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ABSTRACT 

Malicious URLs pose serious cybersecurity threats to the Internet users. It is critical to 

detect malicious URLs so that they could be blocked from user access. In the past few years, 

several techniques have been proposed to differentiate malicious URLs from benign ones with the 

help of machine learning. Machine learning algorithms learn trends and patterns in a dataset and 

use them to identify any anomalies. In this work, we attempt to find generic features for detecting 

malicious URLs by analyzing two publicly available malicious URL datasets. In order to achieve 

this task, we identify a list of substantial features that can be used to classify all types of malicious 

URLs. Then, we select the most significant lexical features by using Chi-Square and ANOVA 

based statistical tests. The effectiveness of these feature sets is then tested by using a combination 

of single and ensemble machine learning algorithms. We build a machine learning based real-time 

malicious URL detection system as a web service to detect malicious URLs in a browser. We 

implement a chrome extension that intercepts a browser’s URL requests and sends them to web 

service for analysis. We implement the web service as well that classifies a URL as benign or 

malicious using the saved ML model. We also evaluate the performance of our web service to test 

whether the service is scalable. 
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1. INTRODUCTION 

The Internet as we know today has grown rapidly in recent years. It has become an essential 

part of our daily lives in today’s digital world. It is the way to interact and aggregate abundance of 

information from different sectors around the globe including government, industry, academia, 

and private organizations. The Internet is still in continuous growth with the penetration of 

smartphones. Because of the growth and technological developments, Internet users can get 

information from any part of the globe. As a result, they are being exposed to information from 

different known or unknown sources that lead to various adverse phenomena such as cybercrimes 

and cyberbullies. 

1.1 Background and Motivation 

According to Internet World Status, the number of Internet users has enormously increased 

from 558 million in 2002 to 4.4 billion in 2019, which is approximately 58.6% of today’s world 

population. As shown in Figure 1.1 that Asia alone has 55% of the world population and 

contributed to 54.2% of the Internet growth with around 2.36 billion users alone.  The same source 

explained that Internet usage has grown by 1157% worldwide since 2000, whereas North America 

has the largest proportion of the Internet users of 89.4% holding 4.7% of the world population 

surpasses Europe by 1.7%, which has 10.7% world population [1].  

 

Another report from “We Are Social” reveals that Internet users are growing by an average 

of more than one million every day [2]. The key factor of this increasing growth is the current 

usage of mobile devices and social media platforms. According to the report, there are 5.11 billion 

mobile users, 4.39 billion Internet users, and 3.48 billion social media users as of 2019. Internet 

user’s growth has accelerated by 366 million new users with a rate of more than 11 users per 

second compared to the last year. One factor that contributed to this increasing growth of the 

Internet users is the use of social media platforms. The worldwide social media users have grown 

to almost 3.5 billion at the start of 2019.  
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Figure 1.2 shows Internet world penetration rate that indicates that each continent has 

progressive Internet penetration rate, which resulted from the popularity of social media platforms 

and simplicity of web applications. The unprecedented growth of websites, social media and kinds 

of information available through them have attracted cybercriminals to perform malicious 

activities. These activities have become so frequent in the last few years that resulted in a huge 

increase of malicious websites with the continuous change of malware development and 

deployment scenarios. According to Forrester’s report, 95% of the data breaches are from three 

popular industries: government, retail, and technology [45]. They are popular because they contain 

the top-level personal identification information (PII).  

 

     

Figure 1.1.  World Internet Usage and Population Statistics [1] 
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Figure 1.2. Internet World Penetration Rates by Geography [1] 
 

Clark School at the University of Maryland reported that there is a constant adversarial 

attack on computers with Internet access every 39 seconds on an average [3]. Due to this 

continuous rate of cyberattacks, most of the small and medium scale businesses are exposed to 

security risks and data breaches as they do not usually consider all the security risks and are under 

the radar of adversaries. According to Kelser Corporation, 65% of the cyber-attacks are aimed at 

small and medium-scale businesses [46]. Healthcare, education, and energy sectors are the prime 

targets for cyber adversaries. For example, the patients’ PII data at healthcare units can be used for 

insurance fraud or identity theft. Education sector including colleges and universities hold PPI 

ranging from social security numbers to addresses to bank information. Similarly, the energy sector 

uses technology and communication devices that can be hacked to put the economy of a country 

at risk.  

 

Another sector that is expanding rapidly along with security risks is the Internet of Things 

(IoT). It includes interconnected networks of small devices and home appliances such as connected 
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 security devices, cameras, alarms, and cars. IoT has made many things simpler and easier. It is 

estimated by Symantec Internet Security that around 200 billion devices will be connected by the 

end of 2020 [4]. As these devices are interconnected and they communicate with each other via 

Internet, there is always a risk of data breach and network attacks. Other factors that make these 

devices more vulnerable to cyber-attacks are insufficient authentication and authorization, insecure 

web interface, network access, mobile interface, and cloud interface.  

 

Malicious websites are designed and created by cybercriminals to access or manipulate 

user information in an unauthorized manner. According to HelpNet Security, 40% of the malicious 

URLs were found in good domains where the attackers attempt to run scripts by injecting their 

malicious code in those legitimate domains [35]. The attack happens when the victim visits those 

legitimate websites containing suspicious activities such as drive-by-download, malware, 

spamming, and phishing.    

1.2 Types of Malicious URLs 

A malicious URL is designed to perform malicious activities such as scams, theft, attack, 

and fraud. There are several ways to deceive the victims using phishing, spamming, spoofing, 

malware, and website defacement. 

 

1. Malware: Malware word is a concatenation of two words: malicious and software [13]. Its 

purpose is to run a piece of code in victims’ computer to obtain unauthorized access or 

infect files. Virus, Worm, Spyware, Trojan, and Ransomware are different types of 

malware. They are commonly considered to be associated with computer software or file 

system, but they can be used to contaminate corporate websites and cloud systems. Website 

malware is used in defacement to replaces the original content of a website by any message 

or activity causing threat to the organization and its consumers. Malvertising is another 

trick used by cybercriminals to replace the original content of advertising with their ads. 

These ads could redirect website visitors to some blacklisted domains. According to 

SiteLock Website Security, websites experience an average of 58 attacks per day and 

search engines are blacklisting only 17% of the infected websites [5].  
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2. Spoofing: Spoofing is another trick used by cybercriminals to let the victim believe that 

they are communicating with a trusted source [14]. The most common spoofing techniques 

are website and email spoofing. In website spoofing, the attacker usually replicates the 

exact design and functionality of legitimate websites in their servers. The goal of these 

websites is to get victim’s personal information such as username, password, and 

credit/debit card information by making them believe that they are visiting a trusted 

website. Email spoofing is one of the most common types of attacks as cybercriminals 

usually send emails along with malicious attachments such as malicious files. According 

to CAIDA study Internet users and organizations encounter 30,000 spoofing attacks every 

day [6]. Another report by Proofpoint shows that on an average organization were targeted 

by 18.5 attacks per quarter in 2017 however this average has been increased to 28 in the 

first quarter of 2018 [47]. The same source explains another significant 25% increase in 

email fraud attacks in organizations.  

