
A MACHINE LEARNING BASED WEB SERVICE FOR

MALICIOUS URL DETECTION IN A BROWSER
by

Hafiz Muhammad Junaid Khan

A Thesis

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Master of Science in Electrical and Computer Engineering

Electrical and Computer Engineering Department

Hammond, Indiana

December 2019

2

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF COMMITTEE APPROVAL

Dr. Quamar Niyaz, Committee Chair

Department of Electrical and Computer Engineering

Dr. Vijay Devabhaktuni, Committee Co-Chair

Department of Electrical and Computer Engineering

Dr. Xiaoli Yang, Committee Member

Department of Electrical and Computer Engineering

Dr. Sidike Paheding, Committee Member

Department of Electrical and Computer Engineering

Approved by:

Dr.Vijay Devabhaktuni

3

ACKNOWLEDGMENTS

I would like to express my sincere gratitude, appreciation message of thanks to my thesis

advisor Dr. Quamar Niyaz for providing valuable guidance, mentoring, and encouragement for

carrying out this research work. The door to Dr. Niyaz was always open whenever I needed some

assistance or had questions for my research. I took several courses offered by Dr. Niyaz especially

Big Data and Network Security that cleared too many aspects of this research work.

I would like to thank Dr. Vijay Devabhaktuni for his extensive support and help in

providing valuable comments, support, and guidance throughout the graduate program and

research. He always inspired me through his past research experience and guided me in the right

direction all the time. I would acknowledge efforts from Dr. Xiaoli Yang for her outstanding

guidance from start till the end of my research work. I would also like to thank Dr. Sidike Paheding

for his insightful comments towards my work. Special thanks to the Department of Electrical and

Computer Engineering for financially supporting me through the teaching assistantship.

Finally, I would like to express my deep gratitude to my parents and my wife for their

enduring support and endless encouragement throughout the process of research and writing this

thesis. This accomplishment would not have been possible without them.

4

TABLE OF CONTENTS

LIST OF TABLES .. 6

LIST OF FIGURES .. 7

ABSTRACT .. 8

1. INTRODUCTION ... 9

1.1 Background and Motivation ... 9

1.2 Types of Malicious URLs ... 12

1.3 Machine Learning in Cybersecurity .. 13

1.4 Thesis Outline ... 14

2. LITERATURE SURVEY .. 16

3. IDENTIFYING GENERIC FEATURES .. 20

3.1 Overview of URL ... 20

3.2 Dataset Description ... 22

3.3 Feature Engineering .. 22

3.3.1 Chi-Square ... 23

3.3.2 ANOVA ... 23

3.3.3 Finalizing Common Features ... 24

3.4 Single & Ensemble Machine Learning (ML) Algorithms .. 30

3.4.1 Single Machine Learning Algorithms .. 31

K-Nearest Neighbor (KNN) .. 31

Support Vector Machine (SVM) ... 31

Logistic Regression ... 33

3.4.2 Ensemble Machine Learning Algorithms .. 33

Bagging .. 33

Random Forest ... 33

AdaBoost ... 34

Extra-Trees .. 34

Voting Classifier .. 34

3.5 Results ... 35

3.5.1 K-fold Cross Validation ... 35

5

3.5.2 Grid Search .. 36

4. REAL TIME MALICIOUS URL DETECTION .. 42

4.1 Overview & Architecture .. 42

4.2 Implementation of Client-Server Architecture ... 43

4.2.1 Google Chrome Plugin as Browser Extension .. 44

4.2.2 Apache JMeter ... 46

4.2.3 Python and Related Libraries ... 46

4.2.4 Django as a Webserver .. 46

4.2.5 Japronto as a Web Server .. 46

4.2.6 Performance Evaluation and Optimization .. 47

Django webserver .. 47

Japronto webserver .. 48

5. CONCLUSION AND FUTURE WORKS .. 51

5.1 Conclusion .. 51

5.2 Future Work .. 51

REFERENCES ... 53

APPENDIX. .. 57

6

LIST OF TABLES

Table 3.1. Finalized Selected Features ... 29

Table 3.2. Classification accuracy of UNB and Kaggle datasets ... 41

Table 3.3. Confusion Matrix for Voting Classifier on UNB and Kaggle datasets 41

Table 4.1. Hardware level configuration .. 43

Table 4.2. Software level configuration .. 43

7

LIST OF FIGURES

Figure 1.1. World Internet Usage and Population Statistics [1] .. 10

Figure 1.2. Internet World Penetration Rates by Geography [1] ... 11

Figure 3.1. Uniform Resource Locator (URL) [33] ... 20

Figure 3.2. Workflow of Malicious URL detection Model ... 21

Figure 3.3. Feature Score from UNB Dataset .. 25

Figure 3.4. Feature Score from Kaggle Dataset ... 26

Figure 3.5. Feature Selection Model .. 27

Figure 3.6. Steps involved in Feature Selection Model ... 28

Figure 3.7. Different kernels of SVM using Kaggle dataset .. 32

Figure 3.8. Different kernels of SVM using UNB dataset ... 32

Figure 3.9. Voting Classifier [34] .. 34

Figure 3.10. K-fold cross validation with k = 4 [24] .. 35

Figure 3.11. Performance metrics for UNB dataset with different classifiers 39

Figure 3.12. Performance metrics for Kaggle dataset with different classifiers 40

Figure 4.1. Client server architecture ... 43

Figure 4.2. Chrome Extensions from Chrome Web Store ... 45

Figure 4.3. Number of hits/sec plot ... 47

Figure 4.4. Response time in millisecond .. 48

Figure 4.5. Summary of response time in different times ranges .. 48

Figure 4.6. Load test summary on Japronto with Database ... 49

Figure 4.7. Number of Transactions/secs on Japronto with Database ... 49

Figure 4.8. Response times in millisecond on Japronto with Database 50

Figure 4.9. Histogram of Response time on Japronto with Database .. 50

8

ABSTRACT

Malicious URLs pose serious cybersecurity threats to the Internet users. It is critical to

detect malicious URLs so that they could be blocked from user access. In the past few years,

several techniques have been proposed to differentiate malicious URLs from benign ones with the

help of machine learning. Machine learning algorithms learn trends and patterns in a dataset and

use them to identify any anomalies. In this work, we attempt to find generic features for detecting

malicious URLs by analyzing two publicly available malicious URL datasets. In order to achieve

this task, we identify a list of substantial features that can be used to classify all types of malicious

URLs. Then, we select the most significant lexical features by using Chi-Square and ANOVA

based statistical tests. The effectiveness of these feature sets is then tested by using a combination

of single and ensemble machine learning algorithms. We build a machine learning based real-time

malicious URL detection system as a web service to detect malicious URLs in a browser. We

implement a chrome extension that intercepts a browser’s URL requests and sends them to web

service for analysis. We implement the web service as well that classifies a URL as benign or

malicious using the saved ML model. We also evaluate the performance of our web service to test

whether the service is scalable.

9

1. INTRODUCTION

The Internet as we know today has grown rapidly in recent years. It has become an essential

part of our daily lives in today’s digital world. It is the way to interact and aggregate abundance of

information from different sectors around the globe including government, industry, academia,

and private organizations. The Internet is still in continuous growth with the penetration of

smartphones. Because of the growth and technological developments, Internet users can get

information from any part of the globe. As a result, they are being exposed to information from

different known or unknown sources that lead to various adverse phenomena such as cybercrimes

and cyberbullies.

1.1 Background and Motivation

According to Internet World Status, the number of Internet users has enormously increased

from 558 million in 2002 to 4.4 billion in 2019, which is approximately 58.6% of today’s world

population. As shown in Figure 1.1 that Asia alone has 55% of the world population and

contributed to 54.2% of the Internet growth with around 2.36 billion users alone. The same source

explained that Internet usage has grown by 1157% worldwide since 2000, whereas North America

has the largest proportion of the Internet users of 89.4% holding 4.7% of the world population

surpasses Europe by 1.7%, which has 10.7% world population [1].

Another report from “We Are Social” reveals that Internet users are growing by an average

of more than one million every day [2]. The key factor of this increasing growth is the current

usage of mobile devices and social media platforms. According to the report, there are 5.11 billion

mobile users, 4.39 billion Internet users, and 3.48 billion social media users as of 2019. Internet

user’s growth has accelerated by 366 million new users with a rate of more than 11 users per

second compared to the last year. One factor that contributed to this increasing growth of the

Internet users is the use of social media platforms. The worldwide social media users have grown

to almost 3.5 billion at the start of 2019.

10

Figure 1.2 shows Internet world penetration rate that indicates that each continent has

progressive Internet penetration rate, which resulted from the popularity of social media platforms

and simplicity of web applications. The unprecedented growth of websites, social media and kinds

of information available through them have attracted cybercriminals to perform malicious

activities. These activities have become so frequent in the last few years that resulted in a huge

increase of malicious websites with the continuous change of malware development and

deployment scenarios. According to Forrester’s report, 95% of the data breaches are from three

popular industries: government, retail, and technology [45]. They are popular because they contain

the top-level personal identification information (PII).

Figure 1.1. World Internet Usage and Population Statistics [1]

11

Figure 1.2. Internet World Penetration Rates by Geography [1]

Clark School at the University of Maryland reported that there is a constant adversarial

attack on computers with Internet access every 39 seconds on an average [3]. Due to this

continuous rate of cyberattacks, most of the small and medium scale businesses are exposed to

security risks and data breaches as they do not usually consider all the security risks and are under

the radar of adversaries. According to Kelser Corporation, 65% of the cyber-attacks are aimed at

small and medium-scale businesses [46]. Healthcare, education, and energy sectors are the prime

targets for cyber adversaries. For example, the patients’ PII data at healthcare units can be used for

insurance fraud or identity theft. Education sector including colleges and universities hold PPI

ranging from social security numbers to addresses to bank information. Similarly, the energy sector

uses technology and communication devices that can be hacked to put the economy of a country

at risk.

