
IMPROVING STABILITY AND PARAMETER SELECTION OF DATA

PROCESSING PROGRAMS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Wen-Chuan Lee

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2020

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Xiangyu Zhang, Chair

Department of Computer Science

Dr. Zhiyuan Li

Department of Computer Science

Dr. Tiark Rompf

Department of Computer Science

Dr. Yexiang Xue

Department of Computer Science

Approved by:

Dr. Clifton W. Bingham

Department of Computer Science

iii

Dedicated to my family for their love and support

iv

ACKNOWLEDGMENTS

This dissertation would not have been possible without the support from many

people in my life. First of all, I would like to express my sincerest gratitude to my

advisor Professor Xiangyu Zhang for his support, patience, and listening. I really

appreciate that he gave me a chance to do research with him. By working with him,

I have learned how to discover a research problem, how to build a system to verify

ideas, and how to take broad, high-level ideas and to be able to focus on those ideas

in a more nuanced, focused way.

I would also like to thank the members of my committee: Professor Zhiyuan

Li, Professor Tiark Rompf, and Professor Yexiang Xue. Their feedback about my

dissertation and research has made my work significantly stronger. It was also a

pleasure to be a member of an awesome research group lead by Professor Xiangyu

Zhang. I thank them for their input and support of my work. Their feedback about

my ideas has made my work better.

Finally, I am immensely grateful to my family, especially my wife, Yi-Shan Lin,

who encouraged me to pursue the Ph.D. degree and provide her unconditional love

through the whole process. I acknowledge my parents for their endless patience and

understanding. The life lessons they taught me and what I have learned during my

Ph.D. journey will be in my heart forever. I dedicate this dissertation to my family.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

ABSTRACT . xiii

1 INTRODUCTION . 1

1.1 Research Challenges . 2

1.2 Dissertation Statement . 4

1.3 Contributions . 4

1.4 Dissertation Organization . 6

2 RAIVE: RUNTIME ASSESSMENT OF FLOATING-POINT INSTABIL-
ITY BY VECTORIZATION . 7

2.1 Introduction . 7

2.2 Background . 11

2.3 Vectorization and RAIVE Overview . 13

2.4 Design of Raive Runtime . 21

2.4.1 Semantics . 22

2.4.2 Understanding the Essence of Raive 30

2.5 Evaluation . 31

2.5.1 Performance . 34

2.5.2 Effectiveness . 35

2.5.3 Case Studies . 39

2.6 Summary . 43

3 WHITE-BOX PROGRAM TUNING . 44

3.1 Introduction . 44

3.1.1 Key Observation of Staged Computation Paradigm 46

vi

Page

3.1.2 Existing Work . 46

3.1.3 Our Work . 46

3.1.4 Properties . 47

3.1.5 Contributions . 48

3.2 Overview of White-Box Tuning Framework 49

3.2.1 User Interface . 49

3.2.2 Running Example . 50

3.2.3 Runtime Execution Model . 51

3.2.4 Result and Comparison . 53

3.3 Execution Model: Semantics and System 55

3.3.1 Semantics . 55

3.3.2 WBTuner Runtime System 58

3.4 Practical Challenges . 60

3.4.1 Overfitting . 60

3.4.2 Incremental Aggregation . 62

3.4.3 Sampling/Aggregation Strategies 62

3.4.4 Auto-tuning Sampling Number 63

3.5 Evaluation . 64

3.5.1 Tuning Results Summary . 65

3.5.2 Tuning Case Studies . 67

3.6 Summary . 78

4 PROGRAMMING SUPPORT FOR AUTONOMIZING SOFTWARE 79

4.1 Introduction . 79

4.1.1 Autonomization: Bringing the Intelligence to Traditional Programs80

4.1.2 Problems and Challenges . 81

4.1.3 Our Design . 83

4.2 Autonomization Framework Overview 84

4.3 Execution Model: Semantics . 90

vii

Page

4.3.1 Definitions . 92

4.3.2 Rules . 93

4.4 Feature Variables Extraction . 95

4.5 Implementation . 99

4.6 Evaluation . 100

4.6.1 Statistics . 102

4.6.2 Effectiveness . 104

4.6.3 Case Studies . 107

4.7 Summary . 113

5 SPSA: StATISTICAL AND PROGRAM ANALYSIS AIDED SOFTWARE
AUTONOMIZATION . 114

5.1 Introduction . 114

5.1.1 Existing Software Autonomization 116

5.1.2 Our Work . 117

5.1.3 Contributions . 118

5.2 Motivation . 119

5.3 Design . 126

5.3.1 Overview . 126

5.3.2 Automatic Feature Variables Selection 126

5.4 Evaluation . 130

5.4.1 Statistics . 130

5.4.2 Effectiveness . 132

5.4.3 Case Study . 134

5.5 Summary . 143

6 RELATED WORK . 144

6.1 Floating Point Instability . 144

6.2 Program Parameter Configuration . 145

7 CONCLUSION . 148

viii

REFERENCES . 150

ix

LIST OF TABLES

Table Page

2.1 Performance (o/h stands for overhead). 33

2.2 Instability detection. 37

2.3 Average number of unstable predicates, and forks for an execution, and
output variations across samples. RSD stands for relative standard deviation.38

3.1 Benchmark statistics and the experiment results for achieving the best
tuning scores. 63

4.1 Program analysis statistics . 101

4.2 Model statistics . 101

4.3 Benchmark experimental results. 104

5.1 Statistics of models and feature variables 131

5.2 Benchmark experimental results. 135

x

LIST OF FIGURES

Figure Page

2.1 Inevitable External Errors . 9

2.2 Floating Point Representation. 11

2.3 (Column 1) example program with max() inlined; (Column 2) actual exe-
cution with each entry denoting actual computed value; (Column 3) ideal
execution; (Column 4) Tag [11] execution; and (Column 5) Raive exe-
cution. rF in the Tag approach means value r is tagged with a false error
bit. The shaded sub-execution denotes the new execution after the user
manually annotates the benign unstable predicate (line 10). 15

2.4 Boxed statements correspond to instrumentation. Note that in Raive,
the original floating point related statements are completely replaced by
vector statements. Labels 3.1-3.5 denote instrumentation for line 3. 18

2.5 Language . 22

2.6 Operational Semantics. 23

2.7 An example for nesting unstable predicates. Symbol r represents a large
floating point value. Assume the input value is r + 1 which cannot be
precisely represented and hence the represented value is r at line 2. Other
large values can be precisely represented. 28

2.8 The control flow graph for the example in Fig. 2.7. 29

2.9 Pseudocode snippet for k-means. 40

2.10 Clustering result variations of an unstable execution for k-means; 92 genes
are grouped into five clusters; each cluster has a unique color. 40

2.11 Pseudocode snippet for pagerank. 41

2.12 Benign unstable predicate in 187.facerec. 42

3.1 Canny’s results with different parameters 45

3.2 Execution models of black-box and white-box tuning 47

3.3 Primitives . 49

3.4 White-box tuning for Canny. The highlighted statements are added. Tun-
ing primitives start with wbt. 51

xi

Figure Page

3.5 Execution Model . 52

3.6 Tuning Canny. TP/SP are tuning/sampling processes. 54

3.7 Tuning Canny with image coffeemaker in 90s. 54

3.8 Operational Semantics . 55

3.9 Tuning + Validation Execution Model . 61

3.10 Optimization effects on different benchmarks 67

3.11 Canny tuning scores of 10 images. 68

3.12 Canny tuning score variation . 68

3.13 Canny results of WBTuner and OpenTuner 69

3.14 White-box tuning for phylip tree . 70

3.15 Phylip tree tuning scores on 10 datasets. 70

3.16 Phylip tree tuning score variation . 71

3.17 SVM tuning scores of 10 datasets w/wo validation 72

3.18 SVM tuning scores of 10 datasets . 73

3.19 SVM tuning score variation . 73

3.20 Sphinx tuning of 10 datasets . 74

3.21 Sphinx tuning score variation . 74

3.22 Tuning mission 1 . 77

3.23 Tuning mission 2 . 77

3.24 Testing mission . 77

4.1 Primitives . 85

4.2 Autonomizing Mario. The highlighted statements are added. Autono-
mizer primitives start with au. 87

4.3 Execution model . 88

4.4 Using internal data . 89

4.5 Using raw data . 89

4.6 Coverage testing . 91

4.7 Bug . 91

xii

Figure Page

4.8 Operational Semantics . 92

4.9 Alg.1 on Canny . 99

4.10 Alg.2 on Mario . 99

4.11 Canny. Autonomizing with the Min version. The highlighted statements
are added. 109

4.12 Canny predictions of 10 datasets . 110

4.13 Canny prediction score variation . 110

4.14 Canny results . 110

4.15 EucDict ≈ 0 . 111

4.16 Variance ≈ 0.007 . 112

4.17 Driving score . 112

5.1 Time cost – Input Size . 117

5.2 Primitives . 120

5.3 Autonomizing Canny. The highlighted statements are provided by SPSA.
The primitives start with au. 121

5.4 Execution Model . 123

5.5 Execution Result . 125

5.6 Canny Results . 125

5.7 Canny prediction of 10 datasets . 134

5.8 Canny training score variation . 136

5.9 Autonomizing Watershed. The highlighted statements are provided by
SPSA. The primitives start with au. 137

5.10 Watershed prediction of 10 datasets . 139

5.11 Watershed tuning score variation . 139

5.12 Sphinx tuning score variation . 141

5.13 Sphinx tuning score variation . 142

5.14 Improving Sphinx autonomization. The highlighted statements are added.
Autonomizing primitives start with au. 143

xiii

ABSTRACT

Wen-Chuan Lee Ph.D., Purdue University, May 2020. Improving Stability and Pa-
rameter Selection of Data Processing Programs. Major Professor: Xiangyu Zhang
Professor.

Data-processing programs are becoming increasingly important in the Big-data

era. However, two notable problems of these programs may cause sub-optimal data-

processing results. On one hand, these programs contain large number of floating-

point computations. Due to the limited precision of floating-point representations,

errors are introduced, propagated and accumulated in series of computations, making

the computation results unreliable. We call this problem as floating-point instabil-

ity. On the other hand, these programs are heavily parameterized. As no universal

optimal parameter configuration exists for all possible inputs, the setting of program

parameters should be carefully chosen and tuned for each input. Otherwise, the result

would be sub-optimal. Manual tuning is infeasible because the number of parameters

and the range of each parameter value may be big.

We try to address these two challenges in this dissertation. For floating-point

instability problem, we develop a novel runtime technique to capture different output

variations in the presence of instability. It features the idea of transforming every

floating point value to a vector of multiple values − the values added to create the

vector are obtained by introducing artificial errors that are upper bounds of actual

errors. The propagation of artificial errors models the propagation of actual errors.

When values in vectors result in discrete execution differences (e.g., following different

paths), the execution is forked to capture the resulting output variations.

For parameterized data-processing programs, we develop a white-box program

tuning framework to tune the program parameter configuration for optimal data-

xiv

processing result of each program input. To further reduce the parameter configura-

tion overhead, we propose the first general framework to inject artificial intelligence

(AI) in the program, so the intelligent program is able to predict the parameter con-

figuration for each incoming input directly. However, similar to many other ML/AI

applications, the crucial challenge lies in feature selection, i.e., selection of the fea-

ture variables for predicting the target parameter specified by the users. Thus, we

propose a novel approach by combining program analysis and statistical analysis for

better program feature variables selection which further helps better target parameter

prediction and improves the result.

1

1. INTRODUCTION

There is an increasing need of data processing programs in the Big-data era. Their

complexity is also growing at an enormous pace, involving more and more floating-

point computations and program parameters.

With a large number of floating-point computations, errors can easily be intro-

duced, propagated and accumulated, potentially leading to unreliable outputs, which

is called floating point instability problem. The errors introduced include those due to

precision limitations in physical instruments or human efforts in acquiring the inputs,

called the external errors, and those from limited representation precision, called the

internal errors. Existing works use the ideal execution with infinite precision as the

ground truth to reason about instability in actual execution and then try to elimi-

nate the gap between the two executions to produce reliable results. However, this

is restricted in their scope. Even if the detected gap between ideal and actual exe-

cutions are eliminated (e.g., by raising the precision) the execution may nonetheless

be unstable as the same differences can be easily triggered by minor perturbations

(external errors) of the input.

Furthermore, because data-processing programs are parameterized, using these

programs or algorithms is challenging. The reason is that user has to configure

these program parameters beforehand. More importantly, the optimal configuration

is mostly dependent on the specific input. Different inputs require different configu-

rations to achieve the optimal results. For instance, the results of K-means, a popular

data clustering algorithm, heavily depends upon the choice of parameter K. It speci-

fies the number of clusters into which the user wants to partition the input data and

there is no general solution for finding K.

2

1.1 Research Challenges

Handling Floating Point Instability. Data processing using floating point pro-

grams is essential in the emerging big data era. During program execution, errors can

be introduced, propagated and accumulated, potentially leading to unreliable outputs.

We call this the floating point instability problem. The errors introduced include those

due to precision limitations in physical instruments or human efforts in acquiring the

inputs, called the external errors, and those from limited representation precision,

called the internal errors. Handling instability is critical because important decisions

may be based on data processing results – results of computer simulations may be

used to setup expensive scientific wet bench experiments; commercial decisions may

be made based upon results of mining customer data etc.

Researchers have developed various techniques to address the instability prob-

lem. Static techniques such as abstract interpretation and theorem proving [1–3]

were proposed to reason about the existence or the absence of instability. Interval

arithmetic [4,5] and affine arithmetic [6–8] model errors as ranges or affine formulas to

reason about execution stability. Program transformation was proposed to improve

precision and stability [9, 10]. Recently in [11], an on-the-fly predictor was proposed

to detect instability. Based on the prediction result, the execution may switch to a

higher precision. While mostly focusing on internal errors, existing works use the

ideal execution with infinite precision as the oracle to reason about instability in ac-

tual execution and then aim to eliminate the differences between the two executions

to produce reliable results. However, we argue that these approaches may be unde-

sirably restricted in their scope. Even if the detected differences between ideal and

actual executions are eliminated (e.g., by hoisting the precision) the execution may

nonetheless be unstable as the same differences may be easily triggered by minor

perturbations of the input (due to external errors).

In this dissertation, we propose RAIV E, a novel runtime based approach that

addresses instability that can be triggered by internal or external errors and captures

3

output variations in the presence of instability. The output variations can be used as

guidance for debugging the data processing program to pinpoint the predicates that

cause the output variations.

Handling Parameter Selection. Many data-processing programs often carry the

parameters that affect the quality of the results. However, different inputs require

different configurations to achieve the ideal results, i.e., no parameter configuration

universally applies. Therefore, the users need to manually configure the parameters,

which is difficult for normal users due to the great domain expertise required and

sometimes even difficult for the experts if the parameter value space is huge.

Multiple frameworks were proposed to automate program parameter configura-

tion, among which OpenTuner [12] is the state-of-the-art. Oblivious of the staged

computation paradigm, these frameworks treat the computation as a black-box.

Guided by a user-provided scoring function of the final result, they sample the param-

eter space to find the best parameter configuration. Internally, they adopt stochastic

algorithms [13,14] or genetic algorithms [15] as the search strategy. While the above

frameworks have achieved a certain level of success, they suffer greatly from poor

performance due to the inherent limitations of the black-box designs:

• Black-box tuning is not aware of the stagedcomputingparadigm, i.e., programs

normally consist of multiple computation stages such that each stage has a

unique set of tunable parameters. Thus, all parameters need to be tuned and

set in each configuration, leading to an exponential number of configurations.

• A full execution accounts for the sampling of a single parameter configuration.

Note that the full execution typically needs to load a large corpus of data and

conduct lengthy preprocessing, which are very time consuming.

In this dissertation, we develop several techniques to achieve better and faster

data processing for parameterized programs. First, we develop a program tuning

framework WBTuner to tune the program parameter configuration for optimal data-

processing result of each program input. It treats the program as a white box and

4

it is aware of the stagedcomputationparadigm and tunes each stage independently.

Thus, WBTuner needs to sample much fewer parameter configurations than black-

box tuning frameworks. Furthermore, WBTuner can easily achieve better tuning

results by inspecting the program internal states.

To further reduce the parameter configuration overhead, we propose the second

work Autonomizer. It is the first general framework that allows the users to auton-

omize their software systems by injecting artificial intelligence (AI) in the program.

The intelligent program is able to predict the parameter configuration for each in-

coming input on-the-fly.

However, similar to many other ML/AI applications, the crucial challenge lies

in feature selection, i.e., selection of the feature variables for predicting the target

parameter specified by the users. Autonomizer only adopts program analysis and

simple heuristics to address this problem. Thus, we propose the third technique

SPSA to further improve the feature variables selection of program autonomization.

SPSA leverages both program analysis and statistical analysis.

1.2 Dissertation Statement

In this dissertation, we aim to improve the data processing results from two dif-

ferent perspectives: 1) program stability and 2) program parameter selection.

The thesis of this dissertation is as follows: Data-processing program instability can

be detected by leveraging program vectorization and the the parameter selection can

be improved by leveraging white-box program tuning as well as artificial intelligence.

1.3 Contributions

The contributions of this dissertation are as follows:

• We propose RAIV E, a novel vectorization based approach that addresses pro-

gram instability problem that can be triggered by internal or external errors

5

and captures output variations in the presence of instability. Our evaluation

shows that it can precisely capture output variations and its overhead (340%)

is 2.43 times lower than the state of the art.

• We propose a novel white-box tuning framework WBTuner. It allows users to

tune their program parameters inside different program computation stages. It

offers the users flexible access to internal program states. Wasteful computation

caused by poor internal results in an early stage can be terminated, which is

infeasible in current works. Compared with the stat of the art, it’s tuning

overhead is 3.08X lower under a single core environment and 4.67X lower when

multiple cores are used.

• To achieve on-the-fly parameter selection, we propose a general framework

Autonomizer to autonomize traditional software programs, which applies to

the parameter configuration of parameterized programs, the action selection of

interactive programs and many other potential applications. The eveluation

shows that for the data-processing programs, Autonomizer improves the out-

put quality by 161% on average over the default settings. For the interactive

programs such as game/driving, Autonomizer achieves higher success rate with

lower training time than existing autonomized programs.

• We further improve software autonomization by improving the feature selection

mechanism. We propose SPSA, which leverages both program analysis and

statistical analysis to find a better set of program feature variables to predict

target variable (parameter). The evaluation shows that SPSA substantially

improves data processing results by improving the feature variables selection

on ten widely used parameterized programs. The output quality is improved

by 99.04% on average over the baseline with execution overhead almost the

same as Autonomizer. Comparatively, Autonomizer only improved the output

quality by 80.24% on average over the baseline. Furthermore, the model training

6

overhead of SPSA is 27.44X lower than Autonomizer and its model size is

603.5X smaller than Autonomizer on average.

1.4 Dissertation Organization

This dissertation is organized as follows: Chapter 2 discusses the design, im-

plementation and evaluation of RAIVE, which is a novel data-processing program

stability improvement approach. Then there are three chapters to gradually dis-

cuss how we improve program parameter selection for better data peocessing results.

Chapter 3 discusses WBTuner, which is a programming framework that allows users

to compose complex tuning tasks to tune their program parameters inside different

computation stages. Then a general software autonomization technique for more

efficient parameter selection is presented in Chapter 4 and an approach to further

improve the software autonomization is discussed in Chapter 5. Chapter 6 discusses

the related works. Last, Chapter 7 concludes the dissertation.

7

2. RAIVE: RUNTIME ASSESSMENT OF

FLOATING-POINT INSTABILITY BY VECTORIZATION

Floating point representation has limited precision and inputs to floating point pro-

grams may also have errors. Consequently, during execution, errors are introduced,

propagated, and accumulated, leading to unreliable outputs. We call this the instabil-

ity problem. In this chapter, we propose Raive, a technique improves data processing

programs stability by identifying output variations of a floating point execution in

the presence of instability. Raive transforms every floating point value to a vector of

multiple values – the values added to create the vector are obtained by introducing

artificial errors that are upper bounds of actual errors. The propagation of artifi-

cial errors models the propagation of actual errors. When values in vectors result in

discrete execution differences (e.g., following different paths), the execution is forked

to capture the resulting output variations. Our evaluation shows that Raive can

precisely capture output variations. Its overhead (340%) is 2.43 times lower than the

state of the art.

2.1 Introduction

Data processing using floating point programs is essential in the emerging big

data era. During program execution, errors can be introduced, propagated and ac-

cumulated, potentially leading to unreliable outputs. We call this the floating point

instability problem. The errors introduced include those due to precision limitations

in physical instruments or human efforts in acquiring the inputs, called the external

errors, and those from limited representation precision, called the internal errors.

Handling instability is critical because important decisions may be based on data

processing results – results of computer simulations may be used to setup expen-

8

sive scientific wet bench experiments; commercial decisions may be made based upon

results of mining customer data etc. Evidence suggests that widely used data pro-

cessing programs suffer from instability. We will show in Section 5.4 that a widely

used implementation of the k-means data mining algorithm [16] can produce com-

pletely different clustering results; an information retrieval program pagerank [17]

may produce completely different rankings, both due to the instability problem.

Researchers have developed various techniques to address the instability problem.

Static techniques such as abstract interpretation and theorem proving [1–3] were

proposed to reason about the existence or the absence of instability. Interval arith-

metic [4, 5] and affine arithmetic [6–8] model errors as ranges or affine formulas to

reason about execution stability. Program transformation was proposed to improve

precision and stability [9, 10]. Recently in [11], an on-the-fly predictor was proposed

to detect instability. Based on the prediction result, the execution may switch to a

higher precision.

While mostly focusing on internal errors, existing works use the ideal execution

with infinite precision as the oracle to reason about instability in actual execution and

then aim to eliminate the differences between the two executions to produce reliable

results. However, we argue that these approaches may be undesirably restricted in

their scope. Even if the detected differences between ideal and actual executions are

eliminated (e.g., by hoisting the precision) the execution may nonetheless be unstable

as the same differences may be easily triggered by minor perturbations of the input

(due to external errors). Consider the example in Fig. 2.1 with a predicate (line 3)

that is unstable when the input x is close to 0.0045. The curve at the bottom shows

how output y varies with input x. Observe that y = f(x) is on the left and y = g(x)

on the right, and there is a discontinuity right at x = 0.0045. In contrast, the curve

on the top is slightly off due to internal errors. Particularly, the discontinuity is at

a value close to 0.0045. Assuming the technique in [11] reports that the unstable

input range is rl so that higher precision should be used for values in the range.

Unfortunately, even use of infinite precision is insufficient as it does not alert the user

9

that the program output may change substantially in the presence of a small external

error when input x is close to 0.0045. In other words, instability is a property of

the computation performed on a given input, which cannot be completely evaded by

hoisting representation precision. Thus we argue that achieving the same results from

the ideal and actual executions ignores instability due to external errors which are

inevitable in the real world.

Fig. 2.1.: Inevitable External Errors

Moreover, a patch to the problem may not exist, which is different from functional

bugs. In our example, the instability is due to the interface between the continuous

floating point domain (i.e. variable c at line 3) and the discrete boolean domain

(i.e. the branch outcome at line 3) and intrinsic to the algorithm. Changing the

implementation, which is a typical method to improve stability for the floating point

domain, is unlikely to completely fix the problem due to the involvement of the

discrete domain.

In this paper, we observe that the key to handling runtime instabilities is not to

achieve an execution close to the ideal one, but rather to inform the user of the

possible (output) effects of the instabilities so that he/she can adjust the decision

accordingly. We propose a novel technique that discloses the possible effects of errors

on outputs in an actual execution for a given input i, including both internal and

external errors. It does so without explicitly mutating the input i, which usually

requires a large number of sample executions to expose output variations if the input is

of high dimension and input correlation is complex. Instead, our technique vectorizes

the subject program such that each floating point variable is represented by a vector

10

of multiple values. Initially, the values in a vector are identical, representing the

value in the actual execution (called the actual value). When execution encounters

operations that yield non-trivial errors, it explicitly introduces artificial errors to

the actual value. The injected errors are the lower and upper bounds of the actual

error (note that actual errors cannot be efficiently computed without high precision

representations). Vectorization allows the mutated values to go through the same

sequence of floating point operations. If they lead to discrete differences (e.g., taking

different paths), the execution is forked to follow the different discrete options to

capture the output variations caused by errors.

Consider the example in Fig. 2.1 . Given an input x0 within rl, our technique

detects that the predicate at line 3 is unstable. It hence forks the execution to

take both branches. As such, the output variations within rl are indicated by the

differences between y = f(x0) (from the true branch) and y = g(x0) (from the false

branch). The essence of our approach is that if internal representation errors can lead

to different branch outcomes at a predicate, a small perturbation in external input

is very likely to lead to the same difference. Hence we model the possible effects of

external errors by modeling only internal errors.

Our key contributions include:

• We propose a novel vectorization based approach that addresses instability that

can be triggered by internal or external errors and captures output variations

in the presence of instability.

• We address a number of critical technical challenges, including avoiding unnec-

essary forks that may generate too many processes, and handling error suppres-

sions that can properly stop error propagation.

• We develop the Raive (Runtime Assessment of floating point Instability by

VEctorization) prototype. It precisely predicts output variations in the presence

of errors, with both the precision and the recall close to 100%. The detected

output changes are substantial. Its overhead is 2.43 times smaller than the

11

state of the art runtime instability predictor [11] that cannot predict output

variations, but rather just the stability of an execution. It correctly classifies

executions on over 99.99% of the inputs of the programs we studied as stable.

2.2 Background

Floating Point Representation. IEEE 754 [18] defines the format of a 64-bit

floating point value as shown in Fig. 2.2. The corresponding decimal value f is given

by f = (1 − 2s) × (1 + m × 2−52) × 2e−1023 where variable s is the sign bit, m the

significand, which is also called mantissa, and e the exponent. There are 53 mantissa

exponent (11 bits)sign significand (52 bits)

63 52 0
...

Fig. 2.2.: Floating Point Representation.

bits, including an implicit leading bit of “1”. Any values that require more significand

bits to represent cannot be precisely represented.

We use x to denote the floating point value of a variable x in the actual world

(with limited precision), called the actual value. The corresponding value in the

ideal world (with infinite precision) is called the ideal value and denoted as x̂. The

difference between the two is called the absolute error of x, denoted as ∆̂x. The

relative error x, denoted by ∆x, is defined as |∆̂x/x|. It indicates whether the actual

value is reliable. Initially errors are introduced in source code constants at compile

time, or when reading external inputs at runtime. The initial errors are propagated

to the internal of program execution through operations.

Discrete Factor and Instability. A discrete factor is an operation that has floating

point values as operands and produces a discrete value [19]. They are the interface

between the continuous domain and the discrete domain (e.g., integer and boolean).

Typical examples are control flow predicates and type casts. Discrete factors have

been used to detect instability caused by representation errors [11]. If an actual

12

floating point value (with error) and the corresponding ideal value lead to different

discrete results – one having the true branch outcome and the other the false – the

execution is considered unstable. A discrete factor that yields different discrete values

in the actual and the ideal worlds is called an unstable factor [11]. The intuition is that

if we consider the output of an execution as a mathematical function over inputs, the

form of the function is determined by the executed path. In the presence of unstable

factors, the paths and hence the functions are different in the two worlds, indicating

substantial output differences.

Relative Error Inflation and Cancelled Bits. Many existing works on instability

detection [11,20] are built upon detecting relative error inflation, i.e., instances when

the relative error of the result of a floating point operation is substantially larger than

those of the operands. This is because instabilities are rooted at relative error inflation

in most cases. Per IEEE 754, the result of a subtraction/addition is normalized by left-

shifting to remove the leading zeros. The relative error inherited from the operands

thus gets inflated. If after subtraction z = x− y, the significand bits are left-shifted

by d bits, the relative error inherited from the operands, (∆̂x − ∆̂y)/z, may become

2d times larger than the relative errors of x and y, because z is 2d times smaller

than x or y. The left-shifted bits are also called the cancelled bits [20], which can be

cost-effectively monitored by comparing the exponents of the result and the larger

operand. In particular, d = max(εx, εy)−εz, with εx being the exponent of x. In Tag

[11], when the number of cancelled bits is larger than some pre-defined threshold τc,

the relative error is considered inflated. Tag further tracks the propagation of the

value with an inflated relative error. An execution is considered unstable if the value

can reach a discrete factor, as discrete difference (from the ideal execution), such as

path difference, may be induced by the value.

13

2.3 Vectorization and RAIVE Overview

In this section, we overview Raive with an example and briefly explain a few

important technical challenges.

Given a subject program, Raive leverages the compiler to transform it to a vec-

torized version, in which each floating point variable x is represented by a vector

of four 64-bit floating point values 〈x1, x2, x3, x4〉. All floating point operations are

transformed to the corresponding vector operations. Initially, the vector values x1,...,

x4 have the same actual value of x. These values remain identical after floating point

operations. A lightweight online relative error inflation detection mechanism is also

inserted in the subject program. When an error inflation is detected for a variable

x, the corresponding value is considered unreliable. Since we cannot precisely com-

pute the error of x, which requires using higher precision, Raive computes an upper

bound of the absolute error, denoted as δ, and mutates the first two values in x’s

vector, called the left pair, to x− δ and x+ δ, respectively. The same perturbation is

applied to the last two values, called the right pair. As such, the right pair is a simple

duplication of the left pair. The perturbed vector further goes through floating point

operations such that the value differences in x’s vector lead to value differences in

other vectors, simulating the propagation of the unreliable actual value.

Upon executing a discrete factor (e.g., a predicate on floating point values), Raive

tests if the values in the left pair lead to different discrete values (e.g., different

branch outcomes) – meaning that some previously inflated relative errors have been

propagated to the factor and caused discrete difference; the execution may likely

become unstable. A naive solution would be to fork the execution right away so

that each of the resulting executions proceeds with a unique discrete value generated

at the unstable discrete factor. For instance, assuming an unstable predicate, the

original execution is forked to two with one executing along the true branch and the

other along the false branch. As such, the outputs generated by the forked executions

denote the possible output variations in the presence of errors.

14

However in real-world programs, discrete differences do not necessarily lead to

final output variations. For instance, even if a predicate on floating point values

has different branch outcomes in the presence of errors, the two branches may have

identical or highly similar effect such that the two forked executions have very little

or no state differences. To address this problem, we develop a highly sophisticated

runtime. Particularly, when encountering an unstable predicate, Raive executes

both branches in sequence (in the same execution). To avoid interference between

the branches (e.g. a write in one branch affects a read in the other branch, which is

infeasible according to program semantics), Raive executes one branch on the left

pairs of the vectors and the other branch on the right pairs. In other words, each

variable update in a branch only modifies half of the vector. At the join point of the

two branches, Raive compares the left and the right pairs in each vector that was

updated in the branch(es). If all of them have negligible differences, the unstable

predicate was benign and there is no need to fork the execution. Otherwise, Raive

forks the execution.

Example. Consider an example program in the first column of Fig. 2.3. It involves

both computation and decisions (i.e. lines 5, 10 and 15). All the variables are of

the 64-bit double-precision type. The execution on an x86 platform is presented in

the second column. The ideal execution, shown in the third column, uses infinite

precision emulated via software with two to three orders magnitude of slow-down.

Initially, a very large value is assigned to a (line 1); the same large value plus one

is assigned to b (line 2). In the actual execution, the increment cannot be represented

and b has the same value as a. Thus, an error is introduced at line 2 in the actual

execution. As such, c = b − a at line 3 has values 0 and 1 in the actual and ideal

executions, respectively. Then c is used in subtraction with a large value, the result of

which is further used in a conditional statement (lines 4 and 5). The error introduced

earlier does not cause any problem as it is too small in comparison with the large

operand value 237 at line 4. At line 7, a and b are passed to max(), inside which

b − a is again performed. However, since the result is directly used in a conditional

15

54

54

37
1 1

F

F

T

1
F

F

T

T

F

T

F

F

F

F

1 1 1 1

† We use r to denote the large number 254, or 1801439 8509481984, and r1 to denote 237.

Other large values are represented relative to r and r1.

Fig. 2.3.: (Column 1) example program with max() inlined; (Column 2) actual exe-

cution with each entry denoting actual computed value; (Column 3) ideal execution;

(Column 4) Tag [11] execution; and (Column 5) Raive execution. rF in the Tag

approach means value r is tagged with a false error bit. The shaded sub-execution

denotes the new execution after the user manually annotates the benign unstable

predicate (line 10).

16

(line 10), the error manifests itself by yielding different branch outcomes in the two

executions, leading to different return values, which are used in the subtractions with

a (line 13) and then with a constant value 0.5. The resulting different values cause

different branch outcomes at line 15, and eventually different outputs.

Working of Raive. Initially, the vector of variable a holds four identical 64-bit value

254. At line 2, the floating point addition is transformed to a vector addition. Due to

the same precision limitation as the non-vectorized actual execution (in the second

column), b’s vector holds four identical values. Inside box D○, the subtraction at line 3

causes relative error inflation (Section 2.2). In particular, the result of the operation is

0 whereas the operands are very large values. Raive detects the inflation such that

it introduces artificial errors in the vector that denote the bounds of the absolute

errors. The first value -64 is a lower bound; the second value 64 denotes an upper

bound. The right pair is a simple duplication of the left pair. We will discuss how

the bounds are computed in Section 2.4.1. At line 4, the vector of d becomes four

identical values despite the differences in c. In other words, the errors are suppressed

by the subtraction with the large operand 237 (due to the precision limitation of the

operation). Therefore, the four values of d’s vector yield the same branch outcome

(at line 5), correctly modeling the fact that both the actual (column 2) and the ideal

(column 3) executions take the same branch.

In box E○ inside the function max(), the same relative error inflation is observed

at line 9. However, since the variable t with inflated error is directly used in the

predicate at line 10, different branch outcomes are observed. The predicate is an

unstable discrete factor. Observe that in this case, the actual and ideal executions do

differ at line 10. Raive does not fork the execution at this point as the instability may

be benign. Instead, inside box F○, it first executes the true branch with a vector mask

that enables only the left pairs of vectors. As a result, the left pair of e is assigned

the left pair of a, which holds two identical values of 254 (line 11). After that, it

further executes the false branch with a mask enabling the right pairs. Hence, the

right pair of e is assigned the right pair of b, which also holds the same two values.

17

At the join point of the two branches, Raive tests if the left and right pairs of e

are identical or have negligible differences. In this case, since they are identical, the

instability at line 10 is benign. No forking is needed. Intuitively, although the actual

and ideal executions have different control flow inside the max() method due to the

error, the relative error of the return value is very small (i.e. 1/r). In other words,

the predicate at line 10 only becomes unstable when a and b are very close; however

in such a case, returning either a or b does not make much difference and thus the

instability is benign. Raive continues execution with the full vectors.

In box G○, Raive detects error inflation at line 13 and introduces artificial errors.

The errors cannot be suppressed by the operation at line 14. As such, another unstable

predicate is detected at line 15. However in this case, the two branches yield different

left and right pairs in h. Raive forks the execution (box H○). In one execution, the

left pair of h is copied to the right pair so that h holds four identical value of 10

for the continuation. In the other execution, the right pair is copied to the left. As

such, both executions can proceed with full vectors. Eventually, the two executions

report two possible outputs, −20 and 20, which precisely capture the possible output

variations in the presence of any internal error or external error (e.g., error on input

variable a).

