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ABSTRACT

Kim, Sangkyu PhD, Purdue University, December 2019. Transient Dynamics of
Compound Dropsin Shear and Pressure Driven Flow . Major Professor: Sadegh
Dabiri, School of Mechanical Engineering.

Multiphase flows abound in nature and enterprises. Our daily interactions with

fluids - washing, drinking, and cooking, for example - occur at a free surface and

within the realm of multiphase flows. The applications of multiphase flows within

the context of emulsions, which are caused by mixing two immiscible fluids, have

been of interest since the nineteenth century: compartmentalizing one fluid in another

is particularly of interest in applications in pharmaceutical, materials, microfluidics,

chemical, and biological engineering. Even more control in compartmentalization and

delivery can be obtained through the usage of double emulsions, which are emulsions

of smaller drops (i.e., inner drop) within larger drops (i.e., outer drop). The goal

of this work is to understand the dynamic behavior of compound drops in confined

flow at low Reynolds numbers. These behaviors include the migration patterns, limit

cycles, and equilibrium locations in confined flows such as channel flows.

Firstly, we look at non-concentric compound drops that are subject to simple

shear flows. The eccentricity in the inner drop is either within the place of shear,

normal to the plane of shear, or mixed. We show unreported motions that persist

throughout time regardless of the initial eccentricity, given that the deformations of the

inner and outer drops are small. Understanding the temporal dynamics of compound

drops within the simple shear flow, one of the simplest background flows that may be

imposed, allows us to probe at the dynamics of more complicated background flows.

Secondly, we look at the lateral migration of compound drops in a Poiseuille flow.

Depending on the initial condition, we show that there are multiple equilibria. We

also show that the majority of initial configurations results in the compound drop
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with symmetry about the short wall direction. We then show the time it takes for the

interfaces to merge if a given initial configuration does not reach the aforementioned

symmetry.

Thirdly, while the different equilibria of compound drops offer some positional

differences at different radii ratio, we show that the lift force profiles at non-equilibrium

locations offer distinctly different results for compound drops with different radii ratio.

We then look at how this effect is greater than changes that arise due to viscosity ratio

changes, and offer insights on what may create such a change in the lift force profile.



1

1. INTRODUCTION

Multiphase flow, a simultaneous flow of materials with different phases or materials with

same phase but different chemical properties, abounds in nature and the enterprises.

The day-to-day interactions with liquids in ordinary households, ranging from the

dripping of a faucet, drinking of water, to washing and cooking, are almost always at

a free surface. The distinguishing feature of such flows is, unlike a confined flow where

the enclosing boundary dictates the flow domain, the presence of free boundaries

separate at least two phases. Within the realm of multiphase flows, the study of

free surface flows has been of considerable interest for both scientific and industrial

purposes.

Mixing two immiscible fluids can produce emulsions, which is a dispersion of

droplets of one fluid within the second. Emulsions (or drops) are often not in total

equilibrium, but are often metastable, and the integrity of the non-trivial boundaries

are retained for extended amount of time especially in the presence of surfactants,

which can stabilize the liquid-to-liquid interface. Emulsions play crucial roles in many

chemical engineering applications such as in coatings, food, pharmaceuticals, and

cosmetics [1]. The fundamental scientific and industrial interest in compartmentalizing

one fluid in another goes back as far as the early nineteenth century [2, 3]. Compared

to a simple drop, where one liquid is emulsified within another, even more flexibility

and control in encapsulation of fluid can be obtained through the usage of double

emulsion droplets.

A double emulsion droplet, also called a compound droplet or simply a double

emulsion, is a nested liquid droplet system of three immiscible fluids. In this thesis,

the inner-most fluid will be called the inner drop, the nesting fluid the outer drop, and

the background carrier of the compound drops the surrounding fluid. Typically, the

fluids composition that describes a double emulsions are water-in-oil-in-water or oil-in-
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water-in-water, but recently all-aqueous double emulsions have also been reported [4].

Because the inner-most fluid is not making contact with the surrounding fluid, the

usage of compound droplets as a predictable chemical delivery system has a significant

impact in many fields including pharmaceutical [5], materials [6], microfluidics [7],

and biological engineering [8]. Furthermore, compound droplets can be used to model

cells [9] and may also occur naturally in the ocean [10]. As such, researchers have

focused on the stable production methods, steady state configurations in various

surrounding flows, stability associated with migration processes, and reliable breaking

(release) mechanisms of compound droplets [11–13].

Typically, compound drops are produced in a two-step process, where the inner drop

is first emulsified into the fluid that eventually forms the outer drop, and then through

a second emulsification step [14]. Controlling the dispersity at each emulsification step

is important, since polydispersity of the final compound drop is compounded by error

at each emulsification stage. As such, microfluidics [15] or flow with co-axial flows [16]

as a means of ensuring the uniformity of compound drops are preferred, and so the

Reynolds number of interest regarding compound drops is usually low.

While Chambers and Kopac were the first to report the liquid-liquid compound

drops [17, 18], Torza and Mason [19] were the first to thoroughly investigate the

interactions of three different phases and found various steady state configurations in

the absence of gravity. Their method of analysis focused on the energy considerations

based on the interfacial tension coefficients, and considered fully-engulfed droplets

(meaning the inner drop does not make contact with the surrounding fluid) as well as

partially engulfed compound droplets.

When fluid motions are considered, the related viscous effects greatly alter and

complicate the compound drop configurations. This complexity has heavily impacted

the analytical progress, but attempts have been made to analytically solve for the flow

inside and around a compound droplet; using Lamb’s solution technique in spherical

geometry [20], Taylor [21] predicted the deformation of a simple droplet under a

simple shear. Following Taylor’s work, Cox [22] the deformation of a concentric
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compound droplet under a time-dependent flow. Following a similar formulation,

Stone and Leal [23] solved for the velocity and pressure field inside and around a

concentric and spherical compound droplet, then solved for the first order deformation

by matching the normal stress of spherical droplet to an interfacial tension stress due

to a small deformation. They then verified and expanded upon the analytical work

using the boundary integral method. Following the work from Stone and Leal, Qu and

Wang [24] used spectral boundary element method to verify the predicted deformation

in extensional flows, and investigated the effects of inner droplet placement; the inner

drop was eccentrically placed in the plane of the surrounding extensional shear flow

such that the geometry was symmetric in the direction normal to that plane.

Because Lamb’s solution is limited to spherical geometry, Sadhal and Oguz [25]

utilized a bipolar coordinate system to solve for the Stokes flow of an eccentric

compound droplet in a uniform flow. This eccentric solution was further investigated

by Song, Xu, and Yang [26], who solved for the compound droplet in a cylindrical

Poiseuille flow. In the last two studies, the compound droplet and the incoming

flow were confined to an axisymmetric geometry, and the eccentricity of the inner

droplet was parallel to the imposed surrounding flow. Analyses performed by Stone

and Leal, Qu and Wang, and Sadhal and Oguz have been extended by Mandal,

Ghosh, and Chakraborty [27], who included the effect of surfactant. They also solved

for the migration of an eccentric compound drop under an axisymmetric flow using

bipolar coordinate system, and found that the eccentricity increases when the initial

eccentricity is above a critical value. Additionally, the Lorentz reciprocal theorem was

used by Haj-Hariri, Nadim, and Borhan to solve for the concentric compound drops

in a general Stokes flow [28].

While the migration of solid spheres or single-phase droplets and deformation

dynamics of single-phase droplets due to the surrounding flows are well known [29–43],

the same cannot be said for compound droplets. Moreover, the literature on compound

droplets is heavily centered towards production schemes and steady state behaviors,

and is scarce on temporal response. Although the steady state configurations of various
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droplets within given channels are vital in utilizing flow-focusing techniques and in

controlling the break-up of droplets [44], the temporal evolutions and the feedback

effects of droplets are equally important in many ways: first, as demonstrated for the

case of simple droplets [45], in predicting the velocity and pressure feedback effects

from already-produced droplets, which enables a stable compound droplet production

mechanism; second, in understanding and predicting when and how the break-up of

compound droplets may occur [46]; and third, in characterizing the stability of a given

configuration of double emulsions [25].

1.1 Dynamics of compound drops subject to a simple shear flow

Chen et al. [47–49] tested the extensional characteristics and breakup mechanisms

when a single compound droplet is subjected to a shear flow by using both numerical

and experimental tools. They found different steady-state regimes and breakup mech-

anisms for varying capillary numbers, radii ratio, and shear conditions. Interestingly,

they found that the inner drop does not always suppress the deformation of the outer

drop. Hua et al. [50] found similar steady-state deformations in 2D and 3D simula-

tions with concentrically placed compound droplets. They also reported, through 2D

numerical investigations, that eccentrically placed inner droplets in various positions

all transitioned to the same concentric steady configuration under simple shear.

Patlazhan et al. [51] also looked at two-dimensional compound droplets under shear

flow by considering wall-confinement effects, and found non-monotonic deformation as

a function of the radii ratio and non-monotonic steady-state orientation as a function

of channel narrowing. By varying the Capillary number and the ratio of the interfacial

tension coefficients, Smith, Ottino, and Olvera de la Cruz found multiple break-up

patterns when a compound drop is subjected to shear flow and then is allowed to

relax [52].

