T1 −T2 = ΔT , and S coming from eq. (1.1).   We now 

optimize these equations in two ways; first we maximize the efficiency, eq. 1.10, with respect to 

the load ratio M, and secondly we optimize eq. (1.8) with respect to current.  These correspond to 

1) maximizing the efficiency of a material given a particular heat flux, and 2) optimizing the 

total output current.   

 Solving eqn. (1.10) for the maximum efficiency gives a load ratio of 

  
M = Rload R = 1+ z T1 +T2( ) / 2 = 1+ zT . The performance of a TE device is related to a 

“material” figure of merit, zT, which can be written as [1], [2], [39], [40], 

  
zT = S 2T

R κ( ) =
S 2T

R κ e +κ L( ) =
S 2σT
κ e +κ L( ) ,       (1.11) 

where   S ,  σ ,  κ e , andκ L are the Seebeck coefficient, electrical conductivity, electronic thermal 

conductivity, the lattice thermal conductivity, and  T  the absolute or average temperature. This 

equation can be derived in a similar fashion from the definitions of the Onsager reciprocity 

relations in open circuit and closed circuit conditions for heat transport [35]. However, the 

concept is simple, and relates to our further studies in chapters 2 and 3 regarding what we will 

define later as the “b-factor”.  We see from (1.10) that maximizing efficiency is tantamount to 

maximizing zT, hence why most TE materials research is focused on maximizing zT. We can 

understand this from eq. 1.11, for the most efficient n-type TEG we want all of the heat to be 

carried by electrons, but with each electron carrying a small amount of heat.   
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 However, when we optimize eq. (1.8) for current we find the usual result from circuit theory 

that   M = Rload R = 1 .  This gives a maximum power generated equal to 
  
Pgen

MAX = S 2ΔT 2

4R
. This 

quantity is closely related to the power factor (PF) defined as,  

  
PF = S 2

R
= S 2σ .          (1.12) 

Therefore, to maximize the power generated ( 
Pgen ), the power factor should be maximized [41]. 

This can be explained physically as follows; for a given heat flux, the most efficient device 

design is one with the highest zT.  However, when a device can sustain a large temperature 

gradient and the device design is fixed, more heat flux yields more electrical power out, i.e. the 

PF should be optimized. Therefore, when an “infinite” heat sink and heat source are available, 

only the power factor (PF) matters for how much total power can be produced. 

1.3.3 Landauer approach to Thermoelectrics  

In this section, we will briefly outline the Landauer approach to thermoelectric transport 

theory [42], [43]. This approach can be applied to electrons, holes, phonons, or energy transport 

in general from the ballistic to diffusive limits, and can be shown to be equivalent to Boltzmann 

transport theory in semi-classical transport and can be related to the non-equilibrium Greens 

function (NEGF) concept in the quantum regime [43]. The contacts each have an energy given 

by the Fermi function,  

  

f0 E − EF( ) = 1

1+ e
E−EF
kBT

,         (1.13) 

with T being temperature,  kB Boltzmann's constant, and EF is the Fermi level. The electrons in 

each contact quickly thermalize so that each contact stays very close to equilibrium. The contacts 

are considered to be perfect, without any back-reflection from carrier or boundary scattering.  To 

understand the basics of transport in the Landauer form, consider eqn. (1.14) below that 

describes the current through a material with two contacts just described,  
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I = 2q

h
T E( )M E( ) f1 − f2( )dE∫ ,        (1.14) 

where the symbol  T E( )  is the transmission, M(E) is the distribution of modes, and   f1 − f2  is the 

difference in the Fermi function for contact 1 and contact 2. The transmission is a number from 0 

to 1 that describes the probability that an electron entering the material or device from one 

contact leaves through the other.  See [42] for a more detailed discussion about transmission 

from the diffusive to ballistic limits. Since the Fermi function describes the occupation 

probability of electrons, a positive difference between   f1 − f2  provides a net positive probability 

for electrons to move from one contact to the other. When the difference in Fermi functions is 

due to a small applied voltage with the temperature remaining constant,   f1 − f2  can be 

approximated as,  

  
f1 − f2 ≈ −

∂ f0

∂E
qV .          (1.15) 

For our purposes in thermoelectrics we are also concerned with temperature differences, thus 

  f1 − f2  for small temperature differences can be written as,   

  
f1 − f2 ≈

∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

E − EF

T
ΔT  .         (1.16) 

In both approximations the  “Fermi window” 
  

∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

 replaces   f1 − f2 .  The Fermi window acts 

as a weighting function, allowing only carriers within a small range of energies to contribute to 

current flow.  

 The distribution of modes M(E) is given by,  

  
M E( ) = h

4
vx
+ E( ) D E( )          (1.17) 
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with D(E) the density of states and 
 

vx
+ E( ) is the average forward directed velocity in the x-

direction. All that is needed to describe the distribution of modes is the electronic dispersion or 

E(k) diagram for the device or material in question. This quantity as we will see later is of 

paramount importance when trying to understand the parameters that dictate what makes a good 

thermoelectric, especially when the scattering in a material can be described by a constant mean 

free path.  As described in [43], the distribution of modes can be thought of as a distribution of 

lanes on a highway, with a velocity and location in energy space.  The more modes or “lanes” 

there are around the Fermi window, the more carriers can travel through them.  

 Using the Landauer formalism as discussed, the thermoelectric transport parameters can be 

written compactly using a simple definition of “energy moments” given by the integral H with 

moment or order j [44], 

  
H j =

E − EF

kT
⎛
⎝⎜

⎞
⎠⎟

j

T E( )M E( ) −
∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

dE∫ .       (1.18) 

We can now understand the basic thermoelectric elements as combinations of the zeroth order 

(conductance (G)), first order (Seebeck coefficient (S)), and variance (electronic thermal 

conductivity ( κ e )).  The conductivity is,  

  
σ = ′σ E( )dE

−∞

+∞

∫ = 2q2

h
H0 ,         (1.19) 

with  
  
′σ E( ) = 2q2

h
T E( )M E( ) −

∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

.       (1.20) 

The differential conductivity can be written as, 

  
′σ E( ) = q2Ξ E( ) −

∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

,         (1.21) 

with  Ξ E( )  the well known parameter, termed the transport distribution [30].  
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The Seebeck coefficient and electrical thermal conductivity are, 

  
S = − k

q
H1

H0

,           (1.22) 

and 

  
κ e =

2k 2T
h

H2 −
H1

2

H0

⎛

⎝⎜
⎞

⎠⎟
 ,         (1.23) 

respectively. Eqns. (1.19, and 1.22-1.23) are identical to the quantities given in section 1.2. 

Using these equations in the open source tool, LanTrap 2.0 [32] with an assumption for 

scattering contained in the transmission function, with input from a DFT-generated electronic 

band structure, all the relevant quantities can be computed directly.   

1.4 Thesis Objectives and Outline 

The focus of this work is on examining the thermoelectric potential of transparent 

conducting oxides (TCOs). We specifically focus on p-type and n-type 2H-CuAlO2. A few 

studies have examined the effect of strain, chemical composition, and doping concentration on 

this material’s band structures [45]–[47], but the actual effects on TE parameters such as PF and 

lattice thermal conductivity hasn’t, to our knowledge, been addressed.  TCOs’ high Seebeck 

coefficient (for large band gaps), high thermal stability, and earth abundance make them suitable 

for thermoelectric power generation, particularly in high-temperature regimes with the potential 

for low costs [48]–[51].  

In this work I will deploy first principles informed analyses using Quantum Espresso [52] to 

generate electron and phonon band structures from the DFT (density functional theory). These 

outputs will be coupled with the open source tools LanTrap 2.0 [53] and the D3Q-Thermal2 

package interfaced to QE [54], [55], to compute TE transport properties, as well as compact 

models using simple parabolic bands designed in Matlab for TE optimization. The thesis is 

organized as follows: 
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 Chapters 2 and 3 set the stage by addressing the question: What makes a good 

thermoelectric material from an electronic perspective? 

• In Chapter 2, we study complex electronic band structures, with multiple valleys or 

bands at the same or similar energies. In this chapter, we demonstrate how first-

principles band structures coupled with recently developed techniques for rigorous 

simulation of electron-phonon scattering provide the capabilities to realistically assess 

the benefits and trade-offs associated with these multi-band materials; in contrast to 

common wisdom in TEs, we show that multiple bands or valleys have a small effect on 

zT.  

• In Chapter 3, we use full, numerical band structures and solve the Boltzmann equation 

in the relaxation time approximation using energy-dependent scattering times informed 

by first principles simulations to compute the thermoelectric figure of merit, zT vs. a 

generalized thermoelectric quality factor. A key finding was that no matter how 

complex the band structure, all TE materials examined display a universal behavior, i.e. 

they all have an optimum zT vs. generalized quality factor that is identical to that of a 

parabolic band. 

 

Having set the stage, chapters 4 and 5 examine the thermoelectric potential of 2H-CuAlO2. 

• In Chapter 4, using first principles calculations, the use of strain to adjust electronic 

transport and the resultant thermoelectric (TE) properties of 2H phase CuAlO2 is 

discussed. The results are explained in the terms of the thermoelectric transport 

distribution and the Landauer distribution of modes.  The two key findings were that 

under certain strain conditions, both p and n type transport can be realized, and 

secondly, that when a constant mean-free-path is assumed, the distribution of modes 

dictates the performance of the material.   

• In Chapter 5, using first principles calculations, the use of strain and grain boundaries 

to adjust the phonon transport properties and the resultant lattice thermal conductivity 

of 2H-CuAlO2 is discussed. The average crystalline lattice thermal conductivity is 

found to be around 32 W/(K-m) at room temperature and falls to between 5-15 W/(K-

m) for typical experimental grain sizes from 3nm to 30nm at room temperature.  A 

second observation of this study shows that when grains of 3nm or less are assumed, 
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the thermal conductivity is generally independent of temperature for unstrained, 

compressive, or expansive strained structures. A positive +3% hydrostatic strain in 

crystalline 2H-CuAlO2 has a similar reduction of thermal conductivity compared to a 

sample with 3nm grain boundaries.  However, due to uncertainties in the fabrication 

process, grain boundaries appear to be the best method to reduce the lattice thermal 

conductivity in this material.   

• In Chapter 6, we summarize the thesis and provide suggestions for applications of the 

current work and discuss the potential of future work in this area. 
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2 ON THE USE OF BAND CONVERGENCE TO IMPROVE 
THERMOELECTRIC PERFORMANCE  

2.1 Preface 

The contents of this chapter have been extracted from the following publications with 

permission: E. Witkoske, X. Wang, M. Lundstrom, V. Askarpour, and J. Maassen, 

“Thermoelectric band engineering: The role of carrier scattering,” J. Appl. Phys., vol. 122, no. 

175102, 2017. 

2.2 Introduction 

The performance of a thermoelectric device is controlled by the material figure of merit [1], 

[2], [39], [40], 

  
zT = S 2σT

κ e +κ L

,           (2.1) 

where  S  is the Seebeck coefficient, σ  the electrical conductivity,  T  the absolute temperature, 

 κ e  the electronic thermal conductivity, and  κ L  the lattice thermal conductivity. How various 

material parameters affect  zT  is well understood (e.g. [1], [2], [39], [40],), but parabolic energy 

band analyses suggest that the prospects for improving the electronic contribution to  zT  are 

limited [56]. Indeed, much of the recent progress in increasing  zT  has been achieved by 

lowering the lattice thermal conductivity (e.g. [4], [11], [12], [57]–[59]). There is, however, 

currently considerable interest in examining complex thermoelectric materials, which may 

provide improved electrical performance not possible with simple parabolic energy bands (e.g. 

[56], [57], [60]–[65]). First-principles calculations of thermoelectric transport parameters are 

routinely performed to assess complex thermoelectric materials [66], [67], but the treatment of 

electron scattering greatly complicates the analysis leading to the widespread use of rigorous 

band structures coupled with a highly simplified treatment of scattering – the constant relaxation 

time approximation (CRTA). The recent development of techniques to rigorously compute 

scattering rates [68]–[72] presents an opportunity to include detailed band structure and 

scattering physics in the analysis of complex thermoelectric materials. Our goal is to illustrate 
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the importance of going beyond the CRTA by presenting calculations for n-type silicon, which 

has an anisotropic, multi-valley conduction band, as a model material. 

Equation (2.1) can be re-expressed as 

  
zT = ′S 2

′L +1 b
 ,          (2.2) 

where  ′S = S kB q( )  is the dimensionless Seebeck coefficient,   ′L = L kB q( )2
the 

dimensionless Lorenz number, and  

  

b ≡ σT

κ L kB q( )2 .          (2.3) 

Assuming unipolar conduction, the conductivity can be written as  σ = nqµn , where  n  is the 

carrier density and  µn  the mobility. If we further assume parabolic energy bands, then we can 

write 

 b = BF 1/2 ηF( )            (2.4) 

where 

 
B ≡ NV

4
2mV

*kBT
π!2

⎛
⎝⎜

⎞
⎠⎟

3/2
qµnT
κ L

kB
q

⎛
⎝⎜

⎞
⎠⎟

2

.        (2.5) 

In (2.5) 

 ηF = EF − EC( ) kBT  ,         (2.6) 

is the dimensionless Fermi energy (chemical potential),    F 1/2 ηF( )  is the Fermi-Dirac integral of 

order   j = 1 2  as written in the Blakemore form [73] 
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F j ηF( ) = 1

Γ( j +1)
η jdη

1+ eη−ηF
0

∞

∫ ,        (2.7) 

and   mV
* is the DOS effective mass of a single valley, and  NV  is the valley degeneracy.  Note that 

the b-factor in (2.3) can be evaluated for any band structure while the B-factor in (2.5) assumes 

parabolic energy bands. 

The quantity,  B , is the “material factor” β  introduced by Chasmar and Stratton [74]. It was 

discussed extensively by Mahan, who called it the “B-factor” [40]. The important role it plays in 

thermoelectric material design has been recently discussed by Wang et al. [61], who call  B  the 

quality factor. The B-factor is, however, not the whole story. For example, recent work has 

focused on identifying complex thermoelectric materials with increased Seebeck coefficient (e.g. 

[60]) or reduced Lorenz number (e.g. [75]). While there are many trade-offs involved in 

thermoelectric material design, our focus in this chapter is on how multiple valleys affect the b-

factor. We do so using rigorous treatments of band structure and electron-phonon scattering.  

Equation (2.5) suggests that materials with many degenerate valleys will be good 

thermoelectrics.  Mahan points out that good thermoelectric materials are all multi-valley 

semiconductors [40] (but n-GaAs, a single valley material, also shows promise [76].) Recent 

work on thermoelectric band engineering has focused on engineering materials to achieve a large 

number of valleys and/or bands near the Fermi level (e.g. [62], [63]). As written, however, (2.5) 

does not highlight the trade-off involved in increasing the valley/band degeneracy. More valleys 

and bands provide more states to which carriers can scatter. Increasing  NV  should decrease the 

scattering time and lower the mobility. These considerations have been discussed by Wang et al. 

[61], who argue that intra-valley scattering typically tends to dominate, so increasing NV should 

increase B . A recent study using analytical descriptions of energy bands and scattering processes 

concluded that multiple valleys may or may not be beneficial depending on the material-

dependent specifics of inter-valley scattering [77]. First-principles calculations of thermoelectric 

transport parameters allow complex band structures to be treated without approximation, but 

since they commonly make the constant relaxation time approximation, such simulations cannot 

answer how much increasing the number of valleys improves the b-factor. Rigorous calculations 
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of electron-phonon scattering rates are, however, now possible. In this chapter, we show that the 

capabilities now exist to more thoroughly address the question of how multiple valleys affect 

thermoelectric performance. 

This chapter is organized as follows. The equations for the thermoelectric transport 

coefficients are summarized in Sec. 2.3; the goal of the chapter is to solve these equations and 

assess the impact of intervalley scattering on the b-factor as given by (2.3). In Sec. 2.4, we solve 

the thermoelectric equations for parabolic band semiconductors and use the solutions to illustrate 

issues that are examined with a full numerical band structure and first principles scattering rates 

in Sec. 2.5. To illustrate the rigorous treatment of an anisotropic, multi-valley semiconductor, we 

consider n-type Si, which has six conduction band valleys. We use a DFT-generated band 

structure along with electron-phonon scattering rates informed by rigorous simulations to 

compare six-valley silicon to corresponding single spherical band structures. The results will 

show that for Si the benefits of the six multiple valleys are largely offset by intervalley 

scattering, but the anisotropic band structure does provide benefits over a simple, isotropic band 

structure. To understand the results presented in Sec. 2.5, we must separate the effects of intra- 

and inter-valley scattering from those due to the anisotropy of the band structure. In Sec. 2.6, we 

examine two simple metrics that can be used to assess the thermoelectric potential of complex 

band structures. The chapter concludes with a Summary in Sec. 2.7. 

2.3 Approach 

The expressions for the thermoelectric transport coefficients that result from a relaxation time 

approximation solution to the Boltzmann Transport Equation (BTE) are: 

 
σ = ′σ E( )dE

−∞

+∞

∫           (2.8a) 

  

S = − 1
qT

E − EF( ) ′σ E( )dE
−∞

+∞

∫

′σ E( )dE
−∞

+∞

∫
        (2.8b) 
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κ 0 =

1
q2T

E − EF( )2
′σ E( )dE

−∞

+∞

∫         (2.8c) 

  κ e =κ 0 −Tσ S 2 ,          (2.8d) 

where the differential conductivity is 

  
′σ E( ) = q2Ξ E( ) −

∂ f0

∂E
⎛
⎝⎜

⎞
⎠⎟

,         (2.8e) 

and the transport distribution is [78] 

   
Ξij E( ) ≡ 1

Ω
υiτ jkυ j( )!

k
∑ δ E − Ek( ) ,        (2.8f) 

where Ω  is a normalization volume. Equations (8) are identical to eqns. (1.13-1.15) from 

chapter 1.  However, written in this form, the connection to the transport distribution becomes 

explicit. Next, we assume a diagonal transport distribution tensor and write the transport 

distribution in Landauer form as [44] 

  
Ξ E( ) = 2

h
M E( ) A( )λ E( ) ,         (2.8g) 

where  M E( ) A  is the number of channels for conduction per unit cross-sectional area vs. 

energy. (See the APPENDIX A for a derivation of (2.8g).) We compute  M E( ) A  from a DFT-

generated band structure using the open source tool, LanTrap 2.0 [79]. The energy-dependent 

mean-free-path for backscattering is also needed; it is defined as [44] 

  
λ E( ) ≡ 2

υx
2

υx

τ m E( ) ,         (2.9) 

where 
  
υx

2 υx  is an energy dependent angle-averaged velocity and is computed from the 

DFT-generated band structure. For acoustic deformation potential (ADP) scattering in the elastic 
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limit, the scattering rate is isotropic, equal to the momentum relaxation rate, and proportional to 

the DOS: 

  

1
τ E( ) =

1
τ m E( ) ∝Kel− phDOS E( ) ,        (2.10) 

which can be computed directly from the numerical band structure. The electron-phonon 

coupling parameter,  
Kel− ph , is proportional to the deformation potential squared. The electron-

phonon scattering rates in non-polar semiconductors generally follow the DOS [80]. The 

rigorously computed electron-phonon scattering rates presented in Sec. 2.5 confirm that for 

silicon, the scattering rate follows the DOS, so for the numerical calculations presented in Sec. 

2.5, we take  
Kel− ph from the rigorously computed scattering rate. We will refer to scattering 

described by (2.10) as “DOS scattering.” As discussed next, for parabolic energy bands and 

simple scattering processes, equations (2.8) simplify and can be solved analytically. 

2.4 Results 

2.4.1 Parabolic Bands 

To illustrate how multiple, anisotropic valleys with and without intervalley scattering affects 

the b-factor, we present some calculations for parabolic energy bands. For parabolic bands [42], 

[44], 

   
M E( ) A =

mσ
*

2π!2 E − EC( ) ,    E − EC( ) > 0       (2.11) 

where   mσ
* is the “distribution of modes” effective mass [44] (for more details on the “distribution 

of modes effective mass,” please see APPENDIX B). It is analogous, but not equal to, the 

conductivity effective mass in the traditional formulation. For spherical energy bands, 

  mσ
* = NV m* , where  NV  is the number of valleys and   m*  is the effective mass of each valley.  

