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ABSTRACT

Sagir, Fasil M.S, Purdue University, May 2020. Mobility and Safety Impacts of
Autonomous Vehicles. Major Professor: Satish V. Ukkusuri.

Connected and Autonomous Vehicles (CAV) are revolutionizing the automotive

space. We are at the cusp of a, once in a century, transformation in the automotive

space. This work strives to understand, analyze and provide insights on the various

dimensions this transition is going to impact. We begin with the exploration of the

CAV landscape which is in a continuous state of flux. We attempt to examine, analyze

and evaluate this space using semi-structured interviews with experts from across the

whole country. The interviews are supported additionally by survey questions which

further capture the expert views quantitatively. This initial exploratory study leads

us to the central questions of this study which include (1) Modeling of SAE (Society

of Automotive Engineers) vehicles from level 0 to level 5 using a simulation framework

(2) Analysis of mobility and safety impacts of SAE vehicles. (3) Building a predictive

model of the risk level of autonomous vehicles based on trajectory information.

For the modeling of AVs, the different levels of SAE were mapped to particular

functionalities. Each of these functionalities were then modeled using the external

driver model (EDM) and were tested on VISSIM to evaluate their performance. The

mobility impacts of these models were tested on a highway and an intersection envi-

ronment. The analysis were conducted for 100% penetration levels for each SAE and

also for different penetration levels

One of the most important benefits of AVs that has been touted by OEMs and

DOTs alike, are the safety benefits of CAVs. Among many industries which will

be affected by the safety aspects of CAVs, insurance industry is one of them. An

immediate challenge that lies in front of them will be to evaluate the risk level of
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different SAE classes of vehicles. This will be especially true as most of the SAE level

data is unavailable or very scarce. To overcome this limitation, we propose a novel

methodology to identify risky driver behavior for every SAE level. The framework

includes the utilization of surrogate safety measures modified for SAE levels. The

trajectory data created from SAE level simulation is used as the data set for model

training and testing which predicts driving risk. The models evaluated are logistic

regression, decision trees and neural networks. This framework provides a foundation

for modeling the riskiness of autonomous vehicles in traffic networks.
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1. INTRODUCTION

1.1 The Connected and Autonomous Vehicles Era

Connected and autonomous vehicles (CAVs) are an emerging technology that

offer the potential to dramatically improve multiple facets of transportation. These

technologies are rapidly maturing, and the time line for their wider deployment is

currently uncertain. Despite the uncertainty, these technologies are expected to bring

about numerous societal benefits, such as enhanced traffic safety, improved mobility

and reduced fuel emissions.

As the oncoming autonomous wave approaches, there still needs to be a deeper

analysis and evaluation of the impacts that they will have on various aspects especially

in the direction of mobility and safety which are the among the biggest benefits

expected of them.

1.2 Rationale for the study

The ever changing landscape of AVs needs to be examined as the key to the future

directions lies in the current emerging themes of autonomy levels, transportation-as-

a-service, interplay of autonomy and connectivity, new entrants in the automotive

space among other powerful ideas. The impact on Federal and State transportation

agencies, Original Equipment Manufacturers and motor insurance firms is expected

to be immense given the fact that this is a once in a century change in the automotive

space. There is a need to understand the issues from transportation planning and

automotive business point of view to understand the impacts more accurately and in

depth.
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Especially, in the light of current evolution of the space where every manufacturer

is coming up with various autonomous capabilities in their vehicles, there is a need

to categorize these capabilities and come up with a framework which analyze their

category level impacts.

In order to address the issue of categorization, Society of Automotive Engineers

(SAE) came up with the definition of different levels of autonomy. These definitions

identify the various autonomous levels based on who is responsible for steering, ac-

celeration, monitoring of environment and fallback performance of dynamic driving

task. NHTSA initially came up with its own definitions of the autonomy levels but

later in the FAHV published in 2017 adopted SAE levels of automation. These levels

range from 0 (no automation) to 5 (fully autonomous).

Even though there are multiple works which have modeled autonomous vehicles

but previously there has been very limited work on SAE level modeling of autonomous

vehicles and evaluating the impacts on mobility and safety.

1.3 Objectives

The objectives of the study are as follows

1. Analysis of the CAV landscape analysis

(a) Understand from the technical experts and thought leaders the evolution

of the CAV environment. This will be done using quantitative surveys and

semi-structured qualitative detailed interviews.

(b) Cover a wide range of stakeholders, from private to public domains which

has not be attempted before and hence will contribute to a 360 degree

understanding of the landscape.

2. Modeling of SAE levels

(a) Modeling of each SAE level (0-5).

(b) Modeling philosophy to use a a bottom-up approach.
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(c) Impact analysis of SAE levels using traditional and non- traditional mo-

bility measures.

(d) Penetration studies to evaluate the mobility impacts of various SAE volume

mixes.

3. SAE safety analysis and prediction

(a) Safety impact analysis of each SAE level.

(b) Build a prediction model which classifies each driver into various risk cat-

egories for every SAE level.

1.4 Outline

In chapter 1, we look at the CAV landscape and analyze it through a two step pro-

cess which includes 32 semi- structured interviews followed up by quantitative surveys

questions. The questions for interviews and surveys were from two catagories: (1)

Organization related (2) CAV related. Experts from industry, academia and trans-

portation agencies were contacted and scheduled for interviews.These stake holders

analyzed comprised of federal agencies, state agencies, OEMS, highway operators, ap-

plication developers, research institute, universities, transportation consulting firms

and investment firms. The semi structured interviews revolved around the following

topics.

1. Organization related

(a) Objectives

(b) Opportunities

(c) Threats/ Challenges

2. CAV related

(a) Interplay of connectivity and autonomy
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(b) Evolution of CVs

(c) Evolution of AVs

(d) Infrastructure requirements

(e) DSRC vs. 5G

(f) Need for standardization for connected vehicles

(g) Need for standardization for autonomous vehicles

The objective of this chapter is to expand on prior CAV works by conducting ex-

tensive interviews and surveys with CAV technical professionals and thought leaders.

CAV opinions contributed by these individuals will fill the existing void, allowing for

more informed decisions on CAV matters in the future.

In Chapter 2, we propose a novel bottom-up approach to model various SAE levels

on VISSIM in a two lane highway environment featuring an on-ramp. The SAE levels

have their features automated based on the level of autonomy. We built these models

using VISSIM as the platform and integrating various car following, lane changing

and lane centering models using the external driver model API.

The mobility impacts of each of the above levels in terms of velocity profiles,

lateral position and speed improvements due to superior lane changing algorithms

was analyzed. This was done for 100% penetration and for various other penetration

levels. Mixed traffic analysis was done to analyze the impact of interactions between

various SAE levels.

In Chapter 3, we propose a unique method to identify and predict risky driving

behaviour for different SAE level vehicles by using trajectory information. A novel

framework is provided in the absence of data for autonomous vehicle related trajectory

information. We combine microsimulation and surrogate safety measures to identify

conflicts and thereby deduce risky behavior among autonomous vehicles. The trajec-

tory taken as output from the VISSIM simulation is provided as input into SSAM

which is the software used to identify conflicts designed by FHWA. Using the conflict

information we build a model which can identify risky behavior among AVs using
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GPS trajectory information. Using the simulation dataset which comprises of GPS

trajectory and risk labels we test different machine learning models. Once tested we

compare the results for each SAE level vehicle type. Finally, using this methodology

we identify the model which accurately predicts risk for SAE level vehicles.
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2. EXPLORATION OF CONNECTED AND AUTONOMOUS

VEHICLES LANDSCAPE

2.1 Introduction

Connected and Autonomous Vehicles (CAVs) will improve upon the safety, effi-

ciency, and economics of conventional automobiles [1] - [4] . CAV technology has

the potential to save tens of thousands of lives on an annual basis through minimizing

human error in driving [5]. Also, CAV technology will enable coordination between

vehicles through cooperative cruise control and vehicle platooning [6], [7]. This will

increase vehicle density levels and decrease congestion, which has the added benefit of

improving mobility. Lastly, CAVs will provide mobility to segments of the population

incapable of driving themselves, such as the visually-impaired and elderly, through

private ownership and ride sharing in the form of robo taxi services [8], [9].

Given the potential CAV benefits, the automotive industry is prone to disruption

by CAV ventures. Full autonomy will alter the nature of the industry by eventually

rendering manually-driven cars obsolete [10]. As a result, traditional automakers

will have to increase innovation and develop AVs themselves to remain competitive.

Furthermore, ride sharing is becoming increasingly prevalent. Autonomous vehicles

will expand the disruption brought about by Uber and Lyft to automotive companies

themselves, as more vehicle sharing will occur. In addition, CAVs will increase the

importance of data in automobile operation. Using the connected vehicle technology

and the Internet of Things (IoT) framework, cars will be able to share information

with each other, improving driver awareness and creating a big data ecosystem for

vehicles [10]. This ecosystem will create a new source of revenue and attract new

competitors into the industry, including Google, Apple, and Intel. To clarify, the

term CV is used to represent connected vehicles utilizing V2X (vehicle to everything)
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technologies and the term connectivity is used in relation to V2X technology in the

vehicle [11].

The magnitude of the changes brought upon the automotive industry by CAV

technology necessitates the implementation of non-traditional practices by emerg-

ing and established automotive organizations. These include greater investments in

research and development by automotive organizations and collaboration between

automotive firms to increase the collective effectiveness of CAV technology. To make

informed decisions on how to employ these practices, OEMs, State DOTs, consulting

firms, applications developers, and other organizations must develop a comprehen-

sive understanding of the CAV space. This includes knowing the potential benefits,

impacts, developmental paths and suitability of CAV applications. This will allow

them to maximize the results generated by investment in CAV technology.

This understanding of the CAV space is necessary for any firm’s future success

in the automotive industry, as it will allow for sound strategic and tactical decisions-

making in a fast-changing industry. Consequently, it will be able to utilize CAV

technology to generate results from a business perspective over the long term. If

this is not accomplished, regardless of the firm’s size, it may fall behind due to

an absence of innovative products. For relevant stakeholders- OEMs, State DOTs,

consulting firms, applications developers, and other organizations- a comprehensive

understanding of the CAV space will allow it to innovate effectively and keep pace

with industry disruptors such as Google and Uber. To achieve future success, a firm

must know what scope and time line CAV development will take. Knowing how

CAVs will impact the automotive market is critical because it will allow a firm to

use the technology towards establishing a stable position relative to its competitors.

Moreover, the state of CAV regulatory legislation must be known. This will allow for

an understanding of whether a lack of standardization will pose challenges to CAV

development. There are no definite answers to these questions. However, having

an informed opinion on them will allow automotive firms to understand the impact

CAVs will have on stakeholders, guiding future policy decisions as a result.
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Answers to the questions by CAV technical professionals and thought leaders have

not been made widely available. These answers are extremely important because these

individuals are making design decisions regarding CAVs and supporting infrastruc-

ture, heavily influencing the technology’s developmental trajectory. Literature review

of previous studies reaffirms that there is a lack of collected opinions from individuals

with CAV technical or thought leadership backgrounds. Consequently, this study

makes a significant contribution by thoroughly collecting the opinions of CAV techni-

cal professionals and thought leaders from all regions of the United States. This array

of diverse perspectives is intended to serve as an important set of considerations and

guidelines for future decisions on CAV matters.

2.2 Literature review

In the past, there have been numerous qualitative publications based on results

gathered from survey-driven data and individual interviews relevant to connected and

automated vehicles (CAVs). These works assessed public and executive attitudes to-

wards the technology. Public attitudes towards CAV technology were investigated in

several past survey and interview-based studies. Howard and Dai conducted surveys

in a group classroom setting with likely AV adopters in Berkeley, CA as part of a

case study [12]. Adopters’ attitudes towards the technology were evaluated through

a questionnaire administered in conjunction with unbiased videos highlighting ben-

efits and drawbacks of CAV technology. A work by Virginia Tech sought to collect

generational data on attitudes towards advanced vehicle technologies. Drivers across

the United States were surveyed [13]. Zmud and Sener evaluated Austin, Texas

residents’ attitudes towards autonomous vehicles. Residents were surveyed on their

intent to use AVs [14]. Individuals who indicated an intent to use self-driving vehicles

were interviewed in person to provide further detail.

McKinsey & Company surveyed individuals from Germany, the USA, and China

who had recently purchased a vehicle to evaluate public opinions on CAV data privacy
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[15]. The survey allowed for a cross-cultural comparison of results. Nordhoff, Van

Arem, and Happee synthesized past works on consumer attitudes towards automated

driving [16]. The key contribution made was bringing a vast array of study findings

together into a single study. Works from institutions and organizations such as the

University of Michigan and J.D. Power and Associates were included in the study by

Nordhoff et al.

Executive attitudes towards CAV technology were also evaluated in several past

survey-based studies. Law firm Foley Larder LLP conducted a survey of international

automotive executives on the predominant legal and business issues influencing the

development of CAV technology in the present and future [17]. Furthermore, with

a digital questionnaire that pertained to the benefits of CAV technology, McKinsey

Company collected the opinions of automotive executives on the effects of digitization,

connectivity, autonomous driving, and software development [15]. The executive

survey indicated automotive executives’ sense of impending change in their industry

and their recognition of new challenges related to this change.