Key Advances Over the State-of-The-Art. Raive has the following advantages

over the state-of-the-art runtime instability detector Tag [11]. Tag detects relative

error inflation, i.e., instances when the relative error of the result of a floating point

operation is substantially larger than those of the operands. It taints a variable when

its relative error is inflated. It further monitors the propagation of the taint bit. The

bit may be reset when a tainted operand is used in a binary operation with a much

larger untainted operand. If a taint bit reaches a discrete factor, the execution is

considered unstable and terminated. Re-execution with a higher precision is needed.

- Capturing Output Variations Caused by Both Internal and External Errors. Tag

cannot detect output variations. Instead, when Tag detects an unstable discrete fac-

tor, it simply terminates the execution and switches to a higher precision. Further-

18

Tag Raive

x′ the error bit of x 〈x1, x2, x3, x4〉 denoted as xv ,

1 a = 254; av = 〈254, 254, 254, 254〉;

1.1 a′ = F ;

... ...

3 c = b− a; cv = bv − av ;

3.1

3.2

3.3

3.4

3.5

if (b′ ∧ a′) c′ = T ;

elseif (b′) c′ = ¬(εa − εb > τs);

elseif (a′) c′ = ¬(εb − εa > τs);

else

c′ = (max(εb, εb)− εc > τc);

if(max(εb, εa)− εc > τc)

δ = 2max(εb1 ,εa1
)−τc+1;

cv = cv + 〈−δ, δ,−δ, δ〉;

... ...

18 o = h ∗ 2; ov = hv ∗ 2v ;

18.1 o′ = h′ ∨ 2′

Fig. 2.4.: Boxed statements correspond to instrumentation. Note that in Raive,

the original floating point related statements are completely replaced by vector state-

ments. Labels 3.1-3.5 denote instrumentation for line 3.

more, as we discussed in Section 2.1, if external errors are possible, even using the

infinite representation precision cannot address the problem that the execution may

produce different outputs due to the errors. In contrast, Raive does not terminate an

unstable execution, but rather forks multiple executions to capture output variations.

It handles both internal and external errors.

The third column in Fig. 2.3 shows the execution of Tag. In box A○, value 0 in c

is tainted due to the error inflation at line 3. But the taint bit is reset at line 4. Later,

Tag detects that a tainted value reaches a discrete factor in box B○ and terminates.

In contrast, Raive reports the possible output variations. Assume the value 254 of a

19

at line 1 is loaded from a file. Even if we used infinite precision in the execution, the

same output variation would still occur if a has some small external error.

- Handling Benign Differences. Tag cannot automatically determine if an un-

stable factor is benign or harmful. It simply terminates when an unstable factor is

detected. Or, the user can choose to manually annotate some discrete factors before-

hand such that instability warnings at those factors are ignored. The predicate in box

B○ in Fig. 2.3 is unstable but benign. Tag cannot handle this. In contrast, Raive

leverages a novel runtime that evaluates both branches to overcome the problem.

- Avoiding Undesirable Error Suppression. Tag uses a single bit to denote the

presence of an inflated relative error. However, this may become problematic in error

suppression. In box C○, the subtraction e−a causes a relative error inflation. Because

f is 0 at line 14, substantially smaller than 0.5, the error bit is reset. The predicate

at line 15 is hence considered stable. This is problematic: as shown in the second and

the third columns, the actual and ideal executions have different branch outcomes at

line 15, leading to different final outputs.

In normal cases, absolute errors are much smaller than the actual values even

when the relative errors are inflated. However at line 14, the absolute error of f is 1.0

(from the actual and ideal values), larger than the value of f itself (i.e. f = 0) and

even the other operand 0.5. Unfortunately, this information cannot be represented

by the single error bit.

In contrast, Raive injects artificial errors that denote the bounds of the abso-

lute errors (box G○). It easily supports error propagation in which operand(s) with

inflated error(s) lead to a result with inflated error, since the different values in the

operand vectors often lead to different values in the result vector. Furthermore, error

suppression can occur implicitly and appropriately during floating point operations.

For example, in box D○, the errors are suppressed by the subtraction whereas in box

G○, the operand 0.5 is not large enough to suppress the errors.

- Lower Runtime Overhead by Vectorization. Although Tag features much lower

overhead compared to techniques based on high precision libraries [10] and affine anal-

20

ysis [8], it is still very expensive (827% overhead according to Section 5.4). This is

due to the expensive instrumentation and the poor instruction pipeline performance.

The left column of Fig. 2.4 shows part of the Tag instrumentation for the example in

Fig. 2.3. Lines 1.1, 3.1-3.5, 18.1 denote instrumentation for lines 1, 3, and 18, respec-

tively. Line 3.1 means that the result is tagged true if both operands are tagged (true).

Lines 3.2-3.3 handle the case when only one operand is tagged. In this case, if the

difference between the operand exponents εa and εb is larger than a threshold τs, the

relative error is suppressed and the result tag c′ is false. Line 3.5 detects relative error

inflation. Instrumentation similar to lines 3.1-3.5 is added for each subtraction/addi-

tion. For multiplications and divisions, since neither inflation nor suppression could

happen, the result tag is simply the union of the operand tags (e.g. line 18.1). The

nesting branches in instrumentation lead to poor instruction pipeline performance.

The fine-grained interleaving of the boolean type error bit propagation and the float-

ing point type computation also prevents aggressive instruction scheduling, causing

performance penalty.

Raive leverages the native support for vectors. In particular, each original floating

point instruction is rewritten to a vector instruction. Note that the operations on

individual vector values are performed simultaneously on separate FPUs such that

they do not cost additional cycle(s). Such vectorization is shown in the right column

in Fig. 2.4. At line 3, the original subtraction is replaced with a vector subtraction.

In addition, we only need instrumentation for detecting error inflation and checking

discrete factors. For example, the instrumentation for line 3 in Raive is much simpler

than that in Tag. No instrumentation is needed for multiplications or divisions.

This not only reduces the number of instructions, but also avoids interleavings of

integer/boolean instructions and floating point instructions.

21

2.4 Design of Raive Runtime

Raive is a runtime technique. The given floating point program is transformed

using the compiler. This transformed program has a special execution model that is

supported via vectorization. The execution may fork multiple processes and produce a

set of outputs that denote possible variations in the presence of errors. The execution

model can be intuitively described as follows. The program state (for floating point

variables) is a set of pairs, each representing an interval for the possible values of the

variable (e.g., 〈x1, x2〉 for variable x). Initially, each pair has two identical values (e.g.,

〈x, x〉). Floating point operations are performed on the pairs. Raive monitors these

operations. When it detects relative error inflation, it introduces artificial errors to

the pair so that it becomes 〈x− δ, x+ δ〉. The introduced error δ over-approximates

the error incurred by the operation and hence the pair denotes the lower and upper

bounds of x at this operation. Upon encountering a conditional, if there exists a pair

of values 〈x1, x2〉 for x such that one of the values (x1 or x2) satisfies the condition

and the other does not, Raive executes both branch outcomes of the conditional.

The states for the branch outcomes are managed separately. At the join point of the

branch we get two different sets of (output) pairs – 〈yt1, yt2〉 for the true branch and

〈yf1 , y
f
2 〉 for the false branch. If these pairs agree, Raive joins them, knowing that

there is no output variation induced by the branch deviation. If they do not agree,

Raive separates the pairs (from the two branches) permanently via forking.

Observe that the aforementioned execution model requires maintaining a store for

pairs and supporting non-interference when evaluating both branches of a conditional.

In order to achieve these goals, we develop a vector based semantics that can be

implemented using the latest vector instruction support. In particular, we use a

vector of four values to denote each floating point variable in the original program.

Normally, the first two values (called the left pair) denote the interval of the variable

value and the right pair is simply a duplication of the left pair. When both branches

22

of a conditional need to be evaluated, the left and right pairs are used/updated in

isolation to achieve non-interference.

2.4.1 Semantics

Program P ::= s

Stmt s ::= s1; s2 | skip | x := e | x := f2i(y) |

if x on y then s1 else s2 |

while x on y do s

Expr e ::= x | v | e1 op e2 | sin(e)

BinOp op ::= + | − | ∗ | /

V alue v, w ::= n | r | b

V ar x, y ∈ Identifier n ∈ Z r ∈ Real b ∈ Boolean

Fig. 2.5.: Language

We use a language in Fig. 2.5 to facilitate discussion. We model two kinds of discrete

factors: f2i denoting a type cast from floating point to integer and on denoting a rela-

tional operation on two floating point variables. Mathematical functions are modeled

by a representative function sin(e).

The semantics is presented in Fig. 2.6. The related definitions are presented close

to the top. In particular, the store σ is a mapping from a variable to a vector of four

values. It is constituted by two disjoint stores, σl and σr, denoting the mappings from

a variable to the first two values (i.e., left pair), and to the last two values (i.e., right

pair), respectively. The execution mode is denoted by ω, which has three possible

values: REGULAR denoting regular execution in which both the left and right stores

are updated, LEFT denoting left execution in which only the left store is updated,

and RIGHT denoting right execution in which only the right store is updated. When

an unstable predicate is encountered, that is, the values in the vectors (involved in

23

E ::= E; s | [·]s | x := [·]e | if [·]e then s1 else s2 | [·]e op e | 〈v1, v2, v3, v4〉 op [·]e | x := f2i([·]e) | sin([·]e)

Definitions: Store σ : V ar → 〈V alue, V alue, V alue, V alue〉 Mode ω ::= REGULAR | LEFT | RIGHT

σl(x) = 〈x1, x2〉, σr(x) = 〈x3, x4〉, if σ(x) = 〈x1, x2, x3, x4〉

V arJoin Φ ::= P(V ar), the set of variables that need to be inspected at the join point of the two branches of an unstable predicate.

εx: the exponent of x τc: the pre-defined threshold for determining relative error inflation.

Expr e ::= ... | 〈v1, v2, v3, v4〉 Stmt s ::= ... | mode switch | join | spawn(σ, ω,Φ, s)

cancellation(v, w) = (max(εv, εw)− εv−w > τc)

Expression Rules σ, ω : e
e−→ e′

σ, ω : v
e−→ 〈v, v, v, v〉 [CONST] σ, ω : x

e−→ σ(x) [VAR]

σ, ω : 〈v1, v2, v3, v4〉 − 〈w1, w2, w3, w4〉
e−→ 〈v1 − w1 − δ, v2 − w2 + δ, v3 − w3 − δ, v4 − w4 + δ〉

where δ =

2max(εv1 ,εw1 ,εv2 ,εw2)−τc+1 (ω = REGULAR ∨ ω = LEFT) ∧

(cancellation(v1, w1) ∨ cancellation(v2, w2)) (1)

2max(εv3 ,εw3
,εv4 ,εw4

)−τc+1 ω = RIGHT ∧ (cancellation(v3, w3) ∨ cancellation(v4, w4)) (2)

0 otherwise (3)

[SUB]

σ, ω : 〈v1, v2, v3, v4〉 ∗ 〈w1, w2, w3, w4〉
e−→ 〈v1 ∗ w1, v2 ∗ w2, v3 ∗ w3, v4 ∗ w4〉 [MUL]

σ : sin(〈v1, v2, v3, v4〉)
e−→ 〈sin(v1), sin(v2), sin(v3), sin(v4)〉 [SIN]

Statement Rules σ, ω, Φ : s
s−→ σ′, ω′, Φ′, s′

Regular Execution Mode:

Let σ(x) = 〈x1, x2, x3, x4〉 in the following rules:

σ, REGULAR, Φ : x := 〈v1, v2, v3, v4〉
s−→ σ[x 7→ 〈v1, ..., v4〉], REGULAR, Φ, skip [ASSIGN]

Let b1 = v1 on w1, ..., b4 = v4 on w4 in the following IF rules:

σ, REGULAR, Φ : if 〈v1, ..., v4〉 on 〈w1, ..., w4〉 then s1 else s2
s−→ σ, REGULAR, Φ, s1 if b1 = b2 = T [IF-Stable-True]

σ, REGULAR, Φ : if 〈v1, ..., v4〉 on 〈w1, ..., w4〉 then s1 else s2
s−→ σ, REGULAR, Φ, s2 if b1 = b2 = F [IF-Stable-False]

σ, REGULAR, Φ : if 〈v1, ..., v4〉 on 〈w1, ..., w4〉 then s1 else s2
s−→ σ, LEFT, Φ, s1; mode switch; s2; join [IF-Unstable-T]

if b1 ≡ T ∧ b2 ≡ F

σ, REGULAR, Φ : if 〈v1, ..., v4〉 on 〈w1, ..., w4〉 then s1 else s2
s−→ σ, LEFT, Φ, s2; mode switch; s1; join [IF-Unstable-F]

if b1 ≡ F ∧ b2 ≡ T

σ, LEFT, Φ : mode switch; s
s−→ σ, RIGHT, Φ, s [MODE]

σ, ω, Φ : join; s
s−→ σ, REGULAR, {}, s if ∀x ∈ Φ ∧ x is live, cancellation(x1, x3) ∧ cancellation(x2, x4) [JOIN]

σ, ω, Φ : join; s
s−→ σr[∀x ∈ Φ, x 7→ σl(x)], REGULAR, {}, spawn(σl[∀x ∈ Φ, x 7→ σr(x)], REGULAR, {}, s); s [JOIN-Split]

if ∃x ∈ Φ ∧ x is live, ¬cancellation(x1, x3) ∨ ¬cancellation(x2, x4)

σ, REGULAR, Φ : y := f2i(〈v1, v2, v3, v4〉)
s−→ σ[y 7→ (int)v1], REGULAR, Φ, skip if (int)v1 = (int)v2 [F2I]

σ, REGULAR, Φ : y := f2i(〈v1, v2, v3, v4〉)
s−→ [F2I-Split]

σ[y 7→ (int)v1], REGULAR, Φ, spawn(σ[y 7→ (int)v2], REGULAR,Φ, skip); skip if (int)v1 6= (int)v2

σ, ω, Φ : while v on w do s
s−→ σ, ω, Φ, if v on w then s; while v on w do s else skip [WHILE]

Right Execution Mode:

σ, RIGHT, Φ : x := 〈v1, v2, v3, v4〉
s−→ σr[x 7→ 〈v3, v4〉], RIGHT, Φ ∪ {x}, skip [R-ASSIGN]

Let b1 = v1 on w1, ..., b4 = v4 on w4 in the following IF rules:

σ, RIGHT, Φ : if 〈v1, ..., v4〉 on 〈w1, ..., w4〉 then s1 else s2
s−→ σ, RIGHT, Φ, s1 if b3 = b4 = T [R-IF-Stable-T]

σ, RIGHT, Φ : if 〈v1, ..., v4〉 on 〈w1, ..., w4〉 then s1 else s2
s−→ σ, RIGHT, Φ, s2 if b3 = b4 = F [R-IF-Stable-F]

σ, RIGHT, Φ : if 〈v1, ..., v4〉 on 〈w1, ..., w4〉 then s1 else s2
s−→ [R-IF-Unstable]

σ, RIGHT, Φ, spawn(σl[∀x ∈ Φ, x 7→ σr(x)], REGULAR, {}, s2); s1 if b3 6= b4

Global Rules σ, ω, Φ, s → σ′, ω′, Φ′, s′

σ, ω : e
e−→ e′

σ, ω, Φ, E[e]e → σ, ω, Φ, E[e′]e
[G-EXPR]

σ, ω, Φ : s
s−→ σ′, ω′, Φ′, s′

σ, ω, Φ, E[s]s → σ′, ω′, Φ′, E[s′]s
[G-STMT]

Fig. 2.6.: Operational Semantics.

24

the predicate) yield non-uniform branch outcomes, Raive needs to determine if the

instability is benign by executing both branches in sequence. The executions of the

two branches need to be isolated so that they do not interfere with each other and their

results can be properly compared at the join point. In particular, the first branch

execution only operates on the left pairs, called the left mode, whereas the second

branch execution only operates on the right pairs, called the right mode. Execution

modes and mode changes are implemented using the mask instruction provided by

the CPU. The instruction defines which values in a vector are visible and operatable.

The variable join set Φ contains the variables defined during the branch executions of

an unstable predicate. At the branch join point, Φ is scanned to determine if forking

is necessary.

To make presentation easier, we extend the syntax of expression to represent

a vector of values, and the syntax of statement to include a few new commands:

mode switch to switch the current execution mode; join is to commit the updates

from the two branches of a predicate and determine if the execution should be forked;

spawn is to fork an execution.These statements are auxiliary and only present during

evaluation.

Expression Rules

Expression rules evaluate a floating point expression to a vector of four values. The

evaluation may be moderated by the execution mode. During expression evaluation,

relative error inflation is also detected. Rule [CONST] shows that a floating point value

v is expanded to a vector of four identical values.

Subtraction of two vectors (Rule [SUB]) is performed by subtracting the corre-

sponding values and adjusting the resulting values with δ, which is computed as

follows: (1) if the current execution mode is REGULAR or LEFT (for branch ex-

ecution using the left store) and there is relative error inflation (or cancellation) in

the subtraction of the actual values v1 and w1, or v2 and w2, δ is computed from the

25

exponents by δ = 2max(εv1 ,εw1 ,εv2 ,εw2)−τc+1. Intuitively, τc is the threshold to detect

inflation, meaning that an addition/subtraction causes relative error inflation if the

result is left-shifted by at least τc bits, suggesting the first τc significand bits of the

two operands are identical. Since we consider that the result value cannot be trusted

in this case, it is equivalent to that the absolute error of the result can be as large

as the value represented by the τc-th significand bit of the largest operand (i.e. the

first bit that differs in the operands), which can be computed by the aforementioned

formula. (2) If the current mode is RIGHT , the values in the right pairs are used

to detect inflation and compute δ. (3) If there is no inflation, δ = 0. Additions are

handled in the same way. The first line in box D○ in Fig. 2.3 shows an example of

condition (1), with τc = 49.

In Rule [MULT], the values in the operand vectors are multiplied respectively,

denoting the propagation of errors, if injected previously. The rule for division is

similar. Note that although multiplication or division can enlarge absolute errors,

they do not inflate relative errors. Intuitively, when an operand x with an absolute

error ∆̂x is multiplied with another operand y, both x and ∆̂x are enlarged by y so

that the resulting relative error (i.e., the ratio between the absolute error of result

and the actual result) is unchanged.

For non-library function calls, parameter vectors are directly passed to callees

and used there. In contrast, an external library function is generally evaluated on the

respective vector values (Rule [SIN]). We cannot vectorize library functions as we do

not have their source code. For better efficiency, we re-implement some frequently

used library functions to directly support vectorization.

Statement Rules

Raive has three execution modes. Statement semantics may be different in these

modes.

26

Regular Mode. The first set of statement rules is for the regular execution mode.

Rule [ASSIGN] describes that all the four fields of the left hand side variable are

updated.

Most of the complexity of Raive lies in the handling of conditional statements. It

first determines if a predicate is stable. If so, the execution proceeds with the uniform

branch outcome. Otherwise, it executes the two branches in sequence to detect if the

instability is benign. If not, Raive forks the execution to capture the different effects

of the instability.

Rules [IF-Stable-True] and [IF-Stable-False] describe that during regular ex-

ecution, if the left pair has the identical true/false value, the execution proceeds to

the true/false branch. Note that only the left pair needs to be inspected as the right

pair is a duplication during regular execution.

Rules [IF-Unstable-T] and [IF-Unstable-F] specify the semantics when the left

pair does not concur. If the first value b1 is false (Rule [IF-Unstable-F]), it first

executes the false branch in the left mode, and then executes the mode switch

statement to change to the right mode for true branch execution (Rule [MODE]). After

executing the two branches, the updates in them are inspected by the join statement.

Rules [JOIN] and [JOIN-Split] specify the semantics of the join statement. In

Rule [JOIN], the left and right pairs of all live updated variables are identical or

have trivial differences, suggesting benign instability. In particular, Raive inspects

each live variable in Φ, by comparing its left and right pairs. If the comparison of

two values incurs cancellation (i.e. the number of cancelled bits is larger than the

threshold τc), we consider the two values under comparison have trivial difference. If

the differences are always trivial for all live variables, the instability is benign, the

execution is not forked. During inspection, only variables that are live at the join

point of the branches are considered (i.e. those that may be used beyond the join

point). We use a standard static live variable analysis. After joining, Φ is reset. In

Rule [JOIN-Split], if the differences are not trivial, the execution is split. In the

parent process, the updates during right execution are discarded, by overwriting the

27

right store values with the left store values. In the child process, the updates during

left execution are discarded, by overwriting the left store values with the right store

values.

Rules [F2I] and [F2I-Split] specify the semantics of type casts from floating

point to integer in the regular mode. If the left pair yields different integer values,

the execution forks based on the different discrete integer values.

The evaluation of while loops (Rule [WHILE]) is standard, which unrolls the loop

once each time. Since loops are essentially unrolled during evaluation, unstable loop

predicates are handled like normal predicates. To prevent potential infinite forking,

we limit the number of forks allowed for a loop predicate (to 10). In practice, such

a limit is never reached. But if the limit is reached simply continue with one of the

executions.

Example. Box H○ in Fig. 2.3 shows an example of Rule [JOIN-Split]. At the join

point, Φ = {h} and the differences between the left and right pairs of h are sub-

stantial and the execution is forked. In the continuation of the original execution,

hv = 〈10, 10, 10, 10〉 after copying the left pair to the right, whereas in the spawned

execution, hv = 〈−10,−10,−10,−10〉 after copying the right to the left. �

Right Mode. The next set of rules is for the right execution mode. According to

Rule [ASSIGN-Right], in right execution, only the right pairs are updated, while the

left pairs retain their values. Moreover, the left-hand-side variable x is inserted to

the variable set Φ for inspection at the join point.

Rules [R-IF-Stable-T], [R-IF-Stable-F], and [R-IF-Unstable] evaluate condi-

tional statements in the right mode. Rule [R-IF-Unstable] specifies the case in which

another unstable predicate is encountered, which suggests nesting unstable predicates.

Since we use only the right pairs in the right mode, we cannot afford evaluating the

two branches of the inner unstable predicate in sequence. Therefore, we fork the exe-

cution right away. Particularly, the original execution proceeds with the true branch

(of the inner predicate) with the same right mode. The spawned execution proceeds

with the false branch in the regular mode, discarding all the updates during the for-

28

Program Exec. I Exec. II

σ ω Φ σ ω Φ

1 a = r; σ[a] = 〈r, r, r, r〉 REGULAR {}

2 b = input(); σ[b] = 〈r, r, r, r〉 REGULAR {}

3 c = a− b; σ[c] = 〈−δ, δ,−δ, δ〉 REGULAR {}

4 if (c < 0) 〈T, F, T, F 〉 LEFT {}

5 t = a+ 6; σ[t] = 〈r + 6, r + 6,−,−〉 LEFT {t}

6 else { RIGHT {t}

7 c = b+ 2; σ[c] = 〈−,−, r + 2, r + 2〉 RIGHT {t, c}

8 d = c− a; σ[d] = 〈−,−, 2− δ, 2 + δ〉 RIGHT {t, c, d}

9 if (d < 0) 〈−,−, T, F 〉 RIGHT {t, c, d} σ[c] = 〈r + 2, ..., r + 2〉 REGULAR {}

σ[d] = 〈2− δ, 2 + δ, 2− δ, 2 + δ〉

σ[t] = 〈0, 0, 0, 0〉

10 t = c+ 6; σ[t] = 〈−,−, r + 8, r + 8〉 RIGHT {t, c, d}

11 else t = a ∗ 2; σ[t] = 〈2r, 2r, 2r, 2r〉 REGULAR {}

} σ[t] = 〈r + 6, r + 6, r + 8, r + 8〉 REGULAR {}

12 o = t+ a; σ[o] = 〈2r + 6, 2r + 6, 2r + 8, 2r + 8〉 REGULAR {} σ[o] = 〈3r, 3r, 3r, 3r〉 REGULAR {}

Fig. 2.7.: An example for nesting unstable predicates. Symbol r represents a large

floating point value. Assume the input value is r + 1 which cannot be precisely

represented and hence the represented value is r at line 2. Other large values can be

precisely represented.

29

mer branch evaluation (in the left mode). As such, the join operation at the join

point of the outer unstable predicate has no effect. The left mode rules are similar

and hence omitted.

Fig. 2.8.: The control flow graph for the example in Fig. 2.7.

Example. Fig. 2.7 shows an example for nesting unstable predicates. The first column

shows the program. The next three columns show its original execution. The last

three columns show the spawned execution. Initially, a has a large value r and the

input to b is r+ 1. However due to the limited precision, the represented value in b is

r. At line 3, the actual value of c is 0, and artificial errors are introduced due to the

relative error inflation. Since line 4 is unstable, line 5 is executed in the left mode and

Φ contains t. The execution is switched to the right mode at line 6. Another inflation

is detected at line 8 so that errors are introduced to the third and fourth values,

leading to non-uniform branch outcome. The execution is forked according to Rule

[R-IF-Unstable]. Note that the updates on the left pairs of all the variables in Φ are

discarded and replaced with the right pairs in the spawned execution, which proceeds

with the regular mode and an empty Φ. The original execution continues with the

right mode and the join operation is performed before line 12. Since variables c and d

are not live beyond line 12, only t’s vector values are compared. Since the differences

are trivial, the execution is not forked.

As in Fig. 2.8, Raive captures the effects of the leftmost path (1-5→12) and the

middle path (1-4→7-10→12) through the original execution, and the effect of the

rightmost path (1-4→7-9→11-12) through the spawned execution. �

30

2.4.2 Understanding the Essence of Raive

Next, we informally discuss a few properties of Raive

First, the goal of Raive is to expose output variations caused by discrete dif-

ferences. Such differences are caused by discrete factors (i.e. operations that have

floating point operands and discrete type result such as integer or boolean) instead

of floating point operations. Hence, Raive is most suitable for programs with both

floating point and discrete operations (e.g., the example in Section 2.1), and less ef-

fective for mathematical cores composed of floating point operations only (e.g., a code

snippet that computes y = x2 + 2x + 3). The real world floating point programs we

study contain non-trivial number of discrete operations. As such, output variations

are mainly due to discrete differences (caused by errors). Our experiments will illus-

trate this later. Intuitively, errors through floating point operations cause continuous

output changes, whereas errors through discrete operations may cause discontinuous

differences that are usually much more substantial.

Second, Raive introduces artificial errors that are bounds of the absolute error

when relative error inflation occurs. The resulting value differences in the vector are

further propagated via the following vectorized floating point operations. However,

the values in the vector of a variable are not guaranteed to stay as the bounds of

the variable value, as during binary operations errors from multiple operands may

interfere with each other. In other words, at the moment when the artificial errors

are introduced, the values in the vector denote the lower and upper bounds of the

actual value. However, when these values (with errors) are propagated to other

variables through operations, especially binary operations, the values in the vectors

of result variables may not represent the bounds. A very important point, however,

is that Raive does not need to guarantee these values to be the bounds. Instead, the

(different) values in a vector are essentially samples in the error range. These samples

are sufficiently distant so that they expose discrete differences. This is because the

artificial errors Raive introduces are very conservative. In contrast, affine analysis [8]

31

focuses on modeling continuous changes caused by errors through affine formulas.

Hence, they need to compute the bounds of values, which is very expensive (i.e. 3-4

magnitude of slowdown according to [8]).

Note that an approach that tries to use multiple sample runs to expose output

variations is inferior to RaiveThis is because Raive essentially not only packs multi-

ple sample executions into a vectorized execution, but also avoids unnecessary samples

by detecting benign unstable predicates. According to our experiment (Section 5.4),

while an execution may encounter many unstable predicates, most of them are found

to be benign.

Third, similar to existing work [11,20], Raive uses a threshold to detect relative

error inflation, which is key to detecting unstable discrete factors. In theory, the

detection is neither sound nor complete due to the use of threshold. However, Raive

does not aim to detect unstable discrete factors, but rather expose output variations

in the presence of errors. It has a sophisticated runtime mechanism to determine

if an unstable predicate is benign. Therefore, we use a conservative threshold for

relative error inflation detection. The resulting false positives of unstable predicates

are effectively suppressed by the runtime mechanism. Furthermore, as shown in

Section 5.4, all inputs falling into the unstable range tend to cause the same discrete

differences and hence the same (or highly similar) output variations. The net effect

of having false positives in detecting unstable factors is to report the same output

variations for a larger set of inputs. We also show in Section 5.4 that the unstable

ranges are very tiny such that even though Raive reports output variations for a

larger range, such output variations are well possible because they can be easily

induced by external errors.

2.5 Evaluation

We implement Raive using GCC-4.7.2. to support C/C++ and Fortran. We

leverage the Advanced Vector Extensions (AVX) on x86 64 architecture to support

32

vectors. It features instructions operating on 256-bit vector registers, called ymm

registers, which can store up to four double precision floating point values. The

execution mask in our semantics is also natively supported by the CPU. We modify

the lexical analysis of GCC. Each floating point variable is replaced with a 256-bit type

supported by GCC. Floating point operations are also replaced accordingly. After

lexical analysis, we further instrument the GIMPLE IR code to support functionalities

such as error inflation detection and the execution modes.

Since the Fortran frontend of GCC does not support AVX natively, some lan-

guage features are difficult to vectorize. One example is the primitive complex type

in Fortran. Since a double precision complex value consists of two 64-bit values (the

real and the imag parts), a complex value cannot be directly transformed to a vector.

Hence we transform a complex value to a C struct that consists of two 256-bit vec-

tors. This transformation is more challenging than vectorizing scalar floating point

variables because we need to further replace the operations on complex values with

operations on the C struct values. Raive handles all the language features that we

have encountered in the benchmark set.

We evaluate efficiency and effectiveness of Raive and compare it with HPL [10,11]

and Tag [11]. HPL uses 128-bit quadruple precision. For fair comparison, we re-

implemented HPL using GCC. Our implementation is faster than [10]. We use the

programs in [11] for comparison, including SPEC CFP2000 and a biochemical data

processing program deisotope. In addition, we include two widely used data-mining

programs k-means and pagerank. Note that these programs are much more complex

than those used in studies that focus on numerical programs (e.g., [8]). They contain

a lot of discrete operations. Their LOCs are shown in Table 2.1 column 2. All

experiments were run on a machine with Intel i7-2640M 2.80GHz processor and 8GB

RAM.

33

Table 2.1.: Performance (o/h stands for overhead).

Program LOC
Native

HPL o/h TAG o/h
Vec-only Raive

Time(s) Time(s) o/h Time(s) o/h

168.wupwise 2.1k 79.70 6043% 292% 141.6 178% 179.5 225%

171.swim 0.4k 122.5 7356% 359% 163.7 133% 178.5 146%

172.mgrid 0.4k 39.27 35031% 1639% 89.9 228% 355.7 905%

173.applu 4k 39.91 21112% 1458% 108.6 272% 163.9 410%

177.mesa 63k 8.60 3364% 538% 19.97 232% 27.63 321%

178.galgel 15.3k 28.26 23867% 1592% 124.5 441% 209.2 740%

179.art 1.2k 10.08 15786% 735% 21.13 210% 28.00 277%

183.equake 1.3k 12.55 21876% 1525% 52.37 417% 65.28 520%

187.facerec 2.4k 35.72 10784% 1492% 145.8 408% 180.8 506%

188.ammp 13.4k 53.02 16263% 822% 78.76 148% 160.6 303%

189.lucas 3k 24.24 23536% 1333% 74.52 307% 87.56 361%

191.fma3d 60k 38.33 13169% 1110% 142.9 373% 155.9 406%

200.sixtrack 47.2k 59.50 47540% 1056% 95.34 160% 214.6 360%

301.apsi 7.5k 51.47 13220% 719% 104.6 203% 166.1 322%

deisotope 2.2k 11.82 469% 205% 15.01 127% 18.69 158%

k-means 7k 12.69 925% 329% 14.12 111% 16.23 127%

pagerank 0.25k 13.29 5491% 1653% 41.17 309% 66.83 502%

AVERAGE 9826% 827% 229% 340%

34

2.5.1 Performance

In the first experiment, we evaluate the runtime overhead of Raive. We use the

reference inputs from SPEC. For deisotope, k-means and pagerank, we use the

inputs that come with the programs. The results are shown in Table 2.1. Column 3

shows the native execution time. Columns 4 and 5 present the overhead for HPL and

Tag. Observe that the average overhead of HPL exceeds 98x. The average overhead

for Tag is 827%.

The last two columns present the time and overhead of Raive. We collect the

data with τc = 48, which is the threshold used in detecting relative error inflation

(Section 2.2). The average overhead is 340%, which is 2.43 times smaller than that in

the Tag approach. The higher overhead in some of the programs (e.g., 178.mgrid) is

due to the exceptionally large number of additions and subtractions in the hot loops.

These operations have to be instrumented for error inflation detection.

We further study the breakdown of overhead for Raive. We run the programs

with vector instructions but without detecting instability. It means that a program

is transformed to its vector version, where floating point values are stored in 256-bit

vectors and operated with AVX instructions. The four values in a vector are always

identical. This is to study the overhead of vectorization. The results are shown in

the vec-only columns. The average overhead is 229%. While theoretically AVX

instructions should not cost additional cycles, there are a few possible reasons for

the slow-down. First, the processor we use (CPUID: 06 2AH) is an early version

supporting AVX. According to the Intel Manual, the latencies for AVX in our pro-

cessor are higher than later versions [21]. Second, we suspect the compiler is not able

to perform aggressive optimizations for AVX instructions because they are relatively

new. We anticipate Raive will have lower overhead in the future with new hardware

and better compiler support. We argue that the overhead is acceptable given the

capability of reporting output variations. Note that without our technique, achieving

35

the same capability may entail a large number of sample executions, especially when

the input dimension is high.

2.5.2 Effectiveness

Instability Detection. The experiment is setup as follows. For each program, we

collect 1E+14 samples within an input range. We execute the program on these

samples with HPL, Tag, and Raive. We extend HPL to also compute the actual

floating point values with 64-bit precision such that they can be compared with their

high precision version to collect the ground truth (of instability). For Tag and

Raive, we collect data for three configurations with different τc values. The results

are shown in Table 2.2. We only focus on the programs with instability reported. For

each program, the input sample range and the total number of samples are shown

in the first row labeled Overall. The six following rows present the detection

results for the configurations. The second column shows the configuration. The third

column shows the number of samples in which instability is reported (i.e. at least

one unstable discrete factor has been encountered), and its percentage over the total

sample number is presented in the fourth column. The last column shows the detected

problematic range that contains the unstable samples.