For the ellipsoidal conduction band of Si [44] 
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   mσ
* = 2mt + 4 mtmℓ .          (2.12) 

For spherical energy bands, the MFP for backscattering is [42] 

  
λ E( ) = 4

3
υ E( )τ m E( ) ,         (2.13) 

which, can be written in power law form as 

  
λ E( ) = λ0 E − EC( ) kBT( )r

,     E − EC( ) > 0      (2.14) 

where  r  is a characteristic exponent. For DOS scattering,   r = 0 , and the MFP is independent of 

energy.  For a constant scattering time (CRTA),   r = 1/ 2 . By using (2.11) and (2.14) in (2.8), we 

find [42] 

    
σ = 2q2

h
λ

mσ
* kBT

2π!2

⎛

⎝⎜
⎞

⎠⎟
Γ r + 2( )F r ηF( )         (2.15a) 

   
S = −

kB

q
⎛
⎝⎜

⎞
⎠⎟

r + 2( )F r+1 ηF( )
F r ηF( ) −ηF

⎛

⎝
⎜

⎞

⎠
⎟         (2.15b) 

    

κ 0 = T
kB

q
⎛
⎝⎜

⎞
⎠⎟

2
2q2

h
λ0

mσ
* kBT

2π!2

⎛

⎝⎜
⎞

⎠⎟
×

Γ r + 4( )F r+2 ηF( )− 2ηFΓ r + 3( )F r+1 ηF( ) +ηF
2Γ r + 2( )F r ηF( )⎡⎣ ⎤⎦

,     (2.15c) 

from which the b-factor can be computed if we assume a lattice thermal conductivity,  κ L , and 

scattering parameters,  λ0  and  r . We assume a lattice thermal conductivity of   κ L = 1 W/m-K .  

All calculations are done at 300 K.   
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2.4.2 Spherical, parabolic bands and multiple valleys   

We begin with spherical bands and consider two cases; the first assumes only intra-valley 

scattering and the second assumes equally strong intra- and inter-valley scattering. We assume 

  mσ
* = NV m0  and vary the valley degeneracy from   1≤ NV ≤10 . When only intra-valley scattering 

is assumed, a MFP of  λ = λ0 = 10 nm  independent of  NV . The second case assumes equally 

strong intra- and inter-valley scattering, so the MFP goes as  λ = λ0 NV . For every value of  NV

the maximum  zT  is found by sweeping the Fermi level to find   η̂F  at the maximum  zT . 

Equation (2.11a) then gives   σ η̂F( )  and from (2.3),   b η̂F( )  is computed. Using (2.4), we can then 

deduce 
   
B = b η̂F( ) F 1 2 η̂F( ) . 

The results are shown in Fig. 2.1. To understand these results, note that according to (2.15a) 

  σ ∝mσ
*λ . When there is only intra-valley scattering,   σ ∝ NV m0( )λ0 , so the conductivity, and 

therefore the B-factor increases linearly with the number of valleys.  The increase of the b-factor 

with  NV  is, however, sub-linear.  This behavior is due to the fact that the Fermi level that 

maximizes  zT moves down as  NV  increases, causing the conductivity to increase sub-linearly 

with  NV . The result is that the b-factor rolls over despite the fact that the Seebeck coefficient 

increases with  NV . Although neglecting inter-valley scattering may seem artificial, it does have 

some relevance to nanostructured thermoelectric materials in the “small nanostructure size” 

(SNS) limit [58], [59]. In this limit, the MFP is determined by grain size and independent of  NV  

or   m* . Under these conditions, a large  NV  (or equivalently a large effective mass in a single 

valley) is beneficial. 

When the intra and inter-valley scattering rates are equal, Fig. 2.1 shows that the B- and b-

factors are independent of  NV . This follows directly from the fact that 

  σ ∝mσ
*λ = NV m0( ) λ0 NV( ) is independent of the number of valleys when inter-valley scattering 

is strong. Figure 2.1 illustrates the importance of accurately quantifying the relative strengths of 

intra- and inter-valley scattering.  Figure 2.1 also shows the difference between the b- and B-
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factors.  Since the B-factor is well defined only for parabolic energy bands while the b-factor can 

be computed for arbitrary band structures, the b-factor may be more relevant for treating 

complex thermoelectric materials. It is also more directly related to measured quantities. 

Figure 2.1. The b- and B-factors versus the number of degenerate valleys. The solid line is the b-
factor assuming intra-valley scattering only (i.e. a constant MFP). The dashed line is the B-factor 
assuming a constant MFP. The solid line with x’s is the result for both the b- and B-factors 
assuming equally strong intra- and inter-valley scattering. In all cases, the results are normalized 
to one when the number of valleys is one.  

2.4.3 Silicon-like Anisotropic Valleys 

Complex thermoelectric materials often have anisotropic band structures that can boost 

thermoelectric performance [65]. Both scattering and anisotropy affect the performance of a 

thermoelectric material. In this section, we use a silicon-like conduction band with six equivalent 

ellipsoidal bands to examine how anisotropy affects the b-factor. Three cases are considered: i) a 

constant MFP, ii) a constant scattering time, iii) a scattering time inversely proportional to the 

total DOS of all valleys. The first two cases are considered because they are commonly used 

assumptions. Case iii) corresponds to equally strong intra- and inter-valley scattering. The results 

illustrate the connection between band anisotropy and scattering. 
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To treat this problem, we must extend (2.13) and (2.14). Details can be found in APPENDIX 

B; the results are:  

Case i) Constant MFP independent of energy and effective mass,   r = 0 : 

  λ = λ0 = 10nm           (2.16a) 

Case ii) Constant scattering time,   r = 1/ 2 , 

   
λ E − Ec( )∝ E − Ec( ) 1 mℓ + 2 mt

1 mℓ + 2 mt

⎛

⎝
⎜

⎞

⎠
⎟ τ 0        (2.16b) 

Case iii) Equally strong intra- and inter-valley DOS scattering,  

   

λ ∝
λ0

6
mt + 2mℓ

mt
2mℓ + 2 mtmℓ( )3/2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 .        (2.16c) 

In case ii), the constant scattering time  τ 0  is set using   µ = qτ 0 mc
*  with the mobility and 

conductivity effective mass from silicon of 1360  cm2 Vs  and 0.26   m0  ([81] (pg.166)] 

respectively. In case iii), the MFP is scaled so that,    λ mℓ = 0.93m0 ,mt = 0.19m0( ) = 10nm . In each 

case, the transverse effective mass   mt m0  is varied with    mℓ m0 held constant at    mℓ m0 = 0.93 . 

For every   mt m0 value, the Fermi level is swept to find   η̂F  at the maximum  zT . Equation 

(2.15a) then gives   σ η̂F( )  and from (2.3),   b η̂F( )  is computed. Using (2.5), we then compute 

   
B = b η̂F( ) F 1 2 η̂F( ) . Only the b-factor will be shown, because the B-factor displays the same 

trends. 

The results are shown in Fig. 2.2. For the constant MFP case, the b-factor continues to 

increase with increasing  mt  (decreasing anisotropy). This behavior is similar to the constant 

MFP case shown in Fig. 2.1 and occurs because   σ ∝mσ
*  when the MFP is constant, and 

according to (2.12),   mσ
*  increases as  mt  increases. For a constant scattering time, Fig. 2.2 shows 
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that the b-factor increases more slowly with increasing  mt . This occurs because an increasing  mt  

increases   mσ
* , but it decreases the velocity so the MFP decreases with increasing  mt  according to 

(2.16b).  In case iii), however, the trend is opposite to that of cases i) and ii).  Even though   mσ
*  

increases as  mt  increases, the MFP decreases rapidly and continues to do so with increasing  mt  

according to (2.16c). This occurs because the increasing  mt  lowers the velocity and increases the 

DOS, which lowers the scattering time. Because the MFP is the product of velocity and 

scattering time, it decreases rapidly within increasing   mt m0 . In the end, cases i) and ii) benefit 

from a larger transverse effective mass, while case iii) is maximum for a transverse effective 

mass approaching zero.  The large differences in Fig. 2.2 at   mt m0 = 0.19  (the Si value) illustrate 

the importance of a proper treatment of scattering. 

The fact that different types of scattering and anisotropies affect thermoelectric performance 

is well understood (e.g. [11], [39], [57], [60]), but the interplay of scattering, anisotropy, and 

valley degeneracy is not well understood [77]. In the next section, we examine scattering in 

anisotropic, multi-valley semiconductors by using a DFT-generated silicon band structure and 

rigorously computed electron-phonon scattering rates. 
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Figure 2.2. Normalized b-factor vs. increasing   mt
* m0  (decreasing anisotropy). The solid line 

assumes a constant MFP, case i). The dashed line assumes a constant scattering time, case ii), 
and the solid line with x’s, assumes a scattering rate proportional to the total DOS, case iii). In all 
cases the b-factors are normalized to one when the valleys are spherical with   mt = mℓ . 

2.5 Numerical bands and scattering rates 

Thermoelectric materials generally have complex band structures that can only be described 

numerically.  As illustrated here for the relatively simple case of silicon, an assessment of the 

performance potential of a material cannot be done without a careful consideration of how band 

structure affects electron scattering. The main challenge in doing such calculations is the 

specification of  λ E( ) . As discussed below, rigorous, first-principles calculations of the electron 

scattering time [68]–[72], [82] can be used to determine  λ E( ) .  
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2.5.1 Numerical calculation of scattering rates 

The numerical calculations were done as follows. The structural relaxation, self-consistent 

ground state, and DFPT calculations were performed with the Quantum Espresso package [52], 

using Perdew-Zunger LDA exchange-correlation, norm-conserving pseudo-potential, a 48 Ry 

plane wave energy cutoff, and a 16×16×16 Monkhorst-Pack k-mesh. The converged lattice 

constant is 5.38 Å in agreement with similar DFT studies [72]. The scattering rate calculations 

were performed with the EPW package [68], [69] to extract both the relaxation time and the 

momentum relaxation time at 300 K [70]. Electronic energies, phonon energies, and the electron-

phonon matrix elements were initially calculated for zone-centered 6×6×6 coarse k- and q-grids. 

Eight maximally localized Wannier functions [82] of sp3 symmetry were generated and serve as 

the basis to transform the electronic Hamiltonian, phonon dynamical matrix, and el-ph coupling 

Hamiltonian. From the Wannier representation, the electron and phonon energies and el-ph 

coupling matrix elements are interpolated onto dense k- and q-grids of 60×60×60 and used to 

calculate the scattering rate. A Gaussian smearing parameter of 30 meV was used for energy 

conservation. To reduce computation time, only those k-points in the irreducible wedge of the 

Brillouin zone were included in the analysis. The carrier concentration, determined from the 

Wannier representation density-of-states (DOS) [82], was chosen as 1015 cm-3. To distinguish 

intra-valley and inter-valley scattering processes, inter-valley transitions were identified when 

the change in the electron wave vector was |q|> 0.505 Å-1 (0.25 in reduced coordinates) or when 

there was a change in band number when going from initial to final band. All other transitions 

were categorized as intra-valley scattering. 

 Figure 2.3 shows the computed scattering rate vs. energy for electrons in the conduction 

band of silicon. Each value plotted represents a distinct point in k-space.  Figure 2.3 shows that 

both the scattering rate (points) and momentum relaxation rate (+) follow the DOS (line). The 

fact that the momentum relaxation rate and scattering rate are basically equal indicates that 

electron-phonon scattering is isotropic in silicon, as expected [81]. These numerical calculations 

confirm that for n-Si,   1 τ m E( )∝ DOS E( ) , as expected from simpler, phenomenological 

treatments [80], [81]. 
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Figure 2.3. Scattering rate vs. energy for electrons in the conduction band of silicon. Each point 
represents a point in k-space.  The results show that the scattering rate (points) depends primarily 
on the energy of the state and not its location in k-space.  The + symbols are the momentum 
relaxation rate, which is essentially the same as the scattering rate in silicon.  Both the scattering 
rate and momentum relaxation rate follow the density-of-states (line), especially around the 
energy most relevant for transport,   E − EC <<1 eV .   

The next question concerns the relative importance of intra- vs. inter-valley scattering. As 

discussed earlier, the benefits of multiple valleys are reduced if inter-valley scattering dominates. 

A phenomenological treatment indicated that both intra- and inter-valley scattering are important 

in n-Si [83]. Figure 2.4, which compares numerically calculated intra-valley and inter-valley 

scattering rates for electrons in the conduction band of silicon, shows that inter-valley scattering 

dominates in this material. Near the band edge, which is what matters for the thermoelectric 

coefficients, the inter-valley scattering rate per valley is comparable to that of intra-valley, i.e. 

there is equal probability to scatter to any valley. The numerical calculations also provide the 

room temperature, phonon-limited mobility in bulk Si as   µn = 1480 cm2 V-s , which is within 

10% of the experimental value of  1360 cm2 V-s  [83] and suggests that the calculations are 

reliable. Finally, the calculations also provide a rigorous solution to the BTE, which shows that 

the RTA, which is assumed in eqns. (2.8), is accurate to within a few percent. 
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Figure 2.4. Scattering rate vs. energy for electrons in the conduction band of silicon.  In the plot, 
the + symbols show the intra-valley scattering rate and the points show the inter-valley scattering 
rate.  Near the band edge, i.e.   E < 0.1eV  there is roughly the same probability to scatter within a 
valley as to scatter to a different valley. 

2.5.2 Calculation of the b-factor 

When discussing the benefits of multiple, anisotropic valleys, the point of comparison is a 

corresponding (in some appropriate sense) spherical valley semiconductor. The calculations 

presented next will compare the performance of the n-Si using a rigorous band structure with 

corresponding spherical models. From the rigorous calculations shown in Fig. 2.3, we extract the 

electron-phonon coupling parameter,  
Kel− ph  needed in (2.10). Equations (2.8) can then be solved 

using (2.9) and (2.10) to specify the energy-dependent MFP. The distribution of channels, 

 M E( ) , is extracted directly from the band structure using LanTrap 2.0 [79], and the angle-

averaged velocity, 
  
υx

2 υx , which is needed for  λ E( ) , is also computed directly from the 

band structure. With this information, (2.8) can be solved repeatedly as the Fermi level is swept 

to find   η̂F  at the maximum  zT . As in the parabolic band case, for these model calculations, we 

assume   κ L = 1 W/m-K  rather the actual value for Si.  This procedure provides   σ η̂F( ) , the 

conductivity at peak  zT , and from (2.3),   b η̂F( )  is computed. Since the b-factor is well-defined 
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for general band structures, but the B-factor only applies to parabolic band semiconductors, we 

will focus on the b-factor. 

Table 2.1 shows the computed b-factors for several different cases.  Case A1 uses the full, 

numerical Si conduction band and assumes equally strong intra- and inter-valley scattering. Case 

A2 assumes only intra-valley scattering with  
Kel− ph  being replaced by   

Kel− ph 6 . This example 

enjoys the benefits of six valleys without suffering from increased scattering between valleys, 

therefore the b-factor should be larger.  Table 2.1 shows that the b-factor is significantly larger 

when inter-valley scattering is ignored (case A1 vs. A2).  

When complex band structures are anisotropic in the right way, they can boost  zT  even 

when scattering between valleys occurs. Case B1 in Table 2.1 displays the b-factor for a 

corresponding spherical band. The effective mass of this spherical band is chosen to give the 

same  M E( )  as the full, numerical band. Because the Si conduction band is nearly parabolic, the 

numerically extracted  M E( )  closely follows the analytical expression for parabolic bands, 

(2.11). From the numerical  M E( ) , we extract   mσ
*  and then set the effective mass of the 

corresponding spherical band to   m
* = mσ

* . This procedure would give the same conductivity in 

Cases A1 and B1, if the MFP’s in the two cases were the same.  

The procedure described above produces, however, a different MFP,  λ E( ) , from case A1 

for two reasons. The first reason is that this process produces different DOS’s for the two cases, 

and therefore, different scattering times according to (2.10).  The second reason is that the 

velocity ratio, 
  
υx

2 υx in the MFP expression, (2.9), is smaller for the corresponding 

spherical band because the benefits of anisotropy are absent. Since we are interested in 

ascertaining the benefits of anisotropy in Case B1, we assume the same scattering times as in 

Case A1, but instead of using the numerically calculated 
  
υx

2 υx , we use the smaller value 

for a spherical band, 
  
υx

2 υx = 2 2 E − EC( ) m* 3. Comparing the b-factor in Case B1 of 

Table 2.1 to Case A1, we see that anisotropy increases the b-factor by a factor of 1.24 for the 

case of n-Si. 



 43 

Finally, case B2 assumes a spherical, parabolic energy band with an effective mass chosen to 

give one-sixth of the  M E( )  as the full, numerical band. While case B1 represents all six 

conduction band valleys with a single spherical energy band, case B2 represents only a single 

conduction band valley with a spherical energy band. In this case, we assume a scattering time 

that is six times longer than for case A1, to account for the fact that there is no inter-valley 

scattering in case B2. In comparison to case B2, case A1 benefits from six times as many valleys 

and from valley anisotropy, but it suffers from six times as much scattering. Comparing the b-

factor in case B2 of Table 1 to case A1, we see that the case A1 b-factor is 2.6 times that of case 

B2. The benefit of the six valleys is offset by six times more scattering, and the improvement is 

due to valley anisotropy. 

In summary, for n-Si, the advantages of the six conduction band valleys are offset by the 

increased scattering of electrons between the valleys. The anisotropy of the valleys, however, 

provides a light effective mass in the direction of transport, which increases the b-factor in 

comparison to a corresponding spherical valley. To assess the potential of a thermoelectric 

material, the beneficial effects of valley anisotropy and valley degeneracy must be weighed 

against the detrimental effects of inter-valley/band scattering. 
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Table 2.1. Comparison of the b-factors as computed from a numerical solution with inter-valley 
scattering (A1) and without (A2) to corresponding spherical bands with (B1) and without (B2) 
inter-valley scattering. The extracted effective masses from the silicon band structure are 

  mt = 0.22  and   ml = 0.93  for transverse and longitudinal directions respectively, which gives

  mσ
* = 2.24mo . 

Case 

 

Band 
structure 

Scattering 
  b η̂F( )    η̂F  

A1 

 

Silicon full 
band 

  mσ
*

  

Intra- and 
inter-
valley 

 

 

0.51 

 

 

-2.3 

A2 

 

Silicon full 
band 

  mσ
*

 

Intra-
valley 
only 

 

 

0.79 

 

 

-3.5 

B1 

 

Single 
spherical 
valley 

  m
* = mσ

*
 

Intra- and 
inter-
valley 

 

 

0.41 

 

 

-1.5 

B2 

 

Single 
spherical 
valley with 

  m
* = mσ

* 6  

Intra-
valley 
only 

 

 

0.20 

 

 

0 

2.6 Discussion 

Several authors have developed measures of Fermi surface complexity.  For example, 

Mecholsky, et al. developed measures for the warped valences bands of Si [84], and Toberer 

discusses a shape factor [75]. Recently, Gibbs, et al. introduced a simple, numerical metric they 

call a Fermi Surface Complexity Factor (FSCF) [85], 
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FSCF =

ms
*

mc
*

⎛

⎝⎜
⎞

⎠⎟

3/2

= NV
* K * ,         (2.17) 

where   mS
*  is the so-called Seebeck effective mass (which is the density-of-states effective mass 

determined from the Seebeck coefficient) and   mc
*  is the conventional conductivity effective 

mass [81], [86]. Metrics like this are useful in identifying promising thermoelectric materials in 

high-throughput searches of material databases [58], [87]–[92]. In (2.17),   K *  is an anisotropy 

factor that provides a measure of the benefits of Fermi surface anisotropy.  