The role of Cost-Benefit Analysis (CBA) in the decision-making process for in-

frastructure projects in the Netherlands was evaluated by Mouter and others [18].

Key individuals in the Dutch CBA field were interviewed. Most of these experts

filled out a written questionnaire providing additional information on topics of inter-

est. Although not directly CAV-focused, Mouter’s publication has the potential to

be applicable to future CAV-related ITS projects that are evaluated with CBA.

While many contributions were made to the CAV field by the above publications,

they largely ignored a critical source of information. Past surveys and interviews have

acquired public and expert opinions on CAV issues from a wide variety of regions

and at various sample sizes. However, individuals with CAV technical and thought

leadership backgrounds – those working for OEMs, State DOTs, consulting firms,

applications developers, financial institutions and other organizations – have been

sparsely covered. Furthermore, the means for acquiring information from the public
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and executives has been primarily survey based. Detailed interviews collecting CAV

opinions and knowledge are extremely rare based on the conducted literature review.

This work contributes immensely to several underrepresented sources of CAV in-

formation. First, it will contribute to knowledge about CAVs from technical and

thought leadership perspectives. Also, this knowledge will be obtained from the two-

step perspective of quantitative surveys and qualitative detailed interviews, each of

which allows for a wealth of opinions and information to be extracted from every tech-

nical expert and thought leader. These interviews and the surveys will contribute a

360-degree technical and thought leadership perspective due to them including the

opinions of OEMs, State DOTs, consulting firms, applications developers, and other

organizations. Because of this contribution, the current knowledge gap between public

perceptions of CAVs and the corresponding industry beliefs will be bridged, allowing

for more informed CAV-relevant decisions to be made by public and private organi-

zations in the future. Moreover, the interviews are based on a partially structured

interview process. This allowed for responders to answer from a personal perspective.

Furthermore, the range of stakeholders that were surveyed and interviewed, from

private to public domains is extremely rare.

2.3 Methodology

The motivation behind this study is to understand the current and expected state

of Connected and Autonomous Vehicle (CAV) development in the United States.

This was accomplished by following a two-fold approach wherein both interviews and

surveys are used as means to get the stakeholders’ perspectives. It must be noted

that, although CAVs are used as a single term for convenience in this study, AVs and

CVs are treated separately for analysis when required.

To set the context of this study, it must be noted that a contribution of our work

rests in the semi-structured interview methodology employed in our research. These

detailed, partially structured interviews lasted up to an hour and were conducted
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Figure 2.1. Main stages of the study

nationwide across a wide spectrum of stakeholders, which is among the first of its

kind to the best of our knowledge. The surveys were administered primarily to

further validate and quantify the conclusions from the interviews. This is because

the transportation industry is currently going through a constant state of flux. Thus,

there is a significant amount of uncertainty in how the CAV environment will unfold.

Therefore, only a mechanism that encourages, the exploration of new ideas during the

interview process can capture the multi-dimensional aspect of this phenomena. The

multi-step process from planning to analysis of results has been broadly summarized

in Figure 2.1, and is followed by a detailed step by step description of each stage.

2.3.1 Identifying potential participants

Preliminary internet research was carried out to prepare a list of points of contact

from universities, DOTs, OEMs and other organizations working in the CAV domain.

To guide this list’s development, the United States was segmented into 10 regions. At

least two individuals were interviewed from each region. This ensured that various

regional opinions were accounted for, since the state of development of CAVs differs

by region.
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2.3.2 Designing Interview and surveys

Next, a literature review was carried out to identify gaps in past research and arrive

at potential topics of interest. The interview questions were based on the following

two major themes identified by the literature review: organization-related and CAV-

related. While the former sought to understand the impact of each organization, the

latter aimed to understand every organization’s perspective on CAVs. The structure

of the interviews was as follows:

1. Organization related

(a) Objectives

(b) Opportunities

(c) Threats/Challenges

2. CAV related

(a) Views on the future of CAVs

(b) Obstacles in adoption

(c) Challenges due to lack of standardization

(d) Maturity of technologies

(e) Required levels of maintenance of infrastructure

Interviews were semi-structured, as they were customized for different types of

stakeholders. Moreover, the questions were subjective to allow the interviewee to

answer from a personal perspective. The survey was principally designed to perform

a supporting role to the interviews. A survey previously conducted by Foley and

Larder LLP [17] looks at important themes in the CAV landscape, but is limited in its

scope and depth because the respondents are mainly business executives from OEMs,

technology and financial firms. We believe it is very critical for policymakers and

other stakeholders to have a very clear understanding of each stakeholder’s opinion
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in the CAV environment to take optimal decisions. Therefore, we have expanded

upon Foley and Larder’s work to include technical experts and thought leaders from

private, public and university domains. The main themes identified for the survey

were evolution of CAVs, attractiveness of different SAE levels, and competition and

area of focus in the CAV domain. Some of these concepts are captured in the Foley

and Larder survey [17]. Therefore, our study employs 9 questions from Foley and

Larder [17] that are relevant to the ideas we are exploring. The study expands

upon that of Foley and Larder by introducing 6 additional questions relevant to the

explored ideas. This resulted in a final survey containing 15 total questions being

distributed to all respondents.

2.3.3 Contacting by e-mail and sending out the survey

Once the interviews and surveys were designed, the next step was to contact po-

tential participants. A formal e-mail introducing our research group and the objective

of our study was sent out to the previously-prepared list of contacts. The survey was

prepared using Qualtrics and was also sent out in this e-mail along with the request

for a phone interview.

2.3.4 Scheduling and conducting interviews

A total of 28 responses were obtained from the e-mails sent out in the previous

step. For all responders, phone interviews were scheduled and permission to record

the interview for transcribing purposes was sought. A list of interview questions was

also sent out beforehand. This helped the interviewees pace their responses as per

the availability of time.
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2.3.5 Analyzing the results

At this stage, the raw data at hand was comprised of responses from the survey in a

csv (comma separated value) format and audio files of the recorded interviews. Infor-

mation from the recordings was then summarized in a document for easy reference.

Thereafter, the data from survey and interviews was assessed to detect important

trends and patterns. Based on the trends thus identified, recommendations for dif-

ferent stakeholders were developed. These results and recommendations have been

discussed in subsequent sections.

2.4 Results

2.4.1 Stakeholder Analysis

This section provides a stakeholder analysis of the players in the transportation

industry. Figure 2.2 details the different stakeholders the interviews covered. We

conducted 28 interviews. These involved a total 31 individuals due to the occurrence

of several multiple-person interviews. Due to the highly competitive nature of the

industry and the inherent criticality of the transition, the response rate between

different stakeholders varied significantly. For example, even though some of the

private stakeholders, especially OEMs and application developers, are among the

most impacted in the transition, they had a low response rate. Conversely, the state

DOTs were eager to discuss their views of a CAV future and plans to ready themselves.

To elaborate on the term transition it encompasses the changes in the transportation

industry that are ushered in due to CAVs. Below is an analysis of each stakeholder.

Federal agencies

Federal agencies like USDOT, NHTSA, FHWA, and ITS JPO are keen on intro-

ducing CAVs on the roadways. A study done by NHTSA found that 94% of road
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Figure 2.2. Profile of Interviewed Stakeholders

accidents are attributable, at least in part, to human error (NHTSA, 2008). These

agencies believe this can error avoided by the introduction of AVs. In its first ever

guidance on AVs, NHTSA in 2016 discussed guidance for AV performance, model

state policy, and regulatory tools (NHTSA, 2016). Also, it embraced 6 levels of SAE

automation in its guidance. In 2015, FHWA released the guidance for V2I technology

within a connected environment (FHWA, 2015). Though this guidance is not manda-

tory, it intends to support the transition when taken up by public agencies. ITS JPO

has floated multiple initiatives to push forward an intelligent transportation system

environment. It conducted a connected vehicle safety study between 2011 to 2013

to assess the safety impacts of CV applications on transit and light weight vehicles.

ITS JPO has also funded a 100 million USD program to implement CV applications,

which has already begun in three cities.

State DOTs

The state DOTs are trying to build capabilities in the agency to adjust to a fast-

changing transportation landscape. Many of them are building roadmaps to make

sure that they are not caught by surprise. The leading DOTs are trying to focus on

research and implementation of various CV applications. Wyoming, New York and



16

Florida are part of the CV pilot where they are testing freight, safety, and toll related

CV applications. Various states have implemented different levels of regulations to

manage AVs on their roads. States like California and Arizona have openly embraced

AVs on their roads, while other states have restricted access. Other initiatives, such

as pooled fund studies, have been very useful for state DOTs. This is because pooled

fund studies assist the implementation of solutions to problems faced by states and,

at the same time, can lean on the experience of the more proactive states. State

DOTs are involved in various challenges, like the signal timing challenge, which will

further push their involvement in the area.

OEMs

All OEMS are keenly observing this transition, as it has the potential to shift the

balance from vehicle ownership to transportation-as-a-service. They will need to be

very proactive to make sure that they ride this wave or take the risk of being left

behind by the multiple new players in the market. The traditional automakers were

initially slow to react, but, with more technology firms coming into the space, all the

major firms have ramped up the focus on AVs and have communicated very optimistic

time lines for launching their automated vehicles. They are aware of the challenge due

to the transition from retail format to transportation-as-a-service and are evaluating

business models that will help achieve this. They are planning to collaborate with

ride hailing apps, which have had very good success in this area.

Highway Operators

Highway operators are excited about the implementation of the new CAV tech-

nologies. They are hoping that new technologies can provide drivers with more in-

formation to make better decisions. They believe applications such as curb speed

warning, intersection entry assist, pedestrian connected crosswalk, signal timing con-
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trol based on flow can improve safety and mobility, which are their two prime focus

areas.

Transportation consulting firms

The consulting firms are in a unique position. Until now, they were advising their

clients in the public and private sectors regarding what to do in terms of transporta-

tion planning and design. With the advent of the CAVs, they find themselves in a

spot where they need to learn quickly before they can guide. Consulting firms are

ramping up their CAV consulting arms with multi-disciplinary teams to tackle the

problems from various angles.

Application developers

Applications developers see substantial opportunities in the space opening up. The

number of CAV applications has increased tremendously in the past few years. CV

applications have grown significantly in the areas of safety, mobility, environmental,

and road weather space. In the AV space, multiple applications, including adaptive

cruise control, lane keep assist, traffic jam assist, forward collision warning, parking

assist, and automatic emergency braking, are being deployed. Furthermore, more

sophisticated applications are being developed.

Investment firms

Investment firms recognize the CAV disruption as a once in a century kind of an

event. They opine that the biggest investment returns occur when a legacy industry

is subjected to disruption. For automakers, this disruption is driven by OEMS and

autonomous vehicles. Wealth is created when dynasties transition or dynasties fall,

both of which is happening in the transportation industry. Finding the best start up

can be a big challenge. For example, even if an investment firm knows that LIDAR is
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the next big thing that goes into AVs, there are many companies working on LIDAR-

related ventures. One needs to obtain detailed information on all startups to make

the best decision regarding which one to invest in.

Universities and Research Institutes

Universities and research institutes are playing a key role in the development

of CAV technologies. They are not only working on theoretical problems, but are

also collaborating with state agencies and private institutions to study the impact

of various state-of-art technologies. Based on these studies, universities and research

institutes provide recommendations on how to improve CAV technologies. Some of

the research universities, such as the University of Michigan, have helped set up

testing grounds for new CAV applications

2.4.2 Interviews

In this section, we discuss the results of the interviews in two parts: organization

related interview results (Table 1)and CAV related interview results. The organization

related interview results are tabulated to provide a comparative understanding of

stakeholders across different issues.

Organization-Related Interview Results

In this section, we discuss the various objectives, opportunities, threats, and chal-

lenges each of the players face in the CAV domain.

1. Federal Agencies

Objectives: Create a framework for seamless integration of CAVs from a policy

perspective.
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Opportunities: Mandating V2V technology will make the road systems safer

and more efficient through widespread information sharing and movement op-

timization.

Threats/Challenges: A national level problem relating to CAV technology

is the lack of comprehensive regulations, which effects stakeholder actions and

slows them. The interoperability of connected vehicles across state boundaries

is in question due to a lack of regulations standardizing the technology.The

federal government has made a significant investment into DSRC technology. If

5G turns out to be a better option, there might be legacy issues.

2. State Agencies

Objectives: Focus is on becoming more aware of CAVs and the impact they

will have on transportation planning.

Opportunities: CAVs can improve deceleration profiles at signals, transit

schedule reliability, physical road conditions and mobility under poor visibility

with CV applications. From a safety perspective, state agencies see potential

in the technology to improve driver awareness. It can reduce driver fatalities

to zero if properly implemented. DMVs can be restructured if AVs become

common. Less people will require licenses, making DMVs easier to operate.

Threats/Challenges: In the future, AVs will necessitate new transportation

planning. For example, instead of commuting in their own vehicles, a portion

of the population will commute in AVs. The logistics of this process are very

complex and need to be determined by DOTs across the nation. For instance,

it is unknown whether AVs will decrease the demand of urban parking, transit,

or vehicles in general.

