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ABSTRACT 

Heat transfer and solidification models were developed for use in a numerical model of a 

continuous caster to provide a means of predicting how the developing shell would react under 

variable operating conditions. Measurement data of the operating conditions leading up to a 

breakout occurrence were provided by an industrial collaborator and were used to define the model 

boundary conditions. Steady-state and transient simulations were conducted, using boundary 

conditions defined from time-averaged measurement data. The predicted shell profiles 

demonstrated good agreement with thickness measurements of a breakout shell segment – 

recovered from the quarter-width location. Further examination of the results with measurement 

data suggests pseudo-steady assumption may be inadequate for modeling shell and flow field 

transition period following sudden changes in casting speed. An adaptive mesh refinement 

procedure was established to increase refinement in areas of predicted shell growth and to remove 

excess refinement from regions containing only liquid. A control algorithm was developed and 

employed to automate the refinement procedure in a proof-of-concept simulation. The use of 

adaptive mesh refinement was found to decrease the total simulation time by approximately 11% 

from the control simulation – using a static mesh. 
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 INTRODUCTION 

Continuous casting (CC) is a critical part of the modern steel industry – accounting for roughly 

95% of the world’s steel production [1]. CC is the process by which molten metals are cast in an 

open-bottomed mold, so as to produce a continuous strand of semi-finished products; such as slabs, 

billets, and blooms. The general process and key features are depicted in Figure 1.1 for reference. 

 

Figure 1.1. Diagram overview, and key features, of the CC process [2]. 

1.1 An Overview of Continuous Casting 

As with other casting processes, CC begins after a supply of metal has been heated to a liquid state. 

The molten metal will then be transferred to a large container lined with an insulating refractory 

material, known as a ladle. The ladle provides a means of storing the material in a molten state 

during transport. Once the ladle has been transported to an operating caster – either by overhead 

crane or by railcar – it will then be moved into position to allow for its contents to drain into an 

intermediate reservoir, known as a tundish; which is located directly above one or more casters. 
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The tundish – which is also refractory-lined – can vary in shape, size, and complexity, depending 

on the casting system it is responsible for feeding, as well as the filtration and flow-control systems 

it implements. The primary function of a tundish is to provide a continuous and consistent flow of 

molten metal to the caster during operation. The liquid metal flows through the tundish and is 

drained through a relatively small opening located at the base of the tundish, called the upper-

tundish nozzle (UTN). After a ladle has drained all of its contents into the tundish, a ladle exchange 

can be performed so that a new batch can continue the supply of the molten metal to the tundish. 

The interchange of ladles at the tundish, along with a flow regulating device at the UTN, allows 

for a continuous and consistent flow of the liquid metal into the mold. 

 

As the liquid steel moves past the UTN, it continues through a shrouded channel-way that is 

formed of packed refractory, called the submerged entry nozzle (SEN). The SEN is commonly 

cylindrical in shape, and extends vertically downwards from the base of the tundish into the open-

top of the mold. A set of port-openings at the base of the SEN eject the molten steel into the copper 

mold. 

 

In continuous slab casters, the mold takes the form of a rectangular volume that extends vertically 

downwards, and is open at the top and bottom. The surfaces of the mold are referred to as the 

narrow face (NF) and broad face (BF). These copper surfaces of the mold are water-cooled, and 

rapidly extract heat from the melt, causing an encasing shell to solidify along the perimeter of the 

mold. One commonality of modern casters would be the ability to alter the positioning of the mold 

surfaces in a precise manner. This provides a means for controlling the dimensions of the encasing 

shell exiting the mold, as well as final cross-sectional dimensions of the fully solidified slab. 

 

Slab casters frequently employ an SEN having two main side ports that redirect the flow 

horizontally-outwards, moving parallel with the BF surfaces. The flow streams exiting these ports 

act as liquid jets, which regularly impinge on the developing shell along the NF and causing it to 

re-melt. Due to the relatively shallow thickness of slab casters, the majority of the liquid impinging 

on the NF will be redirected to flow either down along the newly forming shell, or up towards the 

top of the mold, as shown in Figure 1.2. The stream flowing upwards will quickly change 

directions to flow back towards the SEN along the top surface of the liquid steel, referred to as the 
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meniscus. As the flow stream approaches the SEN it will then change directions again, this time 

moving downwards, until it returns to the jet exiting the port, where it will then begin the cycle 

anew. As this flow pattern progressively builds up speed it will generate an area of relatively-low 

pressure at its center, causing it to retract inwards until it resembles a circle, known as a roll pattern. 

In somewhat of a similar manner, impingement flow that is instead directed downwards will 

continue on until buoyancy overcomes its momentum and causes the stream to circulate back 

upwards, at the center of the slab, where it will then meet back up with the jet. This double-roll 

pattern promotes a thorough distribution of the heat-energy within the mold, and mitigates the 

potential for stagnant conditions at the meniscus [3]. 

 

Figure 1.2. Schematic of physical phenomena in the mold region of a steel slab caster [4]. 



 

 

19 

As the mold represents the initial stage in the cooling process of the caster, it is referred to as the 

primary cooling (PC) section of CC. After the slab exits through the base of the mold the shell is 

still in a malleable state, and would naturally deform under the ferrostatic pressure of the molten 

core, if left alone. To preserve the rectangular profile of the shell, a series of hydraulic rollers 

compress the shell back towards its original shape from all four sides. The solidification process 

progresses as the heat extraction is continued beyond the mold by means of convective exchange, 

via spray-cooling, in the secondary cooling (SC) section of the caster. The spray nozzles are 

interspersed between each pair of rollers, and provide a more gradual rate of heat extraction 

through the shell so that the remaining liquid core of the strand can solidify at an optimal rate.  

 

In curved-type CC, the rolls compressing the strand through the SC section will gradually redirect 

the strand from a vertical to a horizontal orientation. For general curved-slab casters, this transition 

should complete prior to the metallurgical length of the strand – the point at which the core fully 

solidifies. After the strand has passed through the curved section of the SC region, it must then go 

through an unbending process, in which a series of the closely-spaced rollers, along the top and 

bottom-surfaces, are used to forcefully straighten the strand. Finally, while the strand is still 

relatively hot, a cutting-torch system will translate along with the strand as it separates the end 

segment of the strand with a vertical cut across its width. The detached section of the strand is 

referred to as a slab, and can then be carried away for storage or further treatment. 

1.2 Motivations and Objectives 

As technology advances, the design and operation of CC’s are continuously being modernized so 

to optimize each process involved in order to increase product yield while reducing operational 

costs. However, the current industry still experiences significant losses due to product defects 

originating from the PC and SC sections of the CC. While some of these defects can be attributed 

to factors occurring between the process equipment and the external surface of the shell, a large 

percentage are believe to originate along the solidification front. 

 

A better understanding of the complex phenomena occurring along the solidification front in a CC 

process is a fundamental necessity for reliably evaluating whether specific casting conditions 

inherently influence defect generation rates. A representation of various phenomena known to 
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contribute to these defects are indicated in Figure 1.2. However, analyzing these parameters 

presents a difficult challenge. Due to the intrinsic nature of the casting process, engineers are 

restricted in their ability to obtain accurate measurements of the shell development during casting 

operations. Plant experiments are impractical, limited in high temperature environments, and 

expensive as they will negatively influence casting procedures. Additionally, full-scale physical 

models, while not as costly as plant trials, can still be excessive and do not always effectively 

integrate all parameters and design considerations. 

 

With the advent of computational fluid dynamics (CFD), the feasibility of conducting large-scale 

numerical simulations for studying complex systems has significantly improved, as increasingly-

advanced computer technology became readily available. CFD presents a practical method of 

analyzing various casting phenomena with a relatively-low cost. Since the earliest attempts to 

computationally simulate a CC, CFD models of the molten steel flow field, heat transfer between 

the shell and the mold, as well as solidification and shell development models have aided in 

attempts to better-understand how different operating conditions will influence the final quality of 

the product. However, it was necessary for a large portion of these models to be simplified due to 

the relatively high computational costs involved with the simulations, and the limited computation 

resources available. 

1.2.1 Heat Transfer and Solidification Model 

In CC, the solidification process involves a variety of different physical phenomena that must be 

regulated in order to manage the overall quality of the product. Two of the more prominent factors 

leading to decreased product quality would include particle inclusions – largely entailing slag, flux 

powder or argon gas – along the solidification front, and surface defects; such as oscillation marks 

and various surface cracks [5]–[7]. Although advances in technology have aided in reducing the 

impact of these factors during production, they remain a constant threat in CC. Aside from altering 

the material composition of the product or improving upon equipment or operating practices 

upstream of the caster, regulation of the heat transfer, as well as the introduction of impurities 

during the solidification process are the two principal contributors instigating these defects. 
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The primary cooling section of a continuous caster exists for the purpose of initiating solidification, 

and to generate an external shell casing that is structurally capable of retaining the molten core, 

while heat is continuously extracted at a more appropriate rate for managing the effects of thermal 

stresses. Due to the high temperature of the molten steel, it is necessary for the initial shell growth 

to develop rapidly in order to extend the service life of the mold by reducing the thermal loading 

conditions it experiences. This requires a relatively higher rate of heat extraction to be utilized 

during the initial shell development, which progressively decreases along the length of the mold; 

and further still, as the shell becomes structurally capable of retaining its molten core and enters 

the secondary cooling section of the caster. 

 

To replicate the high rate of heat extraction through the mold surfaces in numerical models a heat 

flux profile (HFP) can be assigned to represent the thermal boundary condition (BC) along these 

surfaces in the simulated domain. One common practice for defining a HFP that is quantifiably 

similar to what would be expected to exist along the mold surfaces, involves employing the 

Savage-Pritchard (S-P) heat flux correlation [8]–[12]. Typically, this approach would entail using 

known casting conditions to solve for two coefficients from the relation, so that the HFP might be 

more representative of the observed casting conditions. This approach is widely viewed as a 

relatively simplistic method of approximating the heat extraction through the mold. As such, it 

generally assumes that the magnitude of the HFP will remain constant across the width of the 

surface. 

 

As discussed by Cai and Zhu, the solidified shell of steel will retract inwards, away from the mold 

surfaces, as it progresses through the mold [13]. This effect occurs as a result of the relative 

decrease in density that results from continued cooling, and it is known to be more prominent near 

the corners of the mold. When the shell retracts from the mold surfaces in this manner, radiation 

becomes the dominant form of heat transfer, while conductive heat transfer decreases significantly. 

An example of the interfacial gap development at the mold corner can be seen in Figure 1.3, where 

a noticeable gap was shown to develop over a distance of 400 mm. 
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Figure 1.3. Section views (from above) of the corner-gap development between the mold 

and shell surfaces, at depths of (a) 100 mm and (b) 500 mm below the meniscus [13]. 

The influence of this increased interfacial gap in the mold corners was previously identified by 

B.G. Thomas et al. [8], and was later reproduced by others [9], [12]. However, it was B.G. Thomas 

et al. that proposed a scaling factor that could be used to decrease the magnitude of the heat flux 

(HF) when within a specified offset-distance of 31 mm from the corner of each surface. This 

approach has been shown to mitigate the low surface temperatures that would otherwise result 

along the corners of the simulated shell. 

 

Another area of interest involves the interface between the molten steel and the solidified shell 

formation, where the solidification process occurs. Commonly referred to as the mushy zone (MZ), 

this region plays an important role in the superheat extraction from the molten core [14]–[21]. 

Differing thermodynamic equilibrium solubility of the alloy elements, in conjunction with 

variations in the HF with time and relative solute concentration levels, can ultimately result in 

segregation. Segregation of the solute formation exists on both micro- and macroscopic scales, and 

can ultimately give rise to cracks and other problems during the cooling process [22]. 

 

Furthermore, the crystal growth is strongly influenced by the thermal and momentum exchange 

with the internal flow field of molten steel. The jets protruding from the SEN ports are a significant 

source of thermal and turbulent energy, and will overcome the local rate of heat extraction through 

the shell – causing the solidification process to be reversed at locations of impingement. Thus, the 
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prediction of the conjugate heat transfer phenomena occurring within the MZ remains a complex 

and substantial undertaking due to variations in the flow field and HF at any given location. 

Validating a Solidification Model 

The process of validating a CFD model involves the arrangement of the various parameters – 

contributing to each of the physics models being applied – in a manner such that the behavior of 

the system being modeled can be calibrated in-fitting with known conditions. Upon its validation, 

a model can then be acknowledged as a reliable means of replicating, or possibly even predicting, 

certain physical phenomena that may occur within the bounds of the simulated domain, and the 

capabilities of the physics models employed. However, as it is customary for a CFD model to be 

calibrated against measurement data portraying distinctive characteristics of the flow field, it is 

not always possible for such measurements to be acquired. In this regard, the environmental 

conditions of an operating caster are prohibitive of equipment which might be used to gauge the 

solidifying shell throughout its development. Hence, the current methods of validating a CFD 

model developed to mimic the solidification process within a CC are not numerous. 

 

As obtaining measurements of the shell growth during operation is rarely a sensible option, it can 

be reasoned that the next best option would be to measure the shell development when the CC is 

not operating. However, this approach is also restrictive in that it is only possible following the 

rare-occurrence of a shell breakout during operation. A breakout is a phenomenon that occurs as a 

result of improper cooling that ultimately leads to a section of the shell is unable to sufficiently 

develop to the extent that it is structurally capable of retaining the molten core prior to exiting the 

mold. In these situations, as the shell is permitted to bulge outwards near the base of the mold, the 

ferro static pressure causes the vulnerable portion of the shell to stretch beyond its structural limits. 

The weakened section continues to expand until a rupture forms, and the molten core begins to 

drain through the newly-formed opening. 

 

The fluidity of the liquid steel exiting the side of the strand allows it to flow unrestrained through 

the structure of the caster. As the steel progresses, both the equipment mounted within the structure 

of the caster, as well as the structure itself, could potentially be damaged from exposure to the 

extreme temperature of the molten steel. Further, all of the steel that drains from the strand will 
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eventually solidify – potentially encasing or clogging the surrounding equipment and structures. 

Consequently, it is common practice for casting operations to be halted immediately after a 

breakout is identified. 

 

The fluidity of the liquid steel exiting the side of the strand allows it to flow unrestrained through 

the surrounding environment. Damage to the surrounding equipment and structure of the caster 

can result from exposure to the extreme temperature of the molten steel, or by becoming clogged 

or encased by the solidified metal. In addition to any losses resulting from equipment or structural 

damages, the time necessary to bring a caster back up to operation following a breakout is 

equivalent to lost production time. Therefore, it is standard practice for the casting operation to be 

halted as quickly as possible after a breakout has been identified, in order to minimize losses. 

 

The flow of molten steel from the tundish is cutoff when the casting operation is stopped. With no 

additional steel being injected into the mold, remaining molten steel will drain through the 

breakout – leaving a hollow section of the shell extending from the base of the opening in the side 

of the strand up into the mold. Although continued cooling during the draining process would alter 

the profile of the shell growth in the unfinished segment of the strand, the final shape can still be 

considered to represent the relative thickness of the shell development that existed in the moments 

leading up to the breakout occurrence. 

 

Should it be possible for the husk of the strand to be recovered from the mold successfully, then 

measurements taken of the shell can be used as the basis from which to compare the simulation 

results. By probing the simulation results of the predicted shell growth at the approximate locations 

within the mold where each respective measurement was taken, a comparison between the 

predicted and measured shell thickness will reveal whether the model is under or over predicting 

the shell growth. Adjustments can then be made to the appropriate physics model parameters in 

order to calibrate the model as required. 

1.2.2 Adaptive Mesh Refinement 

Through the end of the 20th century and up to the present, significant progress has been made in 

overcoming these limitations through the development of numerical models capable of accurately 
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replicating the behavior of targeted phenomena that occur during the casting process. Continual 

revisions to these models have produced notable results, though these approaches have primarily 

implemented predefined mesh representations of a system for the simulation. The mesh utilized in 

any numerical simulation directly influences the results the model will produce. Construction of 

an inadequate mesh may yield insufficient refinement for capturing desired aspects of a system, 

and is likely to generate large areas of needless refinement. However, developing an appropriate 

mesh capable of replicating the complex behavior of a system requires, not only significant 

consideration of various factors involved in the construction of the mesh, but also of the physics 

being modeled, and the solvers to be utilized in evaluating the system. As a result, the process of 

developing a suitable mesh for a complex system may require days, weeks, or even months of 

testing to ensure that the solution will not be limited by the mesh. 

 

The high rate of heat extraction occurring in the PC section of a CC, along with the conductive 

properties of solidified steel, generate a steep temperature gradient within the shell. This effect has 

been verified in numerous studies, and can be observed in the three-dimensional (3D) 

representation of the predicted temperature-profile shown in Figure 1.4. Therefore, it is necessary 

for an increased level of refinement to be applied along both the BF and NF surfaces of the domain 

in order to adequately resolve the temperature profile. 

 

Another area of interest involves time-varying casting conditions. When conducting numerical 

studies of a CC, it is often convenient to assume the BC to be constant throughout a study. This a 

valid approach when attempting to replicate conditions and phenomena existing in the caster while 

the system is operating under relatively steady conditions. However, casting conditions do vary 

during operation. Depending on the CC and degree of change in the relative casting conditions, 

the numerical results may not be representative of the actual conditions. Some examples of the 

variations in the operating conditions that can be expected to occur during a cast would include: 

adjustments to the casting speed, the increased superheat after a ladle-change, modifications to the 

mold oscillation frequency, changing flux powders, as well as switching the alloy being cast. Each 

of these scenarios can be expected to influence either the flow field or the shell development, if 

not both, within the PC section. 
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Figure 1.4. 3D-representation of the temperature profile numerically-determined 

to exist along a strand center plane [23]. 

Depending on the circumstances considered, it may be necessary for the numerical models to 

simulate the operating conditions through time in order to capture any phenomena that could be 

resulting. Under these circumstances, it would be possible for the simulated shell growth to vary 

in both shape and thickness, in accordance with the active conditions. To account for potential 

variations in the predicted shell thickness, the applied mesh refinement would need to be sufficient 

for all of the operating conditions. The use of common methods of applying mesh refinement to 

blocked-regions would potentially result in large quantities of unnecessary refinement throughout 

the simulation. Alternatively, more modern methods of applying refinement to regions enclosed 

within specified reference geometries, allow for the profile of the applied refinement to more-

closely follow that of the simulated shell. However, this method poses a similar issue, as the profile 

of refinement would effectively be ‘fit’ to specific operating conditions; and therefore, may be 

inappropriate for resolving the shell profile under alternate conditions. 
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1.2.3 Research Objectives 

One objective of the enclosed work involved the development of a numerical model using the 

Simcenter™ STAR-CCM+™ software, while implementing the Eulerian multiphase, volume of 

fluid (VOF), and Melting-Solidification models for both steady-state and transient simulations. 

The model was developed for the purpose of replicating the solidification of molten steel within a 

CC, and is intended for use in future research directed towards better-understanding casting 

phenomena relating to the shell development, and which are believed to contribute to defect-

generation in steel slab production. Casting conditions and measurement data – provided by an 

industrial collaborator (IC) – were employed in defining the BC, as well as for the model 

validation. 

 

Additional consideration was given towards the potential benefits that might be observed by 

incorporating an adaptive mesh refinement (AMR) procedure during the simulation of the 

aforementioned solidification model. A control algorithm (CA) was developed and incorporated 

into a simulation macro, using the JAVA software language, in order to manage the AMR 

operations during the execution of both steady-state and transient simulations of a continuous 

caster. Methodology and procedures for evaluating the active mesh against the current simulation 

results were established and defined in the CA. These AMR criteria tests (AMR-CT) were 

configured to provide increased refinement in areas containing shell growth while minimizing the 

overall cell count to reduce the total computational costs of the simulation. A proof-of-concept 

(POC) test case was developed using a simplified domain to verify the feasibility of utilizing AMR 

in a full-scale CC simulation. 
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 MODELS AND METHODOLOGY 

The work presented in this study was conducted in parallel with on-going research dedicated 

towards the development of a comprehensive numerical model of a CC. Due to the complex nature 

of the physical phenomena occurring in a CC system, the process of developing a new CC model 

was divided into a sequence of stages. This approach was intended to provide a means of 

incorporating and validating the various physics models individually to allow for issues relating to 

any one model to be isolated and resolved separately; rather than simultaneously. 