Currently, to the best of our knowledge, there is no literature on the temporal

dynamics of eccentric compound droplets that have no symmetry relative to the
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geometry of the imposed background flow. It is well known that simple drops and

compound drops can breakup in a shear flow [29,47,48], and also that the dynamics

in shear flows can offer invaluable insight in understanding the dynamics in other

flows [53]. In this light, the first step in understanding the temporal dynamics of

double emulsion droplets is in studying the response of eccentric compound drops in a

simple shear flow. The response of compound droplets to other more complicated flows

can be better understood by decomposing the imposed flows into a simple shear flow

and other fundamental flows. With this in mind, we present the temporal dynamics of

compound drops subject to a simple shear flow in chapter 3, where we emphasize the

temporal evolution of deformation and inner drop’s position relative to the outer drop.

1.2 Dynamics of compound drops subject to a Poiseuille flow

The lateral migration of rigid spheres in Poiseuille flow is well-understood. In

Stokes flow, a rigid spherical particle does not show lateral migration [33]. When

inertial effects are present, spherical particles in a cylindrical Poiseuille flow migrate to

an annulus at roughly 0.6 radius of the pipe [34, 35, 54]. This annulus is known as the

Segrè-Silberberg annulus. Recently, an inward accumulation of particles at an inner

annulus has been observed at Re > 600 [55]. This annulus has been termed inner

Segrè-Silberberg annulus, and its emergence is numerically shown to be suppressed by

additional hydrodynamics with periodic cells [56].

When the channel cross section is square or rectangular, spherical particles migrate

to eight equilibrium positions - four next to the midpoint at each wall, and four

next to the corners, where the preferred position is dependent upon the Reynolds

number [36–39].

On the other hand, simple drops show a different cross stream migration than

spherical particles do due to the presence of deformation and the internal fluid

circulation. In axisymmetric Poiseuille flow with low Reynolds number, simple drops

with a moderate viscosity ratio to the surrounding fluid migrate towards the tube
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center [40–42]. In a 3D Poiseuille flow in a rectangular channel with an aspect ratio of

2, simple drops migrate two 2 equilibrium positions found at a given Reynolds number,

and the equilibrium position moves closer to the centerline with an increase in the

Reynolds number due to the larger deformation [43]. Additionally, Raffiee et al. [57]

showed that deformable cells in Newtonian and polymeric fluids migrate to teh focal

position along the channel diagonal.

The literature on the migration dynamics of compound drops subject to Poiseuille

flow is scarce. Researchers have used bipolar coordinate system to analytically solve

for the migration when the deformation is small [26,27], or computational methods to

simulate large deformations [58, 59]. However, to the authors’ knowledge, no cross-

stream migration of compound drops has been investigated thus far. Bearing this in

mind, we consider the lateral migration of compound drops in a three-dimensional

rectangular channel in chapter 4. The flow within the channel is pressure driven with

a low Reynolds number of Re = O(1). We mainly look at a compound drop whose

size is comparable to the channel size, and background velocity field that is imposed

onto the compound drop does not closely resemble a simple shear flow. Therefore, we

focus on the migration of compound drops into multiple equilibria given various initial

conditions.



7

2. GOVERNING EQUATION AND NUMERICAL IMPLEMENTATION

2.1 Governing Equations

We consider a compound droplet that is subject to an arbitrary background flow.

The different and immiscible fluid phases are incompressible and Newtonian with

densities ρΦ and viscosities µΦ, where Φ ranges from I to III. We let phase I denote

the surrounding fluid, II the outer droplet, and III the inner droplet. We define the

interface between phases I and II as the outer interface, and that between II and III

as the inner interface. We also define the interfacial tension coefficients, σi and σo,

for the inner and outer interfaces. The governing equations for the unsteady and

incompressible viscous flows are given by the Navier-Stokes equations,

ρΦ
(∂u

∂t
+u·∇u

)
= −∇p+∇·(2µΦD)+

∫
i

σiκiδ(di)nidAi+

∫
o

σoκoδ(do)nodAo, ∇·u = 0,

(2.1)

where u is the velocity vector, p is the pressure, D = 1
2
[∇u + (∇u)T ] is the strain rate

tensor, κi and κo are the curvatures associated with the inner and outer interfaces, δ

is the Dirac delta function, di and do are the distances from the respective interfaces,

ni and no are the unit normal vectors at the interfaces, and dAi and dAo are the area

element at the interfaces. The effect of gravity is not considered.

2.2 Characteristic Non-Dimensional Numbers

Let Ri and Ro be the initially undeformed and spherical radii of the inner and

outer droplets, then we can characterize the flow with the following non-dimensional

parameters:



8

Reynolds number: Re =
ρIURo

µI
(2.2)

Capillary numbers: Cai =
µIU

σi
, Cao =

µIU

σo
(2.3)

Radii ratio: k =
Ri

Ro

(2.4)

Interfacial tension coefficient ratio: β =
σi
σo
. (2.5)

The characteristic velocity U depends on the type of flow at hand. When we

consider a compound drop in a simple shear flow, it is given in terms of the multiple

of the imposed background shear rate γ̇ and the relevant length scale, which is Ri for

the inner drop and Ro for the outer drop. Therefore,

Reynolds number: Re =
ρIγ̇R2

o

µI
(2.6)

Capillary numbers: Cai =
µIγ̇Ri

σi
, Cao =

µIγ̇Ro

σo
(2.7)

On the other hand, when we consider a compound drop in a pressure-driven flow, the

characteristic velocity is given in terms of the channel average velocity in the flow

direction, Uc. Unlike the shear driven case, it is common to use the diameter as the

characteristic length for calculating the Reynolds number in a pressure driven flow.

Thus,

Reynolds number: Re =
ρIUc(2Ro)

µI
(2.8)

Capillary numbers: Cai =
µIUc

σi
, Cao =

µIUc

σo
(2.9)

In this work, we look at Re = O(1), k = 0.4 − 0.6, Ca = O(0.01) − O(0.1), and

β = 0.1− 1. Due to the low Reynolds number that is typically associated with double

emulsions, the ratio of the densities does not play an important role.

Additionally, we quantify the deformation of both the inner and outer droplets by

using

χ =
√
Imax/Imin, (2.10)
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the square root of the ratio of the largest and smallest eigenvalues of the second

moment of inertia tensor, which in turn is quantified as [60]

Ilm =
1

Vol

∫
droplet

(xl − xlc)(xm − xmc)dV. (2.11)

Here, Vol is the volume of a given droplet (whether it be inner or outer), xl and xm

are the general coordinates, and xlc and xmc are the droplet’s centroids in the l and

m directions. The deformation χ has been shown to correspond to the aspect ratio

of a droplet for a small deformation [61], and can be cast into Taylor deformation

number [62] for the inner and outer interfaces as

Di =
Li −Bi

Li +Bi

=
χi − 1

χi + 1
, Do =

Lo −Bo

Lo +Bo

=
χo − 1

χo + 1
, (2.12)

where L and B are the instantaneous major and minor axes of the respective interfaces.

2.3 Numerical Implementation and Verification

We use finite-volume method on a three-dimensional staggered grid to discretize and

solve for the numerical solution of the unsteady Navier-Stokes equations. We compute

the advective terms using the Quadratic Upstream Interpolation for Convective

Kinematics (QUICK) scheme [63] and solve for the pressure-velocity coupling using the

projection method [64], which is numerically implemented using the Hypre library [65].

We represent the interfaces with unstructured grids using front-tracking method [66];

the interfaces of the inner and outer drops are not allowed to make topological changes

(e.g. break-up or merge). This corresponds to the physical case of a dilute surfactant

concentration that prevents the merging of the surfaces [67], yet does not affect the

interfacial tension. Finally, we advance the solution in time with 2nd order explicit

Euler method using Courant-Friedrichs-Lewy condition of 0.9.

First we perform a grid refinement test. We consider the case of a simple-shear

driven compound droplet. The exact problem statement and the geometry are shown

in Fig. 3.1 in Chapter 3. The length scale is non-dimensionalized by the diameter of

the undeformed outer droplet, and the time-scale by the shear rate of the imposed
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background simple shear. A single compound droplet, initially undeformed with

Ro = 0.5 and Ri = 0.25, is placed in the center of a shear-driven domain of size

Lx × Ly × Lz = 2 × 2 × 2 with a shear rate of γ̇ = 1. The uniform viscosities and

densities are chosen such that Re = 1.25, and the interfacial tension coefficients are

chosen such that Cai = 0.025 and Cao = 0.05. The inner drop’s center is offset

from that of the outer drop in the x-direction by Ro/4. The domain is uniformly

divided into 643, 1283, and 2563 grids, giving 16, 32, and 64 grids across the initially

undeformed inner droplet diameter.

The comparison of Taylor deformation and inner droplet position relative to the

outer droplet are shown in Fig. 2.1, where the local extrema in relative position

are circled. The positions of the inner and outer droplets, xi = (xi, yi, zi) and

xo = (xo, yo, zo), are computed by taking the center of mass of the respective phases,

and the relative position is then acquired as xi− xo. We find a good agreement in the

relative position of the inner droplet with 16, 32, or 64 grids across the inner drop

diameter, and in the deformations with 32 or 64. The first local extrema are tabulated

in Table 2.1 alongside a comparison of the relative position at the time when the first

extremum occurs with coarse grid.

We notice an abrupt change in Di for γ̇t < 1, similarly noted by Chen et al. [48].