CAV industry is moving rapidly, and it is hard for DOTs to stay abreast of

what different states are doing, what is going on in different countries, what

each company is saying in terms of their timeline and the changes in technology

like Lidar, camera systems etc.
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3. OEMs

Objectives: Maintain market position by investing in CAV technologies. Con-

tinuous testing of their technologies will improve their efficiency and safety lev-

els.

Opportunities: There are new business opportunities. For example, transportation-

as-a-service is exciting for the OEMs.

Threats/Challenges: Many new players are entering the industry. Technol-

ogy companies, which are not traditional auto manufacturers, are a potential

threat to established OEMs.

4. Highway Operators

Objectives: Interested in the implementation of CV applications as well as

how CAV deployment will impact their operations.

Opportunities: Access to CV data for improved traffic operations.

Expecting to see benefits to show early. Use new technology to fill in the gaps

of the current technology.

Threats/Challenges: Integration of new technology with the old technology.

Lots of the new technology requires high saturation rates.

5. Application Developers

Objectives: In the short term, they will focus on revenue generation by pro-

viding engineering services to big organizations. Additionally, they will focus

on building intellectual property with the suite of development tools and appli-

cations from both the vehicle and infrastructure side.

Opportunities: Focusing on optimization of traffic flow and collision avoidance

will drive a lot of business towards DSRC and 5G technology in the CV space.

Threats/Challenges: The government announced two years ago that they

were going to mandate connected vehicle technology in automobiles by 2020.
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That mandate still has not occurred, and it is not clear that it ever will. So,

that uncertainty creates a threat all by itself. People are poised to move forward,

but do not necessarily want to without that mandate occurring.

6. Research Institutes and Universities

Objectives: Identifying new challenges with the oncoming revolution and find

solutions. Multidisciplinary expertise is available to tackle intricate, cutting-

edge problems

Opportunities: Multidisciplinary expertise is available to tackle intricate,

cutting-edge problems.

Threats/Challenges: Recommendations and solutions can get outdated due

to the fast-paced nature of the CAV landscape.

7. Transportation Consulting Firms

Objectives: Helping clients become educated about the technology and helping

them to figure out what they need to do from planning, policy, and engineering

perspectives.

Their primary focus is on supporting public agencies. They also are looking to

play the role of a liaison between DOTs and technology companies in imple-

menting CAV solutions.

Opportunities: The biggest opportunity will be to change the mindset of how

to do their planning. They will need to transform into a more agile and adaptive

process, while constantly monitoring the changes in real time and adapting their

interpretation and investment ideas.

Threats/Challenges: A huge threat is that they will need to restructure their

teams to include more ITS officials to work with CAVs.

They will need to shift from a traditional civil engineering firm to an interdisci-

plinary organization. They are growing their emerging technologies’ practice to

bring people with ECE and CS backgrounds into the fold for the 21st century.
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Most of their clients are not even hiring them yet for CAV related projects be-

cause they do not know what they will need in this space. The more progressive

clients are starting to talk about roadmaps required regarding CAVs.

8. Investment Firms

Objectives: They are looking to enter the supply chain and would like to

position themselves for higher level vehicles. They believe highly autonomous

vehicles will have a disruptive impact on the market.

They are focusing on developing revenues and relationships now so that they

are well positioned for the medium term.

Opportunities: There is significant interest from big corporations in terms of

finding the right businesses to fund. The investment firms will be the connection

between the big corporations and CAV technology startups.

Threats/Challenges: Lots of investment firms are specifically focused on au-

tonomy and, because of that, they are very open to risk. This is especially true

when they are investing in currently unprofitable startup companies. The time

delay to market will put a strain on these investment firms.

CAV-Related Interview Results

In discussion with the respondents, there are some key concepts that arose of

critical importance.

1. The interplay of connectivity and autonomy

The views of industry and state agency figures are divided on the potential inter-

play between connectivity and autonomy. Industry figures believe connectivity

and autonomy are mutually exclusive. In their opinion, it is hard to maintain

connectivity through all scenarios of driving. When connectivity was proposed,

then machine learning and computer vision were nascent technologies. These
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technologies have since developed by leaps and bounds. Additionally, the pro-

posed rulemaking [73] timeline is uncertain, which could result in very few

OEMs setting up connected devices in their vehicles. In such an unregulated

environment, CV penetration will be insufficient for connectivity to be effec-

tive. Due to the above reasons, OEMs are not relying on connectivity for their

autonomous systems. Although corner cases can be supplemented by connec-

tivity. For example, the trajectory can be more reliably predicted if the vehicles

can receive the GPS position of the vehicles ahead of them through CV appli-

cations. Nevertheless, automakers are not currently relying on these kinds of

applications to improve vehicle performance.

The state agencies, on the other hand, support connected automation. They

believe that connectivity integrated with automation, can improve vehicles’ ca-

pabilities situational awareness and make them safer. This will be superior

to an exclusively autonomous vehicle. Transportation consultants opine that

connectivity is only inevitable and will make autonomous vehicles more func-

tional and safer. Despite a support for connectivity along with automation from

most stakeholders, automakers are building functional autonomous cars with-

out connectivity. This is due to advanced automated systems and uncertainty

on mandating connectivity in vehicles.

2. Evolution of CV

Most of the respondents from state agencies have stated that the advancements

in CVs are already underway. CV applications are in various stages of design

and testing to improve vehicle safety and mobility. Many cars have embed-

ded cellular and Wi-Fi technology, which is being used for transmitting traffic

and software updates. Their evolution will depend on the public sector, as

rulemaking mandating their standardization and implementation would rapidly

expedite CV technology’s introduction rate. One of the participants had an

optimistic view that connected devices will be in most new vehicles produced
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by 2020. The consensus view is of measured optimism for the growth of CVs,

given the uncertainty on the proposed rulemaking. In fact, several of those

interviewed said that the Trump administration seems to be reluctant to issue

a federal mandate for connectivity.

3. Evolution of AV

Many industry respondents observed that the evolution of AVs will bifurcate

into two different directions. One direction will be the deployment of semi-

autonomous Advanced Driver Assistance Systems (ADAS) in vehicles via the

traditional retail market route. The other direction will be the deployment

of highly autonomous vehicles via transportation-as-a-service concept. These

vehicles will be owned and operated by new age taxi applications or by OEMs

themselves.

We are on the cusp of a major change in the traditional supply chain system

in the automotive industry if the above views materialize. The biggest mo-

tivator for pushing for this change is the lack of a profitable business model

for the highly autonomous vehicles (HAVs). Due to the multiple sensors that

the HAVs will be equipped with, their market price will be out of range for a

large proportion of consumers. One way OEMs believe will reduce these costs

and give them greater control over the vehicles is to introduce HAVs via car

sharing services. Under the transportation-as-a-service idea, the vehicles will

not be owned by individuals, but rather will consume transportation service

provided by a service provider. As a part of this plan, the HAVs, which will go

by the name of Robo-Taxis, will operate in geo-fenced cities. Geo fencing is the

defining of geographic boundaries using GPS systems. The customer will con-

sume the services and the service provider will manage the fleet. Interestingly,

due to significant difference in the business models and technologies for semi-

autonomous vehicles and HAVs, the interactions within the OEMs, between

these two departments does not seem to be strong.
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4. Infrastructure requirements

One of the concepts explored was whether industry participants should build

vehicles based on current roadway conditions or should DOTs improve the road

infrastructure. Some industry participants believe that they need to make AV

technology work on road conditions that exist as of today. However, other

industry participants believe it is not an either-or question. They believe it

is in the state’s best interest to provide good quality roads, signs, and road

markings for the vehicles that operate on them. At the same time, it is the

technology’s responsibility to be able to safely operate on the current state of

road infrastructure. The state can choose to not maintain the infrastructure as

well as it is mandated to, but this could cost lives and hurt developments of

CAVs in the state.

Although the state agencies recognize the need for improvement, they maintain

that it will be a big challenge to make sweeping changes to their massive roadway

networks. From a practical standpoint, they opine that the vehicles should be

able to perform reliably on the existing roadway infrastructure. Some minor

changes can be done by the DOTs, but if there is a need to overhaul the entire

infrastructure, that will not be a feasible option. The research institutes believe

that state agencies should explore public–private partnership options to fund

the infrastructure improvements.

5. DSRC vs 5G

While rulemaking is currently in the process of being instituted to mandate

DSRC, proponents of a competing technology, 5G, are challenging the legiti-

macy of such a requirement. The FCC wants to reserve space for 5G in the 5.9

GHz spectrum to perform vehicle safety functions similar to those performed by

DSRC, while also serving an entertainment purpose through expanding internet

access [36]. It must be noted that the FCC currently has regulations on DSRC

technology, specifying licensing and service rules. 5G is “still very much in the
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draft stages” [21]. Standards defining details even as simple as what the term

“5G” means are being drafted [21].

Despite a lack of current development, 5G will eventually be able to “compete

with DSRC in terms of latency, security and guaranteed throughput”, per Do-

minique Bonte, an ABI Research vice president [22]. The key advantage of

5G technology over DSRC is that it will run off existing infrastructure: current

wireless networks. 5G technology upgrades will still need to be made at cellu-

lar stations, but the infrastructure is present to support them. On the other

hand, DSRC’s adoption will require taxpayers to fund a national introduction

of DSRC roadside stations. 5G can also be used for entertainment purposes,

which will enable it to be a unifying connectivity technology for cars through

integrating safety and entertainment features [22].

6. Need for standardization of connected vehicles

The biggest challenge faced by CVs will be communication protocols. Standard-

ization of communication to ensure interoperability is a challenge. Therefore,

it will be necessary to achieve this. State DOTs mentioned that there are no

directions from federal levels of CAV standards. This is going to slow down

the process. The downside of having standardization is the potential for the

people writing regulations to not have an adequate understanding of CAV tech-

nology and consequently box the industry into a corner. The state agencies can

get monetarily affected if there are sweeping changes required to adhere to the

required standards.

7. Need for standardization of Autonomous vehicles

Currently, there is a lack of standardization. Different companies are looking

at different technologies and there is uncertainty regarding what standards are

appropriate. As a result, most major firms are developing their own capabilities.

For now, it is acceptable not to have standardization because the solution space

needs to be analyzed for the best solution.
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2.4.3 Surveys

The surveys were the second part of the two-step analysis conducted, to validate

some of the conjectures drawn from the interviews. Results from the survey are

presented below, grouped into five themes. Questions with superscript as 1 allowed

selection of multiple options as response and questions with superscript as 2 are

employed from Foley and Larder study [17].

Path to CAV Development

This theme intended to understand how different stakeholders expect CAV tech-

nology to develop. In general, the path to CAV development is expected to be evo-

lutionary Figure 2.3a and Figure 2.3b While this is the widely held opinion for

CVs, a significant proportion of the respondents do expect AV development to be

revolutionary.

Figure 2.3 discusses the obstacles to CAV growth. Maturity of technology is the

most important concern for AVs. Regulatory and safety concerns are also significant

for AVs. In addition, price, privacy, and regulatory roadblocks are expected to be

major obstacles to the growth of CVs. The privacy issue is in line with the intuition

that it is connectivity which creates privacy concerns, not simple automation.

Figure 2.3 shows the challenges perceived by organizations in CAV development.

In the wake of auto manufacturers promising to have CAVs on the roads by early

2020 [23], most of the respondents acknowledge that technology not being ready for

deployment is the biggest challenge for them. The next big issue is infrastructure not

being of acceptable quality.

Attractiveness of different SAE levels

This portion sought to recognize the expected short-term appeal of different SAE

levels of automation. . Figure 2.7 shows that SAE level 4 is expected to be the most
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Figure 2.3. Path of CAV development
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attractive to the consumers. This aligns with the observation that most organizations

in the sample (around 70%) are focused on automation levels at or above SAE level

4. SAE levels 2 and 5 are also being focused upon by a significant proportion of the

respondents. The question in Figure 4a allowed selection of multiple options as a

response.

The Expected Future of AVs

This theme explored the stakeholders’ opinions on some key questions related to an

autonomous future (Figure 2.4). Figure 2.4a caters to the dependence of automation

on connectivity. Interestingly, the percentage of respondents who expect automation

to be effective without connectivity is significantly higher (25%) than those who do

not (7%). Figure 2.4b investigates the penetration of AVs in terms of expected

sales, which revealed nothing concrete. In Figure 2.4c, the respondents expect all

legal issues to be critical. Nevertheless, data management, attributing liability in an

accident and cyber-attacks seem to be more significant as compared to others.

Organization Specific

Organization specific questions intended to understand what organizations are fo-

cusing on to prepare themselves for a CAV future, as shown in Figure 2.5a, 2.5b, 2.5c.

While almost half the respondents are focused on AV development, the percentage

focused on developing CVs is at least half.

Competition

This theme aimed at capturing the dynamics between different stakeholders in

terms of their competitors and perceived threats. Figure 2.6a shows competition is

high amongst the stakeholders, especially technology companies. Furthermore, Figure
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2.6b shows that around 80% of the respondents expect the new entrants to disrupt

the market, thereby increasing competition.