2.1 Methodology 

The heat transfer and solidification models discussed were developed to replicate the solidification 

of steel in a CC system. These models built on previous work, from which an isothermal flow 

model – for simulating the flow field of molten steel in a CC – were developed and validated 

against measurement data referenced from literature, using the STAR-CCM+ simulation software 

[24]. While the validated model pertained to a multiphase simulation of liquid steel and argon gas, 

it was believed that the effects of argon gas on the development of the solidifying shell in a CC 

would be negligible. Therefore, in order to reduce the computational costs of the simulations, argon 

gas was not considered during the initial validation of the heat transfer and solidification models 

outlined in this study. 

2.1.1 Selection of Simulation Software 

Although the previous isothermal-flow model had been developed using STAR-CCM+, 

consideration was also given towards utilizing the ANSYS® Fluent® software for simulating heat-

transfer and solidification in a CC. A comparison of the solidification physics-models provided by 

each software package revealed that STAR-CCM+ presented greater flexibility in terms of the 

available parameters and additional models that could be utilized. In addition, the ANSYS 

solidification model was only found to permit the material solid-fraction to be interpreted as a 

linear relation with temperature. 
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Although the solid-fraction curve was treated to be linear in the discussed simulations, one of the 

future objectives of the encompassing project involves incorporating accurate temperature-

dependent material properties – such as the solid-fraction curve – for the specific grade of steel 

being simulated. This objective is intended to permit future studies to consider how alternate alloys 

might behave under similar casting conditions. As such, the ability to define the solid-fraction 

curve as a non-linear function of temperature, using STAR-CCM+, was believed to align more 

with the overall project-scope. 

 

Additionally, the licensing options available for STAR-CCM+ were found to be less restrictive in 

terms of the number of simulations that could be conducted at one time, as well as the number of 

processors that could be utilized to conduct a single simulation. Finally, the meshing algorithms 

employed in STAR-CCM+ were found to be more robust in terms of the types and capabilities of 

the meshing-schemes available. Although additional factors had also been considered in the 

comparison of these software packages, the examples discussed were deemed to hold more 

significance in the final selection. 

2.1.2 Heat Transfer and Solidification Model 

A computational model was developed to conduct steady-state and transient simulations of the 

solidification of steel within a half-mold domain. While the material properties of steel would 

naturally vary with temperature, and the local composition; for the purposes of the initial model 

development discussed in this study, the material properties of the simulated steel were assumed 

to be similar to the constant properties previously modeled by Pfeiler [25]. The behavior of the 

molten steel is modeled using the Eulerian Multiphase VOF, the Segregated Flow and the 

Segregated Multiphase Temperature models. The governing equations of the system for mass, 

momentum and energy conservation are given, respectively as; 

∂

∂𝑡
(∫ 𝜌 𝑑𝑉

𝑉

) + ∮ 𝜌𝐮 ∙ 𝑑𝐀𝑓
𝐴

= 0 (2. 1) 
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𝜕

𝜕𝑡
(∫ 𝜌𝐮 𝑑𝑉

𝑉

) + ∮ 𝜌𝐮⨂𝐮 ∙ 𝑑𝐀𝑓
𝐴

=                                                                                   

                  −∮ 𝑝𝐈 ∙ 𝑑𝐀𝑓 +

𝐴

∮ 𝚿 ∙ 𝑑𝐀𝑓 +

𝐴

∫ 𝜌𝐠 𝑑𝑉

𝑉

+ ∫ 𝐟𝑏 𝑑𝑉

𝑉

−∑∫ 𝛼𝑖𝜌𝑖𝐮𝑑,𝑖⨂𝐮𝑑,𝑖 ∙ 𝑑𝐀𝑓
𝐴𝑖

(2. 2)

 

𝜕

𝜕𝑡
(∫ 𝜌𝐸 𝑑𝑉

𝑉

) + ∮ [𝜌𝐻𝐮 + 𝑝 +∑𝛼𝑖𝜌𝑖𝐻𝑖𝐮𝑑,𝑖
𝑖

] ∙ 𝑑𝐀𝑓
𝐴

=                                          

                                                                  −∮ 𝐪′′ ∙ 𝑑𝐀𝑓 +

𝐴

∮ 𝚿 ∙ 𝐮 𝑑𝐀𝑓
𝐴

+ ∫ 𝐟𝑏 ∙ 𝐮 𝑑𝑉

𝑉

(2. 3)

 

Here, p is the pressure, I is the unity tensor, 𝚿 is the stress tensor, vector fb represents all body 

forces, 𝐪′′ is the HF vector, and H and E are the total enthalpy and energy, respectively. The 

volume fraction and diffusion velocity of each phase are depicted by 𝛼𝑖 and 𝐮𝑑,𝑖, respectively. The 

diffusion velocity of the phase is defined as: 

𝐮𝑑,𝑖 = 𝐮𝑖 − 𝐮𝑚𝑖𝑥 

where 𝐮𝑖 and 𝐮𝑚𝑖𝑥 designate the velocity vectors of the phase and the mixture, respectively, and 

𝐀𝑓  signifies the cell face area vector. The resultant relation is equivalent to the vector 

representation of the relative velocity of the considered phase with respect to the overall velocity 

of the mixture in each cell. 

 

The turbulence was evaluated using the k-omega (k-ω) shear stress transport (SST) model. This 

model resembles the standard two-equation k-epsilon (k-ε) model for unsteady Reynolds averaged 

Navier-Stokes (RANS) simulations; however, it implements different near-wall treatment with 

blending functions, thereby providing better performance in predicting flows with adverse pressure 

gradients and separation [26]. The k-ω turbulence equations utilized are of the forms: 

𝜕

𝜕𝑡
(𝜌𝑘) + 𝛁 ∙ (𝜌𝑘�̅�) = 𝛁 ∙ [(𝜇 + 𝜎𝑘𝜇𝑡)𝛁𝑘] + 𝜉𝑘 − 𝜌𝛽

∗𝜙𝛽∗(𝜔𝑘 − 𝜔0𝑘0) (2. 4) 

𝜕

𝜕𝑡
(𝜌𝜔) + 𝛁 ∙ (𝜌𝜔�̅�) = 𝛁 ∙ [(𝜇 + 𝜎𝜔𝜇𝑡)𝛁𝜔] + 𝜉𝜔 − 𝜌𝛽𝜙𝛽(𝜔

2 − 𝜔0
2) (2. 5) 
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and are evaluated simultaneously to obtain the values of the turbulent kinetic energy, 𝑘, and the 

specific dissipation rate, 𝜔, in order to solve for the turbulent eddy viscosity as: 

𝜇𝑡 = 𝜌𝑘𝜏 (2. 6) 

where 𝜏 represents the turbulent time scale. 

 

To account for the additional latent heat being extracted during the solidification process, ℎ𝑓𝑢𝑠𝑖𝑜𝑛, 

an additional set of calculations are performed in order to correct the enthalpy term, such that; 

ℎ𝑙𝑠
∗ = ℎ𝑙𝑠 + (1 − 𝛼𝑠)ℎ𝑓𝑢𝑠𝑖𝑜𝑛 (2. 7) 

Where ℎ𝑙𝑠 is the calculated value for the sensible heat, and the solid fraction is evaluated as: 

𝛼𝑠 = {

1             𝑖𝑓 𝑇∗ < 0
1 − 𝑇∗       𝑖𝑓      0 < 𝑇∗ < 1
0             𝑖𝑓 1 < 𝑇∗

(2. 8) 

and T* denotes the normalized temperature as: 

𝑇∗ =
𝑇 − 𝑇𝑠𝑜𝑙
𝑇𝑙𝑖𝑞 − 𝑇𝑠𝑜𝑙

(2. 9) 

In order to simulate the solidification process, two momentum sources are applied to represent the 

increased resistance against relative motion within the MZ, as well as the solid-structure of the 

shell. As the temperature falls below the liquidus temperature, Tliq, the Carman-Kozeny Mushy 

Zone Permeability model is applied to emulate the flow resistance induced by dendritic growths, 

as the temperature approaches the solidus temperature, Tsol, by treating cells possessing a solid 

volume fraction, 𝛼𝑠, greater than zero as a porous medium using the Carman-Kozeny equation: 

𝐾 [𝑚2] =
(1 − 𝛼𝑠)

3

𝐹𝐾 𝑐𝑠 𝛼𝑠2
(2. 10) 

From this relation, K represents the permeability of the cell and is evaluated as a function of the 

relative solid fraction. The additional terms in the relation, cs and FK, denote the shape factor of 
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the dendritic-growth and a non-dimensional switching function, respectively. The shape factor is 

evaluated as: 

𝑐𝑠 =
𝑐

𝜆1
2

(2. 11) 

where c represents a shape constant, and 𝜆1 is the primary dendrite arm-spacing. 

 

The switching function is specified as: 

𝐹𝐾 = 0.5 +
𝑡𝑎𝑛−1[𝑠(𝛼𝑠 − 𝛼𝑠,𝑐𝑟)]

𝜋
(2. 12) 

Where s is a constant used to regulate how aggressively the switching-function transition occurs, 

and 𝛼𝑠,𝑐𝑟 is the critical solid fraction; depicting the point at which the solid grain growth begins to 

significantly influence the flow resistance. 

 

The permeability contributes to the flow resistance through a porous resistance tensor in the form 

of Darcy’s term, given by: 

𝚯𝑀𝑍 =
𝜇

𝐾
(2. 13) 

The resulting momentum source term, representing the porous resistance force acting against the 

flow velocity is then 

𝐟𝑝 = −𝚯𝑀𝑍 ∙ 𝐮 (2. 14) 

The translation of the shell was also incorporated using the Melting-Solidification Flow Stop 

physics model, which applies a momentum source to restrict the velocity to that of the casting 

speed for cells containing the solid phase of steel. 

Validation Approach 

Permission was obtained from an IC to conduct on-site thickness measurements of a vertical shell 

segment that had been recovered after a breakout occurrence. The breakout was recorded to have 
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occurred along the eastern BF, in proximity to the north NF. The IC had extracted the recovered 

segment from the BF section of the shell located in the southwest corner of the mold, at the quarter-

width location, half-way between the SEN and the NF.  

 

Shell thickness measurements were obtained from a segment of the recovered shell that was 

approximately 100 mm wide, and roughly 1 m in height. The measurements were conducted at 5 

mm intervals along both vertical edges, extending perpendicularly from what was the external 

surface of the shell to the inner face of the shell. The resulting measurements are presented in 

Figure 2.1. 

 

Figure 2.1. Measured shell thickness profiles along the north and south vertical 

edges of the recovered breakout shell segment. 

In the process of performing the measurements, the IC noted that approximately the top 3 inches 

(76.2 mm) of the recovered shell segment had broken away during the recovery process. 

Furthermore, due to the additional cooling-time that the steel would have experienced during the 

draining process, it was suggested that only the upper section of the shell segment, which would 

have remained above the base of the mold, should be considered for the model validation. 

Validation of the solidification model was conducted through a comparative analysis of the 

simulated shell growth at the quarter-width location with the shell measurement data. 
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Domain-Length Sensitivity Study 

The model development discussed in this study was built onto a previously validated isothermal 

flow model, the initial length of the domain – the distance extending from the meniscus to the 

domain outlet – had previously been determined without consideration for the influence of the 

increased flow resistance imparted by the mushy zone. As a result, the domain length used in the 

first solidification-model simulation conducted of the IC caster, extended nearly 2.2 m below the 

base of the mold. This measure of extension below the mold was believed to be unnecessary upon 

incorporating the solidification physics models, therefore, a domain-length sensitivity study was 

conducted in order to determine whether a shorter domain could be used without influencing the 

predicted shell profile.  

Predicted Shell Thickness Profile Extraction 

To compare the simulated shell profile against the shell thickness measurements, two vertical 

reference planes – being perpendicular with the BF surfaces – were created at the relative locations 

where the measured edges are believed to have been in the mold. These references planes were 

then utilized to extract the wall-displacement distances, from the BF surface, at the solidification 

front, and are displayed in Figure 2.2. 

 

Figure 2.2. Locations of the data sampling planes for the North & South-edges of 

the recovered shell segment. 
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An isosurface was generated for a solid fraction of 0.9 and was assumed to represent the 

solidification front in the discussed simulations. The profile formed by the intersection of the 

isosurface with each reference plane was therefore considered to symbolize the predicted 

solidification front along the North and South-edges of the recovered shell segment. The profile-

offset distance from the adjacent BF boundary was then extracted at the elevations believed to 

correspond with the locations where the shell measurements had been performed. 

2.1.3 Adaptive Mesh Refinement 

In consideration of the preliminary results obtained during the initial development of the heat 

transfer and solidification models, a CA for implementing the AMR procedures during a CC 

simulation was developed to mitigate the potential for mesh-dependency, while simultaneously 

reducing the total simulation time. The intention was for the algorithm to be capable of automating 

the entire simulation process by managing everything involved with the AMR procedures, as well 

as some of the more-general simulation operations. 

 

Due to the inherent computational costs involved with the CC models discussed in this study, it 

was necessary for the simulations to be conducted using 300 processors on a high-performance 

computing (HPC) cluster. While this allowed for the simulations to be performed at greater speeds 

than alternative tower or desktop resources available, it imposed an additional restriction on the 

length of time that a simulation would be allowed to continuously run. As a result, each simulation 

was conducted through a series of sequential-job submission-files; with each submission-file 

allowing the simulation to run for maximum wall-time of 4 hours.  

 

As it was necessary for the CC simulations to be performed through a series of sequential job-

submissions using the HPC-cluster, the CA was also designed so that it would be able to operate 

regardless of the starting-state of the simulation at the time the CA is launched. This entails that 

the CA should be able to evaluate the state of a simulation, and then determine the appropriate 

operations that should be performed for the given conditions. To accomplish this objective, the 

CA evaluates the following series of logic-tests in order to determine the simulation-state, both 

during the start-up operations, as well as at the conclusion of each simulated time-step: 

 the simulation-file is corrupt, or an unrecoverable error exists within the file 
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 the simulation has completed 

 the most recent activity was the completion of a time-step 

 the most recent activity was the completion of a meshing operation 

 the existing mesh satisfies the AMR-CT for the existing solution 

While it is essential for the above tests to be performed continuously, throughout a simulation, it 

is only necessary for the following to be evaluated during the start-up operations: 

 the simulation has a previous solution history 

 the simulation should be continued from its existing solution or if the solution 

history should be cleared and initialized 

 a valid mesh exists for the domain 

A general workflow diagram of the AMR procedures is presented in Figure 2.3, while a high-level 

overview of the AMR CA procedures are discussed below, and a condensed version of the full 

macro is provided in the APPENDIX. 

 

Figure 2.3. General AMR procedural operation flow diagram. 
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Control Algorithm – Procedure Overview 

After the CA is initially launched, it will perform its start-up operations, during which it will 

evaluate the current state of the simulation. During the start-up operations, the CA will test for the 

existence of any of the accepted indicators signifying that the simulation should first have its 

solution initialized. If the CA detects one of the initialization-indicators, it will then test for the 

existence of a valid-mesh within the domain. Should no mesh be identified, the CA will then 

execute the meshing operations following the specified settings for the initial-mesh. 

 

If the CA determines that the simulation does not need to be initialized, or upon initializing the 

solution, the stopping criteria will then be updated in accordance with the determined simulation-

state. The simulation will then be run out for a single time-step. After which, the CA will re-

evaluate the simulation-state using the stopping criteria that were identified to have triggered 

during the recent time-step. If the CA determines that the simulation has completed, then it will 

begin performing its shut-down procedures, and no further iterations will be performed. Otherwise, 

the CA will perform the AMR-CT to verify whether the mesh remains valid for the current solution 

or if an AMR procedure should be carried out prior to continuing the simulation further. 

 

If the mesh fails the AMR-CT, then the CA would then extract new reference geometries from the 

solution and assign them to the appropriate refinement controls before executing the sequence of 

geometric- and meshing-operations involved with the AMR procedure – the AMR mesh pipeline. 

Upon the completion of the mesh pipeline, or if the mesh had been found to have passed the AMR-

CT, the stopping criteria would then be updated to the newly discovered simulation-state, before 

continuing the simulation through an additional time-step. This procedural-loop is continued until 

either the simulation is completed, or it is forcefully terminated early as a result of the simulation 

exceeding the available wall-time on the HPC-cluster. 

Defining Areas for Refinement Controls 

STAR-CCM+ permits for reference geometries to be utilized to define local areas where 

refinement of the mesh should be performed. The implications of this being that the external 

surfaces of the reference geometry effectively represent the interface between the refined cells that 
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it encloses, and those external to its volume where refinement is not applied. This concept of 

localized refinement allows for the profile of the applied refinement – the refinement profile (RP) 

– to take complex geometric forms that closely-fit around targeted areas of interest.  

 

As a result, there exists a potential for the resolution of the simulation results to be increased, while 

simultaneously decreasing the time required for those results to be obtained. However, the 

potential mentioned above is limited by the degree-of-freedom (DOF) of the RP. Should the DOF 

of the RP be small, then the profile would likely be unable to match closely with the desired region 

under varied conditions. Therefore, a greater DOF in the reference geometries can be expected to 

provide a more efficient RP for AMR. 

 

While investigating various methods of employing reference geometries, consideration was 

initially given towards manipulating the geometric profiles of pre-constructed parts by individually 

adjusting a collection of dimensioned-parameters. Although this method promises at least one 

additional degree of freedom in the profile shapes that can be created for each dimensioned-

parameter employed, a significant number of parameters would be necessary for the profile of each 

shape to resemble that of the RP. It was also recognized that each parameter would require the 

employ of an individual solution probe and that each probe would slightly increase the 

computation cost for each iteration. Although the incurred simulation time would be negligible for 

individual probes, this method was ultimately determined to be impractical for use in these 

simulations, as the total number of solution probes would noticeably subtract from the time-

savings the procedure was intended to generate. 

 

The AMR procedure described herein implemented a newly-incorporated feature of STAR-CCM+, 

which allows for geometric profiles to be generated from the current simulation results. By 

extracting profiles tuned to a specific value, or range of values, for a select transport property, it is 

then possible to extract a geometric volume possessing the shape of all the mesh cells meeting the 

desired criteria. This approach allows for a much larger degree of flexibility in RP shapes that 

could be obtained without the incurred computational costs associated with the previous method. 
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As AMR is intended to minimize unnecessary refinement in order to reduce the overall simulation 

time, it is also possible for an unrestrained CA to negatively influence the results through under-

refinement of the domain. One example of this, pertaining to the CC simulation and the AMR CA 

discussed in this study, would involve a scenario in which the simulation is initialized using the 

default initial-conditions, rather than a mapped-solution. In this situation, the casting temperature 

would be assigned to each cell in the domain – resulting in no shell-formation existing at the 

beginning of the simulation. The CA is intended to implement AMR to increase the level of 

refinement in regions of shell growth, and to remove additional refinement from regions having 

only liquid present. In this scenario, it can be reasoned that an unrestrained CA would attempt to 

remove all of the refinement along the BF and NF surfaces, upon completing the first AMR-CT. 

This would significantly influence the results, as the steep temperature gradient known to exist 

along these boundaries cannot be sufficiently resolved without additional refinement. 

 

In order to mitigate the potential of the CA removing refinement that is necessary for resolving the 

BF and NF boundary layer profiles, additional measures were taken to ensure that a minimum 

level of refinement shall always be retained. The minimum level of refinement is defined using a 

specific set of reference geometry, which are separate from the AMR procedures, and do not vary 

in size or location throughout an individual simulation. As these reference geometries are intended 

to ensure that the minimum refinement thickness is not exceeded, it is necessary for the minimum 

thickness to be specified for the particular casting conditions being simulated. 