3. Phishing: Phishing is commonly achieved through deceptive emails to gain personal 

information. Unlike spoofing, phishing emails usually provide links to a fraudulent website 

that requires end-user information and other sensitive data [15]. According to Webroot 1.5 

million new phishing are created each month [36].  Another report from Retruster states 

that phishing attempts have grown to 65% in the last year whereas 76% of the businesses 

are being affected by phishing attacks when compared to last year [37]. 

4. Defacement: Website defacement involves altering the original content or appearance of a 

website with malicious content [38]. Hackers usually break into the web server and replace 

the hosted website with their malicious one. This could cause phishing, code injection and 

cross-site scripting. Common targets can be government and corporate websites.  

1.3 Machine Learning in Cybersecurity 

Machine learning has improved dramatically over the past two decades in several domains.  

It has been using in computer vision, speech recognition, natural language processing, and 

robotics. Modern research shows that it is progressing very fast and capable to learn and trainthe 

model parameters using past data and can predict or classify new data based on its trained metrices. 

With its ability to detect patterns in data through, it has been increasingly used to uncover cyber 

threats by automatically predicting them before making any havoc.  
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Microsoft’s Windows defender advanced threat protection is a cybersecurity platform by 

Microsoft which is used for prevention protection, breach detection, and automated investigation. 

It stopped Trojan malware in early 2018 which was an attempt to install malicious cryptocurrency 

miners on hundreds of thousands of computers [39]. It restricted this attack with the help of 

numerous layers of machine learning algorithmic structure that detect and prevent perceived 

attacks. It utilizes cloud AI with numerous levels of machine learning algorithms. In the same way 

Chronicle [40], a company owned by Alphabet is a cybersecurity company that analyzes a large 

amount of data and uses machine learning for threat detection and malicious pattern recognition. 

SQRRL [41], acquired by Amazon, has designed a platform that searched across the network 

traffic to find code which can escape the safety measures in place. It uses machine learning to 

create action maps that acts as a visual representation of a computer network. 

 

Machine learning can be more effective when classification or prediction needed in real-

time by reducing the amount of time spent on routine tasks. It can make a task automated, more 

simple, proactive, less expensive and far more effective and reliable. It helps to learn the pattern 

by using previous rich data which represents many potential scenarios.  According to [32], security 

devices that provides real-time alerts and events based on signature-based anomaly detection has 

some limitations. It may not detect unknown attacks or malicious activity and detection and 

protection mechanism is typically limited and not shared. This was a common problem for 

organizations on how to detect and identify a zero-day attack. These types of attacks are more 

challenging to detect as they are slow and low. In these scenarios, machine learning methods show 

promising results with the capability to adapt to new trends and respond to new techniques and 

attacks while continuing to address the known attacks. James et al. in their work shows the leverage 

of using machine learning when compared to other traditional methods [32].  

1.4 Thesis Outline 

The thesis is organized in the following manner: 

• In Chapter 1, we discussed the problem and motivation of this study. 

• In Chapter 2, we provide literature survey for the previous work done related to this 

domain. 
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• Chapter 3 discusses our methodology to identify generic features. We also discuss the 

performance results with generic features. 

• In Chapter 4, we discuss the real-time URL detection system and how we achieve and 

classify URL with high throughput. 

• Chapter 5 concludes the thesis and provides an insight for future work. 
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 LITERATURE SURVEY  

In this chapter, we discuss the previous and existing works on malicious URL detection 

with different approaches. Mohammad et al. have used lexical features for malicious URL 

detection [5]. The authors obtained features from raw URL dataset without performing any 

network calls or host information. They mainly used lexical features from URL due to speed, and 

lightweight computation.  They classified different types of attacks and created a separate feature 

for each type of attack. A total of 79 features were extracted from the UNB dataset with a total of 

1,65,366 records. They used correlation-based feature selection (CFS) and information gain for 

feature selection. A few machine learning algorithms such as KNN, Random Forest, and C4.5 were 

used to classify the URLs. In addition, they also discussed different obfuscation techniques as an 

extension to previous work by using AttributeSelection with InfoGainAttributeEval as an attribute 

evaluator.  They covered a wide range of attacks (phishing. malware, spam, defacement) being 

performed by maliciousURLs. They reported 97% accuracy for multi-class classification with 

Random Forest, whereas 99% accuracy for binary classification. 

 

Faeze Asdaghi developed an effective way of discovering web spam through a feature 

selection technique called Smart-BT [9].  They created four-set features named as content-based, 

link-based, and transformed link-based, and All-Features. They proposed a backward elimination 

approach using IBA (Index of Balance Accuracy) values of chi-square, information gain, along 

with the gain ratio to identify the useful features and their impact on various ML algorithms. The 

major purpose of IBA is to introduce a weight measure that shows better classification in an 

unbalanced dataset, especially in the minority class as they contain low data samples and 

information. They have analyzed the impact of dimensionality reduction on classification accuracy 

of an unbalanced dataset by using the WEBSPAM-UK2007 dataset with a predefined set of 

features and studied the impact of dimensionality reduction on increasing classification 

performance. They have used several machine learning algorithms with different IBA values, 

features set and methods and provided a detailed comparison report.  They reported improvement 

in the classification results with Smart-BT compared to the well-known feature selection 

techniques such as Ranker, Forward Selection, and Genetic Algorithm. Their method also shows 

efficiency in low dimension dataset by selecting the near-optimal features.  
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Hung et al. developed URLNet, a Convolutional Neural-Network (CNN) based deep 

learning framework that uses characters and words of the URL string to capture the semantic 

information to classify malicious and benign URLs [10]. Their work showed a promising way of 

URL Detection through deep learning. They discussed the limitation of features obtained by using 

bag-of-words and statistical features like the length of different segments in URL. They used CNN 

to get useful structural information for the URLs with two different datasets generated by 

characters and words of URLs. Word Level CNN is like character level CNN except that the 

convolutional operators are applied to words. The URLs dataset was collected from VirusTotal. 

They created the features set using the entire training corpus with all the unique words as a 

dictionary. This method gives another way of classifying malicious URLs by catching several 

semantic information through the URLNet which existing methods based on bag-of-words features 

could not. It offers a significant jump in AUC over baseline.  