A summary of the survey results was discussed above. The next section explores

these results in detail to identify important trends and inferences.

2.4.4 Analysis

Interviews

A complete analysis of the stakeholder interviews was conducted. The various

stakeholders involved are excited about their participation in this transition, which

could be the new face of transportation as we know it. However, the incentive for

each stakeholders is different. The private sector aims to maintain its market share

Figure 2.4. Expected future of AVs
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and remain relevant to customers. The public sector’s focus is to improve vehicle

mobility and safety. In spite of the differences in objectives, both sectors are extremely

interested in making this a success.

The challenges that the private sector faces are uncertainty in the choice of tech-

nology for CVs, the time line for mandating standards for CVs, the evolution of

Figure 2.5. Organization specific

Figure 2.6. Competition
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industry structure for AVs, and competition from new entrants. On the other hand,

the challenge for the public sector is to understand the technology to pave the right

path for the industry. Some of the challenges that the stakeholders face are due to

the actions of the other players and hence can be solved by stronger partnerships.

Currently, the partnerships between the stakeholders are mainly limited to supply

chain alliances.

One of the main reasons for private players to refrain from collaborating is the

threat of competition [24]. Nevertheless, there needs to be a more concerted effort

to have strategic partnerships. Collaboration will improve the effectiveness of their

efforts significantly. On the other hand state agencies have been more successful in

building partnerships to enhance the CV efforts. There are multiple coalitions, pooled

fund studies, and pilot programs which endeavor to assemble the various players in a

collaborative venture [25] - [27].

The lack of clarity about the CAV future and each of the stakeholder’s role in it

is very apparent among all the players. This is understandable, as this crossover to a

new paradigm is momentous. There is a clear trend of isolated efforts by the players

to maximize their individual performance.

The evolution of the AV space has taken an unexpected turn recently. The AV

industry has made good progress in building the technology to achieve automation.

Figure 2.7. Attractiveness of different SAE levels
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But there has been as much clarity on the business model component, especially for

the highly automated vehicles (HAVs). HAVs were initially thought to be introduced

through retail. Due to their high price, the retail market will be modest at best.

Recently, in the light of the success of taxi hailing services, the business model for

HAVs has been shifted to a Robo-taxi model [27]. This means they are expected to

enter the market via transportation-as-a-service model. Prices of the transportation

service will be minimized by high vehicle utilization and no driver overhead. These

will mainly be categorized as SAE 4 level vehicles. The deployment of these robo-

taxis will be in geo-fenced cities. In terms of managing these vehicles, the OEMs will

either deploy their own fleet of vehicles or partner with the ride hailing companies

like Uber and Lyft. The operations of these vehicles will be monitored by the OEMs

to ensure that they are functioning in their Operational Design Domain (ODD).

There are divergent views held by the various stakeholders on the need for con-

nectivity in autonomous cars, but some opinions take a more moderate approach. AV

technology was dependent on connectivity when it was in its infancy. Despite this, in-

dustry participants believe the way forward for AVs is to be completely autonomous.

The private sector does not want to over-depend on connectivity, as there is no con-

crete time line on the DSRC mandate and other V2I implementations. Therefore,

to have complete control on the performance of AVs, they prefer a design that only

requires AV technology to function. On the other hand, state agencies believe that

connectivity is imperative for autonomous vehicles. According to them, AV perfor-

mance without connectivity will be suboptimal. Hence, federal and state agencies

have invested significant resources to develop V2V and V2I communication and will

want to see this investment result in some useful applications.

The views on the role of state agencies in infrastructure maintenance and im-

provement to suit AV needs are divergent. The state agencies’ biggest challenge to

cooperate in this dimension is the lack of monetary resources. Any change needed

for implementation at the city level or greater will put a strain on the budget of the

DOTs. In fact, state DOTs may need assistance from the federal level to implement
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any sweeping changes. The OEMs understand this situation. They do not rely on any

significant infrastructure improvements to facilitate AV performance. However, they

certainly expect that states will maintain their infrastructure up to certain standards,

such as preserving lane markings. Nevertheless, OEMs will need to make sure AVs

can navigate under non-complaint conditions, as they will surely be encountered.

The public sector is the main actor pushing the advancements in CV technology.

There are multi-directional efforts in research, design, testing and deployment of CV

applications. Many state DOTs have established their own CV research and develop-

ment programs to better implement CV applications for their unique requirements.

There are many concerted efforts as well, wherein multiple states are working to-

gether on problems that collectively concern them [28]. In addition, there are pilot

programs and other national level programs initiated by the USDOT. Although these

efforts are in the right direction, they will still need to be streamlined at some point

at the federal level to accelerate the implementation of the work labored by different

entities.

Surveys

From the survey results presented above, the following trends in stakeholders’

views can be inferred. These have been discussed in detail below:

1. Immaturity of Autonomous Vehicle Technology

Concerns regarding the maturity of the technology are noticeable. Most respon-

dents perceive maturity of technology and safety concerns to be the biggest ob-

stacles to the growth of AVs(Figure 2.3c). Along similar lines, most respondents

chose “Technology not being ready for deployment” as their biggest challenge

in developing CAVs (Figure 2.3d). Furthermore only 13% respondents think

that SAE level 5 will be the most attractive to consumers in the next decade,

as opposed to 47% in the favor of SAE level 4 (Figure 2.7b). In fact, the same

can also be loosely inferred from the responses in Figure 2.4b, where only 30%
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respondents indicated AVs will contribute more than 40% sales in the coming

decade. Thus, autonomous vehicle technology is not mature enough for deploy-

ment, which jeopardizes their launch by the early 2020s as promised by most

car manufacturers [23].

2. Attractiveness of SAE level 4

SAE level 4 is expected to be the most attractive to consumers in the next decade

(Figure 2.7). Consequently, most of the surveyed organizations are focused on

implementing SAE level 4 Figure 2.7. SAE level 4 corresponds to the level of

automation where the vehicle can drive itself completely. If it encounters any

unprecedented situation, it seeks human intervention. SAE level 3 lacks this

aspect of handling the situation if the requested human intervention is delayed.

SAE level 5, on the other hand, corresponds to complete automation wherein

the vehicle does not need human interference at all [29], [30]. Consistent with

the previous conclusion, a lack of maturity on the technology side undermines

the short-term feasibility of SAE level 5. In contrast, the attractiveness of

SAE level 3 is hampered by its instability when dealing with unexpected road

conditions [31]. On the whole, it seems reasonable to expect high attractiveness

of SAE level 4 autonomous vehicles in the coming decade.

3. Evolutionary Path of Development of CAVs

The path to CAV development is expected to be evolutionary (Figure 2.3a and

Figure 2.3b, i.e. CAVs are likely to grow in a gradual step-by-step fashion over

the coming decade. The notion of evolutionary change is opposite to the idea

of revolutionary change, in that the latter implies sudden and forced change

within a short stipulated time period. This can also be inferred from Figure

2.4, which shows that the contribution of AVs in sales is not expected to be

high in the next decade, thereby indicating that AVs will gradually penetrate

the market.
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4. Transportation-as-a-service There is growing consensus that the evolution of

autonomous vehicles will take two paths. One path features lower level SAE

vehicles being introduced in the traditional retail fashion. For HAVs, the path

will be different, as OEMs and transportation service providers will deploy

level 4 and 5 vehicles via transportation-as-a-service. The evolution of CVs

will depend on the implementation of the proposed rulemaking. There are

other components, such as need for standardization of applications, development

of the technology, and collaborative research on V2V and V2I applications,

that will impact the evolution. The business models necessary to make SAE

4 vehicles viable are still debatable in the industry. One of the advantages of

SAE level 4 will be the removal of the human driver from the equation, reducing

the operating cost of vehicles. SAE level 4 vehicles will not come out in retail

format, as the market for them at current prices will be lackluster. Therefore,

they will be deployed as robo-taxis for transportation services. The deployment

of robo-taxis will be done city-wise. Since the SAE level 4 vehicles operate only

in their ODD, they will be deployed in geo-fenced areas.

5. Disruption of Automotive Industry

It can be inferred from the survey responses that the emergence of CAV tech-

nology is almost certain to disrupt the existing automotive industry. 80% of

the responses in Figure 2.6 consider it likely. In fact, owing to this develop-

ment, technology companies are expected to emerge as strong competitors in

the market Figure 2.6. This can also be seen from organization-specific data in

Figure 2.2, where a significant number of companies focused on technological

applications seemed to have ventured into the market.

2.4.5 Recommendations

From our analysis of the interviews and surveys conducted with various stake-

holders, there were a few themes that stood out. Based on the discussions and inputs
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from the interviews we present recommendations to increase momentum towards a

CAV future.

OEMs need to focus on testing the AV technologies to make sure they perform

in all scenarios. This entails experimenting with several variables: road and weather

conditions, traffic states, time of day, and more. Testing is of prime importance to

ensure the safety of the passengers and other traffic. Also, to ensure wide acceptance

of AVs, OEMs will need to convince customers of the safety and mobility benefits.

Additionally, OEMS should partner with state agencies to build collaborative efforts

to streamline AV development. Moreover, OEMs will need to change how they operate

to compete with new players like Tesla. To accomplish this, they should think of

themselves as a transportation service provider instead of a automaker [32] - [33].

They will further need to collaborate with the ride hailing companies.

From the overwhelming consensus of the interviews conducted, state agencies

should prepare for an evolutionary CV development path. The deployment of CVs

is going to take a while. Since the technology and standards will evolve significantly

during deployment, the state agencies interested in CVs should focus on research and

development instead of deployment for now. State agencies should wait for the DSRC

5.9 legislation to pass before deploying CV technology. They should collaborate with

other states to be a part of CV research, thereby minimizing the research investment

required. Given DSRC’s established nature, it should be each state DOT’s primary

area of work in the present and near future. They should also stay informed with 5G

developments, but DSRC should be the agencies’ focus for CV infrastructure. To cap-

ture the advantages of CAV technology, state agencies should identify key weaknesses

in their road systems and determine connected vehicle applications that can rectify

the issues. State agencies should also build ties with research universities to get assis-

tance in learning about CAVs through research projects. Proper management of the

technology will require expertise in knowledge outside civil engineering. Therefore,

state agencies need to hire experts in ECE, systems engineering, and systems opera-

tions to operate CV technology. Application developers who are focusing on the CV
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space should be flexible with regards to communication systems. Currently, DSRC is

preferred by most stakeholders, but there are implementations of 5G in Europe. 5G

technology may become dominant as an alternative technology for CV applications.

In the AV space, the technology developers will need to focus on achieving the desired

functionality at lower costs to be successful. Also, untapped potential exists in the

opportunity to provide AV platforms that are interoperable.

Firms invested in CAV technologies will be required to balance their portfolio to

account for uncertainties. The uncertainties can be due to superior new technologies

or from delays in the deployment of CAVs on road. In these scenarios, they will

be impacted by reduced revenue streams and lower value for their investments. To

alleviate these concerns, they should provide support to the companies invested in.

The nature of support can include providing training for how to scale operations

and networking with different players in the transportation industry to improve their

product. To have an edge, they need to build strong ties with leading research teams

to stay abreast of the latest technological developments and understand how that

impacts their current investment.

Research institutes and universities must adopt an interdisciplinary approach to

solve problems in the CAV space. Collaboration among university disciplines is re-

quired to perform meaningful research. Consulting firms that are looking to build

expertise in the CAV space will face a steep learning curve attributed to the ever-

changing CAV landscape. The expertise of their teams working on CAV related

projects will need to include other disciplines as well, which will help provide a mul-

tidimensional understanding of the issues.

2.4.6 Conclusions

The opinion on the roadmap for both AVs and CVs is divided between being

revolutionary and evolutionary outlooks. This is because there are many roadblocks
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in front of CAVs that presently lack a clear solution. The respondents’ outlooks are

consequently split on this point.

Among the main obstacles impacting large scale deployment for autonomous ve-

hicles are the public perceptions of the safety and cost entailed by AV ownership.

Standardization in the AV space is not needed right now, as the best applications

are still being developed. Hence, there needs to be freedom for innovations. Stan-

dardization in CV applications, on the other hand, is required. This is because

interoperability is of key importance in CVs. The maturity of CV technology is, to

a large extent, acceptable across all participants. They believe it is only a matter

of time before glitches are removed. However, the real challenge with AVs is to take

care of potentially lethal glitches, such as poor infrastructure resulting in crashes.

The AV industry is not relying on state agencies to improve infrastructure condi-

tions. Furthermore, state agencies also agree that changes and improvements in all

critical areas will require significant funds and time.

Connectivity will be an inevitable consequence of the need for more information

in a vehicle. However, some industry players believe connectivity will not play an

integral part in improving vehicle mobility and safety. On the contrary, state agencies

believe connectivity will play a role in enhancing the mobility and safety of vehicles.