This initial jump seems to not have been caused by a specific treatment of the

initial computational domain, as simulations with initially quiescent domain as well

as simple shear profile domain both show this behavior. Rather, it seems to arise

from the deformation of the outer droplet, and the resulting flow field inside. The

outer drop’s deformation in steady state or limit cycle behavior (which will be later

described) matches well with Chen et al. [49] with 32 grids across the inner diameter,

as shown in Fig. 2.2; a slight difference with Cao = 0.1 likely arises because the stable

configuration in our simulations was an eccentric compound drop, whereas Chen et

al. looked at the deformation of a concentric compound droplet. The deformation

with Cao matches better because the stable configuration in our simulations was a

concentric configuration. The transition from eccentric to concentric configuration
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Table 2.1. : Grid convergence versus number of nodes across undeformed inner

droplet diameter.

Coarse (16) Medium (32) Fine (64)

First (xi − xo)/2Ro extrema -0.1440 -0.1441 -0.1438

(xi − xo)/2Ro @ t = 6.88 -0.1440 -0.1441 -0.1438

First (yi − yo)/2Ro extrema -0.2242 -0.2233 -0.2284

(yi − yo)/2Ro @ t = 4.85 -0.2242 -0.2232 -0.2228

will be described later. Simple drop deformation from Rumscheidt and Mason [68] is

also shown for comparison.

The difference due to grid spacing in the relative positions of the inner droplet is

less than 1%, as shown in Table 2.1. On the other hand, the deformation data shows

a close convergence between medium and fine grids. We therefore use 32 grid points

across the inner droplet for all remaining numerical calculations when we look at the

dynamics of compound drops subject to simple shear flow. Also for convenience, we

refer to the center of mass of the inner and outer droplets as simply their positions.

Because the positions of the droplets can vary depending on the starting configurations,

we look at the relative position of the inner droplet to the outer droplet.

On the other hand, the parameter space that we cover when we look at the

dynamics of compound drops subject to Poiseuille flow is much larger, and so we use

uniform grid with 16 grid points across the undeformed inner droplet diameter. While

the sweeping of parameter space is mainly performed at this coarser grid resolution, to

ensure that numerical simulations are accurate, we verify the existence of four distinct

equilibria configurations by having 32 grid points across the undeformed inner droplet

diameter.

We also verify the validity of the code against the results from Hua et al. [50]. For

this, the code is modified for 2D simulations, and cases 1, 2, and 3 outlined in section

4.2.3 of Hua et al. are tested; here, Re = 1 and Cao = 0.25 with k = 0.5. The inner
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Figure 2.1. : Grid independency test with 16, 32, and 64 grids across the initial

inner droplet diameter. (a) inner drop Taylor deformation; (b) outer drop Taylor

deformation; (c) normalized relative x-position of inner drop; (d) normalized rela-

tive y-position of inner drop. The local extrema are noted with circles in (c) and

(d).
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Figure 2.2. : Outer drop deformation with k = 0.5 with varying Cao and Cao =

0.025 − 0.25. The deformation is averaged over time after a limit cycle behavior

or steady state is reached, and compared against the compound drop results from

Chen et al. [49] and simple drop results from Rumscheidt and Mason [68].
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Figure 2.3. : Eccentric compound droplet in 2D at steady state. For the 3 cases

simulated, the inner droplet centers relative to the outer droplet are initially lo-

cated at (−1/4, 0), (−
√

2/8,
√

2/8), and (0, 1/4). The final compound droplet config-

urations agree with that from Hua et al. [50].

droplet center is initially located at (−1/4, 0), (−
√

2/8,
√

2/8), and (0, 1/4) relative

to the outer droplet. As shown in Fig. 2.3, the interfaces at steady state show a good

qualitative match with the results presented by Hua et al..
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3. DYNAMICS OF ECCENTRIC DOUBLE EMULSION DROPLETS IN A

SIMPLE SHEAR FLOW

The main objectives of this chapter are threefold: first, to constitute the two funda-

mental motions - “revolving” and “drifting” - observed for an eccentric compound

droplet exposed to a simple shear flow; second, to show how the two motions can be

combined to collapse the motion of the inner droplet into a limit cycle; and third, to

discuss the effects of the initial eccentricity, radii ratio, and the interfacial tension

coefficients. In short, we demonstrate that the eccentricity of an inner droplet is always

accentuated when all the fluids have the same viscosities and when the deformations

are small, meaning that the inner droplet always moves towards the outer interface

until only a thin film remains between the inner and outer interfaces. We also briefly

discuss the mechanism by which the increase in eccentricity may be suppressed.

3.1 Problem Statement

We consider a compound droplet that is suspended in a shear flow as shown in

Fig. 3.1. With the origin defined at the center of the computational domain, the

background shear is defined by u∞ = γ̇yı̂ and is imposed by the the velocity boundary

condition at the top and bottom walls (i.e. walls normal to the y-direction) that

are driven in the ±x-direction with equal and opposite velocities ±γ̇Ly/2. The other

boundaries are periodic.

The compound droplet is initially undeformed with Ro = 0.5 and Ri = 0.25. The

domain is of size Lx × Ly × Lz = 2× 2× 2 with a shear rate of γ̇ = 1. The uniform

viscosities and densities are such that Re = 1.25, and the interfacial tension coefficients

are such that Cai = 0.025 and Cao = 0.05.
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Figure 3.1. : Schematic of the computational domain with a single undeformed

double emulsion droplet with eccentricity in the y direction. The outer drop is

positioned at the center of the domain, whereas the inner drop can be placed away

from the center if an eccentricity is wanted. Boundaries at y = ±Ly/2 are moving

with an equal and opposite velocities ±γ̇Ly/2. The origin is set at the center of the

computational domain. Schematic is not drawn to scale.

In this chapter, we do not look into its effect of having different viscosities between

different phases. As previously mentioned, the inertial effects are minimal since the

Reynolds number of interest are small, and so all phases are have equal densities.

Therefore, all the three phases are chosen to have uniform densities and viscosities.

3.2 Numerical Results and Discussion

3.2.1 Revolving and drifting of the inner droplet

We examine the effect of eccentricity by initially displacing the inner droplet in

the x, y, and z directions by Ri/2. The Taylor deformation number and the relative

position between the inner and outer droplets, xi − xo, yi − yo, and zi − zo, are shown

in Fig. 3.2a, 3.2c, and 3.2e after non-dimensionalization. The relative positions whose

magnitude variations are on the order of 10−4, which is an order of magnitude smaller

than the grid spacing, are not shown. The absolute position of the outer drop, which
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will be representative of the position of the compound drop as a whole, is not shown

because the overall movement in the x and z directions is not meaningful due to the

nature of the periodic domain and because there is no movement in the y direction.

The droplet positions, shapes, and the tangential velocity field at the mid-section

of the outer droplets are shown in Fig. 3.2b, 3.2d, and 3.2f. The viewing planes

are chosen to show the direction of the significant inner droplet movement, and the

velocity magnitudes are multiplied twofold in Fig. 3.2f for visibility.

Two very distinct motions are readily observed: one where the inner droplet

persists in a “revolving” motion in the xy-plane (plane of shear) with almost no

change in its z-position (the direction normal to the plane of shear), and the other

where there is no revolving motion, but only a “drifting” motion in the z-direction.

The characteristics of “revolving” and “drifting” motions are further explained in the

following subsections.

Revolving motion in the plane of shear

We observe a persistent circulatory movement of the inner droplet when it is

eccentrically placed with x or y offset. Fig. 3.2a, 3.2b, 3.2c, and 3.2d illustrate that

the inner droplet migrates outward while orbiting about the center of the outer drop

until a limit cycle behavior is reached; during the limit cycle, the inner drop continues

to revolve about the center of the outer drop, but is no longer able to move outward

because the interfaces almost touch; the interfaces do not actually come into contact,

and a thin liquid film forms for portions of the limit cycle. The trajectory of the inner

drop in limit cycle resembles a slanted ellipse, and is described in more detail in Section

3.2.1. Due to both the elongation of the outer droplet and also the slanted elliptical

limit cycle, the inner droplet almost touches the outer droplet’s interface for only

parts of a revolving cycle; e.g. the two interfaces are not very close to each other at

γ̇t = 86.98 but are at γ̇t = 90.64 in Fig. 3.2d. This causes the outer drop’s deformation
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Figure 3.2. : Inner droplet deformation, position, shape, and the velocity vectors

tangent to the viewing plane. Taylor deformation, non-dimensional relative x, y,

and z positions with initial eccentricity in the (a) x, (c) y, and (e) z-directions are

shown; xy-plane view of the interfaces and the velocity vectors with eccentricity in

the (b) x and (d) y-directions; (f) xz-plane view of the interfaces and the velocity

vectors, magnified ×2 for visibility, with eccentricity in the z-direction. The plane

views (b), (d), and (f) are shown at times shaded in (a), (c) and (e).
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to undergo “breathing,” fluctuating at twice the frequency of the oscillation in the x

and y positions.

The fact that the y-eccentricity case reaches limit cycle behavior when γ̇t ∼ 100

is not clear in Fig. 3.2c, but can be realized from Fig. 3.2d since the interfaces are

almost touching when γ̇t ∼ 90.64, implying no more outward motion. In fact, all

cases were run until γ̇t = 200 to ensure that the limit cycle has been reached, but

only the range γ̇t = [0, 100] is shown in Fig. 3.2. At first glance, it seems that the

x-eccentricity case reaches limit cycle more quickly than the y-eccentricity case. This

is reflective of the initial condition rather than the qualitative characteristic of the

revolving motion: since the movement of the inner drop in the x and y directions

is coupled by the revolving motion, different initial x and y eccentricities serve as

different initial conditions to the fundamentally identical outward orbiting motion.