Equation (2.17) is an attempt to provide a simple numerical measure of how much better a 

complex band structure is as compared to a corresponding spherical, parabolic band. For a single 

valley with an effective mass of   m* , (2.17) gives  FSCF = 1 . For  NV  spherical valleys with an 

effective mass of   m* , (2.17) gives  FSCF = NV  (because  mS
* ∝ NV

2/3 ). Inserting numbers relevant 

for the conduction band of Si    NV = 6,mt = 0.19m0 ,mℓ = 0.93m0( ) , we find   FSCF ≈ 8.35 , which 

reflects both the benefits of a valley degeneracy of 6 and the valley anisotropy, which produces a 

light effective mass in the direction of transport (in this case,   K
* = 8.35 6 = 1.39 ).  Comparing 

case B2 to case A1 in Table 2.1, we see that in the presence of strong inter-valley scattering,

 FSCF  is an overly optimistic measure of the benefits of the anisotropic, multi-valley conduction 

band of Si. The anisotropy factor itself is a better indicator in this case, because the benefits of 

the additional valleys are offset by additional intervalley scattering. 

The benefits of anisotropy in the presence of strong inter-valley scattering can be assessed by 

assuming that electron-phonon scattering follows the total DOS as given by (2.10). In this case, it 

is easy to show from (2.8f) to (2.8g) that the transport distribution simplifies to 

  
Ξ E( ) = υx

2 E( )
Kel− ph

.          (2.18) 

Recall that the brackets indicate an average over angles at the energy, E. The fact that   υx
2 E( )

plays an important role in thermoelectric performance has been noted before (e.g. in [56]). By 
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energy-averaging the angle-averaged velocity squared,
  
υx

2 E( ) , over the Fermi window, a 

metric sensitive to anisotropy and not to the number of valleys would result. Thus, 
  
υx

2 E( )  

could be a good measure of potential anisotropic enhancement.  

2.7 Summary 

Assessing the performance potential of a complex thermoelectric material involves a careful 

consideration of the number of valleys and bands that participate in transport, the role of 

scattering between these valleys and bands, and the effects of anisotropy. We illustrated how 

these issues can be examined by using n-type Si dominated by electron-phonon scattering as a 

model material. The calculations presented illustrate how rigorous treatments of electron 

scattering can inform calculations done by solving the Boltzmann Transport Equation in the 

Relaxation Time Approximation (RTA) as given by eqns. (2.8). For complex materials, these 

calculations can be computationally demanding, but they can address important questions such 

as the validity of the RTA, the use of energy-dependent rather than k-dependent scattering times, 

the relative strengths of intra- vs. inter-valley/band scattering, the energy dependence of the 

scattering time, etc.  

The calculations presented here show that the degree to which multiple anisotropic valleys 

improve  zT  depends sensitively on the relative strengths of intra- vs. inter-valley electron 

scattering processes. This fact is well known; the contribution of this chapter is to show how this 

question can be quantitatively addressed. Anisotropy also plays an important role, and by 

assuming equally strong scattering within and between valleys, its effect can be assessed by a 

metric based on 
  
υx

2 E( ) .  Widely used approximations, such as the constant relaxation time 

approximation (CRTA) and the constant mean-free-path approximation are not suitable for 

understanding the performance potential of a complex thermoelectric material with multiple 

valleys and bands. As illustrated in this chapter, a combination of rigorous scattering calculations 

and standard RTA based solutions of the BTE may provide a more realistic way to assess the 

potential of complex materials. 
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3 ON THE UNIVERSAL BEHAVIOR OF THE THERMOELECTRIC 
FIGURE OF MERIT 

3.1 Preface  

The contents of this chapter have been extracted from the following publications with 

permission: E. Witkoske, X. Wang, J. Maassen, and M. Lundstrom, “Universal behavior of the 

thermoelectric figure of merit, zT, vs. quality factor,” Mater. Today Phys., vol. 8, pp. 43–48, 

2019. 

3.2 Introduction 

The performance of a thermoelectric material is directly related to its material figure of merit, 

  
zT = S 2σT

κ L +κ e

,           (3.1) 

where  S  is the Seebeck coefficient, σ  the electrical conductivity,  κ L  and  κ e the lattice and 

electronic thermal conductivities, and  T  is the temperature.  One way to improve  zT  is to 

reduce the lattice thermal conductivity without significantly degrading the electronic properties 

[93]. Over the past two decades, this strategy has been quite successful [6], [7], [11], [12];  κ L is  

approaching the practical lower limit of   κ L = 0.2 W m-K  identified in [93]. The material figure 

of merit was   zT ≈1 when [93] was written; since then, there have been several reports of   zT > 2  

(e.g. [11], [22], [94]). Device and manufacturing issues must be addressed to turn recent 

advances in material performance into improved device performance [13], but additional 

improvements in material performance are also needed. It seems likely that progress in reducing 

 κ L  will slow; so further advances in  zT  will have to come by improving the electronic 

performance. Several ideas to enhance the electronic performance of thermoelectric materials 

have been proposed, but success has been elusive.  

The relation of  S , σ , and  κ e  to TE properties is well understood within the context of a 

simple, parabolic band model [2], [40] for which the only thing that matters is the magnitude of 
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the TE quality factor (B-factor), which is proportional to the ratio of the electrical conductivity to 

the lattice thermal conductivity [61], [74], [95]. Such analyses suggest that a high  zT will not be 

possible in a simple semiconductor – implying that high performance, if possible at all, will only 

occur in materials with unusual or complex electronic features [56]. Here we define a “complex” 

band structure as any band structure other than a simple parabolic band. Because so many factors 

are involved and because the electronic transport coefficients are so tightly coupled, identifying a 

complex material with the promise of significantly out-performing a simple parabolic band is 

hard to do in a clear and convincing way. Over the past two decades, many proposals to enhance 

the electronic performance of thermoelectrics have been presented [21], [77], [96]–[101]. There 

is a need for a clear way to compare complex TE materials and engineered structures on a 

common basis to determine whether there is any electronic structure that can significantly out-

perform a simple parabolic energy band. 

In this chapter, we present simulations that suggest a plot of the peak  zT  (i.e. the  zT  at the 

optimum Fermi level,   ÊF ) vs. a generalized quality factor at the peak  zT is a universal 

characteristic. We present results for more than a dozen widely different electronic structures and 

show that none exceeds the performance of a simple, parabolic band material with acoustic 

deformation potential scattering.  A simple argument explains the results and suggests that no 

complex thermoelectric material will out-perform a material with simple, parabolic energy 

bands. The result, however, is not fundamental, if materials that substantially exceed the 

parabolic band limit can be found, they will provide new routes to increasing  zT .  

 

3.3 Approach 

A brief description of the computational techniques employed follows; a more extensive 

discussion can be found in the supplementary information. 

Equation (3.1) can be re-expressed as 

  
zT = ′S 2

′L +1 bL

,          (3.2) 
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where  ′S = S kB q( )  is the dimensionless Seebeck coefficient,   ′L = L kB q( )2
the 

dimensionless Lorenz number, and  

  
bL EF( ) ≡ σ EF( )T

κ L

kB q( )2
         (3.3) 

is a generalized b-factor; it is closely related (see [102]) to the B-factor discussed by Mahan [40], 

[95], which is also the “material factor” β  introduced by Chasmar and Stratton [74]. The 

important role that the B-factor (also called the quality factor) plays in thermoelectric materials 

has been discussed by Wang et al. [61]. As noted by Mahan, in the absence of bipolar effects, 

 zT is a function of B (or  bL ) alone and does not depend independently on the parameters,  S , σ  

or  κ L  [40].   

The relation between B and  bL EF( )  is simple and is given by eqn. (3.9) in Sec. 3.6. The key 

difference is that  bL EF( )  depends on Fermi level and B does not.  The second key difference is 

that  bL EF( )  is defined for any band structure while B is only defined for parabolic energy bands.  

Because our focus is on complex band structures, we will work with  bL EF( )  in this chapter.  To 

calibrate readers, note that for parabolic bands with B = 0.4, we find   bL EF ≈ EC( ) = 0.18 . For 

more discussion, see the supplementary information. 

The material figure of merit increases without limit as the b-factor increases, but the 

magnitude of the b-factor is, however, not the whole story. In this chapter, we ask the question: 

“Are there materials or engineered structures that provide at the same b-factor a higher zT than a 

material with a simple parabolic band?” Large b-factors will always be necessary, but if the 

answer to this question is yes, new options for increasing zT will open up.  

By solving the Boltzmann Transport Equation in the Relaxation Time Approximation, we 

find the thermoelectric transport parameters as 
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σ = ′σ E( )dE

−∞

+∞

∫           (3.4a) 

  
S = − 1

qT
E − EF( ) ′σ E( )dE

−∞

+∞

∫ ′σ E( )dE
−∞

+∞

∫       (3.4b) 

  
κ 0 =

1
q2T

E − EF( )2
′σ E( )dE

−∞

+∞

∫ =κ e +Tσ S 2        (3.4c) 

where the differential conductivity,  ′σ E( ) , is 

  ′σ E( ) = q2Ξ E( ) −∂ f0 ∂E( ) ,         (3.4d) 

and the transport distribution in the diffusive limit [44], 

  
Ξ E( ) = 2

h
M E( ) A( )λ E( ) ,          (3.4e) 

is written in Landauer form with  M E( ) A  being the number of channels per cross-sectional 

area for conduction and  λ E( )  the mean-free-path (MFP) for backscattering.  In (3.4c),  κ 0  is the 

electronic thermal conductivity measured under short circuit conditions, and  κ e  is the same 

quantity measured under open circuit conditions. See the appendix in [23] for a short derivation 

of (3.4e) and [24] for a longer discussion. 

In (3.4e), the mean-free-path for backscattering is defined as [24] 

  λ E( ) ≡ 2υx
2 E( )τ m E( ) υx

+ E( ) ,        (3.5a) 

where   υx
2 E( )  is an average over angle of the quantity 

   
υx

2
!
k( ) at energy, E. The velocity,  υx

+ E( ) , 

is the angle-averaged velocity in the +x direction (see [24] for the definitions of these averages). 

The number of channels at energy, E, is [24], [25] 
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  M E( ) A = hυx
+ E( )D E( ) 4 ,         (3.5b) 

where  D E( )  is the density-of-states per unit volume including a factor of two for spin. 

The treatment of electron scattering is an important consideration in any TE calculation. The 

use of an energy-independent momentum relaxation time,  τ m  can lead to errors [23], [26]. A 

better assumption when isotropic electron-phonon scattering dominates is that the scattering rate 

follows the density-of-states [93], 

  

1
τ E( ) =

1
τ m E( ) ∝Kel− phD E( ) ,        (3.5c) 

where  
Kel− ph  describes the electron-phonon coupling, τ  is the scattering time, and  τ m  is the 

momentum relaxation time. The density of states in equation (3.5c) relates to the states within 

each individually band, and commonly describes phonon scattering in non-polar semiconductors 

[23], [27]. As discussed [26], it also seems to describe some TE materials and appears to be a 

much better approximation than the assumption of a constant scattering time. Rigorous 

treatments of electron scattering are available to provide material-specific scattering times [28]–

[32]. Finally, we note that when plotting  zT  vs.  bL ,  
K el− ph  is not needed because  ′S  and  ′L  only 

depend on the energy dependence of the scattering rate – not on its magnitude. 

3.4 Results   

3.4.1 Parabolic Energy Bands 

Equations (3.4) and (3.5) can be solved numerically given a full, numerical description of the 

energy band (see the supplementary material of [23], [26]). Equations (3.2) and (3.3) can also be 

solved analytically for simple parabolic band structures (the results are presented in the appendix 

of [25]). For parabolic energy bands with power law scattering, 

  
λ E( ) = λ0 E − EC( ) kBT⎡⎣ ⎤⎦

r
,         (3.6) 
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where r is a characteristic exponent. For acoustic deformation potential (ADP) scattering in 3D 

parabolic bands,   r = 0 ; the MFP is independent of energy. For ionized impurity (II) scattering, 

  r = 2 . By assuming a temperature, effective mass, MFP ( λ0 ), characteristic exponent,  r , and 

lattice thermal conductivity,  κ L , one can sweep the Fermi level and produce a plot of  zT EF( )  

vs.  bL EF( ) . Results are shown in Fig. 1 for several different values of  κ L .  

 

Figure 3.1. Material figure of merit,  zT  vs.  bL  for   κ L = 0.10,  0.32,  0.97,  and 2.29 W/m-K , 
which were selected to produce peak zT’s of 4, 2, 1, and 0.5 using a n-type Bi2Te3 parabolic 
conduction band with   m

* = 1.56m0  and an energy-independent (r = 0) MFP of  λ0 = 25  nm.  As 
the Fermi level increases,  bL  increases because 

 
σ EF( ) increases. 

For each  κ L  in Fig. 3.1, there is a maximum in  zT  as the Fermi level is swept. By plotting 

 zT vs.  bL  at the peak  zT where   EF = ÊF , the results in Fig. 3.2 are obtained. Each point on the 

  
zT ÊF( )  vs. 

  
bL ÊF( )  characteristic is the value of  zT  and  bL at the Fermi level that maximizes 

 zT .  The 
  
zT ÊF( )  vs. 

  
bL ÊF( )  characteristic is independent of how  bL is varied (i.e. by varying 

 κ L  as in Fig. 3.1, the MFP parameter  λ0 , or the effective mass). The characteristic is also 

independent of temperature. (We should note, however, that these calculations do not include 

bipolar conduction; when they are considered, the characteristic is temperature dependent and 
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sensitive to the ratio of mean-free-paths and effective masses.) Figure 3.2 compares the 
  
zT ÊF( )  

vs. 
  
bL ÊF( )  characteristic for 3D, parabolic bands with ADP scattering (  r = 0 ) to that for II 

scattering (  r = 2 ).  Also shown is the single energy channel case [93]. 

Figure 3.2. Peak material figures of merit, 
  
zT ÊF( )  vs. 

  
bL ÊF( ) , the value of  bL at the Fermi level 

that maximizes  zT .  Solid line:  Parabolic bands with   r = 0 in eqn. (6b). Dashed line: Parabolic 

bands with   r = 2 . Dotted line: Single energy channel. 

Finally, the distinction between  bL EF( )  and 
  
bL ÊF( )  should be kept in mind.  Figure 3.1 is a 

plot of  zT EF( )  vs.  bL EF( ) . The Fermi level that maximizes  zT is   EF = ÊF , Figure 3.2 is a plot 

of 
  
zT ÊF( )  vs. 

  
bL ÊF( ) . For ADP scattering (  r = 0 ) 

  
′S ÊF( )  increases with 

  
bL ÊF( )  because as 

 bL  increases, the Fermi level at peak  zT  drops below the band edge (see Figs. 1a and 4 of 

[102]). The Lorenz number is close to its non-degenerate limit of two and saturates at two for 

large 
  
bL ÊF( ) . For II scattering (r = 2), the peak Fermi level for small b-factors lies deep in the 

conduction band where  S  and therefore  zT approach zero [104]. For   bL > 0.35 , the Fermi level 

at the peak  zT  moves below the band edge, and II scattering produces a high Lorenz number 
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approaching four, which is detrimental because  ′L  is in the denominator of (2). For large b-

factors however, the very large   ′S 2  for II scattering causes this case to out-perform the ADP 

scattering case, as shown in Fig. 3.2. The II scattering case shows that it is possible to exceed the 

parabolic band/ADP scattering limit with the right type of energy-dependent scattering. In 

practice, II scattering often occurs in addition to electron-phonon scattering, which lowers the 

overall MFP and reduces  zT . The point here is that with the right energy dependence to the 

transport function (which is proportional to the product of the number of channels and the MFP, 

eqn. (3.4e)), then the parabolic band / ADP limit can be exceeded.   

Figure 3.2 also compares the peak 
  
zT ÊF( )  vs. 

  
bL ÊF( )  characteristics for parabolic bands to 

the single energy channel case, 

  M E( ) A = M0δ E − EC( ) ,         (3.7) 

where  EC  is the energy of the channel. The single energy channel case displays n-type 

conduction when  EF < EC . In contrast to the parabolic band case, the Fermi level at the peak zT 

is independent of  bL , i.e.   EF − EC( ) kBT = −2.4 = ′S . For a single energy channel,   ′L = 0  [93], 

so equation (3.2) gives   zT = ′S( )2
bL = 5.75bL . As shown in Fig. 3.2, a single energy channel 

provides little benefit over a parabolic band when   zT <1  and under-performs a parabolic band 

when   zT >1 . These results support the conclusion of [105], [106] that a delta-function transport 

distribution is not the best for thermoelectric performance, but the magnitude of the b-factor 

must be considered as well. 

Analytical results provide reference points for comparison to the full, numerical solutions of 

the thermoelectric equations that are considered next. As we examine the influence of complex 

band structures on the 
  
zT ÊF( )  vs. 

  
bL ÊF( )  characteristic, the parabolic band with ADP 

scattering case will serve as our reference because ADP scattering is thought to dominate in 

many TE materials [2]. Note that for ADP scattering in parabolic bands (  r = 0  in eqn. (3.6)), the 

scattering rate follows the parabolic band density-of-states. 
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3.4.2 Complex Energy Bands 

Thermoelectric materials typically have complex band structures with multiple, anisotropic 

bands or pockets. In this chapter, we will refer to any band structure that is more complicated 

than a single, parabolic band as “complex.” Recent work shows, for example, that the Lorenz 

number can be significantly different from the value computed for a parabolic band [26]. Higher 

  zT 's  might be possible with materials that offer a higher Seebeck coefficient or a lower Lorenz 

number (e.g. [12], [21], [75], [96]–[99], [101]). To examine this possibility, we present full, 

numerical simulations analogous to the analytical calculations discussed above. The numerical 

methods used are described in the supplementary information of [102] and [103].  The key input 

is a band structure from density functional theory (DFT) simulations. 

Figure 3 compares the computed 
  
zT ÊF( )  vs. 

  
bL ÊF( ) characteristics using density of states 

(DOS) scattering as described by eqn. (3.5c) for nine complex band structures, p-Bi2Te3, n-

Bi2Te3, p-SnSe, n-SnSe, p-Sb2Te3, n-Bi0.85Sb0.15, p- Bi0.85Sb0.15, an n-Bi2Te3 quintuple layer, a p-

Bi2Te3 quintuple layer, p-Mg3Sb2, and p-GeTe, to that of a simple, parabolic energy band with 

ADP scattering (r = 0). The 
  
zT ÊF( )  vs. 

  
bL ÊF( )characteristics shown in Fig. 3.3 are insensitive 

to how the b-factor is varied. The b-factor can be changed by varying  κ L  in equation (3.1), 

which was done in Fig. 3.3, or by varying the electron-phonon coupling parameter in (3.5c), 

which varies σ  in equation (3.1), but just as we found for the analytical calculations, the same 

  
zT ÊF( )  vs. 

  
bL ÊF( )  characteristic is obtained. The numerical calculations also show that the 

characteristic is relatively insensitive to temperature. (We remind the reader, however, that 

bipolar effects are not considered.) 

The cases shown in Fig. 3.3 explore a broad (though not exhaustive) range of complex band 

structures. What stands out in Fig. 3.3 is the fact that the results of numerical calculations for a 

variety of materials with complex band structures are remarkably similar to the analytical 

calculations assuming a parabolic band with ADP scattering. The p-Bi2Te3 quintuple layer is a 

2D material with a band structure that is thought to be advantageous for thermoelectrics [37], but 

its performance is no better than that of a material with a simple parabolic energy band.  These 

results suggest that only the magnitude of the b-factor matters. For a given b-factor, all 
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thermoelectric materials seem to provide nearly the same peak zT.  As discussed next, however, 

these results assume a particular treatment of scattering. 

 

Figure 3.3. Material figure of merit, peak zT vs.   b̂L at 300K, for several different complex 
thermoelectric materials assuming a scattering rate proportional to the density of states. Open 
circles are for p-Bi2Te3 and filled circles for n-Bi2Te3. Open squares are for p-SnSe and filled 
squares for n-SnSe. Filled triangles are for p-Sb2Te3. Asterisks are for n-Bi0.85Sb0.15 and x-marks 
are for p-Bi0.85Sb0.15. Stars are for an n-Bi2Te3 quintuple layer, and diamonds are for p-Bi2Te3 
quintuple layer. Pentagons are p-Mg3Sb2 and red dots are p-GeTe. The dashed line is the 
parabolic band reference assuming r = 0.  