The partnerships across CAV stakeholders are not very strong, one of the reasons is

because automakers and other private players did not need to collaborate with public

agencies to such a significant extent until now. A strong partnership between the

private firms and public agencies can guide the roadmap of the evolution of CAVs in

a more efficient way, but this will require significant efforts from all parties involved.
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3. MOBILITY IMPACTS OF AUTONOMOUS VEHICLE SYSTEMS

3.1 Introduction

Autonomous vehicles (AVs) are a rapidly advancing technology that will revo-

lutionize numerous aspects of driving: what individuals drive, how they drive, and

whether they drive at all. Recently, the evolution of AV technology and readiness for

deployment has been rapidly expediting. This is evidenced through the emerging AV

OEMs (Original Equipment Manufacturers), such as Google, General Motors, and

Uber, who are developing AVs to eventually introduce to consumer markets [36].

Although an exact time line for their deployment is unknown, the introduction of

AVs to consumer markets is projected to occur to an overwhelming extent by the

2050’s, when 80-100% of sold cars are projected to be AVs [37]. In response to the

increasing reality of an AV future, the National Highway Traffic Safety Administra-

tion (NHTSA) released the Federal Policy on Automated Vehicles in September, 2016

[38]. This policy includes guidelines for AV manufacturing and regulation. It also

recommends means for expediting the introduction of AVs into consumer markets.

To bring clarification to the area of AVs, the Society of Automotive Engineers’ (SAE)

levels of automation were adopted by the NHTSA as the official classification sys-

tem for autonomous vehicles [39]. These levels range from level 0 (no automation),

through level 1 (one automated feature) to levels 4 and 5 (full automation in certain

conditions or at all times respectively) [40].

3.2 Literature review

In the past, modeling of numerous aspects of advanced driver assistance systems

(ADAS) has been conducted, which has improved AV-related technology knowledge.
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As early as 2001, research was completed to evaluate the potential minimum spac-

ing between autonomous vehicles. This was determined to be 30 meters at highway

speeds, equating to a highway capacity of 3000 vehicles per hour [41]. In 2007, the

placement of ultrasonic sensors in a variety of positions during automatic parking was

modeled to develop recommendations for sensor location [42]. For adaptive cruise

control, Moon and Yi [43] designed a naturalistic system where the objective was

to model the system driving behavior as close to the way humans drive. S. Li et

al. [101] proposed a multi-objective vehicular adaptive cruise control system. The

system provided significant benefits in terms of fuel efficiency and tracking capabil-

ity and performed satisfactory driver desired car following behavior. With respect

to autonomous lane changing, an algorithm based on the recognition of surrounding

features such as vehicle speed and distance was implemented in 2011 [45].The sim-

ulation results proved environmental recognition-based lane changing to be feasible.

Similar work was done by Schubert el at. [46] who implemented their algorithm

in a prototype vehicle. Zafeiropoulos and Tsiotras [47] designed two lane tracking

driver steering systems, and compared their performance. They concluded that the

system which incorporated driver preference, as compared to the one which did not,

performed more efficiently. In 2017, Automatic Emergency Braking System (AEBS)

based on the Nonlinear Model Predictive Algorithm, termed the Advanced Emer-

gency Braking System, was modeled [67]. The modeling indicated the proposed

AEBS system had higher performance than existing variants

3.2.1 Contributions

This work attempts to build off already conducted research and contribute to

AV knowledge through modeling of SAE levels. Despite the detailed modeling of

numerous AV applications that has already occurred, research related to definitive

SAE levels, as outlined in the Federal Policy on Automated Vehicles, is very limited.

This is especially true from the standpoint of taking a bottom-up approach to evaluate
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the improvement in vehicles based on performance measures of SAE levels. Through

explicitly performing this modeling and evaluation of SAE levels, the submitted work

makes a significant contribution to AV knowledge; modeling of SAE levels 0 to 5 using

a bottom-up approach. The bottom-up approach attempts to explain the proposed

impacts of AVs by modeling autonomous functionalities which define each SAE levels.

It was prioritized to understand what performance characteristics these levels would

bring about in a general road environment and, more specifically, in the AV/CV

space.

The decisions made during the modeling process were predicated upon past re-

search in AV modeling. Level 0, representing exclusive human driving behavior and

no automation, was modeled with the Intelligent Driver Model (IDM) [52]. This is

because it has been shown in previous research that IDM quantitatively replicates

the macroscopic and microscopic dynamics of human driving behavior in a straight-

forward manner [53]. Thus, modeling level 0 with IDM eases the understanding

of model operation. Additionally, ACC, or level 1 automation, was modeled with

enhanced IDM. Past research has shown that simple IDM models ACC in a highly

conservative manner because of IDM’s more than required braking reactions when

certain maneuvers are included in the modeling [53]. Enhanced IDM is less conser-

vative and serves as a more realistic alternative. At level 2, we add lane-keeping assist

functionality. This feature is modeled using using a third-order autoregressive time

series [54]. Complete automation at level 3 is accomplished by automating the lane

changing functionality. Minimizing Overall Braking Induced by Lane Changes (MO-

BIL) algorithm is used to model automated lane changing. MOBIL was employed

because it has been proven through past simulations that it can model lane chang-

ing through employing the computations already completed in the IDM car following

model [55]. MOBIL takes its decision variables from car following computations, so

there is a very high degree of mathematical consistency. As a result, AV lane changing

can be modeled with minimal additional calculations, reducing computational com-

plexity. Level 4 is modeled by designing automated control system for operational
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design domain and minimal risk conditions. Complete automation architecture is

applied for level 5.

We introduce stochasticity to a class of deterministic traffic flow models. The

deterministic driving models though a fair representation of the human driving be-

havior fail to account for the heterogeneity in the driving behavior of different indi-

vidual drivers. In order to represent the different driving behaviors like conservative,

neutral, aggressive and well as reaction time we introduce stochastic parameters to

the deterministic traffic flow models [56].

In summary, the main contributions of this work include:

1. To the best of our knowledge this is the first work to study the modeling of each

SAE level.

2. The modeling of the SAE level is done using a bottom-up approach.

3. The modeling explores the impacts of SAE levels on traditional as well as non-

traditional measures.

4. We conducted penetration studies to evaluate the mobility impacts of various

volume mixes.

This paper is organized as follows. Section I presents introduction, literature

review and contributions. Section II details the methodology used in our study. In

section III we discuss the numerical results and insights. Finally, section IV provides

conclusions and future research directions.

3.3 Methodology

To model the SAE levels from bottom-up we designed new traffic flow models using

some of the currents models as the base. This includes car following, lane changing

and lane centering models. Once the SAE models were formulated we integrated

these with VISSIM using an external driver model API. The simulation data was
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Figure 3.1. Framework for modeling of SAE levels

then used to analyze the impact of the different SAE levels on mobility measure

like the acceleration profile, speed profile, lane deviations and lane changes. These

measures are then analyzed and the results are interpreted. Figure 3.1 provides a

visual description of the framework.

3.3.1 SAE Level Description

The National Highway Traffic Safety Administration has adopted six levels of

automated driving systems which range from complete human driver control to full

vehicle autonomy. The longitudinal and the lateral control progressively gets trans-

ferred from the human to the system from level 0 to level 5. The monitoring of the

environment is by the human, in level 1, and 2. On the other hand, for levels 3, 4

and 5, the automated system of the vehicle monitors the driving environment. The

system fall backs on the human from level 0 to level 3 but in level 4 and 5 the system

is responsible to keep the controls under unexpected circumstances. [40]
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3.3.2 Traffic flow models and related components

In this section we will discuss the various models employed to model the hu-

man and the corresponding automated driving-related function.These include car-

following, lane-centering and lane-changing behaviors.

Car-following models

Human control To model human car-following behavior we employ the intelligent

driver model (IDM) [59] . Even though IDM is a simple car following model, it has

been shown quantitatively that it models human driving behavior [60]. As the

intelligent driver model is a deterministic car-following model we have overcome the

limitations to the model by making stochastic extensions to the model by introducing

external noise. As preliminaries, we will introduce the IDM and then present the

extensions to the model. IDM considers acceleration to be a continuous function,

which is affected by numerous. These are the space headway between the vehicle

and its leading vehicle, the desired velocity, the current velocity, and the velocity

difference of the vehicle from the leading vehicle. The SAE 0 acceleration function is

defined by:

aSAE0(aIDM , ε0) = aIDM + ε0 (3.1)

where, aSAE0 is SAE 0 acceleration and aIDM is IDM acceleration. ε0 is an error

term added to the deterministic IDM acceleration to model a stochastic SAE 0 accel-

eration. ε0 follows a normal distribution with mean as µ = 0 and variance as σ2
SAE0

which is non−zero and and is uncorrelated with aIDM . The IDM acceleration is given

by:

aIDM(s, v,∆v) = a

[
1− (

v

v0

)δ − (
s∗

s
)2

]
(3.2)

where s the headway between the leading vehicle and the follower, v is the cur-

rent velocity of the vehicle, δ is the free acceleration component, ∆v is the velocity
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differential between the leader and the follower,v0 is the desired speed of the vehicle,

s∗ is the desired space headway. The function for s∗ is given by:

s∗(v,∆v) = s0 + vT +
v∆v

2
√
ab

(3.3)

where, s0 is the minimum headway space, T is the desired time headway, b is the

maximum desired deceleration.

The IDM model tries to mimic car following behavior but is a deterministic model.

Since traffic flow has different driver attributes we will introduce stochasticity in IDM

to better reflect practical traffic flow conditions at micro level. In order to account

for heterogeneity in the values of a, b and T , we have modeled them using log-normal

distribution.

We assume that the parameters a, b and T for vehicles follow a log-normal distri-

bution [61,62]. Therefore for each vehicle the parameters are drawn from the below

set of distributions.

log(a) ∼ N (µa, σ
2
a) (3.4)

log(b) ∼ N (µb, σ
2
b ) (3.5)

log(T ) ∼ N (µT , σ
2
T ) (3.6)

The IDM parameters used in the paper are as presented below in Table 3.1. The

values/mean of a , b, T , δ, s0 are taken from [52]. Coefficients of variation of a , b,

T is assumed to be 20%.

T is adjusted for the SAE level using the below formulation

TSAEk
= λkT (3.7)

Autonomous control Autonomous car-following behavior is modeled using En-

hanced IDM model which also simulates ACC feature [52]. This model is an extension
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of the IDM. However, the Enhanced IDM model is based on the following assump-

tions; the ACC acceleration is higher than that of IDM and the ACC acceleration is

continuous. Below is the formulation for the ACC acceleration.

aCAH(s, c, vl, al) =


v2al

v2l −2sāl
, if vl(v − vl) ≤ 2sāl

āl − (v−vl)2Θ(v−vl)
2s

, otherwise

(3.8)

aacc = aIDM(1− c) + c[aCAH + b tanh

(
aIDM − aCAH

b

)
] (3.9)

Where, aCAH is the constant-acceleration heuristic (CAH) acceleration, vl is the

velocity of the leading vehicle, al is the acceleration of the leading vehicle, ālis the

Table 3.1. IDM model parameters

Parameter

Highway Desired speed range (v0) 55-88 mph

On ramp speed range 25-55 mph

Free acceleration exponent(δ) 4

Desired time gap(T ) ∼ Log-normal(0.33,0.2) s

Jam distance((s0)) 6.56 ft

Maximum acceleration((a)) ∼ Log-normal(0.31,0.2) ft/s2

Maximum Deceleration ((b)) ∼ Log-normal(0.67,0.2) ft/s2

Error term ((ε0)) ∼ Normal(0.0,0.3) ft/s2

Table 3.2. Headway Adjustment Factor

SAE Level 0 1 2 3 4 5

Adjustment Factor 1 0.8 0.7 0.6 0.5 0.4
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effective acceleration = min (al,a) , Θ is the heaviside step function and c is the

coolness factor which ranges between 0 to 1. aACC is always higher than aIDM and

the acceleration profile of cars modeled after the Enhanced IDM have a more relaxed

response to discontinuous headways which results in improved mobility.

aSAE1(aACC , ε1) = aACC + ε1 (3.10)

σ2
SAE1

= σ2
SAE0

/k (3.11)

where, ε1 follows a normal distribution with mean as µ = 0 and variance as σ2
SAE1

which is non−zero and and is uncorrelated with aIDM . Here we assume that σ2
SAE1

is lower than σ2
SAE0

by a factor of k where k is > 1. In our model k = 10.

Lane-centering models

Human control Human control: The lateral position of vehicles under human

control, is modeled as an autoregressive time series model [54]. In the time series

model, Yt is the lane position of the car at time t. Yt = 0 when the vehicle is in the

center of the driving lane, Yt ≤ 0 corresponds to when the vehicle is left of the center

lane, and Yt ≥ 0 corresponds to when the vehicle is on the right of the center lane. In

a first order time series, the vehicle’s lateral position depends on the weighted average

of the previous three time steps plus a signed error term. Therefore, the formulation

for the lateral position for time step t is as below

Yt = β1Yt−1 + β2Yt−2 + β3Yt−3 + |et|It (3.12)

log

(
pt

1− pt

)
= γ0 + γ1Yt−1 (3.13)

Where, Yt, Yt−1 and Yt−2 are the lateral positions of the vehicle at time t− 1, t− 2

and t−3 respectively, et is the error term, which follows a normal distribution, and It
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is 1 or -1 depending upon the value of pt which is assumed to have a functional form

following the logistic model given in equation 3.13. Dawson et. al [54] calibrated this

model which is used in our paper. ∆y is the difference between the current lateral

position and the future lateral position.