Fig. 3.2b and 3.2d further show that having an initial x or y eccentricity in the inner

droplet placement does not affect the final limit cycle, and Fig. Fig. 3.2a and 3.2c

show the offset positions and the Taylor deformations match well after limit cycles

are reached.

Simulating multiple offsets in the x-direction reveals that the revolving motion

is ubiquitous and alike despite the varying degree of offsets, and that the revolving

motions starting with different initial eccentricity all collapse to the same limit cycle.

This fact is illustrated in Fig. 3.3 by phase portraits of inner droplet’s velocity versus

position.

Based on the flow field inside a simple drop subject to a shear flow, a similar

revolving motion of the inner droplet was assumed by Klahn et al. [46] in characterizing

the escape mechanism of an inner droplet. However, their assumption was that a

given inner droplet is bound to the concentrically elliptical streamlines that it was

originally placed in, and therefore coalescence between multiple inner droplets was

suggested as a means of escaping such a confinement. On the contrary, the results

given here demonstrate that inner droplets are capable of moving radially outward

without coalescence, so long as an initial offset in the plane of shear is realized. Chen
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Figure 3.3. : Phase portraits of dimensionless relative (a) x-velocity and (b) y-

velocity of the inner droplets versus the dimensionless relative position. The inner

droplet is initially offset in the x-direction with magnitudes noted in the legend.
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Figure 3.4. : The inertial effect on the revolving motion is investigated by increas-

ing the shear rate with and without keeping Cao constant. Given an initial x-

eccentricity, (a) Di, (b) Do, and (c) normalized distance from the inner drop center

to the outer drop center, with local maxima noted with circles, are sown. The rever-

sal in the outward motion with Re = 5 and Cao = 0.2 is due to a large deformation

in the outer drop.

et al. also reported a circulatory streamline inside the outer droplet, but did not

observe a revolving motion. We believe this is due to the much smaller Reynolds

number they had (Re ∼ 10−5), which would have retarded the amplitude increase of

the eccentricity from the nearly concentric compound droplets they had.

The outward motion is driven by the pressure force and the shear stress, and is

not affected by the inertial effects as long as the deformations are small. The lack of

inertial impact on the outward motion can be seen by increasing the shear rate, as can

be seen in Fig. 3.4. Even after increasing the Reynolds number by a factor of 4, the

outward motion is preserved so long as deformations are controlled by simultaneously

increasing the inner and outer interfaces’ tension coefficients to keep Cao and Cai

constant.

We do see a reversal in the outward motion when Re = 5 and Cao = 0.2. This

is not an inertial effect, but rather a deformation effect. This fact is well illustrated

in Fig. 3.5: when the deformation of the outer drop is sufficient, recirculation zones

are created inside the outer drop, creating a stable configuration. This transition of
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(a) (b)

Figure 3.5. : The streamlines inside the compound droplet at the mid-section with

an initial x-eccentricity with (a) Re = 5 and Cao = 0.05 after reaching limit cycle

behavior and (b) Re = 5 and Cao = 0.2 after reaching steady state. The larger

deformation creates recirculation zones in (b), making a steady state obtainable.

streamlines is similar to what was observed for a compound vesicle (a simple drop with

a membrane and with a particle inner core) by Veerapaneni et al. when it underwent

the transition from tank-treading to tumbling [69]. The fact that the creation of

recirculation zones within the outer drop contributes to a transition in dynamics was

also found by Zhou et al. who saw a non-monotonic relationship between k and the

time a compound drop takes to squeeze through a choke in a pressure-driven flow [58].

The critical Capillary number for the transition from reaching limit cycle to

reaching steady state lies between 0.1 < Cao < 0.2, given that Cai = 0.15. The

critical transition Cao depends on the deformation of the inner drop, i.e. on Cai and

possibly k. Generally speaking, Do > Di, so there is little room left for examining the

effect of increase in Cao past Cao = 0.2 before break-up occurs. The effect of Cao and

Cai are discussed in more detail in Section 3.2.3. The effect of k on the transition

Cao is not quantified in this work, but its presence can be deduced from the fact that

k affects the outer drop deformation [49] and creation of recirculation zones [58,69].
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Drifting motion normal to the plane of shear

Unlike the pure revolving motion, the motion in the xy-plane is negligible when the

inner droplet is initially displaced in only the z-direction. Rather, the inner droplet

slowly drifts in the direction of the offset (which is the direction normal to the plane

of shear), increasing in eccentricity until only a thin liquid film remains between the

interfaces (see Fig. 3.2e and 3.2f). Such a movement is, to the authors’ knowledge,

unprecedented. The previous literature with eccentric compound droplets were either

confined to having the eccentricity along the flow direction or within the plane of the

surrounding flow [24–27].

Having various offsets in the z-direction all results in the same behavior, and the

inner droplet always moves in the direction that increases the offset. Moreover, the

drift velocities for different offset distances collapse into a single curve as shown in

Fig. 3.6a, where the initial z-offsets are noted in the legend; the initial spikes are due

to the computational domain being initially quiescent. The fact that all velocities

collapse independently of the offset magnitude indicates that the drifting motion is a

fundamental behavior of compound droplets in a shear flow; surprisingly, this collapse

holds even for eccentricities that are on the order of the droplet radii. The time

variation of the drifting motion with varying initial eccentricity is explicitly shown in

Fig. 3.6b.

As was the case with revolving motion, the drifting motion does not seem to be

caused by inertial effects. As can be seen in Fig. 3.7, changing Re while keeping Cao

and Cai constant results in increase in the z-eccentricity. When Re is changed while

not keeping the deformations constant, a decrease in eccentricity is possible. When

that happens, the steady-state configuration that was previously shown in Fig. 3.5b is

recovered. However, it is possible that the disappearances of revolving motion and

drifting motion to be not linked, as will be discussed in Section 3.2.3.
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Figure 3.6. : (a) Phase portrait of dimensionless relative z-velocity versus position

of the inner droplet. The inner drop is initially offset in the z-direction with the

magnitudes indicated in the legend; (b) Dimensionless relative z-direction move-

ment of the inner drop versus dimensionless time, given various initial offsets in the

z-direction.
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Figure 3.7. : The inertial effect on the drifting motion is investigated by increas-

ing the shear rate with and without keeping Cao constant. Given an initial z-

eccentricity, (a) Di, (b) Do, and (c) normalized relative z-position of the inner drop

are shown. The reversal in the drifting motion with Re = 5 and Cao = 0.2 is due to

a large deformation in the outer drop, as was the case in the revolving motion.
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Combined motion

The natural extension of the revolving and drifting motions is to characterize

if specific initial configuration dictates the final configuration of the inner droplet.

Because having the inner droplet offset in either the x or the y direction results in the

same limit cycle, whereas having z offset results in a completely different motion, we

look at various eccentric inner droplet placements in the xz-plane.

The initial offset, outward migration path, and the final limit cycle behavior of the

inner droplets are illustrated in Fig. 3.8. The initial positions are marked with filled

triangles. The open diamonds within the migration paths are given at local x maxima

for the xz-plane view and y maxima for the yz-plane view, and therefore represent the

envelope that contain the revolving motion while drifting motion simultaneously takes

place. The final local x-maximum and y-maximum, which are the global x-maximum

and y-maximum, correspond to when no more outward motion is possible, i.e. the

limit cycle, and are marked with filled circles. Unlike the case in a pure revolving

motion, the limit cycle now contains an z-eccentricity. This method of viewing the

migration leads to kinks in the yz-plane view, which is attributed to the distance

between the initial position and the first local y-maximum.

The inner droplet almost comes into contact with the outer interface in the limit

cycle at the y-extrema, but not at x-extrema. This fact is in accordance with Fig. 3.2b

and Fig. 3.2d, and is also revealed when we look at the limit cycle trajectory for

various offsets as shown in Fig. 3.9, as well as from the fact that the final y-offsets are

larger than the x-offsets in Fig. 3.8.

The outward movement of the inner drop away from the center of the outer drop

during the combination of revolving and drifting motions can be contrasted to what

may happen to a point particle in a simple droplet. If the inner drop size were

infinitesimal, the streamlines in Fig. 3.5a will be symmetric about the center of the

outer drop (which is indeed the case for simple drop), and an outward motion is

difficult to imagine. At best, if we imagine the drift movement of many point particles
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Figure 3.8. : Dimensionless (a) 3-D view of the migration path of the inner droplet

initially placed at (x, z) = (0.05, 0.05) with k = 0.5. The two black lines represent

how the (b) xz-plane view and (c) yz-plane view are acquired when various initial

eccentricities are tested. The initial positions are marked by triangles and the final

by filled circles. The open diamonds denote the local maxima in (b) x and (c) y

positions such that only the outward component of the motion is shown from the

combination of revolving and drifting motions. The global maximum in x or y (i.e.

envelope of the limit cycle) is shown with filled circles.
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Figure 3.9. : (a) xy-projection and (b) 3D view of the limit cycle movement of the

center of the inner droplet with various initial (x, z) offsets noted in the legend.

The normalized relative position of inner droplet is plotted for ∼1.5 revolving cycle,

and show a tilted elliptical pattern.

within a simple droplet over time, because the fluid mass has to be conserved inside

the said droplet, some point particles will move towards the center of the droplet if

some moved outward. On the other hand, when we have inner droplet of finite size,

we see that it only moves outward;

Another characteristic of the droplet migration is that the outward motion in the

revolving motion happens with a timescale similar to that of the drifting motion. This

is evident because the outward migration paths are approximately radial in Fig. 3.8.