  

Ram et al. [11] are only considering phishing URLs and found a way to identify them using 

machine learning. They detected phishing attacks by using four different categories of features in 

their work. They used lexical, keyword, reputation, and search engine-based features on seven 

different ML classification algorithms. They reported an accuracy of 99.4% with 138 features 

while maintaining 0.5% of the false-positive and false-negative rate. Random forest classifier 

showed best results in most of the experiments. Apart from good results, there are some limitations 

to their work. They have used only one kind of dataset collected from PhishTank which may not 

contain the overall variation of phishing URLs. Second, search engine-based features will require 

some time to gather information as they require network calls whereas reputation-based features 

depend on blacklists and other historical statistics provided by third parties. 

 

Another successful attempt of detecting malicious URLs through domain and word 

segmentation was done by Wei Wang [12]. Their work shows the importance of word segmented 

features and how it improves the detection capability by emphasizing the most used words in 

malicious domains. In [12], authors created seven different range of lexical features based on 

characters, basics, top-level domains, log-likelihood, words, and their different combinations. 

Three experiments using balanced data, filtered cellular data, and unfiltered cellular data, were 

performed on seven combinations of feature set using Logistic regression with lasso penalty. 10-



 

18 

fold cross-validation was performed on training data and the largest value of the penalty parameter 

that gave Area Under the curve of one standard error was selected. To measure the effectiveness, 

area under the curve (AUC) and misclassification rate (MCR) were used. In their work, models 

which have used word segmentation significantly decreases the misclassification rates and 

increases the AUC rates by 10% compared to other models that did not use word segmentation. 

Their model also showed interpretable results that show which set of words attracts the victim to 

malicious sites. 

 

Guolin Tan designed MalFilter to detect malicious URLs in real-time [42]. Their work 

explores the malicious URL detection system by considering large-scale real-time networks. They 

have used server-based features, user-based features, URL based features and referral-based 

features. They have implemented three tiers of modular filtering system which comprises packet 

parser, training, and filtering. Packet parser is responsible for feature generation by parsing the 

header files of network packets. The training module performed best when to be used with non-

linear classifiers such as Adaboost. The filtering module is implemented on Spark on a cluster of 

26 nodes responsible for training and classification. Benning and suspicious URLs are separated 

with the help of the filtering module. The proposed system effectively reduces the load to an 

average of 28.99% while achieving the recall rate of approximately 90%.  

 

Kurt Thomas designed a real-time URL spam filtering scalable system capable to detect 

and differentiate between e-mails and twitter spam [43]. System flow of monarch comprises 

different modules including URL aggregation, feature collection, feature extraction, and 

classification. URL aggregation module aggregates URLs from two sources for training and testing 

purposes. Feature extraction module visits each URL through the Firefox web browser to collect 

the content including HTML, page links, JavaScript activities, and popup windows. Feature 

extraction module is responsible for converting raw features into features understood by the 

classification engine such as tokenizing URLs into binary features and HTML content conversion 

into a bag of words. The classification module is responsible for detecting and classifying the 

injected URLs. Two main algorithms were used for classification called Logistic Regression with 

L1-regularization and Stochastic Gradient Descent. To handle real-time traffic and scalability, 

Hadoop distribute file system and spark is used on Amazon EC2 double extra-large instances. The 
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results reveal that Monarch on cloud infrastructure can achieve a throughput of 638,000 URLs per 

day with an overall accuracy of 91% with 0.87% of false positives. 

 

Our approach of detecting malicious URLs is different as we attempt to identify generic 

features using different datasets. Machine learning algorithms either single or ensemble learners 

learn parameters by learning the patterns in the dataset. We have identified generic features that 

can work in different dataset holding different trends and patterns. Previous work by other 

researchers have used different datasets but did not focus on generic features. Similarly, our 

approach to real-time detection is different as it includes the complete cycle of request and 

response architecture where the source that generated the request waits for the response back from 

the server. Previous work on real-time detection has not mentioned the request-response 

architecture in detail as they were more focused on traffic flow and network filtering in real-time. 

For this purpose, we implemented and analyzed the request-response web service calls on client-

server architecture with the help of Google Chrome Extension.   
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 IDENTIFYING GENERIC FEATURES  

In order to find information on the Internet, we need to have an address or pointer to locate 

the information. The address points to a computer hosting information that can be physical or 

virtual. The IP address or hostname has been used widely as an address to those computers across 

the Internet. It is the mean of getting information and is used to identify the location of the resource. 

In contrast, URL contains other information along with the IP address or hostname such as protocol 

to be used, path, optional fragment identifier. Through URLs, we can visit a plethora of 

information by accessing different websites. URLs are also used in web services including 

application or cloud technology for data messaging through Internet. Web services have been 

widely used in the corporate sector nowadays because of the rapid improvements in architectural 

design and scaling. 

3.1 Overview of URL 

 
Figure 3.1.   Uniform Resource Locator (URL) [33] 

 

URL stands for Uniform Resource Locator also known as web address. It is a reference to 

a web resource that specifies resource location in a remote server. The resource could be a web 

page, text file, email, images, and database access. A URL has two main components known as 

protocol identifier and resource path. The protocol indicates which protocol is being used. The 

resource path consists of the IP address or domain/hostname. The protocol and resource can be 

identified in Fig 3.1. Path in URL consists of a sequence of path segments separated by a forward 

slash (/). The slashes in the URL are used to separate directory or filenames. URL may contain a 
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question mark (?) which represents an optional query for passing non-hierarchical data.  Its syntax 

is not well defined, but by convention is most often a sequence of attribute-value pairs separated 

by a delimiter.  

 

  In this work, we focus on identifying the most significant features that can give enough 

information to detect malicious URLs. Fig. 3.2 shows the detailed workflow for the model 

development of our malicious URL detection system. It consists of three stages. The first stage 

deals with data processing, along with feature creation and extraction. We use different statistical 

methods to identify the most significant features. The second stage is the optimization and tuning 

of various ML algorithms. This stage involves choosing a set of optimal hyper-parameters for each 

algorithm. Finally, a majority voting classifier is used to classify the URL into benign or malicious 

in the third stage. In the following subsections, we provide the details of our approach. 

 

 

Figure 3.2. Workflow of Malicious URL detection Model 

https://en.wikipedia.org/wiki/Attribute%E2%80%93value_pair
https://en.wikipedia.org/wiki/Delimiter
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3.2 Dataset Description 

We have used two publicly available datasets in our work. The first one is released by 

Mammun et al. [18], and the second one is available through the well-known online data science 

community platform, Kaggle [19]. We refer them as UNB and Kaggle datasets, respectively. In 

UNB dataset, the authors selected 1,65,366 URLs. There are 35,378 benign, 12,000 spam, 9,965 

phishing, 11,566 malware, and 96,457 defacement URLs in the dataset. They collected benign 

URLs from Alexa Top websites by removing the duplicate and domain-only URLs, whereas 

malicious URLs were collected from OpenPhish, DNS-BH, Zone-H, and WEBSPAM-UK2007. 

The Kaggle dataset contains 4,20,464 URLs in which 82% are benign, and 18% are malicious 

URLs. The dataset includes URLs from Phishtank, JWSPAMSPY, DNS-BH, and Majestic.  