3.5 Discussion 

Two key factors in the calculations presented in Fig. 3.3 are the band structure and electron 

scattering. The band structures were computed by DFT simulation. The results presented in Fig. 

3.3 assumed that the electron-phonon scattering rate follows the total density-of-states according 

to (3.5c) with the assumption that the intra-valley/band coupling strength is equal to the inter-

valley/band coupling strength. Rigorous treatments of electron-phonon scattering suggest that it 

is a good assumption for Si [23] and for SnSe [26]. If we were to suppress inter-valley/band 

scattering, a possibility when multiple bands of the same energy are separated in k-space with a 

lack phonon q-vectors available to scatter carriers from one point in k-space to another, the 

  
zT ÊF( )  vs. 

  
bL ÊF( )  characteristic would not change. What would change is that for a given 

DOS scattering 
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electron-phonon coupling strength, the conductivity with less inter-valley scattering would be 

higher than the conductivity with inter-valley scattering. The b-factor, and therefore, zT, would 

increase respectively.  

To examine the sensitivity of the results to the treatment of carrier scattering, we repeated the 

calculations with the assumption of a constant mean-free-path. The results are shown in Fig. 3.4.  

Although the constant mean-free-path assumption produces more spread about the parabolic 

band reference, the results shown in Figs. 3.3 and 3.4 show that the 
  
zT ÊF( )  vs. 

  
bL ÊF( )  

characteristic is relatively insensitive to the details of band structure and carrier scattering. 

 

 

Figure 3.4. Material figure of merit, peak zT vs.   b̂L at 300K, for several different complex 
thermoelectric materials assuming a constant MFP for scattering. Open circles are for p-Bi2Te3 
and filled circles for n-Bi2Te3. Open squares are for p-SnSe and filled squares for n-SnSe. Filled 
triangles are for p-Sb2Te3. Asterisks are for n-Bi0.85Sb0.15 and x-marks are for p-Bi0.85Sb0.15. Stars 
are for an n-Bi2Te3 quintuple layer, and diamonds are for p-Bi2Te3 quintuple layer. Pentagons are 
p-Mg3Sb2 and red dots are p-GeTe. The dashed line is the parabolic band reference assuming r = 
0. 

Equation (3.1) provides a qualitative explanation for the insensitivity of the 
  
zT ÊF( )  vs. 

  
bL ÊF( )  characteristic to band structure and scattering physics. A transport function that 

Constant MFP 
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increases S also increases L, which limits the benefit to zT. Conversely, a transport function that 

reduces L also reduces S, again limiting the benefit to zT.  This conjecture is confirmed by Fig. 

3.5, which is a plot of 
  
S ÊF( )  and 

  
′L ÊF( )  vs. 

  
bL ÊF( )  for p-Bi2Te3, p-SnSe, and p-Sb2Te3 (DOS 

scattering was assumed for these calculations). Figure 3.5 shows that 
  
S ÊF( )  and 

  
′L ÊF( )  

depend on band structure and can be quite different than for a parabolic band. In the range of 

interest, (
  
zT ÊF( ) > 2

  
⇒ bL ÊF( ) > 0.25), the three materials shown all display Lorenz numbers 

that are well below that of the parabolic band reference [26], but this advantage is offset by the 

fact that they all display lower Seebeck coefficients as well. The trade-off between  ′S  and  ′L  

makes it difficult to enhance  zT  in comparison to a simple, parabolic band. 

 

Figure 3.5. Seebeck coefficient and Lorenz number at peak zT vs.   b̂L  at 300 K for several 
different complex thermoelectric materials assuming a scattering rate proportional to the density 
of states. Open circles are for p-Bi2Te3. Open squares are for p-SnSe and closed triangles are for 
p-Sb2Te3. The dashed line is the parabolic band reference assuming r = 0.  

The results of this chapter suggest a different, possibly simpler way to assess the 

performance of a thermoelectric material. First, one should check to see how it compares at a 

given b-factor to a parabolic band with ADP scattering. Second, one should assess its potential to 

achieve a large b-factor. This involves assessing the lattice thermal conductivity and assessing 

the electrical conductivity, which can be done as follows. 

From eqns. (3.4a), (3.4d), and (3.4e), we find 

p-Bi2Te3 

Parabolic 

p-Sb2Te3  

p-SnSe 
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σ = 2q2

h
M E( ) A⎡⎣ ⎤⎦∫ λ E( )⎡⎣ ⎤⎦ −∂ f0 ∂E( )dE = q2 υx

2 E( ) −∂ f0 ∂E( )
Kel− ph

∫ dE

≈ q2

Kel− ph

υx
2 E( ) −∂ f0 ∂E( )dE∫ =

q2 υx
2 E( )

Kel− ph

,   (3.8) 

where we have assumed that  
Kel− ph  varies slowly with energy across the Fermi window. For 

electrical conductivity, eqn. (3.8) shows only two things matter; that the material has a low 

electron-phonon coupling parameter and a high velocity squared in the direction of transport. It 

does not matter whether the high velocity comes from a single valley with a light effective mass, 

from an anisotropic valley with a light effective mass in the direction of transport, or from 

multiple valleys with light effective masses in the direction of transport.  Of course, all this 

assumes that the scattering rate follows the density-of-states. Detailed calculations suggest that 

this is the case, but this question should be examined in more detail.  In this approach, assessing 

the electrical potential of a material is simplified because one only needs to estimate the electron-

phonon coupling parameter,  
Kel− ph , and calculate 

  
υx

2 E( )  directly from the band structure. This 

approach should find use in assessing the potential of a given material, and it might also find 

application in high throughput computational searches [7], [38-41]. 

Finally, there has been some interest in defining a general quality factor that is independent 

of band structure [108]. The generalized b-factor given by (3.3) applies to any band structure, but 

it includes a dependence on the Fermi level, which is not included in the traditional definition 

[40], [61], [74], [95]. For parabolic bands,  

   
bL EF( ) ≡ σ EF( )T

κ L

kB q( )2
= BF 1 2 EF − EC( ) kBT⎡⎣ ⎤⎦ ,     (3.9) 

where B is the traditional quality factor [40], [61], [74], [95], and   
F 1 2 η⎡⎣ ⎤⎦ is the Fermi-Dirac 

integral as defined by Blakemore [73]. A general quality factor could be defined as [108] 

   
′bL EF( ) ≡ σ EF( )T kB q( )2

κ LF 1 2 EF − EC( ) kBT⎡⎣ ⎤⎦
.        (3.10) 
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The general quality factor can be evaluated for any band structure and is expected to be relatively 

insensitive to the location of the Fermi level. For parabolic energy bands,  ′bL  reduces to the 

Fermi level independent B-factor. 

3.6 Summary 

A variety of electronic structures and complex thermoelectric materials were examined in 

this chapter, and all were shown to produce nearly the same 
  
zT ÊF( )  vs. 

  
bL ÊF( )  characteristic 

as that given by a simple, parabolic band model. The material figure of merit, zT, increases 

without limit as the quality factor increases, but the results of this study suggest that at a given b-

factor, there is an upper limit to zT. The inherent trade-offs between thermoelectric material 

parameters explain the apparent universal behavior that was found, but this result is not 

fundamental. Just as the Wiedemann-Franz Law is not a law of nature, but rather, a rule of thumb 

that is only rarely violated [109], the same may be true of the universal behavior discovered here. 

Searches for materials/structures that exceed the parabolic band limit should be conducted, so 

that new pathways to higher thermoelectric performance can be identified. If no such materials 

are found, then searches need only focus on materials with large generalized b-factors, i.e. with 

high electrical conductivity and low lattice thermal conductivity. 

 

Data Availability – The raw and processed data required to reproduce these findings are 

available free online to download from [https://nanohub.org/groups/needs/lantrap].  
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4 THE USE OF STRAIN TO TAILOR ELECTRONIC 
THERMOELECTRIC TRANSPORT PROPERTIES  : A FIRST 

PRINCIPLES STUDY OF 2H-PHASE CuAlO2 

4.1 Preface 

The contents of this chapter have been extracted from the following publications with 

permission: E. Witkoske, D. Guzman, Y. Feng, A. Strachan, M. Lundstrom, and N. Lu, “The use 

of strain to tailor electronic thermoelectric transport properties  : A first principles study of 2H-

phase CuAlO2,” J. Appl. Phys., vol. 125, no. 082531, 2019. 

4.2 Introduction 

Thermoelectric (TE) devices and materials hold great promise for broad use in solid-state 

energy generation and solid-state cooling. However, as robust and reliable as these devices are, 

they have been limited by low conversion efficiencies since their inception [1]–[5]. The past 

three decades have witnessed the thermoelectric material figure of merit, zT, improved from 

under one to over two [5]. These gains have been primarily driven by a reduction in the lattice 

thermal conductivity of materials and devices through the use of nano-structuring [6]–[12] and 

the development of novel materials that have an inherently low thermal conductivity due to large 

discrepancies in the masses of their constituent elements.  These advances, however, have not 

translated into working devices [13]. As we approach the lower limit of the lattice thermal 

conductivity for common and even complex TE materials at room temperature and above, the 

variety of avenues capable of moving the field of thermoelectrics forward are being narrowed, 

therefore ideas that have the potential to advance the field need to be explored carefully. 

In this chapter we look at an alternate route forward, given materials with relative ease of 

fabrication, low cost, and non-toxicity, the ability to tailor them to specific temperature ranges, 

power needs, and size requirements through the use of strain opens an interesting avenue. Even 

though the overall zT efficiencies of these materials may not be able to beat state of the art TE 

materials, if the appropriate direction and magnitude of strain could be applied to increase their 

TE properties, the overall $cost/kW-hr of energy generation quite possibly could.  
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Because of their potential use in high temperature applications, due to a large band gap, high 

thermal stability, oxidation resistance, and low material costs, transparent conducting oxides 

(TCOs) have garnered interest for a variety of TE applications [48]–[51], [110]–[117]. In this 

work 2H-phase CuAlO2, which has gained interest as a promising candidate for high temperature 

p-type thermoelectric applications [49], [50], [118], [119] due to the scarcity of p-type TCOs 

[120], under a variety of uniaxial, biaxial, and hydrostatic strains will be discussed.  Limited 

theoretical and experimental studies have been done on the thermoelectric properties of the 2H 

phase of this material [49], [120]–[122], and none to our knowledge have been conducted on the 

effect of strain on its thermoelectric properties. It will be shown that strain can have a significant 

effect on the band gap and electronic transport properties, in some cases detrimental and in 

others beneficial for thermoelectrics. This allows for the possibility of tuning the band gap as 

well as the electronic transport properties of TCOs to tailor them to specific thermoelectric 

applications [45]–[47].   

There are five sections in this chapter; 4.2) introduction, 4.3) atomic structure and 

methodology, 4.4) electronic structure with and without strain, 4.5) thermoelectric transport 

properties of strained and unstrained structures, and finally, 4.6) conclusions.   We find that 

strain can offer both opportunities as well as challenges for thermoelectric device design with 

both the former and the latter being unique to the material and device required for specific 

applications. 

4.3 Atomic structure and methodology 

CuAlO2 crystallizes in two distinct phases, 3R and 2H, both having a delafossite structure 

with the rhombohedral (3R) and hexagonal (2H) phases occurring at atmospheric pressures 

[123]. In Fig. 4.1(a) the 2H phase structure, with a space group of P63/mmc (no. 194), is shown 

with the crystallographic directions “a, b, and c” which are referred to as the [100], [010], and 

[001] directions throughout this chapter.  Figure 4.1(b) shows the high symmetry k-points of the 

first Brillouin zone, which are used for plotting the band structures. 

All calculations were done using density function theory (DFT) as implemented in the open 

source package Quantum Espresso [52] to predict the atomic and electronic structure of CuAlO2 

under various strain conditions. The ab initio band structures (Kohn-Sham eigenvalues) were 
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subsequently used to calculate general thermoelectric transport properties by utilizing the open 

source tool LanTrap 2.0 [79], which solves the Boltzmann Transport equation in the relaxation 

time approximation using the Landauer formalism [44]. The electron-ion interactions are 

accounted for using PAW, norm conserving pseudo-potentials; Al.pbe-n-kjpaw_psl.0.1.UPF and 

Cu.pbe-dn-kjpaw_psl.0.2.UPF, along with the Ultrasoft, norm conserving pseudo-potential 

O.pbe-n-kjpaw_psl.0.1.UPF from the Quantum ESPRESSO pseudo-potential database. The 

electron exchange-correlation potential was calculated using the generalized gradient 

approximation (GGA)[124] within the Perdew-Burke-Ernzerhof (PBE) scheme. The kinetic 

energy cutoff for the expansion of the plane waves was set to 544.2 eV and all self-consistent 

calculations were terminated when a tolerance of 1.36 x 10-5 eV in the total energy was reached. 

The structural relaxations were performed using a conjugate gradient (CG) algorithm and a 

10x10x4 k-mesh. All structural relaxations were terminated when the force on all atoms are less 

than 2.57 meV/angstrom for the unstrained and hydrostatic (equal strain applied in all directions) 

cases, and 25.7 meV/angstrom for the uniaxial and biaxial strains. The electronic properties were 

computed on a finer 20x20x12 k-mesh. 

 

 

a)    b) 

Figure 4.1.  Fig. 4.1(a) is the relaxed conventional super cell of 2H-phase CuAlO2.  Fig. 4.1(b) is 
the first Brillouin zone with the high symmetry points used for the dispersion paths shown in 
Figs. 2-5. 

 c

 b

 c

 b
 a
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4.4 Electronic structure with and without strain 

4.4.1 Relaxed band structure 

The lattice constants in the relaxed structure were found to be a = b = 2.855 Å and c = 11.394

 Å  which agree well with experimental [125] and theoretical [121], [125] results. Band gap 

calculations using DFT, a ground state method, generally do not produce reliable results due to 

the excited-state nature of the band gap, as well as derivative discontinuities in the exchange-

correlation energy functional [126], [127] arising when the number of electrons increases by an 

integer step at the transition between the highest occupied and lowest unoccupied single electron 

level in an N-electron system [128].  Notably however, the theoretical band gap prediction in the 

current work as well as from other groups shows remarkable accuracy to experimental results. 

Our calculations give an unadjusted indirect band gap of 1.85 eV, which is similar to the 

experimental results of 1.8 eV by Yanagi [129] and 1.65 eV by Benko [130], as well as 

theoretical values of 1.85 eV by Jayalakshmi [121], 1.82 eV by Liu [131], and 1.7 eV by Yanagi 

[129].  The detailed explanation for this theoretical accuracy won’t be discussed.    

Figure 4.2(a) shows the conduction band minimum occurs at the Γ  point while the valence 

band maximums are located at M, K, L, and H, all with similar energies. The valence band of 2H 

CuAlO2 is built from the hybridization between the oxygen 2p and the aluminum 3s and 3p states 

in addition to the copper 3d states, which contribute the majority of states at the valence band 

edge. Copper 4s, aluminum 3s, and aluminum 3p states mainly form the conduction band. The 

interesting valence band structure at all four valence band maximum points should be noted and 

will be discussed in Sec. 4.5. 
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a)   b)   

Figure 4.2. Fig. 4.2(a) is the calculated band structure of the 2H phase of CuAlO2. Fig. 4.2(b) is a 
comparison of our electronic band structure (solid blue lines) to that of reference [122] (dashed 
red lines), (note figures 4.2(a) and 4.2(b) use different k-paths). For all band structures in this 
chapter, the Fermi energy is normalized to zero when calculating band alignment, to allow visual 
comparisons with a variety of strained and relaxed band structures.  

4.4.2 Band structures with hydrostatic strain 

DFT calculations are done at 0K, so for materials that are useful at higher temperatures, such 

as CuAlO2, once the unstrained structures’ band gap is confirmed, adding negative hydrostatic 

stress can be a useful guide to help find trends in the band gap at these elevated temperatures due 

to the effects of thermal strain.  Imparting confidence in this methodology, the lattice parameters 

under hydrostatic strain for this study are found to be consistent with theory and experimental 

values [132], [133]. 

  To simulate hydrostatic strain (equal strains in all directions), we took the relaxed structure 

and applied isotropic strain to the cell parameters by plus/minus 1,2, and 3%.  The atomic 

positions were then allowed to relax keeping the volume of the cell constant. In all the strained 

cases shown in Fig. 4.3, most of the difference is a small band gap and electron affinity 

adjustment.  An outlier is the -3% strained case, in which we see a drastic electron affinity 

adjustment. Most of the shape of the unstrained band structure remains when strain is applied in 

all six cases studied.  The conduction band minimums and valence band maximums remain at the 

same high symmetry k-points as for the unstrained case. There are some variations in the 

curvature of the band structure much higher in the conduction band for the 3% compressive and 

Bandgap(indirect) ≈1.85eV
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tensile cases.  It should be noted that there is very little, if at all, change in the structure of the 

valence band near the band edge, which is the most relevant area to p-type TE transport 

properties. A summary of the changes in band gaps can be found in Table 4.1. 

 

a)                b) 

Figure 4.3.  The figures above represent a 
comparison between the band dispersions of the 
unstrained case (solid line), with hydrostatic 
tensile strain of 1, 2, and 3% represented by 
positive strain (dashed line), while compressive 
strain of 1, 2, and 3% is shown with a negative 
sign (dotted line).   

c) 

 

 

4.4.3 Uniaxial strain 

We applied strain of ± 1% in the [100], [010], or [001] crystallographic direction and allowed 

the other transverse directions to relax. There are two main observations from the band 

dispersions in Fig. 4.4.  As compared to the unstrained case in Fig. 4.2, the valence and 

conduction bands have changed substantially in all the structures simulated in Fig. 4.4.  The 

strained structures have lost the flat valence band and have been replaced by a more parabolic 

band dispersion in four of the six cases (-1% [100], ± 1% [010], and -1% [001]).  This will have 

Strain  − 0%( )   ⋅⋅ -2%( )   -- 2%( )     Strain  − 0%( )   ⋅⋅ -1%( )   -- 1%( )     

Strain  − 0%( )   ⋅⋅ -3%( )   -- 3%( )     
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an effect on electron transport that will be quantified in Sec. 4.5. The second immediate 

observation is the changes in band gap and band gap minimum locations in the above structures.  

The band gap has disappeared for the -1% [100] and [001] strains as well as both ± 1% [010] 

cases, and reduced for the 1% [100] and [001] cases. The significant reduction in band gap will 

hurt thermoelectric performance at high temperatures due to bipolar effects. The conduction 

band minimum remains around the Γ  point, however a second indirect band gap minimum has 

been reduced in energy and lies at a different high symmetry point for many of the cases in Fig. 

4.4.  
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   a)      b) 

 

   c)      d) 

 

   e)      f) 

Figure 4.4. The band dispersion relation of 2H-CuAlO2 with ± 1% uniaxial strain applied to the 
[100], [010], and [001] directions respectively, with the other two directions allowed to relax.  

 1% [100] strain  −1% [100] strain

 1% [010] strain  −1% [010] strain

 1% [001] strain  −1% [001] strain
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4.4.4 Biaxial strain 

For biaxial strain the same procedure was used as section C), except we apply ± 1% strain to 

two of the three directions and allowed the third direction to relax. Figure 5 is the band 

dispersion relation for ± 1% strain applied to the [110] direction, as well as the +1% [101] strain 

case.  For the other structures computed, (i.e. ± 1% [011] and -1% [101]), the band gaps 

disappear entirely and the material becomes metallic for the energy range of interest. With no 

band gap, the Fermi level lies within the bands, most of the heat is carried by electrons and holes, 

therefore the overall Seebeck coefficient will be close to zero, due to their combined, offsetting 

effects. We looked only at structures that retain their semiconducting properties.    

 

a)          b)       

   

Figure 4.5. Figs. (a and b) are the band dispersion 
relations of 2H phase CuAlO2 with ± 1% biaxial 
strain applied to [110] direction.  Fig. 4.5 (c) is the 
+1% [101] strained case. 