Another sector that is expanding rapidly along with security risks is the Internet of Things

(IoT). It includes interconnected networks of small devices and home appliances such as connected

12

 security devices, cameras, alarms, and cars. IoT has made many things simpler and easier. It is

estimated by Symantec Internet Security that around 200 billion devices will be connected by the

end of 2020 [4]. As these devices are interconnected and they communicate with each other via

Internet, there is always a risk of data breach and network attacks. Other factors that make these

devices more vulnerable to cyber-attacks are insufficient authentication and authorization, insecure

web interface, network access, mobile interface, and cloud interface.

Malicious websites are designed and created by cybercriminals to access or manipulate

user information in an unauthorized manner. According to HelpNet Security, 40% of the malicious

URLs were found in good domains where the attackers attempt to run scripts by injecting their

malicious code in those legitimate domains [35]. The attack happens when the victim visits those

legitimate websites containing suspicious activities such as drive-by-download, malware,

spamming, and phishing.

1.2 Types of Malicious URLs

A malicious URL is designed to perform malicious activities such as scams, theft, attack,

and fraud. There are several ways to deceive the victims using phishing, spamming, spoofing,

malware, and website defacement.

1. Malware: Malware word is a concatenation of two words: malicious and software [13]. Its

purpose is to run a piece of code in victims’ computer to obtain unauthorized access or

infect files. Virus, Worm, Spyware, Trojan, and Ransomware are different types of

malware. They are commonly considered to be associated with computer software or file

system, but they can be used to contaminate corporate websites and cloud systems. Website

malware is used in defacement to replaces the original content of a website by any message

or activity causing threat to the organization and its consumers. Malvertising is another

trick used by cybercriminals to replace the original content of advertising with their ads.

These ads could redirect website visitors to some blacklisted domains. According to

SiteLock Website Security, websites experience an average of 58 attacks per day and

search engines are blacklisting only 17% of the infected websites [5].

13

2. Spoofing: Spoofing is another trick used by cybercriminals to let the victim believe that

they are communicating with a trusted source [14]. The most common spoofing techniques

are website and email spoofing. In website spoofing, the attacker usually replicates the

exact design and functionality of legitimate websites in their servers. The goal of these

websites is to get victim’s personal information such as username, password, and

credit/debit card information by making them believe that they are visiting a trusted

website. Email spoofing is one of the most common types of attacks as cybercriminals

usually send emails along with malicious attachments such as malicious files. According

to CAIDA study Internet users and organizations encounter 30,000 spoofing attacks every

day [6]. Another report by Proofpoint shows that on an average organization were targeted

by 18.5 attacks per quarter in 2017 however this average has been increased to 28 in the

first quarter of 2018 [47]. The same source explains another significant 25% increase in

email fraud attacks in organizations.

3. Phishing: Phishing is commonly achieved through deceptive emails to gain personal

information. Unlike spoofing, phishing emails usually provide links to a fraudulent website

that requires end-user information and other sensitive data [15]. According to Webroot 1.5

million new phishing are created each month [36]. Another report from Retruster states

that phishing attempts have grown to 65% in the last year whereas 76% of the businesses

are being affected by phishing attacks when compared to last year [37].

4. Defacement: Website defacement involves altering the original content or appearance of a

website with malicious content [38]. Hackers usually break into the web server and replace

the hosted website with their malicious one. This could cause phishing, code injection and

cross-site scripting. Common targets can be government and corporate websites.

1.3 Machine Learning in Cybersecurity

Machine learning has improved dramatically over the past two decades in several domains.

It has been using in computer vision, speech recognition, natural language processing, and

robotics. Modern research shows that it is progressing very fast and capable to learn and trainthe

model parameters using past data and can predict or classify new data based on its trained metrices.

With its ability to detect patterns in data through, it has been increasingly used to uncover cyber

threats by automatically predicting them before making any havoc.

14

Microsoft’s Windows defender advanced threat protection is a cybersecurity platform by

Microsoft which is used for prevention protection, breach detection, and automated investigation.

It stopped Trojan malware in early 2018 which was an attempt to install malicious cryptocurrency

miners on hundreds of thousands of computers [39]. It restricted this attack with the help of

numerous layers of machine learning algorithmic structure that detect and prevent perceived

attacks. It utilizes cloud AI with numerous levels of machine learning algorithms. In the same way

Chronicle [40], a company owned by Alphabet is a cybersecurity company that analyzes a large

amount of data and uses machine learning for threat detection and malicious pattern recognition.

SQRRL [41], acquired by Amazon, has designed a platform that searched across the network

traffic to find code which can escape the safety measures in place. It uses machine learning to

create action maps that acts as a visual representation of a computer network.

Machine learning can be more effective when classification or prediction needed in real-

time by reducing the amount of time spent on routine tasks. It can make a task automated, more

simple, proactive, less expensive and far more effective and reliable. It helps to learn the pattern

by using previous rich data which represents many potential scenarios. According to [32], security

devices that provides real-time alerts and events based on signature-based anomaly detection has

some limitations. It may not detect unknown attacks or malicious activity and detection and

protection mechanism is typically limited and not shared. This was a common problem for

organizations on how to detect and identify a zero-day attack. These types of attacks are more

challenging to detect as they are slow and low. In these scenarios, machine learning methods show

promising results with the capability to adapt to new trends and respond to new techniques and

attacks while continuing to address the known attacks. James et al. in their work shows the leverage

of using machine learning when compared to other traditional methods [32].

1.4 Thesis Outline

The thesis is organized in the following manner:

• In Chapter 1, we discussed the problem and motivation of this study.

• In Chapter 2, we provide literature survey for the previous work done related to this

domain.

15

• Chapter 3 discusses our methodology to identify generic features. We also discuss the

performance results with generic features.

• In Chapter 4, we discuss the real-time URL detection system and how we achieve and

classify URL with high throughput.

• Chapter 5 concludes the thesis and provides an insight for future work.

16

 LITERATURE SURVEY

In this chapter, we discuss the previous and existing works on malicious URL detection

with different approaches. Mohammad et al. have used lexical features for malicious URL

detection [5]. The authors obtained features from raw URL dataset without performing any

network calls or host information. They mainly used lexical features from URL due to speed, and

lightweight computation. They classified different types of attacks and created a separate feature

for each type of attack. A total of 79 features were extracted from the UNB dataset with a total of

1,65,366 records. They used correlation-based feature selection (CFS) and information gain for

feature selection. A few machine learning algorithms such as KNN, Random Forest, and C4.5 were

used to classify the URLs. In addition, they also discussed different obfuscation techniques as an

extension to previous work by using AttributeSelection with InfoGainAttributeEval as an attribute

evaluator. They covered a wide range of attacks (phishing. malware, spam, defacement) being

performed by maliciousURLs. They reported 97% accuracy for multi-class classification with

Random Forest, whereas 99% accuracy for binary classification.

Faeze Asdaghi developed an effective way of discovering web spam through a feature

selection technique called Smart-BT [9]. They created four-set features named as content-based,

link-based, and transformed link-based, and All-Features. They proposed a backward elimination

approach using IBA (Index of Balance Accuracy) values of chi-square, information gain, along

with the gain ratio to identify the useful features and their impact on various ML algorithms. The

major purpose of IBA is to introduce a weight measure that shows better classification in an

unbalanced dataset, especially in the minority class as they contain low data samples and

information. They have analyzed the impact of dimensionality reduction on classification accuracy

of an unbalanced dataset by using the WEBSPAM-UK2007 dataset with a predefined set of

features and studied the impact of dimensionality reduction on increasing classification

performance. They have used several machine learning algorithms with different IBA values,

features set and methods and provided a detailed comparison report. They reported improvement

in the classification results with Smart-BT compared to the well-known feature selection

techniques such as Ranker, Forward Selection, and Genetic Algorithm. Their method also shows

efficiency in low dimension dataset by selecting the near-optimal features.

17

Hung et al. developed URLNet, a Convolutional Neural-Network (CNN) based deep

learning framework that uses characters and words of the URL string to capture the semantic

information to classify malicious and benign URLs [10]. Their work showed a promising way of

URL Detection through deep learning. They discussed the limitation of features obtained by using

bag-of-words and statistical features like the length of different segments in URL. They used CNN

to get useful structural information for the URLs with two different datasets generated by

characters and words of URLs. Word Level CNN is like character level CNN except that the

convolutional operators are applied to words. The URLs dataset was collected from VirusTotal.

They created the features set using the entire training corpus with all the unique words as a

dictionary. This method gives another way of classifying malicious URLs by catching several

semantic information through the URLNet which existing methods based on bag-of-words features

could not. It offers a significant jump in AUC over baseline.

Ram et al. [11] are only considering phishing URLs and found a way to identify them using

machine learning. They detected phishing attacks by using four different categories of features in

their work. They used lexical, keyword, reputation, and search engine-based features on seven

different ML classification algorithms. They reported an accuracy of 99.4% with 138 features

while maintaining 0.5% of the false-positive and false-negative rate. Random forest classifier

showed best results in most of the experiments. Apart from good results, there are some limitations

to their work. They have used only one kind of dataset collected from PhishTank which may not

contain the overall variation of phishing URLs. Second, search engine-based features will require

some time to gather information as they require network calls whereas reputation-based features

depend on blacklists and other historical statistics provided by third parties.