3.3 Feature Engineering 

We created 106 lexical features for the URL classification by referring [18], [21], and [22]. 

There are 41 word-based features, 36 count-based features for alphanumeric characters, URL 

entropy, domain, host, path, parameters query and remaining 29 features includes special character 

count. Word-based features represent top words used by attackers for obfuscation and defacements 

like secure, webscr, login, ebaysiapi, signin, banking, confirm, and signon. Although authors in 

[5] considered the presence of alphanumeric characters as features, we have counted the frequency 

of each character that appears in the URL. Our derived features can be found at appendix A.  

 

We have used two scoring functions for feature selection, Chi-square [16] and ANOVA 

[17]. Chi-square is a statistical method that provides two types of statistical tests called “goodness 

of fit” and “test for independence.” In our case, we have used the latter one, which compares two 

variables and checks if they are related. If the target variable is independent of the feature, that 

feature can be discarded. ANOVA is known as Analysis of Variance. In statistics, the variance 

represents the data spread out as how far does any value varies from the mean value of the 

distribution. ANOVA can determine whether the mean of a certain group is different or the same 

with the help of F-Scores. F-Scores are the statistical F-test and represent the ratio of mean squares. 
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3.3.1 Chi-Square 

Chi-Square test is statistically used to measure the goodness of fit and independence test 

[16]. The goodness of fit is used to  know in a frequency how many cases fell into one category 

whereas the test of independence shows if there is any relation between the variables. The test of 

independence shows the relationship between the independent variables/features with the 

dependent variable or response feature. Through Chi-Square, we can check which features set are 

highly correlated and dependent on the response. Higher values of Chi-square show the 

independence of the hypothesis is incorrect and there is a high dependency between the 

label/response class and the tested feature. Any two variables can be observed by getting the 

observed count and expected count. Below equation 3.1 shows such deviation between the 

variables. 

𝑋𝑋𝑋𝑋2 =  �
(𝑂𝑂𝑖𝑖 − 𝐸𝐸𝑖𝑖)

𝐸𝐸𝑖𝑖
 

𝑚𝑚

𝑖𝑖=1

 

Equation 3.1 : Chi- Square equation [16] 
  

3.3.2 ANOVA 

ANOVA is a popular statistical method to analyze the variance in the dataset [17]. In 

machine learning, variance analysis gives information metrics through which we can determine 

whether the feature does a good job of accounting for variation in dependent variables.  Analysis 

of variance in features or group can be explained as  

𝐴𝐴𝐴𝐴𝑂𝑂𝐴𝐴𝐴𝐴 =  
∑ [∑ 𝑋𝑋𝑖𝑖𝑖𝑖

𝑛𝑛𝑗𝑗
𝑖𝑖=1 ]𝑘𝑘

𝑖𝑖=1

∑𝑛𝑛𝑖𝑖
 

Equation 3.2 : ANOVA equation [17] 
 

Where 𝑘𝑘 represents the number of features and 𝑛𝑛 represents 𝑖𝑖𝑡𝑡ℎ sample data of the dataset.  F-

values are used for variable ranking and can be applied sequentially to all the variables in order to 

discriminate according to the classes. ANOVA is based on F-test to estimate the degree of linear 

dependence between variables.  
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Figure 3.2 and 3.3 show the feature importance scores using both chi-Square and ANOVA 

on Kaggle and UNB datasets. We selected top 60 features from both datasets that show the highest 

feature score.  

3.3.3 Finalizing Common Features 

With the help of the above Chi-square & ANOVA feature scoring techniques, we finalize 

the most common significant features in the datasets. We applied scoring techniques one by one 

on each dataset to find top 60 significant features set. Then, we identified common features in all 

the top 60 significant features sets. We found 47 features that were available in all the sets. Figure 

3.4 and 3.5 shows the flow of the feature selection model whereas Table 3.1 lists finalized features 

after the feature selection process. Out of these 47 features, Features 1-4 show the presence of 

specific words in a URL. Feature 5-16 represents the frequency of specific symbols found in the 

URL. Feature 17-19 contain path, host, and URL length. The URL paths refers to the exact location 

of the file or asset, whereas the host represents the name or address of the webserver. Feature 20 

checks the presence of any number. Feature 21 checks the URL path extension. Path extension is 

used to check if the URL is trying to access or download any file with a specific extension, such 

as “.exe”, and “.zip.” Feature 22-46 represents the frequency of alphanumeric characters. Feature 

47 shows the entropy of query parameters. A query parameter is attached at the end of the URL 

that links to a specific action or file depending on the data being passed to the server. We have 

used Shannon’s Entropy which gives the information produced by the stochastic source of data. 

We then develop our ML-based malicious URL detection model with the help of these 47 selected 

features. 
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Figure 3.5. Feature Selection Model 
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Figure 3.6. Steps involved in Feature Selection Model 
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Table 3.1.  Finalized Selected Features 

# Feature Name Description 

1 Ebayisapi Check word presence 

2 getImage Check word presence 

3 Jpg Check word presence 

4 Log Check word presence 

5 Count_& Count ‘&’ symbol 

6 Count_/ Count ‘/’ symbol 

7  Count_@ Count ‘@’ symbol 

8 Count_dash Count ‘- ‘symbol 

9 Count_digits Count total digits in URL 

10 Count_equals Count ‘=’ symbol 

11 Count_letters Count total alphabetical letters 

12 Count_path_back_slash Count back slashes in URL path 

13 Count_path_dot Count dots in URL path 

14 Count_question  Count ‘?’ symbol 

15 Count_semi_column Count ‘;’ symbol 

16 Count_symbols Count total symbols in the URL 

17 Path_length Length of the URL path 

18 Host_length Length of the host name in URL 

19 URL_length  Length of the URL 

20 Is_number_in_host Check digits in the host name 

21 Path extension  Extension of the URL path 

22 Freq_0 Frequency of 0 

23 Freq_2 Frequency of 2 

24 Freq_3 Frequency of 3 

25 Freq_4 Frequency of 4 

26 Freq_5 Frequency of 5 

27 Freq_6 Frequency of 6 

28 Freq_7 Frequency of 7 
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Table 3.1. continued 

29 Freq_8 Frequency of 8 

30 Freq_9 Frequency of 9 

31 Freq_b Frequency of b 

32 Freq_d Frequency of d 

33 Freq_f Frequency of f 

34 Freq_g Frequency of g 

35 Freq_j Frequency of i 

36 Freq_l Frequency of l 

37 Freq_o Frequency of o 

38 Freq_p Frequency of p 

39 Freq_r Frequency of r 

40 Freq_s Frequency of s 

41 Freq_t Frequency of t 

42 Freq_u Frequency of u 

43 Freq_w Frequency of w 

44 Freq_x Frequency of x 

45 Freq_y Frequency of y 

46 Freq_z Frequency of z 

47 Entropy_query Entropy of query parameters 

3.4 Single & Ensemble Machine Learning (ML) Algorithms 

To develop the malicious URL detection model, we have used various machine learning 

algorithms including Logistic Regression (LR), K-Nearest Neighbor (KNN), Support Vector 

Machine (SVM), and ensemble learning algorithms. Fig 3.6 shows the detailed workflow for the 

model development of our malicious URL detection system. After identifying the common 

features, we split the data and used grid search for different machine learning algorithms for best 

optimal accuracy. Later, we applied the majority voting technique to get the best result from 

majority votes. 
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3.4.1 Single Machine Learning Algorithms 

K-Nearest Neighbor (KNN) 

KNN can be used for classification and regression [25]. It is a non-parametric method that 

uses distance as a metric to classify by a plurality vote of its K neighbors.  There are several ways 

to perform KNN. The three most popular methods for KNN are brute force, ball tree, and k-d tree. 