We have the following observations. (1) Raive has comparable or better effec-

tiveness than Tag in instability detection. The detected ranges by Raive are similar

to or smaller than those by Tag for the same configuration. Both of them can cor-

rectly determine that over 99.99% of the inputs lead to stable executions. However,

the overhead of Raive is 2.43x smaller than Tag. (2) Threshold τc = 52 is the

best configuration for most benchmarks considered. It reports the smallest number

of unstable samples without any false negatives except for pagerank. The maximum

possible threshold value is 53. Threshold τc = 44 is safe (for the programs we con-

sidered) as it does not cause any false negatives. Note that using a larger τc means

that we have a stricter condition in determining relative error inflation. (3) With

36

τc = 44, although the number of detected unstable samples is 3.75-2258 times larger

than the ground truth, these samples only denote a trivial part of the input range.

This implies it is unlikely for Raive to have false warnings in instability detection. In

contrast, according to [11], interval analysis and techniques based on solely detecting

error inflations report a lot more false positives. More importantly, as we will show

later, the false positives in detecting instability have little effects on the main results,

output variations.

Handling Benign Unstable Predicates and Forking. An important advantage

of Raive is the capability of handling benign unstable predicates. The results are in

Columns 2-4 in Table 2.3. Column 2 lists the average number of unstable predicates

encountered in a single sample execution. Note that column 3 in Table 2.2 shows the

number of sample runs in which unstable factors were detected. They have different

meanings. Column 3 in Table 2.3 shows how often Raive can proceed without

forking after executing the two branches separately. Column 4 shows the number of

forks. Observe that 2 of the 6 programs (with instability detected) encounter benign

unstable predicates. If these predicates were not properly handled, there would be a

lot of unnecessary forks. Also observe that since most unstable predicates are benign,

the number of forks is very small. Intuitively, it is unlikely for a program to have

multiple sources of instability for a given input.

Output Variations. The experiment is set up as follows. We first identify the

input range that is reported as unstable by HPL. Then we collect two samples at

the boundary of the range, denoted as lb and ub, and use the output variations

between the two executions as the ground truth as they denote the two boundary

stable executions. Observe that the range is mostly very small such that external

errors can easily cause input variations in the range. Then we execute the program

on Raive for all the unstable samples (with τc = 52) and collect the output variations

for each sample. We then compute the output coverage for a sample i as follows. Let

O1, ..., On be the n output variables and Ot(ub) the value of a t’th variable in the ub

37

Table 2.2.: Instability detection.

approach # of cases % detected range

equake

Overall 1E+14 [0.8650, 0.8750]

HPL 2 2.00E-12% [0.8690799016130847, 0.8690799016130848]

Tag(τc=44) 4516 4.52E-09% [0.8690799016026333, 0.8690799016130848]

Tag(τc=48) 279 2.79E-10% [0.8690799016130570, 0.8690799016130848]

Tag(τc=50) 20 2.00E-11% [0.8690799016130829, 0.8690799016130848]

Raive(τc=44) 4516 4.52E-09% [0.8690799016128591, 0.8690799016133106]

Raive(τc=48) 280 2.80E-10% [0.8690799016130709, 0.8690799016130988]

Raive(τc=52) 20 2.00E-11% [0.8690799016130829, 0.8690799016130848]

facerec

Overall 1E+14 [0.6694, 0.6695]

HPL 30700 3.07E-08% [0.6694295316764218, 0.6694295316764524]

Tag(τc=44) 37267458 3.73E-05% [0.6694295316577891, 0.6694295316950752]

Tag(τc=48) 2314523 2.31E-06% [0.6694295316751556, 0.6694295316777159]

Tag(τc=52) 162943 1.63E-07% [0.6694295316762312, 0.6694295316766320]

Raive(τc=44) 115423 1.15E-07% [0.6694295316763000, 0.6694295316766643]

Raive(τc=48) 70847 7.08E-08 % [0.6694295316762782, 0.6694295316766333]

Raive(τc=52) 55712 5.57E-08% [0.6694295316762792, 0.6694295316765709]

galgel

Overall 1E+14 [0.8184, 0.8185]

HPL 57695 5.77E-08% [0.8184459012000007, 0.8184459012253359]

Tag(τc=44) 37972131 3.80E-05% [0.8184458998299998, 0.8184459039575860]

Tag(τc=48) 3728089 3.28E-06% [0.8184459002196792, 0.8184459020723309]

Tag(τc=52) 1233455 1.23E-06% [0.8184459019084903, 0.8184459020723309]

Raive(τc=44) 43930919 4.39E-05% [0.8184437893753897, 0.8184481724703180]

Raive(τc=48) 3258832 3.26E-06% [0.8184459011753019 , 0.8184459399554056]

Raive(τc=52) 229573 2.30E-07% [0.8184459011900151, 0.8184459014121039]

deisotope

Overall 1E+14 [1.11, 1.12]

HPL 2 2.00E-12% [1.1156381266106556, 1.1156381266106557]

Tag(τc=44) 653 6.53E-10% [1.1156381266105905, 1.1156381266106557]

Tag(τc=48) 40 4.00E-11% [1.1156381266106518, 1.1156381266106557]

Tag(τc=52) 5 5.00E-12% [1.1156381266106553, 1.1156381266106557]

Raive(τc=44) 315 3.15E-10% [1.1156381266106398, 1.1156381266106712]

Raive(τc=48) 22 2.20E-11% [1.1156381266106545 , 1.1156381266106566]

Raive(τc=52) 2 2.00E-12% [1.1156381266106556, 1.1156381266106557]

k-means

Overall 1E+14 [0.5640, 0.5650]

HPL 233 2.33E-10% [0.56446068002405417 0.56446068002405649]

Tag(τc=44) 100819 1.01E-07% [0.56446068002355170, 0.56446068002455988]

Tag(τc=48) 6064 6.06E-09% [0.56446068002402601, 0.56446068002408664]

Tag(τc=52) 325 3.25E-10% [0.56446068002405417, 0.56446068002405741]

Raive(τc=44) 50572 5.06E-08% [0.56446068002380185, 0.56446068002430756]

Raive(τc=48) 3140 3.14E-09% [0.56446068002403901, 0.56446068002407040]

Raive(τc=52) 325 3.25E-10% [0.56446068002405417, 0.56446068002405741]

pagerank

Overall 1E+14 [1.10, 1.11]

HPL 122 1.22E-10% [1.1026503685992210, 1.1026503685992331]

Tag(τc=44) 593 5.93E-10% [1.1026503685991619, 1.1026503685992211]

Tag(τc=48) 38 3.80E-01% [1.1026503685992174 , 1.1026503685992211]

Tag(τc=52) 2 2.00E-12% [1.1026503685992210, 1.1026503685992211]

Raive(τc=44) 593 5.93E-10% [1.1026503685991912, 1.1026503685992504]

Raive(τc=48) 38 3.80E-11% [1.1026503685992190, 1.1026503685992227]

Raive(τc=52) 2 2.00E-12% [1.1026503685992210, 1.1026503685992211]

sample. Since an execution in Raive may fork, we use range(Ot(i)) to denote the

range of Ot for the ith sample.

recall = (
n∑
t=1

range(Ot(i)) ∩ [Ot(lb), Ot(ub)]
|Ot(ub)−Ot(lb)|) / n

precision = (
n∑
t=1

range(Ot(i)) ∩ [Ot(lb), Ot(ub)]
range(Ot(i))

) / n

38

Table 2.3.: Average number of unstable predicates, and forks for an execution, and

output variations across samples. RSD stands for relative standard deviation.

program # of unstable preds. # preds (%) that merge # fork # output var. precision recall %RSD

178.galgel 253385 253382 (99%) 3 7 100% 71% -

183.equake 1 0 (0%) 1 12 99% 99% 69%

187.facerec 14 9 (64%) 5 10 100% 100% 6.4%

deisotope 1 0 (0%) 1 30 97% 97% 43%

k-means 1 0 (0%) 1 92 100% 100% 55%

pagerank 1 0 (0%) 1 10 100% 100% 16%

Recall denotes how much ground truth output variation is covered by Raive; precision

represents how much output variation reported by Raive denotes true variation.

The results for τc = 52 are in columns 5-7 in Table 2.3. Column 5 shows the num-

ber of output variables. The last two columns show the average precision and recall

over all samples. Observe that Raive has close to 100% precision and recall for most

cases, meaning that any sample within the range can precisely predict the same out-

put variations in the presence of (both internal and external) errors. This is because

the output variations caused by discrete differences are much more substantial than

those by continuous numerical operations and Raive can precisely simulate discrete

differences caused by errors. Since the discrete differences are stable within the range,

the output variations are mostly stable across sample runs too. The precision and

recall are not 100% in some cases because of the continuous differences. Galgel has

the lowest recall as its continuous differences are non-trivial compared to the discrete

differences.

The last column shows the maximum relative standard deviation (i.e., standard

deviation divided by mean) of the output values for the same output variable. We only

present the maximum as there are outputs whose values are almost identical across

all the forked runs as they are not affected by the path differences. Observe that there

are substantial output variations. The RSD for galgel cannot be computed as many

of its forked executions do not produce any output. Note that existing techniques

39

focusing on numerical behavior [8, 22] cannot report output variations caused by

discrete differences.

We have also repeated the same experiment on τc = 44. In this case, we have

much more unstable sample runs. However, the results are very similar to those in

Table 2.3. The precision and recall are still close to 100%. The only difference is

that RSD values are smaller due to the larger sample size. The observation is hence

that the output variations are not sensitive to the threshold. The reason is that all

these unstable sample runs lead to the same path differences and hence the same

output variations. In other words, using a more conservative (i.e., smaller) threshold

only means that the same output variations are exposed by a larger set of inputs

(falling in the unstable range). On the other hand, as long as an input falls into

the unstable range, any errors, including internal and external errors, cause the same

output variations.

2.5.3 Case Studies

K-means [16] implements a widely used clustering algorithm, which partitions inputs

into k clusters by the given distance metrics. The core algorithm is shown in Fig. 2.9.

In each iteration, it first computes the centroids for the current k clusters (line 2)

and then the sum of the distances from each element to its centroid (line 3). It then

traverses all elements to check if the current partition can be further improved (lines

5-14). This is done by checking for an element e, if there is a cluster J whose centroid

is closer than e’s current cluster K. If so, e is moved to J . The algorithm repeats

until the overall distance stabilizes (line 15).

Since there is an element e with a very similar distance to the centroids of J and

K, leading to an unstable predicate dist new < dist at line 10, Raive detects the

instability and evaluates both branches. But it cannot merge the two branches and

hence forks, yielding two different clustering results as shown in Fig. 2.10. While we

used simple input data in the case study, real world data set could be very complex

40

1 do {

2 getclustermeans(cluster, data); / ∗ Find the centroids ∗ /

3 total dist = ...; / ∗ Compute current total dist ∗ /

4 total dist new = 0;

5 foreach element e {

6 K = cluster[e]; / ∗ Element e belongs to cluster K ∗ /

7 dist = distance[e];

8 foreach cluster J {

9 dist new = euclid(e, J);

10 if (dist new < dist) {

/ ∗Move element e from cluster K to J. ∗ /

11 cluster[e] = J ;

12 distance[e] = dist new;

13 dist = dist new;

} }

14 total dist new+ = dist;

}

15 } while (total dist new < total dist);

Fig. 2.9.: Pseudocode snippet for k-means.

and can hardly be manually inspected. Raive can automatically identify the possible

clustering outputs.

(a) Original exec. result (b) Forked exec. result

Fig. 2.10.: Clustering result variations of an unstable execution for k-means; 92 genes

are grouped into five clusters; each cluster has a unique color.

41

1 while (cont) {

2 cont = 0;

3 foreach page p{

4 foreach neighbor n

5 neighbor sum+ = score(n)/num out links;

6 new score = ...+ (... ∗ neighbor sum);

7 diff = abs(new score− score(p));

8 if (diff > threshold)/ ∗ unstable ∗ /

9 cont = 1

10 }

11 score(p) = new score;

Fig. 2.11.: Pseudocode snippet for pagerank.

Pagerank [17] is one of the most widely used algorithms in information retrieval.

It was invented by Google and used to rank result pages for a search request. It

computes a score for each page according to the number and quality of other pages

linked to it. The score represents the probability that a random surfer will visit a

page. A page with many high-score pages linked to it also has a high score. Part of

the algorithm is shown in Fig. 2.11. In each iteration, a new score is computed for

each page according to its incoming neighbors’ previous scores. The algorithm repeats

until the absolute difference between the new score and the old score is smaller than

a threshold for all pages.

In this experiment, we use a set of similar pages. Raive reports instability at line

8 as diff and theshold are very close to each other. Hence, the execution is split to

two and one of them iterates more. The iteration differences substantially change the

final rankings of the pages. While the program printed the top 10 pages, we showed

the top 3 in the following table.

Orig. (35 iterations) Forked (34 iterations)

page id score page id score

722 0.999997000... 968 0.99999499...

723 0.999997000... 969 0.99999499...

724 0.999997000... 970 0.99999499...

42

Observe that the results are completely different. Also, there may not be a patch to

the code that can fix the instability problem, which does not lie in the numerical core

of the algorithm, but rather in the interface between the floating point computation

and the discrete logic. It is a property of the algorithm and the provided input.

Furthermore, generating inputs that expose such instabilities may not be as useful

as in exposing functional bugs due to the infeasibility of fixing them. Therefore, we

argue that showing the possible outputs to the user provides a reasonable solution.

/*coarse-grained search*/

142 Position = (LLX,LLY)

...

/*fine-grained search*/

168 CurSimilarity = GraphSimFct(LLX,LLY, ...)

169 If (CurSimilarity > Similarity) Then

170 Similarity = CurSimilarity

171 Position = (LLX,LLY)

172 EndIf

Fig. 2.12.: Benign unstable predicate in 187.facerec.

Benign Unstable Predicate in 187.facerec. Facerec is a Fortran program for

face recognition. It consists of two phases of search. The first one is coarse-grained

and the second one is fine-grained. It is possible that both phases identify the same

object. The related code snippet is shown in Fig. 2.12. The object identified in

the first phase is saved in Position at line 142. Lines 168-172 are for the second

phase. In particular, the newly computed CurSimilarity is compared with the

current Similarity (line 169). If the new similarity is larger, the current similarity

and position are updated. If both phases identify the same object, the difference

between the two similarity metrics is very small, leading to instability at line 169.

Raive executes both branches: lines 170-171 and the fall-through. At the join point

172, the vector for Similarity has trivial differences inside. Intuitively, since the

two similarity metrics are very close, the update in the true branch has little effect.

43

Moreover, the integer variable Position has the same values in the two branches as

the same object was identified in the two phases. As such, the instability is benign.

2.6 Summary

In this chapter, we propose a runtime technique Raiveto improve the stability

of data processing programs. Raivedetects output variations caused by errors (both

internal and external) in floating point computation. It transforms a floating point

value to a vector of four values and encodes the presence of an error by injecting

value differences into the vector. Error propagation and suppression are performed

implicitly by vectorized floating point operations. Instability is detected by checking

if all vector elements lead to the same discrete result at discrete factors. Evaluation

shows that Raive can precisely identify output variations. Compared to the state-

of-the-art, Raive’s overhead is 2.43 times lower, averaging 340%, and it has the new

capability of reporting output variations.

Next, we will discuss a series of projects to improve parameter selection of data

processing programs for better results.

44

3. WHITE-BOX PROGRAM TUNING

Starting from this chapter, we are focused on another perspective for better data

processing, which is improving programs parameter selection. Many programs or

algorithms are largely parameterized, especially those based on heuristics. The quality

of the results depends on the parameter setting. Different inputs often have different

optimal settings. Program tuning is hence of great importance. Existing tuning

techniques treat the program as a black-box and hence cannot leverage the internal

program states to achieve better tuning. In this chapter, we propose a white-box

tuning technique that is implemented as a library. The user can compose complex

program tuning tasks by adding a small number of library calls to the original program

and providing a few callback functions. Our experiments on 13 widely-used real-world

programs show that our technique substantially improves data processing results and

outperforms OpenTuner, the state-of-the-art black-box tuning technique.

3.1 Introduction

More and more highly parameterized programs or algorithms are being used to

solve different problems. Their complexity is also growing at an enormous pace, in-

volving more and more computation stages. A prominent challenge for using these

programs or algorithms is that the user has to configure a set of parameters be-

forehand. More importantly, the optimal configuration is mostly dependent on the

specific input. Different inputs require different configurations to achieve the optimal

results.

For instance, the results of K-means [16], a popular data clustering algorithm,

heavily depends upon the choice of parameter K. It specifies the number of clusters

into which the user wants to partition the input data. A lot of research [23–27] has

45

aimed at automatically deriving the appropriate k value from the input. However,

there is no general solution for finding K. Another example relates to object de-

tection in satellite image processing [28]. The parametrized algorithm processes a

large volume of images in a time unit to generate the detection results. However, the

parameter configuration that yields the best results for one image may produce sub-

optimal results for another image (e.g., missing objects and broken edges). Consider,

Canny [29], one of the most widely used image processing algorithms that detect edges.

It is a multi-staged algorithm with three important parameters upon which Canny’s

results heavily depend. According to [30], each input image may require a specific

parameter setting to produce the best edge detection result. Fig. 3.1 shows the re-

sults on two different images using Canny. The left two are the original images. The

other images show the results from two respective parameter configurations. Observe

that configuration (0.6, 0.5, 0.9) produces the better result for the airplane whereas

configuration (1.8, 0.2, 0.7) produces the better result for the trashcan. Thus, auto-

mated parameter tuning becomes critical in data processing as manual tuning is not

realistic.

Airplane (0.6, 0.5, 0.9) (1.8, 0.2, 0.7)

Trashcan (0.6, 0.5, 0.9) (1.8, 0.2, 0.7)

Fig. 3.1.: Canny’s results with different parameters

46

3.1.1 Key Observation of Staged Computation Paradigm

By observing Canny and many other real world parameterized programs, we find

that they typically follow the staged computing paradigm, i.e., they consist of multiple

computation stages such that each stage has a unique set of tunable parameters.

3.1.2 Existing Work

Multiple frameworks were proposed to automate program tuning, among which

OpenTuner [12] is the state-of-the-art. Oblivious of the staged computation paradigm,

these frameworks treat the computation as a black-box. Guided by a user-provided

scoring function of the final result, they sample the parameter space to find the

best parameter configuration. Internally, they adopt stochastic algorithms [13, 14]

or genetic algorithms [15] as the search strategy. While the above frameworks have

achieved a certain level of success, they suffer greatly from poor performance due to

the inherent limitations of the black-box designs:

• All parameters need to be tuned and set in each configuration, leading to an

exponential number of configurations.

• A full execution accounts for the sampling of a single parameter configuration.

Note that the full execution typically needs to load a large corpus of data and

conduct lengthy preprocessing, which are very time consuming.

3.1.3 Our Work

In this paper, we propose a novel white-box tuning framework called WBTuner.

It is aware of the staged computation paradigm and tunes each stage independently.

Specifically, WBTuner spawns multiple processes to sample different parameter con-

figurations involved in a stage. At the end of each stage, it aggregates the sampled

internal results of that stage through a default or custom aggregation strategy. The

47

Fig. 3.2.: Execution models of black-box and white-box tuning

aggregation step reduces the spawned processes to fewer or one process (with desir-

able internal results achieved by tuning), which will proceed to tune the next stage.

Intuitively, the aggregation strategy may either select the min/max value from the

internal results (from various processes) or take he average value (Sec. 3.4.3).

Consider an application with n stages of computation, each stage having a unique

parameter to tune. The parameter domain has m unique values. Initially, WBTuner

spawns m sampling processes to cover the m configurations of the first stage. Assume

only one of the processes in a stage is selected to proceed to the next stage (after

aggregation). WBTuner needs only m sampling processes in each stage. Overall,

WBTuner only needs to cover m ∗ n configurations and achieves so with a single

full execution that keeps at most m live processes in any stage. Comparatively,

OpenTuner needs to cover the mn unique parameter configurations with mn full

execution instances. Fig. 3.2 illustrates the comparison.

3.1.4 Properties

WBTuner features the following properties.

• By leveraging the independence between stages, WBTuner needs to sample

much fewer parameter configurations than OpenTuner. In the above example,

48

it needs to sample only m ∗n configurations, while OpenTuner needs to sample

mn configurations.

• Wasteful computation caused by poor internal results in an early stage can be

terminated through the aggregation step for efficiency/efficacy. This is infeasible

in black-box tuning.

• A full execution is reused for sampling different configurations and tuning dif-

ferent stages. Through the reused execution, WBTuner greatly reduces the

number of full execution instances needed. Note that every full execution may

need to load and pre-process a large corpus of data, which only have to be done

once in WBTuner.

3.1.5 Contributions

The following shows our key contributions.

• We propose a novel white-box tuning technique. As discussed above, it features

a set of salient properties compared to the existing black-box tuning.

• We develop a prototype WBTuner in the form of a library that offers the users

flexible access to internal program states. The realization of the library incurs

great challenges related to process management and data store management.

Our technique addresses these problems through a novel runtime transparently

to the end users. Besides, we formalize the semantics of the runtime execution.

• We release our implementation of WBTuner for the community at [31]. We

use WBTuner to tune 12 widely used parameterized programs. Our experi-

ments show that WBTuner substantially improves their results with reason-

able overhead. The comparison with OpenTuner shows that OpenTuner takes

3.08X time to achieve the same results under a single core environment and

4.67X when multiple cores are used.

49

• We use WBTuner to tune the parameters of a complex drone controller soft-

ware (278K LOC) to mimic the behavior of a different controller with a better

configuration (Sec. 3.5.2). Changing the configurations manually is infeasible

because the numbers of parameters are large (612 and 426 respectively) and the

meanings of these parameters are quite different between the two controllers.

3.2 Overview of White-Box Tuning Framework

We present the interface and show how to use it to tune Canny, a popular image

processing algorithm.

3.2.1 User Interface

WBTuner provides the user with an intuitive interface, which consists of multi-

ple tuning primitives shown in Fig. 5.2. They are essentially library calls in the same

programming language as the original program, rather than annotations in some spec-

ification language. We use the following Canny example to intuitively explain how to

use the interface.

Library Calls :

@sampling(n, cbStrgy) |

@aggregate(x, cbAggr) |

@sample(x, cbDist) | @expose(x) |

@load(x) | @loadS(x, i) | @split() |

@sync(cbBarrier) | @check(cbChk)

CallBack : cbStrgy, cbAggr, cbDist, cbChk, cbBarrier

Fig. 3.3.: Primitives

50

3.2.2 Running Example

Canny has four stages: the Gaussian smoothing stage (line 22 in Fig. 5.3) which

removes noise from the input image, the image transformation stage (line 30) which

performs non-maximal suppression, the edge traversal stage (line 37) which leverages

the hysteresis analysis to track all potential edges in the image, and the visualization

stage which visualizes the final results.

It takes three parameters: sigma, low, and high. Specifically, the Gaussian

smoothing stage relies on the parameter sigma and the edge traversal stage relies

on the low and high thresholds. Based on our observation, Canny is a representative

of real world data processing applications, which usually follow the staged computing

paradigm, i.e., they consist of multiple computation stages such that each stage has

a unique set of tunable parameters.

Fig. 5.3 shows how the interface is used (symbol @ is replaced with wbt). Primi-

tive wbt sampling() (line 20) denotes the start of a sampling code region. It specifies

the number of samples that should be collected within this region and a callback func-

tion that implements a sampling strategy. WBTuner has a few built-in callbacks

including random in this example. Primitive wbt aggregate() (line 27) marks the end

of a sampling region. It specifies a callback function (e.g., AggregateGaussian())

that aggregates the values of sImage across sample runs. Primitive wbt sample() (line

21) indicates that a program variable, e.g., sigma, is a variable to tune (sample). It

also specifies the distribution of the variable from which sample values are taken.

A callback function AggregateGaussian() is provided by the user to facilitate

tuning. In this example, we implement it following an existing approach [32] to prune

the poorly smoothed ones. Specifically, it loads (line 6) the images denoted by sImage

which are computed according to different sampled values of sigma and determines

(line 7) whether each image is properly smoothed given the image size imgSize. We

will explain the relevant primitives wbt load(), wbt loadS() and wbt expose() in

Section 3.3.1. For each properly smoothed image, a new process is spawned by the

51

primitive wbt split (line 9) to continue to tune low and high in the edge traversal stage

(lines 34-41), while preserving the sampled sigma value and the produced image, i.e.,

sImage. Next we will discuss the execution model that underlies the user interface.

Fig. 3.4.: White-box tuning for Canny. The highlighted statements are added. Tuning

primitives start with wbt.

3.2.3 Runtime Execution Model

The runtime execution framework is shown in Fig. 3.5. Initially, the original main

process executes normally until it reaches the start of a tuning region (1○). At this

point, its role is switched to a tuning process. Intuitively, a tuning process is the

“manager” of a pool of sampling processes that it spawns. A sampling process is the

“worker” that conducts the computation within the region, and emits its result at

the end of the region. The tuning process invokes the sampling driver (2○) to spawn

52

a pool of child sampling processes (3○). The driver determines how many sampling

processes to be spawned and exercises a given sampling strategy. In some cases, the

sampling strategy is feedback driven and relies on previous tuning results.

After spawning, the tuning process pauses. The sampling processes carry out

the computation within the tuning code region (4○), orchestrated by a scheduler

(Sec. 3.3.2). When a sampling process encounters a tuning variable (i.e., X), it ac-

quires a sample value from the variable’s distribution. The sampling processes have

different states afterwards. Upon reaching the end of the tuning region, a sampling

process calls the child aggregation driver (5○) to commit its own computation result

from the sample result variable (i.e., Y) and terminates. Note that although the sam-

pling process also calls the primitive wbt aggregate(), it only submits its sampling

outcome. After all sampling processes commit, the tuning process resumes and in-

vokes the parent aggregation driver to aggregate the sampling results (6○). It then

continues to execute normally with the aggregated results (7○).

Fig. 3.5.: Execution Model

The above simplified model assumes a single tuning procecss in the runtime sys-

tem. It is usually necessary to have multiple tuning processes. For example, consider

the aggregation at line 27 in Fig. 5.3, the user may want to spawn multiple (inde-

pendent) tuning processes each continuing with one from a subset of good internal

results, i.e., properly smoothed images referred to by sImage, rather than a single

53

tuning process that continues with exactly one internal result. To achieve this, the

user can use primitive wbt split() (line 9) to explicitly spawn a new tuning process

(not sampling process) if the image is properly smoothed (line 7). Our runtime system

fully supports multiple tuning processes (Section 3.3.1).

3.2.4 Result and Comparison

Initially we use 200 samples (line 20). At the end of the Gaussian smoothing

stage (line 27), the invoked function AggregateGaussian() prunes 78 samples that

are not properly smoothed, and keeps 122 samples. WBTuner further spawns a

tuning process for each remaining sample. When each of these processes reaches the

edge traversal stage (line 34), it triggers a new sampling procedure which explores

90 samples(with different configurations of the parameters low and high) for each

smoothed image. Hence the total number of samples is 122×90=10980. Fig. 3.6

shows the tuning model of WBTuner for Canny.

The sampling results are aggregated by majority voting (line 41), that is, a pixel is

set if it is set in the majority of sample runs. WBTuner supports voting by default.

Hence, the user can aggregate results through one line of function call. Finally, the

aggregated image is visualized at line 44.

For comparison, we also apply OpenTuner to tune Canny with its default search

strategy (i.e., Multi-armed bandit). Since no algorithm exists for computing a score

for the output quality, we use simple heuristics to determine the poor samples, such

as those that have very few or too many pixels in the final image. We use the

execution time of WBTuner as the timeout for OpenTuner. The images generated

by OpenTuner through its sampling runs are aggregated by the same voting procedure

in WBTuner.

The tuning results for the coffeemaker image are shown in Fig. 3.7. Observe that

WBTuner spent 90 seconds on 9040 samples whereas OpenTuner can only finish 842

samples within the same amount of time, because most of its computation time was

54

spent on the expensive image loading, Gaussian smoothing, and gradient computation

stages as it has to repeat such computation for each sample run. In addition to the

visual result, we use the SSIM score [33] to compare the result with the ground truth

result hand-picked by experts [30]. Both visual and scoring results demonstrate that

that WBTuner outperforms OpenTuner.

Fig. 3.6.: Tuning Canny. TP/SP are tuning/sampling processes.

Origin Ground Truth OpenTuner WBTuner

samples - 842 10980

SSIM 1 0.592 0.794

Fig. 3.7.: Tuning Canny with image coffeemaker in 90s.

55

3.3 Execution Model: Semantics and System

In order to achieve white-box tuning, we need to overcome a number of prominent

challenges related to the management of stores and processes. First, an original

process will spawn many sampling processes, which may need to be terminated (if the

sampling result is poor), communicate with each other, further spawn their own child

sampling processes, and join at specific execution points. Second, as the sampling

processes produce a lot of sample data from internal states, managing such data (i.e.,

storing, accessing, and aggregating results across processes) is also challenging. All

these complexities should be transparent to the users. In Section 3.3.1, we describe

the formal execution model of our runtime system with the operational semantics. In

Section 3.3.2, we present the implementation details of our runtime system.

3.3.1 Semantics

Definitions: Store σ ::= V ar → V alue SmpStore δ ::= V ar → V alue | V ar → (Index→ V alue) Mode ω ::= T〈pid〉 | S〈pid〉

Stmt s ::= ... | spawn(σ, δ, ω, s) | notify(pid) | wait(pid) | invoke(cb)

Statement Rules: σ, δ, ω : s
s−→ σ′, δ′, ω′, s′ Let CPID = {Child Process ID}, PPID = Parent Process ID in the following rules:

σ, δ, ω : x := v
s−→ σ[x 7→ v], δ, ω, skip [ASSIGN]

σ, δ, T〈pid〉 : @sampling(n, cbStrgy); s
s−→ σ, δ, T〈pid〉, ∀i ∈ [1, n], spawn(σ, δ, S〈i〉, invoke(cbStrgy); s); invoke(cbStrgy); s [SAMPLING]

σ, δ, T〈pid〉 : @aggregate(x, cbAggr); s
s−→ σ, δ, T〈pid〉, invoke(cbAggr, x); s [AGGR− T]

σ, δ, S〈pid〉 : @aggregate(x, cbAggr); s
s−→ σ, δ[x[pid] 7→ σ(x)], S〈pid〉, skip [AGGR− S]

σ, δ, S〈pid〉 : @sample(x, cbDist); s
s−→ σ, δ, S〈pid〉, x := invoke(cbDist); s [SAMPLE]

σ, δ, T〈pid〉 : @split(); s
s−→ σ, δ, T〈pid〉, spawn(σ, {},T〈newPid()〉, s); s [SPLIT]

σ, δ, T〈pid〉 : @sync(cbBarrier); s
s−→ σ, δ, T〈pid〉, ∀i ∈ CPID, wait(i); invoke(cbBarrier); ∀i ∈ CPID, notify(i); s [SY NC − T]

σ, δ, S〈pid〉 : @sync(cbBarrier); s
s−→ σ, δ 7→ σ(x)], S〈pid〉, notify(PPID), wait(PPID); s [SY NC − S]

σ, δ, S〈pid〉 : @check(cbChk); s
s−→ σ, δ, S〈pid〉, if invoke(cbChk) ≡ true then s else skip [CHECK]

σ, δ, T〈pid〉 : @expose(x); s
s−→ σ, δ[x 7→ σ(x)], T〈pid〉, s [EXPOSE]

σ, δ, T〈pid〉 : y = @load(x); s
s−→ σ[y 7→ δ(x)], δ, T〈pid〉, s [LOAD]

σ, δ, T〈pid〉 : y = @loadS(x, i); s
s−→ σ[y 7→ δ(x)[i]], δ, T〈pid〉, s [LOADSAMPLE]

Fig. 3.8.: Operational Semantics

The semantics are presented in Fig. 3.8. The related definitions are presented at

the top of the figure.

56

Stores

WBTuner has two stores, the store σ for original program states and the sample

store δ that is shared across all processes to store sampling outputs. The two are

isolated. State transferring between the two are performed explicitly by the program-

mer. In δ, states can be further divided into two classes: (1) exposed store, a store

for exposed variables, (2) aggregation store, a store for sampled results from the child

sampling processes.

Exposed Store Exposed store is a mapping from variables to values. A local

variable is exposed by the primitive wbt expose(). The exposed local variable is saved

to the exposed store and can be retrieved with the primitive wbt load(). Different from

common local variables, the exposed local variable is available outside its local scope

(e.g., function). Thus, the exposed local variable can be used to pass the value across

different scopes. For instance, in Fig. 5.3, the local variable imgSize from the canny

function is exposed at line 26 and then loaded at line 7 in the AggregateGaussian

function.

Aggregation Store Aggregation store of a tuning process stores the sampled out-

comes. It maps each program variable x to a vector δ(x), of which the ith en-

try holds the value of the variable from the ith child process. Note that vector

abstracts the mapping from index to values. At the semantic level, the primitive

wbt aggregate(x, . . .) forces each child sampling process to write/commit the value

of x from its regular store to the aggregation store of the parent tuning process, as

illustrated by line 27 in Fig. 5.3. The primitive wbt loadS(x, i) loads the value of x

from the ith child process, as illustrated by line 6 in Fig. 5.3.

57

Processes

WBTuner supports two execution modes, T〈pid〉 denotes the a tuning process

and S〈pid〉 is a sampling process. pid denotes the process id. To facilitate discussion,

we extend the statements to include a spawn(σ, δ, ω, s) statement that forks a pro-

cess with the specified stores, execution mode, and the process body s, a notify(pid)

statement that notifies a process pid, a wait(pid) statement that waits for a notifi-

cation from the process pid, and an invoke(cb) statement that invokes a callback

function cb.

Statement Rules

Rule [SAMPLING] forks n sampling processes (indicated by the S〈i〉 mode)

through the spawn() primitive. Observe that the last parameter of the primitive

is the body of the child process, which contains the same statements as the parent,

namely, “invoke(cbStrgy); s”. After forking, callback cbStrgy() is called to initialize

the sampling strategy in the children. Note that Rule [SAMPLING] only applies in

a tuning process. It is a NOP in a sampling process.

Rule [AGGR-T] specifies that a tuning process invokes the callback cbAggr() to

aggregate the sampling results for variable x. In the callback, the user can implement

various aggregation strategies. For example, the values of sample target variable x

from all sample processes can be averaged and written back to x in the tuning process,

which can proceed with the aggregated value. In contrast, Rule [AGGR-S] specifies

that upon aggregation, a sampling process stores its sampling outcome of x to the

element of the sampling vector corresponding to the process id and then terminates.

Recall that only the tuning process aggregates results and sampling processes only

produce results.

Rule [SAMPLE] only applies to sampling processes. It specifies that the callback

cbDist() is invoked to acquire a sample value for variable x, which denotes a parameter

to tune. Rule [SPLIT] specifies that a tuning process can explicitly spawn a child

58

tuning process. The child process is for tuning the next phase. Function newPid()

returns a new pid. The child process inherits the regular store but not the sample

store from the parent. Rule [SYNC-T] indicates that the tuning process waits for all

the child sampling processes to reach the barrier, and then it invokes cbBarrier() to

perform some operations that access results across multiple sample runs. After that,

the tuning process notifies all its child sampling processes to proceed. Compared to

@aggregate, @sync is usually used in the middle of a sampling region. Rule [SYNC-S]

specifies that a sampling process notifies its parent tuning process after it has reached

the barrier. It then waits for the tuning process to finish the callback and notify it to

proceed. Notifications from child processes are queued to avoid message lost which

may lead to deadlocks.