Another successful attempt of detecting malicious URLs through domain and word

segmentation was done by Wei Wang [12]. Their work shows the importance of word segmented

features and how it improves the detection capability by emphasizing the most used words in

malicious domains. In [12], authors created seven different range of lexical features based on

characters, basics, top-level domains, log-likelihood, words, and their different combinations.

Three experiments using balanced data, filtered cellular data, and unfiltered cellular data, were

performed on seven combinations of feature set using Logistic regression with lasso penalty. 10-

18

fold cross-validation was performed on training data and the largest value of the penalty parameter

that gave Area Under the curve of one standard error was selected. To measure the effectiveness,

area under the curve (AUC) and misclassification rate (MCR) were used. In their work, models

which have used word segmentation significantly decreases the misclassification rates and

increases the AUC rates by 10% compared to other models that did not use word segmentation.

Their model also showed interpretable results that show which set of words attracts the victim to

malicious sites.

Guolin Tan designed MalFilter to detect malicious URLs in real-time [42]. Their work

explores the malicious URL detection system by considering large-scale real-time networks. They

have used server-based features, user-based features, URL based features and referral-based

features. They have implemented three tiers of modular filtering system which comprises packet

parser, training, and filtering. Packet parser is responsible for feature generation by parsing the

header files of network packets. The training module performed best when to be used with non-

linear classifiers such as Adaboost. The filtering module is implemented on Spark on a cluster of

26 nodes responsible for training and classification. Benning and suspicious URLs are separated

with the help of the filtering module. The proposed system effectively reduces the load to an

average of 28.99% while achieving the recall rate of approximately 90%.

Kurt Thomas designed a real-time URL spam filtering scalable system capable to detect

and differentiate between e-mails and twitter spam [43]. System flow of monarch comprises

different modules including URL aggregation, feature collection, feature extraction, and

classification. URL aggregation module aggregates URLs from two sources for training and testing

purposes. Feature extraction module visits each URL through the Firefox web browser to collect

the content including HTML, page links, JavaScript activities, and popup windows. Feature

extraction module is responsible for converting raw features into features understood by the

classification engine such as tokenizing URLs into binary features and HTML content conversion

into a bag of words. The classification module is responsible for detecting and classifying the

injected URLs. Two main algorithms were used for classification called Logistic Regression with

L1-regularization and Stochastic Gradient Descent. To handle real-time traffic and scalability,

Hadoop distribute file system and spark is used on Amazon EC2 double extra-large instances. The

19

results reveal that Monarch on cloud infrastructure can achieve a throughput of 638,000 URLs per

day with an overall accuracy of 91% with 0.87% of false positives.

Our approach of detecting malicious URLs is different as we attempt to identify generic

features using different datasets. Machine learning algorithms either single or ensemble learners

learn parameters by learning the patterns in the dataset. We have identified generic features that

can work in different dataset holding different trends and patterns. Previous work by other

researchers have used different datasets but did not focus on generic features. Similarly, our

approach to real-time detection is different as it includes the complete cycle of request and

response architecture where the source that generated the request waits for the response back from

the server. Previous work on real-time detection has not mentioned the request-response

architecture in detail as they were more focused on traffic flow and network filtering in real-time.

For this purpose, we implemented and analyzed the request-response web service calls on client-

server architecture with the help of Google Chrome Extension.

20

 IDENTIFYING GENERIC FEATURES

In order to find information on the Internet, we need to have an address or pointer to locate

the information. The address points to a computer hosting information that can be physical or

virtual. The IP address or hostname has been used widely as an address to those computers across

the Internet. It is the mean of getting information and is used to identify the location of the resource.

In contrast, URL contains other information along with the IP address or hostname such as protocol

to be used, path, optional fragment identifier. Through URLs, we can visit a plethora of

information by accessing different websites. URLs are also used in web services including

application or cloud technology for data messaging through Internet. Web services have been

widely used in the corporate sector nowadays because of the rapid improvements in architectural

design and scaling.

3.1 Overview of URL

Figure 3.1. Uniform Resource Locator (URL) [33]

URL stands for Uniform Resource Locator also known as web address. It is a reference to

a web resource that specifies resource location in a remote server. The resource could be a web

page, text file, email, images, and database access. A URL has two main components known as

protocol identifier and resource path. The protocol indicates which protocol is being used. The

resource path consists of the IP address or domain/hostname. The protocol and resource can be

identified in Fig 3.1. Path in URL consists of a sequence of path segments separated by a forward

slash (/). The slashes in the URL are used to separate directory or filenames. URL may contain a

21

question mark (?) which represents an optional query for passing non-hierarchical data. Its syntax

is not well defined, but by convention is most often a sequence of attribute-value pairs separated

by a delimiter.

 In this work, we focus on identifying the most significant features that can give enough

information to detect malicious URLs. Fig. 3.2 shows the detailed workflow for the model

development of our malicious URL detection system. It consists of three stages. The first stage

deals with data processing, along with feature creation and extraction. We use different statistical

methods to identify the most significant features. The second stage is the optimization and tuning

of various ML algorithms. This stage involves choosing a set of optimal hyper-parameters for each

algorithm. Finally, a majority voting classifier is used to classify the URL into benign or malicious

in the third stage. In the following subsections, we provide the details of our approach.

Figure 3.2. Workflow of Malicious URL detection Model

https://en.wikipedia.org/wiki/Attribute%E2%80%93value_pair
https://en.wikipedia.org/wiki/Delimiter

22

3.2 Dataset Description

We have used two publicly available datasets in our work. The first one is released by

Mammun et al. [18], and the second one is available through the well-known online data science

community platform, Kaggle [19]. We refer them as UNB and Kaggle datasets, respectively. In

UNB dataset, the authors selected 1,65,366 URLs. There are 35,378 benign, 12,000 spam, 9,965

phishing, 11,566 malware, and 96,457 defacement URLs in the dataset. They collected benign

URLs from Alexa Top websites by removing the duplicate and domain-only URLs, whereas

malicious URLs were collected from OpenPhish, DNS-BH, Zone-H, and WEBSPAM-UK2007.

The Kaggle dataset contains 4,20,464 URLs in which 82% are benign, and 18% are malicious

URLs. The dataset includes URLs from Phishtank, JWSPAMSPY, DNS-BH, and Majestic.

3.3 Feature Engineering

We created 106 lexical features for the URL classification by referring [18], [21], and [22].

There are 41 word-based features, 36 count-based features for alphanumeric characters, URL

entropy, domain, host, path, parameters query and remaining 29 features includes special character

count. Word-based features represent top words used by attackers for obfuscation and defacements

like secure, webscr, login, ebaysiapi, signin, banking, confirm, and signon. Although authors in

[5] considered the presence of alphanumeric characters as features, we have counted the frequency

of each character that appears in the URL. Our derived features can be found at appendix A.

We have used two scoring functions for feature selection, Chi-square [16] and ANOVA

[17]. Chi-square is a statistical method that provides two types of statistical tests called “goodness

of fit” and “test for independence.” In our case, we have used the latter one, which compares two

variables and checks if they are related. If the target variable is independent of the feature, that

feature can be discarded. ANOVA is known as Analysis of Variance. In statistics, the variance

represents the data spread out as how far does any value varies from the mean value of the

distribution. ANOVA can determine whether the mean of a certain group is different or the same

with the help of F-Scores. F-Scores are the statistical F-test and represent the ratio of mean squares.

23

3.3.1 Chi-Square

Chi-Square test is statistically used to measure the goodness of fit and independence test

[16]. The goodness of fit is used to know in a frequency how many cases fell into one category

whereas the test of independence shows if there is any relation between the variables. The test of

independence shows the relationship between the independent variables/features with the

dependent variable or response feature. Through Chi-Square, we can check which features set are

highly correlated and dependent on the response. Higher values of Chi-square show the

independence of the hypothesis is incorrect and there is a high dependency between the

label/response class and the tested feature. Any two variables can be observed by getting the

observed count and expected count. Below equation 3.1 shows such deviation between the

variables.

𝑋𝑋𝑋𝑋2 = �
(𝑂𝑂𝑖𝑖 − 𝐸𝐸𝑖𝑖)

𝐸𝐸𝑖𝑖

𝑚𝑚

𝑖𝑖=1

Equation 3.1 : Chi- Square equation [16]

3.3.2 ANOVA

ANOVA is a popular statistical method to analyze the variance in the dataset [17]. In

machine learning, variance analysis gives information metrics through which we can determine

whether the feature does a good job of accounting for variation in dependent variables. Analysis

of variance in features or group can be explained as

𝐴𝐴𝐴𝐴𝑂𝑂𝐴𝐴𝐴𝐴 =
∑ [∑ 𝑋𝑋𝑖𝑖𝑖𝑖

𝑛𝑛𝑗𝑗
𝑖𝑖=1]𝑘𝑘

𝑖𝑖=1

∑𝑛𝑛𝑖𝑖

Equation 3.2 : ANOVA equation [17]

Where 𝑘𝑘 represents the number of features and 𝑛𝑛 represents 𝑖𝑖𝑡𝑡ℎ sample data of the dataset. F-

values are used for variable ranking and can be applied sequentially to all the variables in order to

discriminate according to the classes. ANOVA is based on F-test to estimate the degree of linear

dependence between variables.

24

Figure 3.2 and 3.3 show the feature importance scores using both chi-Square and ANOVA

on Kaggle and UNB datasets. We selected top 60 features from both datasets that show the highest

feature score.