We have used all three algorithms in our case. Brute force is a tedious and time-consuming way 

of calculating the distance of each data sample in the data set whereas k-d and ball tree uses a tree 

data structure to further optimization.   

Support Vector Machine (SVM) 

A support vector machine is a supervised learning model used for classification and 

regression [26]. It classifies with the help of separating hyperplane between different groups of 

data. In SVM, data points can be treated as a p-dimensional vector and tries to find (p-1) 

dimensional hyperplane called linear classifier. Optimal results can be achieved by getting a 

hyperplane which has the largest separation called margin between the two classes. There are 

different kernel tricks in SVM which is used to transform the dataset from a lower dimension to a 

higher dimension in order to find the optimal hyperplane. We have used 4 different kernel tricks 

[27] such as Nystroem approx, Fourier approx, linear SVM and RBF kernel tricks. Fig 3.7 and 3.8 

classification accuracy tested on different SVM kernels and among all RBF kernel shows the best 

results for both datasets. 
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Figure 3.7. Different kernels of SVM using Kaggle dataset 

Figure 3.8.  Different kernels of SVM using UNB dataset 
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Logistic Regression 

Logistic regression is a famous ML algorithm which is very close to linear regression [48]. 

The term logistic is taken from the “Logit Function”. It predicts the outcome that can only have 

two values. It produces a logistic curve which is limited to value 0 and 1. Logit Function is used 

to get the values within the range of 0 and 1.  Logistic regression is best used for nonlinear decision 

boundaries. Equation 3.3 shows the formula where the curve is constructed using the natural 

logarithm of the odds of target variable. 

𝑝𝑝 =
1

(1 + 𝑒𝑒−(𝑏𝑏𝑜𝑜+𝑏𝑏1𝑥𝑥1+⋯+𝑏𝑏𝑛𝑛𝑥𝑥𝑛𝑛))

Equation 3.3. Logistic Regression [48] 

3.4.2 Ensemble Machine Learning Algorithms 

Ensemble learning is done by combining base learners of different machine algorithms. It 

combines several machine learning techniques to decrease variance and bias to improve 

classification performance [29]. In our work, we have used Bagging, Random Forest, Adaboost 

and Gradient Boosting. 

Bagging 

Bagging, an acronym for bootstrap aggregation, is used for stabilizing the accuracy by 

reducing the variance [44]. It is subclass of ensemble learning and can be used in both classification 

and regression. It consists of several weak learners trained in parallel and combines the individual 

results through the deterministic averaging method. It improves the stability of algorithm by 

improving accuracy and reducing variance. 

Random Forest 

A random forest algorithm can be used for classification as well as regression and consists 

of a multitude of decision trees. These decision trees work for a different random subset of a dataset 

and make predictions according to that specific dataset. The final prediction is done by obtaining 

the prediction of all individual trees and predict a class that gets most votes and such ensemble of 

decision trees is called Random Forest. In this way, the random forest can be grown very deep and 
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might learn irregular patterns that can overfit the training dataset. That is why averaging multiple 

decision trees give the results by reducing variance.  

AdaBoost 

AdaBoost short for “Adaptive Boosting” learn the weak learners sequentially in an 

adaptive way [31]. It tries to correct the errors of the previous stage. Each stage in boosting depends 

on the previous one iteratively. Unlike bagging that had each model run independently and then 

aggregates the output at the end, boosting works in team where each model run, dictates what 

features the next model will focus on.  

Extra-Trees 

This algorithm is like a random forest that uses a decision tree at the core. The main 

difference between Random forest and Extra Trees lies in the fact that, instead of computing 

optimal feature for the split, a random value is selected for the split.  

Voting Classifier 

Voting Classifier [30] also known as majority rule, itself is not a classifier or an algorithm 

but rather a wrapper for a set of different other classifiers that work in parallel and uses the majority 

Figure 3.9. Voting Classifier [34] 
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vote according to several strategies. It combines several algorithms and usually gives more 

accurate results than any individual algorithm. It implements hard and soft voting. Hard voting is 

about predicting the class which has higher frequency among the classification models whereas 

soft voting is about predicting the class labels by averaging the individual classifier class 

probabilities. Fig 3.9 shows the generalized view of the internal working of voting classifier. 

3.5 Results 

To get good results, we have used an optimization technique called Hyperparameter 

optimization. It is about choosing the optimal hyperparameters for a learning algorithm. There are 

different approached Hyperparameter optimization such as Grid Search, Random search, 

Bayesian, Gradient-based and Population-based optimization.  

3.5.1 K-fold Cross Validation 

The machine learning model can give biased results if training data lies or cover a certain 

distribution of sample data of the population. To avoid such scenarios validation techniques in 

Machine learning can be convenient to use as it gives an error rate close to the true error of the 

population. We have used the K-fold cross-validation technique for algorithm training.  

Figure 3.10. K-fold cross validation with k = 4 [24] 
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K-fold splits the data into k parts and fed those data set into k different models. Each model is 

trained on to (K-1) parts and tested on the not included model.  

3.5.2 Grid Search 

Grid search is the most used and traditional way of performing hyperparameter 

optimization. It is a brute force way of selecting a manually specified subset of the hyperparameter 

space of an algorithm. In our case, we performed a grid search on all the above-mentioned 

algorithms.  Model hyperparameters [23] are the features of any ML algorithms which cannot be 

estimated from the data as it must be set before fitting the training data into the algorithm. On the 

other hand, model parameters are different than hyperparameters as it shows the internal 

characteristics of the model and its value can be estimated from the training data.  

We tuned and optimized each algorithm with the help of grid search and cross-validation. 

The performance metrics that we used for evaluating the models are confusion matrix, accuracy, 

precision, recall, and F1-Score. The brief description for each of them are as follows: 

• Confusion Matrix: It contains the information for actual and predicted results. The

model performance can be evaluated with the help of this matrix which shows the

positive and negative values for actual and predicted classes. It should be noted that

we have considered malicious URL as positive class and benign URL as negative

class.