Rule [CHECK] specifies that a sampling process invokes a callback cbChk() to

check its local states. If the check returns false, the sampling process is terminated.

This feature allows us to terminate useless sample runs long before they get to the

aggregation point (e.g., k-means in Sec. 3.5.2), which improves not only the perfor-

mance but also the final results. Note that such improvements are impossible to

achieve in black-box tuning.

Rule [EXPOSE] exposes the value of x from the regular store to the sample store,

which is accessed by tuning callbacks. The rule only applies to tuning processes.

Observe that it allows callbacks to access program variables outside their scopes.

Rule [LOAD] loads an exposed variable x (from the exposed store of δ) inside some

callback function in a tuning process. Rule [LOADSAMPLE] loads the ith sample

outcome of x (from the aggregation store of δ).

3.3.2 WBTuner Runtime System

We present the implementation details of WBTuner runtime by following the

same structure as Section 3.3.1.

59

Stores

Exposed Store We implemented the exposed store as follows. Our system encodes

a local variable with its name and its scope information (e.g., the function name)

before mapping it to the value in the exposed store. Similarly, our system uses the

name and the scope information of a variable to retrieve the associated value. The

encoding guarantees we can access the value of the exposed variable throughout the

whole execution. Note that the scope information is required to distinguish the local

variables with the same name from different scopes.

Aggregation Store Our system achieves the semantics by leveraging the file sys-

tem in disk. In particular, all sampled outcomes (WBTuner supports multiple

sample result variables aggregation) of a sampling process are stored in a file. The

file name is in the form pid, which specifies the sampling process that submits the

results of the variables. All the files are stored in a directory owned by the tuning

process. To load the ith outcome of x from disk, our system searches in the directory

owned by the tuning process for the related file based on the information in primitive

wbt loadS(x, i).

Processes

Process Scheduling In practice there will be large number of tuning and sampling

processes executing concurrently at runtime. Thus, WBTuner provides a scheduler

to manage the creation and termination of processes. It prevents excessive process

creation for better performance (Fig. 3.10). Using a uniform process pool is not

optimal because of the difference between the two kinds of processes (tuning and

sampling). Instead, we prioritize a sampling process over a tuning process because

the former conducts the real computation. In addition, we want to finish all the

sampling processes belonging to a tuning process as soon as possible so that the

tuning process can finish its work and yield the resource.

60

The scheduler works as follows. Upon a spawn request, it checks if there are

enough resources. If not, the current process is put in a priority queue. Upon a

process termination event, the highest priority process in the queue is woken up.

Algorithm 1 shows the details. The Schedule procedure is called with pid (i.e.,

process id), event and todo. There are three possible events: SPAWN S (i.e., spawn-

ing a sampling process), SPAWN T (i.e., spawning a tuning process), and EXIT .

The parameter todo denotes the number of samples remained for the current (tuning)

process. Sampling processes are ordered inside the priority queue based on the todo

values of their parent tuning processes. Lines 2-7 correspond to process termination,

which wakes up the process with the highest priority. At line 8, the computed thresh-

old denotes the remaining resources. If the number of available resources is below it,

the current process will be put back into the priority queue (lines 9-12). Otherwise,

it is allowed to proceed (line 14). Since real tuning is done by sampling processes, the

threshold is always 0 for sampling processes so that they don’t have to wait if there

is any available resource. A configurable variable is used to prevent spawning too

many tuning processes because they would inevitably lead to decreasing the tuning

efficiency. In Algorithm 1, we set the configurable threshold of tuning process to 75%

(i.e., it has to wait if 25% processes are occupied).

For benchmarks requiring a large number of samples and consuming lots of mem-

ory (e.g., Canny), the scheduler limits the number of concurrent samples and reduces

the memory consumption and execution time significantly (Fig. 3.10). Too much

memory consumption will result in excessive page fault which degrades the runtime

performance.

3.4 Practical Challenges

3.4.1 Overfitting

Since machine learning algorithms normally produce models as their output, the

tuning task of these hyper-parameters is usually guided by the execution results of

61

the models (e.g., lower classification errors). However, it might lead to overfitting,

meaning that the model with the tuned hyper-parameters produces optimal results

with training data but poor results with testing data. Note that programs such as

Canny do not have this problem as they are tuning for the final result but not models

tested by new data. Cross-validation can help to mitigate such hyper-parameters

tuning problem according to existing studies [34, 35]. Specifically, it searches for the

model hyper-parameters that generalize, rather than fitting to the training dataset.

WBTuner provides intrinsic support to address overfitting by combining its execu-

tion model with k-fold cross-validation [36], a widely used technique. Specifically, to

tune the parameters in a machine learning algorithm, the user only indicates the k

value in the wbt sampling() primitive and provides a validation callback. WBTuner

will then transparently include k-fold cross validation during its tuning process. The

experimental results in Fig. 3.17 demonstrate the necessity of cross-validation.

Fig. 3.9.: Tuning + Validation Execution Model

The tuning-validation model is shown in Fig. 3.9. First, the input data is trans-

parently divided to k datasets for each sample run. Moreover, for the xth original

sample run, WBTuner spawns k− 1 more processes, that form a sampling and val-

idation group (SVG). If the user intends to collect n samples originally, WBTuner

internally creates n SVGs, that is, n ∗ k processes. All the k processes in a SVG

share the same sample values for the tuning variables but use different datasets for

training and validation to prevent overfitting. As illustrated in the figure, the ith pro-

cess in the SVG uses the ith dataset for validation and the remaining k − 1 datasets

62

for training. At the end of the execution of an SVG process, WBTuner invokes

the user-supplied validation callback to apply the produced model on its validation

dataset and computes the validation error. The validation errors from all SVG pro-

cesses are then aggregated to drive the remaining steps of the tuning procedure. The

experimental results in Fig. 3.17 demonstrate the necessity of cross-validation.

3.4.2 Incremental Aggregation

According to the execution model of WBTuner, the sampling results are sub-

mitted by the sampling processes and aggregated by the tuning processes once the

sampling is completed. However, the whole execution entails massive storage and I/O

overhead. According to our observation, aggregation can be performed incrementally

in many benchmark programs as their aggregations involve functions such as finding

the min, max, average, or majority. For instance, for the aggregation strategy min/-

max, each sampling process updates a shared global variable min/max by comparing

its local outcome with the global variable. For incremental averaging, WBTuner

uses a shared ring buffer to which sampling processes copy their results. The tuning

process then consumes the data from the buffer to perform incremental averaging.

Majority voting is handled in a similar fashion. In our experiment section (Fig. 3.10),

we will show that incremental aggregation substantially reduces the tuning time and

memory consumption.

3.4.3 Sampling/Aggregation Strategies

In addition to custom strategies provided by the user, WBTuner supports several

common sampling/aggregation strategies by default. The user only needs to indicate

the strategy name inside the wbt sampling/wbt aggregate primitive to use it. Cur-

rently, the supported sampling strategies are random (RAND) and Markov Chain

Monte Carlo (MCMC). For aggregation strategies, WBTuner supports min, max,

majority vote (MV), averaging (AVG), and duplicate elimination (DEDUP). Based

63

Table 3.1.: Benchmark statistics and the experiment results for achieving the best

tuning scores.

Program LOC #P #PR Sampling Aggregation Ext LOC

Single Core Multi Core

Native WBTuner OpenTuner o/h(x) Native WBTuner OpenTuner o/h(x)

time(s) Score time(s) Score time(s) Score OT/WB time(s) time(s) Score time(s) Score OT/WB

[29] ↑ Canny 1 1.1k 3 8 RAND CUSTOM/MV 151 0.159 0.29 51.53 0.636 t/o2 0.44 - 0.061 17.75 0.636 t/o 0.44 -

[38] ↑ Watershed 1 270k 3 5 RAND MV 34 1.03 0.41 26.1 0.65 31.5 0.65 2.11 0.93 56.1 0.65 221.59 0.65 3.95

[16] ↑ Kmeans 1.2k 1 5 MCMC MAX 56 0.165 0.46 1.57 0.523 9.7 0.523 5.79 0.057 0.56 0.523 2.49 0.523 4.45

[39] ↑ DBScan 908 2 7 MCMC MAX 80 0.657 0.299 25.41 0.502 124.08 0.502 3.21 0.021 2.94 0.502 15.7 0.502 5.34

[40] ↓ Face Rec 9.6k 3 7 RAND MIN 92 4.788 17 578.62 7.3 1203.25 7.3 2.07 4.6 33.47 7.3 684.12 7.3 4.44

[41] ↑ Speech Rec 1 19.8k 16 18 RAND MV 89 4.263 1 313.25 5 t/o 4.2 - 4.12 19.54 5 t/o 4.2 -

[42] ↓ Phylip 12.6k 4 12 RAND DEDUP/MIN 95 4.67 20.4 1021.4 0.84 1910.23 0.84 1.87 2.4 211.15 0.84 693.21 0.84 3.28

[43] ↑ FASTA 77.5k 2 4 RAND CUSTOM 108 0.12 40 1.56 523 4.91 523 3.54 0.02 0.25 523 t/o 461 -

[44] ↑ TOPN Rec 33.5k 3 5 RAND MAX 3 6.16 0.1 273.45 0.126 560.5 0.126 3.04 5.9 81.2 0.126 513.1 0.126 6.32

[45] ↓ METIS 44.3k 3 5 RAND MAX 30 0.16 6952 4.77 6706 20.57 6706 4.31 0.06 1.2 6706 7.34 6717.7 6.12

[46] ↓ C4.5 17.8k 2 4 RAND+CV MIN 58 0.059 2.46 7.23 0.082 21.54 0.082 3.18 0.036 1.68 0.082 6.54 0.082 3.89

[47] ↓ SVM 11.3k 8 10 RAND+CV MIN 44 6.172 87 233.72 9.5 438.12 9.5 1.96 5.314 66.98 9.5 288.23 9.5 4.3

[48] ↓ Ardupilot 278k 40 44 RAND CUSTOM 204 - 1954k - - - - - 192.3 151k 1074k - - -

↑: Higher scores are better; ↓: lower scores are better. 1. These benchmarks do not have default scoring functions.

2. “t/o” means OpenTuner cannot achieve the similar score (i.e., difference < 10%) of WBTuner.

on our experience, these strategies are usually sufficient for most of the tuning tasks.

Observe that only four benchmarks (out of 13 benchmarks) use custom aggregation

strategies in our experiments.

3.4.4 Auto-tuning Sampling Number

Since the number of samples varies from one tuning region to another, WBTuner

provides an automatic way similar to exponential backoff [37] to determine the opti-

mal number of samples. For the sampling number of each primitive wbt sampling(),

WBTuner doubles it and compares the aggregated results between the samples from

original set and the samples from doubled set according to the scoring function. If the

doubled result is better, the number of samples is doubled again until the no further

improvements.

64

Algorithm 1 Process Scheduling
1: procedure Schedule(pid, event, todo)

2: if event = EXIT then

3: poolSize← poolSize+ 1

4: if PQueue not EMPTY then

5: p← PopPQueue()

6: signal(p.pid)

7: return

8: threshold← (event = SPAWN S) ?

0 : MAX POOL SIZE × 0.75

9: while poolSize <= threshold do

10: PushPQueue(new P (pid, event, todo))

11: poolSize← poolSize+ 1

12: wait()

13: poolSize← poolSize− 1

14: poolSize← poolSize− 1

15: return

3.5 Evaluation

WBTuner is implemented in C and publicly available at [31]. We evaluate the

efficiency and effectiveness of WBTuner and compare it with OpenTuner. Exper-

iments were run on a machine with Intel i7-2640M 2.80GHz processor and 16GB

RAM.

Benchmarks. We use a wide variety of C/C++ benchmarks in our experiments,

including 12 widely used data processing programs and a complex open-source con-

troller software for commercial drones. These are heavily parameterized applications.

All programs have multiple datasets that can be found online or come with the

program. We have selected only the datasets that have the outcome ground truth

for comparison. On average, we used 10 datasets for each program. The results are

65

summarized in Table 3.1. Benchmarks either come with their own scoring functions

or use publicly available scoring functions, so the callbacks for them are implemented

accordingly. Comparison results of benchmarks without scoring functions (i.e., with

superscript 1 in Tab. 3.1) are explained in section 3.5.1.

Columns 1-2 show the programs names and the lines of code. Column 3 shows

the number of tunable parameters and column 4 shows the number of WBTuner

primitives added to the source. The next two columns (5-6) describe the sampling

and the aggregation strategies. Most programs use random sampling. DBScan and

K-means demonstrate the use of a different sampling strategy (MCMC). C4.5 and

SVM use random sampling together with cross-validation, which is also implemented in

OpenTuner for these two benchmarks (for comparison). Column 7 presents the LOC

in tuning callback functions. Observe that the number of primitives is small, yet, it

allows to represent complex tuning models as we will demonstrate in Section 3.5.2.

The LOCs for callbacks are small compared to the source code LOCs. They mainly

implement scoring functions or checks.

3.5.1 Tuning Results Summary

In the first experiment, we ran each benchmark with the largest dataset under

three settings – (1) native run without tuning; (2) white-box tuning with WBTuner;

(3) black-box tuning with OpenTuner and its default search strategy (i.e., multi-armed

bandit [49]).

We ran WBTuner with the number of samples auto-tuned (Sec. 3.4.4) by WB-

Tuner until converging, then we collected the tuning time. For OpenTuner, we

gradually increased the timeout parameter until it either reaches similar results as

WBTuner (difference < 10%) or could not reach similar results after spending 10

times WBTuner ’s tuning time. We measured the quality of the tuning results

by comparing with the ground truth that comes with the datasets. Note that these

ground truths are only used in measuring quality, but not in tuning. As stated before,

66

OpenTuner requires scoring functions to guide the search; however, a few benchmarks

do not have a standard scoring function (marked with the superscript 1 in Table 3.1).

To achieve fair comparison, for these benchmarks, we implemented the same domain-

specific heuristics from WBTuner in OpenTuner to distinguish good and bad sam-

ples, and to use the same aggregation method from WBTuner to aggregate the good

sample results. To quantify the results for these programs, we compute their scores

based on the comparison with the ground truths. Such scores are not used in tuning.

Since OpenTuner does not support parallel sampling by default, which requires

substantial engineering effort, we conducted the comparison in both single-core and

multi-core. The single-core results are shown in columns 8-14 in Table 3.1, while the

multi-core results are shown in columns 15-20. Columns 8 and 9 present the native

execution time and the score without tuning. Note that for the programs with ↑, the

higher the scores the better, and for the others with ↓, the lower the scores the better.

Column 10 presents the tuning time of WBTuner upon convergence. Column 11

shows the converged score. Column 12 shows the tuning time for OpenTuner. Those

with “t/o” mean that those scores are apparently worse (difference > 10%) than

WBTuner after spending 10x more tuning time. Column 13 shows the final tuning

score of OpenTuner. Column 14 shows the overhead comparison. Columns 15-20 are

the results for multi-core.

Observe that for single-core environment, OpenTuner times out in 2 out of the 13

cases. For the other cases, the average tuning overhead of OpenTuner is 3.08X higher

than WBTuner. For multi-core environment, 3 cases time out and the overhead

ratio is 4.67X.

Observe that WBTuner substantially improves the results quality compared to

those without any tuning. It is more effective than OpenTuner. For the cases that

OpenTuner can reach the scores of WBTuner, we also allow more tuning time; still,

it did not produce better results.

Fig. 3.10 shows the effect of the optimizations discussed in Sec. 3.3.2 and 3.4.2.

Observe that the incremental aggregation is highly effective for several cases, espe-

67

cially for reducing the memory usage as it prevents reading a large number of results

for one-shot aggregation. Observe that the scheduler further improves the perfor-

mance in several cases, especially Canny and K-means. Before optimization, Canny’s

execution time and memory overhead are about 4X higher.

Fig. 3.10.: Optimization effects on different benchmarks

3.5.2 Tuning Case Studies

In this section, we study the details of tuning several representative programs

under the single core environment and tuning Ardupilot (a drone controller) in the

multi-core environment.

Image Processing

Canny. In Section 3.2, we have already shown the tuning results of Canny. Here we

used 10 different images from [30], where each image has a ground truth result image

hand-picked by experts.

Since no general scoring function exists, we use majority vote for results aggrega-

tion, meaning the result with the largest number of supports from the sample runs

is reported. Then we use the SSIM [33] score to compare the voting result with the

ground truth. The higher the score the better. We extended OpenTuner with the

68

majority voting capability to achieve fair comparison. For each image, we ran WB-

Tuner and OpenTuner 10 times and took the average. Fig. 3.11 shows the tuning

score when WBTuner converges, the corresponding OpenTuner score after it runs

the same amount of time, and the score without tuning. Observe that WBTuner

almost always produces the best results.

On average, OpenTuner has 119% improvement over no-tuning, whereas the im-

provement of WBTuner is 178%. The reason is that WBTuner can prune a lot of

sample runs that will not yield promising results after stage one (Fig. 5.3).

Fig. 3.11.: Canny tuning scores of 10 images.

Fig. 3.12.: Canny tuning score variation

The score variation with the tuning time is shown in Fig. 3.12 for the pitcher and

brush images, which represent the maximum and minimum improvement over Open-

Tuner, respectively. Observe that for pitcher, even 5-second tuning in WBTuner

yields much better results for 30 seconds tuning in OpenTuner. The visualization in

Fig. 3.13 shows that the result by WBTuner is very close to the ground truth but

the result by OpenTuner is not. For brush, WBTuner has a very close but lower

69

score at the end, although the two have very comparable performance all the time.

Fig. 3.13 shows that the WBTuner’s result is not inferior.

Pitcher Ground TruthWBTuner OpenTuner

Brush Ground TruthWBTuner OpenTuner

Fig. 3.13.: Canny results of WBTuner and OpenTuner

Bioinformatics

Phylip. Phylip [42, 50] generates the phylogenetic tree of given protein or DNA se-

quences by calculating the distances. It shows the evolutionary relationships between

various biological species. Phylip consists of five stages of computation as shown in

Fig. 3.14.

Stage 1 generates the transition probability matrix and has a tunable parameter

ease. Stage 2 loads data and performs preprocessing. Stage 3 generates the distance

matrix based on the transition probability matrix and the input. It has two tunable

parameters invarfrac and cvi. Stage 4 initializes the phylogenetic tree. Stage 5

generates the tree based on the distance matrix from stage 3. It has a tunable pa-

rameter power. WBTuner tunes stages 1, 3 and 5. The wbt aggregation() primitive

is called at the end of stages 1 and 3 with the duplicate-elimination (DEDUP) strat-

70

egy to prune the sample runs that have similar matrices. Thus, new tuning processes

are only spawned for unique matrices. At the end of stage 5, the aggregation selects

the tree with the lowest sum of squares, which is the default scoring function. Lower

score means the better result.

Fig. 3.14.: White-box tuning for phylip tree

Fig. 3.15 shows tuning score comparison for ten datasets from [51] when WB-

Tuner converges. Observe that tuning is critical for this program. On average,

WBTuner can reduce the errors by a factor of 283 when compared with no tuning,

and by a factor of 4.77 when compared with OpenTuner.

Fig. 3.16 shows the tuning score variations over time for data2 and data10 that

have the maximum and minimum improvement over OpenTuner, respectively. For

Fig. 3.15.: Phylip tree tuning scores on 10 datasets.

71

Fig. 3.16.: Phylip tree tuning score variation

data2, 40 seconds of tuning in WBTuner achieves a similar result as 135 seconds of

tuning in OpenTuner. The improvement is achieved by the independent tuning/prun-

ing in the three tuning regions. Although OpenTuner outperforms WBTuner for

data10, the difference between the two results is nearly invisible.

Machine Learning

Support Vector Machine (SVM). SVM [47] is a popular machine learning algo-

rithm for data classification. It is a supervised learning technique which takes the

training data with feature class labels to build a model for classifying new data. We

use the multi-class SVM [52] to classify data with multiple class labels. The algorithm

has 8 tunable parameters, which lead to substantially different models if tuned differ-

ently. Furthermore, like most machine learning algorithms, certain parameter settings

may lead to overfitting (Section 3.4.1). Thus, we leverage the k-fold cross-validation

in WBTuner to tune the parameters while preventing overfitting.

We compare the results tuned by WBTuner with and without cross-validation

for 10 datasets obtained from [53]. We divide each dataset into two equal sets and

use the first half for training and tuning and the second half for testing. We then

collect the results after both tuning converge. The results are depicted in Fig. 3.17.

Observe that for the left two bars (without cross-validation), the training error (black

bar) is close to zero while the testing error is very high, indicating overfitting. For the

72

right two bars (with cross-validation), the testing error is significantly lower than that

without cross-validation, which strongly suggests that cross-validation substantially

mitigates the overfitting problem. That is, the new model generalizes better from the

training dataset, without being affected by its details and noise. The results strongly

suggest that overfitting is a prominent challenge in tuning and WBTuner effectively

addresses this problem transparently.

Fig. 3.17.: SVM tuning scores of 10 datasets w/wo validation

We also compare the result generated by WBTuner and OpenTuner. As Open-

Tuner does not handle overfitting by default, we extended its implementation to pro-

vide cross-validation as well (using the same k). Observe that WBTuner consistently

outperforms OpenTuner. The tuning improvement by OpenTuner over no-tuning is

35% whereas the improvement by WBTuner is 47%. Fig. 3.19 shows the score vari-

ation for the best and the worst datasets. Observe that for Cleveland, even after

1500 seconds, OpenTuner cannot reach the result produced by WBTuner within 80

seconds.

Speech Recognition

Sphinx. Sphinx [54] is a popular speech recognition system. It takes a raw audio

and a dictionary, and generates the script for the audio according to the dictionary.

It has 16 tunable parameters, such as the upper and lower edges of filers, language

73

Fig. 3.18.: SVM tuning scores of 10 datasets

Fig. 3.19.: SVM tuning score variation

weight, and word insertion penalty. These parameters are critical to the recognition

results. Different persons’ audios may require different parameter sets. Since there

does not exist a general scoring function, the tuning results are aggregated using

majority vote. OpenTuner is also extended with the majority voting capability for

fair comparison.

In the study, we took 10 sets of audios (for 10 persons) from the AN4 dataset [55],

each set having 5 audios. We applied both WBTuner and OpenTuner to all these

50 audios. Fig. 3.20 shows the recognition precision comparison when WBTuner

converges (i.e., the number of audios that are correctly recognized for each dataset).

Observe that WBTuner precisely recognizes all 5 audios for 6 out of 10 sets, and

more than 4 audios for another 3 sets. To reduce non-determinism, we ran the exper-

iment multiple times and took the average. Thus, there are some decimal numbers

in the precision results. In contrast, Sphinx can only recognize 2.7 audios on average

74

without tuning, and 3.94 audios with OpenTuner. Fig. 3.21 shows the score variations

for the best and worst data sets.

Fig. 3.20.: Sphinx tuning of 10 datasets

Fig. 3.21.: Sphinx tuning score variation

Tuning Drone’s Behavior.

Here we demonstrate how we can leverage WBTuner to tune large and complex

cyber-physical systems for behavior learning. Specifically, we aim to tune one drone’s

parameters so that it mimics the behavior of the other one.

We use two pieces of widely used drone control software: PX4 [56] and Ardupi-

lot [48]. They are complex (385k and 278k LOC respectively), and have completely

different features and implementations. Furthermore, PX4 has 426 configurable pa-

rameters and Ardupilot has 612 and the meanings of these parameters are quite dif-

ferent. Thus, High-end drones usually have parameter configurations enabling much

better performance, as their engineers spent a lot of time in tuning. For example,

75

Ardupilot flies much slower than PX4 (25% slower) and has much higher battery

consumption. PX4s controller is clearly out-performing Ardupilot. WBTuner allows

Ardupilot to automatically learn from PX4, saving the substantial manual tuning

efforts. Note that there is hardly any correspondence between parameters across the

two systems so that one cannot simply copy parameter values. Moreover, only in-

creasing the speed is suboptimal because there are other parameters to consider such

as power consumption or way-point radius to prevent overshoot.

Although both PX4 and Ardupilot provide their own specific black-box parameter

tuning tools [57,58], only a limited number of parameters can be tuned by these tools

and thus cannot lead to optimal results. Furthermore, they cannot be applied to

achieve more sophisticated tuning tasks such as behavior learning, which is a popular

tendency for training autonomous vehicles with different purposes [59–61].

Tuning Target. We aim to tune the parameters of Ardupilot to make

it learn the flying behavior of PX4. We identify 40 parameters that are most

relevant to drone control in Ardupilot and mark them as the tuning variables. We use

the motor speed variables as the sample result variables since the drone’s behavior is

mostly determined by the speed of its four motors. We fly both Ardupilot and PX4

under the same mission, and then employ WBTuner to tune the tuning variables in

Ardupilot while learning from PX4’s flying behavior. Namely, we define the scoring

function as the root-mean-square errors of the four motors speed between the two

controllers. Furthermore, as a typical mission in Ardupilot often needs to execute

under multiple flight modes (e.g., takeoff or land), we define the tuning regions as the

individual mode control functions.

To tune Ardupilot according to PX4’s behavior, we first fly both Ardupilot and

PX4 under 2 different missions. The first one consists of taking off, rising to 10 meters,

and finally landing. The second mission makes the drone fly along a 45m route with 3

way points. Our experiments are conducted using the Gazebo simulator [62]. The first

mission uses 2000 sample runs, while the second uses 6000 runs given its complexity,

each taking 20-30 seconds. Overall, the tuning time is about 42 hours due to real-

76

time simulation. Then we test the subsequent performance of Ardupilot with the

tuned parameters under a complex mission, where the drone zigzags and returns to

the starting point with a flight distance of 165m.

Fig. 3.22 shows both the motors speed and visual results for the first tuning

mission. Note that motor speeds represent the key states of a drone. The gray

point in the visual results indicates the front of the drone. As illustrated, PX4 first

accelerates the drone to a high speed (with the initial spikes of motor speeds close

to time 0). It then maintains a stable high speed till until time-stamp 7 (sec). At

this time, it decelerates as it reaches the targeted height. In contrast, the default

Ardupilot rises very slowly and exhibits tilts and turns (due to some calibrations

when taking off). After tuning, Ardupilot is more stable at take-off (i.e., the tilts and

turns are avoided). If one looks into the motor speed chart, the spike and the dip (at

7th sec) appear, resembling the PX4’s chart. While WBTuner is not able to achieve

the same sharpness of the spike/dip as in PX4 due to other un-tuned parameters, the

result is promising.

Fig. 3.23 shows the results of the second tuning mission (The three way points are

indicated by A, B and C). When the default Ardupilot reaches the middle way point

(i.e., B), it first tilts, turns at the same spot until its head points to the next way point

C, and then flies towards C. Intuitively, changing the orientation at point B requires

the drone to decrease its speed, and hence leads to a longer mission. Conversely,

both PX4 and the tuned Ardupilot avoid turning as much as possible at point B,

and rather change their orientation while flying towards C (as indicated by the white

curved arrow), consequently finishing the mission in a much shorter time.

Fig. 3.24 shows the results of the testing mission. After tuning, the motors speed

of Ardupilot is quite similar to PX4. Even more, its flight time is reduced from the

original 105 seconds to 82 seconds (i.e., 22% fewer). The recorded videos for the test

mission are available at [63–65].

OpenTuner cannot be applied here for the following reasons. (1) Several parame-

ters that affect multiple flight modes in a single mission. They are tuned to different

77

Fig. 3.22.: Tuning mission 1

Fig. 3.23.: Tuning mission 2

Fig. 3.24.: Testing mission

values for various modes. This cannot be supported by blackbox tuning; (2) Each

sample run in OpenTuner is a whole execution that includes expensive simulator

startup and drone preparation taking 3-4 minutes per sample. In contrast, WB-

Tuner tunes small code regions and each sample run is just 20-30 seconds; (3) The

simulator often fails to start (we suspect that it results from the locked resources of

78

previous closed execution). This is not a problem for WBTuner as it can spawn all

the sampling/tuning processes after a successful start.

3.6 Summary

In this chapter, we propose WBTuner, a general white-box tuning engine. It

provides primitives that allow users to easily compose complex tuning tasks as if

they are writing extensions to the original programs. Our experiments show that

WBTuner substantially improves data processing results and outperforms the state-

of-the-art black-box tuning engine. In the next chapter, we will discuss a novel

approach for more efficient parameter selection by leveraging artificial intelligence.

79

4. PROGRAMMING SUPPORT FOR AUTONOMIZING

SOFTWARE

In this chapter, we continue our focus on improving the parameter selection of data

processing programs with better efficiency by leveraging artificial intelligence (AI).

Most traditional software systems are not built with the artificial intelligence support

in mind. Among them, some may require human interventions to operate, e.g., the

manual specification of the parameters in the data processing programs, or other-

wise, would behave poorly. We propose a novel framework called Autonomizer to

autonomize these systems by installing the AI into the traditional programs. Auton-

omizer is general so it can be applied to many real-world applications. We provide

the primitives and the runtime support, where the primitives abstract common tasks

of autonomization and the runtime support realizes them transparently. With the

support of Autonomizer, the users can gain the AI support with little engineering

efforts. Like many other AI applications, the challenge lies in the feature selection,

which we address by proposing multiple automated strategies based on the program

analysis. Our experiment results on nine real-world applications show that the au-

tonomization only requires adding a few lines to the source code. Besides, for the

data-processing programs, Autonomizer improves the output quality by 161% on

average over the default settings. For the interactive programs such as game/driving,

Autonomizer achieves higher success rate with lower training time than existing

autonomized programs.

4.1 Introduction

Autonomous software systems have achieved incredible success in specialized do-

mains. For example, the world is shocked when the self-learning AlphaGo program

80

defeated the human champions [66–69]. The Waymo self-driving car has driven flaw-

lessly 25,000 miles each day on complex city streets [70], which is valued at around

$175B [71]. Inspired by the existing autonomous systems, we are intrigued by the

question whether the general software engineering problems can benefit from the au-

tonomization. In this work, we take the initiative to answer this question and share

the results.

4.1.1 Autonomization: Bringing the Intelligence to Traditional Programs

In the following, we present two sets of general software engineering problems,

which are representative of the problems that the autonomization potentially applies

to.

Parameterized Programs. Many traditional software systems, especially data

processing, machine learning and scientific computation programs, often carry the

parameters that affect the quality of the results. However, different inputs require

different configurations to achieve the ideal results, i.e., no parameter configuration

universally applies. Therefore, the users need to manually configure the parameters,

which is difficult for normal users due to the great domain expertise required and

sometimes even difficult for the experts if the parameter value space is huge (consider

the neural network hyperparameters [72]). To mitigate this problem, the users may

use the autotuning tools [31] to tune the configuration. In either case, the users are

faced with the dilemma that they either need to tune the parameters for each input,

which prohibits the application to large volume of inputs, or have to tolerate the

unsatisfactory results.

Artificial intelligence, specifically the supervised learning (SL), excels at learning

the target values (i.e., the ideal parameter values) for different settings (i.e., inputs).

According to the experiments (Section 5.4), the parameter values predicted by SL

improve the quality of results over the default values by around 70% for Canny, a

popular edge detection program. Besides, the prediction of SL is very fast, in contrast

81

with the manual specification or the autotuning, which means the programs equipped

with SL can process large volume of inputs fast while offering good results. Therefore,

we propose to install AI into the traditional parameterized Programs.

Interactive Programs. Many software systems interact with the environments,

e.g., the monkey testing software which interacts with the mobile UI environment [73],

the Mario game agent that interacts with the simulated game environment [74], the

software that controls the cooling of the data center [75] and many other cyberphysical

system (CPS) software. However, these pieces of software usually follow the random

behaviors [73] or the simple heuristics [75], which do not behave effectively in practice.

We propose to install the AI, in particular the reinforcement learning (RL) which

is designed for the action selection, into the software systems such that they behave

smart and achieve better results, while offering the full automation. Deepmind re-

searchers pioneer the study: They reduced Google’s data centre cooling bill by 40%

by leveraging the AI in place of the simple heuristic-based control [75]. Earlier, they

built the control through deep reinforcement learning and demonstrated it can surpass

the human-level performance on a set of Atari games [76]. Another work integrated

RL with the monkey testing and shown the effectiveness [77].

4.1.2 Problems and Challenges

We discuss potential problems and challenges of program autonomization in the

following.

Autonomization is Tedious and Not Portable. In existing autonomous sys-

tems [66, 74–83], autonomization is implemented manually, which requires a lot of

engineering efforts. In general, it needs to construct the neural network model and

select the feature variables, of which the runtime values are used as the inputs of the

model. Besides, at runtime, it needs to (1) collect the feature values, (2) save them

to database and load them back in batches, (3) feed them to the model for training

and prediction, (4) integrate the predicted result into the execution, and (5) provide

82

program checkpointing/restore logic when the training (esp., reinforcement learning)

enters the ending state. Even worse, when moving to a new application, the above

process needs to be repeated.

Challenge on Feature Extraction. Similar to many other neural network appli-

cations, the crucial challenge lies in the feature selection, i.e., selection of the feature

variables for predicting the target variables specified by the users. The target vari-

ables are the variables of which the values are to be predicted and affect the quality

of results, e.g., the parameters in the parameterized programs or the actions in the

interactive programs.

Existing works usually use the raw program inputs (e.g., images) as the feature

variables. For example, the autonomous game agent work [76] uses raw images to train

AI models, which leads to very slow training process (e.g., ∼83 hours of training

to make an AI competitive with respect to human [84, 85]). The problem is that

the neural network needs several preprocessing layers, i.e., the convolutional neural

network (CNN) layers [86], to derive the high-level information from the raw program

inputs (e.g., images).

Our key insight is the high-level information (e.g., the position of Mario or the

image histogram information of Canny) is already derived through the code logic

and stored as program variables. Therefore, we propose to use the program variables

(which provide the rich information) as the feature variables, thereby obviating the

preprocessing layers.

However, large number of program variables exist. Given the user-specified target

variables, it is important yet challenging to select the variables that are most seman-

tically relevant to the target variables as their feature variables. Manual extraction

of the feature variables [80] would impose heavy burden on the programmers. We de-

signed multiple automated strategies atop the program dependence graph and found

through the extensive experiments that (1) the selected feature variable and the tar-

get variable should be correlated (share some common dependent), (2) the selected

83

feature variable closer to the common dependent leads to better prediction quality.

The feature extraction algorithms are discussed in Section 4.4.

4.1.3 Our Design

In this paper, we propose a novel programming framework Autonomizer which

consists of the primitives 1 and the runtime support, where the primitives abstract

the common components aforementioned while the runtime support does the heavy

lifting and realizes them transparently.

As shown in the experiments (Section 5.4), autonomizing the programs, such as

a widely used edge detection program Canny [29] and a speech recognition program

Sphinx [41], only requires adding a few lines to the original source code. For SL pro-

grams, the autonomization output quality is improved by 161% on average over the

baseline with execution overhead no more than 0.64X. For RL programs, the train-

ing procedures only need 3.5-20.36 hours for the AIs to be competitive with human

players. Comparatively, prior art typically requires at least 83 hours of training [85]

to be competitive with respect to human, which is not efficient.