 

 

 

c) 

 −1% [110] strain 1% [110] strain

 1% [101] strain
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The main observations from the band dispersion in Fig. 4.5 are similar to those from the 

uniaxial strain case in Fig. 4.4.  The valence band has changed substantially in structure 

compared to Figure 4.2(a).  The interesting structure of unstrained CuAlO2, having a very flat 

valence band, has disappeared and been replaced by a more traditional band dispersion in the 

[110] strain cases.  The second immediate observation is that much of the band gap has 

disappeared for all three cases in Figure 4.5.  The +1% [101] strain case has changed from an 

indirect band gap to direct, while retaining a secondary indirect band gap of similar energy.  The 

valence and conduction bands have become very sharp (i.e. small effective mass) in the +1% 

[101] strain case.  All cases are summarized in Table 4.1 below.    

 

Table 4.1. Summary of the corresponding strain dimension and % applied is followed by the 
band gap energy. The (I) (indirect) and (D) (direct) is followed by the corresponding symmetry 
point(s) where the gap minimums in energy occur. 

Strain Type Egap (eV) 2nd Egap (within 0.5 eV of 
primary Egap) 

Unstrained (I)    1.85      Γ→ M  &  Γ→ L  None 
 

Hydrostatic -3% 
        -2% 
        -1% 

 
(I)    2.33      Γ→ M  &  Γ→ L  
(I)    2.16      Γ→ M  &  Γ→ L  
(I)    2.00      Γ→ M  &  Γ→ L  

 
None 

       +1% 
       +2% 
       +1% 

(I)    1.72      Γ→ M  &  Γ→ L  
(I)    1.57      Γ→ M  &  Γ→ L  
(I)    1.44      Γ→ M  &  Γ→ L  

None 

[110]           -1% 
       +1% 

(I)    0.41      Γ→ M    
(I)    0.20      Γ→ M    

(I)    0.52      Γ→ L  
(I)    0.34      Γ→ L  

[101]          +1% (D)  0.35      M → L  (I)    0.38      M → K  &  L → H  
[100]           -1% 

       +1% 
(I)    0.51      Γ→ M    
(I)    1.18      Γ→ M  &  Γ→ K  

(I)    0.57      Γ→ L  
(I) 1.65   A → L , A → M ,  A → K  

[010]           -1% 
       +1% 

(I)    0.24      Γ→ M    
(I)    0.16      Γ→ M    

(I)    0.39      Γ→ L  
(I)    0.33      Γ→ L  

[001]           -1% 
       +1% 

(I)    0.02      Γ→ M  &  Γ→ L    
(I)    0.69      Γ→ M    

(I)    0.05      A → L  
(I) 1.05 Γ→ K (I)  0.97  L → M        
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4.5 Thermoelectric Transport  

4.5.1 Landauer transport method 

The performance of a thermoelectric material is directly related to its material figure of merit, 

  
zT = S 2σT

κ L +κ e

,                   (4.1) 

where  S  is the Seebeck coefficient, σ  the electrical conductivity,  κ L  and  κ e the lattice and 

electronic thermal conductivities, and  T  is the temperature. The thermoelectric transport 

parameters  

 
σ = ′σ E( )dE

−∞

+∞

∫                (4.2a) 

  
S = − 1

qT
E − EF( ) ′σ E( )dE

−∞

+∞

∫ ′σ E( )dE
−∞

+∞

∫            (4.2b) 

  
κ 0 =

1
q2T

E − EF( )2
′σ E( )dE

−∞

+∞

∫ =κ e +Tσ S 2             (4.2c) 

with the differential conductivity,  ′σ E( ) , given by 

  ′σ E( ) = q2Ξ E( ) −∂ f0 ∂E( ) ,              (4.2d) 

and the transport distribution in the diffusive limit written in the Landauer form [93], 

  
Ξ E( ) = 2

h
M E( ) A( )λ E( ) ,               (4.2e) 

with  M E( ) A  being the number of channels per cross-sectional area for conduction and  λ E( )  

being the mean-free-path (MFP) for backscattering (See the appendix in [102] for a short 

derivation of (4.2e) and [44] for a longer discussion).  
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In (4.2e), the mean-free-path for backscattering is defined as [44] 

  λ E( ) ≡ 2υx
2 E( )τ m E( ) υx

+ E( ) ,             (4.3a) 

where   υx
2 E( )  is an average over angle of the quantity 

   
υx

2
!
k( ) at energy, E. The velocity,  υx

+ E( ) , 

is the angle-averaged velocity in the +x direction (See [44] for the definitions of these averages). 

The number of channels at energy, E, is [42], [44] 

  M E( ) A = hυx
+ E( )D E( ) 4 ,              (4.3b) 

where  D E( )  is the density-of-states per unit volume including a factor of two for spin. 

The numerical methods used to calculate eqns. (4.1) and (4.2) in LanTrap [79], using a band 

structure from density functional theory (DFT) simulations as input, are described in the 

supplementary information of [102], [103].  In this section we do not consider the variability of 

the lattice thermal conductivity,  κ L , with strain [47], [132]–[134]. Therefore, if we assume a 

constant lattice thermal conductivity and a small electronic thermal conductivity,  κ e , due to a 

relatively low electrical conductivity for oxides, for our purposes in this section, we will focus on 

the power factor given by  

  PF = S 2σ ,                                 (4.4) 

which is comprised of the Seebeck coefficient and the electrical conductivity. 

4.5.2 Scattering 

When calculating eqns. (4.1), (4.2), and (4.4), a constant mean free path (MFP) of 3 nm for 

both holes and electrons was used.  This is consistent with the small nano-scale size limit (SNS) 

[58], [59] due to grain boundary scattering [135] of nano-structured TE materials, which has 

been used to reduce the overall lattice thermal conductivity. Depending on the different strain 

magnitudes and directions applied, the value of the MFP could vary in magnitude, anisotropy, or 

both, depending highly on the structure and material growth at the grain boundaries. This was 

not taken into account in the different strain cases, with a constant MFP of 3 nm always used. In 



 73 

general, to get a more complete understanding of the scattering mechanisms involved in a 

particular material or device, experimental mobility should be measured for the structure of 

interest, or first principles guided simulations performed [102], to help elucidate the type of 

scattering mechanisms and their coupling strength.  

Having assumed a constant mean-free-path of 3 nm, the transport distribution of eq. (4.2e) 

now depends only on the distribution of modes eqn. (4.3b). This greatly simplifies comparing 

different band structures to ascertain which will provide the largest PF or zT, the only quantity 

needed in this case is M E( ) , which varies proportionally with the density of states.  Therefore, 

in the case of a constant MFP, an increase in the density of states right around the valence band 

edge will increase the distribution of modes, thereby increasing the power factor. In this case, a 

large density of states at the valence band edge is very beneficial [75], however if the scattering 

rate were taken to be acoustic deformation potential (ADP) scattering, which goes inversely with 

density of states, the benefits aren’t always clear [102].  

4.5.3 Discussion 

Figure 4.6 is a comparison of the transport properties in the [100], [010], and [001] directions 

of transport for the unstrained case assuming a MFP of 3 nm at 300 K.  In all plots the x-axis is 

the Fermi level with the valence band located at 0 eV and the conduction band located at 1.85 

eV.  The largest power factor, Fig. 4.6(a), is obtained with transport in the [001] direction in the 

unstrained structure, this is also true for all strain cases considered next.  

Fig. 4.6(b) is a plot of the conductivity vs. Fermi level for the three different transport 

directions considered.  The values of the conductivity show in Fig. 4.6(b) and Table 4.2 at the 

valence band edge are similar to those reported theoretically using a constant scattering time 

[122]. However, these conductivity values are approximately 1-2 orders of magnitude larger than 

what have been reported experimentally [122], [136], [137].  This is attributed to the 1-2 orders 

of magnitude lower carrier concentrations in experiment, i.e.  ~ 1×1018  to 1×1019  cm−3 compared 

to theoretical carrier concentrations at the power factor maximizing Fermi level around the 

valence band edge, i.e.  ~ 1×1020  to 1×1021 cm−3 .  
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Fig. 4.6(c) is a plot of the Seebeck coefficient vs. Fermi level.  A materials’ maximum 

Seebeck coefficient is not dependent on the overall effective mass directly, but only on band gap 

and weakly on the scattering mechanism (i.e. Ionized Impurity, Acoustic Deformation Potential 

Scattering (ADP), constant MFP, etc.). The overall Seebeck vs. Fermi level curve will be 

unchanged for the three different transport directions considered.  The values shown are 

consistent with other theoretical studies [122] which comes as no surprise since Seebeck values 

are directly related to the band gap. 

Figure 4.6(e) is a plot of the distribution of modes for the three transport directions. The band 

structure with the largest  M E( )  at the band edge will also have the largest power factor, which 

can be seen in Fig. 4.6(a). We notice in Fig. 4.6(e) the dramatically different distribution of 

modes around the valence and conduction band edges.  For parabolic band semiconductors in 

three dimensions, M E( )  varies linearly with energy around the conduction and valence band 

edges as 
   
M E( ) ∼ EC ,V − E( )  [42], [44]. Focusing on the [001] direction, the distribution of 

modes at the conduction band edge goes linearly with energy as expected. The distribution of 

modes at the valence band however has a strikingly non-linear shape, leading to the larger power 

factor values obtain for p-type as compared to n-type carriers in the unstrained case.   

We have summarized the power factor, Seebeck coefficient, and electrical conductivity at the 

Fermi level that maximizes the power factor for all of the strained and unstrained cases in Table 

4.2.  In all strained and unstrained cases, transport in the [001] direction yields the highest power 

factor.  The Fermi level that maximizes the power factor can vary depending on band structure 

and scattering, however in all cases discussed in this work, the Fermi level that maximizes the 

power factor lies very close to the valence band edge, as can be seen from Fig. 4.6(a).   
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a)   b) 

  

c)        d) 

Figure 4.6. The transport properties of the 
unstrained 2-H phase CuAlO2 in three different 
transport directions [100](dashed lines), 
[010](dotted lines), and [001](solid line) assuming 
a MFP of 3 nm.  In all plots the x-axis is the Fermi 
level with the valence band located at 0 eV and 
the conduction band located at 1.85 eV.  Fig. 
4.6(a) is the power factor, fig. 4.6(b) is the 
electrical conductivity, fig. 4.6(c) is the Seebeck 
coefficient for electrons, holes, and a combination 
of the two (same for all transport directions), fig. 
4.6(d) is the DOS (same for all transport 
directions), fig. 4.6(e) is the distribution of modes. 
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In Table 4.2, the hydrostatic strain cases’ power factors closely resemble the unstrained case, 

which should be expected.  When the band gap is adjusted due to hydrostatic pressure, the 

Seebeck coefficient value at a given energy and k point changes. The Fermi level is adjusted to 

maximize the power factor, changing the value of the Seebeck coefficient and conductivity at 

this new Fermi level [102]. Due to these adjustments, the power factors end up being about the 

same as the unstrained case. 

 The two cases that raise interest in Table 2 due to their higher power factors are the +1% 

[101] and the +1% [001] strains.  Both have a higher conductivity at the valence band edge than 

any other cases. The +1% [001] strain yields a p-type power factor of 1.95x10-4 (W/mK2), the 

highest p-type value of the strains considered. The shape of the valence band for the +1% [101] 

and +1% [001] strained cases are very similar, with the effective masses becoming very small 

due to the large curvature of the valence band at the gamma point as can be seen from Figs. 4.4 

and 4.5(c).  These small effective masses, along with the addition of a second indirect peak at the 

K and H high symmetry k-points, facilitate a higher distribution of modes, due to the increase of 

the density of states with the addition of a second band, and a higher positive directed velocity 

(smaller effective mass), both of which contribute to an increase in  M E( ) . In both of these high 

power factor cases, n-type conduction has an even higher power factor than p-type.  This is due 

to the same effects described for the increase in p-type conduction. Note the -1% [001] case also 

has very high conductivity values, however with a negligible band gap, both holes and electrons 

contribute to the conductivity, making the overall power factor low.  Due to the band gaps of 

0.35 eV for +1% [101] and 0.69 eV for +1% [001], the power factors for both n and p-types 

remain high. 
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Figure 4.7. Distribution of modes for three cases; the unstrained case (solid line), the -1% 
[100](dashed line) and the +1% [001](dotted line) strained cases. Because of the constant MFP 
assumption, M E( )  is also the transport distribution,  Ξ E( ) . 

Figure 4.7 is a plot of the distribution of modes for three different strained cases; unstrained, 

-1% [100], and +1% [001], which correspond to our unstrained reference, the lowest, and the 

highest power factor cases for comparison. As was mentioned before, when the same constant 

MFP is assumed for all cases, eqns. (4.2d-4.2e) show that only the Fermi window and 

distribution of modes determine the conductivity.  Therefore, the structure with the largest 

distribution of modes will also have the largest power factor. In Fig. 4.7, the valence band edges 

of all three cases are shown at 0 eV on the x-axis, but due the strain applied, the conduction band 

edges lie at 1.85, 0.51, and 0.69 eV respectively.  The abrupt n-type distribution of modes for 

+1% [001] at the conduction band can also be seen in Fig. 4.7.  This illustrates the direct 

correlation between the maximum power factor and the maximum distribution of modes at the 

band edge. 
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Table 4.2. Summary of the electrical conductivity, Seebeck coefficient, and power factor at the 
Fermi level that maximizes the power factor.  All calculations were done in LanTrap 2.0 [79] 
with a MFP of 3 nm with bipolar effects included. 

Strain Type 
 

p(n) Electrical  
conductivity x 103  
(S/m)(@EF=EPF(max)) 

Seebeck Coefficient 
( µV/K ) (@EF=EPF(max)) 

 
 

Max Power Factor 

x10-4 (W/mK2) 

(Optimum transport 

direction) 

Unstrained 3.82   192 1.41   
Hydrostatic -3% 

        -2% 
        -1% 

3.36   
3.55   
3.73   

207 
201 
196 

1.44   
1.43   
1.43   

       +1% 
       +2% 
       +3% 

3.90    
3.94       
3.92    

191 
190 
190 

1.42   
1.42   
1.41   

[110]           -1% 
       +1% 

0.75  
0.95  

197 
169 

0.29       
0.27  

[101]           +1% (p) 7.70   (n) 6.81    (p) 145   (n) 161   (p) 1.63  (n) 1.77   
[100]           -1% 

       +1% 
0.79  
0.78   

142 
168 

0.16       
0.22   

[010]           -1% 
       +1% 

0.62  
0.66  

213 
210 

0.28       
0.29  

[001]           -1% 
       +1% 

      (p) 10.2   (n) 10.3    
(p) 2.89   (n) 4.75 

 

(p) 17.1  (n) 13.9 
(p) 260   (n) 206 

(p) 0.03  (n) 0.02  
(p) 1.95  (n) 2.02   
 

4.6 Conclusion  

Due to the lack of p-type thermoelectric materials for high temperatures, materials that offer 

interesting band structure warrant careful consideration.  In this work, we used first principles 

calculations to analyze a promising p-type thermoelectric material that is earth abundant, robust 

at high temperatures, and oxidation resistant. The drastic change in structure produced when 

strain is applied creates a type of band dispersion that needs careful analysis to ascertain the 

benefits and detriments for high temperature (and possibly low temperature) thermoelectrics. All 

TE transport parameters are determined by the transport function.  In the SNS scattering limit 

assumed in this study (i.e. a constant MFP), the transport function is proportional to the number 

of channels, M E( ) .  Therefore, the effect of strain on TE transport is best understood by 
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examining the M E( )  extracted from the bandstructure.  A large number of channels near the 

band edge lead to a high electrical conductivity.    

The main conclusions of this study are: 1) strain can be beneficial or detrimental to TE 

performance depending on whether it increases or decreases M E( )  near the band edge, and 2) 

under certain cases of strain, n-type conduction produced higher power factors than their p-type 

counterparts, thus opening an interesting avenue for strain engineering to produce both n and p 

type legs from the same material. The enhanced n-type performance occurs because the right 

type of strain dramatically increases M E( )  near the conduction band edge. These results suggest 

great care must be undergone in the fabrication of this material to prevent detrimental strains, 

which can lead to degradation of thermoelectric performance. Conversely however, there are also 

benefits if care is undertaken in fabrication to produce thermoelectric materials that outperform 

their unstrained cases.  

Many researchers feel that thermoelectrics could potentially provide a robust source of 

energy for a rapidly growing and energy consuming population. Transparent conductive oxide 

(TCO) materials are attractive because they offer relative ease of fabrication, low cost of 

materials, and non-toxicity. The ability to tailor TCO materials to specific temperature ranges, 

power needs, and size requirements, through the use of strain would open up interesting new 

avenues. Although the overall zT efficiencies of TCO materials may not exceed state of the art 

TE materials, if the appropriate direction and magnitude of strain could be applied to increase 

their TE properties, the overall $cost/kW-hr of TCO’s quite possibly could.  

Data Availability – Access to scripts and the computational tool LanTrap used in this work are 

be available for free online at nanohub.org/groups/needs/lantrap. The pseudo-potentials used in 

the DFT calculations can be found at http://www.quantum-espresso.org/pseudopotentials. 
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5 THE USE OF STRAIN AND GRAIND BOUNDARIES TO TAILOR 
PHONON TRANSPORT PROPERTIES: A FIRST PRINCIPLES STUDY 

OF 2H-PHASE CuAlO2 (PART II)  

5.1 Preface 

 The contents of this chapter have been extracted from the following publications with 

permission: Z. Tong, Y. Feng, X. Ruan, M. Lundstrom, and N. Lu, “The use of strain to tailor 

phonon transport properties (Part II): A first principles study of 2H-phase CuAlO2,” (to be 

submitted). 

Introduction  

 

 Thermoelectric (TE) devices and materials are appealing for use in solid-state energy 

generation and solid-state cooling. Regardless of their operating mode, a good thermoelectric 

material should have a high electrical conductivity (σ), Seebeck coefficient (S), and a low lattice 

thermal conductivity (κL) given in the figure of merit [57]    

 

  
zT  = σ S 2T

κ L +κ e

.            (5.1) 

 

 However robust and reliable as TE devices could potentially be, they have been limited by 

low conversion efficiencies since the beginning [1]–[5]. The gains to zT have been primarily 

driven by a reduction in the lattice thermal conductivity of materials and devices through the use 

of nano-structuring [6]–[12] and the development of novel thermoelectric materials with the 

ability to take advantage of a wide range of operating temperatures [75], [138]–[140] with 

inherently low thermal conductivity.  These advances have not translated into working devices 

[13] however, due to many issues, one of which being material and fabrication cost. As we 

approach the lower limit of the lattice thermal conductivity for complex TE materials the 

applicability of thermoelectric devices remains in question due to their high cost and low 

efficiencies.  
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 A previous work [141] looked at transparent conducting oxides (TCOs), and specifically 

2H-phase CuAlO2, which has gained interest as a promising candidate for high temperature p-

type thermoelectric applications [49], [50], [118], [119] [120], because of its potential use in high 

temperature applications, due to a large band gap, high thermal stability, oxidation resistance, 

and low material costs [48]–[51], [110]–[117]. Some experimental and theoretical studies [49], 

[120]–[122], [141], [142], have been done on the thermoelectric (TE) properties of the 2H phase 

of this material, however none have looked at the thermal conductivity using rigorous first 

principles simulations. Under specific cases of strain, n-type conduction can produce higher 

power factors than their p-type counterparts providing an interesting avenue for strain 

engineering to produce both n and p type legs from the same material [141]. Strain engineering 

may be beneficial for the electronic component of zT, but its effect on the lattice thermal 

conductivity must also be ascertained.  That is the objective of this work.  