The lateral position is given as an input to VISSIM as an angle instead of the

position itself as the API is designed is such a manner. Below is the transformation

of the future lateral position to an angle (in radians).

θSAE = dSAEθ (3.14)

∆y

∆x
= θ (3.15)

∆x = vt (3.16)

where, ∆y is the difference between the future lateral position and the current

lateral position, ∆x is the difference between the future longitudinal position and the

current longitudinal position , t is the time-step of analysis which is 0.1 seconds. The

angle θ therefore, can be approximated as the ratio of ∆y with respect to ∆x. dSAE

is the deviation factor for a particular SAE level ranging from 0 to 1. The lower the

value of the deviation factor, lower is the tendency for deviation of the car from the

centerline of the lane. Under human control d is assumed to be 1.

Autonomous control For autonomous lane centering we have assumed that d =

0.5 which represents the lane-deviation tendency. A lower lane-deviation tendency

under autonomous control is reasonable as the autonomous car will be able to perceive

much smaller deviations and immediately take necessary action to center the vehicle.
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Lane-changing models

Human control The lane changing model used is MOBIL, a rule-based lane chang-

ing model is used as the base model to simulate the added autonomous feature along

with probabilistic extensions [55]. Firstly we discuss MOBIL and then introduce

a probabilistic lane changing decision rule. MOBIL considers two criteria for lane

change; 1) safety criterion, where the vehicle behind the vehicle which changes lanes

will not require to brake more than a safe level of deceleration and 2) incentive crite-

rion, where the vehicle changes lane only if the below condition holds

a′c − ac + p(a′n − an + a′o − ao) ≥ ∆athr (3.17)

an ≥ −bsafe (3.18)

where, c is the vehicle considering to change lane, n is upstream vehicle on the

target lane, o is the upstream vehicle on the present lane, ac is the acceleration of

vehicle c on the current lane, a′c is the acceleration of vehicle c on the target lane, ao

is the acceleration of vehicle o before lane change by vehicle c, a′o is the acceleration

of vehicle o after lane change by vehicle c, an is the acceleration of vehicle n before

lane change by vehicle c and a′n is the acceleration of vehicle n after lane change by

vehicle c, p is the politeness factor. ∆athr is the acceleration threshold that must be

crossed in order to make a lane change. This threshold exists to make sure that a lane

changing operation by a vehicle is made only when the overall weighted acceleration

of the group of vehicles is above a certain level. This helps in a lower adverse impact

on the neighborhood vehicles’ movement. For humans we have assumed the ∆athr to

be 3.

The politeness factor p represents the level of altruism of the driver who wishes

to change lane. A politeness factor of 1 is a highly altruistic person who considers

the effect of lane change on other vehicles’ and politeness factor lower than 0 is a

selfish person who is ready to adversely affect his own acceleration if that sufficiently
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reduces the accelerations of the affected vehicles. An improvement over the MOBIL

model has been attempted in this paper where once a vehicle initiates lane change,

in that scenario two vehicles ahead and two behind the vehicle will not initiate until

the current vehicle’s maneuver is completed. We used a politeness factor of 0.5, a

more realistic value for the parameter. Politeness factor of 0 represents a person who

is completely selfish and 1 represents an altruistic driver. Therefore, we assume on

an average the driver’s nature is between the two extremes.

Autonomous control For autonomous lane changing we assume that the ∆athr

= 2, a value lower than the ∆athr for humans.We make an assumption that ∆athr

for humans is greater than ∆athr as the system in autonomous mode will be able

to perceive mobility-enhancing opportunities by changing lanes better than humans.

This is motivated by the fact that autonomous systems will have more accurate

perception of the traffic conditions.

3.3.3 Mapping of SAE Levels to Driver Models and Driving Features

In the mapping of SAE levels to driver models/features, the key factors for con-

sideration in each automation level are presented. The investigation of the SAE levels

are conducted in a microscopic, multilane simulator called VISSIM. The microscopic

simulations allow for parameters to be specified in detail. The External Driver Model

(EDM) DLL interface allows the user to replace the driving behavior by a fully user-

defined behavior for some or all vehicles in a simulation run. The EDM interface was

used to model the various SAE levels.

SAE Level 0

Level 0 represents no automation and hence is considered to be equivalent to

human driving with no assistance. The paper models this SAE level using a stochastic

extension of IDM as the car following model. The lane centering is modeled using



52

the third order autoregressive time series with human control parameters. The lane

changing model uses the MOBIL algorithm with acceleration threshold parameter for

humans.

SAE Level 1

In Level 1, either steering or acceleration/deceleration behavior is automated un-

der the ODD. In this research, SAE level 1 is modeled by introducing automated

acceleration and deceleration by means of Adaptive Cruise Control (ACC) in the ve-

hicle. ACC is modeled in the paper using a model which employs a stochastic version

of the Enhanced IDM model [52] . The model is an improvement over the IDM model,

which is primarily designed for a single lane car following behavior and hence responds

conservatively in a situation where the space headway changes non-continuously, for

example in the case of cut-in maneuvers. Enhanced IDM extends IDM using a con-

stant acceleration heuristic (CAH) which implements a less constrained reaction to

cut-in maneuvers.

SAE Level 2

Level 2 automation involves automating both steering and acceleration/deceleration

under certain conditions. The paper models Level 2 by means of ACC and lane-

keeping assist. The lane centering feature is modeled using a third-order autoregres-

sive time series model with parameters for autonomous control [54].

SAE Level 3

Level 3 automation translates to fully autonomous behavior in certain conditions.

Control is given back to the driver when pre-specified conditions for automation are

not met. In our study this level is modeled by assuming that a vehicle is fully

autonomous in a highway environment only. If the vehicle exits these conditions, the
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control is given back to the driver. while in a fully autonomous state the car-following,

lane-centering as well as lane changing features are automated. While modeling the

different SAE levels one of the key features for the levels until SAE 3 automation is

the need for transition of control between the system and human. There are a few

recently studies which have looked into the transition of control and reaction times

[57, 58]. We have used the data from these studies to model the reaction time of the

drivers during transition of control.

SAE Level 4

− Level 4 automation implies that the vehicle is completely autonomous while op-

erating within it’s operational design domain (ODD) [39]. The vehicle will transition

to a low-risk operating mode for example lowering its desired speed when outside the

ODD which we will define as the Minimal Risk Conditions Desired Speed (MRCDS).

In this paper we assume ODD as any roadway with clear lane marking. The vehicle

enters a minimal risk operating condition when the lane markings are not clearly vis-

ible. We study the impact on traffic while the vehicles travel both inside and outside

the ODD.

SAE Level 5

− Level 5 automation is the highest level of automation among the various SAE

levels. This level of automation involves the vehicles having control under all type

of conditions. These include sections of the roads where the lane markings are not

clear, signs are non-standardized among others.

3.4 Results

We present the results of SAE mobility modeling for two networks. The first

network is as illustrated in Figure 3.2 designed for the simulations is a 1.5 mile
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straight two-lane highway with a single-lane on-ramp joining the highway at 0.3 mile.

Traffic from on-ramps into the highway are typical scenarios for traffic congestion and

bottlenecks and hence this particular network was chosen to analyze the performance

of different SAE levels in such a network. The traffic flow on the highway is assumed

to be 800 veh/hr/lane and the traffic flow on the on-ramp is 300 veh/hr/lane. The

speed distribution of the vehicles is 50mph to 80mph.

Given this network, we have identified two unique type of traffic flows that can

be analyzed given the network; 1) vehicles originating on the highway and continue

traveling on it 2) vehicles entering the highway through the on-ramp. In this paper

we present the impacts on the these flows for each of the SAE levels. Below we

discuss the impacts of various SAE levels and then analyze the impacts for different

penetration levels.

The above network scenario accounts for traffic interactions in highway settings.

In order to have more comprehensive analysis of the traffic impacts of different au-

tonomous levels, we also look at an signalized intersection setup. Signalized intersec-

tion account for the highest amount of traffic delays in cities. Therefore, an analysis

of such a setting will give us a more holistic view of the impacts of autonomous ve-

hicles in different scenarios. The chosen intersection consist of a major and a minor

approach. The major approach consist of 3 through lanes of which one of them be-

comes a left turning storage area. The minor approach consist of 2 through lanes of

which becomes a left turning storage area. The right turning movement is controlled

by yield sign. The volume assumed is 500 veh/hr/lane. The speed distribution of the

vehicles is assumed to be between 30mph to 40mph.

The traffic is composed of cars which are of length 12 ft and width 4.5 ft. We

have chosen a homogeneous traffic to be able to analyze the effects of the various

SAE levels on the traffic. Also the simulations for each SAE level vehicles was run

separately assuming 100% penetration of the particular SAE level vehicle. For each

SAE level there was a vehicle type created in VISSIM as shown in Figure 3.3. The

created vehicle types were linked to EDM DLLs as a shown in Figure 3.4.
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Figure 3.2. Illustration of a highway segment with an on-ramp

Figure 3.3. Vehicle types defined in VISSIM

3.4.1 Highway Scenario

In this section we discuss the results obtain from simulation run on the highway

network.
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Figure 3.4. External driver model linked to each SAE level

SAE level impacts

Below we present the results categorized by the different SAE levels analyzed.

SAE 0 and SAE 1 Figure 3.5 plots the speed profile of SAE 1 vehicles on the

highway for different levels of coolness factor c and compares them with the speed

profile of SAE 0 vehicles. From the enhanced IDM formulation we know that, as

coolness factor c increases the braking response to discontinuous headways reduces.

At 0.3 mile there is an on-ramp because of which the vehicles on the highway as

well as the ones on the on-ramp end up experiencing non-continuous headways as

their predecessor change on account of the merging activity. The vehicles experience
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Figure 3.5. Speed profiles of SAE 0 and SAE 1 vehicles (with different coolness

factors)

deceleration as they approach the point of entry where the on-ramp merges with the

highway. It is observed that the maximum deceleration of the through vehicles is at

the point at which the on-ramp merges with the highway. SAE 1 vehicles with higher

c are able to negotiate this segment of the road with higher effectiveness without

having to brake as much as SAE 0 and SAE 1 vehicles with lower c. We can see

this from Figure 3.5 that as the value of c increases the minimum speed that the

vehicles decelerate to increases and hence results in higher mobility. Once the vehicles

cross the merging section they start picking up speed after the merging operation is

completed to match the desired speed on the highway. The minimum speed of SAE

level 1 vehicles with c = 1 is 50.5 mph whereas the minimum speed of SAE level 1

vehicles with c = 0 is 46 mph. The speed profile across the highway section shows

that the SAE level 1 vehicles with higher c travel faster than the SAE level 0 vehicles

at all points on the network. Hence we conclude that SAE level 1 vehicles under

autonomous longitudinal control experience higher mobility as compared to SAE 0

level vehicles under human control.
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Figure 3.6. Box pot of the standard deviation of lateral position of SAE 1 and SAE

2 for different deviation factors

SAE 2 Figure 3.6 compares the standard deviation of the lateral position of SAE

2 vehicles across the entire stretch of the segment with different levels of deviation

factors. The fist box plot in the figure from the left is the standard deviation under

human control. As we go towards the right with decreasing deviation factor we

observe the mean value of the deviations reduce and the spread of the range also

narrows down.This clearly shows that as the deviation factor is reduced the vehicles

travel much more closer to the centerline of the lanes enhancing safe driving behavior.

As the lateral control is with human in SAE 0 and SAE 1 we see higher deviations

in those vehicles as compared to the lateral deviations of SAE 2 vehicles.

SAE 3 Figure 3.7 shows the impact on lane changes as the acceleration threshold in

the MOBIL algorithm is changed. The number of lane changes decrease significantly
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Figure 3.7. Total number of lane changes for different levels of threshold accelerations

for SAE 3 vehicles

Figure 3.8. Speed profile for different levels of acceleration thresholds

as the acceleration threshold athr increases. A significant increase in athr especially

in semi-congested traffic situations can result in reduced mobility.
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Figure 3.9. Change in lateral deviation with shift in control from human to au-

tonomous

SAE level 3 is characterized by the option of transferring control between human

and the system. In our model we have assumed that SAE level 3 the vehicles are

completely autonomous on highways and not otherwise. In our particular network, the

vehicles that enter the highway from the on-ramp are initially under human control as

they enter. The control is then transferred to the system based on reaction time from

previous studies [57, 58, 63]. We have assumed that both the time taken for taking

control from the autonomous system and giving control to the autonomous system

follow log-normal distributions. In figure 3.9 we have plotted the standard deviation

in lateral position for SAE 1, SAE 3 and SAE 4 vehicles. We can see that for SAE

level 3 vehicles as cumulative number of vehicles in autonomous control increase the

standard deviation of the lateral position gradually reduces and converges to that of

SAE level 4 vehicles.