Contributions. We made the following contributions.

• We proposed a novel idea of autonomizing traditional software programs, which

applies to the parameter configuration of parameterized programs, the action

selection of interactive programs and many other potential applications.

• We designed a novel programming framework which consists of the primitives

and the runtime support. The primitives abstract common tasks of autono-

mization and the runtime support realizes them transparently.

• We designed the strategies for feature extraction.

1It is also possible to use the language constructs instead of the library API. However, it would
require a specialized compiler and sacrifice the usability.

84

• We implemented our approach and evaluated it against nine real world pro-

grams. The results are promising as described above: the programs can be

autonomized with little effort; the autonomized version leads to much better

results while incurring the tolerable execution slowdown.

4.2 Autonomization Framework Overview

In this section, we show how to autonomize the Mario [87] game, which is a

representative of a large set of interactive software applications that do not have

autonomization in consideration during design. We will explain how to annotate

and autonomize the game with reinforcement learning using our proposed primitives.

The game is autonomized for two different purposes. We first autonomize the game

to play by itself normally and compare the results with the model borrowed from

DeepMind [76] which uses raw image screenshots as model input. Then we show how

to autonomize the game to do coverage testing. Note that here we are not comparing

our work with DeepMind but rather leveraging its model. DeepMind’s contributions

are orthogonal to Autonomizer. DeepMind demonstrates human-like learning by

observing raw images. It does not focus on identifying an efficient way to train a

model to play games.

Primitives. The primitives are listed in Fig. 4.1, which are the library calls in

the same programming language as the source program. While more details of the

primitives will be discussed in Section 5.3, we will explain them when they are used

in the example.

Running Example. In this section, we show how to autonomize an interactive

program, i.e., the Mario game, such that it achieves the decent score without human

assistance. In Section 3.5.2, we further show that we can autonomize the parameter-

ized programs to achieve ideal parameter configurations automatically on the fly.

In Fig. 4.2, we show how to autonomize the Mario game, where the primitives

are highlighted. Lines 24-50 show the main game loop function of Mario. In each

85

Library Calls :

@au config(modelName,modelType, algo., layers, neuron1, ...) |
@au extract(extName, size, data) |
@au NN(modelName, extName1, ..., wbName1, ...) |
@au write back(wbName, size, data) |
@au serialize(data1, ...) |
@au checkpoint() |
@au restore()

Fig. 4.1.: Primitives

iteration, multiple functions (lines 1-23) of the program are orchestrated to make the

game work. For example, lines 5-13 handle minion collisions and lines 19-23 update

Mario’s position.

First, the user specifies with the primitive au write back() at line 44 the tar-

get variable (i.e., the output of the neural network model) , which is the variable

actionKey that holds Mario’s action (line 46). Autonomizer then automatically

extracts some program variables as the feature variables (i.e., the inputs of the model),

which are also annotated with the primitive au extract() at lines 9-10, 17, and 21-22.

The feature variables, e.g., the positions of Goombas at lines 9-10, contain the impor-

tant and relevant information for predicting the target variable, e.g., Mario’s action

at line 46. We refer the readers to Section 4.4 for the feature extraction algorithms.

While executing the primitive au extract(), the Autonomizer runtime automat-

ically records the values of the feature variables into a database and assigns names

to them for later reference. While executing the primitive au write back(), e.g., at

line 44, the Autonomizer runtime updates the target variable actionKey with the

predicted value of the target variable. Note the value 5 means there are 5 possible

actions.

During initialization, the neural network is configured with the primitive au config()

(line 2). In our example, the model has two hidden layers with 256 and 64 neurons,

respectively. The size of the input and output layers is automatically computed based

86

on the input fed to the network and the output to be predicted. We also provide a

callback function in which the users can create arbitrary neural networks from scratch

with Tensorflow, which is omitted due to space limit.

The program interacts with the neural network via the primitive au NN() at line

40. It works in two modes: the training mode and the deployment mode. In the

training mode, the program sends data to train the model, in addition to generating

the predicted value. In the deployment mode, the program sends data solely to

generate the predicted value. In practice, we produce two versions for the modes.

Autonomizer automatically writes the output value predicted by the model to the

database and index it with the name output specified at line 43.

If Mario enters the end state (i.e., Mario dies), it is important to roll back to a

previous checkpoint to avoid the expensive full restart. We provide two primitives to

achieve this: The primitive au checkpoint() checkpoints the program state at line 27.

The primitive au restore() would restore the program state at line 48. Note that the

neural network states of Autonomizer are not affected by this pair of primitives.

More details are explained in Section 4.5.

Execution Model. The simplified execution model is shown in Fig. 5.4. Given the

user-annotated target variable Y , Autonomizer first extracts the feature variable

X for predicting Y (Section 4.4). The variables X is then annotated in the program.

The runtime execution is as follows. The original main process executes normally

until it reaches the au extract() primitive (1○). At this point, the value of the feature

variable X is saved to the database (2○).

The main process continues its execution until it reaches the primitive au NN().

At this point, the main process transfers the control of the execution of the original

program (3○) to the execution of a piece of Python code (4○), which is generated

by Autonomizer based on the annotations and performs the model training and

testing using Tensorflow. Besides, Autonomizer also feeds the input data X stored

in the database to the model, uses the model to predict the output value (which

corresponds to the target variable Y) and writes the value to the database.

87

1 void initGame() {

2 // ... Init game ...

3 au_config("Mario", DNN, QLearn, 2, 256, 64);

4 }
5 void minionCollision() {

6 for (int i=0; i<Minion.size(); i++) {

7 for (int j=0; j<Minion[i].size(); j++) {

8 // ... Update minion collision ...

9 au_extract("MnX", 1, minion[i][j]->X);

10 au_extract("MnY", 1, minion[i][j]->Y);

11 }

12 }

13 }
14 void checkObj() {

15 if (checkObj(player.front) == "PIPE")

16 ...

17 au_extract("OBJ", 1, player.front);

18 }
19 void updatePlayer() {

20 // ... Update player.x and player.Y ...

21 au_extract("PX", 1, player->X);

22 au_extract("PY", 1, player->Y);

23 }
24 void gameLoop() {

25 while (true) {

26 terminated = 0;

27 au_checkpoint();

28 // Reward calculation

29 if (moveForward(player)) reward = 2;

30 else reward = -1;

31
32 if (reachFlagPole(player)) {

33 reward = 10; terminated = 1;

34 } else if (dead(player)) {

35 reward = -10; terminated = 1;

36 }

37 // This line is only added for self-testing

38 if (checkNewCoverage()) reward = 30;

39
40 au_NN("Mario",

41 au_serialize("PX", "PY", "MnX", "MnY", "Obj"),

42 reward, term,

43 "output");

44 au_write_back("output", 5, actionKey);

45 // ... Act based on returned data ...

46 act(actionKey);

47
48 if (terminated) au_restore();

49 }

50 }

Fig. 4.2.: Autonomizing Mario. The highlighted statements are added. Autono-

mizer primitives start with au.

88

Fig. 4.3.: Execution model

Afterwards, the control of the execution is transferred back to the main process.

Note the output value is now stored in the database. The primitive au write back()

(5○) loads it from the database to update the program variable Y .

The main process continues its normal execution (6○) with the updated Y value.

Note that Autonomizer supports multiple model instances in one execution.

Result and Comparison. Videos of the training process and the autonomization

result can be found at [88]. It took around 5.7 hours to train Mario to have reasonable

behavior without using GPU. Furthermore, we compare the results between our model

(i.e., the model using extracted program states) and the DeepMind model [76,89] (i.e.,

a model using raw image screenshots).

Low Engineering Efforts. With the support of Autonomizer, the users achieve

the autonomization with very few annotations, as highlighted in Fig. 4.2. The au-

tomatic feature extraction of Autonomizer further alleviates the burden of spec-

ification. Comparatively, existing work for Mario autonomization [74] spends great

engineering efforts in the common tasks such as data collection, data saving/loading,

integration of the model and the original program.

Better Result and Faster Training. We stop the training if the score of Mario is

comparable with human (i.e., difference < 20%) or if the training time exceeds 24

hours. Here the score refers to the stage clearance rate of 10 runs.

According to the experiments, the DeepMind model is trained for 8000 epochs

before exceeding the 24 hours limit. Comparatively, Our model is trained for only

2000 epochs. Note each epoch corresponds to 100 iterations of the loop. The results

89

show that the DeepMind model achieves the score 40% after 24 hours’ training, while

our model achieves the score 80% after only 5.7 hours’ training.

The reason for the difference lies in the feature selection. The DeepMind model

uses the raw images as the model inputs and applies multiple convolution layers to

derive high-level information from the raw images. In particular, each image is an

84x84x4 input array (after preprocessing). The neural network has three convolution

layers, each followed by a max pooling layer, and finally two hidden layers with 256

and 64 neurons. Due to the complexity of the network, the training requires very

long time to achieve good result, or equivalently, achieves bad result within a short

time.

Comparatively, our key insight is that the programmers derive the high-level infor-

mation through the code and store them in some internal program variables. There-

fore, our model directly uses such high-level information as the model inputs, thereby

obviating the need for the three convolution layers in the DeepMind model. Our

simpler model achieves better results while requiring shorter training time.

The screenshots illustrate the difference more intuitively. In Fig. 4.4, following

our model, Mario jumps only when it’s necessary. In Figure 4.5, the Mario following

the DeepMind model keeps jumping all the time, indicating the model is still at the

early stage of the training. Intuitively, if Mario jumps too often, it is less likely to

stay on the ground where control can be applied, i.e., the chance of controlling Mario

becomes lower. Thus, it easily hits the Goombas and dies as shown in Fig. 4.5. The

relevant videos can be found at [88].

Fig. 4.4.: Using internal data Fig. 4.5.: Using raw data

90

Autononmization for Software Self-Testing. To further demonstrate the capa-

bility of software autonomization and the flexibility of Autonomizer, we autonomize

the Mario game in a way that it performs the testing. All we need to do is to update

the reward so that it reflects the code coverage improvement, in addition to the origi-

nal reward which reflects the stage clearing. Line 38 in Fig. 4.2 show the added reward

for code coverage, where the code coverage is collected using gcov [90]. Intuitively,

any improvement of code coverage results in large reward. Note that we also need

the original reward to ensure Mario survives long enough to reach the complex game

logic. After training for 10 hours, Mario is able to make many unexpected moves

that lead to good code coverage quickly. In 30 seconds of game play, ∼65% code

coverage can be achieved. In contrast, the previous AI model (which is not designed

for testing) cannot reach a similar code coverage after 10 mins, not to mention the

random testing in which Mario easily dies within seconds.

Fig. 4.6 shows the screenshot of the testing. Observe that Mario has more in-

teresting behaviors, e.g., Mario jumps backward to eat the mushroom (1○-(3○)) and

then jumps into the ditch (4○). The AI even found two bugs during self-testing. The

videos of both bugs can be found at [88].

Fig. 4.7 shows one of the bugs. Before falling to the ground of the dungeon,

Mario moves in some unexpected ways such as jumping forward. As a result, Mario

reaches the ceiling of the dungeon. Then it tries to further jump forward and goes

out of the screen, which crashes the program. Code inspection discloses that the

developer missed a boundary check. This case study illustrates the capabilities of

Autonomizer in enabling future research along this line.

4.3 Execution Model: Semantics

Autonomizer features a novel set of primitives and a unique execution model

that are particularly designed for software autonomization. After compilation and

linking with Autonomizer runtime, an executable with two execution modes is

91

Fig. 4.6.: Coverage testing Fig. 4.7.: Bug

generated. One for training, and one for deployment (or production run). Training

is piggybacking on normal software execution to derive an AI model (or multiple

models). During production run, the model is used to replace human interaction-

s/decisions. Supervised and reinforcement learning are supported by default. Au-

tonomizer is also extensible through its interface with Tensorflow to support other

methods.

To support learning from software operation, Autonomizer needs to monitor

software execution, trace values of feature variables that would be used by the model

to make decision, record the desirable decisions made by human users to serve as the

objective of learning (i.e., desirable model output), and roll back software execution

state but not the model state (during reinforcement learning). In supervised learning,

model training is conducted offline after execution. In reinforcement learning, model

training is conducted online and the training execution interleaves with software ex-

ecution. Intuitively, Autonomizer collects model inputs/outputs for a window of

time (e.g., a few game loop iterations) and then invokes the training method to use

the collected data.

During production runs, Autonomizer intercepts values of feature variables and

passes them to the model to make prediction. The predicted results are then copied

to some program variables (such as the variable denoting the next move of Mario)

to drive execution. Note that all the aforementioned complexities are transparent to

92

the users. In the following, we discuss the semantics of individual primitives, which

is important to precisely understand how Autonomizer works.

Definitions: ProgStore σ ::= V ar → V alue DBStore π ::= String → Ṽ alue Model θ ::= String → P̃ arm

ModelType δ ::= DNN | CNN Algorithm α ::= Q | AdamOpt Mode ω ::= TR | TS

String t, mdName, extName, wbName ::= [a− zA− Z0− 9]+ Int i ::= [0− 9]+

Stmt s ::= ... | runModel(P̃ arm, ṽ) | gradient(P̃ arm, ṽ) | mkSnapshot(σ, π) | rtSnapshot() |

loadModel(mdName) | buildModel(mdName, δ, α, l, n1, ...) | concat(ṽ1, ṽ2)

Statement Rules: σ, π, θ, ω : s
s−→ σ′, π′, θ′, ω, s′

σ, π, θ, ω : x := v
s−→σ[x 7→ v], π, θ, ω, skip [ASSIGN]

σ, π, θ, TR : @au config(mdName, δ, α, l, n1, ...); s
s−→

σ, π, θ′, TR : s , in which if θ(mdName) ≡ ⊥ then θ′ = θ[mdName 7→ buildModel(mdName, δ, α, l, n1, ...)] else θ′ = θ [CONFIG− TRAIN]

σ, π, θ, TS : @au config(mdName, δ, α, l, n1, ...); s
s−→

σ, π, θ′, TS : s , in which if θ(mdName) ≡ ⊥ then θ′ = θ[mdName 7→ loadModel(mdName)] else θ′ = θ [CONFIG− TEST]

σ, π, θ, ω : @au extract(extName, size, x); s
s−→

σ, π′, θ, ω : s , in which π′ = π[extName 7→ concat(π(extName), x[0], ..., x[σ[size]− 1])] [EXTRACT]

σ, π, θ, ω : @au write back(wbName, size, x); s
s−→

∀i ∈ [0, σ(size)), σ[x[i] 7→ π(wbName)[i]], π, θ, ω : s [WRITE −BACK]

σ, π, θ, ω, TR : @au NN(mdName, extName,wbName); s
s−→

σ, π[wbName 7→ runModel(θ′(mdName), π(extName)), extName 7→ ⊥], θ′, TR : s , in which

θ′ = θ[mdName 7→ θ(mdName)− gradient(θ(mdName), π(wbName))] [TRAIN]

σ, π, θ, ω, TS : @au NN(mdName, extName,wbName); s
s−→

σ, π[wbName 7→ runModel(θ(mdName), π(extName)), extName 7→ ⊥], θ, TS : s [TEST]

σ, π, θ, ω : @au serialize(t1, t2); s
s−→σ, π[strcat(t1, t2) 7→ y], θ, ω : s , in which y = concat(π(t1), π(t2)) [SERIALIZE]

σ, π, θ, ω : @au checkpoint(); s
s−→σ, π, θ, ω : mkSnapshot(〈σ, π〉); s [CHECKPOINT]

σ, π, θ, ω : @au restore(); s
s−→σ′, π′, θ, ω : s , in which 〈σ′, π′〉 := rtSnapshot() [RESTORE]

Fig. 4.8.: Operational Semantics

4.3.1 Definitions

Definitions related to the operational semantics are presented at the top of Fig. 4.8.

Autonomizer has two stores, the Program Store σ for original program states, which

93

can be intuitively considered as a hash map that projects a variable to its current

value, and the Database Store π which stores the extracted feature variable values. It

is a mapping from a string to a list of values. The value of a program variable extracted

by the primitive @au extract() will be appended to a list in the database store indexed

by a string name. Furthermore, the outputs returned by the underlying model are also

put in the database store before they are written back to target program variables

with the primitive @au write back() (to affect the execution). The two stores are

isolated. Transferring data between the two should be explicitly requested by the

programmer through the primitives.

We abstract a neural network model θ as a mapping from a model name to a

list of parameter values. Intuitively, one can think of them as the weight values of

matrices in individual model layers. By default, Autonomizer supports two model

types: fully connected neural network (DNN) as well as CNN and two popular algo-

rithms: Q [91] for RL as well as AdamOpt [92] for SL. Execution mode ω denotes

the two modes supported: TR for training and TS for production runs (or testing).

Autonomizer runtime provides a list of API functions denoted as statement exten-

sions (e.g., buildModel() for initializing a model inside Tensorflow). The semantics

of many primitives are resolved to these API functions.

4.3.2 Rules

The semantics rules are in the lower part of Fig. 4.8. As indicated by the config-

uration (in the box), each rule is a transition of statement s to s′ while updating the

two stores and the model. We organize the rules to two groups: (i) model construc-

tion/training/testing and (ii) checkpointing/restore.

Model Construction/Training/Testing

Model Construction. In Rule [CONFIG−TRAIN], Autonomizer in the train-

ing mode creates a new model if model exists in memory by executing the statement

94

buildModel, where the model name modelName, the model type δ, the training

algorithm α, the number of layers l and the number of neurons n1 are specified by

the programmer. In Rule [CONFIG− TEST], Autonomizer in the testing mode

simply loads an existing trained model with the specified model name modelName

by executing the statement loadModel.

Model Training and Testing. In Rule [EXTRACT], Autonomizer appends

the variable value(s) to a list in the database store indexed by a unique name

extName. Note that if the primitive au extract() is inside a program loop that iter-

ates multiple times before invoking the au NN() primitive, the list contains multiple

values. In Rule [TRAIN], Autonomizer trains the model by gradient descent [93],

i.e., updating model parameters P̃ arm along the largest gradient. Then, the model

output generated by executing the statement runModel on the model input retrieved

by π(extName) is put in the database store with index wbName. Afterwards, the

model input is reset to an empty list (by mapping extName to ⊥ in π). Rule [TEST]

is similar to rule [TRAIN] except that it does not update the model. It simply uses

the model.

In Rule [WRITE−BACK], Autonomizer writes the value with name wbName

from the database store back to the program variable x. Rule [SERIALIZE] con-

catenates multiple lists of values into a single list through primitive concat(). The

names of those lists are also concatenated through strcat(). This feature helps to

combine multiple extracted values into one list and feed it to the underlying model.

Note that neural network models only take vector inputs. For example, at line 41 of

Fig. 4.2, six lists of extracted values are combined into one list of values and fed to

the neural network as input. Note that Autonomizer supports serializing multiple

lists.

95

Checkpointing/Restore

In Rule [CHECKPOINT], Autonomizer checkpoints the states of current

program store and database store by making the snapshot through the statement

mkSnapshot(). Note that although model state in θ is part of the software process,

it is not checkpointed because we want the model to accumulatively learn. In Rule

[RESTORE], Autonomizer restores the states of program store and database store

with the previously made snapshot through rtSnapshot(). Note that the states be-

tween both stores need to be consistent, so their states have to be checkpointed and

restored together.

4.4 Feature Variables Extraction

In this section, we discuss how to extract program variables that correspond to

important features. The values of these variables will be extracted as model inputs.

The analyses are different for supervised learning and reinforcement learning. We

adopt dynamic dependency analysis instead of static analysis which incurs too many

false positives.

Supervised Learning. In our settings, the supervised learning (SL) is used to pre-

dict the ideal value of the parameters (i.e., the target variables) that affect the quality

of the result based on the relevant internal program states (i.e., the feature variables).

While the target variables are specified by the users, which is an easy task accord-

ing to our experiments, it is non-trivial (e.g., labor-intensive and error-prone) for the

users to specify the feature variables. To lift the burden, we automatically extract the

feature variables by combining heuristics and program analysis. We also conducted

extensive experiments to validate the effectiveness of the heuristics (Section 5.4).

First, we observed the ideal values of the target variables (or parameters) vary for

different program inputs, meaning that they are sensitive to the inputs. Therefore, we

identify the input variables and those that transitively depend on them as the candi-

date feature variables. Furthermore, we conduct correlation analysis to determine the

96

Algorithm 2 Automatic SL Feature Extraction
Require: In, Trg,GDep

Ensure: Feature

1: Candidate← In ∪ dep(In)

2: Feature←Map()

3: for each v ∈ Trg do

4: for each w ∈ Candidate do

5: if dep(w) ∩ dep(v) 6= ∅ then

6: Feature[v]← Feature[v] ∪ {w,∞}

7: for each w, dist ∈ Feature[v] do

8: dist← BFS(GDep, w, first(dep(w) ∩ dep(v)))

9: Feature[v]← {w, dist}

10: Sort(Feature[v])

11: return Feature

subset of candidate feature variables correlated with each target variable. Intuitively,

we say two variables are correlated if they are depended upon by the same variable.

Lastly, to refine the subset of feature variables, we rank the feature variables heuris-

tically according to their “distances” to the correlated target variable, and select the

top-ranked variables for prediction. According to the experiments (Table. 4.3), the

refinement leads to better prediction results.

In the following, we explain the automatic extraction and the involved terms in

details.

Algorithm 2 takes three inputs: In, Trg, and GDep. In is the set of input vari-

able set, Trg is the set of target variable, and GDep is the pre-computed dynamic

dependency graph. First, we construct the candidate set, which consists of the input

variables and their transitive dependents.

Feature is a map that maps a target variable to its feature variables, which

is returned eventually. For each target variable v in Trg, if a candidate feature

variable w shares some common dependent with v (line 5), then w is a feature variable

97

correlated with v. For prediction purpose, w is not considered as feature variable if

it depends on v.

To rank a candidate feature variable w, we use its dependency graph distance,

which is defined as the number of edges between w and the first common descendent

of w and v. In lines 7-9, the shortest distance from each w to the common descendent

is found by BFS on the dependency graph GDep. In line 10, the feature variables

are sorted according to dist, which allows us to further select the top-ranked feature

variables. Intuitively, the shorter the distance, the more abstract (and the more

important) the feature variable.

Fig. 4.9 demonstrates the example of extracting feature variables in Canny. Vari-

able lo is a target variable and the remaining are candidate feature variables. Variable

hist is ranked first to predict lo because it has distance 1 to first common descendent

result. Feature variable sImg has distance 2 so it is ranked lower than hist.

Reinforcement Learning. We propose a feature variable identification technique

for the reinforcement learning (RL) applications. Unlike SL programs, RL programs

are usually not for one-time data processing like Canny. Instead, they often have

some main loop that continuously updates program states, such as the game loop

in game applications and the control loop in autonomous vehicle control software.

Intuitively, variables that represent these continuously updated states are candidate

feature variables. Note that they may not be dependent on external inputs (e.g., user

key strokes).

For a target variable, other program variables that share common descendent with

it are considered correlated with it. Those program variables are candidate feature

variables. According to our observation, variables that correlate with target variable

contain program states that affect the prediction result of target variable in RL ap-

plications. Our experiment results in Section 5.4 also justify the observation. For

simplicity, Autonomizer only checks variables that are used in the same functions

as variables that depend on the target variable. After finding all candidates, Auton-

omizer prunes redundant or unchanging variables based on runtime values of each

98

variable’s trace according to two thresholds set by the user. The remaining variables

are combined and returned as features. Note that ranking is not as effective as in

SL because most feature variables would have loop-carry dependencies due to the

iterative updates.

Algorithm 3 Automatic RL Feature Extraction
Require: Trg, UseFunc, ProgV ar, ε1, ε2

Ensure: Feature

1: Feature←Map()

2: for each v ∈ Trg do

3: Candidate←Map()

4: for each w ∈ ProgV ar and w 6= v and

UseFunc[dep(v)] ∩ UseFunc[w] 6= ∅ and

dep(v) ∩ dep(w) 6= ∅ do

5: Candidate[w]← Scale0−1(Tracing(w))

6: for each w, Tracew ∈ Candidate do

7: for each x, Tracex ∈ Candidate and x 6= w do

8: if EucDist(Tracew, T racex) ≤ ε1 then

9: Delete(Candidate[x])

10: if V ariance(Tracew) ≤ ε2 then

11: continue

12: Feature[v]← Feature[v] ∪ w

13: return Feature

Algorithm 3 takes five inputs: Trg, ProgV ar, UseFunc, ε1 and ε2. Trg is the tar-

get variable set, and the ProgV ar set contains all program variables. Map UseFunc

maps a variable to its usage functions. Thresholds ε1 and ε2 are used to prune redun-

dant and unchanging variables respectively.

At line 4, if program variable w is used in the same function as target variable v’s

dependent variable, and both v and w have common descendents, then w is considered

correlated with v and is added to the map Candidate with its runtime trace Tracew

which contains w’s runtime values in a profiled time sequence. The sequence of trace

99

values are scaled [94] between 0 and 1 (line 5). In lines 8-9, the similarity between w

and x is computed according to the distance between Tracew and Tracex using the

euclidean distance formula.2 For example, assume Tracew contains [0.1, 0.3, 0.4] and

Tracex contains [0.1, 0.2], the similarity is
√

(0.1− 0.1)2 + (0.3− 0.2)2 + (0.4− 0)2 =
√

0.17. If the similarity is less than ε1, x is considered redundant and pruned. In lines

10-12, if the variance of w’s trace values is smaller than ε2, w is considered unchanging

and pruned. Intuitively, a rarely changing variable is not a good feature. Real pruning

examples are shown in the TORCS autonomization case study.

Fig.4.10 shows an example of extracting feature variables in Mario to predict the

target variable right, which makes Mario move right. Variable Player-¿X is a feature

variable because it depends on itself and shares the same descendent with speed

(and transitively with right). Another feature variable is Minion-¿X as it shares the

descendent collide with pX (and transitively with right). Variable mX is pruned by

ε1 because it is a duplicate of Minion-¿X.

Fig. 4.9.: Alg.1 on Canny Fig. 4.10.: Alg.2 on Mario

4.5 Implementation

We leverage Tensorflow [95] to support model training and execution. Tensor-

flow is an open source software library with strong support for machine learning

2If the sequences’ lengths are different, we append zeros to the shorter one.

100

applications. Autonomizer essentially stitches the execution of Tensorflow with

the execution of the original software. In other words, both executions occur in the

same process space. Since Tensorflow has a comprehensive Python interface, at com-

pile time, Autonomizer generates a Python template for each injected model. The

template essentially provides the API functions used in the semantics (e.g., run-

Model()). These functions further invoke Tensorflow functions to realize their func-

tionalities. Templates have to be generated based on primitive annotations because

different model structures, model input sizes, and learning algorithms (in au config()

and au NN()) lead to different templates. To make a source program interact with

its Python template, a communication channel (Fig. 5.4) is implemented with the

Python C/C++ extensions [96]. Details are elided.

Checkpointing and Restore. In our context, we need to checkpoint very complex

software states in addition to memory states (e.g., thread and socket), and memory

mapped I/O states. Simple software checkpointing by forking does not work. Even

existing process level virtualization techniques (e.g., criu [97] or docker [98]) do not

provide the guarantees of arbitrary-scale program states checkpointing/restore. We

hence leverage KVM [99] to create checkpoints.

As mentioned earlier, we only checkpoint software states and database states

but not model states. However, this is difficult to achieve as all these states are

in the process space and indistinguishable for KVM. As such, before restoring to

a checkpoint, Autonomizer saves the current model states to persistent storage.

After restoring, it overwrites the model states with those saved in storage.

4.6 Evaluation

In Autonomizer, the feature variable extraction component is implemented

using Valgrind-3.14.0 [100, 101]. The language and runtime are implemented in

C++/Python. It is publicly available at [88]. Experiments were run on a machine

with Intel i7-2640M 2.80GHz processor, 16GB RAM. We use a GPU of NVIDIA

101

Table 4.1.: Program analysis statistics

Program LOC
Added

LOC

Trg

Vars

Candidate

Vars

Feature

Vars

[SL] Canny 1.1K 8 3 26 1/23/23

[SL] Rothwell 1.3K 6 3 8 1/8/8

[SL] Phylip 12K 7 3 42 1/1/28

[SL] Sphinx 28K 37 2 107 13/14

[RL] Flappybird 0.8K 40 2 19 4

[RL] Mario 21K 73 5 345 25

[RL] Arkanoid 1K 39 - - -

[RL] TORCS 150K 89 2 370 20

[RL] Breakout 153K 65 - - -

Arkanoid and Breakout are emulator games so we annotate the emulator and use the exported game

information directly.

Table 4.2.: Model statistics

Program

Raw Med Min Raw/Min
Checkpoint

Time(s)

Restore

Time(s)
Trace

Size(MB)

Model

Size(MB)

Trace

Size

Model

Size

Trace

Size

Model

Size

Trace

Size

Model

Size

[SL] Canny 48 215 48 215 14 113 3.43 1.9 - -

[SL] Rothwell 49 215 143 215 143 215 0.34 1 - -

[SL] Phylip 4 21 1 1.8 1.2 1.9 3.33 14 - -

[SL] Sphinx 157 172 36 15 36 15 4.36 11.66 - -

Raw All Raw/All

[RL] Flappybird 781042 0.58 - - 13.93 0.25 56069.06 2.32 27.38 6.23

[RL] Mario 68359 0.58 - - 100.41 0.51 680.79 1.13 25.11 7.51

[RL] Arkanoid 351562 0.59 - - 57.13 0.23 6153.72 2.57 26.82 6.21

[RL] TORCS 25313 1.9 - - 714.8 0.47 35.41 4.04 25.33 6.91

[RL] Breakout 304018 0.62 - - 11.44 0.21 26575 2.95 26.12 6.71

102

GeForce 1060 with 6GB RAM for supervised learning tasks. We use a wide variety of

C/C++ benchmarks in our experiments. All programs have multiple datasets that

can be found online or come with the program. We only selected those that have the

ground truth (for SL).

In Section 4.6.1, we present the statistics that expose details about our approach.

In Section 4.6.2, we conduct a comparative study of the effectiveness of our approach.

In Section 3.5.2, we conduct in-depth case studies for more insights.

4.6.1 Statistics

The statistics of our approach are presented in Table 4.1.

Lines of Code Added. Column 2 shows the lines of code (LOC) of the programs

and Column 3 shows the lines of code added for autonomization. According to Column

3, only a few lines are required for autonomization. In other words, with the help of

our language support, the users introduce the advanced AI capability to the programs

with little effort.

Feature Variables. Column 4 shows the number of target variables, column 5

shows the number of candidate feature variables, and column 6 shows the feature

variables available for selection.

Supervised Learning. Any feature variables in column 6 are available for use. To

assist the selection, they are ranked as discussed in Section 4.4. For example, only

around 15 out of the 100+ candidates are available in the Sphinx application. The

results suggest that a lot of candidates are pruned.

Reinforcement Learning. For RL applications, we made similar observation that

a large number of candidates are pruned during the selection. By pruning the redun-

dant and unchanging candidate feature variables, our approach keeps the prediction

focused, thereby making it more effective (as confirmed in Section 4.6.2). All feature

variables are combined to predict multiple target variables due to the large overlap

of the feature variable sets.

103

Model Construction. Table 4.2 shows the statistics related to the model, including

(1) the size of the trace collected which consists of the input to the model, and (2)

the size of the trained Tensorflow model.

Supervised Learning. To study the effect of distance (Algorithm 2) upon the model

statistics, we compare three versions: Raw in Columns 2-3 which selects feature

variables with the maximum distance (i.e., input variables), Med in Columns 4-5

which selects the feature variables with the median distance, and Min in Columns

6-7 which selects the feature variables with the minimum distances. For fairness, all

versions use the same neural network architecture except for the input layer which

accounts for different input size.

In columns 8-9, we show the ratio of Raw and Min in terms of the trace size and

the model size, respectively. Both the trace size and the model size of Raw is much

larger than Min. The reason is that the model of Raw usually has a larger number

of input neurons than Min because the model inputs of Raw are typically raw data

which are usually larger. Specially, for Rothwell, Min has larger trace size. This is

because Raw and Min have a similar number of inputs but Raw represents them with

the char type while Min represents them with the float type.

Reinforcement Learning. Results are compared between two settings: Raw and

All. Raw uses the DeepMind model [76], which takes the scaled images as the inputs.

All uses a four-layer fully connected neural networks. It combines and uses all feature

variables identified by Algorithm 3 as inputs. For the RL programs, since game

executions do not terminate as SL programs, we collected the statistics for a time

window of a fixed length. In columns 8-9, we show the ratio (Raw/All) in terms of

the trace size and the model size, respectively. According to column 8, the size of

the trace collected by Raw is 35-56069 times the size of All. This is because Raw

collects raw images which are typically much larger than the (extracted) internal

states collected by All. For instance, in Flappybird, a raw images collected by Raw

is 700x800x4 bytes while a vector of internal data collected by All is only 32 bytes.

The fact that RL usually requires many iterations further amplifies the difference.

104

Table 4.3.: Benchmark experimental results.

Program
Baseline Raw Med Min Train Time

Raw/MinExec.
Time Score

Train
Time Score

Train
Time

Exec.
Time Score

Train
Time

Exec.
Time Score

[SL] ↑1 Canny 1.32 0.45 1791.52 1.58 0.543 1719.34 1.39 0.69 817.62 1.47 0.763 2.4
[SL] ↑ Rothwell 1.14 0.49 1978.1 1.63 0.64 1540.68 1.62 0.68 1616.37 1.53 0.705 1.22
[SL] ↓ Phylip 1.49 1.013 46.91 2.23 0.96 6.079 2.01 0.63 5.56 2.15 0.54 8.44
[SL] ↑ Sphinx 0.86 0.108 4001.52 1.52 0.57 3898.22 1.61 0.581 141.73 1.41 0.6323 28.23

Players Raw All Raw/All
[RL] ↑ Flappybird 0.0101 91.4% t/o2 0.071 1.3% - - - 12781.32 0.028 95.7% -
[RL] ↑ Mario 0.0243 92%/90% t/o 0.101 63%/40% - - - 18465.42 0.046 84%/80% -
[RL] ↑ Arkanoid 0.0041 77.2%/60% t/o 0.049 1.5%/0% - - - 41328.13 0.015 88%/60% -
[RL] ↑ TORCS 0.003 100% t/o 0.072 7.8% - - - 73323.59 0.018 100% -
[RL] ↑ Breakout 0.0071 29.8 68902.14 0.058 25.3 - - - 34452.74 0.012 28.5 1.99
1. ↑: Higher scores are better; ↓: lower scores are better.
2. ”t/o” means using raw data cannot achieve the similar score (i.e., difference < 20%) of 10 human players.

Besides, according to column 9, the model size of Raw is larger than All. The reason

is that the model of Raw has more layers where the first few layers extract the visual

features from the raw images. Comparatively, All does not need such layers because

it takes the program states of the feature variables as the input, which already hold

the important feature information.