Refinement Criteria – Tracking the Refinement Profile 

In order to reduce the computational complexity of the CA, it was determined that tracking the 

geometric profile in 3D-coordinates would overcomplicate the computations required to track the 

RP during a simulation. Therefore, an alternative method for assessing whether the RP deviates 

from its original form – at the time when the active mesh was constructed – was identified in order 

to minimize the additional memory and time necessary to perform the evaluation. 

 

By recognizing that the RP, by definition, should be located between the refined and core cell types 

immediately after a meshing procedure has been conducted, it becomes apparent that the active 

mesh itself could be used to reference the geometry of the original RP. This eliminates the 
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obligation for retaining a virtual copy of the 3D geometry from when the active mesh was 

constructed; thereby, reducing the overall memory requirements, as well as the additional 

read/write times that would be required to test for deviations in the RP during each criteria test. 

Additionally, as the RP should be bordered by select cell types on either side, it should also be 

possible to identify deviations of the RP by conducting a simple logic test of the cells types directly 

adjacent to the RP. In essence; should the RP shift towards the core mesh to an extent that a core 

cell is then located on the opposite side of the RP, then by testing the cell types adjacent to the RP 

would reveal that a core cell would then be located on the ‘refined’ side of the RP – thus, indicating 

that the RP has deviated from its original position. A visual representation of this reasoning is 

presented in Figure 2.4. 

 

Figure 2.4. Concept for evaluating RP deviations from adjacent cell types. 

From the diagrams in Figure 2.4, it can be seen that the RP will need to transverse a greater distance 

to overtake the first row of cells on the ‘core’ side than it would on the ‘refined’ side, due to the 

larger size of the core cells. As a result, this method of testing will naturally demonstrate a greater 

sensitivity to fluctuations of the RP towards the refined cells. To account for this increased level 

of sensitivity, the cells tested on the ‘core’ side of the RP – the liquid test front (LTF) – should be 

offset to a greater distance than the cells of the solid test front (STF). 
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Refinement Criteria – Defining the Refinement Profile 

In the process of determining how the RP should be defined, the underlying objective of 

incorporating AMR into these simulations was emphasized to be that additional refinement was to 

be applied in areas where the shell existed. Therefore, various transport properties relating to the 

shell and MZ were evaluated as potential sources for defining the RP. Some of the more-prominent 

properties evaluated include both the scalar and gradient values of the following quantities: solid 

fraction, temperature, velocity magnitude, effective viscosity, average MZ permeability, and the 

average MZ viscous resistance. These options were then narrowed down to the temperature or the 

velocity, as the others could either be derived or evaluated from these two properties. 

 

With regard to temperature, it was known that the refinement should be applied to all areas have 

shell growth. It could therefore be reasoned that refinement should at least be applied to all 

locations having a temperature equal, or less than, the solidus temperature. Additionally, as the 

underlying intention of utilizing AMR was to increase the resolution of the predicted shell growth. 

Additionally, as the formation of the crystal dendrites within the MZ would invoke an increase in 

the local thermal conduction of the material, the temperature gradient could be expected to begin 

demonstrating sharp changes at temperatures slightly below the liquidus temperature. A 

representation of the rate of change in the temperature with respect to horizontal distance from the 

mold surface is demonstrated in Figure 2.5. Therefore, in an effort to ensure that refinement would 

exist at all locations where the temperature was below the solidus temperature, and that additional 

refinement would be applied in areas of the MZ, the RP was designated to be an isosurface 

generated at the liquidus temperature of the simulated steel for the AMR simulations discussed in 

this study. 
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Figure 2.5. Observations of the temperature gradient in relation to the solid- and 

liquid-fronts in the mold. 

Refinement Criteria – Creating the Test-Fronts 

In order for the CA to conduct the AMR-CT within the cells adjacent to the RP, a pair of reference 

geometry needed to be created from the cells forming the LTF and the STF. Therefore, to begin 

defining the LTF and STF reference geometries, an isosurface was generated on either side of the 

RP. These isosurfaces were intended to represent the LTF and STF profiles. As such, they were 

defined so as to be slightly offset from the RP. Additionally, to account for the increased sensitivity 

of the STF, the isosurface for the LTF was designated such that it would be offset slightly further 

from the RP than the STF. 

 

Numerous parameters and scalar quantities – having known relations to either the liquidus 

temperature or the phase of the material – were evaluated for potential use in defining the 

isosurfaces for the LTF and the STF. From the evaluation, it was believed that the most efficient 

method of defining the test-front isosurfaces was to select a relative temperature for the LTF and 

designate a solid fraction-value for the STF. Therefore, the isosurface for the LTF was specified 

to be 5°C greater than the liquidus temperature, while the STF was defined to be a solid fraction 

of 0.15. By defining these isosurfaces in such a way, this allows for the reference geometry to 
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adapt with alternate material properties – should the AMR be used to simulate different casting 

systems. 

 

Upon creating the isosurfaces, a second reference geometry was then created for each test-front. 

These geometries were created in STAR-CCM+ as Cell Surfaces, which are geometries formed 

from all of the cells in direct-contact with a specified surface. As such, each of the test-front 

isosurfaces would be fully encased by the resulting geometry, and the cells forming the geometries 

were then considered to be the corresponding test-front cells. 

Refinement Criteria – Delineating the Test Criteria 

In order for the CA to determine whether it would be necessary for the AMR mesh pipeline to be 

executed, a set of logical test-criteria needed to be defined. In this regard, the AMR-CT were 

established to outline distinct limitations on the conditions that would be deemed acceptable by 

the CA. As the active mesh is to be evaluated against the most-current simulation results at the end 

of each time-step, a minimum of two parameters must be assessed in each of the test-front cells. 

While it would be possible for more than two parameters to be considered in the AMR-CT, only 

two were utilized in the study discussed. These parameters were implemented in either an 

implicative or conditional manner, within the described AMR-CT. Implicative parameters were 

used in a way to implicate the state of the individual cell being tested. Conditional parameters were 

compared against a listing of values that were recognized to be acceptable for the indicated state-

condition of the cell. 

 

In determining the parameters to be evaluated in the AMR-CT, consideration was given towards 

quantities previously incorporated into the procedure. As was earlier noted, it would be possible 

to track the progression of the RP by examining the adjacent cell types. To that end, the type of 

cell being tested should be considered as one of the parameters. In addition, it was recognized that 

a temperature-value could be interpolated from the solid fraction-value that had been specified to 

define the STF. Therefore, by understanding that the cell-temperature had, essentially, already 

been employed, it was selected as the implicative-parameter. 
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With the STF and LTF effectively defining the temperature of the cells they contain, the criteria 

tests were comprised of evaluating whether the cell-type was appropriate for the respective test-

front. The cells were classified as being either a prism-layer, refined, or core cell-type, as depicted 

in Figure 2.4. From the known range of dimensions for each cell-type were known, no overlap was 

found to exist between the corresponding value-ranges of the cell aspect ratio (CAR), which can 

be defined as: 

𝐶𝐴𝑅 =
𝑚𝐷𝑖𝑚𝑠 𝑛𝐹𝑎𝑐𝑒𝑠  𝑉

(∑ |𝐀𝑓|𝑓 ) ∙ (∑ |
𝐀𝑓 ∙ 𝑑𝐱

|𝐀𝑓|
|𝑓 )

(2. 15)
 

where 𝑚𝐷𝑖𝑚𝑠 signifies the number of dimensions that the mesh exists within – having a value of 

three for a 3D mesh – 𝑛𝐹𝑎𝑐𝑒𝑠  represents the number of faces that comprise the cell, while 𝑑𝐱 

denotes the position vector from the face centroid to the cell centroid. 

 

By designating a listing of the potential CAR-value ranges within the AMR-CT, it was then 

possible to distinguish the different cell-types of both the STF and the LTF, using the CAR. The 

AMR-CT was then set up so to evaluate the CAR of each cell belonging to one of the test-fronts, 

against the range of values corresponding to the accepted cell-type for the respective test-front. 

Should a cell be found to have a CAR indicative of the cell-type from the opposing test-front, then 

that cell would be noted to have failed the AMR-CT. The ratio of failing cells (RFC) from each 

test-front is evaluated against a predefined value signifying the maximum failure ratio for the 

respective test-front. Finally, if the RFC from either test-front is found to exceed their maximum 

threshold, then the AMR will be triggered, and the mesh pipeline will be executed before the 

simulation can be resumed. 

Proof-of-Concept Testing 

In order to verify that the CA would be capable of tracking the RP and updating the mesh 

appropriately during a simulation, a POC test case was developed to ensure conditions that would 

invoke noticeable displacement of the RP. This was accomplished by replicating conditions in 

which the casting speed is altered during operation. As the casting speed effectively governs the 

duration of time the steel exposed to the mold-cooling, it can be expected to possess an inversely 
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proportional relation to the shell growth rate within the mold. Therefore, the tests were devised to 

emulate conditions in which the local shell growth is first increased, and then decreased, by 

respectively decreasing, and then increasing the relative casting speed. 

2.2 Computational Domain and Mesh 

2.2.1 Heat Transfer and Solidification Model 

A 3D simulation geometry was constructed based on the dimensions and parameters provided by 

an industrial collaborator. The caster utilizes a stopper-rod for flow control, however, as the 

simulations conducted for this caster were primarily focused towards the development of the 

solidification model, the inlet geometry was simplified by neglecting the influences of the stopper-

rod and UTN on the flow field and assuming a uniform velocity field at the top of the SEN. The 

domain was further simplified by the assumption that the influences of cross-flow and energy 

transfer between the two ends of the mold could be neglected, and that the flow field to either side 

of the SEN would be symmetric; thereby, allowing for the simulation to be performed using a half-

mold domain. The general casting parameters are provided in Table 2.1, and depictions of the 

geometries used are shown in Figure 2.6. 

Table 2.1. General caster geometry dimensions. 

Casting Parameter Dimension (mm) 

SEN submergence depth 180 

Mold (working) length 800 

Mold thickness 152 

Mold width 3086 
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Figure 2.6. Half-mold caster geometries, having strand lengths of (a) 3.0 m, 

(b) 2.1 m, and (c) 1.2 m, used for domain-length sensitivity study and simulating 

the heat transfer and solidification model validation. 

The three geometries in Figure 2.6 are identical to one another aside from the length of the domain 

extension below the mold. These geometries were utilized to conduct a domain-length sensitivity 

study for the solidification model. 

 

The shell measurement data was referenced when determining the thickness of the reference 

geometry used to specify the regions of local refinement. However, the measurement data only 

extended to a depth of roughly 1 m below the meniscus, and therefore, would be insufficient for 

defining the thickness of the local refinement near the domain outlet. In light of this, it was found 

that the shell thickness profiles seemingly followed the general trend of a power-regression of the 

form: 

𝛿 = 0.3035𝑦0.6841 (2. 16) 

and demonstrating an R2-value of approximately 0.97. In this relation, 𝛿 represents the predicted 

thickness of the shell, y is the depth below the meniscus, and both y and 𝛿  are in units of 

millimeters. 
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It should be noted that the profile generated by the identified power relation was not intended to 

perfectly represent the measurement data, but rather that it could be utilized to define an augmented 

profile that the simulated shell profile could be expected to fall within. For this reason, the relation 

was adjusted to increase the calculated value of the relative profile-thickness by 5 mm. Thus, the 

relation utilized to determine the thickness of the local refinement region was defined as: 

𝛿 = 5 + 0.3035𝑦0.6841 (2. 17) 

Section views of the mesh constructed for the 3.0 m domain length are presented in Figure 2.7.  

The mesh configuration remained the same for each of the three geometries created of this mold. 

Therefore, each configuration demonstrated similar characteristics between the meniscus and the 

elevation at their respective outlet, as depicted in Figure 2.7. 

 

Figure 2.7. (a) Midplane cross-section and (b) Section A-A views of the mesh 

constructed for the 3.0 m domain length. 
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From the cross-section view of the mesh along the XY-midplane, as shown in Figure 2.7a, there 

is a notable increase in the level of refinement in the core-mesh cells near the domain outlet. This 

can be attributed to the close proximity of the two regions of local refinement along the BF 

surfaces, near the domain outlet. A depiction of the relative thickness of the two BF refinement 

regions is depicted in the section view of Figure 2.7b. As these two local refinement regions 

continue to grow inwards with depth, the maximum growth rate permitted for the core mesh begins 

to inhibit the cells from reaching their intended size. The total cell counts for each of the three 

domain lengths used are presented in Table 2.2. 

Table 2.2. Resulting cell count for each domain length. 

Domain Height Below Meniscus (m) Total Cell Count (million) 

1.2 20.8 

2.1 13.4 

3.0 6.7 

2.2.2 Adaptive Mesh Refinement 

The AMR simulations were intended to emulate the solidification of steel along a single surface 

of the mold. Therefore, a simplified volume was generated to be roughly 2% of the volume in an 

actual mold. The geometry and mesh defined for each simulation are presented in Figure 2.8. The 

Mesh arrangement shown in Figure 2.8a, was utilized for the entirety of the control simulation. As 

this mesh would not be adjusted during the simulation it was necessary that the defined RP be 

sufficient for encompassing all of the predicted shell growth, for all intended operating conditions. 

Therefore, the RP was defined for the shell growth that was expected to develop at the slowest of 

the casting speeds being simulated. 

 

The POC simulations were initialized using the default values for the initial conditions, and 

therefore, no shell would exist within the domain. As no shell would exist within the domain at 

the beginning of the simulation, the initial-mesh generated for the AMR simulation – shown in 

Figure 2.8b – portrays the minimum-refinement that should be retained along the boundary surface. 
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Figure 2.8. Side-by-side comparison of the domains, and the initial mesh cell-type 

distributions used at the beginning of (a) the control simulation and (b) the AMR simulation. 

2.3 Boundary Conditions 

2.3.1 Heat Transfer and Solidification Model 

The solidification model simulations were performed using BC defined to closely resemble the 

operating conditions existing in the lead-up to the breakout occurrence. The boundary-types 

assigned to each of the surfaces are presented in Figure 2.9. The effects of cross-flow and heat 

transfer across the YZ-center plane were assumed to be negligible. Therefore, the YZ-plane 

surfaces of the SEN and the strand were each treated as a symmetry plane. 
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Figure 2.9. Boundary-types assigned in the solidfication model simulations. 

The top surface of the mold represents the interface between the molten steel and the insulating 

flux powder layer – the meniscus. Due to the lower melting temperature of the flux, a layer of 

liquid flux will exist between the molten steel and the powder flux. Therefore, it was assumed that 

boundary-shear effects at the meniscus could be neglected, and the top surface of the mold was 

treated as a slip wall. Although the SEN and the meniscus would actually be sources of heat-loss 

in an operating caster, these were considered to be negligible, relative to the heat extraction rates 

existing along the BF and NF surfaces, and were defined as adiabatic surfaces. 

 

The top surface of the SEN and the bottom surface of the strand were defined as a velocity inlet 

and pressure outlet, respectively. A negligible pressure difference was assumed to exist at the 

domain outlet. A backflow temperature at the outlet could not be quantified, however, it was 

believed that any backflow at the outlet would only involve the liquid-phase of the steel. Therefore, 

it was reasoned that the backflow would be, at minimum, the liquidus temperature. 

 

A collection of recorded data depicting the active casting conditions leading up to the breakout 

occurrence were provided by the IC, and were utilized to derive the BC used for the inlet velocity, 

inlet temperature, casting speed, and the mold surface HFP’s. Prior to the breakout occurrence, a 
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sticker alarm had resulted in the casting speed being decreased from approximately 40 ipm to 20 

ipm to allow for additional heat extraction within the mold to sufficiently increase the shell 

thickness around the sticker location. Conservation of mass and the assumption of constant density 

allowed for the inlet velocity to be approximated from the relation: 

𝑢𝑖𝑛𝑙𝑒𝑡 = 𝐴𝑖𝑛𝑙𝑒𝑡 ∙ �̇�𝑠𝑡𝑒𝑒𝑙 (2. 18) 

where �̇�𝑠𝑡𝑒𝑒𝑙 represents the volumetric flow rate of steel through the domain, and is assumed as: 

�̇�𝑠𝑡𝑒𝑒𝑙 ≈ 𝐴𝑜𝑢𝑡𝑙𝑒𝑡 ∙ 𝑢𝑐𝑠 (2. 19) 

In these relations, 𝑢𝑖𝑛𝑙𝑒𝑡 is the velocity of the molten steel entering the domain through the SEN, 

𝑢𝑐𝑠 is the casting speed, while 𝐴𝑖𝑛𝑙𝑒𝑡 and 𝐴𝑜𝑢𝑡𝑙𝑒𝑡 represents the cross-sectional area of the flow 

field at the inlet and outlet, respectively. 

 

Heat extraction through each mold surface was modeled to be a HF BC for the simulations 

discussed in this study. Recorded thermocouple and cooling water data – provided by the IC – 

were utilized to determine the average HF for each of the respective BF and NF surfaces of the 

mold. However, as the HFP along a mold surface is known to decrease with increased distance 

below the meniscus, it was decided that applying an average HF for the BC along the mold surfaces 

of the domain would not be sufficient for replicating the shell growth. As previously discussed, a 

commonly used method for approximating the HFP is to implement the S-P HF correlation [9]–

[12]; and represented as: 

𝑞′′(𝑦) ≈ 𝑎 − 𝑏√
|𝑦|

𝑢𝑐𝑠
(2. 20) 

where 𝑎 represents the peak HF value existing at the meniscus, 𝑏 is the HF depreciation coefficient, 

𝑦 denotes the vertical distance below the meniscus, and the casting speed is evaluated in units of 

meters-per-minute. The HFP produced from this relation exhibits a peak value at the meniscus and 

resembles a parabolic curve, which decreases with depth. The general form of the S-P HF 

correlation is a function of the casting speed and the depth below the meniscus, and it is commonly 

considered an adequate means of approximating the HFP from known operating conditions, by 
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solving for the corresponding a and b coefficients. It should be noted that the general form of the 

S-P HF correlation only varies with position along the vertical axis. Without consideration for the 

lateral position, the general S-P relation must assume the HFP to be constant along the entire width 

of the surface. 

 

As previously mentioned, the increased rate of thermal shrinkage known to occur in the mold 

corners results in a notable reduction of the local heat transfer between the shell and the mold 

surfaces [13]. Gonzalez et al. recognized that the general S-P correlation could not provide a good 

approximation of the heat transfer in areas where notable interfacial gaps exist [9]. Likewise, other 

studies have acknowledged that unrealistic surface temperatures result along the corners of the 

simulated shell if the decreased heat transfer is not accounted for in the BC's [8]–[12]. To account 

for the thermal influence of the corner gaps, Thomas et al. demonstrated that a scaling factor could 

be applied to the HFP such that it would be decreased to 67% of its standard value when within an 

offset distance of 31 mm from the mold corners [8]. This approach was adopted for use in this 

study. 

 

To aid in assessing how the scaling factor would be distributed along each surface, the working 

surfaces of the BF and NF were considered to be comprised of three regions. Two of these were 

defined as being the corner-offset regions – existing within 31 mm of the corners, while the third 

region was composed of the surface area remaining between the two corner-offsets. As such, a 

relation for the working width of the mold was established as: 

∆𝑊 = ∆𝑊𝑠𝑡𝑑 + 2∆𝑊𝑐𝑜𝑟𝑛𝑒𝑟 (2. 21) 

where ∆𝑊 is the width of the working area for the considered surface, ∆𝑊𝑐𝑜𝑟𝑛𝑒𝑟 symbolizes the 

corner-offset distance of 31 mm, and ∆𝑊𝑠𝑡𝑑 represents the width of the remaining surface existing 

the two corner-offsets; where the standard HFP is applied. 