3.3.3 Finalizing Common Features

With the help of the above Chi-square & ANOVA feature scoring techniques, we finalize

the most common significant features in the datasets. We applied scoring techniques one by one

on each dataset to find top 60 significant features set. Then, we identified common features in all

the top 60 significant features sets. We found 47 features that were available in all the sets. Figure

3.4 and 3.5 shows the flow of the feature selection model whereas Table 3.1 lists finalized features

after the feature selection process. Out of these 47 features, Features 1-4 show the presence of

specific words in a URL. Feature 5-16 represents the frequency of specific symbols found in the

URL. Feature 17-19 contain path, host, and URL length. The URL paths refers to the exact location

of the file or asset, whereas the host represents the name or address of the webserver. Feature 20

checks the presence of any number. Feature 21 checks the URL path extension. Path extension is

used to check if the URL is trying to access or download any file with a specific extension, such

as “.exe”, and “.zip.” Feature 22-46 represents the frequency of alphanumeric characters. Feature

47 shows the entropy of query parameters. A query parameter is attached at the end of the URL

that links to a specific action or file depending on the data being passed to the server. We have

used Shannon’s Entropy which gives the information produced by the stochastic source of data.

We then develop our ML-based malicious URL detection model with the help of these 47 selected

features.

Fi
gu

re
 3

.3
.

Fe
at

ur
e

Sc
or

e
fr

om
 U

N
B

 D
at

as
et

‐0
.0
50

0.
050.
1

0.
150.
2

0.
250.
3

0.
350.
4

Fe
at
ur
e
Sc
or
e
of
 U
N
B
da

ta
se
t

25

Fi
gu

re
 3

.4
.

Fe
at

ur
e

Sc
or

e
fr

om
 K

ag
gl

e
D

at
as

et

‐2
.0
0E

‐0
3

0.
00

E+
00

2.
00

E‐
03

4.
00

E‐
03

6.
00

E‐
03

8.
00

E‐
03

1.
00

E‐
02

Fe
at
ur
e
Sc
or
e
of
 K
ag
gl
e
da

ta
se
t

26

27

Figure 3.5. Feature Selection Model

28

Figure 3.6. Steps involved in Feature Selection Model

29

Table 3.1. Finalized Selected Features

Feature Name Description

1 Ebayisapi Check word presence

2 getImage Check word presence

3 Jpg Check word presence

4 Log Check word presence

5 Count_& Count ‘&’ symbol

6 Count_/ Count ‘/’ symbol

7 Count_@ Count ‘@’ symbol

8 Count_dash Count ‘- ‘symbol

9 Count_digits Count total digits in URL

10 Count_equals Count ‘=’ symbol

11 Count_letters Count total alphabetical letters

12 Count_path_back_slash Count back slashes in URL path

13 Count_path_dot Count dots in URL path

14 Count_question Count ‘?’ symbol

15 Count_semi_column Count ‘;’ symbol

16 Count_symbols Count total symbols in the URL

17 Path_length Length of the URL path

18 Host_length Length of the host name in URL

19 URL_length Length of the URL

20 Is_number_in_host Check digits in the host name

21 Path extension Extension of the URL path

22 Freq_0 Frequency of 0

23 Freq_2 Frequency of 2

24 Freq_3 Frequency of 3

25 Freq_4 Frequency of 4

26 Freq_5 Frequency of 5

27 Freq_6 Frequency of 6

28 Freq_7 Frequency of 7

30

Table 3.1. continued

29 Freq_8 Frequency of 8

30 Freq_9 Frequency of 9

31 Freq_b Frequency of b

32 Freq_d Frequency of d

33 Freq_f Frequency of f

34 Freq_g Frequency of g

35 Freq_j Frequency of i

36 Freq_l Frequency of l

37 Freq_o Frequency of o

38 Freq_p Frequency of p

39 Freq_r Frequency of r

40 Freq_s Frequency of s

41 Freq_t Frequency of t

42 Freq_u Frequency of u

43 Freq_w Frequency of w

44 Freq_x Frequency of x

45 Freq_y Frequency of y

46 Freq_z Frequency of z

47 Entropy_query Entropy of query parameters

3.4 Single & Ensemble Machine Learning (ML) Algorithms

To develop the malicious URL detection model, we have used various machine learning

algorithms including Logistic Regression (LR), K-Nearest Neighbor (KNN), Support Vector

Machine (SVM), and ensemble learning algorithms. Fig 3.6 shows the detailed workflow for the

model development of our malicious URL detection system. After identifying the common

features, we split the data and used grid search for different machine learning algorithms for best

optimal accuracy. Later, we applied the majority voting technique to get the best result from

majority votes.

31

3.4.1 Single Machine Learning Algorithms

K-Nearest Neighbor (KNN)

KNN can be used for classification and regression [25]. It is a non-parametric method that

uses distance as a metric to classify by a plurality vote of its K neighbors. There are several ways

to perform KNN. The three most popular methods for KNN are brute force, ball tree, and k-d tree.

We have used all three algorithms in our case. Brute force is a tedious and time-consuming way

of calculating the distance of each data sample in the data set whereas k-d and ball tree uses a tree

data structure to further optimization.

Support Vector Machine (SVM)

A support vector machine is a supervised learning model used for classification and

regression [26]. It classifies with the help of separating hyperplane between different groups of

data. In SVM, data points can be treated as a p-dimensional vector and tries to find (p-1)

dimensional hyperplane called linear classifier. Optimal results can be achieved by getting a

hyperplane which has the largest separation called margin between the two classes. There are

different kernel tricks in SVM which is used to transform the dataset from a lower dimension to a

higher dimension in order to find the optimal hyperplane. We have used 4 different kernel tricks

[27] such as Nystroem approx, Fourier approx, linear SVM and RBF kernel tricks. Fig 3.7 and 3.8

classification accuracy tested on different SVM kernels and among all RBF kernel shows the best

results for both datasets.

32

Figure 3.7. Different kernels of SVM using Kaggle dataset

Figure 3.8. Different kernels of SVM using UNB dataset

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250 300

Cl
as

si
fic

at
io

n
Ac

cu
ra

cy

Fourier approx kernel Nystroem approx kernel
Linear SVM rbf SVM

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0 50 100 150 200 250 300

Cl
as

si
fic

at
io

n
Ac

cu
ra

cy

Fourier approx kernel Nystroem approx kernel
Linear SVM rbf SVM

33

Logistic Regression

Logistic regression is a famous ML algorithm which is very close to linear regression [48].

The term logistic is taken from the “Logit Function”. It predicts the outcome that can only have

two values. It produces a logistic curve which is limited to value 0 and 1. Logit Function is used

to get the values within the range of 0 and 1. Logistic regression is best used for nonlinear decision

boundaries. Equation 3.3 shows the formula where the curve is constructed using the natural

logarithm of the odds of target variable.

𝑝𝑝 =
1

(1 + 𝑒𝑒−(𝑏𝑏𝑜𝑜+𝑏𝑏1𝑥𝑥1+⋯+𝑏𝑏𝑛𝑛𝑥𝑥𝑛𝑛))

Equation 3.3. Logistic Regression [48]

3.4.2 Ensemble Machine Learning Algorithms

Ensemble learning is done by combining base learners of different machine algorithms. It

combines several machine learning techniques to decrease variance and bias to improve

classification performance [29]. In our work, we have used Bagging, Random Forest, Adaboost

and Gradient Boosting.

Bagging

Bagging, an acronym for bootstrap aggregation, is used for stabilizing the accuracy by

reducing the variance [44]. It is subclass of ensemble learning and can be used in both classification

and regression. It consists of several weak learners trained in parallel and combines the individual

results through the deterministic averaging method. It improves the stability of algorithm by

improving accuracy and reducing variance.

Random Forest

A random forest algorithm can be used for classification as well as regression and consists

of a multitude of decision trees. These decision trees work for a different random subset of a dataset

and make predictions according to that specific dataset. The final prediction is done by obtaining

the prediction of all individual trees and predict a class that gets most votes and such ensemble of

decision trees is called Random Forest. In this way, the random forest can be grown very deep and

34

might learn irregular patterns that can overfit the training dataset. That is why averaging multiple

decision trees give the results by reducing variance.

AdaBoost

AdaBoost short for “Adaptive Boosting” learn the weak learners sequentially in an

adaptive way [31]. It tries to correct the errors of the previous stage. Each stage in boosting depends

on the previous one iteratively. Unlike bagging that had each model run independently and then

aggregates the output at the end, boosting works in team where each model run, dictates what

features the next model will focus on.

Extra-Trees

This algorithm is like a random forest that uses a decision tree at the core. The main

difference between Random forest and Extra Trees lies in the fact that, instead of computing

optimal feature for the split, a random value is selected for the split.

Voting Classifier

Voting Classifier [30] also known as majority rule, itself is not a classifier or an algorithm

but rather a wrapper for a set of different other classifiers that work in parallel and uses the majority

Figure 3.9. Voting Classifier [34]

35

vote according to several strategies. It combines several algorithms and usually gives more

accurate results than any individual algorithm. It implements hard and soft voting. Hard voting is

about predicting the class which has higher frequency among the classification models whereas

soft voting is about predicting the class labels by averaging the individual classifier class

probabilities. Fig 3.9 shows the generalized view of the internal working of voting classifier.

3.5 Results

To get good results, we have used an optimization technique called Hyperparameter

optimization. It is about choosing the optimal hyperparameters for a learning algorithm. There are

different approached Hyperparameter optimization such as Grid Search, Random search,

Bayesian, Gradient-based and Population-based optimization.