SAE 4 and SAE 5 SAE 4 level vehicles are completely autonomous in ODD and

operate at minimal risk conditions when they are outside their operational design
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Figure 3.10. speed profiles for different minimal risk speeds in unclear lane markings

area

domain. In our study we assume that SAE 4 level vehicles’ ODD is any roadway with

clear lane markings. To understand how SAE level 4 vehicles adjust to non-ODD

conditions, for the purpose of our study we simulate a roadway condition where the

lane markings are unclear from 1 to 1.2 mile segment on the highway. As the SAE

level 4 vehicles enter the unclear markings road segment they need to reduce their

desired speeds significantly in order to satisfy minimal risk condition. We look at

the impact on SAE 4 level vehicle mobility depending on the minimal risk condition

desired speed (MRCDS) they need to acquire. Figure 3.19 shows the speed profile of

SAE 4 level vehicles for various minimal risk condition speed levels as compared to

SAE 5 level vehicles. We observe that the speed profiles monotonically fall as defined

minimal risk speed for SAE 4 level vehicle decreases outside the Operational Design

Domain decreases.
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Penetration impacts

SAE 0 and SAE 1 Here we look at the mobility impacts for various penetration

levels of SAE 0 and 1 vehicles. As can be seen from Figure 11, the minimum speed

for SAE 0 vehicles is 57.6 mph. We see that for 20% penetration of SAE 1 vehicles

improves the minimum speed to 58.5 mph. We can see that as we increase the

penetration of SAE 1 vehicles the improvement in speed are not as much as it was for

lower penetration. This is because even a small percentage of vehicles with superior

mobility maneuvers can improve the overall traffic mobility.Therefore, we can say

that even low penetrations of autonomous vehicles on roadways will improve traffic

mobility significantly.

Figure 3.11. Speed profiles for different penetrations of SAE 0 and SAE 1 vehicles

SAE 1 and SAE 2 The IQR of lateral deviation of SAE 1 vehicles ranges between

2 to 2.2 with a median at 2.1 as can be seen from Figure 12. We see that for 20%

penetration of SAE 2 vehicles the IQR range increases on the lower end. The IQR

range is maximum when the penetration is 50%, which is expected as half the vehicles

have the deviation factor 1 and other half have deviation factor of 0.5. The IQR range
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decreases after this as most of the traffic is dominated by SAE 2 vehicles. Finally

under 100% SAE 2 penetration the IQR ranges between .25 to .28. As the penetration

of SAE 2 increases, we see that the median falling from 2.1 to 0.26.

Figure 3.12. Standard Deviation for different penetrations of SAE 1 and SAE 2

vehicles

SAE 2 and SAE 3 In this section we analyze the mobility improvements in traffic

with increasing penetration of SAE 3 vehicles due to superior lane changing maneu-

vers. From Figure 14, we see that lane changing maneuvers from AVs improve mobil-

ity. At the same time we see that this improvement is not as significant as compared

to improvement seen in longitudinal control was transferred to AVs. Therefore we

have looked at the scenario for only 50% penetration. We see that the improvement in

mobility is not in proportion to the penetration levels. This is further corroborated by

Figure 13 which shows the cumulative number of lane changes for the three different

scenarios. At 50% penetration the number of lane changes is lower than expected.
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Figure 3.13. Cumulative lane changes for different penetrations of SAE 2 and SAE 3

vehicles

Figure 3.14. Speed profiles for different penetrations of SAE 2 and SAE 3 vehicles

SAE 3 and SAE 4 In this section we look at the impact on traffic characteristics

for various penetration for SAE 3 and SAE 4 vehicles. From Figure 15, we can see
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that the range of standard deviation for 100% penetration of SAE 3 vehicles has an

IQR of 0.8 to 0.9 and the median value is at 0.85. When there is 20% of SAE 4

vehicles the IQR range increases from 0.75 to 0.88 and the median value decreases

0.81. When the SAE 4 penetration increases to 50% in that scenario the IQR range

is the highest, ranging from 0.1 to 0.8 and the median value at 0.55. The penetration

increases to 80% the IQR range decreases significantly ranging from 0.1 to 0.38 with

the median 0.11. At 100% penetration we can see that the IQR range expectedly is

in the range 0.08 to 0.12 and the median is at 0.1.

Figure 3.15. Standard Deviation for different penetrations of SAE 3 and SAE 4

vehicles

SAE 4 and SAE 5 In this section we analyze the impact of various SAE 4 and

SAE 5 volume mixes on traffic mobility. As mentioned before mile 1 to mile 1.2 is a

region with unclear lane markings. Therefore, for SAE 4 this region will be outside the

ODD. Here we look at how the speed profiles are impacted for various penetration
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levels of SAE 4. We see that for 20% penetration for SAE 4 the overall mobility

impact on the traffic is significantly high. Especially the extent of this impact can be

seen when it is compared to the mobility impact due to further penetration of SAE

4 vehicles. This implies that small penetration levels of SAE 4 vehicles when outside

their ODD can result in notable impact on traffic mobility.

Figure 3.16. Speed profiles for different penetrations of SAE 4 and SAE 5 vehicles

3.4.2 Intersection Scenario

In this section we analyze the mobility impact related results in an intersection

setup. We have identified measures of effectiveness (MOE) which particularly reflect

the improvements that results due to increased levels of autonomy. We have chosen

volume throughput, queue length and number of vehicle stops as the MOEs to eval-

uate mobility impacts. As can be seen from figure (VT) the throughput increases by

25% from SAE level 0 to SAE level 5. Therefore, we can see that the capacity of the

roadways can increase significantly as the autonomous vehicle penetration increases.

In figure (QL), we have calculated the average as well as the maximum queue lengths

across the different SAE levels. We observe that the queue length show a decrease
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for the average as well as maximum measures. In the figure (NS) this stop and go

behavior of vehicles while waiting in the signal is calculated. It can be seen that the

stop and go behavior decreases significantly as the SAE levels increase.

Figure 3.17. Volume throughput at intersection for different SAE levels

Figure 3.18. Queue length at intersection for different SAE levels
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Figure 3.19. Number of stops at intersection for different SAE levels

3.4.3 Conclusions

This paper makes a significant contribution in the modeling of SAE levels. The

analysis of performance aspects of SAE levels 0, 1, 2, 3, 4 and 5 was conducted with

a bottom-up modeling approach. This is a first of its kind approach to AV research.

Level 0 was modeled with the IDM car following model. Level 1, featuring adaptive

cruise control, was modeled with the Enhanced IDM Model. Data from simulations

of level 1 exhibited a significant improvement in mobility over that of level 0. Level

2, featuring automated lane centering and ACC, was modeled with the Enhanced

IDM Model and a third-order autoregressive time series model for lane centering.

Level 2’s performance indicated it provided or far more stable mobility than levels

1 and 0, which would result in less accidents. Level 3 represented the synthesis

of level 2’s automated features with automated lane changing enabled by modeling

with MOBIL. The automated lane changing prompted a higher rate of lane changes

than lower levels, providing for more efficient traffic movement. We observe that for

SAE level 4 there can be a negative impact on the traffic flow due to transition to

minimal risk condition under poor lane markings. SAE level 5 is able to overcome
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these traffic disruptions and oscillations and has a smoother velocity and acceleration

profile. Together, the modeling of SAE levels 0, 1, 2, 3, 4 and 5 indicates that AV

features, are capable of yielding significant benefits from the standpoints of safety

and mobility. We also studied the mobility impacts on traffic for various mixes of

SAE levels. The results show interesting patterns for the various penetration tested.

This validates the applicability of AVs to infrastructure systems through confirming

the magnitude of their positive impacts on safety and mobility.

This work will be an asset for practitioners, policymakers and researchers to per-

form capacity analysis and highway design as the autonomous future becomes a re-

ality. The model can accommodate different mixes of traffic, and therefore the work

can also be used to test the impact of various permutations of SAE level penetrations.

With this work as a foundation, extensions of future work can be in multiple areas.

Research divisions at OEMs can assess the mobility impacts of autonomous vehicles

by calibrating this model with their design specifications. Our model can be used as

a platform to integrate new ADAS features and evaluate their impact on traffic.
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4. RISK EVALUATION OF AUTONOMOUS VEHICLES

4.1 Introduction

Autonomous vehicles are going to usher in significant benefits including safety

mobility, environmental and congestion [65]. One of the main selling points of AVs

which has been touted by Original Equipment Manufacturers (OEMs) are the safety

benefits which multiple automated functionalities bring in to driving [66]. There

are sensing technologies like Light Detection and Ranging (LIDAR), Radio Detection

And Ranging (RADAR) along with in-vehicle cameras which constantly monitor the

environment and use this information to make driving decisions [67], [68]. These

driving decisions include a host of features like Adaptive Cruise Control (ACC) [69],

Lane change assist [70], Lane Centering, Automatic Emergency Breaking, Red Light

Warning etc [71]. Human error in driving accounts for over 90% of accidents on

roadways [72]. The main contributors of these errors are contributed by decision

error, recognition error and performance error. Automated technologies can over

come these human errors by using highly accurate sensors and superior machine vision

technology. Federal and state agencies have also agreed to the contribution AVs will

have in improving safety levels [73]. As per one statistic AVs can save 30,000 lives

a year. Coming to terms this fact NHTSA issued a guidance policy which outlined

the direction for testing and implementation of AVs on roadways [74]. One of the

key industries which would be impacted by these revolutions is the motor insurance

industry [75]. Insurance industry has traditionally used demographic factors in order

to price premiums for drivers. This has been a practice which has been going on

for a very long time. New innovation to insurance pricing methodology have been

introduced lately such as “Pay as you drive” which charges the drivers based on the

mileage driven by them [76]. But this does not differentiate between risky and non
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risky drivers. Further improvements in pricing solutions have been introduced in the

last decade due to the access to data which characterizes driving behavior. This is

called “Telematics”.There has been a surge in telematics based insurance pricing as

it tries to accurately capture driver behavior by using driver trajectory [77]. As

the penetration of AVs increase on the roadways there is a great need to re-look at

the pricing standards the insurance firms are using right now. They also need to

re-evaluate the risk of these new types of vehicles on roads.

4.2 Literature review

4.2.1 Insurance pricing

Generalized Linear Models (GLM) have been the traditional mode of risk analysis

done for drivers using their demographic data [79], [78]. GLMs are flexible general-

ization of ordinary linear regression that allows for error terms to have a distribution

other than normal. Recently with the introduction of innovative insurance pricing

schemes like “Pay as you drive”, has paved a need for more higher resolution data

[80], [81]. Telematics has been instrumental in providing the big data required by

the machine learning algorithms behind the innovative pricing schemes [82]. [83]

used machine learning methods to identify risky drivers vs. non risky drivers. While

doing so they used accident data from multiple sources and used multiple machine

learning methodologies like SVM, Random Forest and Neural Networks have been

used in order to build models to predict risky behavior of drivers. Similarly, [84]used

K means clustering SVMs to differentiate driver behavior. [85] provided a framework

to use smart phone data for analyzing traffic data and usage based insurance. [86]

used telematics data to classify drivers profile in car insurance pricing in the German

market. [82] in their paper provided a background for the need for telematics data

and also listed out the top UBI solutions which have been implemented world wide.

VTPI analyzed the feasibility cost and benefits of distance based vehicle insurance

[87]. [88] used gradient booting trees for auto insurance loss cost modeling and
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prediction. Multiple papers have analyzed different machine learning algorithms to

predict frequencies and severities [89] - [90] . Therefore, on one hand there have

been numerous works which have modelled insurance risk but on the other hand a

significant part of it has been done behind closed doors due to competitive nature of

the industry [91] - [94]. Publicly available research papers on usage based insurance

is less due to the unavailability of accident data. On top of it usage based insurance

related research on AVs has not been done due to the unavailability of the data.

Conflict analysis

Surrogate measures of safety have been widely employed when accident data is

scarce under the framework of conflict analysis in microsimulation models [95] -

[96] . Among the various surrogate measures include Time to Collision (TTC), Post

Encroachment Time (PET), MaxS, MaxD etc [99] . There have been multiple indi-

cators of modified versions of the above measures. TTC stands out as the measure

which has been used in multiple studies. SSAM is a software designed by FHWA

to evaluate conflicts in micro-simulation data which takes in trajectory information

from softwares including VISSIM. [100] analyzed aggressive drivers using micro sim-

ulation combining SSAM and VISSIM. They modeled normal and aggressive drivers

on VISSIM by changing the parameters in the software. [101] built a crash pre-

diction model based on the conflicts framework and micro simulation in the freeway

interchange areas. They created a new index which combines TTC average value and

the severity of the accident from standard classification table and data collected from

Maqun interchange in northeast Nanjing. [102] did a study if VISSIM and SSAM

provide good predictability for field measured conflicts at intersections. They did a

two step calibration and were able to predict the conflicts to a reasonable extent on

8 signalized intersections.
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4.2.2 Contributions

Risk prediction of AVs for SAE levels has not been attempted before due to the

unavailability of different autonomous level naturalistic trajectory data. Our work

creates a framework to identify no risk, low risk, medium risk and high risk drivers for

various SAE levels. Based on our previous work on SAE modeling we used the micro

simulation platform to simulate AVs and extract from it’s trajectory data for various

SAE levels. This trajectory information is used to feed into the SSAM software to

identify conflicts which map the drivers to different risk categories. In order to create

a data driven model which predicts driver risk for different SAE levels, the above

supervised data is used to train and test different machine learning models. Due to

the stochastic nature of the various SAE level models, each of the SAE class contains

different risk level drivers, This is to simulate real life scenario where different OEMs

will have different specifications for each SAE class.