 

By incorporating the scaling factor into the S-P HF correlation, the relation could then be defined 

as: 
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𝑞′′(𝑦) ≈ 𝜂 [𝑎 − 𝑏√
|𝑦|

𝑢𝑐𝑠
] (2. 22) 

where 𝜂 is the HFP scaling-factor and was defined as a conditional relation, such that: 

𝜂(𝑤) = {
1 , |𝑤| < (

∆𝑊

2
− ∆𝑊𝑐𝑜𝑟𝑛𝑒𝑟)

  
2

3
, |𝑤| ≥ (

∆𝑊

2
− ∆𝑊𝑐𝑜𝑟𝑛𝑒𝑟)

(2. 23) 

where 𝑤 represents the horizontal displacement from the surface center. 

 

As was previously noted, two known conditions were necessary to solve for the corresponding 

values of the S-P 𝑎 and 𝑏 coefficients. Since the measurement data provided by the IC represented 

the actual conditions of the casting system, the average HF of each surface was selected to be one 

of the known conditions. While the S-P HF relation could not be examined against the average HF 

of each surface directly, a comparison could be made between the measured and calculated values 

for the total heat transfer rate (HTR) of each surface. The actual HTR was assumed to be the 

product of the working surface area and the corresponding average HF, and is expressed as: 

�̇�𝑎𝑐𝑡𝑢𝑎𝑙 = 𝐴 ∙ �̅�𝑀𝑠𝑟𝑑
′′ = (∆𝑌 ∆𝑊) ∙ �̅�𝑀𝑠𝑟𝑑

′′ (2. 24) 

Here, �̇�𝐴𝑐𝑡𝑢𝑎𝑙 symbolizes the actual HTR and �̅�𝑀𝑠𝑟𝑑
′′  is the average HF recorded for the considered 

surface, while ∆𝑌, represents the corresponding height of the working surface area, 𝐴, of the 

considered BF or NF. The total HTR resulting from the general S-P relation, the HFP was 

integrated over the working area of each considered surface, to produce the following relation: 

�̇�𝑇𝑜𝑡 ≈ (𝑎 ∙ ∆𝑌 −
2

3
𝑏√
|∆𝑌|3

𝑢𝑐𝑠
) ∙ ∆𝑊 (2. 25) 

Previous work by Brian Thomas demonstrated that the HF value, at a location 25 mm below the 

meniscus, could be approximated to be 70% greater than the average HF for the mold surface [27]. 

This approach allowed for a value of the HF to be approximated at a single elevation as: 
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𝑞′′(0.025 𝑚) ≈ 1.7�̅�𝑀𝑠𝑟𝑑
′′ ≈ 𝑎 − 𝑏√

(0.025 [m])

𝑢𝑐𝑠
(2. 26) 

By evaluating the total HTR from the measured HF of each surface, and by approximating the HF 

value at a distance of 25 mm below the meniscus, it was then possible to solve for values of the 

S-P coefficients. However, in doing so, the S-P HFP would be assumed to remain constant along 

the entire width of each mold surface, which is known to result in unrealistic shell-surface 

temperatures. As such, consideration was then given towards determining whether the scaling 

factor should be included when evaluating the 𝑎 and 𝑏 coefficients, through comparison of the 

calculated and actual HTR for each of the mold surfaces. 

 

From the comparison, the calculated total HTR's for the BF surfaces were found to demonstrate a 

negligible difference from the measured conditions, with the percent error being around 0.6%. 

Conversely, the 𝑎 and 𝑏 coefficients for the NF HFP were found to underpredict the total HTR for 

each surface by nearly 13.6%. The percent error difference between the BF and NF surfaces was 

attributed to the high-to-low aspect ratios of the BF and NF surfaces, respectively. As the total 

surface area contained within the corner-offset regions account for approximately 2% of each BF, 

whereas, the same offset-regions make up roughly 41% of each NF. Therefore, it was deemed 

necessary for the scaled-HF to be considered when determining the 𝑎 and 𝑏 coefficients for the 

respective S-P HFP's. 

 

The relation for the total HTR was then redefined to account for the heat transfer through the 

corner-offset regions by integrating Eqn. (2.22) over a considered mold surface. A simplified form 

of this relation can be shown as: 

�̇�𝑇𝑜𝑡 = �̇�𝑠𝑡𝑑 + 2�̇�𝑐𝑜𝑟𝑛𝑒𝑟 (2. 27) 

Here, �̇�𝑇𝑜𝑡 is the total HTR of the surface, and is defined to be the sum of the standard HTR, �̇�𝑠𝑡𝑑, 

and the combined HTR from the two corner-offset regions – the corner HTR, �̇�𝑐𝑜𝑟𝑛𝑒𝑟. With respect 

to the considered mold surface, �̇�𝑠𝑡𝑑 signifies the HTR accruing from the standard S-P HFP along 

the surface-segment existing between the two corner-offset regions. The relations for the standard 
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and corner HTR's were evaluated similarly to that of Eqn. (2.25), however, they employed the 

width corresponding to their respective sections of the surface, with the scaling factor also included 

for the corner HTR, and can be represented as: 

�̇�𝑠𝑡𝑑 = [∆𝑌 𝑎 −
2

3
𝑏√
|∆𝑌|3

𝑢𝑐𝑠
] ∙ ∆𝑊𝑠𝑡𝑑 (2. 28) 

�̇�𝑐𝑜𝑟𝑛𝑒𝑟 =
2

3
[∆𝑌 𝑎 −

2

3
𝑏√
|∆𝑌|3

𝑢𝑐𝑠
] ∙ ∆𝑊𝑐𝑜𝑟𝑛𝑒𝑟 (2. 29) 

where the height and width-quantities were specified in units of meters, and the casting speed is in 

units of meters-per-minute. 

 

By setting Eqn. (2.27) equal to Eqn. (2.24), and by assuming the standard HFP to be equivalent 

to Eqn. (2.26), the system was then rearranged and solved for the S-P coefficients. The resulting 

relations for the 𝑎 and 𝑏 coefficients could then be simplified to the forms: 

𝑎 =
�̇�𝑠𝑡𝑑

|∆𝑌| ∆𝑊𝑠𝑡𝑑
+
2

3
𝑏√
|∆𝑌|

𝑢𝑐𝑠
(2. 30) 

𝑏 =
0.7�̇�𝑠𝑡𝑑√𝑢𝑐𝑠

|∆𝑌| ∆𝑊𝑠𝑡𝑑 [
2
3
√|∆𝑌| − √(0.025 [m])]

(2. 31) 

These relations were then evaluated simultaneously to determine the coefficients for the standard 

HFP of each BF and NF surface. Upon determining the coefficients, the total calculated HTR was 

then evaluated against the actual HTR and the resulting percent error was found to be negligible 

for each surface. 

 

As time-averaged measurement data were utilized in determining the standard HFP coefficients, 

it was assumed that a single HFP could be used to define the thermal BC for both BF surfaces. 

Therefore, the average of these two coefficients were determined, and the subsequent HF relation 
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was assigned to both BF surfaces. Thus, the resulting relations for the BF and NF HFP could 

roughly be defined as: 

𝑞𝐵𝐹
′′ (𝑦) = 2.1 − 1.2√

|𝑦|

0.51
(2. 32) 

and 

𝑞𝑁𝐹
′′ (𝑦) = 2.6 − 1.5√

|𝑦|

0.51
(2. 33) 

where 𝑞𝐵𝐹
′′  and 𝑞𝑁𝐹

′′  are depicted in units of megawatts-per-meter squared, and 𝑦 is shown in units 

of meters. The relations for the BF and NF HFP’s were each assigned to their respective BC using 

a user-defined function (UDF), within STAR-CCM+. The resulting HFP’s are presented in Figure 

2.10, along with the corresponding HF values that were assumed for a depth of 25 mm when 

solving for the 𝑎 and 𝑏 coefficients. 

 

Figure 2.10. Derived heat-flux profiles defined for the mold BC in the 

solidification model simulations. 

From previous simulation results, and per the suggestion of the IC, a simple correlation was 

utilized to define the SC BC using heat transfer coefficient (HTC) values, rather than as a constant 

HF. The cooling data for the secondary cooling section of the caster was considered to be 
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proprietary information, and therefore was not incorporated into this model. Previous work by 

Meng and Thomas demonstrated a simple correlation for evaluating an effective HTC for each 

spray zone and roll pairing by summing heat transfer, by means of convection, conduction and 

radiation, over the respective surface area of the slab from which they would occur [28]. A profile 

for the HTC-values was derived from the secondary cooling parameters and the simulated surface 

temperature data provided in the report. The separate zones, the surface temperature profile, and 

locations of each nozzle and roll used in the evaluation of the HTC-values, along with the derived 

HTC profile are displayed in Figure 2.11 

 

Figure 2.11. HTC-values derived from the simulated surface temperature profile 

and nozzle-roll parameters from literature [28]. 

The HTC-values were assigned for the BC of the secondary cooling section in the IC caster 

simulation, and are interpolated as a function of the vertical position in the domain. Color contours 

of the defined BC and the resulting surface HF are shown in Figure 2.12. 
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Figure 2.12. BF and NF surface contours depicting (a) the applied BC and (b) the 

resulting surface HF for the 3.0 m length domain. 

2.3.2 Adaptive Mesh Refinement 

The BC for the AMR POC simulations were defined so to create a flow field that would run parallel 

to the cooled-surface. This was intended to provide conditions which would promote consistent 

shell growth rates for the respective inlet velocity. Therefore, the top and bottom surfaces were 

defined as being a velocity inlet and pressure outlet, respectively. A HFP was applied to the wall 

boundary of the cooled surface. The profile of the applied HF is shown in the plot that is offset-

left of the cooled surface in Figure 2.13. 
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Figure 2.13. The boundary-types and HFP assigned in the AMR POC simulations. 

A section of vertical surface – measuring 0.02 m in height and being located between the inlet and 

the cooled surface – was treated as a no-slip wall, and was defined to be adiabatic. This was done 

so to prohibit any shell growth from forming directly below the inlet surface. The surface opposite 

to the cooled surface was defined to be a slip wall having a temperature equal to the inlet 

temperature. Finally, the remaining front and back surfaces of the domain were treated as 

symmetry planes. 

 

The inlet velocity magnitude was treated as a function of the simulated time, and was defined as: 

𝑢(𝑡) [ipm] =

{
 
 

 
 

80, 𝑡 ≤ 20 [s]

80 − 15 ∙ (𝑡 − 20), 20 [s] < 𝑡 < 24 [s]

20, 24 [s] < 𝑡 ≤ 120 [s]

20 + 5 ∙ (𝑡 − 120), 120 [s] < 𝑡 ≤ 124 [s]
40, 124 [s] < 𝑡 ≤ 200 [s]

  (2. 34) 
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 RESULTS AND DISCUSSION 

3.1 Heat Transfer and Solidification Model 

3.1.1 Domain-Length Sensitivity Study 

Three steady-state simulations were conducted of the IC caster, using three different domain 

lengths, to determine whether a shortened domain would influence the predicted shell profile. The 

findings of this study showed no discernable difference between the predicted shell profiles within 

the elevation range where valid shell measurements had been obtained. From these findings, the 

three domain-lengths tested were not believed to influence the simulated shell growth. Therefore, 

as the larger domains tested incurred greater computational costs – required longer periods of time 

for each simulation to complete – the shortest domain was selected for use in conducting the 

described transient simulation. 

3.1.2 Solidification Model Validation 

The predicted shell thickness profiles were extracted from both the steady-state and transient 

simulations, at the locations believed to represent the original positions of the North and South-

edges of the recovered shell segment within the mold. A comparison of the predicted and measured 

shell thickness profiles for both edges is presented in Figure 3.1, where the predicted profiles can 

be seen to exhibit similar trends with the shell measurement data. 

 

From Figure 3.1, a distinct decrease in the shell growth rate was noted in the profile of the predicted 

North-edge at around 0.5 m below the meniscus. This decrease in growth rate can be seen to match 

closely with the profile trends of the measurement data. However, this change was not found to be 

present in either of the predicted profiles for the South-edge. As such, the average percent error of 

the predicted South-edge profiles was found to be greater than those for the North-edge. The 

average percent error for each edge is presented in Table 3.1, along with the overall for each 

simulation. 
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Figure 3.1. Comparison plot of the predicted shell growth from the steady-state 

and transient simulations with the shell thickness measurements. 

Table 3.1. Average percent error of the simulated shell thickness at the North 

and South-edges of the recovered shell segment 

Simulation Type 
Average Percent Error (%) 

South Edge North Edge Overall 

Steady-state 16.0 7.0 11.5 

Transient 14.4 6.6 10.5 

 

Upon collectively overviewing the content of both Figure 3.1 and Table 3.1, the difference between 

the steady-state and transient results, for the respective North and South-edges, can be said to be 

negligible. Further review of the velocity and temperature fields of the steady-state and transient 

results revealed similar circumstances. Moreover, by recalling that constant BC's had been defined 

for the transient simulation, the results produced from this simulation can be assumed to be 

representative of a pseudo-steady casting condition. Therefore, the results from the steady-state 

and the transient simulations were considered to be equivalent to one another. With this 

understanding, the transient results were also assumed to be indicative of the steady-state results. 

 

While Table 3.1 only provides an outlook of the overall error found along each edge, it is apparent 

from Figure 3.1 that the predicted profiles matched more-closely with the measurement data in the 
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upper half of the mold. To better-discern the error-dispersion along the North and South-edges, a 

percent error distribution chart is provided in Figure 3.2. In addition, a parity plot depicting the 

predicted-to-measured shell thickness is presented in Figure 3.3. 

 

Figure 3.2. Percent error distribution with distance below the meniscus for the 

predicted shell growth from the transient simulation. 

 

Figure 3.3. Parity plot of the predicted and measured thicknesses for the North 

and South-edges of the recovered shell segment. 
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From Figure 3.2, a sudden spike in the percent error can be identified at the top of the shell profile 

for both edges. In consideration of the relative uncertainty for the vertical position of the recovered 

shell segment within the mold, along with the magnitude of the shell thickness at these locations, 

it is believed that a slight discrepancy might exist with the estimated vertical-offset distance – 

being 3.0 inches – that was applied to the measured values. With this in mind, should the top four 

measurements be removed from consideration, then the error in the predicted shell profile for the 

North-edge would largely fall below 10%. However, as previously discussed, this would not hold 

for the predicted profile of the South-edge as well, as the percent error tends to increase in the 

lower half of the mold. 

 

As previously discussed in regards to Figure 3.1, the profile for the predicted shell thickness of the 

South-edge fails to demonstrate a decrease in the growth rate at approximately 0.5 m from the 

meniscus. However, from the depicted profiles for the South-edge in Figure 3.2 and Figure 3.3, 

the simulated shell growth begins to deviate more-notably from the measured values at a depth of 

around 0.4 m, with the peak error location being slightly below 0.6 m. Through additional 

consideration for the percent-error distribution depicted in Figure 3.2, it can be observed that the 

North and South-edges demonstrate similar profile trends for the ranges falling between the 

meniscus and around 0.5 m, as well as from approximately 0.6 m to the mold outlet. This inferring 

that a discernible difference between the North and South percent error-trends can be recognized 

between 0.5 m and 0.6 m below the meniscus, which echoes previous observations made from 

Figure 3.1. 

 

Additionally, for the ranges having similar trends in the percent error between the North and South 

profiles, as found in Figure 3.2, the trend of the percent error for the South profile can be seen to 

demonstrate greater rates of change than those of the North profile. From these observations, it can 

be reasoned that the increased error in the predicted shell growth for the South-edge, likely results 

from a difference in the local heat transfer conditions. By recalling the defined HFP that was 

assigned as the BC for both BF surfaces, the rate of heat extraction from the domain can be 

assumed to be identical for the two locations where the predicted shell thickness is being sampled. 

As such, it can be reasoned that the applied BC does not represent a significant contribution 

towards the discrepancy between the predicted profiles of the North and South-edges. 
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Consideration was then given towards the heat transfer of the internal flow field. Further review 

of the temperature-field revealed an unequal distribution of the superheat along the North and 

South-edges of the recovered shell segment. Reference lines – depicting the relative positions of 

the North and South-edges of the shell segment, as well as for depths of 0.4 m and 0.5 m below 

the meniscus – are shown overlaid atop a color-contour plot of the superheat delivery, in Figure 

3.4, along the center plane of the domain. Direction vectors, depicting the tangential flow along 

the center plane, are also shown to clarify how the superheat was distributed. 

 

Figure 3.4. Superheat distribution with respect to the North and South edges of 

the recovered shell segment, and depth in the mold. 

From Figure 3.4, the downward-momentum of the jet can be seen to diminish, and then be 

redirected upwards – towards the meniscus – prior to reaching the North-edge of the recovered 

shell segment. As a result, the superheat distribution extends to a greater depth along the North-

edge, as opposed to the South-edge. This difference can be observed in Figure 3.4, where the 

perimeter of the superheat only extends to a depth of around 0.4 m below the meniscus along the 

South-edge, whereas, it exceeds 0.5 m along the North-edge. Further, the difference in superheat 

delivery that was shown to extend from 0.4 m, to slightly below 0.5 m, coincides with the section 

of decreased growth rate found in Figure 3.1, and similarly, with the difference between the percent 
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error trends previously noted in Figure 3.2. Therefore, it was reasoned that the simulated superheat 

distribution, relative to the location of the referenced sample-planes, was responsible for the 

increased error identified along the South edge. 

 

The simulated shell growth, shown in Figure 3.1, can be said to overpredict the measured profiles 

for both the North and South-edges. By comparison with the superheat delivery presented in Figure 

3.4, it can be argued that the horizontal positioning of the sampling planes may differ from the 

actual location where the segment had been recovered from within the mold. This reasoning stands 

as the IC had only been able to affirm that the segment had been recovered from the quarter-width 

location; however, a dimensioned offset could not be established. Due to this uncertainty, the 

location of the sampling-planes may not aptly represent the relative position of the recovered 

segment within the mold. With this understanding, it can be argued that by decreasing the offset 

of the reference planes from the SEN, then simulated shell growth for both the North and South-

edges would demonstrate greater agreement with the measurement data. 

 

Additional insight into the source of increased error along the South-edge can be gained from 

understanding that under normal operating conditions – with a casting speed of around 40 ipm – 

the jet is known to impinge upon the NF, regularly. This factor would imply that, during regular 

operation, the downward-momentum of the jet would continue past the South-edge; thereby, 

resulting in a similar reduction in the shell growth rate, as was beheld of the North-edge for depths 

below 0.4 m. Moreover, the jet-impingement on the NF can be expected to form an upper-roll that 

would roughly span the width of the BF between the SEN and the NF. Should such an upper-roll 

remain relatively stable, it would result in a more uniform distribution of the superheat throughout 

the mold. Thus, the shell growth could likewise be expected to be more uniform along the width 

of the BF. While the solidification model was found to overpredict the shell growth along the 

South-edge, the more uniform superheat distribution – expected from the normal casting speed – 

would likely produce a profile more analogous to the shell measurement data. 

 

In reviewing the events leading up to the breakout occurrence, a sticker-alarm had resulted in the 

casting speed being reduced from the normal-operating rate of 40 ipm to a reduced speed of 20 

ipm. The casting speed had been decreased over a time interval of around 6 seconds, and then 
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operation had continued at the reduced speed for approximately 93 seconds before the breakout 

occurrence. The reduction of the casting speed would dictate that the velocity of the steel entering 

the SEN would be halved from more than1.8 mps, down to just over 0.9 mps. This reduction of 

the flow rate through the SEN would decrease the momentum of the exiting-jets, which ultimately 

drive the formation of the roll-patterns. 

 

Subsequently, as the decreased momentum of the jet would no longer be able to sustain the normal 

state of the flow field, it can be reasoned that the flow field would undergo a period of transition 

as it conforms to the new conditions. Just as the upper-roll formation could be presumed to stretch 

from the SEN to the NF under normal casting conditions, the upper-roll resulting from the reduced 

casting speed can be expected to be relatively smaller in size. A general profile of this upper-roll 

formation can be recognized in Figure 3.4, falling between the North-edge of the recovered shell 

segment and the SEN, and being located directly above the exiting-jet. Should the upper-roll 

remain intact during this transition period, it would progressively retract towards the SEN as 

angular momentum is sapped from the roll, until it was able to attain a profile comparable to that 

shown in Figure 3.4. In such a scenario, it would be necessary for the angular momentum of the 

roll to decline at a rate sufficient to prevent an abrupt dispersal of the roll. 