3.5.1 K-fold Cross Validation

The machine learning model can give biased results if training data lies or cover a certain

distribution of sample data of the population. To avoid such scenarios validation techniques in

Machine learning can be convenient to use as it gives an error rate close to the true error of the

population. We have used the K-fold cross-validation technique for algorithm training.

Figure 3.10. K-fold cross validation with k = 4 [24]

36

K-fold splits the data into k parts and fed those data set into k different models. Each model is

trained on to (K-1) parts and tested on the not included model.

3.5.2 Grid Search

Grid search is the most used and traditional way of performing hyperparameter

optimization. It is a brute force way of selecting a manually specified subset of the hyperparameter

space of an algorithm. In our case, we performed a grid search on all the above-mentioned

algorithms. Model hyperparameters [23] are the features of any ML algorithms which cannot be

estimated from the data as it must be set before fitting the training data into the algorithm. On the

other hand, model parameters are different than hyperparameters as it shows the internal

characteristics of the model and its value can be estimated from the training data.

We tuned and optimized each algorithm with the help of grid search and cross-validation.

The performance metrics that we used for evaluating the models are confusion matrix, accuracy,

precision, recall, and F1-Score. The brief description for each of them are as follows:

• Confusion Matrix: It contains the information for actual and predicted results. The

model performance can be evaluated with the help of this matrix which shows the

positive and negative values for actual and predicted classes. It should be noted that

we have considered malicious URL as positive class and benign URL as negative

class.

• True Positive (TP): The number of observations that are predicted as positive

(malicious) and are positive (malicious) in actual.

• False Positive (FP): The number of observations that are predicted positive

(malicious) but are negative (benign) in actual.

• True Negative (TN): The number of observations that are predicted as negative

(benign) and are negative (benign) in actual.

• False Negative (FN): The number of observations that are predicted negative

(benign) but are positive (malicious) in actual.

37

• Accuracy: It is the ratio of correctly predicted observations to the total number of

observations.

𝐴𝐴𝑋𝑋𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴𝑋𝑋𝐴𝐴 =
𝐶𝐶𝐶𝐶𝐴𝐴𝐴𝐴𝑒𝑒𝑋𝑋𝐶𝐶𝐶𝐶𝐴𝐴 𝑝𝑝𝐴𝐴𝑒𝑒𝑝𝑝𝑖𝑖𝑋𝑋𝐶𝐶𝑒𝑒𝑝𝑝 𝐶𝐶𝑜𝑜𝑜𝑜𝑒𝑒𝐴𝐴𝑜𝑜𝐴𝐴𝐶𝐶𝑖𝑖𝐶𝐶𝑛𝑛𝑜𝑜

𝑇𝑇𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶 𝐶𝐶𝑜𝑜𝑜𝑜𝑒𝑒𝐴𝐴𝑜𝑜𝐴𝐴𝐶𝐶𝑖𝑖𝐶𝐶𝑛𝑛𝑜𝑜

=
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝐴𝐴

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝑇𝑇𝐴𝐴 + 𝐹𝐹𝐴𝐴

• Precision: This metric is a good performance metric when the cost of false-positive

is high and given as:

𝑇𝑇𝐴𝐴𝑒𝑒𝑋𝑋𝑖𝑖𝑜𝑜𝑖𝑖𝐶𝐶𝑛𝑛 =
𝑇𝑇𝐴𝐴𝐴𝐴𝑒𝑒 𝑇𝑇𝐶𝐶𝑜𝑜𝑖𝑖𝐶𝐶𝑖𝑖𝑜𝑜𝑒𝑒

𝑇𝑇𝐴𝐴𝐴𝐴𝑒𝑒 𝑇𝑇𝐶𝐶𝑜𝑜𝑖𝑖𝐶𝐶𝑖𝑖𝑜𝑜𝑒𝑒 + 𝐹𝐹𝐴𝐴𝐶𝐶𝑜𝑜𝑒𝑒 𝑇𝑇𝐶𝐶𝑜𝑜𝑖𝑖𝐶𝐶𝑖𝑖𝑜𝑜𝑒𝑒
• Recall: This metric is a good performance metric when the cost of false negative is

high and given as:

𝑅𝑅𝑒𝑒𝑋𝑋𝐴𝐴𝐶𝐶𝐶𝐶 =
𝑇𝑇𝐴𝐴𝐴𝐴𝑒𝑒 𝑇𝑇𝐶𝐶𝑜𝑜𝑖𝑖𝐶𝐶𝑖𝑖𝑜𝑜𝑒𝑒

𝑇𝑇𝐴𝐴𝐴𝐴𝑒𝑒 𝑇𝑇𝐶𝐶𝑜𝑜𝑖𝑖𝐶𝐶𝑖𝑖𝑜𝑜𝑒𝑒 + 𝐹𝐹𝐴𝐴𝐶𝐶𝑜𝑜𝑒𝑒 𝐴𝐴𝑒𝑒𝑁𝑁𝐴𝐴𝐶𝐶𝑖𝑖𝑜𝑜𝑒𝑒

• F1-score: This metric is holistic evaluation of precision and recall. It is the

harmonic mean of precision and recall.

𝑅𝑅𝑒𝑒𝑋𝑋𝐴𝐴𝐶𝐶𝐶𝐶 =
2 ∗ 𝑇𝑇𝐴𝐴𝑒𝑒𝑋𝑋𝑖𝑖𝑜𝑜𝑖𝑖𝐶𝐶𝑛𝑛 ∗ 𝑅𝑅𝑒𝑒𝑋𝑋𝐴𝐴𝐶𝐶𝐶𝐶
𝑇𝑇𝐴𝐴𝑒𝑒𝑋𝑋𝑖𝑖𝑜𝑜𝑖𝑖𝐶𝐶𝑛𝑛 + 𝑅𝑅𝑒𝑒𝑋𝑋𝐴𝐴𝐶𝐶𝐶𝐶

Table 3.2 shows the classification accuracy for all the algorithms after they were optimized.

Voting classifier is the final classifier that combines the outcomes for different algorithms with

their best parameters. Fig 3.11 and 3.12 shows the performance metrics for UNB and Kaggle

datasets for five best algorithms.

The accuracy, precision, and recall for the UNB dataset are slightly better than [5] with the

generic features set. The overall precision, recall, and F1-Score for both the datasets are better than

[15], however, their feature selection methods and datasets are different than our work. Table 3.3

shows the confusion matrix for the Voting classifier reported on UNB and Kaggle test datasets.

38

The classifier achieved an accuracy of 99.72% and 95.37% for UNB and Kaggle datasets,

respectively. The false-positive rate and false-negative rate for the UNB dataset were 0.1% and

0.7%, and 3.97% and 4.73% for the Kaggle dataset. The weighted accuracy for the classifier is

96.60% along with 2.88% false-positive and 3.60% false-negative rate. Andrew et al. [11] on the

other hand are classifying phishing attacks with four different features set categories by using 138

features, whereas we are covering all malicious URLs with 47 features. The results of this work

have been published in [49].

Fi
gu

re
 3

.1
1.

 P
er

fo
rm

an
ce

 m
et

ric
s f

or
 U

N
B

 d
at

as
et

 w
ith

 d
iff

er
en

t c
la

ss
ifi

er
s

0.
92

0.
93

0.
94

0.
95

0.
96

0.
97

0.
98

0.
991

Be
ni
gn

M
al
ic
io
us

Be
ni
gn

M
al
ic
io
us

Be
ni
gn

M
al
ic
io
us

Be
ni
gn

M
al
ic
io
us

Be
ni
gn

M
al
ic
io
us

G
ra
di
en

t B
oo

st
in
g

KN
N

SV
M
(R
BF

)
Ra

nd
om

 F
or
es
t

Vo
tin

g
Cl
as
sif
ie
r

Pr
ec
isi
on

0.
99

1
0.
99

1
0.
99

0.
99

0.
98

1
0.
95

1

Re
ca
ll

1
1

0.
99

1
0.
97

1
0.
99

1
0.
99

1

F1
0.
99

1
0.
99

1
0.
98

1
0.
99

1
0.
99

1

39

Fi
gu

re
 3

.1
2.

 P
er

fo
rm

an
ce

 m
et

ric
s f

or
 K

ag
gl

e
da

ta
se

t w
ith

 d
iff

er
en

t c
la

ss
ifi

er
s

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
0.

7
0.

8
0.

91

Be
ni

gn
M

al
ic

io
us

Be
ni

gn
M

al
ic

io
us

Be
ni

gn
M

al
ic

io
us

Be
ni

gn
M

al
ic

io
us

Be
ni

gn
M

al
ic

io
us

G
ra

di
en

t B
oo

st
in

g
KN

N
SV

M
(R

BF
)

Ra
nd

om
 F

or
es

t
Vo

tin
g

Cl
as

sif
ie

r
Pr

ec
isi

on
0.

95
0.

91
0.

95
0.

89
0.

93
0.

92
0.

94
0.

95
0.

95
0.

96
Re

ca
ll

0.
98

0.
77

0.
98

0.
78

0.
99

0.
66

0.
99

0.
71

0.
99

0.
77

F1
0.

97
0.

83
0.

97
0.

83
0.

96
0.

77
0.

97
0.

81
0.

97
0.