The similarities in the timescales can also be seen from Fig. 3.2a, 3.2c, and 3.2e; as

previously stated, the increases in the envelope for relative x and y positions, and the

increase in the relative z position occur over a timescale γ̇t ∼ O(100).

3.2.2 Effect of radii ratio between inner and outer droplets

As demonstrated in Fig. 3.10, additional radii ratios of k = 0.4 and 0.6 are tested

with various offsets. To prove that the outward migration into limit cycle is not

dependent upon having the initial eccentricity confined to the xz-plane, the inner
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droplets are placed in the yz-plane for the k = 0.6 case. Similarly to before, the filled

triangles denote the initial positions and the filled circles the global maxima, with

open diamonds the local maxima. The lower bound on the radii ratio of k = 0.4 is

chosen to limit the parasitic current under 1% of the maximum velocity within the

computational domain, and the upper bound is chosen to allow the testing of various

inner droplet offsets. The radii ratio does not have an impact in the general migration

behavior of the inner droplet; the inner droplet migrates such that the eccentricity

increases until the limit cycle is reached.

3.2.3 Effect of interfacial tension coefficient on migration

The effect of inner interfacial tension on the inner droplet movement is considered.

With k = 0.5, inner interfacial tension coefficients of σi = 0.2 − 2.0 are tested,

corresponding to β = 0.1 − 1 and Cai = 0.25 − 0.025. As shown in Fig. 3.11, a

decrease in β corresponds to a lower migration speed of the inner droplet. Whereas

the decrease of β from 1.0 to 0.6 barely affects the overall movement of the inner

droplet, the decrease from 0.4 to 0.2 greatly reduces the migration velocities in all the

tested cases.

In the case of the revolving motion, a decrease in β from 0.2 to 0.1 results in a

reversal in the outward movement. This behavior is similar to that observed in 2D

simulations by Hua et al., who chose Cai = 0.25 and observed that the inner droplet

drifted to the center of the outer droplet regardless of the initial eccentricity.

The drift velocity in the z-direction depends weakly on σi; there is no reversal

in the drift motion with a change in σi. Further, a decrease in β from 1 to 0.6 has

negligible effect on the drift velocity. It is only when the inner drop deformation grows

significantly that the drift velocity noticeably decreases.

When 0.025 < Cao < 0.1, revolving motion is suppressed when Cai = 0.25 but

drifting motion is always observed, as shown in Fig. 3.12; whereas the the revolving

motion is suppressed for critical Cai = 0.25 and Cao = 0.2, the drifting motion persists
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Figure 3.10. : Behavior of the inner droplet depending on the initial inner droplet

placement and the radii ratio. Dimensionless (a) xz-plane view and (b) yz-plane

view with the inner droplets initially placed with various (x, z) offsets with k = 0.4;

dimensionless (c) xz-plane view and (d) yz-plane view with various (y, z) offsets

with k = 0.6. Filled triangles, filled circles, and open diamonds are used in the

manner similar to Fig. 3.8, and familiar outward migrations to when k = 0.5 are

observed.
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Figure 3.11. : Dimensionless relative position of the inner droplet versus dimension-

less time with various β. Normalized relative (a) x and (b) y positions are shown

with dotted lines, with initial inner drop offset in the x-direction. The maxima in x

and y positions are marked with circles and are connected; (c) normalized relative

z-position is shown with initial inner drop offset in the z-direction.
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Figure 3.12. : The increase (filled upward triangle) and decrease (open downward

triangle) of eccentricity in the Capillary number space with initial (a) x and (b) z

eccentricity.

for a wider range of capillary numbers. On top of the effect of capillary numbers, the

initial configuration must also be considered: the creation of recirculation zones in

Fig. 3.5b does not always occur with an almost-spherical inner drop and initial z-

asymmetry, and thus even with Cao = 0.2, drifting motion can persist. This difference

in the critical capillary number at which revolving and drifting motions are suppressed

suggests that a more complicated combined motion is possible, where the inner drop

may no longer migrate radially outward. For example, when β = 0.1 and Cao = 0.05,

the movement of the inner drop is characterized by the suppression of revolving motion,

and when β = 0.2 by the suppression of drifting motion depending on the initial

configuration. This is shown in Fig. 3.13.
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Figure 3.13. : Comparison between β = 0.1 and β = 0.2 with initial (x, z) offsets

of (0.05, 0.05) and (0.1, 0.1) with Cao = 0.5. Dimensionless (a) xz-plane view and

(b) yz-plane views are shown in identical manner to Fig. 3.8 and Fig. 3.10. While

the inner drop still moves away from the center of the outer droplet, the outward

motion is no longer radial.
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4. LATERAL MIGRATION DOUBLE EMULSION DROPLETS IN LOW

REYNOLDS NUMBER POISEUILLE FLOW

In this chapter, we consider the lateral migration of compound drops in a three-

dimensional Poiseuille flow within a rectangular channel. In the low Reynolds number

regime (Re = O(1)) with equal and uniform viscosity and density, 4 equilibrium

configurations are found. These equilibrium configurations are realized by releasing

initially concentric compound drops with varying radii ratio between the inner and

outer drops at different locations within the channel. The different internal streamlines

in each equilibrium configuration are discussed. Additionally, whether a given initial

configuration leads to a steady state or not due to the interfaces merging is discussed.

Finally, the effect of initial compound drop placement, the effect of size ratio of the

compound drop relative to the channel, and the effect of aspect ratio of the channel

are considered.

4.1 Problem Statement

We consider the trajectory and the steady-state equilibrium location of a compound

drop with a single inner drop. The compound drop is initially concentric with an

undeformed outer radius Ro and inner radius Ri. The initial condition is zero velocity

in the channel. A constant pressure gradient drives the flow in the channel. The

channel has a rectangular cross-section of (Ly/(2Ro)×Lz/(2Ro)) = (1.5× 2.5), and is

periodic in the flow direction with Lx/(2Ro) = 2. The schematic is shown in Fig. 4.1.

The initial placement of the center of the compound drop is y/Ly ≤ 0.5 and z/Lz ≤ 0.5.

Initial positions with y/Ly > 0.5 or z/Lz > 0.5 are not considered due to symmetry.

The density ρ and viscosity µ of all fluids are equal and uniform, and the interfacial

tension coefficient at the inner and outer interfaces are equal and uniform.
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Figure 4.1. : Schematic of the computational domain. A spherical and concentric

compound drop is placed in a pressure driven channel. The channel initially has

zero velocity and the flow is in the x-direction.
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Here, the computational domain is resolved using 64×48×80 or 128×96×160 grid

points, corresponding to 16 or 32 grid points across the diameter of the undeformed

inner drop, respectively. The coarser grid is used by default, and the refined grid is

used to verify the coarse grid simulations when a small change in the initial compound

drop placement results in different equilibrium configurations at steady state. The

computation is stopped either when an equilibrium is reached or when the inner and

outer interfaces come within 1% of initial outer drop diameter, corresponding to half

of refined grid spacing and thus indicating a breakup of the compound drop.

4.2 Results and Discussions

4.2.1 Equilibrium Configurations

Four equilibrium configurations - centerlined, single vortex, pair vortex (outer),

and pair vortex (inner) - are found, where the latter three are named depending on

the number of vortices inside the compound drop at the bisecting plane of symmetry,

and depending on where the inner drop is relative to the channel centerline.

All equilibrium configurations, streamlines in the reference frame of the outer

drop, and flow direction averaged velocity profile are shown in table 4.1. Single

vortex equilibrium is the most common one when all initial placements are considered.

One exception is when the initial placement is symmetric about the longer wall, in

which case the pair vortex (outer) equilibrium is reached. For a given equilibrium

configuration, the flow direction averaged velocity profile is nearly identical regardless

of the radii ratio. Each equilibrium is further described in the following.

The centerlined equilibrium configuration is reached when a concentric compound

drop is initially placed at the channel centerline. The inner drop migrates along the

flow direction faster than the outer drop, and reaches the front side of the outer drop

as expected. The counter-rotating vortices inside the inner drop qualitatively agree

with streamlines shown by Che et al. [70] despite slightly different Ca and significantly
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Table 4.1. : (a) Equilibrium configurations, (b) streamlines at channel midplane

(xz or xy plane) in reference frame of outer drop with flow to the right, and (c)

normalized flow direction averaged velocity profiles for (1) centerlined, (2) single

vortex, (3) pair vortex (outer), and (4) pair vortex (inner) equilibria.
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different Re. This configuration is metastable and is prone to drop breakup as well as

migration away from centerline with accumulation of nunmerical error.

In the single vortex equilibrium, the compound drop is close to the shorter side of

the channel. This equilibrium and the streamlines inside the outer drop are similar to

those at the “outer equilibrium position” reported by Chen et al. [43], who investigated

the equilibria of simple drops in a 3-dimensional rectangular channel. A well defined

single vortex exists and encircles the periphery of the inner drop. The compound

drop does not intersect the midplane that bisects the longer side of the channel. An

analogous equilibrium to the “inner equilibrium position” reported by Chen et al.

is not found for compound drops with the current Re. A general compound drop

placement results in this stable equilibrium.