• True Positive (TP): The number of observations that are predicted as positive

(malicious) and are positive (malicious) in actual.

• False Positive (FP): The number of observations that are predicted positive

(malicious) but are negative (benign) in actual.

• True Negative (TN): The number of observations that are predicted as negative

(benign) and are negative (benign) in actual.

• False Negative (FN): The number of observations that are predicted negative

(benign) but are positive (malicious) in actual.
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• Accuracy: It is the ratio of correctly predicted observations to the total number of

observations.

𝐴𝐴𝑋𝑋𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴𝑋𝑋𝐴𝐴 =  
𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝑒𝑒𝑋𝑋𝐶𝐶𝐶𝐶𝐴𝐴 𝑝𝑝𝐴𝐴𝑒𝑒𝑝𝑝𝑖𝑖𝑋𝑋𝐶𝐶𝑒𝑒𝑝𝑝 𝐶𝐶𝑜𝑜𝑜𝑜𝑒𝑒𝐴𝐴𝑜𝑜𝐴𝐴𝐶𝐶𝑖𝑖𝐶𝐶𝑛𝑛𝑜𝑜

𝑇𝑇𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶 𝐶𝐶𝑜𝑜𝑜𝑜𝑒𝑒𝐴𝐴𝑜𝑜𝐴𝐴𝐶𝐶𝑖𝑖𝐶𝐶𝑛𝑛𝑜𝑜

=  
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝐴𝐴 

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝑇𝑇𝐴𝐴 + 𝐹𝐹𝐴𝐴

• Precision: This metric is a good performance metric when the cost of false-positive

is high and given as:

𝑇𝑇𝐴𝐴𝑒𝑒𝑋𝑋𝑖𝑖𝑜𝑜𝑖𝑖𝐶𝐶𝑛𝑛 =  
𝑇𝑇𝐴𝐴𝐴𝐴𝑒𝑒 𝑇𝑇𝐶𝐶𝑜𝑜𝑖𝑖𝐶𝐶𝑖𝑖𝑜𝑜𝑒𝑒 

𝑇𝑇𝐴𝐴𝐴𝐴𝑒𝑒 𝑇𝑇𝐶𝐶𝑜𝑜𝑖𝑖𝐶𝐶𝑖𝑖𝑜𝑜𝑒𝑒 + 𝐹𝐹𝐴𝐴𝐶𝐶𝑜𝑜𝑒𝑒 𝑇𝑇𝐶𝐶𝑜𝑜𝑖𝑖𝐶𝐶𝑖𝑖𝑜𝑜𝑒𝑒
• Recall: This metric is a good performance metric when the cost of false negative is

high and given as:

𝑅𝑅𝑒𝑒𝑋𝑋𝐴𝐴𝐶𝐶𝐶𝐶 =  
𝑇𝑇𝐴𝐴𝐴𝐴𝑒𝑒 𝑇𝑇𝐶𝐶𝑜𝑜𝑖𝑖𝐶𝐶𝑖𝑖𝑜𝑜𝑒𝑒 

𝑇𝑇𝐴𝐴𝐴𝐴𝑒𝑒 𝑇𝑇𝐶𝐶𝑜𝑜𝑖𝑖𝐶𝐶𝑖𝑖𝑜𝑜𝑒𝑒 + 𝐹𝐹𝐴𝐴𝐶𝐶𝑜𝑜𝑒𝑒 𝐴𝐴𝑒𝑒𝑁𝑁𝐴𝐴𝐶𝐶𝑖𝑖𝑜𝑜𝑒𝑒

• F1-score: This metric is holistic evaluation of precision and recall. It is the

harmonic mean of precision and recall.

𝑅𝑅𝑒𝑒𝑋𝑋𝐴𝐴𝐶𝐶𝐶𝐶 =  
2 ∗ 𝑇𝑇𝐴𝐴𝑒𝑒𝑋𝑋𝑖𝑖𝑜𝑜𝑖𝑖𝐶𝐶𝑛𝑛 ∗ 𝑅𝑅𝑒𝑒𝑋𝑋𝐴𝐴𝐶𝐶𝐶𝐶 
𝑇𝑇𝐴𝐴𝑒𝑒𝑋𝑋𝑖𝑖𝑜𝑜𝑖𝑖𝐶𝐶𝑛𝑛 + 𝑅𝑅𝑒𝑒𝑋𝑋𝐴𝐴𝐶𝐶𝐶𝐶

Table 3.2 shows the classification accuracy for all the algorithms after they were optimized. 

Voting classifier is the final classifier that combines the outcomes for different algorithms with 

their best parameters. Fig 3.11 and 3.12 shows the performance metrics for UNB and Kaggle 

datasets for five best algorithms.  

The accuracy, precision, and recall for the UNB dataset are slightly better than [5] with the 

generic features set. The overall precision, recall, and F1-Score for both the datasets are better than 

[15], however, their feature selection methods and datasets are different than our work.  Table 3.3 

shows the confusion matrix for the Voting classifier reported on UNB and Kaggle test datasets. 
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The classifier achieved an accuracy of 99.72% and 95.37% for UNB and Kaggle datasets, 

respectively. The false-positive rate and false-negative rate for the UNB dataset were 0.1% and 

0.7%, and 3.97% and 4.73% for the Kaggle dataset. The weighted accuracy for the classifier is 

96.60% along with 2.88% false-positive and 3.60% false-negative rate. Andrew et al. [11] on the 

other hand are classifying phishing attacks with four different features set categories by using 138 

features, whereas we are covering all malicious URLs with 47 features. The results of this work 

have been published in [49]. 
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Table 3.2.  Classification accuracy of UNB and Kaggle datasets 

Dataset Algorithm Accuracy (in %) 

UNB 

 

KNN 99.59 

SVM (RBF) 99.29 

Logistic Regression  94.04 

Adaboost 97.85 

Gradient Boosting  99.68 

Extra Trees 98.96 

Random Forest  99.49 

Voting Classifier 99.72 

Kaggle KNN 94.31 

SVM (RBF) 92.99 

Logistic Regression  87.21 

Adaboost 90.34 

Gradient Boosting  94.44 

Extra Trees 88.00 

Random Forest  94.22 

Voting Classifier 95.37 

 

 

Table 3.3.  Confusion Matrix for Voting Classifier on UNB and Kaggle datasets 

   Predicted 

   Benign  Malicious  

UNB Actual Benign 6917 37 

Malicious 51 26069 

Kaggle Actual Benign 62651 478 

Malicious 3414 11550 
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 REAL TIME MALICIOUS URL DETECTION  

The previous chapter provided the generic features selection for malicious URL detection 

using two different datasets. . In this chapter, we discuss the implementation of detection model 

into real-time capable of handling thousands of end-user requests. We design a client-server 

architecture to handle the load and analyze the performance in different scenarios.  