 

 In practice, defects are introduced into the lattice itself as point defects or as grains in micro-

structured thermoelectric materials to aid in suppressing thermal conductivities. The creation of 

grain boundaries through the use of nano-structuring is one of the most promising and widely 

used strategies to improve zT [143]. In this work, a variety of nanometer grains sizes will be 

simulated, that are consistent with the small nano-scale size limit (SNS) [58], [59], giving rise to 

grain boundary scattering [135] of nano-structured TE materials. We show in this work an ab 

initio assessment of lattice thermal conductivity in 2H CuAlO2, including third-order anharmonic 

scattering, natural isotopic scattering, and Casimir finite-sized boundary scattering, which takes 

into account the spectral decomposition of phonon wave vectors at the grain boundary. We find 

that the low thermal conductivity seen experimentally [144], [145] is most likely due to micro 

and nano-structured effects due to grain boundary scattering of phonons. Casimir grain boundary 

scattering reduces the thermal conductivity by as much an order of magnitude, with crystalline 

anisotropy (due to the hexagonal structure) further reducing  κ L .  Isotopic scattering has a limited 

effect (especially for small grain sizes) due to the constituent atoms being on the smaller end of 

the periodic table, (typically isotopic scattering plays a larger role when large mass atoms are 

involved or at low temperatures [146]).   
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 In this work under a variety of strains are applied and their effects on the lattice thermal 

conductivity will be discussed, as well as the variations of the lattice thermal conductivity for a 

wide range of temperatures. There are five sections in this paper, I) introduction, II) 

methodology and simulation details, III) unstrained lattice thermal conductivity, IV) strained 

lattice thermal conductivity and finally, V) conclusions.  

5.2 Methodology and Simulation details 

5.2.1 Atomic structure  

 CuAlO2 crystallizes in two distinct phases, 3R and 2H, both having a delafossite structure 

with the rhombohedral (3R) and hexagonal (2H) phases occurring at atmospheric pressures 

[123]. In Fig. 5.1(a), the 2H phase structure, with a space group of P63/mmc (no. 194), is shown 

with the crystallographic directions “x, y, and z”. Figure 5.1(b) shows the high symmetry k-

points of the first Brillouin zone, which are used for plotting the phonon band structures.  

 

 
    a)    b) 

Figure 5.1 (a) Relaxed conventional supercell of 2H-phase CuAlO2.  (b) First Brillouin zone with 
the high symmetry points used for the dispersion paths shown in Fig. 5.2. 
 

 A phonon can be defined as a quantum of lattice vibrations, described by the quantum 

number 
   
λ = v,q( ) , where v denotes the branch index and q denotes the wave vector of a particular 

phonon mode. A phonon can be scattered through interaction with other phonons, electrons, 

impurities, grains, etc. The overall scattering rate of a phonon mode can be estimated by 
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Matthiessen’s rule [147] as   Γλ = Γλ
pp + Γλ

pe + Γλ
gb + Γλ

im...  that includes phonon-phonon (p-p) 

scattering, phonon-electron (p-e) scattering, grain boundary (gb) scattering, phonon-impurity 

(isotopic) scattering, respectively. Due to the low electrical conductivity as noted in [51], [141], 

[144], the phonon-electron scattering term,  Γλ
pe , is neglected here. Isotopic scattering was 

included in some simulations, however the results show that the effect is negligible, especially 

when grain sizes are small.  Only   Γλ
pp ,  and Γλ

gb will be calculated from first principles in this work.  

 

 The current calculation includes three-phonon scattering only, while four-phonon scattering 

was shown to be important for certain materials [148], [149]. Further studies of this material 

warrant the inclusion of four-phonon processes since present applications of CuAlO2 are for high 

temperatures, where four-phonon scattering can be relevant [150]. The p-p scattering 

contribution from three-phonon processes to  Γλ
pp  is given by Fermi’s golden rule as [151], [152] , 

 

   

Γλ
pp = !π

4N
2 n1 − n2( )
ωω1ω 2

Vλλ1λ2

+
2
δ ω +ω1 −ω 2( )

λ1λ2

+

∑

+ !π
8N

n1 + n2 +1( )
ωω1ω 2

Vλλ1λ2

−
2
δ ω −ω1 −ω 2( ),

λ1λ2

+

∑
        (5.2) 

 

where the first term is the combination of two phonons with possibly different wave vectors to 

produce one phonon. The second term is for the opposite process of one phonon splitting into 

two, i.e. phonon emission, with  !  being Planck’s constant, ni is the Bose-Einstein distribution, 

and ω  is the phonon frequency. The summation runs over all phonon modes and wave vectors 

and requires conservation of the quasi-momentum  q2 = q ± q1 +Q  in which Q is the reciprocal 

lattice vector with Q = 0 constituting a normal process and  Q ≠ 0  being an Umklapp processes. N 

is the number of discrete q-points of the Γ -centered q-grid for sampling, δ  is the Dirac delta 

function, which is approximated by a Gaussian function in the computational package 

QUANTUM ESPRESSO (QE) [52], [55] (which is the computational package used in this 

work). The scattering matrix elements
 
Vλλ1λ2

±  [54], [55], [151] are given by, 
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Vλλ1λ2

± = ∂3 E
∂rl1

η1 ∂rl2

η2 ∂rl3

η3

eλ
η1 l1( )ej1,±q1

η2 l2( )ej2 ,−q2

η3 l3( )
ml1

ml2
ml3

,
η1η2η3

3,3,3

∑
l2 ,l3

N ,N

∑
l1

NB

∑         (5.3) 

 

where mli is the atomic mass and 
  
ev ,q

is a normalized eigenvector of the mode 
   
λ = v,q( ) .  In eq. 

(5.3)   l1 ,   l3 , and   l3  run over all atomic indices (with  l3 only summing over the atoms in the center 

unit cell, which contains NB basis atoms), and  η1 ,  η2 , and  η3  represent Cartesian coordinates. 

The 3rd order anharmonic interatomic force constants (IFCs) are the third-order partial 

derivatives, which are obtained from the D3Q-Thermal2 package interfaced to QE [54], [55]. 

The energy E is the total energy of the entire system with 
  
rl1

η1  designating the η1 component of the 

displacement of a particular atom   l1 . We also obtain the second order force constants by Fourier 

transforming dynamical matrices in the reciprocal momentum space gleaned from linear 

response theory implemented in QE [55].  

 

The lattice thermal conductivity tensor can then be calculated as 

 

   
κ L,αβ =

1
kBT 2 !ωλ( )2

nλ nλ +1( )υλ ,αυλ ,βτ λ ,
λ
∑         (5.4) 

  

1
τ λ

= 1
τ λ ,pp

+ 1
τ λ ,gb

,           (5.5) 

 

with Matthiessen’s rule being applied to the scattering lifetimes of individual phonon modes 

separately [153].  

5.2.2 Grain boundaries 

 The phase or polytype transition of this material from the trigonal 3R to the hexagonal 2H 

phase can happen at 15.4 Gpa [142], with the 3R phase being studied more due to its better 

structural stability.  It has been shown elsewhere that treating grain boundaries as a secondary 

phase of a material can help explain much of the transport behavior observed in polycrystalline 

samples [154]. At grain/phase boundaries that are comparable to grain size, a significant amount 

of heat is transported through the interface by phonons [154], therefore studying the high 
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pressure 2H phase of CuAlO2 can help elucidate phonon transport in nano-grained structures of 

the 3R phase as well.  

 

 The grain boundary scattering term is the only term that depends on the direction of the 

phonon group velocity explicitly, which can generally be expressed as the frequency independent 

equation [155], 

 

  

τ λ ,gb =
Lη

2υλ ,η

,            (5.6) 

 

where 
 
Lη  is the distance between the two boundaries in one of three Cartesian directions. 

However due to the omnidirectional grains and the variety of temperature ranges used, a model 

from [156] is assumed in this study,  which assumes a grain boundary acts as a diffraction 

grating, producing diffraction spectra of various orders.  Multiple values of
 
Lη are used in this 

work and are shown in Section III. In all calculations, including Casimir scattering, we assume 

the correction factor [55] [157], [158] to be F =1, which takes into account the shape and 

roughness of each grain boundary to be diffusive.   

 

 It has been shown in previous work the commonly used frequency-independent boundary 

scattering (grey model or the simple Casimir model, not to be confused with the Casimir model 

used in this work [156]) can better fit thermal conductivity experimental data if it is replaced by 

a frequency-dependent phonon scattering model due to dislocation strain in grain boundaries 

[159]. This difference manifests itself most notably at low temperatures with the frequency-

independent boundary scattering going as the normal    ∼ T 3  Debye law, which deviates from 

experimental thermal conductivity of polycrystalline silicon which goes as    ∼ T 2  at low 

temperatures [160].  In this work however, the temperature range of interest is primarily > 300K, 

thus these discrepancies are not considered here, and will be left for future work on this material 

and its experimental low temperature thermal conductivity behavior.   
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5.2.3 Simulation details 

 The thermal conductivity, q–dependent linewidths, including Casimir and natural isotopic-

disorder scattering, are calculated using the D3Q-Thermal2 codes [54], [55]. We use a 

generalized-gradient approximation (GGA) Perdew-Burke-Ernzerhof (PBE) scheme [124] for 

electron-electron interaction, and ONCV  norm-conserving pseudopotentials [161] for the 

electron-ion interaction. GGA considers the gradient of the charge density at each position when 

the atom position is perturbed, and has been shown to work better for materials with abrupt 

charge density changes such as in semiconductors, whereas the Local Density Approximation 

(LDA) is more applicable to metallic systems [162].  

 

 The plane-wave energy cut-offs and force thresholds for the variety of strain and unstrained 

cases were varied based on finding well-relaxed structures with the absence of negative phonon 

frequencies and are provided in the supplementary material (SM). The hexagonal symmetry was 

enforced during the geometry optimization. Strained structures were relaxed after artificially 

changing the lattice constant in a particular direction of strain. The k–point grids used for 

structural relaxation and optimization were 16 x 16 x 16 while the q-point grids for phonon 

dynamical-matrix calculations were set to 4 x 4 x 4.  For the third-order force constants a grid of 

2 x 2 x 2 was used, and a 10 x 10 x 10 grid was used for the lattice thermal conductivity 

calculation. In calculating the lattice thermal conductivity, a Gaussian smearing of 5 cm-1 was 

used.  This value, along with tests on k/q-grids, and energy cut-offs, have been checked w.r.t the 

phonon frequencies at the Γ  point and suggest that the average lattice thermal conductivity value 

is stable to within ten percent.  

5.2.4 Anisotropy and Convergence  

 In this work, due to the “mis”-orientation of grains in experimental samples [144], the 

uncertainty in the heat and electronic directed transport intended, the bulk nature of the intended 

material, and the “relative” isotropy in the lattice thermal conductivity tensor, the lattice thermal 

conductivity is assumed to be 
  
κ L = κ i

i=1

3

∑ / 3 , i.e. an average over the x, y, and z directions. For the 

lattice thermal conductivity calculation, the "exact" iterative conjugate-gradient solution (CGS) 

method of [55] which attempts to solve the linearized BTE exactly, was compared to the single 

mode relaxation time approximation (SMRTA) [55], [163]–[166]. The SMRTA is considered to 
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be inadequate to describe thermal conductivity at low temperature ranges, with increased 

sensitivity to isotopic scattering at these low temperatures[151], [167] i.e. T < 300 K. However 

for our purposes here, the temperature range of interest are generally greater than 300 K, even 

though results will be shown for temperatures less than this, the SMRTA gives results above 300 

K for the average thermal conductivity “consistent” with the CGS, please see the supplementary 

material for a discussion of this. For structures with no grain scattering assumed, the lattice 

thermal conductivity for the x and y directions are consistent within 1-5% for the SMRTA 

compared to the CGS for all temperatures considered.  However, the lattice thermal conductivity 

for the z direction shows a large deviation for T > 300 K for the SMRTA compared to the CGS, 

with the SMRTA model underestimating the z directed lattice thermal conductivity by around 

40-50% for these temperatures. Even with this large deviation, the average lattice thermal 

conductivity found by averaging the x, y, and z directions deviates only around 10% from the 

SMRTA to the CGS for T > 300 K. Due to the considerations mentioned at the beginning of this 

section, and, as we will see later, that deviations are significantly reduced when small grain 

boundaries are introduced into the structures, the average thermal conductivity using the 

SMRTA is used throughout this work.        

5.3 Unstrained Lattice Thermal conductivity  

 The lattice constants in the hexagonal relaxed structure were found to be a = b = 2.8798 Å

and c = 11.4077 Å , which agree well with experimental [125] and theoretical [121], [125] 

results.  
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Figure 5.2 Calculated phonon dispersion relation and density of states of the 2H phase of 
CuAlO2 for unstrained (solid blue) and +3% strain (dotted red). 
 

Figure 5.2 shows the phonon band dispersion for 2H CuAlO2 for the unstrained structure (and 

+3% strain for comparison) used throughout this section. With the hexagonal structure of this 

material, one notices the large amount of bands especially around the low frequency of 100 cm-1. 

Boundary or grain scattering generally scatter low frequency phonons, as opposed to Umklapp 

and point defect mechanisms which scatter at all frequencies and high frequencies respectively 

[159].  We will see that these low frequency modes in 2H CuAlO2 get effectively scattered when 

grain boundaries are introduced.  
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a) b)  

Figure 5.3 (a) Comparison between the thermal conductivity of the material without grains, 
along with grain sizes of 3nm, 30nm, 300nm, 3000nm, and 30000nm vs. temperature.  (b) 
Scattering linewidth vs. frequency for the structure with no grains (blue dots) and the structure 
with grains of 3nm (red dots). 
 

 The structures in Fig. 5.3(a) show a    ∼ T −1  behavior above the Debye temperature, consistent 

with the Dulong-Petit law, with the thermal conductivity being governed by the MFP in this 

region. With the finite size of the crystal being accounted for,  κ L  becomes finite at zero K and 

decreases for grains larger than 3000nm as temperature increases. However, for structures with 

grains of 300nm and less, the lattice thermal conductivity begins to increase from 0K before then 

decreasing around the Debye temperature, and continuing to do so at higher temperatures.  As 

was mentioned earlier, the difference between the    ∼ T 3  Debye law for low temperature phonons 

due to boundary scattering with the dislocation strain model,    ∼ T 2 , won’t be resolved in this 

work. 

 

 This can be interpreted as a dominating effect of the grain boundaries over intrinsic phonon 

scattering [168] (i.e. the intrinsic mean free path, 
  
lmfp =

!vτ λ  is very large at low temperatures and 

is limited by the crystal size).  The same (albeit difficult to see) effect can be observed in Fig. 

5.3(b) at 300 K.  Even though the linewidths have greater values for some of the higher 

frequency modes, the lower frequency linewidths for the 3nm grain case are consistently larger 

in comparison to the no grain structure (blue dots) at these low frequencies compared to the 

discrepancy between the two structures for higher frequencies. These low frequency bands are 

generally affected more by Casimir scattering, with both anharmonic and Casimir scattering 
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being significant along the shearing transverse-acoustic mode around 100 cm-1, as can be seen in 

Fig. 5.1 around the Γ  point. 

 This same effect can be seen in the accumulation functions [165] in Fig. 5.4(a) (no grains) 

and Fig. 5.4(b) (3nm grains) as well with lower temperatures being governed by larger MFPs for 

both the structure without grains Fig. 5.4(a) and for 3nm grains Fig. 5.4(b). 

 

a) b)  

Figure 5.4 (a) The accumulation function of the thermal conductivity for a structure with no 
grains for a variety of temperatures. The inset is the thermal conductivity normalized to 1.  
(b)The same set of plots but for a structure that includes 3nm grains. Please note the different 
values on the x-axis.   
 

 In comparing with experiment at 300 K, values of the total thermal conductivity agree well 

with reported values for “micro” grained structures [145] of 20-30 W/mK, with our results 25-32 

W/mK being reasonable.  For “nano” structured samples in [145], around 2 W/mK was found 

compared to our results of 4.4 W/mK .  If isotopic scattering is included with natural isotopes 

assumed, our thermal conductivity is only reduced to around 3.8 W/mK, making the isotopic 

scattering contribution negligible. Further results were obtained from [144] with thermal 

conductivities found to be around 2.5 W/mK at 300K.  The grain size observed in [144] was 

experimentally found to be 0.247 nm. Though not included in the above figures, a grain size of 

0.3nm in our simulations gives a thermal conductivity of around 0.5 W/mK at 300 K.  The trend 

seen in Fig. 5.3(a) however for the 3nm structure is consistent with the thermal conductivity seen 

in [144], which is relatively constant over a large temperature range from 300K-800K. 
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5.4 Lattice Thermal Conductivity with Strain 

5.4.1 Hydrostatic strain 

 To simulate hydrostatic strain (equal strains in all directions), we took the relaxed structure 

and applied isotropic strain to the cell parameters by ± 1, ± 2, and ± 3%.  The atomic positions 

were then allowed to relax keeping the volume of the cell constant. Imparting confidence in this 

particular methodology, the lattice parameters under these hydrostatic strains are found to be 

consistent with theory and experimental values [132], [133]. 

  Figure 5(a) is a plot of the thermal conductivity vs. strain for both a structure without grains 

(blue circles) and for one with 3 nm grains (red stars). We can see from Fig. 5(b) that the +3% 

strained structure without grains has a much higher scattering linewidth, with values being 

shifted lower in frequency, and conversely for the -3% strain, the linewidths are lower and 

shifted higher in frequency.  We remind the reader that -3% constitutes compressive strain. 

 

a) b)  

Figure 5.5 (a) Lattice thermal conductivity vs. strain for both a structure without grains (blue 
circles) and for one with 3 nm grains (red stars). (b) Linewidth vs. frequency for structures with 
no grains with the unstrained case as blue dots, -3% strain shown as red dots, and +3% shown 
with green dots.   
 

 Figure 5.5(b) explains Fig. 5.5(a), with the large linewidths corresponding to a shorter 

lifetime, yielding  κ L for a structure with no grains with +3% strain comparable to that of a 

structure with 3nm grains at +3% strain (4 W/mK compared to 2 W/mK).  The  κ L  at +3% strain 

without grains at 300K is about 4 W/mK compared to the unstrained case at 300 K of 32 W/mK. 

The reduction in lattice thermal conductivity in Fig. 5.5(a) from the -3% strained to the 
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unstrained case of 55% is conversely consistent with the reduction of the average linewidth in 

Fig. 5.5(b) of  ∼ 50% from the unstrained to -3% case. The same effect is seen from the 

unstrained to +3% strain cases, with the lattice thermal conductivity reduced by 86% in Fig. 

5.5(b), with the average linewidth being reduced by around  ∼70% from the +3% to unstrained 

case. Even though these trends aren’t exactly one to one, the connection to scattering is clear. 

The trend vs. strain is consistent with compressive strain shifting the phonons to higher 

frequencies with bands becoming more spread out in energy inducing longer scattering times, 

giving higher thermal conductivities. The +3% strained phonon energy dispersion bands are 

lower than the unstrained case and closer together, as seen in Fig. 5.2, therefore, the lower 

frequency induces stronger phonon-phonon scattering (predominately among high frequency 

optical phonons) in the strained case, as seen in Fig 5.5(b). Structures with 3nm grains are also 

reduced by the inclusion of strain, varying from around 6 W/mK to 2 W/mK in a similar manner.  

 

 What is more interesting is the trend observed in Figs. 5.6(a) and 5.6(b).  Figure 5.6(a) is a 

plot of  κ L  vs. strain for a wide range of temperatures.  The thermal conductivity in Fig. 5.6(a) 

decreases from -3% to +3% just as before, as does  κ L for the temperature trend, i.e. the lowest 

temperature has the highest  κ L  and progressively downward with values converging to less than 

20 W/mK for all temperature cases. Fig. 5.6(b), which is a plot of  κ L vs. strain for a structure 

with 3nm grains, has the lowest thermal conductivity for the lowest temperature curve 50 K.  

However, the trend is not entirely flipped; the highest  κ L  is not the highest temperature at -3% 

strain, but a mid range temperature of around 450 K.  Further more at +3% strain the curves 

begin to cross with the highest  κ L around 2 W/mK for 300 K and the lowest still being 50 K at 

0.5 W/mK, with the highest temperature of 800 K occupying the second lowest value of slightly 

over 1 W/mK.   
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a) b)  

Figure 5.6 The figures above show plots of the thermal conductivity vs. hydrostatic tensile strain 
ranging from -3% to 3% with a variety of temperatures with symbols in the figures; (a) is 
without grains in the structure, and (b) has 3nm grains included. Both plots have the same 
symbols for each temperature case. The inset in (a) is zoomed to thermal conductivities from 0 to 
100 W/mK.  