 

Unfortunately, while the reduction of the casting speed had occurred in around 6 seconds, it is 

unclear what duration of time would be necessary for the flow field to attain a new pseudo-steady 

state. Assuming that the rolls would be retained, this time interval would be solely governed by 

the rate of momentum decay from the roll formations. As such, under optimal conditions, it can be 

reasoned that the transition period might extend for a prolonged duration of time beyond the 

completion of the casting speed reduction. By considering the above factors, it can be argued that 

the flow field, and therefore, the shell growth, may yet still have been in the process of transitioning 

to the new flow conditions. Should this be the case with the system discussed in this study, then 

the flow field could not be assumed to have achieved a pseudo-steady state. 

 

Consequently, if the steady-state assumption is found to be inadequate, then it would be necessary 

for a transient simulation of the system to be conducted so as to replicate the system more-

accurately. In order to conduct such a transient simulation, appropriate BC's would need to be 
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defined so that an adequate rendition of the flow field transition, resulting from the casting speed 

reduction, might be produced. To do so would likely involve initializing the simulation having a 

fully-developed flow field while operating under the conditions which existed prior to the sticker-

alarm. In defining the BC's for the transient simulation, the simulation should attempt to replicate 

three primary periods of operation: 

1. the normal operation period that existed prior to the sticker alarm 

2. the transition period from which the casting speed was decreased 

3. the reduced operation period where the caster continuously operated at the 

reduced casting speed 

 

Finally, the simulation results obtained using the described solidification model employed three 

assumptions of the material properties that should be addressed in future work. The first being that 

the material properties utilized in the simulation were those referenced from literature, and may 

not adequately represent those of the actual composition that was being cast [25]. The second 

assumption involved treating the solid fraction curve to be a linear relation with temperature, while 

the third concerns the assumption that the material properties could be defined as constants when 

they are known to be temperature-dependent. As the solid fraction is expected to influence the 

distribution of the momentum, energy, and turbulence transport properties within the MZ, 

designating a linear relation for the solid fraction could be expected to impact the overall 

distribution of the simulated MZ, and thereby, the shell development. Similarly, the resulting 

values of density, thermal conductivity, specific heat, and viscosity that would be evaluated in the 

transport relations would differ from the actual conditions by treating them as constants. Therefore, 

it is advised that the temperature-dependent material properties for the considered composition 

should be incorporated into the model for further studies. 

3.2 Adaptive Mesh Refinement 

Upon studying the results from the AMR POC simulation it was determined that the CA was 

successfully able to manage the AMR procedure throughout the simulation. It should be noted that 

while the simulation is being conducted, the order-of-execution of the AMR-CT procedures is 

largely governed by the STAR-CCM+ software. As a result, any UDF’s employed within the 

procedure will be evaluated for every cell within the domain, prior to the start of the AMR-CT, 
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rather than only for the test-front cells. However, this does not impede the operation of the AMR-

CT, as the values determined from these UDF’s are temporarily recorded within the simulation 

file, and can therefore, be accessed as needed during the AMR-CT. By order-of-execution within 

the simulation, the first step in this procedure entails distinguishing the different cell types within 

the domain, as shown in Figure 3.5. 

 

Figure 3.5. AMR procedure step 1: distinguish the different cell types 

within the domain. 

Once the cell types have been identified, the next step in the sequence involves excluding cells – 

that will never require additional refinement – from further consideration. This predominantly 

includes the prism layer cells along the BF and NF boundaries, as well as the initial two-to-three 

rows of refined cells directly adjacent to the prism layers. These are excluded to ensure sufficient 

discretization of the domain for the temperature profile to be sufficiently evaluated. An example 

of this exclusion step can be visualized in Figure 3.6. 
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Figure 3.6. AMR procedure step 2: define the range limits for the cells 

considered for criteria testing. 

Once the unnecessary cells have been removed from consideration, the following step involves 

identifying the test front cells. This is performed by generating two isothermal surfaces adjacent 

to the RP. To account for the increased sensitivity on the refined side of the RP, the LTF isosurface 

should be offset slightly further from the RP than the STF isosurface. With the test front isosurfaces 

created, all of the cells contacting the LTF isosurface or the STF isosurface should be identified – 

these represent the LTF and the STF cells for the refinement criteria tests to be conducted. The 

processes involved in this step of the refinement procedure are depicted in Figure 3.7. 
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Figure 3.7. AMR procedure step 3: identifying the test-front cells. 

Upon identifying the test-front cells, the respective criteria test can be conducted for each in their 

corresponding test-fronts. The cells identified to have failed the AMR-CT for their respective test-

front, are highlighted in red in Figure 3.8 for visual reference. 

 

Figure 3.8. AMR procedure step 4: evaluate the corresponding test criteria for the 

cells in each test-front. 
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After the criteria tests have been performed, the final step in the AMR criteria testing procedure is 

to evaluate the ratio of failed-tests from each test-front against the total number of cells in each 

test-front, against a specified upper-threshold value. Should either of the test-front RFC exceed 

their designated threshold then the AMR procedure will be triggered. Upon the completion of the 

AMR mesh pipeline, the resulting mesh should be such that none of the test-front cells fail the 

AMR-CT for either test-front, as shown in Figure 3.9. 

 

Figure 3.9. AMR procedure step 5: execute the local remeshing procedures. 

The CA was developed to manage the entire refinement procedures during transient simulations. 

This permits the simulation to execute continuously – without the need for user input to conduct 

the AMR-CT or to execute the AMR mesh pipeline. The final results obtained from the simulations 

conducted both with, and without AMR demonstrate similar trends in the predicted shell 

development throughout the simulation. A comparison of the results are presented in Figure 3.10. 
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Figure 3.10. Results comparison for simulated shell thickness at 75 mm and 

400 mm distances along the cooled surface. 

Finally, the average percent difference between the two profiles observed at a distance of 400 mm 

was found to be approximately 6%, while the AMR simulation demonstrated roughly an 11% 

decrease in the overall simulation time. 
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 CONCLUSIONS 

4.1 Heat Transfer and Solidification Model 

A 3D CFD model was generated to replicate the internal flow conditions that existed within a CC, 

prior to a breakout occurrence, to allow for heat transfer and solidification models to be developed 

and validated against physical measurement data obtained from a segment of the recovered shell. 

Three steady-state simulations were conducted in a performance and sensitivity study of the 

domain-length, using a similar meshing scheme for each of the domains. Each simulation was 

performed using 300 processors and required between 9.5 and 30-hours to complete. Deviations 

between the predicted shell growths of these simulations were found to be negligible for the 

relative elevation-range of the recorded shell thickness measurements. Therefore, the shortest 

domain was selected for use in further studies to reduce the total computational requirements 

necessary to conduct a simulation. 

 

The caster being modeled was assumed to have reached a pseudo-steady state while operating at 

the reduced speed. Casting parameters and thermocouple measurement data were obtained from 

the IC and were utilized to generate time-averaged BC's representative of the assumed pseudo-

steady operating conditions. The BC's were applied for both a steady-state and transient simulation 

using the shortened domain length, and a negligible difference was found between the results of 

each simulation. The predicted shell growth was found to match closely with the obtained shell 

thickness measurements at the quarter-width location believed to represent the recovered shell 

segment, with an average percent error of around 11%, and approximately a 1% difference between 

the error produced by the steady-state and transient simulations. From this, it was assumed that the 

use of either to simulate a pseudo-steady casting system would yield similar results. 

 

Uncertainty of the position where the shell segment had been recovered from within the mold is 

believed to have attributed to increased error witnessed near the meniscus, as well as along the 

lower South-edge. From conceptual deliberation of the state of the system, including further 

consideration of the thermocouple data, it could be argued that the system had been unable to reach 

a pseudo-steady state during the time the caster had operated at a reduced rate – leading up to the 
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breakout occurrence. Should this be the case, then it may be necessary for an additional transient 

simulation to be conducted – utilizing the measurement data to drive time-varying BC rather than 

time-averaged values. Such a simulation would be intended to determine whether the solidification 

model would be capable of replicating the same results if the shell profile were initially at a greater 

thickness while following more closely with the time-varying heat extraction rates recorded. Hence, 

one additional source of error may stem from the use of the steady-state assumption. Therefore, it 

was suggested that further consideration be given towards conducting a transient simulation, using 

time-varying BC's, to account for the transition in the flow pattern development after the casting 

speed was reduced. 

 

Finally, the simulation results obtained using the described solidification model employed three 

assumptions of the material properties that should be addressed in future work. The first being that 

the material properties utilized in the simulation were those referenced from literature, and may 

not be representative of the actual property values existing during the considered operation. The 

second assumption pertains to the treatment of the material properties as constants when they are 

known to be temperature-dependent, and could potentially influence the predicted shell 

development. Third, the material properties were referenced from a literature source, and may not 

adequately represent those of the actual composition that was being cast [25]. As the solid fraction 

is expected to influence the distribution of the momentum, energy, and turbulence transport 

properties within the MZ, the solid fraction was assumed to have a linear relation with temperature. 

Therefore, it is recommended that temperature-dependent material properties for the considered 

composition should be incorporated into the model for further studies. 

4.2 Adaptive Mesh Refinement 

A set of procedures were established for utilizing the current solution data to locally apply 

additional mesh refinement in areas of predicted shell growth, while simultaneously reducing 

refinement in regions of the domain where it is no longer necessary. AMR-CT’s were then 

developed to periodically evaluate the active mesh against the current solution to determine the 

validity of the mesh. The full workflow involved with the AMR-CT’s and meshing procedures 

was then developed into a CA, and was incorporated into a Java-macro in order to automate the 

entire process during an individual simulation. The CA was tested through a simple POC-test to 
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verify whether the AMR-CT’s would be capable of tracking the RP under transient conditions 

resulting in both increased and diminished growth of the simulated shell profile, while still being 

capable of decreasing the overall time required for the simulation to complete. 

 

The results of the POC-tests revealed that the CA was capable of tracking the displacement of the 

RP during a simulation. It was also found that the total simulation time could be reduced by 

approximately 11% through the use of AMR. As the time-savings can be expected to increase with 

larger domains and higher-cell-counts, it is believed that incorporating AMR into a full-scale 

simulation of an actual CC would produce greater time-savings than those witnessed in this study. 

 

Comparison of the simulated shell growth produced by the control and AMR-simulations showed 

a difference in the predicted shell thickness with an average value of around 6% at the domain 

outlet. While the profile produced by the AMR simulation was expected to match more-closely 

with the control-results, it can be argued that the profile obtained from the control simulation may 

not be representative of the actual shell growth that would develop for the simulated conditions. 

Therefore, it is recommended that AMR be incorporated into a full-scale CC-model for further 

evaluation of the CA performance to allow for the simulated shell profiles to be compared against 

shell-measurement data. 
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APPENDIX 

Adaptive Mesh Refinement Control Algorithm 

The following code entries comprise of a single java class that can be run as a macro in the STAR-

CCM+ simulation software. 

 

// STAR-CCM+ macro: adaptiveMesh_v00.java 

package adaptiveMesh; 

 

import java.io.BufferedWriter; 

import java.io.File; 

import java.io.FileWriter; 

import java.io.IOException; 

import java.io.PrintWriter; 

import java.time.LocalDateTime; 

import java.util.*; 

 

import star.common.*; 

import star.base.neo.*; 

import star.base.report.ElementCountReport; 

import star.base.report.ExpressionReport; 

import star.base.report.ReportManager; 

import star.base.report.ReportMonitor; 

import star.base.report.SumReport; 

import star.cadmodeler.SolidModelPart; 

import star.mapping.ProximityInterpolationModel; 

import star.mapping.SolutionInterpolationMethod; 

import star.meshing.*; 

import star.surfacewrapper.*; 

import star.vis.*; 

import star.vis.Scene; 

import star.vis.SceneUpdate; 

 

/** 

 * This java class is intended to be used as a simulation-macro in STAR-CCM+ to govern the 

 * execution of steady-state & transient simulations of a continuous caster while implementing 

 * AMR to provide increased resolution in areas of shell growth while minimizing the overall 

 * cell count in order to reduce the total computation costs of the simulation. 

 *  

 * AMR-CT are performed at controlled intervals throughout the simulation and vary depending 

 * on the relative state of the simulation and the recent procedures performed. 

 *  

 * ALL user-variables necessary for managing the performance of the macro execution are  
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 * located at the beginning of the class under the heading: 'USER-INPUT VARIABLES'. 

 *  

 * @author Matthew T. Moore 

 * @version 00 

 */ 

 

public class adaptiveMesh_v00 extends StarMacro { 

 

//*--------------------------------------------------------------------------------------------------------------*// 

//*-----------------------------------* USER-INPUT VARIABLES *-----------------------------------*// 

//*--------------------------------------------------------------------------------------------------------------*// 

// STEADY-STATE SETTINGS 

    private final int maxIters = 4000;    // Max number of iterations for steady-state simulations 

    private int fixedIters_Initial = 400;    // Fixed number of iterations for initial RUN 

    private final int fixedIters_Meshed = 100;    // Min number of iterations between AM 

refinements 

    private final boolean use_StopCrit_SteadyShellGrowth = false;    // Stop simulation when shell 

growth has reached a steady-state (( Steady-state only )) 

// TRANSIENT SETTINGS 

    private final double maxTime = 200.0;    // Max simulation time (seconds) 

    private final double timeStep = 0.05;    // Simulated time-step (seconds) 

    private int innerIters_Initial = 400;    // Min inner iterations during first time-step 

    private final int innerIters_Meshed = 50;    // Min inner iterations AFTER mesh refinement 

    private final int innerIters_Normal = 50;    // Max inner iterations without refinement 

procedure 

     

// AM PARAMETERS 

    private final double solidFraction_SolidTestFront = 0.15;    // Solid fraction used to designate 

the 'Test-Front' used for evaluating the AM_Shell Refine Criteria 

    private final boolean use_ParallelMesher = false;    // Boolean: parallel meshing should be 

used (( only active when mesh cell-count > 100,000 cells )) 

    // AM ACTIVATION METHODS 

    // Only one activation method can be used at a time - if multiple are set to 'true' at RUN then 

the Shell Thickness Activation will be used 

    private boolean use_ActivateAM_ShellThick = true;    // Boolean: 'Shell-Thickness' AM 

Activation method should be used 

    private boolean use_ActivateAM_Temp = false;    // Boolean: 'Temperature-Range' AM 

Activation method should be used 

     

// AUTO-SAVE SETTINGS 

    private final int autoSave_nDigits = 7;    // Number of characters in the iteration/sim-time 

extension attached to the end of the Auto-Saved filename 

    private final int autoSave_MaxFiles = 3;    // Maximum number of auto-saved files 

    private String autoSave_Type = "TIMESTEP";    // Auto-save trigger type (Options: 

"ITERATION", "TIMESTEP", "DELTATIME", "EVENT") 
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    private final int autoSave_Frequency_Iters = 1000;    // Number of iterations between auto-

saves ("ITERATION" trigger type) 

    private final int autoSave_Frequency_TimeSteps = 20;    // Number of time-steps between 

auto-saves ("TIMESTEP" trigger type) 

    private final double autoSave_Frequency_DeltaTime = 0.5;    // Simulated time-interval 

between auto-saves ("DELTATIME" trigger type) 

 

 

//*--------------------------------------------------------------------------------------------------------------*// 

//*------------------------* INSTANTIATE SIMULATION VARIABLES *-------------------------*// 

//*--------------------------------------------------------------------------------------------------------------*// 

    private Simulation simulation_0; 

    private AutoSave autoSave_0; 

    private StarLog starLog_0; 

    private Units units_s; 

    private Solution solution_0; 

    private SimulationIterator iterator_0; 

     

    private MonitorIterationStoppingCriterion stopCrit_ActivateAM_ShellThick;    // Stopping 

Criterion: indicates if shell thickness will support AM Refinement 

    private MonitorIterationStoppingCriterion stopCrit_ActivateAM_Temp;    // Stopping 

Criterion: indicates if temperature profile will support AM Refinement (0: OFF, 1: 

ON) 

    private MonitorIterationStoppingCriterion stopCrit_AMCoreRemesh;    // Stopping Criterion: 

ratio-threshold of liquid-test-front cells meeting the core-remesh criteria 

    private MonitorIterationStoppingCriterion stopCrit_AMShellRefine;    // Stopping Criterion: 

ratio-threshold of solid-test-front cells meeting the shell-refine criteria 

    private MonitorIterationStoppingCriterion stopCrit_Continuity;    // Stopping Criterion: 

Continuity 

    private MonitorIterationStoppingCriterion stopCrit_Energy;    // Stopping Criterion: Energy 

    private FixedStepsStoppingCriterion stopCrit_FixedSteps;    // Stopping Criterion: fixed steps 

    private FixedPhysicalTimeStoppingCriterion stopCrit_FixedTime;    // Stopping Criterion: 

fixed time 

    private InnerIterationStoppingCriterion stopCrit_MaxInnerIter;    // Stopping Criterion: 

maximum inner iterations 

    private StepStoppingCriterion stopCrit_MaxIters;    // Stopping Criterion: maximum number 

of iterations 

    private PhysicalTimeStoppingCriterion stopCrit_MaxTime;    // Stopping Criterion: maximum 

physical time 

    private MinimumInnerIterationStoppingCriterion stopCrit_MinInnerIter;    // Stopping 

Criterion: minimum inner iterations 

    private MonitorIterationStoppingCriterion stopCrit_Sdr;    // Stopping Criterion: Specific 

Dissipation Rate 

    private MonitorIterationStoppingCriterion stopCrit_SteadyShellGrowth;    // Stopping 

Criterion: indicates that the shell development has reached a steady-state 
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    private MonitorIterationStoppingCriterion stopCrit_Tke;    // Stopping Criterion: Turbulent 

Kinetic Energy 

    private MonitorIterationStoppingCriterion stopCrit_Xmomentum;    // Stopping Criterion: X-

momentum 

    private MonitorIterationStoppingCriterion stopCrit_Ymomentum;    // Stopping Criterion: Y-

momentum 

    private MonitorIterationStoppingCriterion stopCrit_Zmomentum;    // Stopping Criterion: Z-

momentum 

     

    private ReportManager manager_Report;    // Simulation Report Manager 

    private ExpressionReport report_ActivateAM_ShellThick;    // Report: indicates if shell 

thickness will support AM Refinement 

    private ExpressionReport report_ActivateAM_Temp;    // Report: indicates if temperature 

profile will support AM Refinement (0: OFF, 1: ON) 

    private PhysicsContinuumIterationReport report_Iteration;    // Report: simulated iterations 

    private ExpressionReport report_LTF_CellRatio;    // Report: ratio of the liquid-test-front cells 

meeting the core-remesh criteria 

    private ExpressionReport report_STF_CellRatio;    // Report: ratio of the solid-test-front cells 

meeting the shell-refine criteria 

     

    private int value_CurrentIteration;    // Report value: current iteration 

     

    private ScalarGlobalParameter GP_AMCoreRemesh_StopCritLimit;    // Global Parameter: 

upper limit for the Core Remesh Stopping Criterion 

    private ScalarGlobalParameter GP_AMShellRefine_StopCritLimit;    // Global Parameter: 

upper limit for the Shell Refine Stopping Criterion 

    private ScalarGlobalParameter GP_AMSolidTestFront_SolidFraction;    // Global Parameter: 

solid fraction used to define the 'Solid Test-Front' 

     

    private double value_AMCoreRemesh_StopCritLimit;    // Global Parameter: value of the 

upper limit for the Core Remesh Stopping Criterion 

    private double value_AMShellRefine_StopCritLimit;    // Global Parameter: value of the upper 

limit for the Shell Refine Stopping Criterion 

     

    private String dirName;    // Active directory location of sim file 

    private String simName;    // Active sim filename 

    private String simBasename;    // Base filename of active sim 

    private String simNameDescriptor;    // Filename descriptor attached in filename (follows 

basename) 

    private String opDescriptor;    // Operation descriptor attached to end of filename 

    private final String sep = System.getProperty("file.separator");    // system file separator 