Checkpointing/Restore. Column 10 and 11 represent the time for creating and

restoring a checkpoint. Only RL programs need checkpointing/restore. Creating

a checkpoint takes around 26 seconds. Although it takes non-trivial time, it only

needs to be done once at the beginning. After that, Autonomizer can restore

the checkpointed state when ending states (e.g., Mario dies) are encountered during

training. Restoring takes around 7 seconds.

4.6.2 Effectiveness

In this section, we present the study of the effectiveness of our approach. In

particular, we are interested in how our autonomization affects the quality of the

results. The results are shown in Table 4.3.

Experiment Settings

We first discuss the settings for gathering the results.

105

Comparisons. For the SL applications, we compare four versions: the baseline,

Raw, Med, and Min, where the baseline refers to the execution with the default

parameter configurations and the others three versions are explained in Section 4.6.1.

For the RL applications, we compare three versions: the players version, Raw, and

All, where the players version accounts for the average of 10 human players and the

remaining two versions are explained in Section 4.6.1. Each experiment is repeated

10 times to compute the average.

Scoring. The quality of the results is measured with the score assigned to the results.

We will explain how the score is assigned soon. Note that higher quality does not

necessarily correspond to higher score. We put a mark in Column 1 to specify whether

higher quality corresponds to a higher score or a lower score. For the SL programs,

we use the built-in score functions shipped with the programs. For the RL programs,

the score functions are not available. Instead, we define the score for each program

that accounts for the progress or the success rate. For Flappybird, the score stands

for the progress (i.e., how far the bird flies in terms of the percentage of the whole

distance). For Mario, the score is a pair in the X/Y form, where X stands for the

progress (i.e., how far Mario goes) and Y is the success rate (i.e., the rate of taking

down the flag). For Arkanoid, the score is also a pair X/Y , which respectively stands

for the progress (i.e., the percentage of cleared bricks) and the success rate (i.e., the

rate of clearing all bricks). For Torcs, the score represents the driving progress (i.e.,

how far the car drives) without bumping the wall before finishing. For Breakout, the

score represents the number of hit bricks before missing the ball. Note all scores are

averaged over 10 runs.

Training. For SL programs, we train each version (except the baseline version

which does not need training) until convergence (i.e., the score stops changing). For

RL applications, training RL applications is normally considered non-stationary and

hard to converge. Thus, we force the training to time out after 24 hours.

For each setting, we show the training time and the execution time, which cor-

respond to the time taken by the training run and the testing run, respectively.

106

Specifically, for the RL applications, the execution time stands for the time taken by

each iteration of the game loop.

Experiment Results

Here we discuss the efficiency and effectiveness of using program internal features

extracted by Autonomizer through execution time, training time, and evaluation

score.

Comparing to Baseline and Human Players. We compare a baseline with the

corresponding best setting. (Min for SL programs and ALL for RL programs).

Supervised Learning. The Min version (Columns 11-12) improves the baseline

results by 161% on average. Besides, the overhead is less than 0.64X. It shows that

autonomization improves the data processing results with small overhead.

Reinforcement Learning. The extracted feature variables help the All version

(Columns 11-12) to achieve scores close-to/better-than the results of human players.

The execution overhead ranges from 0.89X to 6.14X. Although 6.14X looks substan-

tial, the incurred overhead does not cause any noticeable delay3 because the execution

time is computed for each time frame and the overhead is not human perceptible if

the number of frames that the program can handle in a time unit exceeds a certain

threshold.

Comparison among Different Settings. We compare the results between dif-

ferent autonomization settings for SL and RL programs.

Supervised Learning. Although all settings (Columns 5-6, 8-9, and 11-12) outper-

form the baseline, the quality of improvements are different. Specifically, Min, Med,

and Raw versions improve the baseline results by 161%, 141%, and 120% on average

respectively. It shows that feature variables that close to the target variable are more

important.

3The execution videos can be found at [88]

107

Reinforcement Learning. The All version (Columns 11-12) achieves good perfor-

mance. On the other hand. the Raw (Columns 5-6) version cannot achieve similar

score (difference < 20%) of human players and times out after 24 hours of training for

most benchmarks. Furthermore, the execution overhead of Raw is higher (3.16X-23X)

than All because Algorithm 3 helps All to prune many redundant feature variables

and only retain the most representative ones. We further compare the All version

with the Raw version using the most representative Breakout benchmark from Deep-

Mind [76]. The Raw version uses the model in DeepMind. Observe that both the

Raw and the All versions can compete with the human players and the All version

has higher score. Note that DeepMind aims to demonstrate feasibility of human-like

learning (from raw images). It does not focus on efficient training or automating the

procedure.

Training Time. For SL programs, training Min only take 1
28
∼ 1

1.22
of the time

taken by Raw. For RL programs, the training time for All version ranges from 3.5 to

20.36 hours while Raw times out for most RL benchmarks except the Breakout bench-

mark. The reason that the Raw version can be trained within the time limit for this

benchmark is that the playing field for this game is not as complex as other bench-

marks (e.g., Mario). Besides, after following the preprocessing steps (e.g., greyscale

conversion and image cropping) in DeepMind [76], the input images become much less

noisy. These factors make the Raw version model training easier compared to other

RL benchmarks. For the All version, its training overhead is 1.99X less than the Raw

version, which demonstrates the advantage of using internal program states.

4.6.3 Case Studies

In this section, we study the details of autonomizing two representative programs

with SL and RL.

Canny. Canny [29], a popular edge detection tool, carries the parameters that affect

the quality of the edge detection. To achieve the ideal result, each input image requires

108

a specific parameter configuration, i.e., no universal optimal parameter configuration

generally applies. Thus, users either have to manually tune [102] or auto-tune [12] the

configuration for each image, which prohibits the application from handling a large

volume of images with satisfactory results. Comparatively, Autonomizer automat-

ically predicts the proper parameter values on the fly without human intervention.

With the support of Autonomizer, Canny can process a large volume of diverse

images and provide satisfactory results.

Ease of Use. Fig. 4.11 shows the user specification for autonomization, specifically

for the Min version. Initially, the user only needs to annotate the three important

parameters of Canny (i.e., the target variables): low, high and sigma, where the

former two are for edge traversal (lines 6-7) and the last one is for Gaussian smoothing

(line 18). Then our extraction algorithm automatically recommends image (line 19)

as the feature variable for predicting sigma and hist (line 9) as the variables for

predicting low and high, which are annotated at lines 16 and line 4, respectively.

In total, we need only 9 lines of extra code (i.e., the highlighted ones) as shown in

Fig. 4.11.

Running Example of Algorithm 2. We also created the Raw, Med, and Min ver-

sions, which use different feature variables to predict the target variable. Consider

Fig. 4.9, given the target variables low and high, Algorithm 2 determines hist, mag,

sImg, and image as the candidate feature variables because they share the common

dependent result with the target variables. Algorithm 2 further sorts them based

on their distance (i.e., 1, 2, 3, 4 respectively) to the dependent. Accordingly, Min

uses the variable hist with the minimum distance as the feature variable, Med uses

the variable sImg with the medium distance and Raw uses image with the maximum

distance.

Usefulness. To demonstrate how autonomization helps improve data processing

results, we show the results of baseline, Raw, Med, and Min. For fair comparison, all

versions use the same neural network structure, i.e., a six-layer fully connected neural

network inspired by [103], except for the input layer. In particular, for input layer,

109

1 char *hysteresis(mag, lo, hi)

2 {
3 hist = computeHist(mag);

4 au_extract("HIST", 32767, hist);

5 au_NN("MinNN", "HIST", "LO", "HI");

6 au_write_back("LO", 1, &lo);

7 au_write_back("HI", 1, &hi);

8
9 return do_hysteresis(hist, lo, hi);

10 }
11
12 void canny(image, sigma, lo, hi) {

13 // 1. Gaussian smooth

14 au_config("SigmaNN", DNN, AdamOpt, 6, ...);

15 au_config("MinNN", DNN, AdamOpt, 6, ...);

16 au_extract("IMG", 62500, image);

17 au_NN("SigmaNN", "IMG", "SIGMA");

18 au_write_back("SIGMA", 1, &sigma);

19 sImg = smooth(image, sigma);

20
21 // 2. Magnitude computation

22 mag = magnitude(sImg);

23
24 result = hysteresis(mag);

25 }

Fig. 4.11.: Canny. Autonomizing with the Min version. The highlighted statements

are added.

both Raw and Med have 62500 neurons whereas Min has 32768 neurons. They differ

because Min uses hist for prediction, which is of a smaller size than image and sImg

used by Raw and Med.

We use the images from [104] to train the neural networks with SL. We use 10

images from [102] for testing which are associated with the ground truth specified by

experts. Better result has a higher score (the SSIM score [33]).

Fig. 4.12 shows the test scores of baseline, Raw, Med, and Min. Each model

is trained around 30 epochs. On average, the improvement of Min over baseline is

70%, which clearly shows that Autonomizer significantly improves the quality of

the result. Meanwhile, the improvement of Raw and Med over the baseline is around

110

20% and 53%. It shows that Algorithm 2 (in particular, the ranking) is useful for

extracting the most relevant feature variables.

Fig. 4.13 shows the change of the score along with the increase of the number of

the training epochs. Min consistently has higher scores than all the rest versions.

Furthermore, as shown in Table 4.3, the training time of Min is about half of Raw

and Med, which is because the feature variables it adopts have a smaller size.

Fig. 4.14 shows a list of sample images denoting the edge detection results. Clearly,

Min provides the outcome most similar to the ground truth.

Fig. 4.12.: Canny predictions of 10

datasets

Fig. 4.13.: Canny prediction score varia-

tion

Origin Ground Truth Min Med Raw Baseline

Fig. 4.14.: Canny results

TORCS. TORCS [105] is an open source C++ 3D car racing simulator. Many

works [106–108] use it to study the application of reinforcement learning to self-

driving cars. In this study, we autonomize TORCS by using the program internal

111

states Autonomizer automatically extracts as the feature variables. Comparatively,

existing works either use the manually extracted features [80], or the raw image

features [79].

Ease of Use. To autonomize Torcs for the All version, we annotate the variable

steer for steering control as the target variable, which determines the turning of

wheel. We run Algorithm 3 by setting ε1 to zero and ε2 to 0.01. If the traced values

of two variables are similar (i.e., the euclidean distance ≤ ε1), we can prune one of

them. As shown in Fig. 4.15, the traced values of the candidate feature variables

posX and roll are almost the same (EucDict(posX, roll) ≈ 0), so roll is pruned.

Besides, we prune the candidate feature variables whose values rarely change. For

example, as shown in Fig. 4.16, the variable accX is pruned because the variance of

its values is ∼0.007, which is less than ε2 (0.01). In total, twenty feature variables are

automatically extracted. The annotation is similar to Mario (Section 5.2) and hence

elided.

Fig. 4.15.: EucDict ≈ 0

Usefulness. To demonstrate how autonomization helps self-driving without hu-

man intervention, we compare four settings: Players, which represents the average

score from 10 human players, Raw, which uses an existing model [79] that takes

screenshots as the input data, All, which is our version, and Manual, which uses an

expert model [80] with manually extracted/preprocessed program variables as the

input data. All models have the same output consisting of three actions: left turn,

112

Fig. 4.16.: Variance ≈ 0.007

right turn, and no turn. We compare the results using the following criterion: how

far the car drives without bumping to the wall before finishing.

Fig. 4.17.: Driving score

Fig. 4.17 presents the scores of all settings after training for the same number of

epochs. It also includes the average of 10 human players as a reference. Observe that

All consumes around 8000 epochs (20.3 hours) and Manual consumes 5000 epochs

(14.5 hours) to have close-to human performance. Although Manual learns quicker

than All, it requires non-trivial human effort (∼2000 lines of code) to extract and

preprocess input data. On the other hand, Autonomizer only uses 89 lines of code

as shown in Table 4.1.

For Raw, after training for 10000 epochs (∼40 hours), it still performs bad. Fur-

thermore, the improvement is really slow. According to the author [79], it takes

113

around 200000 epochs for Raw to learn reasonable behavior. Each epoch consists of

100 neural network updates.

4.7 Summary

In this chapter, we propose Autonomizer, a novel framework for much more

efficient parameter selection. Autonomizer leverages artificial intelligence (AI) to

autonomize existing software systems that require human interactions/interventions.

It features a novel execution model facilitated by several programming primitives. The

developer can instruct an AI model to learn from the normal operations of the software

by adding few invocations to these primitives in the source code. Autonomizer then

transparently weaves the model training and deployment into program execution,

hiding all the complexities such as collecting data, extracting features, and replacing

user interactions/interventions with the AI model. Our experiments on nine real world

programs show that very little human effort is required to autonomize these programs

with Autonomizer. The autonomized versions produce results with higher quality.

Autonomized games can play by themselves and have performance competitive with

human players with less training time. In the next chapter, we will discuss how

we further improve the software autonomization result by leveraging both program

analysis and statistical analysis.

114

5. SPSA: STATISTICAL AND PROGRAM ANALYSIS

AIDED SOFTWARE AUTONOMIZATION

In the previous chapter, we have discussed our software autonomization framework

Autonomizer that improves the efficiency of data processing programs parame-

ter selection. However, Autonomizer only leverages program analysis and simple

heuristic for feature variables selection, leading to sub-optimal output quality and long

model training time. In this chapter, we propose a novel approach SPSA, that is

implemented as an extension to the library of Autonomizer. It combines both pro-

gram analysis and statistical analysis for much better feature variables identification.

Our experiments show that we are able to improve ten real world data processing

applications including edge detection and speech recognition. On average, SPSA

improves the output quality by 99.04% over the baseline while the improvement of

Autonomizer is only 80.24%. Furthermore, the training time of SPSA is 27.44X

lower than Autonomizer on average.

5.1 Introduction

Many traditional software systems require human interventions. For example,

scientific data processing programs are often parameterized. Human experts have to

configure a set of parameters for given inputs [109] because different inputs require dif-

ferent configurations to achieve the optimal results. Complex systems such as compil-

ers, symbolic execution engines, browsers, streaming servers [110], unmaned vehicles

(UxV) often require substantial human efforts to identify the configuration to deliver

the optimal performance or to properly address cross-cutting concerns such as secu-

rity [111] and usability. For example, a symbolic execution infrastructure KLEE [112]

has different path exploration strategies suitable for different kinds of applications;

115

a commercial-off-the-shelf (COTS) UxV control software system Ardupilot [48] has

more than 600 configurable parameters. Different parameter settings are desired for

various environmental conditions (e.g., high altitude and wind gusts) and mission

objectives (e.g., optimizing energy consumption or mission completion time). Many

end-user applications (e.g., third party mobile apps and computer games) are UI

driven. User interactions are needed to perform normal functionalities.

In many cases, it is particularly desirable to autonomize these software systems.

First, it enables full automation. Human efforts (to interact with these software) are

no longer needed or substantially reduced such that optimal performance can become

easily achievable and human mistakes are largely avoided. Note that compared to

human decisions, machine decisions can be much faster, more accurate, and more

rigorous as they can be inferred from much more comprehensive information that is

often beyond human capabilities to collect and analyze. For example, it would be

highly desirable for scientists to have a bio-data processing program that can auto-

matically select the optimal parameters for processing a given input. But such setting

is often dependent on features of the input data that are difficult for humans to ap-

prehend. Second, the operation of an interactive program is driven by human and

hence limited by human capacities. For example, testing a UI software often requires

human testers to interact with the software in a way that follows the work flow. The

pace of testing is hence limited by human speed. Autonomizing a system to allow

it to self-test could substantially accelerate the development cycle. The example of

AlphaGo [113] illustrates that without human intervention, autonomous computation

systems can train themselves in a much faster pace and eventually supersede humans.

Third, autonomized software can still interact with human users by providing assis-

tance/instructions to users on how to properly and most efficiently use the software

under various conditions.

In most existing autonomous systems [66, 82, 83], autonomization is achieved by

design. The AI/ML component is a key component to begin with. In such a develop-

ment procedure, training the AI/ML component is a stand-alone step that requires

116

a lot of (human) efforts. For example, in order to construct a model by supervised

learning, inputs need to be collected and the corresponding expected outputs need to

be crafted. Model structure (e.g., number of layers and number of neurons for each

layer for a neural network model) needs to be carefully chosen to extract important

features from raw inputs (e.g., images and videos).

Such a heavy-weight procedure is difficult for autonomizing existing software that

does not have autonomization in consideration during design. For example, in order

to autonomize the Mario game, a traditional method would require taking screenshots

of the game, using neural networks to extract critical features such as the position-

s/speeds of Mario, and Goombas, and the height of brick walls. This task itself is

highly challenging. Even if the model could be successfully trained, injecting the

model into the software requires substantial additional efforts.

5.1.1 Existing Software Autonomization

Autonomizer [88] is the first framework proposed to achieve software autono-

mization. It is mainly achieved by adding instrumentations to the original software.

Autonomizer provides a number of primitives that make a lot of entailed tasks such

as feature variable extraction, input data collection, model training, and model inte-

gration transparent and substantially simplified. After autonomization, the software

can automatically operate without human inputs.

It is a general framework for autonomizing existing software systems including a

widely used edge detection program Canny [29] and a speech recognition program

Sphinx [41]. It only requires adding a few lines in the original source code. The in-

strumented program automatically extracts a number of program variables as model

input feature variables, which is used to train the model for target variable (param-

eter) prediction. The key observation is that the regular operation/execution of the

original software provides very rich information in the program variables from which

AI/ML models can learn. For example, to autonomize the speech recognition pro-

117

gram Sphinx (Section 5.4.3), instead of selecting the raw speech as a feature variable,

the user may select the program variable that stores the data produced by Fourier

transform as the feature variable. Intuitively, the audio is being transferred into an

alternate representation by FFT, i.e., from time domain to frequency domain. Dif-

ferent audios have different frequency information and hence these program variables

serve as important features.

While Autonomizer have achieved a certain level of success, it suffers greatly

from several problems:

• Only program analysis and simple heuristics are leveraged to identify program

feature variables, leading to sub-optimal feature variables selection and output

quality.

• The identified program feature variables are usually huge and contain redun-

dant values. Both factors make neural network unreasonably large and increase

the training time because the neural network requires a large number of input

neurons as shown in Fig. 5.1.

Input Size

Tr
ai

ni
ng

 T
im

e(
s)

0

250

500

750

1000

1250

0 20000 40000 60000

Fig. 5.1.: Time cost – Input Size

5.1.2 Our Work

In this paper, we propose a novel feature variable selection approach called SPSA.

It not only leverages program analysis but also statistical analysis to find important

118

program variables as feature variables to predict target variables (parameters). Specif-

ically, we first identify program variables as candidate feature variables with program

dependency analysis. We then apply data reduction to eliminate redundant values

from the candidate feature variables. Intuitively, many program variables are multi-

dimensional vectors so data reduction reduce the input vector by either selecting the

min/max value or taking the average or variance value along the specified dimension.

Furthermore, we leverage statistical correlation analysis to find statistical dependence

between each reduced feature variable and target variable (parameter). Afterwards, a

set of more relevant and important feature variables is selected through data mining

algorithm for each target variable.

Although Autonomizer supports programs using supervised learning and rein-

forcement learning, we are currently focusing on improving the results of data pro-

cessing programs suitable for supervised learning. The reason is that reinforcement

learning programs usually have no input data like data processing programs while

our approach requires the program analysis information from input data. Further-

more, the program internal feature variables used in supervised learning programs

are normally vectors which contain more noise or redundant values compared to re-

inforcement learning programs.

5.1.3 Contributions

The following shows the contributions we made:

• We propose a novel approach SPSA to identify important program variables

as neural network input feature variables. As discussed above, it leverages both

program analysis and statistical analysis.

• We develop SPSA by providing several primitives to extend currentAutonomizer

library. It allows the users to take advantage of both program and statistical

analysis by adding a few lines of code.

119

• We substantially improve data processing results by improving the feature vari-

ables selection on ten widely used parameterized programs. The output quality

is improved by 99.04% on average over the baseline with execution overhead

almost the same as Autonomizer. Comparatively, Autonomizer only im-

proved the output quality by 80.24% on average over the baseline.

• As shown in the experiments (Section 5.4), SPSA largely reduces the training

time and size of the neural network models compared to Autonomizer. For

SPSA, its model training overhead is 27.44X lower than Autonomizer and

its model size is 603.5X smaller than Autonomizer on average.

5.2 Motivation

In this section, we show how to further improve the autonomization result of

Canny [29], a popular edge detection algorithm. Canny carries the parameters that

affect the quality of the edge detection result. Each input image for Canny requires

a specific parameter configuration in order to achieve ideal edge detection result. It

is a representative of a large set of data-processing software applications that require

parameter configurations for different inputs. We will explain how to improve the

autonomization result by improving the parameters prediction result with supervised

learning using our newly proposed primitives.

Extension Primitives. The primitives are listed in Fig. 5.2. They are essentially

extensions of the Autonomizer original library. We will explain those primitives

when they are used in the motivating example. More details of our design will be

discussed in Section 5.3.

Running Example. In this section, we show how to improve the autonomization

result of the Canny edge detection algorithm, such that it is able to achieve ideal

parameter configurations automatically on the fly. In Fig. 5.3, we first demonstrate

how to autonomize Canny with original primitives, then we show how to improve the

120

Library Calls :

@au reduce(reductionName, extName) |

@au stats(wbName1, wbName2, ...) |

@au opt(optName,wbName)

Fig. 5.2.: Primitives

autonomization result using our proposed primitives. All primitives start with au .

The new primitives proposed by SPSA are highlighted.

Canny has four main computation stages. The first is Gaussian smoothing stage

(line 32 in Fig. 5.3). This stage removes noise from the input image. The second is

image transformation stage (line 39). It is responsible for image gradient computation

and performing non-maximal suppression. Moreover, the edge traversal stage (line

46) leverages the hysteresis analysis to track all potential edges in the image. Finally,

the visualization stage writes final edge detection result to a file.

As a typical data processing program, Canny takes three input parameters: sigma,

low, and high. Specifically, the parameter sigma is used during the Gaussian smooth-

ing stage. The higher the value is, the more the noise will be filtered. The low and

high parameters are two important thresholds used during the edge traversal stage.

To autonomize Canny, Autonomizer can help to predict the these input parame-

ters. For example, to predict the target variable (i.e., the output of the neural network

model) sigma, the user first specifies it with the primitive au write back() at line 29.

Then some program variables are extracted automatically by Autonomizer as the

feature variables (i.e., the inputs of the model), which are also annotated with the

primitive au extract() (e.g., image at line 23). The feature variable, i.e., the original

image contains the relevant information for predicting the target variable sigma.

To use SPSA for further improving the prediction result (e.g., for better edge

detection result) of sigma, the user specifies to reduce the feature variable along the

121

1 char* hysteresis(gradient, low, high){

2 /* Compute histogram */

3 hist = computeHist(gradient);

4
5 au_extract("HIST", hist.row * hist.col, hist);

6 au_reduce("VEC_HIST","HIST");

7
8 au_stats("LO", "HI");

9 au_opt("OPT_LO","LO");

10 au_opt("OPT_HI","HI");

11 au_NN("LOW_HIGH","OPT_LO","OPT_HI",

12 "LO", "HI");

13 au_writeback("LO", &low);

14 au_writeback("HI", &high);

15
16 return do_hysteresis(hist, low, high);

17 }
18
19 void canny() {

20 /* Initialization */

21 image = readInput(imageName);

22
23 au_extract("IMAGE", image.row * image.col, image);

24 au_reduce("VEC_IMAGE","IMAGE");

25
26 au_stats("SIGMA");

27 au_opt("OPT_SIGMA","SIGMA");

28 au_NN("NN_SIGMA","OPT_SIGMA","SIGMA");

29 au_writeback("SIGMA",&sigma);

30
31 /* Smoothing the image */

32 smoothImg = gaussianSmooth(rawImg, sigma);

33
34 au_extract("SIMG", smoothImg.row * smoothImg.col,

35 smoothImg);

36 au_reduce("VEC_SIMG","SIMG");

37
38 /* Compute the magnitude of gradient */

39 gradient = magnitude(smoothImg);

40
41 au_extract("GD", gradient.row * gradient.col,

42 gradient);

43 au_reduce("VEC_GD","GD");

44
45 /* Track edge by hysteresis */

46 finalImg = hysteresis(gradient, low, high);

47 writeOutput(finalImg);

48 }

Fig. 5.3.: Autonomizing Canny. The highlighted statements are provided by SPSA.

The primitives start with au.

122

dimensions given in axis with the primitive au reduce() at line 24. We provide sev-

eral reduce functions such as avg and sum. After reduction, the reduced feature

variable (i.e., VEC IMAGE) is stored in the database. The user then specifies to com-

pute the statistical score between sigma and currently stored feature variables (e.g.,

VEC IMAGE) with the primitive au stats() at line 26 using the training samples. At

line 27, the primitive au opt() selects and combines a set of the most important and

relevant variables as the final feature variable named OPT SIGMA to predict sigma.

Note that OPT SIGMA is a name used to index the final feature variable img min. We

refer the readers to Section 5.3 for the feature variables selection approach.

When the program reaches the primitive au extract(), e.g., at line 23, the values

of the feature variables will be extracted and stored into a database maintained by the

Autonomizer runtime. Different names are assigned to different feature variables

for future reference.

When reaching the primitive au NN() at line 28, the program interacts with the

neural network. The primitive has two modes: the training mode and the testing

mode. In the training mode, the extracted values of the feature variables are used to

train the model. In the testing mode, the extracted values are used to generate the

predicted value. Note that the neural network uses the feature variable OPT SIGMA

generated through lines 24-26 to predict sigma. The predicted value is stored in

Autonomizer’s database and can be retrieved with the name SIGMA.

When the program reaches the primitive au write back(), e.g., at line 29, the

Autonomizer runtime updates the target variable sigma with the predicted value

of the target variable. The predicted sigma is used during Gaussian smoothing stage

at line 32.

To predicts lo and hi, the user then specify them with the primitive au write back()

at lines 14-15. Similarly, Autonomizer will automatically extract feature variables

like smoothImg and gradient annotated at lines 34 and 41. The remaining is similar

to predicting sigma, so details are elided. Note smoothImg and gradient can only

123

Tensorflow

Models

Statistical Analysis

Reduction
Methods

Correlation & Score
Computation

Optimal
Selection

Execution Path
Dataflow Path

Reduction Path

Execution Model

X

OptY

Y

2

1

4

3

5

56

7

Database

4

 !"%,I#+!-#()*

!"%+,'"-,(;,-)1)*

 !"%.#!#.(2*

 !"%$>#(=>#21 2*

 !"%00(=>#21 2*

 !"%3+4#,:!-?(2*

Fig. 5.4.: Execution Model

be used to predict target variables lo and hi instead of sigma. The reason is that

they transitively depend on sigma.

Execution Model. Fig. 5.4 shows the simplified execution model. First, the user

specifies to predict target variable Y with an annotation, and SPSA selects the

program variable X as the neural network input feature variable. The user then

annotates X in the program. In addition, three more annotations (i.e., au reduce(),

au stats(), and au opt()) are added to find the most relevant feature variables OptY

as neural network input for predicting Y .

The following shows the runtime execution. In the beginning, the main pro-

cess executes normally until reaching the au extract() primitive (1○). At this point,

the value of the feature variable X is stored in the database (2○) maintained by

SPSA. When the program reaches the au reduce() primitive, the feature variable X

is down-sampled with different types of reductions and the result V ecX is stored in

the database. When the program reaches the primitive au stats() (3○), the statistical

correlations w.r.t Y of different down-sampled feature variables indexed by V ecX are

then computed. The final feature variable indexed by OptY is then selected by the

124

optimal selection algorithm through the primitive au opt() (4○) and stored in the

database for later reference. When the main process reaches the primitive au NN(),

SPSA transfers the execution to the Tensorflow Python code (5○) to interacte with

the model. The feature variable OptY is fed to the model to predict and store the

value of target variable Y to the database. Finally, the execution transfers back to

the source program and the primitive au writeback loads the value from database

and updates the source program variable Y .

Result and Comparison. Fig. 5.5 shows the execution results of the running ex-

ample in Fig. 5.3. Furthermore, we compare our edge detection result with Auton-

omizer.

Initially, the original 2-dimensional image in Fig. 5.5.a is extracted as the feature

variable at line 23. At line 24, different 1-dimensional reduced variables are produced

by the reduce functions in Fig. 5.5.b. Afterwards, the statistical score of reduced

feature variables w.r.t. SIGMA are calculated and stored in a score table as shown

in Fig. 5.5.c. Note that the scores of all currently stored feature variables will be

computed. There are four groups (1○ - 4○) of reduced feature variables in Fig. 5.5.c.

Finally, in Fig. 5.5.d, a set of feature variables are selected and combined by our

variable selection algorithm to predict target variables. The higher the score, the

better the feature variables for target variable prediction. For example, variables

mag min, hist avg, and hist sum are selected to predict target variables high and

low in the model NN LOW HIGH. Observe that the three selected variables are in the

same tiger orange color as shown in Fig. 5.5.c.

To achieve fair comparison, we use the same neural network structure as Auton-

omizer except the input layer. In particular, we use a fully connected neural network

with 6 inner layers for each model. Furthermore, for input layer, we use 250 neurons

for model NN SIGMA and 2 neurons for model NN LO HIGH. We than compare our edge

detection results with results produced by the best model of Autonomizer.

125

Vars\Params
Sigma top1 thigh tlow top1

dCorr dist F(*) dCorr dist F(*) dCorr dist F(*)
V_rowavg 0.2563 1 0.0943 0.1534 4 0.0208 0.1937 4 0.02622
V_rowmax 0.2112 1 0.0777 0.1659 4 0.0224 0.2020 4 0.02734
V_rowmin 0.2999 1 0.1103 0.1885 4 0.0255 0.2045 4 0.02767
V_rowsum 0.2568 1 0.0945 0.1560 4 0.0211 0.1956 4 0.02647
V_rowvar 0.1493 1 0.0549 0.2442 4 0.0330 0.1782 4 0.02412
V_sr_avg 0.2447 0.1585 3 0.0280 0.1697 3 0.03002
V_sr_max 0.2472 0.1726 3 0.0305 0.1792 3 0.03171
V_sr_min 0.2358 0.1579 3 0.0279 0.1993 3 0.03526
V_sr_sum 0.2447 0.1585 3 0.0280 0.1697 3 0.03002
V_sr_var 0.1798 0.1611 3 0.0285 0.1914 3 0.03386
V_mr_avg 0.2249 0.1427 2 0.0347 0.1663 2 0.04043
V_mr_max 0.3057 0.1616 2 0.0393 0.1907 2 0.04636
V_mr_min 0.1734 0.1717 2 0.0417 0.2056 2 0.04998
V_mr_sum 0.2277 0.1444 2 0.0351 0.1647 2 0.04005
V_mr_var 0.2919 0.1513 2 0.0368 0.1703 2 0.04139
V_histavg 0.2133 0.1200 1 0.0441 0.1378 1 0.05071
V_histsum 0.2133 0.1200 1 0.0441 0.1378 1 0.05071

sigma high low
img_avg 0.8547 0.0000 0.0791
img_max 0.7043 0.0720 0.1213
img_min 1.0002 0.2032 0.1337
img_var 0.4981 0.5255 0.0000
simg_max 0.0000 0.4181 0.2857
simg_min 0.0000 0.3070 0.4191
simg_var 0.0000 0.3313 0.3663
mag_avg 0.0000 0.5956 0.6134
mag_max 0.0000 0.7924 0.8365
mag_min 0.0000 0.8974 0.9724
mag_var 0.0000 0.6858 0.6496
hist_avg 0.0000 1.0000 1.0000
hist_sum 0.0000 1.0000 1.0000

0.0942737 0.0207658 0.0262190 sigma high low
0.0776794 0.0224472 0.0273418 img_avg 0.8547023071 -0.000001383220620.07906057792
0.1103242 0.0255155 0.0276717 img_max 0.7042560749 0.07195118441 0.1212802389
0.0944743 0.0211094 0.0264680 img_min 1.00021946 0.2032460763 0.1336869933

Vars\Params
Sigma top1 thigh tlow top1

dCorr dist F(*) dCorr dist F(*) dCorr dist F(*)
V_rowavg 0.2563 1 0.0943 0.1534 4 0.0208 0.1937 4 0.02622
V_rowmax 0.2112 1 0.0777 0.1659 4 0.0224 0.2020 4 0.02734
V_rowmin 0.2999 1 0.1103 0.1885 4 0.0255 0.2045 4 0.02767
V_rowsum 0.2568 1 0.0945 0.1560 4 0.0211 0.1956 4 0.02647
V_rowvar 0.1493 1 0.0549 0.2442 4 0.0330 0.1782 4 0.02412
V_sr_avg 0.2447 0.1585 3 0.0280 0.1697 3 0.03002
V_sr_max 0.2472 0.1726 3 0.0305 0.1792 3 0.03171
V_sr_min 0.2358 0.1579 3 0.0279 0.1993 3 0.03526
V_sr_sum 0.2447 0.1585 3 0.0280 0.1697 3 0.03002
V_sr_var 0.1798 0.1611 3 0.0285 0.1914 3 0.03386
V_mr_avg 0.2249 0.1427 2 0.0347 0.1663 2 0.04043
V_mr_max 0.3057 0.1616 2 0.0393 0.1907 2 0.04636
V_mr_min 0.1734 0.1717 2 0.0417 0.2056 2 0.04998
V_mr_sum 0.2277 0.1444 2 0.0351 0.1647 2 0.04005
V_mr_var 0.2919 0.1513 2 0.0368 0.1703 2 0.04139
V_histavg 0.2133 0.1200 1 0.0441 0.1378 1 0.05071
V_histsum 0.2133 0.1200 1 0.0441 0.1378 1 0.05071

sigma high low
img_avg 0.8547 0.0000 0.0791
img_max 0.7043 0.0720 0.1213
img_min 1.0002 0.2032 0.1337
img_var 0.4981 0.5255 0.0000
simg_max 0.0000 0.4181 0.2857
simg_min 0.0000 0.3070 0.4191
simg_var 0.0000 0.3313 0.3663
mag_avg 0.0000 0.5956 0.6134
mag_max 0.0000 0.7924 0.8365
mag_min 0.0000 0.8974 0.9724
mag_var 0.0000 0.6858 0.6496
hist_avg 0.0000 1.0000 1.0000
hist_sum 0.0000 1.0000 1.0000

0.0942737 0.0207658 0.0262190 sigma high low
0.0776794 0.0224472 0.0273418 img_avg 0.8547023071 -0.000001383220620.07906057792
0.1103242 0.0255155 0.0276717 img_max 0.7042560749 0.07195118441 0.1212802389
0.0944743 0.0211094 0.0264680 img_min 1.00021946 0.2032460763 0.1336869933

img_avg

img_suma b
c d

NN_SIGMA

img_min
mag_min
hist_avg
hist_sum

sigma high

…….