 

 As was mentioned before in the methods section, the SMRTA is generally less accurate for 

lower temperature ranges up to 300 K, with a general reduction in  κ L  for this method compared 

to the conjugate-gradient solution (CGS) method [55].  Neglecting the low temperatures, we see 

that for temperatures from around 300 K and above, the  κ L values are grouped closer together in 

both figures, more noticeably in Fig. 5.6(b) ranging from around 5.5-6 W/mK for -3% strain, to 

around 2 W/mK for +3% strain.  These trends suggest that nano-structured CuAlO2 with small 

grain sizes of around a nanometer are temperature independent regardless of the strain applied, 

also seen in Fig. 5.3(a), further clarifying the constant temperature curve of the experimental data 

in [144] and [145].     

5.4.2 Selected uni-axial strain 

 In part I of this study [141], it was found that +1% strain in the z direction induced the 

highest power factors for both n and p type transport in 2H-CuAlO2. A structure with +1% strain 

in the z direction was simulated for both a crystalline (no grains) as well as for a structure with 

3nm grains.  The crystalline structure and polycrystalline 3nm grain structure had identical 

temperature trends to that observed in figure 3(a) for the same cases. As far as lattice thermal 

conductivity is concerned, for this material it is generally unnecessary to resolve uni- or bi-axial 

strain, since the 3nm grains will dominate the scattering and the results are the same as above.  
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The large reduction in lattice thermal conductivity due to 1 – 3% hydrostatic strain seen in Fig. 

5.5(a) above is consistent with first principles work in other materials [169].  The inclusion of 

only uni-directional strain has a much smaller effect of 1 – 10% on the overall lattice thermal 

conductivity, and many times not at all. 

5.5 Conclusions  

 In summary, we believe that the lattice thermal conductivity and therefore the total thermal 

conductivity of 2H CuAlO2, due to the limited electronic thermal conductivity, is not unnaturally 

small because of its inherent structure, but rather because of the inclusion of grain-boundary 

scattering. While the crystalline thermal conductivity is around 32 W/(K-m) at room 

temperature, it drops to between 5-15 W/(K-m) for typical experimental grain sizes from 3nm to 

30nm at room temperature. A second conclusion of this study shows that when grains of 3nm or 

less are assumed, the thermal conductivity is generally independent of temperature for 

unstrained, compressive, or expansive strained structures. Due to the array of possible strain and 

phase transitions inherent in grain boundaries, these results confirm similar experimental studies 

that show limited temperature dependence for  κ L regardless of the fabrication technique used. In 

the particular case of +3% strain on a crystalline sample, the lattice thermal conductivity is 

similar to that of samples with 3nm grains.  However, due to difficulties in fabrication and the 

omnidirectional nature of grains in most experimental samples of this material, it will be more 

practical to decrease the lattice thermal conductivity through the inclusion of these grains, than 

by straining crystalline samples. 

 

 In conjunction with previous studies of 2H CuAlO2, there is a possibility for use of this low 

cost and non-toxic transparent conducting oxide (TCO) as a TE generator for both high and room 

temperature applications by fabricating polycrystalline structures with nano-scale features. 

Although the electrical conductivity of this material is rather low, and the overall zT efficiencies 

may not exceed state of the art TE materials, the $cost/kW-hr quite possibly could.  
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Data Availability – The pseudo-potentials used in the DFT calculations can be found at 

http://www.quantum-espresso.org/pseudopotentials. 
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6 CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions and Summary 

 In summary, this thesis contained two distinct parts, with chapters 2 and 3 setting the stage 

by addressing the question: What makes a good thermoelectric material from an electronic 

perspective?  In chapter 2 we began by understanding band convergence and scattering with 

approximations such as the constant relaxation time (CRTA) and the constant mean-free-path 

approximations. We found that these assumptions are not always suitable for understanding the 

performance potential of a complex thermoelectric material with multiple valleys and bands. 

Chapter 3 analyzed a variety of electronic structures and complex thermoelectric materials, and 

all were shown to produce nearly the same 
  
zT ÊF( )  vs. 

  
bL ÊF( )  characteristic as that given by a 

simple, parabolic band model. The results of this chapter suggest that at a given b-factor, there is 

an upper limit to the figure of merit, zT.  However, zT increases without limit as the b-factor 

increases, showing that the b-factor, which is the ratio of electrical conductivity to lattice thermal 

conductivity, is the relevant quantity when trying to understand the TE potential of a material. 

 We then switched gears in chapters 4 and 5 to examine the thermoelectric potential of 2H-

CuAlO2.  In chapter 4, we used first principles calculations to analyze the electronic TE 

components of 2H-CuAlO2, revealing that when strain is applied, careful analysis is needed to 

ascertain the benefits, i.e., potential for both higher n and p type power factors than the 

unstrained case, and detriments, i.e. lower power factors, depending on the type of strain applied. 

We also showed in the SNS scattering limit (i.e. a constant MFP), the transport function is 

proportional to the number of channels, M E( ) , revealing that TE transport is best understood by 

examining the M E( )  extracted from the band structure. Finally in chapter 5, to complete the 

picture, the strain and grain boundary effects on the lattice thermal conductivity of 2H-CuAlO2 

were investigated using first principles calculations. While the crystalline thermal conductivity is 

around 32 W/(K-m) at room temperature, it drops to between 5-15 W/(K-m) for typical 

experimental grain sizes from 3nm to 30nm at room temperature. A second conclusion of this 

study shows that when grains of 3nm or less are assumed, the thermal conductivity is generally 

independent of temperature for unstrained, compressive, or expansive strained structures. In the 
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particular case of +3% strain on a crystalline sample, the lattice thermal conductivity is similar to 

that of samples with 3nm grains.  However, due to difficulties in fabrication and the 

omnidirectional nature of grains in most experimental samples of this material, it will be more 

practical to decrease the lattice thermal conductivity through the inclusion of these grains, rather 

than by straining crystalline samples.  

 The overall theoretical zT of 2H-CuAlO2 found by combining values from chapters 4 & 5 

could potentially be ~ 0.03 at 300 K and ~ 0.08 at 800 K.  This small zT is predominately due to 

the low electrical conductivity of this material. However, the general cost of each constituent 

element of CuAlO2 (~0.5$/kg) when compared to SiGe (~500$/kg), which is a commonly used 

commercial TE material, is dramatically different.  Even if these material costs aren’t one-to-one 

for the fabrication processes, the advantage of lower cost materials can potentially lead to lower 

$/kW-hr devices. The possibility of “breakthrough” zT values to facilitate efficient TEGs appears 

to be a difficult proposition.  An alternative strategy to maximize the $/kW-hr for specific 

applications has hope to implement TEGs in practical and needed situations.  

6.2 Opportunities for Thermoelectrics 

6.2.1 Application-driven TE Research 

 Despite recent advances in TE materials research, there have been limited, if any, 

demonstrations of materials or devices with figure of merit values greater than one for 

commercial use. The best opportunity for TE materials lies in specific niche applications by co-

development of new devices and systems. The first step is to analyze what are the goals and the 

particular TE engineering applications needed.  Instead of looking for novel, expensive materials 

with high zTs first, one should look at what other attributes are absolutely essential to the 

particular application, i.e. high emissivity, low water solubility, thermal expansion, magnetic 

properties, ability to fabricate contacts, low cost, high/low lattice thermal conductivity, etc.  Then 

we should ask the question, are there semiconductor materials that can be doped accordingly, 

that have these particular attributes? As we saw in chapter 3, any parabolic band semiconductor 

could potentially be used as a TEG. When potential applications are found, Bi2Te3 has generally 

been the one size fits all material for devices since the 1960s when discussing cost and 

feasibility. However as we’ve explained here, perhaps application should drive the material 
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search, and not the other way around, with the end goal of reducing the cost of the entire system, 

not just the TE device.  

 As we discussed in the introductory chapter, there are different metrics for understanding the 

benefits of thermoelectrics in different situations. In the follow sections I will discuss two 

potential applications that require different approaches to optimizing $/kW-hr to benefit devices 

and systems as well.               

6.2.2 High Temperature Environments for Powering Sensors 

 In this first example we look at a situation where TEGs may help alleviate some incurred 

costs of maintenance in deep underwater sensors. Energy companies as well as civil engineering 

firms are in need of cheap ways to power sensors on underwater oil/gas/steam pipes that are deep 

enough underwater that changing the batteries to these sensors is costly and difficult.  Beginning 

this analysis we ask ourselves a few questions: How do we keep the cold side cold? Can we 

engineer away a large lattice thermal conductivity for a material? What contact materials should 

be used? What kind of insulating materials should be used, etc? But before we ask any of these 

questions, it is important to understand which material figures of merit best apply to this 

particular situation.   

 In the introductory chapter two figures of merit were derived.  If we maximize the efficiency 

of a TE material with a given fixed heat flux, we saw that zT is the relevant quantity. However, 

in the second optimization, one with respect to total power delivered to a load with a fixed device 

design or cost, you want the highest power output.  It is shown in [41] that when operating 

between two fixed temperature reservoirs, the power output attained can be higher for higher 

lattice thermal conductivities. In reality, the contacts and device will have a finite thermal 

capacitance, however the trend of increasing power output with lattice thermal conductivity still 

holds [41]. The question then becomes, can the temperature gradient, or constant thermal 

reservoirs be maintained?  The specific TEG environment with possible temperature differentials 

of 500-1000 Celsius for this particular application will be a deciding factor in the overall 

importance of whether this approach is applicable in our underwater pipe example. If an 

environment naturally provides an “infinite” heat sink and source, the thermal conductivity of the 

device will be much less relevant and can possibly increase total power output if increased. 
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However if a temperature gradient is difficult to establish, the importance of the efficiency, zT, 

and consequently the lattice thermal conductivity, of the device increases [51].   

6.2.3 Concentrated Solar Power Energy Dissipation and Power Production 

 We now take a look at a situation that is generally not regarded as an opportunity for TEGs.  

Concentrated solar thermal power (CSP) farms used to generate electricity are a renewable 

energy source that use mirrors and absorptive collectors to focus solar radiation which drives a 

heat engine through the use of a steam turbine, thermochemical reaction, supercritical carbon 

dioxide, or molten salts.  The temperature differential is then used to drive an electrical power 

generator [170] in a conventional power cycle, such as Rankine (stem engine), Brayton (gas 

turbine engine) or Stirling engine [171]. Overall system conversion efficiencies of around 35% 

for these large systems are currently feasible with state of the art thermal management [171]. 

(Other groups have proposed devices that use concentrated direct sunlight to heat one side of a 

TEG, but these systems are on much smaller scales for personal or individual uses, with their 

conversion efficiencies reaching only around 10% in theory [172] and most likely much less in 

practice).  

 Here we will look at an application for TEGs in CSP systems from a different vantage point. 

A variety of cooling mechanisms, water cooled, air cooled, and other non-conventional methods 

are suggested for the cold side heat sink that generally require electrical power to keep cool or by 

using radiating fins to maintain a temperature differential [28], [29], [172], [173]. Could a TEG 

lower the cost of a passive cooling system? The main purpose in this part of the CSP system is to 

remove heat from the system as quickly as possible.  Here, the generation of power is secondary, 

with the first priority being heat dissipation. Once again we ask, which material figures of merit 

best apply to this particular situation? So the question is, can we design semiconductor materials 

that have very high thermal conductivities capable of moving and dissipating heat quickly to heat 

sinks, but at the same time generate power (with the type of heat sink needing to be co-optimized 

as well [28], [174])? If a particular design and material can be fabricated, the total cost of the 

design will be the total cost of materials and fabrication, minus the extra electricity generated. 

Current operational costs include the use of electricity.  If semiconductor materials with high 

power factors and high thermal conductivities as well can be designed, passive cooling might be 
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augmented with power generation to reduce the overall LCOE for a variety of power generating 

systems.  

6.2.4 Thermoelectrics Moving Forward 

 Future studies may elucidate avenues to achieve zT values that outperform simple parabolic 

bands, from quantum spin heat transport phenomenon [175] to heat transport in superconductors 

[176], but until these potential breakthroughs reveal themselves, the particular attributes of TEs; 

small and compact, solid state, long-lasting, have the potential to be exploited [36], [177].  

Whether it be for cooling or power generation, TEs can still play important roles in a variety of 

practical applications, which by no means have been exhausted.  
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APPENDIX A 

A.1 Preface 

The contents of this chapter have been extracted from the following publications with 

permission: E. Witkoske, X. Wang, M. Lundstrom, V. Askarpour, and J. Maassen, 

“Thermoelectric band engineering: The role of carrier scattering,” J. Appl. Phys., vol. 122, no. 

175102, 2017. 

A.2 Derivation 

This appendix presents a short derivation of the Landauer form of the transport distribution, 

(2.8g). Just one of the diagonal components will be derived here. Beginning with (2.8f) and 

assuming an energy-dependent scattering time, we find 

   
Ξxx E( ) ≡ υx

2τ E( )
!
k
∑ δ E − Ek( ) ,        (A1) 

which can be written as  

   

Ξxx E( ) ≡
υx

2τ E( )
!
k
∑ δ E − Ek( )

υx!
k
∑ δ E − Ek( ) ×

υx!
k
∑ δ E − Ek( )

δ E − Ek( )
!
k
∑

×
δ E − Ek( )

!
k
∑

Ω
,   (A2) 

where Ω  is a normalization volume. The third factor in (A2) is recognized as the density of 

states,  

   
D E( ) ≡ 1

Ω
δ E − Ek( )

!
k
∑ .         (A3) 

The second factor in (A2) can be recognized as the angle-averaged velocity in the direction of 

transport, 
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υx ≡
υx!

k
∑ δ E − Ek( )

δ E − Ek( )
!
k
∑  .        (A4) 

The first term can be written as 

   

υx
2τ E( )

!
k
∑ δ E − Ek( )

υx!
k
∑ δ E − Ek( ) =

υx
2τ E( )

!
k
∑ δ E − Ek( )

δ E − Ek( )
!
k
∑

×
δ E − Ek( )

!
k
∑
υx!

k
∑ δ E − Ek( )

=
υx

2τ m

υx

=
λ E( )

2

    (A5) 

 (see (2.9) in the text).  Using (A3) – (A5) in (A2), we find 

  
Ξxx E( ) = λ E( ) υx D E( )

2
.         (A6) 

Finally, using the definition for the number of channels per cross-sectional area [42], [44], 

  
M E( ) A ≡ h

4
υx D E( ) , 

 (A6) becomes 

  
Ξxx E( ) = 2

h
λ E( )M E( ) A .         (A7) 

Equation (A1.7) expresses the transport distribution in terms of two physically clear factors, the 

mean-free-path for backscattering and the number of channels per cross-sectional area. The 

concept of channels is a seminal one in nanoscale transport, where  M E( )  is a small countable 

number and leads to quantized conduction .  We use it here at a larger scale where  M E( ) A  is 

large. Note also that the transport function is closely related to the transmission in the Landauer 

approach to transport [178]. 
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APPENDIX B 

B.1 Preface 

The contents of this chapter have been extracted from the following publications with 

permission: E. Witkoske, X. Wang, M. Lundstrom, V. Askarpour, and J. Maassen, 

“Thermoelectric band engineering: The role of carrier scattering,” J. Appl. Phys., vol. 122, no. 

175102, 2017. 

 

B.2  Derivation of the Anisotropic Velocity Ratio, Distribution of Modes, and Density of 

States for spherical and ellipsoidal energy surfaces. 

 

We are looking to calculate the quantity,  

 

   

!υ E( ) = υz
2

υz
+

,           (B1) 

 

where the brackets denote an average over angle at energy, E. 

For spherical energy bands,  υ E( )  is isotropic and 

 

  
υz =

υ E( )
2

    (in 3D).         (B2) 

 

also 

 

  
υx

2 +υ y
2 +υz

2 =υ 2 E( ) = 3υz
2   

so 

 

  
υz

2 = υ 2 / 3 = 1
3
υ 2 E( )  



 104 

so we get: 

 

   

!υ E( ) = υz
2

υz
+

= υ 2 3
υ 2

= 2
3
υ E( )         (B3) 

 

What is the answer for ellipsoidal bands? 

The above derivation was quick and dirty – let’s do it more formally, but let’s start with 

parabolic energy bands for which we know the correct answer. 

 

   

υz
+ =

1
Ω

υz
+δ E − Ek( )

!
k ,kz>0
∑

1
Ω

δ E − Ek( )
!
k ,kz>0
∑

         (B4a) 

 

   

υz
2 =

1
Ω

υz
2δ E − Ek( )

!
k ,kz>0
∑

1
Ω

δ E − Ek( )
!
k ,kz>0
∑

         (B4b) 

 

We immediately recognize the denominators as the DOS divided by 2 – since we are only 

summing over positive kz – one-half of the k-states, 

 

   
D E( ) = m* 2m*E

2π 2!3  .          (B5) 

 

Let’s work out the numerator of (B4). 

 

     

 

 
   
NUM = 1

Ω
υz

+δ E − Ek( )
!
k ,kz>0
∑ = 1

4π 3 dφ
0

2π

∫ sinθ dθ
0

π 2

∫
"k cosθ

m* k 2 dkδ E − Ek( )
0

∞

∫
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NUM = 1

4π 3 × 2π × sin2θ
2

0

π 2
!k
m* k 2 dkδ E − Ek( )

0

∞

∫  

 

   
NUM = !

4π 2m* k 3 dkδ E − Ek( )
0

∞

∫         (B6) 

------------------------------------------------------------------------------------------------------------ 

   
!2k 2

2m* = E
     

k = 2m*E
!     

k 3 =
2m*E( )3/2

!3
     

dk = 2m*

2!
E−1/2dE

   
k 3dk =

2 m*( )2

!4 EdE
 

------------------------------------------------------------------------------------------------------------ 

 

From (B6): 

   
NUM = !

4π 2m* k 3 dkδ E − Ek( )
0

∞

∫ = !
4π 2m*

2 m*( )2

!4 E dEδ E − Ek( ) =
0

∞

∫
m*

2π 2!3 E
 

 

Finally, return to (B4): 

 

   

υz
+ =

1
Ω

υz
+δ E − Ek( )

!
k ,kz>0
∑

1
Ω

δ E − Ek( )
!
k ,kz>0
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=
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Ω

υz
+δ E − Ek( )

!
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D E( ) 2
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2π 2"3 E

m* 2m*E
2π 2"3

= E
2m*     (B7) 

 

 

For parabolic energy bands 

 

  
υ E( ) = 2E

m*
            (B8) 

 

So (B7) is 
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υz

+ = 1
2
υ E( )

          (B9) 

 

This is the correct result – see [42]. 

Next, let’s see if we can do this calculations for ellipsoidal energy bands 

We know the correct answer, because Jeong [44] has worked it out.  Begin with 

 

M E( ) A ≡ h
4

υz
+ E( ) D E( )          (B10) 

 

   
D E( ) = mDOS

* 2mDOS
* E

π 2!3           (B11) 

   
mDOS

* = 62/3 mℓ
*mt

*2( )1/3
           (B12) 

 

We also know from Jeong [44]: 

   
M E( ) A =

mDOM
*

2π!2 E           (B13) 

 

   mDOM
* = 2mt

* + 4 mt
*mℓ

*          (B14) 

 

From (B10) we find: 

 

 

υz
+ E( ) = 4

h
M E( ) A
D E( ) = 4

h
mDOM
* E 2π!2

mDOS
* 2mDOS

* E π 2!3
= mDOM

* E
2mDOS

* E
= mDOM

*

mDOS
*( )3/2

E
2
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This almost looks intuitive – but there seems to be a factor of 1/2.  Normally angle averaging 

introduces a factor of ½, i.e. eq. (B9); let’s see if we can verify this by directly evaluating (B4) 

for ellipsoidal bands. 