86

40

41

Table 3.2. Classification accuracy of UNB and Kaggle datasets

Dataset Algorithm Accuracy (in %)

UNB

KNN 99.59

SVM (RBF) 99.29

Logistic Regression 94.04

Adaboost 97.85

Gradient Boosting 99.68

Extra Trees 98.96

Random Forest 99.49

Voting Classifier 99.72

Kaggle KNN 94.31

SVM (RBF) 92.99

Logistic Regression 87.21

Adaboost 90.34

Gradient Boosting 94.44

Extra Trees 88.00

Random Forest 94.22

Voting Classifier 95.37

Table 3.3. Confusion Matrix for Voting Classifier on UNB and Kaggle datasets

 Predicted

 Benign Malicious

UNB Actual Benign 6917 37

Malicious 51 26069

Kaggle Actual Benign 62651 478

Malicious 3414 11550

42

 REAL TIME MALICIOUS URL DETECTION

The previous chapter provided the generic features selection for malicious URL detection

using two different datasets. . In this chapter, we discuss the implementation of detection model

into real-time capable of handling thousands of end-user requests. We design a client-server

architecture to handle the load and analyze the performance in different scenarios.

4.1 Overview & Architecture

Designing architecture is the most significant part when it comes to scalability and handling

a huge number of incoming requests. Suitable and sustainable architecture can help organizations

to achieve their desired goals with the capability to handle huge loads. Architectural patterns are

like software design patterns but have a wider scope. Design patterns for software development

proved to be very effective for the development of any software, however, design patterns for

applications that leverage new sources and types of big data are still needed.

Implementing real-time machine learning model can be a bottleneck when it comes to

processing thousands of requests per second. We designed an architectural pattern that could detect

any malicious URLs in real-time. Fig 4.1 shows a high-level overview of our real-time malicious

URL detection system. This pattern requires clients to add google chrome extension in their

chrome browser. Stepwise process of detection system is discussed below:

1. User visits any website, google chrome extension intercepts and halts that specific

incoming request.

2. Chrome browser extension generates separate web service request along with target

URL content as payload to a remote web server.

3. Web server checks the URL results in database and preform classification accordingly.

4. Web server sends the response back to the client browser extension.

5. Browser extension checks if URL is malicious or benign. It blocks the URL if its

malicious otherwise it allows the client to access to the requested URL using internet.

43

Figure 4.1. Client server architecture

4.2 Implementation of Client-Server Architecture

A single node client-server architecture is implemented to handle all HTTP requests from

the client in real-time. In order to achieve this task, we have done a series of tests with different

throughput and load variations. Table 1 and 2 show the hardware specification and

software/libraries used for single node server.

Table 4.1. Hardware specification of a system that runs the server VM

Processor Intel(R) Core (TM) i7-6900 @ 3.20 GHz

Installed RAM 40 GB

Operating System Linux, Ubuntu 64 bit

Table 4.2. Software level configuration

Package/Tool Version/Name

Web Server Django

Web Server Japronto

Client Google Chrome Plugin

44

Table 4.2. continued

Python Version 3.7.1

Sckit-Learn 0.20.1

Pandas 0.23.4

NumPy 1.15.4

Matplotlib 3.0.2

Database SQLite

Load Testing Tool Apache JMeter

Pseudocode 1. Client - Server Architecture
httpRequestListener(request) {

url = request.getUrl
dbCon = getSingletonDBConnection()
domain = getDomain(url)
urlDetail = dbCon.gerUrl(domain)
isMalicious = true

If (urlDetail != null)
 isMalicious = urlDetail.getClassificationResult()
Else
 dataset = createLexicalFeatures(url)
 normalizedData = normalizedDataset(dataset)
 result = prediction.makePrediction(normalizedData)
 saveResultsinDB(url,domain,result)
 isMalicious = result
Endif

return isMalicious

}

4.2.1 Google Chrome Plugin as Browser Extension

In order to develop the whole end to end system, we have developed browser extension for

Google chrome. Browser extensions are software that can be embedded with the web browser to

accomplish certain desired tasks. They are separate modules and are different from browser

plugins. Browser plugins are always executable whereas extensions are usually just the source

code. The popular two browser plugin examples are Adobe Flash Player and Java virtual machine

also called Applets. On the other hand, browser extension does not contain object code or

45

executables. Extensions are lightweight and are limited to make changes at the browser level. It

has the capability to intercept any request initiated from the browser. We have used it to intercept

and verify all the request that has been generated from google chrome browser in real-time. Those

intercepted request along with the URLs are then passed to the cloud-based web server for

classification.

Figure 4.2. Chrome Extensions from Chrome Web Store

Pseudocode 2. Chrome Extension Interceptor
listenerOnBeforeRequest(dtls) {

 isMalicious = true
 url = dtls.visitingUrl
 isMalicious = cloudApiCall(url)
 blockUrl = false
 If (isMalicious = True)
 blockUrl = true
 Else
 blockUrl = false
 EndIf

return blockUrl

}

46

4.2.2 Apache JMeter

Apache JMeter is an open-source Java-based desktop application that is used to perform

load testing functional behavior and performance measurement [51]. We have used JMeter to

analyze and measure the performance of our web server in single node mode and distributed cluster

mode. JMeter allocates concurrent and real-time sampling of different functions by a separate

thread group. Through JMeter, we can tune the throughput of web request and analyze the latency

of web server from thousand to millions of requests per second concurrently.

4.2.3 Python and Related Libraries

Python is an interpreted high-level language which is dynamically typed, and garbage

collected. It supports procedural, functional and object-oriented programming. We have used

python3 for our project. Since it is open-sourced, we can find a lot of libraries and tools for it. We

have used the Sckit-learn [50] library for machine learning classification. It is a free software

machine learning library for Python. Other libraries such as NumPy and Matplotlib have also

played an important role to achieve our task. NumPy is used to sustain large multi-dimensional

arrays and matrices along with the large collection of high-level mathematical functions to operate

these arrays. Matplotlib is a plotting library that provides object-oriented API for embedding plots

into the application.

4.2.4 Django as a Webserver

A web server is server software that is capable to handle the worldwide web client request.

It contains website and processes client requests over HTTP [52]. Django is a high-level python-

based web framework that has inbuilt web server based on Web Server Gateway Interface (WSGI).

WSGI is a calling convention to incoming requests to web frameworks and application written in

python programming language.

4.2.5 Japronto as a Web Server

Japronto is a micro-framework which can handle the synchronous and asynchronous

request [53]. It is scalable, lightweight and even faster than NodeJS. It is written in C language to

take advantage of modern CPUs.

47

4.2.6 Performance Evaluation and Optimization

We have considered two scenarios for load testing of a single node web server. These two

scenarios are based on the real-time detection mechanism at the server end-side.

I. Scenario I: we assume that there are no records in the database for previously classified

URLs.

II. Scenario II: We assume that URLs have already been classified and stored in the

database along with their labels.

Pseudocode 1 shows the implementation of URL classification. It first checks if the

incoming URL is stored in database and then predicts in case if it’s not there in database otherwise

it returns the previous calculated result from database.

Django webserver

By considering both scenarios as discussed, we got the same throughput of 120 concurrent

requests per second as shown in Fig 4. Figure 4.4 and 4.5 show the response time of all the requests

which are less than 500ms.

Figure 4.3. Number of hits/sec plot

48

Figure 4.4. Response time in millisecond

Figure 4.5. Summary of response time in different times ranges

Japronto webserver

We perform load testing on Japronto by considering the two scenarios as discussed earlier.

We got a maximum throughput with the second scenario where the classification results have

already been stored into the database previously. This scenario assumes that the user had already

visited a URL. Japronto was able to reach up to the 7438 hits per second. As from figure 4.6 and

4.8, the average response time is 4.11 millisecond with a total of 864710 request samples whereas

49

Figure 4.7 shows the number of transactions within the span of 2 seconds and Figure 4.9 shows

the response time.

Figure 4.6. Load test summary on Japronto with Database

Figure 4.7. Number of Transactions/secs on Japronto with Database

50

Figure 4.8. Response times in millisecond on Japronto with Database

Figure 4.9. Histogram of Response time on Japronto with Database

51

CONCLUSION AND FUTURE WORKS

5.1 Conclusion

In this work, we have been able to detect malicious URLs in real-time using machine

learning via web service calls. We applied different statistical techniques, known as Chi-Square

and ANOVA, to identify the most significant lexical features by using different datasets. We have

used a combination of different machine learning algorithms including single and ensemble

machine learning algorithms. We finalized 47 most significant features out of 106 that has the

potential to identify any malicious URLs accurately and precisely with an average low false-

positive rate of 2.88% and an accuracy of 96.6% for two different datasets.

We further implemented a client-server based real-time detection mechanism that relies on

HTTP communication protocol over web service calls which uses google chrome along with

browser plugin as a client and sends a request to the server. We have analyzed the performance

measure using client-server architecture by considering Japronto as HTTP webserver.

5.2 Future Work

Our work can further be optimized and improved in several ways. The following are a few

considerations for upgrading this work which can improve its functionality

• In our work, we considered two datasets and have tested generic features on them.

Although these two datasets contain a different variation of malicious URLs, we can

still further verify our derived generic features by using a different dataset from

different sources.

• To make classification faster and time-efficient, the lexical feature-based model is

always preferable. However, lexical based features for URL detection can miss

malware and malicious activities that are embedded on legit websites without knowing

the site owner. For this reason, further consideration is to use dynamic web

content/source-based features, and network-based features. By providing these

features, it will be able to detect embedded malicious code inside web pages.

52

• Another worth consideration is about online learning. In our case, we considered

already provided past data as training data for our model. It can be further updated in a

way where machine learning algorithms can update their weight matrices by

considering the past stream of classified data as training data that works in rounds. For

each round, the algorithm can predict with its model along with prediction suffer loss.