The pair vortex (outer) equilibrium is reached when the initial compound drop

placement is symmetric about the longer wall (the z-direction). This symmetry (and

hence this equilibrium) is metastable. In the case of a simple drop, counter-rotating

eddies are present when the drop intersects the centerline [71], and similar streamlines

are present inside the compound drop in this configuration. The counter rotating

eddies are not toroidal and are of different sizes, with the larger eddy circulating about

the inner drop. The inner drop is near the channel wall (away from the centerline,

hence the term “outer”) compared to the pair vortex (inner) equilibrium.

Unlike in the pair vortex (outer) equilibrium, the smaller eddy circulates around the

inner drop in the pair vortex (inner) equilibrum. In the pair vortex (inner) equilibrium,

the inner drop is placed further away from the channel wall and closer to the centerline.

This equilibrium is not found for k ≥ 0.5 for the given flow parameters at hand. When

compared against the streamlines in the xy-plane view for the pair vortex (outer)

equilibrium, the larger counter rotating eddy in pair vortex (inner) equilibrium is more

deformed, and the smaller counter rotating eddy now has a figure 8 which is due to

the toroidal vortex inside the inner drop. The final outer drop’s centroid y-position of

yo/Ly = 0.575 means that the outer drop’s final centroid position is a mirror image of

that in the pair vortex (outer) equilibrium, which has yo/Ly = 0.425. This equilibrium
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configuration is metastable similarly to the pair vortex (outer) configuration. However,

whereas pair vortex (outer) configuration may be reached without the interfaces

coming into contact, this configuration cannot be reached starting with a concentric

compound drop in a quiescent domain. Instead, this equilibrium is reached when the

interfaces are explicitly constrained to not merge or break; following a numerical error

accumulation and the subsequent symmetry breaking from the centerline equilibrium,

the inner drop experiences a larger migration force along the y-direction than the

z-direction due to the larger velocity gradient from the shorter channel length, and

the compound drop transitions to the pair vortex (inner) configuration.

4.2.2 Effect of Initial Placement on Stability

The effect of the initial placements on the equilibrium configuration has been

briefly described. In microfluidics engineering, compound drops are often generated

using a pinch-off devices and then are accumulated soon after. A situation may rise

where such accumulated compound drops need to be transported again. In such a

scenario, the external flow experienced by compound drop changes from quiescent

to pressure driven, and the integrity of compound drop to overcome breakup is an

important question.

To further investigate the effect of radii ratio and initial placements, we look at

their effects on the breakup time as shown in Fig. 4.2. As described previously, the

compound drop is considered to undergo breakup when the inner and outer interfaces

come within 1% of the initial outer drop diameter, and the breakup time is the time

from the start of the simulation to when the breakup occurs. If the compound drop

reaches the equilibrium location without breaking up, then the compound drop is

considered stable.

Fig. 4.2 also shows the inner drop movement (in red) and the outer drop movement

(in black) for various initial placements. The initial movement of the inner and outer

drops are in opposite directions, after which a damped oscillatory movement from the
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Figure 4.2. : The effect of radii ratio and initial placements on the drop stability

and migration paths are shown. Green circles denote initial placements that do not

result in breakup and red circles denote initial placements that do. Black paths de-

note outer drop centroid movement and red inner. Migration paths associated with

initial placements that result in breakup are not shown. The color contour shows

the time of breakup. Only a portion of the channel is shown to scale to clearly show

the migration paths.

inner drop follows similarly to observed in compound drops in simple shear flow [72].

The inner drop movement is far greater than outer drop movement, and so the breakup

time of the compound drop is largely dictated by the inner drop dynamics.

In general, the smaller the radii ratio, the longer the compound drop takes to

breakup. The near-wall initial placements is effective at preventing breakup. There

exists a small region near the centerline where the compound drop does not break up

for some time, but no region near the centerline is found to be completely prevent

breakup. The stability of near-wall region is further looked at as shown in Fig. 4.3 by

focusing on 4 cases with k = 0.4 as denoted in Fig. 4.2.

In those four cases, the distance between the inner and outer drop reaches a similar

value of 0.3 when normalized by (2Ro). However, the deformation experienced by
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Figure 4.3. : Cases 1 through 4 denoted in Fig. 4.2 are more closely looked at. Dis-

tance between inner and outer drop centroids (blue), inner (red) and outer (black)

drop deformations are shown on the left. Inner (red) and outer (black) drop move-

ments in y and z direction are shown. Cases 3 and 4 are shown until breakup.
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the outer drop differs significantly, since the effective shear gradient at those different

locations are different. This in turn allows or limits the space that the inner drop may

settle into; that is, an outer drop with larger deformation is able to accommodate the

oscillatory inner drop movement that is expected from the effective shear gradient,

whereas an outer drop with a smaller deformation cannot. The deformation of the

inner drop are similar and does not play a big factor. The fact that inner drop

movement is the major factor in determining the distance between the inner and outer

interfaces is shown in Fig. 4.2 as well when we compare the magnitude of movement

in the outer and inner drops over time.

The fact that Taylor deformation number of the outer drop reaches a value as high

as 0.08 despite having the Capillary number of the system being O(0.1) warrants an

explanation. Oftentimes the deformation number is used to characterize the dynamics

in a simple shear flow, where the Capillary number is defined based on the velocity

due to the effective shear across the overall drop. If we look at the effective Capillary

number in positions 1 through 4 in Fig. 4.2 as defined by the effective shear the outer

drop undergoes, the value is 2 to 3 times greater than that defined by the channel

average velocity Uc.

4.2.3 Effect of Geometric Parameters on the Equilibria

The effects of geometric parameters on the equilibrium positions and average

channel velocity are considered. Although the single vortex equilibrium is more likely

to occur for an arbitrary initial compound drop placement, both single and pair vortex

equilibria are considered.

Effect of Size Ratio of Compound Drop to the Channel and Radii Ratio

of Compound Drop

Droplet sorting by size has been demonstrated with great accuracy in microfluidics

by the usage of bifurcating geometries [73]. To extend such a knowledge to compound
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Figure 4.4. : The effect of size ratio of the compound drop to the channel and

the radii ratio of the compound drop on the equilibrium position and the channel

throughput.

flow−−−−−→
direction

X

Y

Z

Figure 4.5. : Streamlines in the xy-plane view at the z-midplane with ζ = 0.8. Pair

vortex (outer) equilibrium is reached, but the significant wall effects position the

compound drop at the center of the channel.

drops, the effect of size ratio is considered by changing Ro while maintaining the

channel size constant and scaling Ri for a desired k. The dimensionless equilibrium

positions and the dimensionless channel average velocity are shown in Fig. 4.4.

As ζ increases, the dimensionless equilibrium position also increases for both pair

vortex and single vortex equilibria. For the pair vortex equilibrium, As ζ approaches
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Figure 4.6. : The effect of channel aspect ratio on the equilibrium positions of sim-

ple and compound drops, and on the channel throughput.

0.8, the compound drop does not reach the equilibrium that was previously described.

Instead, it reaches an equilibrium that is a mixture of centerlined and pair vortex

(outer) equilibria as shown in Fig. 4.5. In this equilibrium, the wall effects position

the outer drop at a centerlined position, and the inner drop is placed within one of

the counter rotating vortices within the outer drop.

Additionally, an increase in k brings the compound drop closer to the channel wall

and also decreases the average channel velocity. The average channel velocity increases

with ζ for pair vortex equilibrium, but decreases for single vortex equilibrium. The

change in the average channel velocity is very small.

Effect of Channel Aspect Ratio

In production and application of compound drops such as in microfluidic devices,

the cross section of the channel is often restricted in one direction, and increasing the

throughput of the channel is achieved by changing its aspect ratio rather than scaling

the channel as a whole. In this light, we consider the effect of increasing the aspect

ratio of the channel by elongating Lz, and look at the equilibrium position and the

channel throughput as shown in Fig. 4.6.
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The nondimensional channel throughput between simple drop and compound drop

look nearly identical. This is due to how the average channel velocity is nondimen-

sionalized; since Lz is in the denominator of the nondimensionalization, small changes

in the throughput is overshadowed by the large changes in Lz between each case.

On the other hand, the positional difference between a compound drop and a

simple drop can easily be seen, and shows a similar trend as the effect due to the size

ratio; the compound drop’s equilibrium position is closer to the channel wall than that

of the simple drop. For the single vortex equilibrium, the nondimensional equilibrium

position is misleading in that zo/Lz is decreasing with increase in the channel aspect

ratio, but the actual equilibrium position zo increases with ε.



44

5. CROSS STREAM LIFT FORCE ON A COMPOUND DROP IN 3D

RECTANGULAR POISEUILLE FLOW

We considered the equilibrium configurations and positions of compound drops in

Poiseuille flow in the last chapter. But we also saw that the equilibrium positions of

compound drops are very close even with varying radii ratio, and even against simple

drops. Hence, an efficient sorting is a difficult task. In this chapter, we look at the lift

force profile of compound drops and simple drops at varying placements within the

same channel. It will be shown that the lift force profile varies significantly with radii

ratio in the inner region of the channel, thus opening possibilities of forced sorting

mechanism (through the application of external force field such as an electric field) or

temporal sorting mechanism (since the different compound drops with different radii

ratios will laterally migrate at different rates). Finally, we will discuss the model for

explaining why the different in the lift force arises, and also discuss the limitations of

the model.