     

    private String name_TimeModel;    // Identified type of Time-Model active in sim ("steady" or 

"implicit") 

    private String stopCrit_UpdateType;    // String indicating the Stop. Crit. settings to be used 

("initial", "meshed", or "normal") 
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    private boolean statusRUN = true;    // Boolean: macro execution should continue 

    private boolean statusActiveAM = false;    // Boolean: sufficient iterations have been 

conducted for the AM Procedure to be performed 

    private boolean statusInitialize = true;    // Boolean: sim should be Initialized before 'initial' 

RUN 

    private boolean statusInitialRUN = true;    // Boolean: 'Initial-Run' Stopping Criteria should be 

applied before RUN (( used for very first steady/transient RUN )) 

    private boolean statusERROR = false;    // Boolean: unrecoverable error has occurred and been 

recorded in the simulation log 

    private boolean statusNewMeshRUN = false;    // Boolean: 'New-Mesh' Stopping Criteria 

should be applied before RUN (( used for first RUN following an AM Remesh 

procedure )) 

    private int statusRemesh = 0;    // Integer-test: domain should be remeshed instead of RUN 

during the next WHILE-iteration (false=0,true=1:inf+) 

     

    private boolean test_Report_ActivateAM_ShellThick = false;    // (Report) Boolean: shell 

thickness will support AM Refinement 

    private boolean test_Report_ActivateAM_Temp = false;    // (Report) Boolean: temperature 

profile will support AM Refinement 

    private boolean test_Report_AMRefine = false;    // (Report) Boolean: AM_Refinement 

Criteria Reports are satisfied 

    private boolean test_StopCrit_ActivateAM_ShellThick = false;    // (StopCrit) Boolean: shell 

thickness will support AM Refinement 

    private boolean test_StopCrit_ActivateAM_Temp = false;    // (StopCrit) Boolean: 

temperature profile will support AM Refinement 

    private boolean test_StopCrit_AMRefine = false;    // (StopCrit) Boolean: AM_Refinement 

Criteria Stopping Criteria are satisfied 

    private boolean test_StopCrit_FixedSteps = false;    // (StopCrit) Boolean: Fixed-Steps 

Stopping Criteria is satisfied 

    private boolean test_StopCrit_FixedTime = false;    // (StopCrit) Boolean: Fixed-Physical-

Time Stopping Criteria is satisfied 

    private boolean test_StopCrit_MaxIters = false;    // (StopCrit) Boolean: Maximum-Iterations 

Stopping Criteria is satisfied 

    private boolean test_StopCrit_MaxTime = false;    // (StopCrit) Boolean: Maximum-Physical-

Time Stopping Criteria is satisfied 

    private boolean test_StopCrit_RESIDS = false;    // (StopCrit) Boolean: Stopping Criteria for 

the Residuals is satisfied 

    private boolean test_StopCrit_SteadyShellGrowth = false;    // (StopCrit) Boolean: shell 

development has reached a steady-state 

     

    private int n_Mesh = 0;    // Number of mesh constructions performed during macro procedure 
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//*--------------------------------------------------------------------------------------------------------------*// 

//*---------------------------------------* AMR PROCEDURE *-----------------------------------------*// 

//*--------------------------------------------------------------------------------------------------------------*// 

    @Override 

    public void execute() { 

        simulation_0 = getActiveSimulation(); 

         

        simVars();    // Initialize simulation variables 

        startUpOperations(); 

         

        if (statusRUN) { 

            autoSave(); 

             

            if (statusInitialize) { 

                if (opDescriptor.contains("@mesh")) { 

                    simulation_0.println("    '@mesh' descriptor identified at end of simulation 

filename...\n    --> Mesh Pipeline will be executed with 'initial mesh' settings 

prior to initializing solution."); 

                    meshPipeline(); 

                } 

 

                initializeSim(); 

            } 

             

            stopCritTests(); 

            fileOps(); 

        } 

         

    // LOOP OPERATIONS 

        while (statusRUN) { 

            switch (statusRemesh) { 

                case 0: 

                    switch (stopCrit_UpdateType) { 

                        case "initial": 

                            initialRUN(); 

                            break; 

                        case "amInactive": 

                            amInactiveRUN(); 

                            break; 

                        case "meshed": 

                            meshedRUN(); 

                            break; 

                        case "normal": 

                            normalRUN(); 

                            break; 

                    } 
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                    break; 

                default: 

                    meshPipeline(); 

                    break; 

            } 

             

            stopCritTests(); 

            fileOps(); 

        } 

         

        simulation_0.println("\n\nMacro execution complete!!!"); 

    } 

     

     

//*--------------------------------------------------------------------------------------------------------------*// 

//*--------------------------* INITIALIZE SIMULATION VARIABLES *---------------------------*// 

//*--------------------------------------------------------------------------------------------------------------*// 

    private void simVars() { 

        simulation_0.println("System Type:    " + System.getProperty("os.name")); 

        simulation_0.println("\nInitializing simulation-variables..."); 

        solution_0 = simulation_0.getSolution(); 

        iterator_0 = simulation_0.getSimulationIterator(); 

         

// SIMULATION TIME-MODEL 

        name_TimeModel = 

iterator_0.getRunnableSolver().getMenuPresentationName().toLowerCase() 

.split(" ",0)[0]; 

        simulation_0.println("        Solver Time-Model (Solver):    '" + name_TimeModel + "'"); 

         

// UNITS 

        units_s = simulation_0.getUnitsManager().getObject("s"); 

         

// AUTO-SAVE 

        autoSave_0 = iterator_0.getAutoSave(); 

        autoSave_Type = (( name_TimeModel.equals("steady") && 

( autoSave_Type.toUpperCase().equals("TIMESTEP") || 

autoSave_Type.toUpperCase().equals("DELTATIME") ) ) ? "ITERATION" : 

autoSave_Type.toUpperCase()); 

         

// SIMULATION LOG 

        starLog_0 = simulation_0.getStarLog(); 

         

// STOPPING CRITERIA 

        stopCrit_ActivateAM_ShellThick = ((MonitorIterationStoppingCriterion) 

simulation_0.getSolverStoppingCriterionManager().getSolverStoppingCriterion( 

"AM_Activation_Shell Thickness Criterion")); 
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        stopCrit_ActivateAM_Temp = ((MonitorIterationStoppingCriterion) 

simulation_0.getSolverStoppingCriterionManager().getSolverStoppingCriterion( 

"AM_Activation_Temperature Criterion")); 

        stopCrit_AMCoreRemesh = ((MonitorIterationStoppingCriterion) 

simulation_0.getSolverStoppingCriterionManager().getSolverStoppingCriterion( 

"AM_Core Remesh Criterion")); 

        stopCrit_AMShellRefine = ((MonitorIterationStoppingCriterion) 

simulation_0.getSolverStoppingCriterionManager().getSolverStoppingCriterion( 

"AM_Shell Refine Criterion")); 

        stopCrit_Continuity = ((MonitorIterationStoppingCriterion) 

simulation_0.getSolverStoppingCriterionManager().getSolverStoppingCriterion( 

"Continuity Criterion")); 

        stopCrit_Energy = ((MonitorIterationStoppingCriterion) 

simulation_0.getSolverStoppingCriterionManager().getSolverStoppingCriterion( 

"Energy Criterion")); 

        stopCrit_FixedSteps = ((FixedStepsStoppingCriterion) 

simulation_0.getSolverStoppingCriterionManager().getSolverStoppingCriterion( 

"Fixed Steps")); 

        stopCrit_FixedTime = ((FixedPhysicalTimeStoppingCriterion) 

simulation_0.getSolverStoppingCriterionManager().getSolverStoppingCriterion( 

"Fixed Physical Time")); 

        stopCrit_MaxInnerIter = ((InnerIterationStoppingCriterion) 

simulation_0.getSolverStoppingCriterionManager().getSolverStoppingCriterion( 

"Maximum Inner Iterations")); 

        stopCrit_MaxIters = ((StepStoppingCriterion) 

simulation_0.getSolverStoppingCriterionManager().getSolverStoppingCriterion( 

"Maximum Steps")); 

        stopCrit_MaxTime = ((PhysicalTimeStoppingCriterion) 

simulation_0.getSolverStoppingCriterionManager().getSolverStoppingCriterion( 

"Maximum Physical Time")); 

        stopCrit_MinInnerIter = ((MinimumInnerIterationStoppingCriterion) 

simulation_0.getSolverStoppingCriterionManager().getSolverStoppingCriterion( 

"Minimum Inner Iterations")); 

        stopCrit_Sdr = ((MonitorIterationStoppingCriterion) 

simulation_0.getSolverStoppingCriterionManager().getSolverStoppingCriterion( 

"Sdr Criterion")); 

        stopCrit_SteadyShellGrowth = ((MonitorIterationStoppingCriterion) 

simulation_0.getSolverStoppingCriterionManager().getSolverStoppingCriterion( 

"AM_Steady-State Shell Growth Criterion")); 

        stopCrit_Tke = ((MonitorIterationStoppingCriterion) 

simulation_0.getSolverStoppingCriterionManager().getSolverStoppingCriterion( 

"Tke Criterion")); 

        stopCrit_Xmomentum = ((MonitorIterationStoppingCriterion) 

simulation_0.getSolverStoppingCriterionManager().getSolverStoppingCriterion( 

"X-momentum Criterion")); 
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        stopCrit_Ymomentum = ((MonitorIterationStoppingCriterion) 

simulation_0.getSolverStoppingCriterionManager().getSolverStoppingCriterion( 

"Y-momentum Criterion")); 

        stopCrit_Zmomentum = ((MonitorIterationStoppingCriterion) 

simulation_0.getSolverStoppingCriterionManager().getSolverStoppingCriterion( 

"Z-momentum Criterion")); 

         

// REPORTS 

        manager_Report = simulation_0.getReportManager(); 

    // ITERATION 

        int count_iterReports = 

manager_Report.getObjectsOf(PhysicsContinuumIterationReport.class).size(); 

        if (count_iterReports < 1) { 

            simulation_0.println("\nNo existing Iteration Reports identified...\nGenerating new " 

+ "Iteration Report..."); 

            report_Iteration = 

manager_Report.createReport(PhysicsContinuumIterationReport.class); 

        } else { 

            report_Iteration = 

manager_Report.getObjectsOf(PhysicsContinuumIterationReport.class).get(0); 

        } 

        value_CurrentIteration = report_Iteration.getValue(); 

    // AM ACTIVATION: SHELL THICKNESS 

        report_ActivateAM_ShellThick = ((ExpressionReport) 

manager_Report.getReport("Expression - Max Shell Thickness_NF1")); 

    // AM ACTIVATION: TEMPERATURE 

        report_ActivateAM_Temp = ((ExpressionReport) manager_Report.getReport("Expression" 

+ " - AM_Activation_Temperature")); 

    // CELL-COUNT RATIOS 

        report_LTF_CellRatio =    ((ExpressionReport) manager_Report.getReport("Expression - " 

+ "AM_Core Remesh Fraction")); 

        report_STF_CellRatio = ((ExpressionReport) manager_Report.getReport("Expression - " 

+ "AM_Shell Refine Fraction")); 

         

// GLOBAL PARAMETERS 

        GP_AMCoreRemesh_StopCritLimit = ((ScalarGlobalParameter) 

simulation_0.get(GlobalParameterManager.class).getObject("AM_CoreRemesh_" 

+ "StopCritLimit")); 

        GP_AMShellRefine_StopCritLimit = ((ScalarGlobalParameter) 

simulation_0.get(GlobalParameterManager.class).getObject("AM_ShellRefine_" 

+ "StopCritLimit")); 

        GP_AMSolidTestFront_SolidFraction = ((ScalarGlobalParameter) 

simulation_0.get(GlobalParameterManager.class).getObject("AM_SolidTestFront" 

+ "_SolidFraction")); 

        GP_AMSolidTestFront_SolidFraction.getQuantity().setValue( 

solidFraction_SolidTestFront); 
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        // Global Parameters: Values 

        value_AMCoreRemesh_StopCritLimit = 

Double.valueOf(GP_AMCoreRemesh_StopCritLimit.getExpression().toString());    

// AM_CORE REMESH STOPPING CRITERION LIMIT 

        value_AMShellRefine_StopCritLimit = 

Double.valueOf(GP_AMShellRefine_StopCritLimit.getExpression().toString());    

// AM_SHELL REFINE STOPPING CRITERION LIMIT 

         

// AM ACTIVATION 

        if (( ((use_ActivateAM_ShellThick) ? 1 : 0) + ((use_ActivateAM_Temp) ? 1 : 0)  ) > 1) { 

            use_ActivateAM_ShellThick = true; 

            use_ActivateAM_Temp = false; 

        } 

         

// FILE/DIRECTORY INFORMATION 

        dirName = simulation_0.getSessionDir(); 

        simName = simulation_0.getPresentationName(); 

        simBasename = simName.split("@",0)[0]; 

        simNameDescriptor = ((simName.split("@",0).length > 1) ? 

simName.substring(simName.indexOf("@")) : ""); 

        opDescriptor = ((simName.split("@",0).length > 1) ? 

simName.substring(simName.lastIndexOf("@")) : ""); 

         

        simulation_0.println("    FILE/DIRECTORY INFORMATION"); 

        simulation_0.println("        dirName:                     " + dirName); 

        simulation_0.println("        simName:                     " + simName); 

        simulation_0.println("        simBasename:                 " + simBasename); 

        simulation_0.println("        simNameDescriptor:         " + simNameDescriptor); 

    } 

     

     

//*--------------------------------------------------------------------------------------------------------------*// 

//*------------------------------* MACRO START-UP OPERATIONS *------------------------------*// 

//*--------------------------------------------------------------------------------------------------------------*// 

    private void startUpOperations() { 

        simulation_0.println("\nPerforming macro start-up operations..."); 

         

        test_StopCrit_MaxIters = ( name_TimeModel.equals("steady") && 

(iterator_0.getCurrentIteration() >= maxIters) ); 

        test_StopCrit_MaxTime = ( name_TimeModel.equals("implicit") && 

((iterator_0.getCurrentTimeLevel()*timeStep) >= maxTime) ); 

         

// STATUS TEST: EXISTING ERROR 

        simulation_0.println("    STATUS TEST:    EXISTING ERROR"); 

        if ( starLog_0.hasNonRecoverableError() || starLog_0.isSavedAfterError() || 

simName.contains("@ERROR") ) { 
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            simulation_0.println("\n\n    !!!!! WARNING !!!!!\n\n    An 'Error' occurrence was " 

+ "detected to have occurred during a previous execution of this simulation file!" 

+ "\n    --> Simulation will be terminated without attempting to RUN."); 

            statusERROR = true; 

            statusRUN = false; 

            statusInitialize = false; 

             

        } else { 

    // STATUS TEST: INITIALIZE SIM 

            simulation_0.println("    STATUS TEST:    INITIALIZE-SIM"); 

            if (simName.matches(".+@initial.*")) { 

                value_CurrentIteration = 0; 

                test_StopCrit_MaxIters = false; 

                test_StopCrit_MaxTime = false; 

                simulation_0.println("    '@initialize' descriptor identified in simulation filename...\n" 

+ "--> Solution history will be cleared and simulation will be initialized before " 

+ "RUN.\n    --> '@initialize' Descriptor to be removed from filename."); 

                 

            } else { 

                statusInitialize = false; 

                fixedIters_Initial = fixedIters_Meshed; 

                innerIters_Initial = innerIters_Normal; 

                simulation_0.println("    '@initialize' descriptor not found in the simulation filename." 

+ "\n--> Simulation will be continued from existing solution."); 

                 

                if (test_StopCrit_MaxIters || test_StopCrit_MaxTime) { 

                    statusRUN = false; 

                    simulation_0.println("\n\n    !!!!! ALERT !!!!!\n\n    Current Iterations/Physical-" 

+ "Time exceeds upper-limit value specified by user for the Stopping " 

+ "Criteria."+ "\n    --> Simulation will not be able to continue with current" 

+ " settings.\n    --> Aborting simulation..."); 

                } else if ( simNameDescriptor.contains("@MaxIters") || 

simNameDescriptor.contains("@MaxTime") ) { 

                    simulation_0.println("\n\n    !!!!! ALERT !!!!!\n\n    The current filename contains" 

+ " either the '@MaxIters' or '@MaxTime' descriptor - indicating that the " 

+ "simulation met or exceeded the corresponding stopping criteria during" 

+ "\n     a previous RUN, however, that Stopping Criteria is no longer " 

+ "satisfied under the new settings.\n\n    --> The 'flagged' descriptor will " 

+ "be removed from the filename and the simulation will be RUN."); 

                     

                // SAVE SIMULATION WITH UPDATED FILENAME 

                    saveProgress(); 

                     

                } else { 

            // STATUS TEST: MESHED SIM 

                    simulation_0.println("\n    STATUS TEST:    MESHED-SIM"); 
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                    if (simName.endsWith("@meshed")) { 

                        statusNewMeshRUN = true; 

                        simulation_0.println("        'Meshed' descriptor identified in simulation filename" 

+ "\n        --> Simulation was last saved after mesh construction."); 

                    } else { 

                        simulation_0.println("        'Meshed' descriptor not found in simulation " 

+ "filename."); 

                    } 

                     

                    simulation_0.println("        statusExistingMesh:    " + statusNewMeshRUN); 

                } 

            } 

        } 

    } 

     

     

//*--------------------------------------------------------------------------------------------------------------*// 

//*------------------------------------* AUTOSAVE SETTINGS *---------------------------------------*// 

//*--------------------------------------------------------------------------------------------------------------*// 

    private void autoSave() { 

        simulation_0.println("\nApplying Auto-Save settings..."); 

         

        StarUpdate starUpdate_0 = autoSave_0.getStarUpdate(); 

        autoSave_0.setMaxAutosavedFiles(autoSave_MaxFiles); 

        autoSave_0.setAutoSaveBatch(true); 

        autoSave_0.setAutoSaveMesh(true); 

        autoSave_0.setCheckpoint(false); 

        autoSave_0.setCheckpointFile("CHECKPOINT"); 

        autoSave_0.setSeparator("@"); 

        autoSave_0.setFormatWidth(autoSave_nDigits); 

        starUpdate_0.setEnabled(true); 

         

        switch (autoSave_Type) { 

            case "ITERATION": 

                starUpdate_0.getUpdateModeOption().setSelected(StarUpdateModeOption 

.Type.ITERATION); 

                IterationUpdateFrequency iterationUpdateFrequency_0 = 

starUpdate_0.getIterationUpdateFrequency(); 

                iterationUpdateFrequency_0.setIterations(autoSave_Frequency_Iters); 

                iterationUpdateFrequency_0.setStart(0); 

                break; 

            case "TIMESTEP": 

                starUpdate_0.getUpdateModeOption().setSelected(StarUpdateModeOption 

.Type.TIMESTEP); 

                TimeStepUpdateFrequency timeStepUpdateFrequency_0 = 

starUpdate_0.getTimeStepUpdateFrequency(); 
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                timeStepUpdateFrequency_0.setTimeSteps(autoSave_Frequency_TimeSteps); 

                timeStepUpdateFrequency_0.setStart(0); 

                break; 

            case "DELTATIME": 

                autoSave_0.setFormatWidth(autoSave_nDigits - 1); 

                starUpdate_0.getUpdateModeOption().setSelected(StarUpdateModeOption 

.Type.DELTATIME); 

                DeltaTimeUpdateFrequency deltaTimeUpdateFrequency_0 = 

starUpdate_0.getDeltaTimeUpdateFrequency(); 

                deltaTimeUpdateFrequency_0.setDeltaTime(String.valueOf( 

autoSave_Frequency_DeltaTime), units_s); 

                deltaTimeUpdateFrequency_0.setStopTime(0.0, units_s); 

                deltaTimeUpdateFrequency_0.setStartTime(0.0, units_s); 

                break; 

        } 

    } 

     