4.1 Overview & Architecture 

Designing architecture is the most significant part when it comes to scalability and handling 

a huge number of incoming requests. Suitable and sustainable architecture can help organizations 

to achieve their desired goals with the capability to handle huge loads. Architectural patterns are 

like software design patterns but have a wider scope. Design patterns for software development 

proved to be very effective for the development of any software, however, design patterns for 

applications that leverage new sources and types of big data are still needed.  

Implementing real-time machine learning model can be a bottleneck when it comes to 

processing thousands of requests per second. We designed an architectural pattern that could detect 

any malicious URLs in real-time. Fig 4.1 shows a high-level overview of our real-time malicious 

URL detection system. This pattern requires clients to add google chrome extension in their 

chrome browser. Stepwise process of detection system is discussed below:  

 

1. User visits any website, google chrome extension intercepts and halts that specific 

incoming request.  

2. Chrome browser extension generates separate web service request along with target 

URL content as payload to a remote web server. 

3. Web server checks the URL results in database and preform classification accordingly.  

4. Web server sends the response back to the client browser extension. 

5. Browser extension checks if URL is malicious or benign. It blocks the URL if its 

malicious otherwise it allows the client to access to the requested URL using internet. 
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Figure 4.1. Client server architecture  

4.2 Implementation of Client-Server Architecture 

A single node client-server architecture is implemented to handle all HTTP requests from 

the client in real-time. In order to achieve this task, we have done a series of tests with different 

throughput and load variations. Table 1 and 2 show the hardware specification and 

software/libraries used for single node server. 

 

Table 4.1. Hardware specification of a system that runs the server VM 

Processor Intel(R) Core (TM) i7-6900 @ 3.20 GHz 

Installed RAM 40 GB 

Operating System  Linux, Ubuntu 64 bit  

 

Table 4.2. Software level configuration 

Package/Tool Version/Name 

Web Server Django 

Web Server Japronto 

Client Google Chrome Plugin 
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Table 4.2. continued 

Python Version  3.7.1 

Sckit-Learn 0.20.1 

Pandas 0.23.4 

NumPy  1.15.4 

Matplotlib 3.0.2 

Database  SQLite 

Load Testing Tool Apache JMeter 

 

Pseudocode 1. Client - Server Architecture 
httpRequestListener(request) {       

url = request.getUrl  
dbCon = getSingletonDBConnection()    
domain = getDomain(url)  
urlDetail = dbCon.gerUrl(domain)  
isMalicious = true 
 
If (urlDetail != null) 
    isMalicious = urlDetail.getClassificationResult()  
Else 
    dataset = createLexicalFeatures(url)  
    normalizedData = normalizedDataset(dataset) 
    result = prediction.makePrediction(normalizedData)  
    saveResultsinDB(url,domain,result)  
    isMalicious = result 
Endif 
 
return isMalicious 

} 
 

4.2.1 Google Chrome Plugin as Browser Extension 

In order to develop the whole end to end system, we have developed browser extension for 

Google chrome. Browser extensions are software that can be embedded with the web browser to 

accomplish certain desired tasks. They are separate modules and are different from browser 

plugins. Browser plugins are always executable whereas extensions are usually just the source 

code. The popular two browser plugin examples are Adobe Flash Player and Java virtual machine 

also called Applets. On the other hand, browser extension does not contain object code or 
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executables. Extensions are lightweight and are limited to make changes at the browser level. It 

has the capability to intercept any request initiated from the browser. We have used it to intercept 

and verify all the request that has been generated from google chrome browser in real-time. Those 

intercepted request along with the URLs are then passed to the cloud-based web server for 

classification.  

 

 

Figure 4.2. Chrome Extensions from Chrome Web Store 
 

Pseudocode 2. Chrome Extension Interceptor 
listenerOnBeforeRequest(dtls) {     

 isMalicious = true 
 url = dtls.visitingUrl 
 isMalicious = cloudApiCall(url) 
 blockUrl = false 
 If (isMalicious = True) 
     blockUrl = true 
 Else 
     blockUrl = false 
 EndIf 
 

return blockUrl 

} 
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4.2.2 Apache JMeter 

Apache JMeter is an open-source Java-based desktop application that is used to perform 

load testing functional behavior and performance measurement [51]. We have used JMeter to 

analyze and measure the performance of our web server in single node mode and distributed cluster 

mode. JMeter allocates concurrent and real-time sampling of different functions by a separate 

thread group. Through JMeter, we can tune the throughput of web request and analyze the latency 

of web server from thousand to millions of requests per second concurrently.  

4.2.3 Python and Related Libraries  

Python is an interpreted high-level language which is dynamically typed, and garbage 

collected. It supports procedural, functional and object-oriented programming. We have used 

python3 for our project. Since it is open-sourced, we can find a lot of libraries and tools for it. We 

have used the Sckit-learn [50] library for machine learning classification. It is a free software 

machine learning library for Python. Other libraries such as NumPy and Matplotlib have also 

played an important role to achieve our task. NumPy is used to sustain large multi-dimensional 

arrays and matrices along with the large collection of high-level mathematical functions to operate 

these arrays. Matplotlib is a plotting library that provides object-oriented API for embedding plots 

into the application.  

4.2.4 Django as a Webserver 

A web server is server software that is capable to handle the worldwide web client request. 

It contains website and processes client requests over HTTP [52]. Django is a high-level python-

based web framework that has inbuilt web server based on Web Server Gateway Interface (WSGI). 

WSGI is a calling convention to incoming requests to web frameworks and application written in 

python programming language.  

4.2.5 Japronto as a Web Server 

Japronto is a micro-framework which can handle the synchronous and asynchronous 

request [53]. It is scalable, lightweight and even faster than NodeJS.  It is written in C language to 

take advantage of modern CPUs.  
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4.2.6 Performance Evaluation and Optimization 

We have considered two scenarios for load testing of a single node web server. These two 

scenarios are based on the real-time detection mechanism at the server end-side.  

I. Scenario I: we assume that there are no records in the database for previously classified 

URLs.  

II. Scenario II: We assume that URLs have already been classified and stored in the 

database along with their labels.      

Pseudocode 1 shows the implementation of URL classification. It first checks if the 

incoming URL is stored in database and then predicts in case if it’s not there in database otherwise 

it returns the previous calculated result from database. 

Django webserver  

By considering both scenarios as discussed, we got the same throughput of 120 concurrent 

requests per second as shown in Fig 4. Figure 4.4 and 4.5 show the response time of all the requests 

which are less than 500ms. 

 

 

Figure 4.3. Number of hits/sec plot 
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Figure 4.4. Response time in millisecond 
 

 
Figure 4.5. Summary of response time in different times ranges 

Japronto webserver  

We perform load testing on Japronto by considering the two scenarios as discussed earlier. 