5.1 Problem Statement

We computationally consider the lateral lift force acting upon a compound drop

at its steady state. The compound drop is initially concentric with an undeformed

outer radius Ro and inner radius Ri. The initial velocity within the channel is

parabolic, and the velocity field eventually reaches steady state under a constant

pressure gradient along the flow direction. The rectangular channel has a cross section

of Ly/(2Ro) = 1.5 and Lz/(2Ro) = 2.5, and has the periodic length along the flow

direction of Lx/(2Ro) = 2.0. The computational domain schematic is shown in Fig. 5.1.
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Figure 5.1. : Schematic of the computational domain. A spherical and concentric

compound drop is placed with symmetry about y, the short wall direction. Various

compound drop placements along z, the long wall direction, is considered. The flow

is initially parabolic, and is pressure driven in the x-direction.
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We’ve shown in the previous chapter that compound drop placements without

symmetry about the long channel direction lead to the single vortex equilibrium when

channel Reynolds number is Re = O(10) and drop capillary number is Ca = O(0.1) [74].

Since the symmetry about the short wall direction is more strongly enforced than

that about the long direction, the lateral lift force along the long channel direction

determines how the compound drop laterally migrates as it is carried along the flow.

Hence, the initial placements for finding the lift force on the compound drops have

symmetry about the short wall direction, and are spread across the lower half of the

channel. That is to say, yo/Ly = 0.5 and zo/Lz ≤ 0.5 initially.

To determine the lateral lift force acting on the compound drop, we use a PI

controller similar to one employed by Schaaf and Stark [75]. An adjustable force Fb is

applied evenly throughout the volume of the compound drop, which compensates the

lift force. This feedback force is calculated with a proportional term and an integral

of the error term. At some time t, the current position of the outer drop zo(t) can

be compared against the desired and initial z-position of the outer drop zo(t = 0) to

acquire the proportional term. The error of this term is then integrated over time

for a faster convergence of the compound drop position and hence the lift force. The

feedback force is calculated as

Fb(t) = γP (zo(t = 0)− zo(t)) +

∫ t

0

γI (zo(t = 0)− zo(t′)) dt′, (5.1)

where the values of γP and γI are in the range of 0.1− 5 and 10− 50 depending on

the case for good convergence of the PI controller. The found Fb is then applied along

the z-direction, and the lift force is found as FL = −
∫

Vol
FbdV , where the volume

integral is over the entire volume of the compound drop. While this lift force is

applied throughout the compound drop, and hence both the inner drop and outer

drop experience the lift force, only the outer drop location is constrained by the PI

controller. A merging of the interfaces is possible since the inner drop is free to move

inside the outer drop cavity. The computations are stopped when the inner interface

and outer interface come within half a grid spacing, i.e. Ri/16. In the cases where

the interface merging occurs before the convergence of the PI controller, the final four
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local minima and maxima of the lift force are extrapolated to obtain the projected lift

force. The cases where such extrapolation is required are clearly labeled in the results

section.

We focus on the Reynolds number based on the hydraulic diameter H as Re =

ρUcH/µ = 9.6 and capillary number of Ca = µUc/σ = 0.1. Additionally, we vary

the the outer drop viscosity so that µnew/µold = 1/2 or 2 to show that the lift force

is affected far more greatly by radii ratio k = Ri/Ro = 0.4 − 0.6 rather than the

viscosity ratio. Finally, a few cases with Ca ranging up to O(1) are discussed to aid

in designing predictable compound drop delivery system without breakup occurring.

5.2 Results and Discussion

The lift forces found with the PI controller are labeled as FL and act in the

positive z-direction. The lift forces are then nondimensionalized against ρU2a4/H2

where U is the maximum channel velocity, a is the diameter of the undeformed

outer drop (or simple drop), and H is the hydraulic diameter of the channel. This

nondimensionalization is in accordance with Asmolov [76], who predicted an increase

of the nondimensional lift force fL with decreasing Reynolds number. Although that

prediction was made for a much larger Reynolds number than here, we see that it

holds even in the current system as shown in Fig. 5.2.

5.2.1 Effect of Radii Ratio on Lift Force

The most important aspect of the lift force profile is if there is a noticeable

difference between that of a simple drop and a compound drop. As shown in Fig. 5.3,

there is. We first note that the lift force profile of a simple drop behaves similarly to

the particle result by Di Carlo et al. [77] and capsule result from Schaaf and Stark [75].

But in the channel center region (i.e. away from the near wall region), the compound

drops show significantly more lift force. Furthermore, this trend is accentuated for

a larger radii ratio k. While the equilibrium position, as predicted by when the lift
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Figure 5.2. : The nondimensional lift force on a compound drop with various posi-

tions zo/Lz ≤ 0.5 with radii ratio k = 0.6. The Reynolds number is varied from 2.4

to 19.2.
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Figure 5.3. : The nondimensional lift force on simple and compound drops with

various positions z/Lz ≤ 0.5 and varying radii ratio k = 0.4 − 0.6. The hydraulic

Reynolds number is 9.6. The filled in markers imply extrapolation as previously

described.

force is 0, between all the cases are very similar, the big difference in the lift force in

the inner region can aid in sorting of the compound drops based on the radii ratio

by means of external forcing (such as through electric field) or by temporal means

(since the compound drops will laterally migrate at a different rate than simple drops

or compound drops with different radii ratio).

One interesting thing to note is the equilibrium at the centerline. The curvature

on the lift force profile of the simple drop predicts that z/Lz = 0.5 is an unstable

equilibrium. On the other hand, the compound drop lift force profiles predict that the

centerline is a stable equilibrium. However, from the previous work, we’ve shown that

the centerline equilibrium is not desirable in the sense that the inner interface merges

with the outer interface [74]. This fact is shown in Fig. 5.3 for the near-centerline

placements with the filled markers, implying that interface merging does occur.

5.2.2 Effect of Outer Drop Viscosity on Lift Force

Oftentimes in the application of compound drops, the inner drop and surrounding

fluid have similar fluid properties while the outer drop has a very different property.
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Figure 5.4. : The nondimensional lift force on simple drop and compound drop with

various positions z/Lz ≤ 0.5 and varying radii ratio k = 0.4 − 0.6. The hydraulic

Reynolds number is 9.6. The simple drop viscosity and outer drop viscosities are

varied as µnew/µold = [1/2, 1, 2]. The filled in markers imply extrapolation.

This also implies that the inner and outer interfaces have similar interfacial tension

coefficients. With this in mind, we look at the lift force profiles when the outer drop

viscosity is decreased or increased. The results are contrasted against simple drop

whose viscosity also is decreased or increased, as shown in Fig. 5.4. The viscosity

change in the outer drop affects the lift force far less than a change in the radii ratio.

Hence, the geometry of the compound drop is a far greater factor in determining the

lift force than the viscosity ratio between the phases. Interestingly, the lift force in

the inner region of the channel is at the highest when all the phases have the same

viscosities. This fact is very pronounced in the compound drops, while not so evident

in the simple drop.
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5.2.3 Discussion on Stable Compound Drop Control Design

We’ve shown in Fig. 5.3 that higher k results in higher lift force. This aids in

lift-force-based separation and hence is desirable, but we’ve also shown that higher k

is more likely to lead to breakup. For a compound drop control scheme to be useful,

breakup must be delayed.

In a previous publication, we’ve shown that compound drops in simple shear

flow can either stabilize (with the inner drop moving towards the center of the outer

drop) or destabilize (with the inner drop moving towards the periphery of the outer

drop) depending on the capillary number. The bifurcation occurs at Cao ∼ 0.2

and Cai ∼ 0.2, with higher Ca (and hence higher deformation) corresponding to

stabilization.

The relevance of simple shear result is that the breakup dynamics can be controlled

through manipulating Ca. The capillary number in a simple shear flow is defined in

terms of the shear gradient across the compound drop, and does not directly translate

to how it is defined in this work. However, the same Taylor deformation number gives

a good measure of comparison [62]. Taylor deformation number can be calculated

from the aspect ratio of drop, which in turn can be calculated from the second moment

of inertia tensor for small deformations [60,61].

The capillary number of the inner and outer drops are changed by decreasing the

interfacial tension coefficient of the inner and outer interfaces by up to 8 times as

shown in Fig. 5.5. The deformation of the outer drop reaches a value that results in

stabilization in simple shear flow at 4× Caold = 0.4, and easily exceeds it near the

wall with 8× Caold = 0.8. The stabilization of the inner drop in pressure driven flow,

despite such large deformations, is not as pronounced as it is in simple shear flow. The

inner drop remains eccentric, although the eccentricity does not increase with time.

Nonetheless, increasing Ca results in larger distance between the interfaces, thereby

stabilizing the compound drop. Moreover, the lift force profile in the near-centerline

region of the channel is hardly affected. Changing Ca hence provides an effective
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Figure 5.5. : (Left): The nondimensional minimum distance between inner and

outer interfaces with varying Cao with k = 0.6 and (right): the corresponding lift

force profile.
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way of stabilizing compound drops as they are being sorted by difference in lateral

lift force, while not significantly altering the lift force difference that exists in the

near-centerline region due to difference in k.

5.2.4 Discussion on the Origin of the Lift Force

There are a few known contributions to the lateral lift force. These contributions

are particularly well known for a small spherical particle. Namely, the Magnus force

and the Saffman force are well documented. In a finite domain, the wall-induced lift

force plays a key role when a particle or a drop is in the vicinity of a channel wall.