     

//*--------------------------------------------------------------------------------------------------------------*// 

//*-----------------------------------* INITIALIZE SOLUTION *--------------------------------------*// 

//*--------------------------------------------------------------------------------------------------------------*// 

    private void initializeSim() { 

        simulation_0.println("\n\nInitializing simulation..."); 

         

// CLEAR/INITIALIZE SOLUTION 

        solution_0.clearSolution(); 

        solution_0.initializeSolution(); 

         

// RESET VALUES 

        value_CurrentIteration = 0; 

        test_StopCrit_MaxIters = false; 

        test_StopCrit_MaxTime = false; 

        starLog_0.setLog(""); 

         

// SAVE 'RUN-STATE' FILE-VERSION 

        simulation_0.println("\n    Updating simulation filename - all descriptors will be " 

+ "removed."); 

        simulation_0.saveState(dirName + sep + simBasename + ".sim"); 

         

    // UPDATE SIMNAME 

        simName = simulation_0.getPresentationName(); 

        simNameDescriptor = ((simName.split("@",0).length > 1) ? 

simName.substring(simName.indexOf("@")) : ""); 

        opDescriptor = ((simName.split("@",0).length > 1) ? 

simName.substring(simName.lastIndexOf("@")) : ""); 

        statusInitialize = false; 
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        statusInitialRUN = true; 

    } 

     

     

//*--------------------------------------------------------------------------------------------------------------*// 

//*---------------------------------* STOPPING-CRITERIA TESTS *---------------------------------*// 

//*--------------------------------------------------------------------------------------------------------------*// 

        private void stopCritTests() { 

                simulation_0.println("\n\nConducting tests of current Stopping Criteria..."); 

                 

// UPDATE STATISTICS OUTPUT-VALUES 

                value_CurrentIteration = report_Iteration.getValue(); 

                 

// REPORT 'ENABLED'/'SATISFIED' TESTS 

                test_Report_ActivateAM_ShellThick = ( use_ActivateAM_ShellThick && 

(report_ActivateAM_ShellThick.getReportMonitorValue() > 0.0025) ); 

                test_Report_ActivateAM_Temp = ( use_ActivateAM_Temp && 

(report_ActivateAM_Temp.getReportMonitorValue() > 0.5) ); 

                test_Report_AMRefine = ( (report_LTF_CellRatio.getReportMonitorValue() > 

value_AMCoreRemesh_StopCritLimit) || 

(report_STF_CellRatio.getReportMonitorValue() > 

value_AMShellRefine_StopCritLimit) ); 

                 

// STOPPING CRITERIA 'ENABLED'/'SATISFIED' TESTS 

                Collection <SolverStoppingCriterion> stopCrit_Collection = 

simulation_0.getSolverStoppingCriterionManager().getObjects(); 

                 

                if (stopCrit_Collection.size() > 0) { 

                        simulation_0.println("    IDENTIFIED 'TRIGGERED' STOPPING CRITERIA"); 

                        String[] stopCrit_SatisfiedNames = new String[stopCrit_Collection.size()]; 

                        int nSatisfied = -1; 

                        for (SolverStoppingCriterion sc: stopCrit_Collection) { 

                                if ( (sc.getBoolean("IsUsed")) && (sc.getBoolean("IsSatisfied")) ) { 

                                        nSatisfied++; 

                                        stopCrit_SatisfiedNames[nSatisfied] = sc.getMenuPresentationName(); 

                                        simulation_0.println("    " + sc.getMenuPresentationName()); 

                                } 

                        } 

                         

        // 'TEST'-VARIABLES 

                        test_StopCrit_ActivateAM_ShellThick = ( use_ActivateAM_ShellThick&& 

Arrays.stream(stopCrit_SatisfiedNames).anyMatch( 

"AM_Activation_Shell Thickness Criterion"::equals) ); 

                        test_StopCrit_ActivateAM_Temp = ( use_ActivateAM_Temp && 

Arrays.stream(stopCrit_SatisfiedNames).anyMatch( 

"AM_Activation_Temperature Criterion"::equals) ); 
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                        test_StopCrit_AMRefine = ( Arrays.stream(stopCrit_SatisfiedNames).anyMatch( 

"AM_Core Remesh Criterion"::equals) || 

Arrays.stream(stopCrit_SatisfiedNames).anyMatch( 

"AM_Shell Refine Criterion"::equals) ); 

                        test_StopCrit_FixedSteps = Arrays.stream(stopCrit_SatisfiedNames).anyMatch( 

"Fixed Steps"::equals); 

                        test_StopCrit_FixedTime = Arrays.stream(stopCrit_SatisfiedNames).anyMatch( 

"Fixed Physical Time"::equals); 

                        test_StopCrit_MaxIters = Arrays.stream(stopCrit_SatisfiedNames).anyMatch( 

"Maximum Steps"::equals); 

                        test_StopCrit_MaxTime = Arrays.stream(stopCrit_SatisfiedNames).anyMatch( 

"Maximum Physical Time"::equals); 

                        test_StopCrit_RESIDS = ( Arrays.stream(stopCrit_SatisfiedNames).anyMatch( 

"Continuity Criterion"::equals)  

&& Arrays.stream(stopCrit_SatisfiedNames).anyMatch( 

"X-momentum Criterion"::equals)  

&& Arrays.stream(stopCrit_SatisfiedNames).anyMatch( 

"Y-momentum Criterion"::equals)  

&& Arrays.stream(stopCrit_SatisfiedNames).anyMatch( 

"Z-momentum Criterion"::equals)  

&& Arrays.stream(stopCrit_SatisfiedNames).anyMatch( 

"Tke Criterion"::equals)  

&& Arrays.stream(stopCrit_SatisfiedNames).anyMatch( 

"Sdr Criterion"::equals)  

&& Arrays.stream(stopCrit_SatisfiedNames).anyMatch( 

"Energy Criterion"::equals) ); 

                        test_StopCrit_SteadyShellGrowth = ( use_StopCrit_SteadyShellGrowth && 

Arrays.stream(stopCrit_SatisfiedNames).anyMatch( 

"AM_Steady-State Shell Growth Criterion"::equals) ); 

                } 

                 

// OPERATION STATUS-CHECKS 

                simulation_0.println("\n    Status-Update Checks"); 

                if ( test_StopCrit_MaxIters || test_StopCrit_MaxTime || ( test_StopCrit_RESIDS && 

name_TimeModel.equals("steady") ) || test_StopCrit_SteadyShellGrowth ) { 

                        statusRUN = false; 

                } else { 

                        if ( !statusActiveAM ) { 

                                statusInitialRUN = (!test_StopCrit_RESIDS && ( value_CurrentIteration < 

(( name_TimeModel.equals("steady") ) ? fixedIters_Initial  

: innerIters_Initial) )); 

                                 

                                statusActiveAM = !statusInitialRUN && ( (use_ActivateAM_ShellThick)  

? (test_StopCrit_ActivateAM_ShellThick  

|| test_Report_ActivateAM_ShellThick) : ((use_ActivateAM_Temp)  
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? (test_StopCrit_ActivateAM_Temp  

|| test_Report_ActivateAM_Temp) : true) ); 

                        } 

                         

        // REMESH STATUS-CHECK 

                        if ( statusActiveAM && !statusNewMeshRUN && (test_StopCrit_AMRefine  

|| test_Report_AMRefine) ) { 

                                statusRemesh++; 

                        } 

                         

        // STOPPING CRITERIA UPDATE-TYPE 

                        if ( statusInitialRUN ) { 

                                stopCrit_UpdateType = "initial"; 

                        } else if (!statusActiveAM) { 

                                stopCrit_UpdateType = "amInactive"; 

                        } else if (statusNewMeshRUN) { 

                                stopCrit_UpdateType = "meshed"; 

                        } else { 

                                stopCrit_UpdateType = "normal"; 

                        } 

 

                        simulation_0.println("        statusRUN:                            " + statusRUN); 

                        simulation_0.println("        statusInitialRUN:             " + statusInitialRUN); 

                        simulation_0.println("        statusActiveAM:             " + statusInitialRUN); 

                        simulation_0.println("        statusRemesh:                     " + statusRemesh); 

                        simulation_0.println("        statusNewMeshRUN:             "  

+ statusNewMeshRUN); 

                        simulation_0.println("        stopCrit_UpdateType:        " + stopCrit_UpdateType); 

                } 

        } 

     

     

//*--------------------------------------------------------------------------------------------------------------*// 

//*-----------------------------------* FILE-TEST OPERATIONS *------------------------------------*// 

//*--------------------------------------------------------------------------------------------------------------*// 

    private void fileOps() {    // To be performed immediately after 'stopCritTests()' 

        simulation_0.println("\n\nEvaluating simulation file-version."); 

         

        if ( statusERROR || starLog_0.hasNonRecoverableError() || starLog_0.isSavedAfterError()  

|| simName.contains("@ERROR") ) { 

            statusERROR = true; 

            statusRUN = false; 

            statusInitialize = false; 

        } else if ((name_TimeModel.equals("steady"))  

? simNameDescriptor.contains("@MaxIters")  

: simNameDescriptor.contains("@MaxTime")) { 
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            statusRUN = false; 

        } else if (statusActiveAM) { 

            if ( opDescriptor.matches("^@[0-9]+((\\.[0-9]+)?[e][-,+][0-9]{2})?$")  

&& !statusNewMeshRUN && (statusRemesh > 0) ) { 

                saveFileVersion("@AMRefineTriggered"); 

            } 

            switch (opDescriptor) { 

                case "@AMRefineTriggered": 

                    saveProgress(); 

                    break; 

            } 

        } 

         

// UPDATE SIMULATION NAME 

        simName = simulation_0.getPresentationName(); 

        simNameDescriptor = ((simName.split("@",0).length > 1)  

? simName.substring(simName.indexOf("@")) : ""); 

        opDescriptor = ((simName.split("@",0).length > 1)  

? simName.substring(simName.lastIndexOf("@")) : ""); 

    } 

     

     

//*--------------------------------------------------------------------------------------------------------------*// 

//*---------------------------------* INITIAL RUN PROCEDURE *-----------------------------------*// 

//*--------------------------------------------------------------------------------------------------------------*// 

    private void initialRUN() { 

        simulation_0.println("\n\nINITIATING OPERATION:    'initialRUN()'"); 

         

// UPDATE STOPPING CRITERIA 

        stopCrit_Continuity.setIsUsed(true); 

        stopCrit_Energy.setIsUsed(true); 

        stopCrit_Sdr.setIsUsed(true); 

        stopCrit_SteadyShellGrowth.setIsUsed(false); 

        stopCrit_Tke.setIsUsed(true); 

        stopCrit_Xmomentum.setIsUsed(true); 

        stopCrit_Ymomentum.setIsUsed(true); 

        stopCrit_Zmomentum.setIsUsed(true); 

        simulation_0.println("\nStopping Criteria Activation:\n    stopCrit_AMShellRefine:    true" 

+ "\n    stopCrit_Energy:             true\n    stopCrit_Sdr:                true" 

+ "\n    stopCrit_Xmomentum:        true\n    stopCrit_Ymomentum:        true" 

+ "\n    stopCrit_Zmomentum:        true"); 

         

    // AM CRITERION 

        stopCrit_ActivateAM_ShellThick.setIsUsed(false); 

        stopCrit_ActivateAM_Temp.setIsUsed(false); 

        stopCrit_AMCoreRemesh.setIsUsed(false); 
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        stopCrit_AMShellRefine.setIsUsed(false); 

        simulation_0.println("    stopCrit_ActivateAM_ShellThick:    "  

+ stopCrit_ActivateAM_ShellThick.getIsUsed() + "\n    " 

+ "stopCrit_ActivateAM_Temp:    " + stopCrit_ActivateAM_Temp.getIsUsed()  

+ "\n    stopCrit_AMCoreRemesh:    " + stopCrit_AMCoreRemesh.getIsUsed()  

+ "\n    stopCrit_AMShellRefine:    " + stopCrit_AMShellRefine.getIsUsed()); 

         

    // TIME-MODEL CRITERION 

        //Steady-state 

        stopCrit_FixedSteps.setIsUsed(false); 

        stopCrit_MaxIters.setIsUsed(false); 

        stopCrit_MaxIters.setMaximumNumberSteps(maxIters); 

        simulation_0.println("    stopCrit_FixedSteps:    " + stopCrit_FixedSteps.getIsUsed() 

                + "\n    stopCrit_MaxIters:    " + stopCrit_MaxIters.getIsUsed()); 

        if (stopCrit_MaxIters.getIsUsed()) { 

            simulation_0.println("    --> Value set to:    "  

+ stopCrit_MaxIters.getMaximumNumberSteps()); 

        } 

         

        // Transient 

        stopCrit_FixedTime.setIsUsed(true); 

        stopCrit_FixedTime.getFixedPhysicalTime().setValue(timeStep); 

        stopCrit_MaxInnerIter.setIsUsed(true); 

        stopCrit_MaxInnerIter.setMaximumNumberInnerIterations(innerIters_Initial); 

        stopCrit_MaxTime.setIsUsed(true); 

        stopCrit_MaxTime.getMaximumTime().setValue(maxTime); 

        stopCrit_MinInnerIter.setIsUsed(false); 

        stopCrit_MinInnerIter.setMinimumNumberInnerIterations(10); 

        simulation_0.println("    stopCrit_FixedTime:    " + stopCrit_FixedTime.getIsUsed()); 

        if (stopCrit_FixedTime.getIsUsed()) { 

            simulation_0.println("    --> Value set to:    "  

+ stopCrit_FixedTime.getFixedPhysicalTime().getSIValue()); 

        } 

        simulation_0.println("    stopCrit_MaxInnerIter:    " + stopCrit_MaxInnerIter.getIsUsed()); 

        if (stopCrit_MaxInnerIter.getIsUsed()) { 

            simulation_0.println("    --> Value set to:    "  

+ stopCrit_MaxInnerIter.getMaximumNumberInnerIterations()); 

        } 

        simulation_0.println("    stopCrit_MaxTime:    " + stopCrit_MaxTime.getIsUsed()); 

        if (stopCrit_MaxTime.getIsUsed()) { 

            simulation_0.println("    --> Value set to:    "  

+ stopCrit_MaxTime.getMaximumTime().getSIValue()); 

        } 

         

// 'INITIAL' RUN 

        iterator_0.run(); 
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// SAVE PROGRESS 

        saveProgress(); 

    } 

     

     

//*--------------------------------------------------------------------------------------------------------------*// 

//*----------------------------* INACTIVE-AMR RUN PROCEDURE *-----------------------------*// 

//*--------------------------------------------------------------------------------------------------------------*// 

    private void amInactiveRUN() { 

        simulation_0.println("\n\nINITIATING OPERATION:    'amInactiveRUN()'"); 

         

// UPDATE STOPPING CRITERIA 

    // RESID CRITERION 

        stopCrit_Continuity.setIsUsed(true); 

        stopCrit_Energy.setIsUsed(true); 

        stopCrit_Sdr.setIsUsed(true); 

        stopCrit_SteadyShellGrowth.setIsUsed(false); 

        stopCrit_Tke.setIsUsed(true); 

        stopCrit_Xmomentum.setIsUsed(true); 

        stopCrit_Ymomentum.setIsUsed(true); 

        stopCrit_Zmomentum.setIsUsed(true); 

        simulation_0.println("\nStopping Criteria Activation:\n    stopCrit_AMShellRefine:    true" 

+ "\n    stopCrit_Energy:             true\n    stopCrit_Sdr:                true\n    " 

+ "stopCrit_SteadyShellGrowth:        " + stopCrit_SteadyShellGrowth.getIsUsed() 

+ "\n    stopCrit_Tke:                true\n    stopCrit_Xmomentum:        true\n    " 

+ "stopCrit_Ymomentum:        true\n    stopCrit_Zmomentum:        true"); 

         

    // AM CRITERION 

        stopCrit_ActivateAM_ShellThick.setIsUsed(true && use_ActivateAM_ShellThick); 

        stopCrit_ActivateAM_Temp.setIsUsed(true && use_ActivateAM_Temp); 

        stopCrit_AMCoreRemesh.setIsUsed(false); 

        stopCrit_AMShellRefine.setIsUsed(false); 

        simulation_0.println("    stopCrit_ActivateAM_ShellThick:    "  

+ stopCrit_ActivateAM_ShellThick.getIsUsed()  

+ "\n    stopCrit_ActivateAM_Temp:    "  

+ stopCrit_ActivateAM_Temp.getIsUsed() + "\n    stopCrit_AMCoreRemesh:    "  

+ stopCrit_AMCoreRemesh.getIsUsed() + "\n    stopCrit_AMShellRefine:    "  

+ stopCrit_AMShellRefine.getIsUsed()); 

         

    // TIME-MODEL CRITERION 

        //Steady-state 

        stopCrit_FixedSteps.setIsUsed(false); 

        stopCrit_MaxIters.setIsUsed(false); 

        stopCrit_MaxIters.setMaximumNumberSteps(maxIters); 

        simulation_0.println("    stopCrit_FixedSteps:    " + stopCrit_FixedSteps.getIsUsed()  

+ "\n    stopCrit_MaxIters:    " + stopCrit_MaxIters.getIsUsed()); 
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        if (stopCrit_MaxIters.getIsUsed()) { 

            simulation_0.println("    --> Value set to:    "  

+ stopCrit_MaxIters.getMaximumNumberSteps()); 

        } 

         

        // Transient 

        stopCrit_FixedTime.setIsUsed(false); 

        stopCrit_FixedTime.getFixedPhysicalTime().setValue(timeStep); 

        stopCrit_MaxInnerIter.setIsUsed(true); 

        stopCrit_MaxInnerIter.setMaximumNumberInnerIterations(innerIters_Normal); 

        stopCrit_MaxTime.setIsUsed(true); 

        stopCrit_MaxTime.getMaximumTime().setValue(maxTime); 

        stopCrit_MinInnerIter.setIsUsed(false); 

        stopCrit_MinInnerIter.setMinimumNumberInnerIterations(10); 

        simulation_0.println("    stopCrit_FixedTime:    " + stopCrit_FixedTime.getIsUsed()); 

        if (stopCrit_FixedTime.getIsUsed()) { 

            simulation_0.println("    --> Value set to:    "  

+ stopCrit_FixedTime.getFixedPhysicalTime().getSIValue()); 

        } 

        simulation_0.println("    stopCrit_MaxInnerIter:    " + stopCrit_MaxInnerIter.getIsUsed()); 

        if (stopCrit_MaxInnerIter.getIsUsed()) { 

            simulation_0.println("    --> Value set to:    "  

+ stopCrit_MaxInnerIter.getMaximumNumberInnerIterations()); 

        } 

        simulation_0.println("    stopCrit_MaxTime:    " + stopCrit_MaxTime.getIsUsed()); 

        if (stopCrit_MaxTime.getIsUsed()) { 

            simulation_0.println("    --> Value set to:    "  

+ stopCrit_MaxTime.getMaximumTime().getSIValue()); 

        } 

         

// 'AM INACTIVE' RUN 

        iterator_0.run(); 

         

// SAVE PROGRESS 

        saveProgress(); 

    } 

     

     

//*--------------------------------------------------------------------------------------------------------------*// 

//*--------------------------------* NORMAL RUN PROCEDURE *-----------------------------------*// 

//*--------------------------------------------------------------------------------------------------------------*// 

    private void normalRUN() { 

        simulation_0.println("\n\nINITIATING OPERATION:    'normalRUN()'"); 

         

// UPDATE STOPPING CRITERIA 

    // RESID CRITERION 
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        stopCrit_Continuity.setIsUsed(true); 

        stopCrit_Energy.setIsUsed(true); 

        stopCrit_Sdr.setIsUsed(true); 

        stopCrit_SteadyShellGrowth.setIsUsed(false); 

        stopCrit_Tke.setIsUsed(true); 

        stopCrit_Xmomentum.setIsUsed(true); 

        stopCrit_Ymomentum.setIsUsed(true); 

        stopCrit_Zmomentum.setIsUsed(true); 

        simulation_0.println("\nStopping Criteria Activation:\n    stopCrit_AMShellRefine:    true" 