Vars\Params
Sigma top1 thigh tlow top1

dCorr dist F(*) dCorr dist F(*) dCorr dist F(*)
V_rowavg 0.2563 1 0.0943 0.1534 4 0.0208 0.1937 4 0.02622
V_rowmax 0.2112 1 0.0777 0.1659 4 0.0224 0.2020 4 0.02734
V_rowmin 0.2999 1 0.1103 0.1885 4 0.0255 0.2045 4 0.02767
V_rowsum 0.2568 1 0.0945 0.1560 4 0.0211 0.1956 4 0.02647
V_rowvar 0.1493 1 0.0549 0.2442 4 0.0330 0.1782 4 0.02412
V_sr_avg 0.2447 0.1585 3 0.0280 0.1697 3 0.03002
V_sr_max 0.2472 0.1726 3 0.0305 0.1792 3 0.03171
V_sr_min 0.2358 0.1579 3 0.0279 0.1993 3 0.03526
V_sr_sum 0.2447 0.1585 3 0.0280 0.1697 3 0.03002
V_sr_var 0.1798 0.1611 3 0.0285 0.1914 3 0.03386
V_mr_avg 0.2249 0.1427 2 0.0347 0.1663 2 0.04043
V_mr_max 0.3057 0.1616 2 0.0393 0.1907 2 0.04636
V_mr_min 0.1734 0.1717 2 0.0417 0.2056 2 0.04998
V_mr_sum 0.2277 0.1444 2 0.0351 0.1647 2 0.04005
V_mr_var 0.2919 0.1513 2 0.0368 0.1703 2 0.04139
V_histavg 0.2133 0.1200 1 0.0441 0.1378 1 0.05071
V_histsum 0.2133 0.1200 1 0.0441 0.1378 1 0.05071

sigma high low

img_avg 0.855 0.000 0.079

img_max 0.704 0.072 0.121

img_min 1.000 0.203 0.134

img_var 0.498 0.526 0.000

simg_max 0.000 0.418 0.286

simg_min 0.000 0.307 0.419

simg_var 0.000 0.331 0.366

mag_avg 0.000 0.596 0.613

mag_max 0.000 0.792 0.837

mag_min 0.000 0.897 0.972

mag_var 0.000 0.686 0.650

hist_avg 0.000 1.000 1.000

hist_sum 0.000 1.000 1.000
0.0942737 0.0207658 0.0262190 sigma high low
0.0776794 0.0224472 0.0273418 img_avg 0.8547 0.0000 0.0791
0.1103242 0.0255155 0.0276717 img_max 0.7043 0.0720 0.1213
0.0944743 0.0211094 0.0264680 img_min 1.0002 0.2032 0.1337
0.0549371 0.0330466 0.0241165 img_sum 0.8565 0.0147 0.0884
0.0000000 0.0280337 0.0300155 img_var 0.4981 0.5255 0.0000
0.0000000 0.0305369 0.0317130 simg_avg 0.0000 0.3110 0.2218
0.0000000 0.0279402 0.0352631 simg_max 0.0000 0.4181 0.2857
0.0000000 0.0280337 0.0300155 simg_min 0.0000 0.3070 0.4191
0.0000000 0.0285089 0.0338583 simg_sum 0.0000 0.3110 0.2218
0.0000000 0.0346843 0.0404304 simg_var 0.0000 0.3313 0.3663

NN_LOW_HIGH

1
3
4
4

mag_min
hist_avg
hist_sum

low

Model3

3
4
4

1

2

3

4 low

Fig. 5.5.: Execution Result

The results are shown in Fig. 5.6. We show the visual results and the SSIM [33]

scores for comparison. Observe that both results demonstrate that SPSA substan-

tially improves the edge detection result of Autonomizer.

SSIM 1.00 79.58 65.37 25.17

SSIM 1.00 62.80 59.31 54.25
Original Ground Truth Autonomizer RawSPSA

Fig. 5.6.: Canny Results

126

5.3 Design

In this section, we propose an automatic way to find the most relevant feature

variables as the inputs of neural network models to predict target variables. Our

method combines program analysis as well as statistical analysis and takes advantage

of both worlds.

5.3.1 Overview

Generally speaking, our purpose is to substantially improve the prediction results

of the program parameters values (i.e. target variables) with better program internal

states (i.e. feature variables) than Autonomizer.

Our feature variables selection method consists of four phases:

• Candidate Variables Reduction: Apply data reduction on each candidate feature

variable in order to remove redundant values.

• Distance calculation: Calculate the distance between a candidate feature vari-

able and a target variable.

• Score Computation: Compute score of each reduced candidate feature variable

w.r.t target variables based on program dependency and statistical analysis.

• Final Feature Variables Selection: Select a set of most relevant feature variables

to predict each target variable using data mining algorithm.

In the next section, we will discuss each phase in details about identifying more

correlated feature variables for better prediction results.

5.3.2 Automatic Feature Variables Selection

In the following, we give the overall workflow of our feature variables selection

method. First, like Autonomizer, we identify the input variables and program

127

variables that transitively depend on them as the candidate feature variables. Then

for each candidate variable, we apply data reduction on it. Intuitively, data re-

duction helps to eliminate redundant values by down-sampling a multi-dimensional

vector. Then for each candidate feature variable, we calculate the distance between a

candidate feature variable and a target variable. The shorter the distance, the more

important the feature variable. Note that a reduced feature variable shares the same

distance with the original feature variable. Then for each reduced feature variable,

we compute a score w.r.t each target variable according to their statistical correla-

tion and distance. Finally, a set of feature variables with similar scores are clustered

in one group. SPSA then selects the set of feature variables with highest average

score as the ultimate set of feature variables to predict target variable. According to

our experiments in Section 5.4, the refinement substantially improves the prediction

results compared to Autonomizer.

Next, we explain the automatic feature variables selection and discuss each phase

of feature variables selection in details.

Algorithm 1 has three inputs: In, Trg, and G Dep. In is the set of input variables,

Trg is the set of target variables, and G Dep is the dynamic dependency graph

computed previously. First, we construct the initial program variables set, which

consists of the input variables and their transitive dependents. Then we construct

the Feature map that maps a target variable to its selected feature variables. The

Feature map is returned as the algorithm output. Candidate is a set of candidate

feature variables, which is initialized to empty. Matrix is a scoring table that stores

the computed score between each candidate feature variable and each target variable

as shown in Fig. 5.5.c.

Candidate Variables Reduction. For each multi-dimensional initial program

variable v, we first apply data reduction on it for redundant values elimination (line

6). The variable v is reduced by one dimension with five reduction methods including

min, max, sum, avg, and var. The reduced variables are stored in a set Reduced for

later reference.

128

Algorithm 4 Automatic Feature Variables Extraction

Require: In, Trg,GDep

Ensure: Feature

1: ProgV ars← In ∪ dep(In)

2: Feature←Map()

3: Candidate← ∅

4: Matrix← Zero

5: for each v ∈ ProgV ars do

6: Reduced← reduce(v)

7: for each p ∈ Trg do

8: if dep(p) ∩ dep(v) = ∅ or v ∈ dep(p) then

9: continue

10: dist← BFS(GDep, v, first(dep(p) ∩ dep(v)))

11: for each v′ ∈ Reduced do

12: Candidate← Candidate ∪ {v′}

13: dCorr ← DCorr(Traces(p), T races(v′))

14: Matrix(p, v′)← exp(−sqrt(dist))× dCorr

15: for each p ∈ Trg do

16: Feature[p]← Clustering(Matrix, p, Candidate)

17: return Feature

Distance Calculation. Next, we are going to calculate the shortest ”distance”

between the feature variable v and each target variable p by leveraging Autono-

mizer [88]. The distance is defined as the number of edges on data dependency

graph between two nodes that represent variables (e.g., program feature variable and

target variable). In line 10, the shortest distance dist from feature variable v to the

common descendent of v and p is found by BFS on the dependency graph G Dep.

However, for each candidate program variable v, if it does not share some common

129

dependent with a target variable p, then v and p are not considered correlated ac-

cording to Autonomizer. For such case, we just skip current target variable p and

check next one (lines 8-9). For prediction purpose, v is also not considered as feature

variable if it depends on p.

Score Computation. In this phase, a statistical score of each reduced feature

variable v′ and target variable p is calculated (lines 11-14). We first use distance

correlation [114] (dCorr for short) to measure the statistical dependence between the

target variable and the candidate feature variable. Instead of using Pearson correla-

tion [115], we use distance correlation because it can find the statistical dependence

between two vectors. For distance correlation, zero means no dependence. In line 13,

we first collect runtime traces Traces(v′) and Traces(p) of v′ and p respectively. We

collect the traces by running the program with different training samples to train the

neural network model such that we can get two vectors for p and v′ respectively for

each training sample. Then we calculate the distance correlation dCorr between the

two.

After calculating the distance correlation, we compute the score of reduced feature

variable v′ w.r.t target variable p and update the scoring table Matrix accordingly

(line 14). The score is computed with the previously calculated distance dist and

correlation dCorr information using the following formula where Γ(x) = e−
√
x.

Score(p, v′) = Γ
(
dist(p, v′)

)
× dCorr(p, v′) (5.1)

Intuitively, Γ(dist(p, v′)) is a decay factor that prefers feature variables v′ with

shorter distance to the target variable p. Thus, the score is produced by multiplying

the distance correlation of a feature variable v′ with the factor. For each target

variable p, it helps to identify those feature variables v′ with shorter distance and

higher statistical dependence.

Final Feature Variables Selection. After updating the scoring table Matrix,

we select a set of feature variables for each target variable. In lines 15-16, feature

variables with similar computed scores are clustered together. Group with the highest

130

average score are selected as the final set of feature variables to predict target variable

p. For example, in Fig. 5.5.c, feature variables mag min, hist avg, and hist sum are

clustered together. Furthermore, they are selected as the final set of feature variables

to predict high and low.

5.4 Evaluation

Our technique is built on top of Autonomizer. The feature extraction algorithm

is implemented with Valgrind-3.15.0 [100] and Python. Experiments are conducted on

a machine with Intel i7-6700HQ 2.60GHz processor, 32G RAM. Model training tasks

are run on GPU NVIDIA Geforce GTX 970 with 3G RAM. To show the validity and

advantages of our proposed approach, we select a variety of programs from different

fields for evaluation. The datasets for evaluation are found on the Internet and/or

come with the program.

In Section 5.4.1, we show the statistical results of our approach, such as input size

and neural network model size. In Section 5.4.2, we present the effectiveness of SPSA

by comparing SPSA, Autonomizer and baseline. In Section 5.4.3, we conduct three

case studies to provide more insights.

5.4.1 Statistics

Table 5.1 shows the model statistics including (1) the size of the model input (i.e.,

the number of input neurons), (2) the collected trace, and (3) the size of the model.

Note that all models are trained using Tensorflow.

To show the effect of our proposed algorithm, we compare three settings: Raw

(Columns 2-4), Autonomizer [88] (Columns 5-7), and SPSA (Columns 8-10). Raw

uses original input of program as the input of neural network models. Autonomizer

selects internal variables as the input of models using the minimum distances on the

program dependency graph. SPSA selects the feature variables based on program and

131

T
ab

le
5.

1.
:

S
ta

ti
st

ic
s

of
m

o
d
el

s
an

d
fe

at
u
re

va
ri

ab
le

s

P
ro

gr
am

R
aw

A
u

to
n

o
m

iz
er

S
P
S
A

A
u

to
n

o
m

iz
er

/
S
P
S
A

In
p

u
t

S
iz

e

T
ra

ce

S
iz

e(
M

B
)

M
o
d

el

S
iz

e(
M

B
)

In
p

u
t

S
iz

e

T
ra

ce

S
iz

e

M
o
d

el

S
iz

e

In
p

u
t

S
iz

e

T
ra

ce

S
iz

e

M
o
d

el

S
iz

e

In
p

u
t

S
iz

e

T
ra

ce

S
iz

e

M
o
d

el

S
iz

e

[2
9]

C
an

n
y

62
,5

00
4
8
.0

2
1
5
.0

9
5
,2

6
8

1
4
.1

3
2
8
.0

2
5
2

2
.0

0
0

2
.1

0
0

3
7
8

7
.1

1
5
6
.2

[1
16

]
R

ot
h
w

el
l

62
,5

00
4
9
.0

2
1
5
.0

1
2
5
,0

0
0

1
4
3
.0

4
2
9
.0

7
5
0

1
.2

0
0

3
.9

0
0

1
6
6
.7

1
1
9
.2

1
1
0
.0

[1
17

]
S

ob
el

25
0,

00
0

1
0
5
.0

8
5
9
.0

2
5
0
,0

0
0

1
0
5
.0

8
5
9
.0

1
0
.0

0
4

0
.4

8
0

2
5
0
,0

0
0
.0

2
6
,9

2
3
.1

1
,7

8
9
.6

[1
18

]
W

at
er

sh
ed

25
0,

00
0

8
7
.0

8
5
9
.0

2
5
0
,0

0
1

8
7
.0

8
5
9
.0

1
,5

0
2

0
.6

3
9

0
.6

7
0

1
6
6
.4

1
3
6
.1

1
,2

8
2
.1

[1
19

]
C

ol
or

se
g

62
,5

00
2
4
.0

2
1
5
.0

1
2
5
,0

0
0

4
0
.0

4
3
0
.0

5
0
0

0
.3

6
3

2
.6

0
0

2
5
0
.0

1
1
0
.1

1
6
5
.4

[1
20

]
B

or
u

v
ka

62
,5

00
2
4
.1

2
1
5
.0

1
2
5
,0

0
0

4
0
.0

4
3
0
.0

2
5
0

0
.2

4
6

1
.3

0
0

5
0
0
.0

1
6
2
.5

3
3
0
.8

[4
2]

P
h
y
li

p
6,

00
0

4
.0

2
1
.4

6
,4

2
0

1
.2

2
2
.9

2
1

0
.1

0
7

0
.7

4
2

3
0
5
.7

1
1
.2

3
0
.9

[4
5]

M
et

is
6,

00
0

6
.7

2
1
.0

3
,0

0
0

3
.4

1
1
.0

2
0
.0

0
3

0
.8

7
3

1
,5

0
0
.0

1
,0

6
2
.5

1
2
.6

[1
21

]
F

ac
er

ec
37

2,
00

0
3
1
7
.0

1
2
7
8
.0

3
7
2
,0

0
1

3
1
7
.0

1
2
7
8
.0

6
2

0
.0

6
6

0
.5

9
8

6
,0

0
0
.0

4
,7

7
4
.1

2
,1

3
8
.2

[4
1]

S
p

h
in

x
26

2,
14

4
1
5
7
.0

9
0
1
.0

4
,0

9
6

3
6
.0

1
5
.0

2
0
.0

1
6

0
.7

7
0

2
,0

4
8
.0

2
2
5
0
.0

1
9
.5

132

statistical analysis. For fair comparison, we use the same neural network architecture

and hyper-parameter settings for all settings except for the input layer which accounts

for different input size.

In Columns 11-13, we show the ratio of SPSA and Autonomizer regarding

input size, trace size, and model size. For programs using multiple models to predict

different parameters (i.e., target variables), the input size is the sum of the input size

from all models. The trace size and model size are similar.

Observe that Autonomizer consistently has larger input size, trace size and

model size compared to SPSA. According to column 11, the model input size of Au-

tonomizer is 166X-250000X larger than SPSA. Column 12 shows that the collected

trace size of Autonomizer is 7X-26923X times the trace size of SPSA. Since the

input layer of Autonomizercontains a large number of neurons, the model size of

it is significantly larger than the model size of SPSA (12.6X-1789.6X larger).

5.4.2 Effectiveness

In the following, we study the effectiveness of our proposed approach. Particu-

larly, we want to demonstrate how our approach further improves the quality of the

autonomization results compared to Autonomizer. The results are shown in Table

5.2.

Experiment Settings

First, we discuss the experimental settings of different results.

Comparisons. For the experiments, we compare four settings: Baseline, Raw, Au-

tonomizer, and SPSA. Baseline stands for program execution with default parameter

configurations and the other three settings are introduced in Section 5.4.1.

Scoring. We use scores to measure the quality of results. In Column 1, higher scores

are better for programs marked with ↑, while lower scores are better for programs

marked with ↓. Benchmarks either have ground truth or come with their own scor-

133

ing functions to compute the scores from the autonomization results with different

settings.

Time Cost. For each setting, we present training time and execution time of all

programs. For training time, we train the models until convergence. The execution

time represents the time required for one execution.

Experiment Results

Next, we discuss the efficiency and effectiveness of reducing and selecting program

internal features extracted by SPSA with respect to training time, execution time

and evaluation score.

Training Time. In Columns 13-14 of Table 5.2, training speed overhead ratio

of Raw and SPSA ranges from 3.90X to 942.46X while the ratio of Autonomizer

and SPSA ranges from 2.22X to 177.21X. In particular, for benchmark Facerec,

both Raw and Autonomizer have significantly higher training overhead than SPSA

because both settings selected feature variables with huge size. It shows that SPSA

can substantially improve the model training time using much fewer input features.

Execution Time. In Column 15-16 of Table 5.2, execution overhead ratio of Raw

and SPSA ranges from 0.90X to 1.21X while the ratio of Autonomizer and SPSA

ranges from 0.91X to 1.40X. Observe that SPSA can reduce the execution time with

fewer features. For some benchmarks, SPSA requires longer execution because it

uses more models for predicting different target variables, which further requires more

interaction time with the Tensorflow Python framework. However, the slowdown of

SPSA is negligible.

Evaluation Score. The evaluation scores are shown in Columns 3, 6, 9, and 12.

Observe that all settings outperform Baseline. It demonstrates the advantage of

software autonomization. Among different settings, SPSA can substantially im-

prove the quality of the results compared to the others settings. Specifically, Raw,

Autonomizer, and SPSA improves the evaluation scores of Baseline by 56.33%,

134

80.24% and 99.04% on average respectively. This shows that our approach can not

only improve the model training time but also the quality of the results by eliminating

the model input data redundancy and noise to some extent.

5.4.3 Case Study

In this section, we discuss the details of autonomizing three representative pro-

grams in fields of edge detection, color segmentation and audio processing.

Datasets

S
S

IM
 S

co
re

0

0.25

0.5

0.75

1

1 2 3 4 5 6 7 8 9 10

Autonomizer Raw BaselineSPSA

Fig. 5.7.: Canny prediction of 10 datasets

Canny

As we have introduced in Section 5.2, Canny has three configurable parameters:

sigma, low and high. sigma is used by Gaussian smoothing stage while low and

high are used during edge traversal stage.

Feature variables. We create three different settings: Raw, Autonomizer, and

SPSA to predict the target variables with different feature variables. As shown

in Fig. 5.6.c, SPSA identifies mag min, hist avg, and hist sum to predict target

135

T
ab

le
5.

2.
:

B
en

ch
m

ar
k

ex
p

er
im

en
ta

l
re

su
lt

s.

P
ro

gr
am

B
a
se
li
n
e

R
a
w

A
u
t
o
n
o
m
iz
e
r

S
P
S
A

T
ra

in
O

/
H

E
x
ec

O
/
H

E
x
ec

.

T
im

e(
s)

S
co

re
T

ra
in

T
im

e(
s)

E
x
ec

.

T
im

e
S

co
re

T
ra

in

T
im

e

E
x
ec

.

T
im

e
S

co
re

T
ra

in

T
im

e

E
x
ec

.

T
im

e
S

co
re

R
a
w

/

S
P
S
A

A
u
t
o
n
o
m
iz
e
r

/

S
P
S
A

R
aw

/

S
P
S
A

A
u
t
o
n
o
m
iz
e
r

/

S
P
S
A

[2
9]
↑1

C
an

n
y

1.
32

44
.6

9
17

90
.9

8
1
.5

6
5
4
.2

8
1
8
2
.0

0
1
.4

7
7
6
.3

4
1
5
.3

2
1
.5

3
8
0
.1

2
1
1
6
.9

0
1
1
.8

8
1
.0

2
0
.9

6

[1
16

]
↑

R
ot

h
w

el
l

1.
15

49
.3

1
19

76
.8

8
1
.6

3
6
3
.7

5
1
5
6
4
.3

6
1
.5

3
7
0
.4

9
6
3
.3

9
1
.6

5
7
7
.4

7
3
1
.1

9
2
5
.1

5
0
.9

9
0
.9

3

[1
17

]
↑

S
ob

el
1.

12
64

.6
9

23
0.

00
1
.8

1
8
0
.5

4
1
7
8
.5

3
1
.8

0
8
3
.0

3
6
.3

9
1
.4

9
8
5
.9

6
3
5
.9

9
2
7
.9

4
1
.2

1
1
.2

1

[1
18

]
↑

W
at

er
sh

ed
1.

03
59

.8
5

14
0.

59
1
.3

4
6
3
.1

7
1
2
7
.6

0
1
.3

8
6
9
.6

6
1
1
.8

0
1
.2

3
7
5
.0

1
1
6
.1

5
1
0
.8

1
1
.0

9
1
.1

2

[1
19

]
↑

C
ol

or
se

g
1.

07
64

.9
8

96
.6

7
1
.5

5
6
6
.0

9
5
0
.8

8
1
.8

7
6
7
.0

8
1
7
.1

1
1
.3

4
7
3
.8

4
5
.6

5
2
.9

7
1
.1

6
1
.4

0

[1
20

]
↑

B
or

u
v
ka

0.
64

71
.2

9
97

.7
0

1
.9

0
8
0
.5

4
5
7
.8

0
2
.2

6
8
5
.0

3
9
.6

9
1
.8

6
8
6
.2

1
1
0
.0

8
5
.9

6
1
.0

2
1
.2

2

[4
2]
↑

P
h
y
li

p
1.

48
1.

01
47

.0
1

2
.2

1
0
.9

6
5
.5

6
2
.1

5
0
.5

4
2
.1

8
2
.2

0
0
.3

8
2
1
.5

6
2
.5

5
1
.0

0
0
.9

8

[4
5]
↓

M
et

is
1.

47
10

3.
44

17
1.

32
1
.6

0
1
3
2
.8

8
6
1
.9

5
1
.6

2
1
3
9
.6

4
1
4
.9

0
1
.7

8
1
6
1
.7

6
1
1
.5

0
4
.1

6
0
.9

0
0
.9

1

[1
21

]
↓

F
ac

er
ec

2.
50

22
.2

0
18

47
.2

3
3
.2

8
2
0
.3

0
3
4
7
.3

3
3
.7

5
1
8
.6

0
1
.9

6
3
.2

5
1
5
.6

0
9
4
2
.4

6
1
7
7
.2

1
1
.0

1
1
.1

5

[4
1]
↑

S
p

h
in

x
0.

89
10

.9
0

40
47

.8
0

1
.5

3
5
7
.2

0
1
4
2
.2

1
1
.4

1
6
3
.2

2
2
4
.6

9
1
.3

2
6
5
.0

5
1
6
3
.9

4
5
.7

6
1
.1

6
1
.0

7

1.
↑:

H
ig

h
er

sc
or

es
ar

e
b

et
te

r;
↓:

lo
w

er
sc

or
es

a
re

b
et

te
r.

136

Time(s)

S
S

IM
 S

co
re

20

40

60

80

5 10 15 20 25 30 35

Autonomizer Raw BaselineSPSA

Fig. 5.8.: Canny training score variation

variable low and high. For other settings, Raw uses image while Autonomizer uses

hist as model input feature variable respectively.

Results. To demonstrate how our approach further improves the data processing

results, we show the results of baseline, Raw, Autonomizer, and SPSA. For fair

comparison, all versions use the same neural network structure, i.e., a 6 layer fully

connected neural network, except for the input layer. In particular, for input layer,

Raw has 62,500 neurons, Autonomizer has 95,268 neurons, and SPSA has 252 neu-

rons. The input neurons are different because different settings use different set of

program variables as model input features.

For the experiment, we use the images from [104] to run Canny to train neural

network models under each setting using supervised learning. For each setting, we

apply the trained model to test 10 images from [102] for parameters prediction. We

use the SSIM [33] score to compare the edge detection result with the ground truth

hand-picked by experts. The higher score, the better quality of the result.

Fig. 5.7 shows the 10 edge detection scores of baseline, Raw, Autonomizer, and

SPSA. Each model is trained until it converges. On average, the improvement

of SPSA over baseline is 79%, which demonstrates that the quality of the result

improvement is substantial. Observe that the improvement of Raw and Autonomizer

137

1 void watershed() {

2 /* Initialization */

3 pixs = pixRead(imageName);

4
5 au_extract("PIXS", pixs.row * pixs.col, pixs);

6 au_reduce("VEC_PIXS","PIXS");

7
8 au_stats("MAXMIN");

9 au_opt("OPT_MAXMIN","MAXMIN");

10 au_NN("EXTREMA", "OPT_MINMAX", "MAXMIN");

11 au_writeback("MAXMIN",&maxmin);

12
13 /* Find local extrema */

14 mark = localExtrema(pixs, minmax, maxmin);

15
16 au_extract("MARK", mark.size, mark);

17 au_reduce("VEC_MARK","MARK");

18
19 au_stats("MINDEPTH");

20 au_opt("OPT_MINDEPTH","MINDEPTH");

21 au_NN("NN_MINDEPTH", "OPT_MINDEPTH", "MINDEPTH");

22 au_writeback("MINDEPTH",&mindepth);

23
24 /* Generate watershed */

25 wshed = wshedCreate(mark, mindepth);

26 pixWrite(wshed);

27 }

Fig. 5.9.: Autonomizing Watershed. The highlighted statements are provided by

SPSA. The primitives start with au.

over baseline is around 21% and 71%. It shows that the combination of program and

statistical analysis is useful for not only extracting the most relevant feature variables

but also eliminating noise in the data.

In Figure 5.8, we illustrate the testing score variation with the training time in

seconds. Observe that SPSA consistently has higher scores than the other settings.

Furthermore, even 10-second training in SPSA yields similar results for 35 seconds

training in Autonomizer. Observe that the score of Raw is quite unstable. The

reason is that its model requires a large number of input features which makes it

hard for the model to converge quickly compared to SPSA.

138

Watershed

Watershed [118] is a widely used algorithm for image segmentation. It is used

to separate different objects in an image. Watershed treats the input image as a

topographic map, with the grayscale of each pixel representing its height, and seeks

out the lines that run along the ridges. At first, we mark local minima in the image

and these minima are regarded as ”seeds” where the flooding will start rising. When

the flooding fills in two adjacent basins, the algorithm decides whether a watershed

should exist between these two. As the flooding stop rising, the algorithm stops and

output a watershed picture of the original image.

In our case, we focus on two tunable parameters in Watershed: maxmin and

mindepth. The parameter maxmin is the upper bound for local minima (i.e. the

seeds mentioned above). It means that local minima with values greater than maxmin

are not recognized as a real local minima. As the flooding rises and two adjacent

basins become closer, the second parameter mindepth decides whether these two

should be merged. For pixels between two basins, if the relative height of a pixel is

higher than mindepth, then a watershed will be built on this pixel. Otherwise it will

be submerged by the flooding. The function of these two parameters is to minimize

the negative effect of noise or other factors that may lead to over-segmentation.

Feature Variables. We created three different model settings: Raw, Autonomizer,

and SPSA to predict the target variables with different feature variables. Specifically,

Raw is trained with raw input images. Autonomizer selects the raw image and mark

information for local minima that stored in program variable mark as the feature

variables to predict maxmin and mindepth respectively. For SPSA, it selects the

reduced feature variables pixs sum and mark max to predict target variable maxmin

and mindepth respectively. (Fig. 5.9, line 10 and line 21).

Results. To demonstrate how our feature extraction method improves the data

processing results, we show the results of Baseline, Raw, Autonomizer, and SPSA.

For fairness, all settings adopt the same neural network structure, i.e., a 6 layer fully

139

Datasets

S
co
re
s

0

0.25

0.5

0.75

1

1 2 3 4 5 6 7 8 9 10

Autonomizer Raw BaselineSPSA

Fig. 5.10.: Watershed prediction of 10 datasets

Time(s)

S
co
re
s

20

40

60

80

5 10 15 20

Autonomizer Raw BaselineSPSA

Fig. 5.11.: Watershed tuning score variation

connected neural network, except for the input layer. In particular, for input layer,

Raw has 125,000 neurons, Autonomizer has 125,001 neurons, and SPSA has 1,502

neurons, as shown in Table 5.1. The input neurons vary in size because different

settings select different set of program variables as model input features.

140

In the experiment, we take 10 datasets and apply three stteings, Raw, Autonomizer

and SPSA to these datasets. We use SSIM score to measure the quality of output

segmentation. Higher scores indicate better segmentation results.

Figure 5.10 demonstrates SSIM scores of three methods after convergence. In order

to decrease potential influence of randomness, we ran each dataset for 10 times. On av-

erage, SPSA enhances the score by 25% compared with Baseline while Autonomizer

and Raw improved the Baseline by 16% and 6% respectively.

Figure 5.11 illustrates the score variation of the three settings within the first

35 seconds of training time. Observe that SPSA consistently achieves the highest

score among all three settings and it converges within the first 10 seconds. Although

Autonomizer has a sharp increase after 5 seconds training, it still needs more time to

converge and reach the optimal score. For Raw, it has to be trained for longer time to

converge. The reason is that the input neurons for Raw is really huge and the neural

network needs more time to extract important features from the raw input.

Sphinx

Sphinx [41] is a very popular speech recognition application. It takes a raw audio

and a dictionary, and generates the script for the audio according to its dictionary.

Sphinx has several tunable parameters, such as the upper and lower edges of filters,

language weight, and word insertion penalty. These parameters are critical to the

recognition results. Different audios of different people may require different param-

eter configurations. Fig. 5.14 gives the pseudo code of Sphinx. The decoder is first

initialized with parameters at line 3, then the decoding starts at line 22 using the

initialized parameters. Finally, the decoded script can be retrieved at line 25. In

this study, we focus on predicting parameters upperf and lowerf and we leave other

parameters with their default values. As described on the official website, upperf

and lowerf are critical to the speech recognition accuracy. They represent the cutoff

141

frequency of the audio, which means that any frequency that does not fall within that

range will not be processed.

Feature Variables. We created three different model settings: Raw, Autonomizer,

and SPSA to predict the target variables with different feature variables. Specifically,

Raw is trained with raw audio and Autonomizer identifies Fourier transform infor-

mation that stored in program variable fft as the feature variable to train its model.

Intuitively, the audio is being transferred into an alternate representation by FFT,

i.e., from time domain to frequency domain. Like histogram in image processing, dif-

ferent audios have different frequency information and hence serve as important fea-

tures. Finally, for model training, SPSA selects the reduced feature variable fft avg

and fft var (i.e., data reduction by variance) to predict target variable lowerf and

upperf respectively. (Fig. 5.14, lines 14-15).

Datasets

S
co
re

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10

Autonomizer Raw BaselineSPSA

Fig. 5.12.: Sphinx tuning score variation

Results. We show the results of baseline, Raw, Autonomizer, and SPSA for com-

parison. The structure of all models are the same except their input layers. In

particular, we use a fully connected neural network with three inner layers for each

model. All neurons use the RELU function for activation. The structure is inspired

142

Time(s)

S
co
re

0

0.2

0.4

0.6

0.8

0 10 20 30 40

Autonomizer Raw baselineSPSA

Fig. 5.13.: Sphinx tuning score variation

by [122]. Raw and Autonomizer has 262,144 neurons and 4,096 neurons in the input

layer respectively whereas SPSA has 2 neurons.

We use the default training and testing audios from the AN4 dataset [55, 123].

The testing set is split into 10 datasets. Each testing audio comes with a ground

truth script from the dataset. For each audio, we use the recognition accuracy to

compare the prediction result with the ground truth. The higher the score the better

the result.

Fig. 5.12 shows the prediction score after convergence. Observe that SPSA almost

always produces the best results. On average, Raw, Autonomizer, and SPSA have

425%, 480%, and 497% improvement over the baseline respectively.

We also show the score variation with the training time in Fig. 5.13 for the 10

datasets. Observe that SPSA consistently has much better prediction result. Fur-

thermore, even 1-2 seconds training in SPSA yields much better results for 40 sec-

onds training in Raw and Autonomizer. The reason is that both models of Raw and

Autonomizer require a large number of input neurons, which substantially increase

the training time.

143

1 void sphinx(audio, upperf, lowerf, ...) {

2 // 1. Initialize decoder with parameters

3 ... initialization ...

4
5 // 2. Smooth audio

6 sAudio = smooth(audio);

7
8 // 3. FFT

9 fft = doFFT(audio);

10 au_extract("FFT", 4096, fft);

11
12 au_reduce("VEC_FFT","FFT");

13 au_stats("UPPER","LOWER");

14 au_opt("OPT_UPPER","UPPER");

15 au_opt("OPT_LOWER","LOWER");

16
17 au_NN("NN", "FFT", "UPF, LOF");

18 au_write_back("UPF", 1, &upperf);

19 au_write_back("LOF", 1, &lowerf);

20
21 // 2. Decode

22 script = decode(audio);

23
24 // 3. Output result

25 output(script);

26 }

Fig. 5.14.: Improving Sphinx autonomization. The highlighted statements are added.

Autonomizing primitives start with au.

5.5 Summary

In this chapter, we propose SPSA, a novel approach to further improve the soft-

ware autonomization for even better data processing programs output quality. It

provides a set of extension primitives that allow users to find better or more rele-

vant program feature variables for target variable prediction by taking advantage of

program analysis and statistical analysis. Our experiments show that SPSA sub-

stantially improves data processing results and outperforms the state-of-the-art au-

tonomization framework, Autonomizer.

144

6. RELATED WORK

6.1 Floating Point Instability

The floating point instability problem of data processing programs has been stud-

ied for a long time. Raive is related to dynamic instability detection techniques such

as interval analysis [4, 124], high precision computation [10], and error tagging [11].

Compared to these techniques, Raive is much more efficient and can reason about

output variations.

A dynamic technique was proposed in [20] to detect bit cancellations. It does

not distinguish benign and problematic cancellations and thus reports many false

alarms. Researchers have proposed techniques to generate tighter bounds for interval

arithmetic [22, 125] and affine arithmetic tools [7, 8]. Affine arithmetic handles vari-

able correlations using affine forms. These techniques are very expensive (3-4 orders

of magnitude slowdown [8]) and may have difficulty scaling to complex programs.

They mostly focus on numerical cores and can hardly reason about discrete differ-

ences caused by errors, which are common in real world programs and usually induce

substantial output variations.

There are also a large body of work on abstract interpretation, SMT solving,

model checking and code perturbation to tackle the internal error problem [1, 3, 126,

127]. Robustness analysis [128] tries to statically prove that a floating point program

is free from instability problems. While it is quite successful in handling simple

programs, the mathematical complexity and the iterative nature of many real world

programs are difficult to address by the technique. Moreover, as instability problems

are input dependent and rarely happen, dynamic analysis may be more preferable

when completely fixing instability is difficult.

145

Raive is also related to uncertain data processing. In [129], a static analysis is

proposed to analyze probabilistic programs that operate on uncertain data. In [130],

an abstraction was proposed to help developers operate on and reason about uncertain

data. A sampling technique was proposed in [19] to expose discontinuity in output

functions, in the presence of input uncertainty. Different from Raive, they explicitly

model and sample external errors.