For a deformable drop, the deformation also acts to influence the lift force. Finally,

the curvature of the undisturbed fluid velocity also manifests as the shear gradient lift

force, which acts to push the particles or drops towards the walls [78].

In this subsection, we aim to focus on the qualitative contribution of the deformation

induced lift force, Magnus force, and Saffman force so as to discuss why the lift force

profile of compound drops are different than that of a simple drop.

Deformation Induced Lift Force

When compared against a nondeforming particle, a deformation induces a lift force

towards the center of the channel [78]. When we look at the Taylor deformation of

the simple drop and outer drops as shown in Fig. 5.6, we see that the deformation

is smaller the larger the inner drop, except for the near-centerline region. Since the

near-centerline region relies on extrapolated from the not fully converged PI controller,

we will focus more in the range 0.3 < z/Lz < 0.4. In this region, the lift force is

higher the larger the radii ratio. This trend, which is the opposite of what is expected,

suggests that deformation induced lift force is not a major contributor to the difference

in the lift force profile of compound drops.

Furthermore, when we look at the deformations with varying viscosities as shown in

Fig. 5.7, the suggestion that deformation induced lift force is not a major contributor
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Figure 5.6. : The nondimensional simple drop or outer drop Taylor deformation of

a simple drop or compound drops with varying radii ratio. The filled markers imply

extrapolated deformation.
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Figure 5.7. : The nondimensional Taylor deformation of a simple drop and com-

pound drops with varying radii ratio. The viscosities of simple drop or outer drop

are varied as µnew/µold = [1/2, 1, 2]. The filled markers imply extrapolated deforma-

tion.

is strengthened. The lower the outer drop viscosity, the lower the deformation, which

is in agreement with Taylor [62] and Li et al. [79]. But as previously shown in Fig. 5.4,

the lift force profile is at its maximum when the viscosities are equal across the phases.

Magnus Force and Saffman Lift Force

The Magnus lift force that acts upon a small spherical particle of diameter a with

angular velocity ~Ω in a fluid of density ρf is given by [78]

FMagnus =
1

8
πa3ρf (~uf − ~up)× ~Ω (5.2)
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Figure 5.8. : The nondimensional slip velocity, effective shear rate, and rotation

rate of the simple and compound drops.

where ~uf is the fluid velocity and ~up is the particle velocity. To apply this functional

form to the flow at hand, we first take that a = 2Ro, and find ~uf by taking a flow-

direction projection average of the background fluid. The projection average is taken

over the flow-direction projected area of the compound drop. This is done to closely

approximate the centerline streamline velocity of the compound drop, which does not

have an infinitesimal size. The particle velocity ~up is taken as the volume average of

the velocity inside the compound drop. Finally, ~Ω is taken as the volume average of

the vorticity inside the compound drop.

The Saffman lift force for a simple shear flow is given by

FSaffman = 6.46a2
√
ρGµ(uf − up) (5.3)

where G is the local shear rate [53,80]. To apply this functional form to the flow at

hand, G is taken as the flow-direction projection average of du/dz. Upon applying the

aforementioned steps to the flows at hand, we obtain the non-dimensional slip velocity

(uf − up)/U , the nondimensional effective shear rate du
dz
/ U

2Ro
, and nondimensional

rotation rate Ω/ U
2Ro

as shown in Fig. 5.8. Using those values, we can also compute the

Magnus lift force and Saffman lift force as shown in nondimensional form in Fig. 5.9.

The lift profiles are not in a good agreement with Fig. 5.3. This is not too surprising

since the functional forms of the Magnus force and Saffman force used are derived for
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Figure 5.9. : Magnus force and Saffman lift force, calculated based on Fig. 5.8
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a point spherical particle, and also because the Saffman force result assumes a simple

shear gradient. Instead, we focus on the differences that arise between a simple drop

and compound drops.

The difference in the lift force between a simple drop and a compound drop,

as shown in Fig. 5.10, shows a qualitatively matching trend between the actually

measured values and those computed from the Magnus and Saffman forces. However,

the contributions to the difference in lift force arising from Magnus and Saffman forces

are increased by 25 times in Fig. 5.10. The constant 25 is arbitrarily chosen so that the

difference in the lift forces between the two methods match in in the near-centerline

region of the channel. Since the functional forms for the Magnus and Saffman forces

are derived for a point spherical particle, we are more interested in finding a qualitative

functional relationship that explains where the lift force difference between simple and

compound drop arises, rather than the exact quantitative form. Furthermore, since

we do not consider the wall-induced lift force, which dominates in the near-wall region,

comparing the lift force from the different approaches near the wall does not make

sense. From these comparisons, while we cannot conclusively determine the coefficient

at play that determines the lift force, we can see that the drop slip velocity, effective

shear rate, and drop rotation rate play important roles in differentiating the lift force

profiles of compound drops from that of a simple drop.

Limitation of the Current Lift Force Model

While this method of predicting the lift force difference works well in the inner

region of the channel, we see that the near-wall region scaling is not as good. As

previously mentioned, this is not surprising since we did not account for the wall-

induced lift force.

Another limitation of this scaling method is that it does not predict the lift force

difference well when the outer drop (or simple drop) viscosity changes. Namely, we’ve

previously shown that the lift force of compound drops in the inner region (i.e. away
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Figure 5.10. : Lift force difference between simple drop and compound drops. The

simple drop lift force is taken as baseline and the difference to compound drop lift

is shown, based on (left): the measurement (Fig. 5.3) and (right): The Magnus and

Saffman forces combined (Fig. 5.9.)
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Figure 5.11. : The non-dimensional slip velocity over simple and compound drops

with varying radii ratio and varying viscosities. The viscosities of simple drop or

outer drop are varied as µnew/µold = [1/2, 1, 2].

from near-wall region) is less if the viscosity of the outer drop is either decreased

or increased. This is not the trend that the Magnus and Saffman force calculations

predict. The calculations instead predict that the lift force of equal viscosity system to

lie between the lower and higher viscosity cases. This prediction is greatly influenced

by the slip velocity changes with varying viscosities, as shown in Fig. 5.11.

We see that there is a monotonic relation between the viscosity of the outer drop

(or simple drop) with the slip velocity. Since both Magnus force and Saffman force

vary linearly with the slip velocity, their calculations yield results that do not agree

well with what is found through the PI controller. There exists additional scaling with

viscosity change that is currently unknown.
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6. SUMMARY

We numerically investigated the temporal evolution of eccentric compound droplets

subject to a simple shear flow with equal viscosities and densities in all phases. When

the eccentricity is confined within the plane of shear, a “revolving” motion is observed

for the inner droplet. Throughout the revolving motion, the inner droplet orbits about

and slowly migrates away from the center of the outer droplet until only a thin film

of liquid remains between the inner and outer interfaces, at which point the inner

droplet revolves about the periphery of the outer interface in a limit cycle behavior.

When the eccentricity is normal to the plane of shear, a “drifting” motion is observed,

where the inner drop moves perpendicularly to the plane of shear, slowly increasing

the eccentricity. The time scale relevant to the drifting motion is similar to that of

the outward motion in the revolving motion.

Revolving and drifting motions increase the eccentricity of the compound droplet

when Re ≤ 5, Cao ≤ 0.1 and Cai < 0.1, and are not affected by k in the range 0.4-0.6.

Because simple shear flows are ubiquitous and easy to reproduce, and because they

form the basis of linearized analysis of more complicated flows, this research sheds a

new light into understanding the temporal evolution and eccentric breakup mechanism

of compound droplets.

We also numerically investigated the temporal dynamics of concentric compound

drop migration into several equilibrium configurations within a pressure-driven rectan-

gular channel with Re = O(1) and Ca = O(0.1). Three equilibria - centerlined, pair

vortex (inner), and pair vortex (outer) - are sensitive to initial placement, whereas the

single vortex equilibrium is preferred given a general initial placement without explicit

symmetry about the channel. In all equilibria except the centerlined equilibrium, the

streamlines inside the outer drop encircles the inner drop. The placement or the size of
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the inner drop in the either pair vortex equilibrium has little effect on the equilibrium

position or deformation of the outer drop.

When the compound drop is too large compared to the channel, or when the aspect

ratio of the channel is uniform, single vortex equilibrium disappears and pair vortex

(outer) is preferred. Additionally, given a large enough compound drop relative to the

rectangular channel, the wall effect dictates that the placement of the outer drop is

centered in the channel while the inner drop can be placed eccentrically.

While there were some differences in the compound drop placements when the

radii ratio was changed, the difference was small. To better aid in sorting of compound

drops depending on the radii ratio, we looked at the lift force profile at various

positions along the channel. The lift force profile showed a distinct difference between

a compound drop and a simple drop, and also among compound drops with different

radii ratio. This difference was much larger than the difference that results from

changing the viscosity of the outer drop, which suggests a large application window.

Further, we discussed the possible origin of the lift force difference between compound

drop and simple drop, and showed that the functional forms of Magnus force and

Saffman force give a good qualitative agreement, but also showed that there is an

additional scaling due to viscosity change that is not yet understood.

Being able to predict the migration dynamics and the final configurations of com-

pound drops in a pressure-driven channel has many different immediate applications

such as in flow-focusing devices, sorting of compound drops, and in creating compound

drops with predetermined geometry. Additionally, understanding the flow field inside

the compound drop at the equilibrium configurations is important in extending the

knowledge in predicting the dynamics of compound drops with multiple inner drops,

or in predicting possible equilibria of triple - or higher - emulsions.
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