+ "\n    stopCrit_Energy:             true\n    stopCrit_Sdr:                true\n    " 

+ "stopCrit_SteadyShellGrowth:        " + stopCrit_SteadyShellGrowth.getIsUsed() 

+ "\n    stopCrit_Tke:                true\n    stopCrit_Xmomentum:        true\n    " 

+ "stopCrit_Ymomentum:        true\n    stopCrit_Zmomentum:        true"); 

         

    // AM CRITERION 

        stopCrit_ActivateAM_ShellThick.setIsUsed(false); 

        stopCrit_ActivateAM_Temp.setIsUsed(false); 

        stopCrit_AMCoreRemesh.setIsUsed(true); 

        stopCrit_AMShellRefine.setIsUsed(true); 

        simulation_0.println("    stopCrit_ActivateAM_ShellThick:    "  

+ stopCrit_ActivateAM_ShellThick.getIsUsed()  

+ "\n    stopCrit_ActivateAM_Temp:    "  

+ stopCrit_ActivateAM_Temp.getIsUsed() + "\n    stopCrit_AMCoreRemesh:    "  

+ stopCrit_AMCoreRemesh.getIsUsed() + "\n    stopCrit_AMShellRefine:    "  

+ stopCrit_AMShellRefine.getIsUsed()); 

         

    // TIME-MODEL CRITERION 

        //Steady-state 

        stopCrit_FixedSteps.setIsUsed(false); 

        stopCrit_MaxIters.setIsUsed(false); 

        stopCrit_MaxIters.setMaximumNumberSteps(maxIters); 

        simulation_0.println("    stopCrit_FixedSteps:    " + stopCrit_FixedSteps.getIsUsed()  

+ "\n    stopCrit_MaxIters:    " + stopCrit_MaxIters.getIsUsed()); 

        if (stopCrit_MaxIters.getIsUsed()) { 

            simulation_0.println("    --> Value set to:    "  

+ stopCrit_MaxIters.getMaximumNumberSteps()); 

        } 

         

        // Transient 

        stopCrit_FixedTime.setIsUsed(false); 

        stopCrit_FixedTime.getFixedPhysicalTime().setValue(timeStep); 

        stopCrit_MaxInnerIter.setIsUsed(true); 

        stopCrit_MaxInnerIter.setMaximumNumberInnerIterations(innerIters_Normal); 

        stopCrit_MaxTime.setIsUsed(true); 

        stopCrit_MaxTime.getMaximumTime().setValue(maxTime); 

        stopCrit_MinInnerIter.setIsUsed(false); 
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        stopCrit_MinInnerIter.setMinimumNumberInnerIterations(10); 

        simulation_0.println("    stopCrit_FixedTime:    " + stopCrit_FixedTime.getIsUsed()); 

        if (stopCrit_FixedTime.getIsUsed()) { 

            simulation_0.println("    --> Value set to:    "  

+ stopCrit_FixedTime.getFixedPhysicalTime().getSIValue()); 

        } 

        simulation_0.println("    stopCrit_MaxInnerIter:    " + stopCrit_MaxInnerIter.getIsUsed()); 

        if (stopCrit_MaxInnerIter.getIsUsed()) { 

            simulation_0.println("    --> Value set to:    "  

+ stopCrit_MaxInnerIter.getMaximumNumberInnerIterations()); 

        } 

        simulation_0.println("    stopCrit_MaxTime:    " + stopCrit_MaxTime.getIsUsed()); 

        if (stopCrit_MaxTime.getIsUsed()) { 

            simulation_0.println("    --> Value set to:    "  

+ stopCrit_MaxTime.getMaximumTime().getSIValue()); 

        } 

         

// 'NORMAL' RUN 

        iterator_0.run(); 

         

// SAVE PROGRESS 

        saveProgress(); 

    } 

     

     

//*--------------------------------------------------------------------------------------------------------------*// 

//*-------------------------------* NEW-MESH RUN PROCEDURE *--------------------------------*// 

//*--------------------------------------------------------------------------------------------------------------*// 

    private void meshedRUN() { 

        simulation_0.println("\n\nINITIATING OPERATION:    'meshedRUN()'"); 

         

// UPDATE STOPPING CRITERIA 

    // RESID CRITERION 

        stopCrit_Continuity.setIsUsed(true); 

        stopCrit_Energy.setIsUsed(true); 

        stopCrit_Sdr.setIsUsed(true); 

        stopCrit_SteadyShellGrowth.setIsUsed(false); 

        stopCrit_Tke.setIsUsed(true); 

        stopCrit_Xmomentum.setIsUsed(true); 

        stopCrit_Ymomentum.setIsUsed(true); 

        stopCrit_Zmomentum.setIsUsed(true); 

        simulation_0.println("\nStopping Criteria Activation:\n    stopCrit_AMShellRefine:    true" 

+ "\n    stopCrit_Energy:             true\n    stopCrit_Sdr:                true\n    " 

+ "stopCrit_SteadyShellGrowth:        " + stopCrit_SteadyShellGrowth.getIsUsed() 

+ "\n    stopCrit_Tke:                true\n    stopCrit_Xmomentum:        true\n    " 

+ "stopCrit_Ymomentum:        true\n    stopCrit_Zmomentum:        true"); 
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    // AM CRITERION 

        stopCrit_ActivateAM_ShellThick.setIsUsed(false); 

        stopCrit_ActivateAM_Temp.setIsUsed(false); 

        stopCrit_AMCoreRemesh.setIsUsed(false); 

        stopCrit_AMShellRefine.setIsUsed(false); 

        simulation_0.println("    stopCrit_ActivateAM_ShellThick:    "  

+ stopCrit_ActivateAM_ShellThick.getIsUsed() 

+ "\n    stopCrit_ActivateAM_Temp:    "  

+ stopCrit_ActivateAM_Temp.getIsUsed() 

+ "\n    stopCrit_AMCoreRemesh:    " + stopCrit_AMCoreRemesh.getIsUsed() 

+ "\n    stopCrit_AMShellRefine:    " + stopCrit_AMShellRefine.getIsUsed()); 

         

    // TIME-MODEL CRITERION 

        //Steady-state 

        stopCrit_FixedSteps.setIsUsed(false); 

        stopCrit_MaxIters.setIsUsed(false); 

        stopCrit_MaxIters.setMaximumNumberSteps(maxIters); 

        simulation_0.println("    stopCrit_FixedSteps:    " + stopCrit_FixedSteps.getIsUsed() 

+ "\n    stopCrit_MaxIters:    " + stopCrit_MaxIters.getIsUsed()); 

        if (stopCrit_MaxIters.getIsUsed()) { 

            simulation_0.println("    --> Value set to:    "  

+ stopCrit_MaxIters.getMaximumNumberSteps()); 

        } 

         

        // Transient 

        stopCrit_FixedTime.setIsUsed(true); 

        stopCrit_FixedTime.getFixedPhysicalTime().setValue(timeStep); 

        stopCrit_MaxInnerIter.setIsUsed(true); 

        stopCrit_MaxInnerIter.setMaximumNumberInnerIterations(innerIters_Meshed); 

        stopCrit_MaxTime.setIsUsed(true); 

        stopCrit_MaxTime.getMaximumTime().setValue(maxTime); 

        stopCrit_MinInnerIter.setIsUsed(false); 

        stopCrit_MinInnerIter.setMinimumNumberInnerIterations(10); 

        simulation_0.println("    stopCrit_FixedTime:    " + stopCrit_FixedTime.getIsUsed()); 

        if (stopCrit_FixedTime.getIsUsed()) { 

            simulation_0.println("    --> Value set to:    "  

+ stopCrit_FixedTime.getFixedPhysicalTime().getSIValue()); 

        } 

        simulation_0.println("    stopCrit_MaxInnerIter:    " + stopCrit_MaxInnerIter.getIsUsed()); 

        if (stopCrit_MaxInnerIter.getIsUsed()) { 

            simulation_0.println("    --> Value set to:    "  

+ stopCrit_MaxInnerIter.getMaximumNumberInnerIterations()); 

        } 

        simulation_0.println("    stopCrit_MaxTime:    " + stopCrit_MaxTime.getIsUsed()); 

        if (stopCrit_MaxTime.getIsUsed()) { 
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            simulation_0.println("    --> Value set to:    "  

+ stopCrit_MaxTime.getMaximumTime().getSIValue()); 

        } 

         

// 'MESHED' RUN 

        iterator_0.run(); 

         

// SAVE PROGRESS 

        saveProgress(); 

         

        statusNewMeshRUN = false; 

    } 

     

     

//*--------------------------------------------------------------------------------------------------------------*// 

//*--------------------------------* MESH PIPELINE EXECUTION *--------------------------------*// 

//*--------------------------------------------------------------------------------------------------------------*// 

    private void meshPipeline() { 

        simulation_0.println("\n\nInitiating AM Refinement procedure..."); 

         

// UPDATE GLOBAL PARAMETERS 

        // MESH_Shell_MinThickness_Factor 

        ScalarGlobalParameter scalarGlobalParameter_0 = ((ScalarGlobalParameter) 

simulation_0.get(GlobalParameterManager.class).getObject( 

"MESH_Shell_MinThickness_Factor")); 

        if (statusActiveAM) { 

            scalarGlobalParameter_0.getQuantity().setValue(3.0); 

        } else { 

            scalarGlobalParameter_0.getQuantity().setValue(4.0); 

        } 

         

// UPDATE GEOMETRY PARTS 

        // REFINE_Initial_Block Thickness (NF1) 

        SolidModelPart solidModelPart_0 = ((SolidModelPart) 

simulation_0.get(SimulationPartManager.class).getPart( 

"REFINE_Initial_Block Thickness (NF1)")); 

        simulation_0.get(SimulationPartManager.class).updateParts(new NeoObjectVector( 

new Object[] {solidModelPart_0})); 

         

    // UPDATE EXTRACTED THRESHOLD-PARTS 

        ExtractedPart extractedPart_0 = ((ExtractedPart) 

simulation_0.get(SimulationPartManager.class).getPart( 

"Threshold - Core Remesh Cells")); 

        ExtractedPart extractedPart_1 = ((ExtractedPart) 

simulation_0.get(SimulationPartManager.class).getPart( 

"Threshold - Shell Refinement Cells")); 



 

 

100 

        simulation_0.get(SimulationPartManager.class).updateParts(new NeoObjectVector( 

new Object[] {extractedPart_0})); 

        simulation_0.get(SimulationPartManager.class).updateParts(new NeoObjectVector( 

new Object[] {extractedPart_1})); 

         

// BOUNDED SHAPE OPERATION 

        BoundedShapeCreatingOperation boundedShapeCreatingOperation_0 = 

((BoundedShapeCreatingOperation) simulation_0 

.get(MeshOperationManager.class).getObject( 

"Bounded Shape - Refinement Volume_NF1")); 

        if (n_Mesh < 1) { 

            BoxShapeInflationControl boxShapeInflationControl_0 = 

boundedShapeCreatingOperation_0.getBoundedShapeValuesManager() 

.get(BoxShapeInflationControl.class); 

            boxShapeInflationControl_0.setInflationMode(BoxShapeInflationControl 

.InflationMode.INDIVIDUAL_OFFSETS); 

 

            BoxShapeIndividualOffsetsInflation boxShapeIndividualOffsetsInflation_0 = 

boxShapeInflationControl_0.getIndividualInflationOffsets(); 

            boxShapeIndividualOffsetsInflation_0.getPXOffset() 

.setDefinition("4*${MESH_Shell_Core_Thickness}");  // 0.005 meters 

            boxShapeIndividualOffsetsInflation_0.getPYOffset() 

.setDefinition("4*${MESH_Mold_Core_Size}");  // 0.020 meters 

            boxShapeIndividualOffsetsInflation_0.getPZOffset() 

.setDefinition("2*${MESH_Mold_Core_Size}");  // 0.010 meters 

            boxShapeIndividualOffsetsInflation_0.getNXOffset() 

.setDefinition("${MESH_Trans_PLShell_LayerThickness}");  // 0.000875 meters 

            boxShapeIndividualOffsetsInflation_0.getNYOffset() 

.setDefinition("4*${MESH_Mold_Core_Size}");  // 0.020 meters 

            boxShapeIndividualOffsetsInflation_0.getNZOffset() 

.setDefinition("2*${MESH_Mold_Core_Size}");  // 0.010 meters 

        } 

         

        boundedShapeCreatingOperation_0.getInputGeometryObjects().setQuery(null); 

        boundedShapeCreatingOperation_0.getInputGeometryObjects() 

.setObjects(extractedPart_0, extractedPart_1); 

         

    // EXECUTE OPERATION 

        boundedShapeCreatingOperation_0.execute(); 

         

// SURFACE WRAPPER OPERATION 

        SurfaceWrapperAutoMeshOperation surfaceWrapperAutoMeshOperation_0 = 

((SurfaceWrapperAutoMeshOperation) simulation_0 

.get(MeshOperationManager.class).getObject("Surface Wrapper_NF1")); 

    // EXECUTE OPERATION 

        surfaceWrapperAutoMeshOperation_0.execute(); 



 

 

101 

// AUTOMATED MESH OPERATION 

    // REFERENCED GEOMETRY 

        MeshOperationPart meshOperationPart_0 = ((MeshOperationPart) simulation_0 

.get(SimulationPartManager.class) 

.getPart("Bounded Shape - Refinement Volume_NF1")); 

        MeshOperationPart meshOperationPart_1 = ((MeshOperationPart) simulation_0 

.get(SimulationPartManager.class).getPart("Surface Wrapper_NF1")); 

         

    // AUTOMATED MESHER 

        AutoMeshOperation autoMeshOperation_0 = ((AutoMeshOperation) simulation_0 

.get(MeshOperationManager.class).getObject("Automated Mesh")); 

        if (use_ParallelMesher) { 

            autoMeshOperation_0.getMesherParallelModeOption() 

.setSelected(MesherParallelModeOption.Type.PARALLEL); 

        } else { 

            autoMeshOperation_0.getMesherParallelModeOption() 

.setSelected(MesherParallelModeOption.Type.SERIAL); 

        } 

        autoMeshOperation_0.setLocalSurfaceMeshing(statusActiveAM); 

         

    // LOCAL REFINEMENT: VOLUME EXTENT 

        VolumeLocalMeshingExtent volumeLocalMeshingExtent_0 = 

((VolumeLocalMeshingExtent) autoMeshOperation_0 

.getLocalMeshingExtents().getObject("Volume Extent_NF1")); 

        volumeLocalMeshingExtent_0.getLocalMeshingObjects().setQuery(null); 

        volumeLocalMeshingExtent_0.getLocalMeshingObjects() 

.setObjects(meshOperationPart_0); 

        volumeLocalMeshingExtent_0.setEnableExtent(statusActiveAM); 

         

    // CUSTOM CONTROL: NF1 SHELL REFINEMENT 

        VolumeCustomMeshControl volumeCustomMeshControl_0 = 

((VolumeCustomMeshControl) autoMeshOperation_0 

.getCustomMeshControls().getObject("Vol: Refine Dynamic Shell - NF")); 

        volumeCustomMeshControl_0.getGeometryObjects().setQuery(null); 

        volumeCustomMeshControl_0.getGeometryObjects().setObjects(meshOperationPart_1); 

        volumeCustomMeshControl_0.setEnableControl(statusActiveAM); 

         

    // EXECUTE OPERATION 

        autoMeshOperation_0.execute(); 

        n_Mesh++; 

         

         

        // 'ADAPTIVE MESH' 

        if (statusActiveAM) { 

            saveFileVersion("@meshed"); 
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        // STATUS UPDATES 

            statusRemesh = 0; 

            statusNewMeshRUN = true; 

        } else {// 'CONTROL' 

          simulation_0.saveState(dirName + sep + simBasename + ".sim"); 

        } 

         

    } 

     

     

//*--------------------------------------------------------------------------------------------------------------*// 

//*---------------------------* FILENAME PROGRESS-DESCRIPTOR *---------------------------*// 

//*--------------------------------------------------------------------------------------------------------------*// 

    private String progressDescriptor() { 

        String descriptor;    // String to be returned string 

        String sProg = ""; 

        String sExp = "";    // String representation of the exponent 

        String zeros = "";    // String of 'placeholder' zeros to fill out the filename descriptor  

        int nChars = autoSave_nDigits + ((autoSave_Type.equals("DELTATIME")) ? 1 : 0);     

// Number of sim 'progress' characters in descriptor 

        int nDigits;    // Number of 'placeholder' zeros to remove 

        int nZeros = nChars;    // Starting number of 'placeholder' zeros 

        for (int i=0; i < nZeros; i++) { 

            zeros += "0"; 

        } 

         

        switch (autoSave_Type) { 

            case "ITERATION": int iter = iterator_0.getCurrentIteration(); 

                sProg = String.valueOf(iter); 

                break; 

            case "TIMESTEP": 

                int step = iterator_0.getCurrentTimeLevel(); 

                sProg = String.valueOf(step); 

                break; 

            case "DELTATIME": 

                double t = solution_0.getPhysicalTime(); 

                sExp += "e"; 

                int power = 0; 

                int z = 0; 

            // Obtain the scientific notation for the physical time  

                if (t < 1) { 

                    sExp += "-"; 

                    while (z < 1) { 

                        if ((10*t) > 1) { 

                            z = 2; 

                        } else { 
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                            t *= 10; 

                            power--; 

                        } 

                    } 

                } else { 

                    sExp += "+"; 

                    if (t > 10) { 

                        while (z < 1) { 

                            if ((t/10) < 1) { 

                                z = 2; 

                            } else { 

                                t /= 10; 

                                power++; 

                            } 

                        } 

                    } 

                } 

                sExp += ((Math.abs(power) < 10) ? "0" : "") + String.valueOf(Math.abs(power)); 

                sProg = String.valueOf(t); 

                break; 

        } 

        nDigits = sProg.length(); 

        zeros = zeros.substring(nDigits);    // Remove excess zeros 

        descriptor = ((autoSave_Type.equals("DELTATIME")) ? (sProg + zeros) : (zeros + sProg)); 

         

        if (descriptor.length() > nChars) { 

            descriptor = ((autoSave_Type.equals("DELTATIME"))  

? descriptor.substring(0, (descriptor.length() - 1)) : descriptor.substring(1)); 

        } 

         

        return ("@" + descriptor + sExp); 

    } 

     

     

//*--------------------------------------------------------------------------------------------------------------*// 

//*-----------------------* SAVE CURRENT SIMULATION PROGRESS *------------------------*// 

//*--------------------------------------------------------------------------------------------------------------*// 

// SAVE SIMULATION AT CURRENT ITER/TIME-STEP/TIME 

    private void saveProgress() { 

        String desc = progressDescriptor(); 

        simulation_0.saveState(dirName + sep + simBasename + desc + ".sim"); 

         

    // UPDATE SIMNAME 

        simName = simulation_0.getPresentationName(); 

        simNameDescriptor = ((simName.split("@",0).length > 1)  

? simName.substring(simName.indexOf("@")) : ""); 
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        opDescriptor = ((simName.split("@",0).length > 1)  

? simName.substring(simName.lastIndexOf("@")) : ""); 

    } 

     

     

//*--------------------------------------------------------------------------------------------------------------*// 

//*---------------* SAVE FILE-VERSION WITH IRREGULAR DESCRIPTOR *---------------*// 

//*--------------------------------------------------------------------------------------------------------------*// 

    private void saveFileVersion(String version) { 

        String desc = progressDescriptor(); 

        simulation_0.saveState(dirName + sep + simBasename + desc + version + ".sim"); 

         

    // UPDATE SIMNAME 

        simName = simulation_0.getPresentationName(); 

        simNameDescriptor = ((simName.split("@",0).length > 1)  

? simName.substring(simName.indexOf("@")) : ""); 

        opDescriptor = ((simName.split("@",0).length > 1)  

? simName.substring(simName.lastIndexOf("@")) : ""); 

    } 

     

}  // END OF MACRO 
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