In [131], a technique is proposed to search for error-causing inputs that can maxi-

mize result errors due to internal errors. In [132], researchers propose to reason about

the portability of numerical programs by using symbolic analysis to find inputs that

cause different branch decisions, when the program is executed with the same input

on different platforms. Recently, [133, 134] propose techniques to reason about the

required precision to compile a given program with given output requirements.

6.2 Program Parameter Configuration

Program Tuning. Many works have been proposed to solve the program tuning

problem. WBTuner is related to existing input selection or fuzzing works [135–142].

They use different search techniques such as MCMC or genetic algorithms to address

software engineering or cyber-security problems.

Several autotuning frameworks are proposed for domain-specific programs. For

example, [143,144] tune data-mining algorithms; [145] aimed to generate an optimized

matrix multiply routine by empirical autotuning; [146] is specialized for tuning stencil

computation; and [147] is a stochastic approach for parameter tuning of SVM. In [148],

a compiler autotuning framework is proposed to speed up application performance

using bayesian networks. Several dynamic autotuning frameworks [149–156] were pro-

posed to monitor program execution to guide the program to perform self-adaptation

for achieving specific optimization goal. For example, PowerDial [149] transforms

static configuration parameters into dynamic controllable variables to make programs

power-aware.

146

PetaBricks [157, 158] proposes a language- and compiler-based solution for tun-

able algorithm construction. Different algorithms and parameter configurations are

being tuned to achieve better performance and accuracy. Different algorithms are

selected for execution by the Petabricks runtime. It advocates the concept of tun-

ing by construction, targeting on stream data processing. The individual streaming

components only interact through their interfaces and do not have any other inter-

dependences. However, it cannot tune pre-existing non-streaming programs where

inter-dependences across phases are substantial like in Ardupilot. Furthermore, users

need to use the proposed language.

Program Autonomization. Many works were proposed for solving software engi-

neering problems with machine/deep learning techniques, such as test generation [159–

162], fuzzing [163–165], and bug repair [166–168]. Autonomizer has the potential

of allowing some learning tasks to piggyback on software operation.

Machine learning and deep learning techniques have a wide range of applications

such as computer vision [169–171], speech recognition [172, 173], and bioinformat-

ics [174,175].

For individual application, the developers have to compose the learning procedures

from scratch and use raw data. In fact, many of these problems have been extensively

studied and they have existing solutions based on programs. The problem is that

these programs are often heavily parameterized and require human interventions.

Autonomizer is the first work to provide a general technique to autonomize such

programs.

Some frameworks have been proposed to train models for playing games such

as OpenAI Gym [81], Arcade Learning Environment [176], and Mario AI competi-

tion [177]. However, these frameworks are limited to specific platforms and the train-

ing is a stand-alone process isolated from the original system operation. In contrast,

Autonomizer is general and the training is piggybacking on software operation.

In [178], researchers propose a technique to play NES games automatically. Unlike

Autonomizer that works on source, it works on executable. It first identifies the

147

locations of simulated NES memory that stores the progress (i.e., score or game level)

of the NES game. Then the objective function is derived and learned accordingly in

order to make progress. Unlike Autonomizer that aims to support various software

systems, the work is specific to playing NES games.

While there are some works that leverage internal data as model input features

(e.g.,in training AIs to play Mario [179] and a first-person shooting game [180]), they

are application specific. Autonomizer proposes two general heuristic approaches

for programs using supervised and reinforcement learning in order to extract program

variables that correspond to important features for model training.

Furthermore, SPSA proposes to combine both program analysis and statistical

analysis. Similarly, many works also leverage statistical analysis to solve software

engineering problems, such as bug finding [181] and error ranking [182,183]. Particu-

larly, [183] employs a statistical model to rank error messages in order to lower false

positive rates. These works witness how statistical analysis enhances the power of

program analysis.

Additionally, deep learning/machine learning techniques are incorporated into

traditional software and system fields, such as test generation [162, 184–190] and

fuzzing [191–194]. SPSA may be potentially capable of generating optimal test cases

and seeking out program patterns based on observations of internal states. [195] re-

places traditional index structures with deep-learning models and achieves better

indexing performance.

148

7. CONCLUSION

In this dissertation, we propose several techniques, enabled by runtime program anal-

ysis and parameter exploration, to provide better data processing results.

Runtime program analysis provides a simple and effective means of studying the

uncertainty caused by internal and external errors. We propose Raive, a technique

to leverage dynamic program analysis through program vectorization. Every floating

point value is transformed to a vector of multiple values the values added to create

the vector are obtained by introducing artificial errors that are upper bounds of actual

errors. The propagation of artificial errors models the propagation of actual errors.

When values in vectors result in discrete execution differences (e.g., following differ-

ent paths), the execution is forked to capture the resulting output variations. Our

evaluation shows that Raivecan precisely capture output variations. Its overhead

(340%) is 2.43 times lower than the state of the art.

In addition to the techniques that handle the program instability problem, we

also present several techniques to improve the quality of the results of data process-

ing programs. We first propose WBTuner, a white-box tuning technique that is

implemented as a library. It allows user to compose complex program tuning tasks

by adding a small number of library calls to the original program and providing a

few callback functions. The comparison with the state of the art OpenTuner shows

that OpenTuner takes 3.08X time to achieve the same results under a single core

environment and 4.67X when multiple cores are used. To prevent per-input tuning,

we propose a general framework Autonomizer to autonomize software systems by

installing the AI into the traditional programs. With the support of Autonomizer,

the users can gain the AI support with little engineering efforts. Our experiment

results on nine real-world applications show that the autonomization only requires

adding a few lines to the source code. Besides, for the data-processing programs,

149

Autonomizer improves the output quality by 161% on average over the default set-

tings. For the interactive programs such as game/driving, Autonomizer achieves

higher success rate with lower training time than existing autonomized programs. Fi-

nally, we propose SPSA, a novel approach that combines both program analysis and

statistical analysis for much better feature variables identification. The evaluation

shows that SPSA substantially improves data processing results by improving the

feature variables selection on ten widely used parameterized programs. The output

quality is improved by 99.04% on average over the baseline with execution overhead

almost the same as Autonomizer. Comparatively, Autonomizer only improved

the output quality by 80.24% on average over the baseline. Furthermore, the model

training overhead of SPSA is 27.44X lower than Autonomizer and its model size

is 603.5X smaller than Autonomizer on average.

REFERENCES

150

REFERENCES

[1] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and

X. Rival, “The ASTRÉE Analyzer,” in ESOP ’05. Springer, 2005.

[2] E. Goubault and S. Putot, “Static analysis of finite precision computations,”
in VMCAI ’11. Springer-Verlag, 2011.

[3] M. Martel, “Propagation of roundoff errors in finite precision computations: A
semantics approach,” in ESOP ’02. Springer-Verlag, 2002.

[4] R. E. Moore, Interval analysis, ser. Prentice-Hall series in automatic computa-
tion. Prentice-Hall, 1966.

[5] G. Melquiond and C. Munoz, “Guaranteed proofs using interval arithmetic,” in
ARITH ’05. IEEE Computer Society, 2005.

[6] L. H. de Figueiredo and J. Stolfi, “Affine Arithmetic: Concepts and Applica-
tions,” Numerical Algorithms, vol. 37, 2004.

[7] C. F. Fang, T. Chen, and R. A. Rutenbar, “Floating-point error analysis based
on affine arithmetic,” in ICASSP ’03, 2003.

[8] E. Darulova and V. Kuncak, “Trustworthy numerical computation in scala,” in
OOPSLA ’11, 2011.

[9] D. An, R. Blue, M. Lam, S. Piper, and G. Stoker, “Fpinst: Floating point error
analysis using dyninst,” 2008.

[10] F. Benz, A. Hildebrandt, and S. Hack, “A dynamic program analysis to find
floating-point accuracy problems,” in PLDI ’12, 2012.

[11] T. Bao and X. Zhang, “On-the-fly detection of instability problems in floating-
point program execution,” in OOPSLA ’13, 2013.

[12] J. Ansel, S. Kamil, K. Veeramachaneni, U.-M. OReilly, and S. Amarasinghe,
“Opentuner: An extensible framework for program autotuning,” in PACT ’14,
2014.

[13] J. Kiefer and J. Wolfowitz, “Stochastic estimation of the maximum of a regres-
sion function,” The Annals of Mathematical Statistics, 1952.

[14] J. C. Spall, “Multivariate stochastic approximation using a simultaneous per-
turbation gradient approximation,” IEEE Transactions on Automatic Control,
1992.

[15] P. Merz and B. Freisleben, “A genetic local search approach to the quadratic
assignment problem,” in ICGA ’97, 1997.

151

[16] M. de Hoon, “Cluster 3.0,” http://bonsai.hgc.jp/∼mdehoon/software/cluster/
software.htm.

[17] R. M. L. Page, S. Brin and T. Winograd., “The pagerank citation ranking:
Bringing order to the web.” 1999.

[18] IEEE Task P754, IEEE 754-2008, Standard for Floating-Point Arithmetic.
IEEE, 2008.

[19] T. Bao, Y. Zheng, and X. Zhang, “White box sampling in uncertain data pro-
cessing enabled by program analysis,” in OOPSLA ’12, 2012.

[20] M. O. Lam, J. K. Hollingsworth, and G. Stewart, “Dynamic floating-point
cancellation detection,” Parallel Computing, vol. 39, 2013.

[21] Intel Corporation, Intel® 64 and IA-32 Architectures Optimization Reference
Manual. Intel, 2013.

[22] F. D. Dinechin and L. P. Arnaire, “Assisted verification of elementary functions
using gappa,” in SAC ’06, 2006.

[23] F. Yuan, Z.-H. Meng, H.-X. Zhangz, and C.-R. Dong, “A new algorithm to
get the initial centroids,” in Proceedings of the 3rd International Conference on
Machine Learning and Cybernetics, 2004.

[24] M. Yedla, S. Pathakota, and T. M. Srinivasa, “Enhancing k-means clustering
algorithm with improved initial center,” IJCIT ’10, 2010.

[25] K. A. A. Nazeer, S. D. M. Kumar, and M. P. Sebastian, “Enhancing the k-
means clustering algorithm by using a o(n logn) heuristic method for finding
better initial centroids,” in EAIT ’13, 2013.

[26] K. A. A. Nazeer and M. P. Sebastian, “Improving the accuracy and efficiency
of the k-means clustering algorithm,” in WCE ’09, 2009.

[27] A. M. Fahim, A. M. Salem, F. A. Torkey, and M. A. Ramadan, “An efficient
enhanced k-means clustering algorithm,” Journal of Zhejiang University SCI-
ENCE A, 2006.

[28] T. Blaschke, “Object based image analysis for remote sensing,” ISPRS Journal
of Photogrammetry and Remote Sensing, 2010.

[29] J. Canny, “A computational approach to edge detection,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 1986.

[30] M. D. Heath, S. Sarkar, T. Sanocki, and K. W. Bowyer, “Robust visual method
for assessing the relative performance of edge-detection algorithms,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, 1997.

[31] WBTuner, “Wbtuner source and supplementary material,” ”https://github.
com/cgo2019/WBTuner”, 2018.

[32] F. Kerouh, “A no-reference blur image quality measure based on wavelet trans-
form,” IJDIWC ’12, 2012.

152

[33] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: From error visibility to structural similarity,” IEEE Transactions
on Image Processing, 2004.

[34] A. Moore, “Cross-validation for detecting and preventing overfitting,” 2001.

[35] F. Kane, “Hands-on data science and python machine learning,” 2017.

[36] M. Stone, “Cross-validatory choice and assessment of statistical predictions,”
Journal of the Royal Statistical Society. Series B (Methodological), 1974.

[37] E. backoff, IEEE Standard 802.3-2008, 2008.

[38] D. Bloomberg, “Leptonica image processing and analysis library,” ”http://
www.leptonica.com/”, 2001.

[39] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for
discovering clusters in large spatial databases with noise,” in KDD ’96, 1996.

[40] D. S. Bolme, J. R. Beveridge, M. Teixeira, and B. A. Draper, “The csu face iden-
tification evaluation system: its purpose, features, and structure,” in Computer
Vision Systems, 2003.

[41] P. Lamere, P. Kwok, E. Gouvea, B. Raj, R. Singh, W. Walker, M. Warmuth,
and P. Wolf, “The CMU sphinx-4 speech recognition system,” in ICASSP ’03,
2003.

[42] D. Plotree and D. Plotgram, “Phylip-phylogeny inference package (version
3.2),” Cladistics, 1989.

[43] W. R. Pearson and D. J. Lipman, “Improved tools for biological sequence com-
parison,” PNAS ’98, 1998.

[44] X. Ning and G. Karypis, “Slim: Sparse linear methods for top-n recommender
systems,” in ICDM 2011, 2011.

[45] G. Karypis and V. Kumar, “Metis–unstructured graph partitioning and sparse
matrix ordering system, version 2.0,” 1995.

[46] J. R. Quinlan, C4. 5: programs for machine learning, 1993.

[47] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, 1995.

[48] R. Mackay, “Ardupilot,” ”http://ardupilot.org/”, 2007.

[49] Á. Fialho, L. Da Costa, M. Schoenauer, and M. Sebag, “Analyzing bandit-based
adaptive operator selection mechanisms,” Annals of Mathematics and Artificial
Intelligence, 2010.

[50] N. Friedman, M. Ninio, I. Pe’er, and T. Pupko, “A structural em algorithm for
phylogenetic inference,” Journal of Computational Biology, 2002.

[51] R. Narayanan, B. Özisikyilmaz, J. Zambreno, G. Memik, and A. Choudhary,
“Minebench: A benchmark suite for data mining workloads,” in IISWC ’06,
2006.

153

[52] T. Joachims, “Making large-scale SVM learning practical,” Advances in Kernel
Methods - Support Vector Learning, 1999.

[53] A. Asuncion and D. Newman, “Uci machine learning repository,” 2007.

[54] M.-L. Li, R. Sasanka, S. V. Adve, Y.-K. Chen, and E. Debes, “The alpbench
benchmark suite for complex multimedia applications,” in IISWC 2016.

[55] R. Reddy, “An4 database,” ”http://www.speech.cs.cmu.edu/databases/an4/”,
1991.

[56] L. Meier, “Px4 autopilot,” ”http://px4.io/”, 2009.

[57] P. Tuning, ”https://docs.px4.io/en/advanced config/pid tuning guide
multicopter.html”, 2017.

[58] A. Tuning, ”http://ardupilot.org/copter/docs/tuning.html”, 2017.

[59] O. Andersson, M. Wzorek, and P. Doherty, “Deep learning quadcopter control
via risk-aware active learning,” in AAAI ’17, 2017.

[60] I. Mordatch, K. Lowrey, G. Andrew, Z. Popovic, and E. V. Todorov, “Interac-
tive control of diverse complex characters with neural networks,” Advances in
Neural Information Processing Systems, 2015.

[61] T. Zhang, G. Kahn, S. Levine, and P. Abbeel, “Learning deep control policies
for autonomous aerial vehicles with mpc-guided policy search,” in ICRA ’16,
2016.

[62] N. Koenig and A. Howard, “Gazebo,” ”http://gazebosim.org/”, 2009.

[63] Adrupilot-default, ”https://drive.google.com/open?id=
0BxgPTM7nEUyCcTFKdjM4RVNrMk0”, 2018.

[64] Adrupilot-tuned, ”https://drive.google.com/open?id=
0BxgPTM7nEUyCYmVPdzBtMnoyT1U”, 2018.

[65] PX4, ”https://drive.google.com/open?id=0BxgPTM7nEUyCYnRxS2FSN2JRbEE”,
2018.

[66] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering the game of go
without human knowledge,” Nature, vol. 550, no. 7676, pp. 354–359, 2017.

[67] (2018) Alphago versus lee sedol. [Online]. Available: https://en.wikipedia.org/
wiki/AlphaGo versus Lee Sedol

[68] (2018) Googles alphago defeats chinese go master in win for
a.i. [Online]. Available: https://www.nytimes.com/2017/05/23/business/
google-deepmind-alphago-go-champion-defeat.html

[69] (2018) Alphago at the future of go summit,. [Online]. Available: https:
//deepmind.com/research/alphago/alphago-china/

[70] (2018) Waymo. [Online]. Available: https://waymo.com/

154

[71] (2018) Waymo. [Online]. Available: https://www.cnbc.com/2018/08/29/
waymo-alphabets-self-driving-unit-morgan-stanley-forecast-to-highs.html

[72] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” 2017. [Online]. Available: https://arxiv.org/abs/1611.01578

[73] (2018) Ui/application exerciser monkey. [Online]. Available: https://developer.
android.com/studio/test/monkey

[74] S. Bling. (2018) Mario bizhawk emulator. [Online]. Available: https:
//pastebin.com/u/SethBling

[75] (2018) Deepmind ai reduces google data centre cooling
bill by 40. [Online]. Available: https://deepmind.com/blog/
deepmind-ai-reduces-google-data-centre-cooling-bill-40/

[76] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beat-
tie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and
D. Hassabis, “Human-level control through deep reinforcement learning,” Na-
ture, 2015.

[77] T. E. Vos, P. M. Kruse, N. Condori-Fernández, S. Bauersfeld, and J. Wegener,
“Testar: Tool support for test automation at the user interface level,” Int. J.
Inf. Syst. Model. Des., vol. 6, no. 3, pp. 46–83, Jul. 2015. [Online]. Available:
http://dx.doi.org/10.4018/IJISMD.2015070103

[78] A. Jung. (2018) mario-ai: Playing mario with deep reinforcement learning.
[Online]. Available: https://github.com/aleju/mario-ai

[79] (2017) Torcs for reinforcement learning. [Online]. Available: https:
//github.com/YurongYou/rlTORCS

[80] (2016) Using keras and deep deterministic policy gradient to play torcs. [Online].
Available: https://yanpanlau.github.io/2016/10/11/Torcs-Keras.html

[81] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, “Openai gym,” 2016.

[82] (2018) Skydio. [Online]. Available: https://www.skydio.com/

[83] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,” in BMVC
’15, 2015.

[84] A. Irpan. (2018) Deep reinforcement learning doesn’t work yet. [Online].
Available: https://www.alexirpan.com/2018/02/14/rl-hard.html

[85] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney,
D. Horgan, B. Piot, M. G. Azar, and D. Silver, “Rainbow: Combining improve-
ments in deep reinforcement learning,” CoRR, 2017.

[86] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel, “Backpropagation applied to handwritten zip code recogni-
tion,” Neural computation, vol. 1, no. 4, pp. 541–551, 1989.

155

[87] L. Jakowski. (2018) jakowskidev/umario jakowski: umario c++/sdl2 game
by lukasz jakowski. [Online]. Available: https://github.com/jakowskidev/
uMario Jakowski

[88] Autnomizer. (2018) Autonomizer. [Online]. Available: https://github.com/
ProjectDemooo/Autonomizer

[89] (2018) Using deep q-network to learn how to play flappy bird. [Online].
Available: https://github.com/yenchenlin/DeepLearningFlappyBird

[90] d. t. GNU. (2018) Using and porting the gnu compiler collection (gcc): Gcov.
[Online]. Available: http://gcc.gnu.org/onlinedocs/gcc-3.0/gcc 8.html

[91] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8,
no. 3, pp. 279–292, 1992.

[92] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR,
2014.

[93] R. Hecht-Nielsen, “Neural networks for perception,” 1992, ch. Theory of the
Backpropagation Neural Network.

[94] (2018) sklearn scale. [Online]. Available: https://scikit-learn.org/stable/
modules/generated/sklearn.preprocessing.minmax scale.html

[95] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore,
D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke,
Y. Yu, and X. Zheng, “Tensorflow: A system for large-scale machine learning,”
in OSDI ’16, 2016.

[96] Python2.7. (2018) Extending python with c or c++. [Online]. Available:
https://docs.python.org/2/extending/extending.html

[97] d. t. CRIU. (2018) Criu. [Online]. Available: https://criu.org/Main Page

[98] D. Merkel, “Docker: lightweight linux containers for consistent development
and deployment,” Linux Journal, vol. 2014, no. 239, p. 2, 2014.

[99] I. Habib, “Virtualization with kvm,” Linux Journal, vol. 2008, no. 166, p. 8,
2008.

[100] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight dynamic
binary instrumentation,” in PLDI 2007, 2007.

[101] W. M. Khoo. (2013) wmkhoo/taintgrind - github. [Online]. Available:
https://github.com/wmkhoo/taintgrind

[102] M. Heath, S. Sarkar, T. Sanocki, and K. Bowyer, “Comparison of edge detectors:
a methodology and initial study,” Computer vision and image understanding,
vol. 69, no. 1, pp. 38–54, 1998.

[103] D. stutz, “Introduction to neural networks,” Selected Topics in Human Lan-
guage Technology and Pattern Recognition, 2014.

156

[104] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection and hier-
archical image segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33,
no. 5, pp. 898–916, 2011.

[105] (2016) Torcs, the open racing car simulator. [Online]. Available: http:
//torcs.sourceforge.net/

[106] V. Mnih, A. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,”
CoRR, 2016.

[107] Y. You, X. Pan, Z. Wang, and C. Lu, “Virtual to real reinforcement learning
for autonomous driving,” CoRR, 2017.

[108] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “Deepdriving: Learning affor-
dance for direct perception in autonomous driving,” in ICCV ’15, 2015.

[109] M. C. Frith, M. Hamada, and P. Horton, “Parameters for accurate genome
alignment,” BMC bioinformatics, vol. 11, no. 1, p. 80, 2010.

[110] A. Biernacki and K. Tutschku, “Performance of http video streaming under
different network conditions,” Multimedia Tools and Applications, vol. 72, no. 2,
pp. 1143–1166, 2014.

[111] A. Outchakoucht, E.-S. Hamza, and J. P. Leroy, “Dynamic access control policy
based on blockchain and machine learning for the internet of things,” Interna-
tional Journal of Advanced Computer Science and Applications, vol. 8, no. 7,
pp. 417–424, 2017.

[112] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic gen-
eration of high-coverage tests for complex systems programs,” in OSDI ’08,
2008.

[113] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mas-
tering the game of go with deep neural networks and tree search,” nature, vol.
529, no. 7587, pp. 484–489, 2016.

[114] G. J. Szkely, M. L. Rizzo, and N. K. Bakirov, “Measuring and testing depen-
dence by correlation of distances,” The Annals of Statistics, 2007.

[115] “Thirteen ways to look at the correlation coefficient,” The American Statisti-
cian, 1988.

[116] C. A. Rothwell, J. L. Mundy, W. Hoffman, and V. D. Nguyen, “Driving vision
by topology,” in ISCV ’95, 1995.

[117] I. Sobel, “An isotropic 3x3 image gradient operator,” Presentation at Stanford
A.I. Project 1968, 02 2014.

[118] R. Barnes, C. Lehman, and D. Mulla, “Priority-flood: An optimal depression-
filling and watershed-labeling algorithm for digital elevation models,” 2015.

[119] (2001) Dan bloomberg. leptonica image processing and analysis library.
[Online]. Available: http://www.leptonica.org/color-segmentation.html

157

[120] M. Tepper, M. Mejail, P. Muse, and A. Almansa, “Boruvka meets nearest
neighbors,” in CIARP ’13, 2011.

[121] D. Bolme, J. Beveridge, M. Teixeira, and B. Draper, “The csu face identification
evaluation system: Its purpose, features, and structure,” in Machine Vision and
Applications ’03, 2003.

[122] Z. Kons and O. Toledo-Ronen, “Audio event classification using deep neural
networks,” in INTERSPEECH ’13, 2013.

[123] A. Acero, “Acoustical and environmental robustness in automatic speech recog-
nition,” in ICASSP ’90, 1990.

[124] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis: With
Examples in Parameter and State Estimation, Robust Control and Robotics.
Springer-Verlag New York Incorporated, 2012.

[125] D. Delmas, E. Goubault, S. Putot, J. Souyris, K. Tekkal, and F. Védrine,
“Towards an industrial use of fluctuat on safety-critical avionics software,” in
FMICS ’09, 2009.

[126] E. Tang, E. Barr, X. Li, and Z. Su, “Perturbing numerical calculations for
statistical analysis of floating-point program (in)stability,” in ISSTA ’10, 2010.

[127] D. Monniaux, “The pitfalls of verifying floating-point computations,” TOPLAS
’08, vol. 30, 2008.

[128] S. Chaudhuri, S. Gulwani, R. Lublinerman, and S. Navidpour, “Proving pro-
grams robust,” in ESEC/FSE ’11, 2011.

[129] S. Sankaranarayanan, A. Chakarov, and S. Gulwani, “Static analysis for proba-
bilistic programs: Inferring whole program properties from finitely many paths,”
in PLDI ’13, 2013.

[130] J. Bornholt, T. Mytkowicz, and K. S. McKinley, “Uncertain t: A first-order
type for uncertain data,” in ASPLOS ’14, 2014.

[131] W.-F. Chiang, G. Gopalakrishnan, Z. Rakamaric, and A. Solovyev, “Efficient
search for inputs causing high floating-point errors,” in PPoPP ’14, 2014.

[132] Y. Gu, T. Wahl, M. Bayati, and M. Leeser, “Behavioral non-portability in
scientific numeric computing,” in Euro-Par ’15, 2015.

[133] E. Darulova and V. Kuncak, “Sound compilation of reals,” in POPL ’14, 2014.

[134] C. Rubio-González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan, K. Sen,
D. H. Bailey, C. Iancu, and D. Hough, “Precimonious: Tuning assistant for
floating-point precision,” in SC ’13, 2013.

[135] M. Carbin and M. C. Rinard, “Automatically identifying critical input regions
and code in applications,” in ISSTA ’10, 2010.

[136] F. Long, V. Ganesh, M. Carbin, S. Sidiroglou, and M. Rinard, “Automatic
input rectification,” in ICSE ’12, 2012.

158

[137] M. Carbin, S. Misailovic, and M. C. Rinard, “Verifying quantitative reliability
for programs that execute on unreliable hardware,” in OOPSLA ’13, 2013.

[138] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the reliability of
unix utilities,” Communications of the ACM, 1990.

[139] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed random
test generation,” in ICSE ’07, 2007.

[140] V. Ganesh, T. Leek, and M. Rinard, “Taint-based directed whitebox fuzzing,”
in ICSE ’09, 2009.

[141] Y. Ding, J. Ansel, K. Veeramachaneni, X. Shen, U.-M. O’Reilly, and S. Ama-
rasinghe, “Autotuning algorithmic choice for input sensitivity,” in PLDI ’15,
2015.

[142] V. Dallmeier, N. Knopp, C. Mallon, S. Hack, and A. Zeller, “Generating test
cases for specification mining,” in ISSTA ’10, 2010.

[143] O. Burmeister, M. Reischl, G. Bretthauer, and R. Mikut, “Data mining analyses
with the matlab toolbox gait-cad,” Automatisierungstechnik, 2008.

[144] J. Besson, C. Rigotti, I. Mitasiunaite, and J.-F. Boulicaut, “Parameter tuning
for differential mining of string patterns,” in ICDMW ’08, 2008.

[145] R. C. Whaley and J. J. Dongarra, “Automatically tuned linear algebra soft-
ware,” in SC ’98, 1998.

[146] M. Christen, O. Schenk, and H. Burkhart, “Patus: A code generation and
autotuning framework for parallel iterative stencil computations on modern
microarchitectures,” in IPDPS ’11, 2011.

[147] F. Imbault and K. Lebart, “A stochastic optimization approach for parameter
tuning of support vector machines,” in ICPR 2004, 2004.

[148] A. H. Ashouri, G. Mariani, G. Palermo, E. Park, J. Cavazos, and C. Silvano,
“Cobayn: Compiler autotuning framework using bayesian networks,” ACM
Transactions on Architecture and Code Optimization, 2016.

[149] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and M. Ri-
nard, “Dynamic knobs for responsive power-aware computing,” ACM SIG-
PLAN Notices, 2011.

[150] A. Agarwal, M. Rinard, S. Sidiroglou, S. Misailovic, and H. Hoffmann, “Us-
ing code perforation to improve performance, reduce energy consumption, and
respond to failures,” MIT, Tech. Rep., 2009.

[151] M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and research
challenges,” ACM Transactions on Autonomous and Adaptive Systems, 2009.

[152] V. Bhat, M. Parashar, H. Liu, M. Khandekar, N. Kandasamy, and S. Abdel-
wahed, “Enabling self-managing applications using model-based online control
strategies,” in ICAC 2006, 2006.

[153] F. Chang and V. Karamcheti, “A framework for automatic adaptation of tun-
able distributed applications,” Cluster Computing, 2011, 2011.

159

[154] W. Baek and T. M. Chilimbi, “Green: A framework for supporting energy-
conscious programming using controlled approximation,” SIGPLAN Not., 2010.

[155] J. Ansel, M. Pacula, Y. L. Wong, C. Chan, M. Olszewski, U.-M. O’Reilly,
and S. Amarasinghe, “Siblingrivalry: Online autotuning through local compe-
titions,” in CASES 2012, 2012.

[156] M. F. Ringenburg, A. Sampson, L. Ceze, and D. Grossman, “Profiling and au-
totuning for energy-aware approximate programming,” in WACAS 2014, 2014.

[157] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and
S. Amarasinghe, “Petabricks: A language and compiler for algorithmic choice,”
in PLDI 2009, 2009.

[158] J. Ansel, Y. L. Wong, C. Chan, M. Olszewski, A. Edelman, and S. Amarasinghe,
“Language and compiler support for auto-tuning variable-accuracy algorithms,”
in CGO 2011, 2011.

[159] P. Liu, X. Zhang, M. Pistoia, Y. Zheng, M. Marques, and L. Zeng, “Automatic
text input generation for mobile testing,” in ICSE ’17, 2017, pp. 643–653.

[160] W. Choi, G. Necula, and K. Sen, “Guided gui testing of android apps with
minimal restart and approximate learning,” in ACM Sigplan Notices, vol. 48,
no. 10, 2013, pp. 623–640.

[161] Y. Jia, M. B. Cohen, M. Harman, and J. Petke, “Learning combinatorial in-
teraction test generation strategies using hyperheuristic search,” in ICSE ’15,
2015.

[162] R. B. Abdessalem, S. Nejati, L. C. Briand, and T. Stifter, “Testing advanced
driver assistance systems using multi-objective search and neural networks,” in
ASE ’16, 2016, pp. 63–74.

[163] P. Godefroid, H. Peleg, and R. Singh, “Learn&fuzz: Machine learning for input
fuzzing,” in ASE ’17, 2017, pp. 50–59.

[164] O. Bastani, R. Sharma, A. Aiken, and P. Liang, “Synthesizing program input
grammars,” in PLDI ’17, 2017, pp. 95–110.

[165] K. Böttinger, P. Godefroid, and R. Singh, “Deep reinforcement fuzzing,” CoRR,
2018.

[166] R. Gupta, S. Pal, A. Kanade, and S. Shevade, “Deepfix: Fixing common c
language errors by deep learning.” in AAAI ’17, 2017, pp. 1345–1351.

[167] K. Wang, R. Singh, and Z. Su, “Dynamic neural program embedding for pro-
gram repair,” CoRR, 2017.

[168] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “Combining deep
learning with information retrieval to localize buggy files for bug reports,” in
ASE’15, 2015, pp. 476–481.

[169] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” in NIPS ’12, 2012.

160

[170] P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. Lecun, “Pedestrian detection
with unsupervised multi-stage feature learning,” in CVPR ’13, 2013.

[171] W. Shen, X. Wang, Y. Wang, X. Bai, and Z. Zhang, “Deepcontour: A deep
convolutional feature learned by positive-sharing loss for contour detection,” in
CVPR ’15, 2015.

[172] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-trained deep
neural networks for large-vocabulary speech recognition,” IEEE Transactions
on , Speech, and Language Processing, vol. 20, no. 1, pp. 30–42, 2012.

[173] A. Graves, A. r. Mohamed, and G. Hinton, “Speech recognition with deep
recurrent neural networks,” in ICASSP ’13, 2013.

[174] Y. Wang, H. Mao, and Z. Yi, “Protein secondary structure prediction by using
deep learning method,” Knowledge-Based Systems, vol. 118, pp. 115 – 123, 2017.

[175] Y. Chen, Y. Li, R. Narayan, A. Subramanian, and X. Xie, “Gene expression
inference with deep learning,” Bioinformatics, vol. 32, no. 12, pp. 1832–1839,
2016.

[176] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade learning
environment: An evaluation platform for general agents,” Journal of Artificial
Intelligence Research, vol. 47, pp. 253–279, 2013.

[177] (2012) Mario ai championship 2012. [Online]. Available: http://www.marioai.
org/

[178] D. Tom and M. V. P. D, “The first level of super mario bros. is easy with
lexicographic orderings and time travel... after that it gets a little tricky.” 2013.

[179] Y. Liao, K. Yi, and Y. Zhe, “Cs229 final report reinforcement learning to play
mario,” 2012.

[180] G. Lample and D. S. Chaplot, “Playing FPS games with deep reinforcement
learning,” CoRR, 2016.

[181] T. Kremenek, P. Twohey, G. Back, A. Ng, and D. Engler, “From uncertainty
to belief: Inferring the specification within.” in OSDI ’07, 2006.

[182] T. Kremenek, K. Ashcraft, J. Yang, and D. Engler, “Correlation exploitation
in error ranking,” in SIGSOFT ’04, 2004.

[183] T. Kremenek and D. Engler, “Z-ranking: Using statistical analysis to counter
the impact of static analysis approximations,” in ISAS ’03, 2003.

[184] Y. Jia, M. B. Cohen, M. Harman, and J. Petke, “Learning combinatorial in-
teraction test generation strategies using hyperheuristic search,” in ICSE ’15,
2015.

[185] W. Choi, G. Necula, and K. Sen, “Guided gui testing of android apps with
minimal restart and approximate learning,” in OOPSLA ’13, 2013.

[186] P. Liu, X. Zhang, M. Pistoia, Y. Zheng, M. Marques, and L. Zeng, “Automatic
text input generation for mobile testing,” in ICSE ’17, 2017.

161

[187] M. Carbin and M. Rinard, “Automatically identifying critical input regions and
code in applications,” 2010.

[188] V. Dallmeier, N. Knopp, C. Mallon, S. Hack, and A. Zeller, “Generating test
cases for specification mining,” in ISSTA ’10, 2010.

[189] F. Long, V. Ganesh, M. Carbin, S. Sidiroglou, and M. Rinard, “Automatic
input rectification,” in ICSE ’12, 2012.

[190] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed random
test generation,” in ICSE ’07, 2007.

[191] P. Godefroid, H. Peleg, and R. Singh, “Learn&fuzz: Machine learning for input
fuzzing,” in ASE ’17, 2017.

[192] O. Bastani, R. Sharma, A. Aiken, and P. Liang, “Synthesizing program input
grammars,” in PLDI ’17, 2017.

[193] K. Böttinger, P. Godefroid, and R. Singh, “Deep reinforcement fuzzing,” CoRR,
2018.

[194] V. Ganesh, T. Leek, and M. Rinard, “Taint-based directed whitebox fuzzing,”
in ICSE ’09, 2009.

[195] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis, “The case for
learned index structures,” in CoRR, 2018.