 

We will first do the calculation to get the density of states for ellipsoidal bands as a check, since 

we know the Density of states for these types of bands is  

 

   
D E( ) = mt

*2mℓ
* 2E( )

π 2"3           (B16) 
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In Spherical coordinates our Energy dispersion takes the form: 

----------------------------------------------------------------------------------------------------------- 
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If we multiply the above equation by 6 we get the overall Density of States. 

 

Let us now calculate equation (B4a) and (B4b) for any ellipsoidal Energy Surface. 

To be able to compute the integrals in Spherical coordinates, we must make some coordinate 

transformations that allow us to perform the integrations.  For the density of states calculation, 

the integrals worked out without any transformations.  For certain functions however, the 

integrals become very complicated and conceptually difficult to compute.   

 

We start once again with the energy dispersion relation for a general Ellipsoidal surface. 

 

 
   

!2kx
2

2mx
* +
!2ky

2

2my
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2

2mz
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The integral we are looking for is 
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Ω
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!
k
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Let’s transform equation (B19) using,   
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ki =

mi

M
qi  ;   q

2 = qx
2 + qy

2 + qz
2                       (B21) 

 

applying this to equation (B19) yields, 

 

   
E = !

2q2

2M
                   (B22) 

 

The velocity is equal to, 

    

   

!
υ = "

kx

mx

,
ky

my

,
kz

mz

⎛

⎝
⎜

⎞

⎠
⎟           (B23) 

 

Plugging in the appropriate substitutions for kz and d3k into equation (B20) yields 
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mxmy
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Using, 

 

  qcosθ = qz  
 

and switching to spherical coordinates gives, 

 

  
NUM = 1

4π 3

mxmy

M 4 q3 cosθ sinθδ E − Eq( )
0

∞

∫
0

π /2

∫
0

2π

∫ dθdφdq          (B25) 

 

Finally, using equation (B22) with Energy substitutions for q and dq, the integral in (B25) is 

easily evaluated, 
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NUM = 1

2π 2!3

mxmy

1
2E
2

              (B26) 

 

We see that the numerator of Equation (B4) only depends on the two transverse effective masses, 

not on the transport direction effective mass.  

 

To complete the calculation of Equation (B4) we use equation (B16) for a generic ellipsoidal 

band, (not forgetting the factor of ½ to account for only half of the kz states) 

 

   
D E( ) = mxmymz 2E( )

2π 2!3             (B27) 

 

then dividing equation (B26) by equation (B27) gives, 

 

  

1
2

2E
mz

.           (B28) 

 

To reproduce equation (B15) in silicon, we use equation (B26) along with the fact that the 

effective masses in x and y are equal.  In silicon there are two ellipsoids with their transport 

direction in the z direction.  There are 2 with their long axis pointed in the x direction, and 2 with 

their long axis pointed in the y direction.   

 

   
NUM = 2×

2E mtmt

4π 2!3 + 2×
2E mtmℓ

4π 2!3 + 2×
2E mℓmt

4π 2!3 = 2mt + 4 mℓmt( ) 2E
4π 2!3   (B29) 

 

Dividing (B29) by (B27, with a 6 included for the total number of valleys) gives, 

  

 

υz
+ E( ) = 1

2
2E
1

2
6 mℓ

*
+ 4
6 mt

*

⎛

⎝
⎜

⎞

⎠
⎟         (B30) 
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This is what we would expect by looking at equation (B9).  The angle averaging in three 

dimensions includes an additional factor of ½.  Before we move on to finishing equation (B1), 

let’s verify equation (B10) since we have all the pieces, i.e. eqns. (B10, B16, B30). 

 

 

M E( ) A = h
4
1
2

2E
1

2
6 mℓ

*
+ 4
6 mt

*

⎛

⎝
⎜

⎞

⎠
⎟
6 mt

*2mℓ
* 2E( )

π 2"3
=
2mt

* + 4 mt
*mℓ

*( )
2π"2

E   (B31) 

 

This final result matches the result from [44]. 

 

Our overall goal however was to calculate equation (B1).  We have found the denominator of 

this equation, to calculate the numerator the same procedure of equations (B19) through (B26) is 

followed with a few small adjustments. 

    

   
NUM = 1

Ω
υz

2δ E − Ek( )
!
k ,kz>0
∑ = 1

4π 3 υz
2δ E − Ek( )d 3

!
k

!
k ,kz>0
∫      (B32) 

 

Same procedure as above gives, 

 

 

   

 

 

 

 

Converting q and dq to Energy using equation (B22) and computing the integrals, we arrive at 

the desired result. 

 

   
NUM = 1

2π 2!3

mxmy

mz

2E( )3/2

3
                             (B33) 
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4π 3

mxmymz

M 3 qz
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∫
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NUM = 1

4π 3

mxmymz

M 5 q4 cos2θ sinθδ E − Eq( )
0

∞

∫
0

π /2

∫
0

2π

∫ dθdφdq
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Let us now finally calculate equation (B1): 

(The DOS is the denominator for both equation (B4a) and (B4b), so equation (B1) is just the 

numerators for both equations.)  

 

(Sum the 6 ellipsoidal bands for equation (B33) and equation (B26) separately, THEN divide the 

result.) 
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⎝
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⎠

⎟
⎟
⎟
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   (B34) 

 

We are left with a combination of the transverse and longitudinal effective masses, with the 

expected square root of two times Energy.  The factor of 2/3 for angle averaging in 3-D is also 

expected from equation (B3). 

 
 
B.3 Derivation of a Fermi Surface Complexity Factor (FSCF) for Multiple Ellipsoidal 

Bands 

 

To quantify the beneficial effects of valley degeneracy we define a Fermi Surface Complexity 

Factor (FSCF’), similar to one that has recently been introduced [85], for a general ellipsoidal 

band and extend the result to a Si-like material with 6 valleys.  

 

In [85], the authors define a FSCF as 

 

  
FSCF1 =

ms
*

mc
*

⎛

⎝⎜
⎞

⎠⎟

3/2

,          (B35) 
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 where   mS
*  is the so-called Seebeck effective mass (which is the density-of-states effective mass 

determined from the Seebeck coefficient) and   mc
*  is the conventional conductivity effective mass 

[86], 

   
mc

* = 3
1 mℓ + 2 mt

,          (B36) 

 

which is the harmonic mean of the directional effective masses. 

 

For a single valley with an effective mass of   m* , (B35) gives  FSCF = 1.  For  NV  spherical 

valleys with an effective mass of   m* , (B35) gives FSCF = NV  (because  mS
* ∝ NV

2/3 ). Inserting 

numbers relevant for the conduction band of Si    NV = 6,mt = 0.19m0 ,mℓ = 0.93m0( ) , we find 

  FSCF = 8.35> 6 , which reflects both the benefits of a valley degeneracy of 6 and the valley 

anisotropy (in this case,   K
* = 8.35 6 = 1.39 ), which produces a light effective mass in the 

direction of transport. 

It would be useful to have a measure of the benefits of Fermi surface complexity that does not 

involve effective masses, which can be problematic to define for complex band structures.  

 

We start with the transport distribution defined in the Landauer form as, 

  
Ξ E( ) = 2

h
λ E( )M E( ) A ,          (B37) 

with  

  

λ E( )
2

=
υx

2τ m

υx

 and          (B38) 

 
  
M E( ) A ≡ h

4
υx D E( ) .         (B39)  

 

Assuming the scattering time in eq. (B38) is isotropic and inversely proportional to the total DOS 

(B11),  
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1
τ E( ) =

1
τ m E( ) ∝Kel− phDOS E( ) ,        (B40) 

 

we can rewrite (B37) as, 

 

  
Ξ E( ) = υx

2 E( )
Kel− ph

.          (B41) 

 

If a dimensionless numerical metric is desired, the transport function could be divided by the 

transport function of a corresponding spherical band with the same electron-phonon coupling 

parameter,  

   

FSCF 2 =
Ξ E( )
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1
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∑
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∑
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⎟
⎟
⎟
⎟

Spherical

.      (B42) 

Using equations from section 1 with silicon ellipsoidal bands, and assuming the equivalent 

spherical transport distribution in (B42) has a conductivity effective mass equivalent to 

  
meq

* = mDOM
*  which comes from the numerator of (B42), thus we get, 

   

FSCF 2 =
Ξ E( )
Ξsph E( ) =

1
3

2E( )3/2

2π 2!3

2mt

mℓ
+

4 mℓ
1

⎛

⎝
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⎞
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6 mt
2mℓ 2E( )

2π 2!3

1
3

2E( )3/2

2π 2!3 mDOM
*
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*( )3

2E( )
2π 2!3

.      (B43) 

Using eqn. (14) and simplifying for this analytic case gives, 
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FSCF 2 =

Ξ E( )
Ξsph E( ) =

4
6

mt

mℓ
+ 8

6
+ 8

6
mt

mℓ
+ 16

6
mℓ
mt

.      (B44) 

 

Fig. B1 Comparison of eqns. (B35) and (B44) vs. the transverse effective mass.  The longitudinal 

effective mass is set to    mℓ = 0.93m0 . Equation (B44) is the line with markers, while eq. (B35) is 

shown as a solid line.  When   mt → mℓ  both equations converge to  NV , which in the case of a Si-

like material is 6. 

 

The ratio in (B42) will be energy dependent if the material being considered does not have 

parabolic energy bands in numerical simulations.  There are several ways to produce a single 

number metric; for example, (B42) could be evaluated at the energy that maximizes 

  n E( ) = f0 E( )D E( )  or an average over the Fermi window could be evaluated to write 

  
FSCF

3
=

Ξ E( )
Ξsph E( )          (B45) 

 

where in (45), the brackets denote an average that is defined as 
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i ≡

i( ) −∂ f0 ∂E( )dE
EC

∞

∫

−∂ f0 ∂E( )dE
EC

∞

∫
 .         (B46) 

 

Both our metric (B44, B45) and Gibbs’ eq. (B35), can benefit from first principles studies of 

scattering.  Instead of dividing by 6 to get the benefits of anisotropy in all three equations, which 

assumes inter and intra are equal, we can get an exact factor to divide by from the realistic 

scattering rates to obtain a factor that includes both the benefits due to anisotropy as well as any 

residual benefit from degenerative valleys after scattering is taken into account.   In the silicon 

case, all three metrics (B35, B44, and (B45 which is numerical), give similar results because 

silicon can be modeled well by parabolic bands.  However, in materials where the effective mass 

approximation is less accurate, i.e. complex TE materials, (B45) more accurately captures the 

effects of the complicated band structure since we are using the full band numerical calculations. 
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APPENDIX C 

C.1 Preface 

The contents of this chapter have been extracted from the following publications with 

permission: E. Witkoske, X. Wang, J. Maassen, and M. Lundstrom, “Universal behavior of the 

thermoelectric figure of merit , zT , vs . quality factor,” Mater. Today Phys., vol. 8, pp. 43–48, 

2019. 

 

C.2 Analytical solutions for thermoelectric parameters 

C.2.1 Parabolic energy bands: 

For parabolic energy bands in 1D, 2D, or 3D (d = 1, 2, or 3) and with power law scattering, we 

find from the results in the appendix of [42] that  

 

   
σ 1D = 2q2

h
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,   (C6) 

where 
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 ηF = EF − EC( ) kBT          (C7) 

is the dimensionless Fermi energy (chemical potential) and   
F j ηF( )  is the Fermi-Dirac integral 

of order  j  written in the Blakemore form [73] 

   
F j ηF( ) = 1

Γ( j +1)
η jdη

1+ eη−ηF
0

∞

∫ .       (C8) 

 

It should be noted that the radius of the nanowire and thickness of the quantum well, do not 

appear in (C1) and (C2). 

 

For ADP scattering in 3D,   r = 0 , in 2D,   r = 1 2 , and 1D,   r = 1, so from (C4) and (C5) we find 

   
Sd=1,2,3 = −
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and 
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⎞
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F 2 ηF( )
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⎫
⎬
⎪

⎭⎪
.      (C10) 

For ADP scattering in parabolic bands, the Seebeck coefficient and Lorenz numbers are identical 

in all dimensions. 

 

C2.2 Single energy channel 

Analytical solutions are easy to obtain for the single energy channel case, 

 

  M E( ) A = M0δ E − EC( ) ,        (C11) 

 

where  EC  is the energy of the channel. We find 
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h
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∂ f0

∂E
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⎝
⎜
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⎠
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= 2q2

h
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Sδ = −

kB

q
⎛
⎝⎜

⎞
⎠⎟

EC − EF

kBT
 ,        (C13) 

and 

  Lδ = 0  .          (C14) 

The figure of merit for the single energy case is readily shown to be 
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κ L

=
kB

q
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     (C15) 

 

At the maximum  zT ,   EC − EF kBT = 2.4  and 
  
∂ f0 ∂E

E=EC
= 0.076 / kBT , we find 

 

  
zT

max
= 0.88

kB

h
⎛
⎝⎜

⎞
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λ0 M0

κ L

⎛

⎝⎜
⎞

⎠⎟
         (C16) 

 

which is essentially eqn. (21) of [93] in a different notation.   

 

Finally, we compute the peak zT vs. b-factor at the peak characteristic for a single energy 

channel. Because the Lorenz number for a single energy channel is zero, (C2) gives 

  zT = ′S( )2
bL            (C17) 

At the maximum  zT ,   EC − EF kBT = 2.4 , so   ′S = −2.4 , and (C17) gives 

  zT = 5.76bL ,           (C18) 

which is the equation of the dotted straight line in Fig. C2. 

 

C.3 Observation of “Double-branch” behavior in zT|max vs. b-factor for certain band 

structures 

 

Some curious behaviors were observed when investigating hypothetical band structures using the 

effective mass approach. An example of such a peculiar band structure is shown in Figure C1 
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(left). It consists of two valence bands with energy offsets of 0.2 eV. The highest valence band 

(Band #1) is isotropic, and the lower band (Band #2) is anisotropic with the same Density of 

States (DOS) effective mass, but 5 times the Distribution of Modes (DOM) effective mass in 

transport direction as Band #1. In other words, Band #2 has the same amount of states but much 

higher velocity—this is advantageous for obtaining higher TE performance. The resulting DOS 

and DOM of this band structure are shown in Figure C1 (right). 

 

 
 

Figure C1. (Left) The two-band toy model is used. The highest valence band (black) is 0.2 eV 

higher than Band #2 (red). Along the transport direction, Band #2 has high velocity. Both bands 

have the same DOS. (Right) The DOS of the two-band model. The edges of Band #1 and Band 

#2 are marked with black and red dash lines respectively. 
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Figure C2. (Left) The DOM of the two-band model. (Right) The transport distribution of the 

two-band model. The edges of Band #1 and Band #2 are marked with black and red dash lines 

respectively. 

 

 

The peculiarity arises from the optimal location of the Fermi level under a given lattice thermal 

conductivity, κL. The two bands are essentially in a tight competition with each other for having 

the maximum zT. The lower band, Band #2, has the advantage of significantly increased DOM, 

but it also faces the issue that, if the Fermi level is close enough to take advantage of the 

increased DOM, a significant amount of current will flow on both sides of the Fermi level, due to 

the presence of Band #1. This is essentially a bipolar effect that decreases the Seebeck 

coefficient and increases the electronic thermal conductivity—both are undesired and counters 

the increased electrical conductivity obtained from the increased DOM. This therefore results in 

a competition between Band #1 and Band #2 for the optimal location of the Fermi level.  

 

This competition is illustrated in Figure C2. Figure C2 (left) shows the situation under a high κL. 

With a high κL, the electronic thermal conductivity is insignificant, and the optimal location of 

the Fermi level is decided solely by the power factor. In this case, Band #2 with its high 

electrical conductivity shows a higher zT than Band #1. However, if κL is decreased, the benefit 
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of having a lower electronic thermal conductivity quickly catches up for Band #1, and as shown 

in Figure C2 (right), the maximum zT shifts to favor Band #1.  
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Figure C3. (Left) zT vs. Fermi level under high lattice thermal conductivity. (Right) zT vs. 

Fermi level under a moderate lattice thermal conductivity showing the optimal location of the 

Fermi level for maximum zT shifts. The location of the highest valence band is marked with 

black dash line. 

 

 

Because the optimal location of the Fermi level for maximum zT “jumped” from Band #2 to 

Band #1, it shows up in the zT|max vs. bL curve as a “snapback” as shown in Figure C4. Since bL 

is a ratio between electrical conductivity and lattice thermal conductivity, when the optical 

location of Fermi level “jumped” from Band #2 to Band #1, the electrical conductivity decreases, 

causing bL to decrease. This “snapback” feature forms two distinct branches of the zT|max vs. bL 

curve.  
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Figure C4. Comparison between the example two-band structure and a single parabolic band for 

(Left) zT|max vs. bL and (Right) optimal location of the Fermi level vs. bL.  

 

The location of this “snap-back” does not depend on whether the zT|max vs. bL curve is obtained 

via a sweep of  κ L  or σ  (i.e. by adjusting the electron-phonon coupling strength). Recall from 

earlier discussions that the thermoelectric Figure of Merit (FOM) can be defined as follows 

 

  

zT = S 2σT
κ e +κ L

=
S 2 / kB q( )2

κ e

σT kB q( )2 +
κ L

σT kB q( )2

= S '2

L '+1/ bL

      (C18) 

with, 

 
  
bL =

σT
κ L

kB

q
⎛
⎝⎜

⎞
⎠⎟

2

.           (C19) 

We will show that it is equivalent to vary  bL  through adjusting  κ L  or σ . To increase σ  by a 

factor of N, one can scale the electron-phonon coupling parameter by a factor of 1/N. The 

resulting  S  is unaffected by this scaling, and  κ e  is scaled by a factor of N. Equation (C18) 

becomes 

 

  

zT = S 2σT
κ e +κ L

=
S 2 / kB q( )2

Nκ e

NσT kB q( )2 +
κ L

NσT kB q( )2

= S '2

L '+1/ NbL

.     (C20) 

 Therefore, this has the same effect as scaling  κ L  by a factor of 1/N. 



 125 

C.4 A comparison of B, 
  
bL ÊF( ) , and 

  
zT ÊF( )   

The conventional B-factor is defined for parabolic bands and does not include a Fermi level 

dependence. For parabolic bands, the relation between this and  bL EF( )  is given by eqn. (3.9),  

   

 

   
bL EF( ) ≡ σ EF( )T

κ L

kB q( )2
= BF 1 2 EF − EC( ) kBT⎡⎣ ⎤⎦ .    (C21) 

 

Our motivation for using a generalized quality factor is that it allows us to deal directly with 

complex band structures without extracting effective masses and allows inclusion of more 

general scattering models (e.g. beyond power law). It is also, in principle directly measurable 

because it depends only on the measured electrical and lattice thermal conductivities. 

 

The quantity  ′bL  , 

 

   
′bL EF( ) ≡ σ EF( )T kB q( )2

κ LF 1 2 EF − EC( ) kBT⎡⎣ ⎤⎦
.       (C22) 

 

defined in eqn. (3.10) of the chapter is more similar to B, but it is hard to make general 

quantitative statements because  ′bL  depends on the specifics of the complex band structure.  
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Figure C5.  This plot shows two quantities 
  
zT ÊF( ) and 

  
b 'L ÊF( ) , versus 

  
bL ÊF( )  for visual 

comparison using a parabolic band with   r = 0 .    

 

The figure above is a plot of 
  
zT ÊF( )  vs. 

  
bL ÊF( )  for parabolic bands with   r = 0  (the same as the 

solid line in Fig. 3.2 in the chapter). Shown in the same figure is a plot of  B  vs. 
  
bL ÊF( )  with the 

same scattering, r = 0 assumed.  For a given  zT , one can read off the required B- or bL-factor.  

For a given B, one can also read off the corresponding  bL  for an appropriate comparison.  A 

value of 
  
b 'L ÊF( ) ≈ B = 0.4  which is a reference value often used, corresponds to 

  
bL ÊF( ) = 0.18

in our work.  To achieve a 
  
zT ÊF( ) ≈ 2  requires a 

  
b 'L ÊF( ) ≈ B ≈1and a 

  
bL ÊF( ) ≈ 0.3 .   
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