53

REFERENCES

[1] “Internet World Status: Usage of Internet and Population Status,” “https:

//www.internetworldstats.com/stats.htm Accessed July 20, 2019”

[2] “We are social: Digital 2019, Global Internet Use Accelerates”

“https://wearesocial.com/blog/2019/01/digital-2019-global-internet-use-accelerates”

[3] “Hacker Attacks every 39 Second,””https://www.securitymagazine.com/articles/87787-

hackers-attack-every-39-seconds”

[4] Symantec Internet Security Thread Report “https://www.symantec.com/security-center/threat-

report”

[5] SiteLock Website Security “https://www.sitelock.com/blog/website-security-insider-q2-

2018/”

[6] CAIDA study “a Macroscopic Characterization of the DoS Ecosystem”

“https://www.caida.org/publications/papers/2017/millions_targets_under_attack/millions_target

s_under_attack.pdf”

[7] Email fraud continue to rise by Proof Point “https://www.proofpoint.com/us/corporate-

blog/post/email-fraud-continues-rise-number-attacks-grew-36-q2”

[8] M. S. I. Mamun, M. A. Rathore, A. H. Lashkari, N. Stakhanova, and A. A. Ghorbani,

“Detecting malicious urls using lexical analysis,” in Network and System Security, J. Chen, V.

Piuri, C. Su, and M. Yung, Eds. Cham: Springer International Publishing, 2016, pp. 467–482

[9] Faeze Asdaghi, “An effective feature selection method for web spam detection ”

“https://www.sciencedirect.com/science/article/abs/pii/S095070511830621X”

[10] H. Le, Q. Pham, D. Sahoo, and S. C. H. Hoi, “Urlnet: Learning a URL representation with

deep learning for malicious URL detection,” CoRR, vol. abs/1802.03162, 2018. [Online].

Available: “http://arxiv.org/abs/1802.03162”

[11] R. B. Basnet, A. H. Sung, and Q. Liu, “Learning to detect phishing URLs.”

[12] W. Wang and K. Shirley, “Breaking bad: Detecting malicious domains using word

segmentation,” arXiv preprint arXiv:1506.04111, 2015

[13] Takesh Yogi “Investigation and analysis of malware on websites”

“https://ieeexplore.ieee.org/abstract/document/5623567”

https://wearesocial.com/blog/2019/01/digital-2019-global-internet-use-accelerates
https://www.securitymagazine.com/articles/87787-hackers-attack-every-39-seconds
https://www.securitymagazine.com/articles/87787-hackers-attack-every-39-seconds
https://www.symantec.com/security-center/threat-report
https://www.symantec.com/security-center/threat-report
https://www.sitelock.com/blog/website-security-insider-q2-2018/
https://www.sitelock.com/blog/website-security-insider-q2-2018/
https://www.caida.org/publications/papers/2017/millions_targets_under_attack/millions_targets_under_attack.pdf
https://www.caida.org/publications/papers/2017/millions_targets_under_attack/millions_targets_under_attack.pdf
https://www.proofpoint.com/us/corporate-blog/post/email-fraud-continues-rise-number-attacks-grew-36-q2
https://www.proofpoint.com/us/corporate-blog/post/email-fraud-continues-rise-number-attacks-grew-36-q2
https://www.sciencedirect.com/science/article/abs/pii/S095070511830621X
https://ieeexplore.ieee.org/abstract/document/5623567

54

[14] Stephen A.C “Spoofing and Anti-Spoofing Measures” “http://php.iai.heig-

vd.ch/~lzo/biomed/refs/Spoofing and Anti-Spoofing Measures - 2002_Schuckers.pdf”

[15] Jason Hong, “The current State of Phishing Attacks” “http://php.iai.heig-

vd.ch/~lzo/biomed/refs/Spoofing and Anti-Spoofing%20Measures - 2002_Schuckers.pdf”

[16] Chi-Square Statistics “https://nlp.stanford.edu/IR-book/html/htmledition/feature-

selectionchi2-feature-selection-1.html”

[17] ANOVA “https://en.wikipedia.org/wiki/Analysis_of_variance”

[18] M. S. I. Mamun, M. A. Rathore, A. H. Lashkari, N. Stakhanova, and A. A. Ghorbani,

“Detecting malicious urls using lexical analysis” in Network and System Security, J. Chen, V.

Piuri, C. Su, and M. Yung, Eds. Cham: Springer International Publishing, 2016, pp. 467–482.

[19] “Malicious & non-malicious url,” https://www.kaggle.com/antonyj453/datasets

[20] M Junaid Khan “Complete 106 feature set”

“https://docs.google.com/spreadsheets/d/1fO_giLLsmxU47cxrDVJlIgmZojwmWmyW36MFCh4q

MvY/edit#gid=0”

[21] D. Patil and J. Patil, “Feature-based malicious url and attack type detection using multi-class

classification,” The ISC International Journal of Information Security, vol. 10, no. 2, pp. 141–162,

2018. [Online]. Available: http://www.isecure-journal.com/article 63041.html

[22] W. Wang and K. Shirley, “Breaking bad: Detecting malicious domains using word

segmentation” arXiv preprint arXiv:1506.04111, 2015

[23] Hyperparameters in Machine Learning Model

“https://en.wikipedia.org/wiki/Hyperparameter_optimization”

[24] K-fold Cross Validation – “https://towardsdatascience.com/5-reasons-why-you-should-use-

cross-validation-in-your-data-science-project-8163311a1e79”

[25] K Nearest Neighbors “http://scholarpedia.org/article/K-nearest_neighbor”

[26] Support Vector Machine “http://scholarpedia.org/article/Support_vector_clustering”

[27] Kernel Tricks in SVM “https://en.wikipedia.org/wiki/Kernel_method”

[28] Logistic Regression “https://en.wikipedia.org/wiki/Logistic_regression”

[29] Robi Polikar “Ensemble learning,” “https://link.springer.com/chapter/10.1007/978-1-4419-

9326-7_1”

[30] Majority Rule “https://en.wikipedia.org/wiki/Majority_rule”

[31] AdaBoost “https://en.wikipedia.org/wiki/AdaBoost”

http://php.iai.heig-vd.ch/%7Elzo/biomed/refs/Spoofing%20and%20Anti-Spoofing%20Measures%20-%202002_Schuckers.pdf
http://php.iai.heig-vd.ch/%7Elzo/biomed/refs/Spoofing%20and%20Anti-Spoofing%20Measures%20-%202002_Schuckers.pdf
http://php.iai.heig-vd.ch/%7Elzo/biomed/refs/Spoofing%20and%20Anti-Spoofing%20Measures%20-%202002_Schuckers.pdf
http://php.iai.heig-vd.ch/%7Elzo/biomed/refs/Spoofing%20and%20Anti-Spoofing%20Measures%20-%202002_Schuckers.pdf
https://nlp.stanford.edu/IR-book/html/htmledition/feature-selectionchi2-feature-selection-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/feature-selectionchi2-feature-selection-1.html
https://en.wikipedia.org/wiki/Analysis_of_variance
https://www.kaggle.com/antonyj453/datasets
https://docs.google.com/spreadsheets/d/1fO_giLLsmxU47cxrDVJlIgmZojwmWmyW36MFCh4qMvY/edit#gid=0
https://docs.google.com/spreadsheets/d/1fO_giLLsmxU47cxrDVJlIgmZojwmWmyW36MFCh4qMvY/edit#gid=0
https://en.wikipedia.org/wiki/Hyperparameter_optimization
https://towardsdatascience.com/5-reasons-why-you-should-use-cross-validation-in-your-data-science-project-8163311a1e79
https://towardsdatascience.com/5-reasons-why-you-should-use-cross-validation-in-your-data-science-project-8163311a1e79
http://scholarpedia.org/article/K-nearest_neighbor
http://scholarpedia.org/article/Support_vector_clustering
https://en.wikipedia.org/wiki/Kernel_method
https://en.wikipedia.org/wiki/Logistic_regression
https://link.springer.com/chapter/10.1007/978-1-4419-9326-7_1
https://link.springer.com/chapter/10.1007/978-1-4419-9326-7_1
https://en.wikipedia.org/wiki/Majority_rule
https://en.wikipedia.org/wiki/AdaBoost

55

[32] James B Fraley, “The Promise of Machine Learning in Cybersecurity”

[33] What is URL “https://sitechecker.pro/what-is-url/”

[34] Voting Classifer in Detail

http://rasbt.github.io/mlxtend/user_guide/classifier/EnsembleVoteClassifier/

[35] Report on Malicious URLs in good domain by Help Net Security, “

https://www.helpnetsecurity.com/2019/03/01/malicious-urls-good-domains/”

[36] Threat Report by WebRoot , “https://www-cdn.webroot.com/9315/2354/6488/2018-

Webroot-Threat-Report_US-ONLINE.pdf”

[37] 2019 Phishing Statistics and Email Fraud Statistics by Retruster,

“https://retruster.com/blog/2019-phishing-and-email-fraud-statistics.html”

[38] Jason Andress, in Cyber Warfare, 2011, “https://www.sciencedirect.com/topics/computer-

science/web-site-defacement ”

[39] How artificial intelligence stopped an Emotet outbreak,

“https://www.microsoft.com/security/blog/2018/02/14/how-artificial-intelligence-stopped-an-

emotet-outbreak/”

[40] Chronicle, Cybersecurity based company, https://chronicle.security/

[41] SQRRL, security and threat detection,

“https://searchaws.techtarget.com/news/252433932/AWS-snaps-up-Sqrrl-to-strengthen-threat-

detection-analytics”