We got a maximum throughput with the second scenario where the classification results have 

already been stored into the database previously. This scenario assumes that the user had already 

visited a URL. Japronto was able to reach up to the 7438 hits per second. As from figure 4.6 and 

4.8, the average response time is 4.11 millisecond with a total of 864710 request samples whereas 
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Figure 4.7 shows the number of transactions within the span of 2 seconds and Figure 4.9 shows 

the response time.  

 

 

Figure 4.6. Load test summary on Japronto with Database 
 

 

Figure 4.7. Number of Transactions/secs on Japronto with Database 
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Figure 4.8. Response times in millisecond on Japronto with Database 
 

 

Figure 4.9. Histogram of Response time on Japronto with Database 
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CONCLUSION AND FUTURE WORKS

5.1 Conclusion 

In this work, we have been able to detect malicious URLs in real-time using machine 

learning via web service calls. We applied different statistical techniques, known as Chi-Square 

and ANOVA, to identify the most significant lexical features by using different datasets. We have 

used a combination of different machine learning algorithms including single and ensemble 

machine learning algorithms. We finalized 47 most significant features out of 106 that has the 

potential to identify any malicious URLs accurately and precisely with an average low false-

positive rate of 2.88% and an accuracy of 96.6% for two different datasets. 

We further implemented a client-server based real-time detection mechanism that relies on 

HTTP communication protocol over web service calls which uses google chrome along with 

browser plugin as a client and sends a request to the server. We have analyzed the performance 

measure using client-server architecture by considering Japronto as HTTP webserver.  

5.2 Future Work 

Our work can further be optimized and improved in several ways. The following are a few 

considerations for upgrading this work which can improve its functionality 

• In our work, we considered two datasets and have tested generic features on them.

Although these two datasets contain a different variation of malicious URLs, we can

still further verify our derived generic features by using a different dataset from

different sources.

• To make classification faster and time-efficient, the lexical feature-based model is

always preferable. However, lexical based features for URL detection can miss

malware and malicious activities that are embedded on legit websites without knowing

the site owner. For this reason, further consideration is to use dynamic web

content/source-based features, and network-based features. By providing these

features, it will be able to detect embedded malicious code inside web pages.
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•  Another worth consideration is about online learning. In our case, we considered 

already provided past data as training data for our model. It can be further updated in a 

way where machine learning algorithms can update their weight matrices by 

considering the past stream of classified data as training data that works in rounds. For 

each round, the algorithm can predict with its model along with prediction suffer loss. 
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APPENDIX 
 

Total Number of Generated Features 

 

# Feature Name Description  

1 count_ques Count Question Mark (?) 

2 count_equals Count Equals (=) 

3 count_semi_colun Count Semi Colun (;) 

4 count_dash Count Dash (-) 

5 count_open_brckt Count Opening Bracket ( 

6 count_close_brckt Count Closing Bracket ) 

7 count_percent Count Percent Symbol (%) 

8 count_dots Count Dots (.) 

9 len_url Calculate Length of whole URL 

10 count_& Count AmpersandSymbol (&) 

11 count_/ Count BackSlash (/) 

12 count_path_len Calculate Length URL Path 

13 count_@ Count At the Rate Symbol (@) 

14 Secure Check Presence 

15 account Check Presence 

16 Webscr Check Presence 

17 Login Check Presence 

18 ebayisapi Check Presence 

19 Signin Check Presence 

20 banking Check Presence 

21 confirm Check Presence 

22 Blog Check Presence 

23 Logon Check Presence 

24 signon Check Presence 

25 viewer Check Presence 
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26 getImage Check Presence 

27 plugins Check Presence 

28 paypal Check Presence 

29 Order Check Presence 

30 Dbsys Check Presence 

31 Config Check Presence 

32 Order Check Presence 

33 Js Check Presence 

34 payment Check Presence 

35 css Check Presence 

36 admin Check Presence 

37 abuse Check Presence 

38 update Check Presence 

39 verification Check Presence 

40 shopping Check Presence 

41 Log Check Presence 

42 access Check Presence 

43 bonus Check Presence 

44 click Check Presence 

45 network Check Presence 

46 pay Check Presence 

47 download Check Presence 

48 Jar Check Presence 

49 swf Check Presence 

50 Cgi Check Presence 

51 Zip Check Presence 

52 Jpg Check Presence 

53 Gif Check Presence 

54 redirect Check Presence 

55 isIpAddress Check Presence of IP address 
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56 is_numner_in_host Check Numeric Number presence 

in URL 

57 host_length Length of host 

58 no_of_subDomains Count Number of Sub-Domains 

59 count_letter Total count of letters in URL 

60 count_digits Total count of digits in URL 

61 count_symbols Total count of symbols in URL 

62 entropy_url Entropy of URL 

63 entropy_host Entropy of Host 

64 entropy_path Entropy of URL Path 

65 entropy_params Entropy of URL Parameters 

66 entropy_query Entropy of Query Parameters 

67 Tld Extract Top Level Domain 

68 pathExtension Extract URL Path Extension 

69 count_path_back_slash Count total back slash in URLPath 

70 count_path_dot Count total Dots in URL Path 

71 A Frequency of Alphabet "a" 

72 B Frequency of Alphabet "b" 

73 C Frequency of Alphabet "c" 

74 D Frequency of Alphabet "d" 

75 E Frequency of Alphabet "e" 

76 F Frequency of Alphabet "f" 

77 G Frequency of Alphabet "g" 

78 H Frequency of Alphabet "h" 

79 I Frequency of Alphabet "i" 

80 J Frequency of Alphabet "j" 

81 K Frequency of Alphabet "k" 

82 L Frequency of Alphabet "l" 

83 M Frequency of Alphabet "m" 

84 N Frequency of Alphabet "n" 
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85 O Frequency of Alphabet "o" 

86 P Frequency of Alphabet "q" 

87 Q Frequency of Alphabet "q" 

88 R Frequency of Alphabet "r" 

89 S Frequency of Alphabet "s" 

90 T Frequency of Alphabet "t" 

91 U Frequency of Alphabet "u" 

92 V Frequency of Alphabet "v" 

93 W Frequency of Alphabet "w" 

94 X Frequency of Alphabet "x" 

95 Y Frequency of Alphabet "y" 

96 Z Frequency of Alphabet "z" 

97 0 Frequency of Alphabet "0" 

98 1 Frequency of Alphabet "1" 

99 2 Frequency of Alphabet "2" 

100 3 Frequency of Alphabet "3" 

101 4 Frequency of Alphabet "4" 

102 5 Frequency of Alphabet "5" 

103 6 Frequency of Alphabet "6" 

104 7 Frequency of Alphabet "7" 

105 8 Frequency of Alphabet "8" 

106 9 Frequency of Alphabet "9" 
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