[42] Guolin Tan, Peng Zhang, Qingyun Liu “MalFilter: A lightweight rea-time malicious URL

filtering system in large scale networks”

[43] Kurt Thomas, Justin Ma, “Design and evaluation of a real-time URL spam filtering service”

[44] J.R. Quinlan, “Bagging, Boosting and C4.5”,

http://www.cs.ecu.edu/~dingq/CSCI6905/readings/BaggingBoosting.pdf

[45] Forester Report on Data Breach, “https://www.forrester.com/search?tmtxt=data breach#”,

“https://www.techrepublic.com/article/forrester-what-can-we-learn-from-a-disastrous-year-of-

hacks-and-breaches/”

[46] KelserCorp press release on “Defend Forward” against cyber attacks

“https://www.kelsercorp.com/blog/press-release-kelser-enables-mid-size-companies-to-defend-

forward-against-cyber-attacks”

https://sitechecker.pro/what-is-url/
http://rasbt.github.io/mlxtend/user_guide/classifier/EnsembleVoteClassifier/
https://www.helpnetsecurity.com/2019/03/01/malicious-urls-good-domains/
https://www-cdn.webroot.com/9315/2354/6488/2018-Webroot-Threat-Report_US-ONLINE.pdf
https://www-cdn.webroot.com/9315/2354/6488/2018-Webroot-Threat-Report_US-ONLINE.pdf
https://retruster.com/blog/2019-phishing-and-email-fraud-statistics.html
https://www.sciencedirect.com/book/9781597496377
https://www.sciencedirect.com/topics/computer-science/web-site-defacement
https://www.sciencedirect.com/topics/computer-science/web-site-defacement
https://www.microsoft.com/security/blog/2018/02/14/how-artificial-intelligence-stopped-an-emotet-outbreak/
https://www.microsoft.com/security/blog/2018/02/14/how-artificial-intelligence-stopped-an-emotet-outbreak/
https://chronicle.security/
https://searchaws.techtarget.com/news/252433932/AWS-snaps-up-Sqrrl-to-strengthen-threat-detection-analytics
https://searchaws.techtarget.com/news/252433932/AWS-snaps-up-Sqrrl-to-strengthen-threat-detection-analytics
http://www.cs.ecu.edu/%7Edingq/CSCI6905/readings/BaggingBoosting.pdf
https://www.forrester.com/search?tmtxt=data%20breach
https://www.techrepublic.com/article/forrester-what-can-we-learn-from-a-disastrous-year-of-hacks-and-breaches/
https://www.techrepublic.com/article/forrester-what-can-we-learn-from-a-disastrous-year-of-hacks-and-breaches/
https://www.kelsercorp.com/blog/press-release-kelser-enables-mid-size-companies-to-defend-forward-against-cyber-attacks
https://www.kelsercorp.com/blog/press-release-kelser-enables-mid-size-companies-to-defend-forward-against-cyber-attacks

56

[47] Proof point on email spoofing “https://www.proofpoint.com/sites/default/files/pfpt-us-tr-

email-fraud-yir-180212.pdf”

[48] Logistic Regression “https://en.wikipedia.org/wiki/Logistic_regression”

[49] Hafiz M Junaid Khan, Quamar Niyaz, Vijay Devabhaktuni, Sile Guo, and Umair Shaikh,

“Identifying generic features for malicious URL detection”, IEEE 10th Annual Ubiquitous

Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY,

October 2019

[50] Scikit-learn machine learning library “https://scikit-learn.org/stable/”

[51] Apache JMeter “https://jmeter.apache.org/”

[52] Django Framework “https://www.djangoproject.com/”

[53] Japronto Server “https://github.com/squeaky-pl/japronto”

https://www.proofpoint.com/sites/default/files/pfpt-us-tr-email-fraud-yir-180212.pdf
https://www.proofpoint.com/sites/default/files/pfpt-us-tr-email-fraud-yir-180212.pdf
https://en.wikipedia.org/wiki/Logistic_regression
https://scikit-learn.org/stable/
https://jmeter.apache.org/
https://www.djangoproject.com/
https://github.com/squeaky-pl/japronto

57

APPENDIX

Total Number of Generated Features

Feature Name Description

1 count_ques Count Question Mark (?)

2 count_equals Count Equals (=)

3 count_semi_colun Count Semi Colun (;)

4 count_dash Count Dash (-)

5 count_open_brckt Count Opening Bracket (

6 count_close_brckt Count Closing Bracket)

7 count_percent Count Percent Symbol (%)

8 count_dots Count Dots (.)

9 len_url Calculate Length of whole URL

10 count_& Count AmpersandSymbol (&)

11 count_/ Count BackSlash (/)

12 count_path_len Calculate Length URL Path

13 count_@ Count At the Rate Symbol (@)

14 Secure Check Presence

15 account Check Presence

16 Webscr Check Presence

17 Login Check Presence

18 ebayisapi Check Presence

19 Signin Check Presence

20 banking Check Presence

21 confirm Check Presence

22 Blog Check Presence

23 Logon Check Presence

24 signon Check Presence

25 viewer Check Presence

58

26 getImage Check Presence

27 plugins Check Presence

28 paypal Check Presence

29 Order Check Presence

30 Dbsys Check Presence

31 Config Check Presence

32 Order Check Presence

33 Js Check Presence

34 payment Check Presence

35 css Check Presence

36 admin Check Presence

37 abuse Check Presence

38 update Check Presence

39 verification Check Presence

40 shopping Check Presence

41 Log Check Presence

42 access Check Presence

43 bonus Check Presence

44 click Check Presence

45 network Check Presence

46 pay Check Presence

47 download Check Presence

48 Jar Check Presence

49 swf Check Presence

50 Cgi Check Presence

51 Zip Check Presence

52 Jpg Check Presence

53 Gif Check Presence

54 redirect Check Presence

55 isIpAddress Check Presence of IP address

59

56 is_numner_in_host Check Numeric Number presence

in URL

57 host_length Length of host

58 no_of_subDomains Count Number of Sub-Domains

59 count_letter Total count of letters in URL

60 count_digits Total count of digits in URL

61 count_symbols Total count of symbols in URL

62 entropy_url Entropy of URL

63 entropy_host Entropy of Host

64 entropy_path Entropy of URL Path

65 entropy_params Entropy of URL Parameters

66 entropy_query Entropy of Query Parameters

67 Tld Extract Top Level Domain

68 pathExtension Extract URL Path Extension

69 count_path_back_slash Count total back slash in URLPath

70 count_path_dot Count total Dots in URL Path

71 A Frequency of Alphabet "a"

72 B Frequency of Alphabet "b"

73 C Frequency of Alphabet "c"

74 D Frequency of Alphabet "d"

75 E Frequency of Alphabet "e"

76 F Frequency of Alphabet "f"

77 G Frequency of Alphabet "g"

78 H Frequency of Alphabet "h"

79 I Frequency of Alphabet "i"

80 J Frequency of Alphabet "j"

81 K Frequency of Alphabet "k"

82 L Frequency of Alphabet "l"

83 M Frequency of Alphabet "m"

84 N Frequency of Alphabet "n"

60

85 O Frequency of Alphabet "o"

86 P Frequency of Alphabet "q"

87 Q Frequency of Alphabet "q"

88 R Frequency of Alphabet "r"

89 S Frequency of Alphabet "s"

90 T Frequency of Alphabet "t"

91 U Frequency of Alphabet "u"

92 V Frequency of Alphabet "v"

93 W Frequency of Alphabet "w"

94 X Frequency of Alphabet "x"

95 Y Frequency of Alphabet "y"

96 Z Frequency of Alphabet "z"

97 0 Frequency of Alphabet "0"

98 1 Frequency of Alphabet "1"

99 2 Frequency of Alphabet "2"

100 3 Frequency of Alphabet "3"

101 4 Frequency of Alphabet "4"

102 5 Frequency of Alphabet "5"

103 6 Frequency of Alphabet "6"

104 7 Frequency of Alphabet "7"

105 8 Frequency of Alphabet "8"

106 9 Frequency of Alphabet "9"

	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1. Introduction
	1.1 Background and Motivation
	1.2 Types of Malicious URLs
	1.3 Machine Learning in Cybersecurity
	1.4 Thesis Outline

	2. LITERATURE SURVEY
	3. Identifying Generic Features
	3.1 Overview of URL
	3.2 Dataset Description
	3.3 Feature Engineering
	3.3.1 Chi-Square
	3.3.2 ANOVA
	3.3.3 Finalizing Common Features

	3.4 Single & Ensemble Machine Learning (ML) Algorithms
	3.4.1 Single Machine Learning Algorithm’s
	K-Nearest Neighbor (KNN)
	Support Vector Machine (SVM)
	Logistic Regression
	3.4.2 Ensemble Machine Learning Algorithms
	Bagging
	Random Forest
	AdaBoost
	Extra-Trees
	Voting Classifier

	3.5 Results
	3.5.1 K-fold Cross Validation
	3.5.2 Grid Search

	4. REAL TIME MALICIOUS URL DETECTION
	4.1 Overview & Architecture
	4.2 Implementation of Client-Server Architecture
	4.2.1 Google Chrome Plugin as Browser Extension
	4.2.2 Apache JMeter
	4.2.3 Python and Related Libraries
	4.2.4 Django as a Webserver
	4.2.5 Japronto as a Web Server
	4.2.6 Performance Evaluation and Optimization
	Django webserver
	Japronto webserver

	5. FUTURe work and conclusion
	5.1 Conclusion
	5.2 Future Work