In summary, the main contributions of this work include:

1. To the best of our knowledge this is the first work to study the safety impacts

of each SAE level.

2. A prediction model which classifies each driver into various risk categories for

every SAE level.

This paper is organized as follows. Section I presents introduction, literature

review and contributions. Section II details the methodology used in our study. In

section III we discuss the numerical results and insights. Finally, section IV provides

conclusions and future research directions.

4.3 Methodology

Below are the components integral to the part of the framework which would be

discussed in detail.
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Figure 4.1. Framework for risk identification of AVs

4.3.1 VISSIM

VISSIM is the base platform we use to simulate the different autonomous level

vehicles. An External Driver Model (EDM) is used to communicate with VISSIM.

The external driver model constitutes of formulation for the various SAE levels from 0

to 5. This EDM controls the car- following, lane changing and lane centering behavior

of the vehicles in the simulation to an extent determine by SAE level. VISSIM is a

useful software to use for our purpose as it seamlessly integrates any external model

other then the default model used by the micro simulator.
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4.3.2 SAE Levels

In this section we will discuss the various SAE levels and the models used to mimic

them

SAE 0

SAE 0 represents complete human control and this is modeled using intelligent

driver model (IDM). IDM has been proved to model microscopic and macroscopic

human driver behavior. IDM is a simple model with few parameters to be estimated

and hence is a handy model. We have added stochasticity to the IDM model to

represent real life variation is driving behaviours.

SAE 1

In SAE 1, lateral control or longitudinal control is automated. In our model we

automate the car following behavior using enhanced IDM. Enhanced IDM has been

shown to respond less conservatively to non continuous headways and hence provide

higher mobility.

SAE 2

In SAE 2, longitudinal and lateral control is automated. In our model we automate

the car-following and lane keeping behavior using enhanced IDM and a third-order

time series based lane centering algorithm.

SAE 3

In SAE 3, we completely automate the vehicle by adding automated lane changing

feature using MOBIL as the base model to the above mentioned features. On freeways
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the automated mode is active while on the freeways. In an arterial setting the vehicle

is autonomous under 30 mph.

SAE 4

In SAE 4, we completely automate the vehicle while it is in it’s operational design

domain (ODD). That is the vehicle is completely autonomous under regular weather

conditions and clear road markings and signage.

SAE 5

In SAE 5, the vehicles is completely autonomous under all conditions.

4.3.3 TTC for SAE Levels

Time to collision (TTC) is one of the most common measures which is used as a

surrogate for safety. A lower value of TTC signifies higher chances of collision. TTC

formula is as below:

TTC =
pi − pj
vi − vj

(4.1)

Where i is the leader and j is the follower. pi is the position of the leader and

pj is the position of the follower. vi is the speed of the leader, vj is the speed of the

follower. Lower value of TTC indicates a higher chance of an accident and hence

would be qualified as a more critical conflict. TTC values under a certain threshold

(based on literature) are considered as risky. For autonomous vehicles these thresholds

which are used generally for human drivers need to be adjusted to accurately reflect

the right conflict severity. We modify TTC threshold formulation to account for

different SAE levels.

The TTC thresholds have been defined between the range 0.1 to 6 secs in many

studies. We use this range in order to define 3 different thresholds of TTC for human
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drivers. TTC less than 1.5 secs indicates high risky behavior, TTC between 1.5 secs

to 3 secs is defined as medium risky behavior. TTC between 3 to 5 secs indicates

low risky behavior. TTC above 5 secs is considered no risk. The above definition

for TTC thresholds are for human drivers. In order to define the TTC threshold for

different SAE levels we provide the below formula.

TTC thresholdSAE level j = TTC thresholdSAE level 0(1−
∑

(Ij)) (4.2)

Ij is the improvement in safety due to SAE level j over the immediate lower level.

This improvement is a fraction of the accidents that no longer happen due to the

current autonomous level j. The sum of all the improvements will be less than or

equal to 1. From this we can see the TTC threshold for higher SAE levels is lower.

Below is the table of the value of Ij for different SAE level j.

Based on the value of Ij the TTC threshold is calculated for every SAE level

Table 4.1. Improvement factors for SAE level

SAE level Improvement Factor

0 0.0

1 0.35

2 0.15

3 0.15

4 0.2

5 0.05
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4.3.4 Simulation run on VISSIM for different penetration of SAE levels

In order to create trajectory information of different SAE levels and also to make

sure that the interactions between various SAE levels are also captured simulations

are run for different penetration for each SAE level. The above SAE models are run

across diverse road networks in order to capture driving behavior in different settings.

The trajectory of the AVs are written in a TRJ file from VISSIM.

4.3.5 Conflict Analysis

Conflict Analysis is a methodology to identify risky maneuvers on roadways. It

has been proved to be a reasonable substitute for accident data modeling. Surrogate

safety methods have been used in the micro simulation context in many studies. [103]

in his study used microsimulation to evaluate the safety levels at signalized intersec-

tions. He used TTC as the surrogate measure to evaluate the safety levels. [101]

used TTC to predict crash risk using the conflict methodology in a microsimulation

environment. [100] analyzed aggressive drivers in a micro simulation using a mi-

crosimulation approach. He modeled aggressive drivers by creating a class of vehicles

which followed too closely or which traveled above the speed limit. He showed that

for very less increase in mobility the safety measures dropped significantly due the

presence of these aggressive drivers in traffic. There are multiple surrogate measures

Table 4.2. TTC Thresholds

SAE 0 SAE 1 SAE 2 SAE 3 SAE 4 SAE 5

Low 6 4.2 3.5 2.8 2 1.5

Medium 4.5 3 2.4 2 1.6 1.2

High 2.5 1.8 1.5 1.2 0.9 0.7
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of safety which have been created that include TTC, PET, MaxD, Max Delta S etc.

Post encroachment time is the time taken by the follower vehicle to reach the same

position as the leader vehicle. This has a slightly different value compared to TTC

because TTC is a hypothesize value where as PET is what actually happens as the

vehicle travels to it’s successor’s position. MaxD is another surrogate measure which

provides the maximum deceleration of the follower vehicle in the conflict region. Max

Delta S is surrogate measure which provides the maximum absolute speed difference

between the follower and the leader vehicle. This measure captures the big speed

differentials that occur many times in the case of accidents. We use the modified

version of TTC as the conflict evaluation criteria, since it is the most commonly used

measure to provide accurate measurement. We have used SSAM as the tool to do

analysis in the conflicts framework methodology. SSAM is a powerful tool which has

been developed by FHWA and has been used in multiple studies. It can process tra-

jectory information from multiple leading microsimulation softwares in a very efficient

manner. We use this tool to evaluate the various SAE levels vehicle trajectories and

analyze the different conflict measures provided by the tool.

4.3.6 Trajectory analysis for various SAE levels

This TRJ file is provided as an input to the SSAM software which is a conflict

analysis tool used for analyzing traffic conflicts. There are a few limitations of this

tool. One of the limitation of this tool is that it does not differentiate the grade

separation between roads which can result in multiple ghost conflicts. These con-

flicts need to be removed in order to identify the real conflicts that happen during

the simulation. The SSAM software outputs different characteristics of each conflict

situation which include TTC, PET, MAX D, DR, MAX Delta S etc. A lower value

of TTC represents a higher probability of a conflict. TTC calculated for the conflicts

do not account for the SAE type. Therefore the TTC values do not reflect the same
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severity level across SAE classes. Hence,there is a need to categorized these TTCs

based on SAE specific thresholds calculated by the above formula.

This trajectory information is used as an input in SSAM which evaluates conflict

probability based on the trajectory of vehicles. The software analyzes the trajectories

and provides information on the severity of the conflicts the different vehicles were

involved in.

4.3.7 Machine Learning Models

Data driven approach has been used in the context of risk identification on road

networks. Here in this work we uniquely capture the benefit of conflict based safety

analysis and the strength of advanced data driven predictive methodologies. This

combination as far as we are aware has not been attempted before specially in the

context of SAE classified AVs. The output from the previous step of trajectory

analysis is used as the label of the vehicle which is classified either as no risk, low

risk, medium risk and high risk depending upon the SAE specific TTC thresholds.

This problem has been defined as a classification problem instead of a regression

problem which also was a distinct possibility given that TTC is a continuous vari-

able. However, SSAM evaluates the conflict measures only between certain ranges

for TTC between 0 to 10. A more intuitive construction of the problem would be a

multi-class classification problem. We evaluate 3 machine learning methods and com-

pare the performance of these methods in the context of medium sized data. Even

though VISSIM can provide trajectory information for vehicles beyond their own i.e

for example the distance between the vehicle and its neighbors, the speed differential

between the vehicle and its neighbors, the acceleration of the neighboring vehicles

etc. But this kind of data may not be available in the context of AVs. Therefore, we

restrict our input data to only the vehicle trajectory level information to represent

real world situations of data availability more realistically. Therefore, the data in-

formation which is extracted from VISSIM as input to the machine learning models
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are the vehicle position, velocity, acceleration, distance traveled, time taken. We use

trajectory information to create more than 50 features which is used for the machine

learning purpose.

Problem Definition

Accident or traffic conflicts are rare events. For example- an accident occurs once

in every million miles travelled. Similarly, conflicts are also very rarely observed.

Therefore, the Y labels in our problem will mainly constitute of zeros which represent

no conflict. The rest of the values 1, 2, 3 are very less in number. Therefore, we will

have to use an anomaly detection framework in order to identify conflicts correctly.

At the same time the purpose of identifying the risk level of vehicles is in the context

of insurance pricing and therefore, identifications of zeros are also useful.

Data Description

The data set used for our analysis comprises of trajectory information of vehicles

of different SAE types on a freeway interchange and a 3 by 3 signalized intersection.

The below table gives the volume composition of the different SAE levels. For each

network we have used the three types of volume composition data sets as given below.

Table 4.3. Volume Composition

Dataset type SAE 0 SAE 1 SAE 2 SAE 3 SAE 4 SAE 5

1 16.66% 16.66% 16.66% 16.66% 16.66% 16.66%

2 4.75% 9.5% 14.25% 19% 23.75% 28.5%

3 28.5% 23.75% 19% 14.25% 9.5% 4.75%
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The dataset type 1 constitutes of different SAE levels in equal proportion. The

dataset type 2 has decreasing proportion as SAE level increases. The dataset type 3

has increasing proportion as the SAE level increases. Different volume compositions

are used in order to make sure the driver behavior of each SAE level is captured

especially since the TTC thresholds for the higher SAE levels is quite low.

Data Pre-processing

The data from VISSIM needs to be preprocessed before providing it as an input

to the machine learning models. The granularity of the data is for every 0.1 sec.

Following are the inputs used from VISSIM.

1. Velocity

2. Acceleration

3. Vehicle type

4. Lane change or not ( 1 or 0)

5. Position from the center of the lane: -ve is left of center and +ve is right of

center

6. Current link

7. Current lane

8. X coordinate of the front of the vehicle

9. Y coordinate of the front of the vehicle

Many times as vehicles are generated by VISSIM, before it enters the network the

vehicle level data associated with it are placeholders. Therefore, these data needs to

be filtered so that this kind of information is removed from the original data set.
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Feature Engineering

The preprocessed data as mentioned above is every 0.1 sec for every vehicle in

the network. This data is used to create two types of features. The first kind is

aggregate levels of features. For example - Distance travelled by the vehicle in a

particular speed range or acceleration range. The other kind of features that are

generated are for example - maximum speed, minimum speed, maximum acceleration,

minimum acceleration, maximum jerk, minimum jerk etc. These two kind of features

are created because both of them together are able to characterize driver behavior

which can be analyzed in the machine learning data driven framework.

Model Selection

In our framework we have decided to choose 3 machine learning models in order

to evaluate the above data set of various SAE level trajectory data. Below is a brief

introduction to each of the methods.

1. Logistic Regression - Logistic regression is one of the most widely used machine

learning techniques. In this study we use a multinomial logistic regression model

for classification which is suited to the multiclass nature of the problem. The

probability of each alternative is estimated by

Pr(Yi = m) =
eβm.Xi

1 +
∑K

k=1 e
βk.Xi

(4.3)

The parameters of the vector βm are estimated using maximum a posteriori

estimation. Since logistic regression is used quite commonly we are going to

benchmark the performance of the other models against it.

2. XG Boost - Gradient boosting employs the methodology of sequential learning.

It uses weak learners to iteratively optimize a loss function using the Gradient

Decent Method. This method builds its learner and then computes the loss,
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the difference between the prediction and the actual value. In the subsequent

iterations, the learner improves over the previous loss level and hence improves.

Extreme Gradient Boosting is known to perform very well with unbalanced

datasets which is the nature of our dataset and hence a natural candidate for

the analysis.

3. Neural Networks - As the third classifier we utilize a neural network with 3

hidden layers and ReLU activation function which is represented by R(z) =

max(0, z). The ReLU activation function is the currently one of the most

accepted activation functions. Neural Networks have been highly successful in

multiple ML tasks and have been shown to be superior to other classifiers while

performing classification tasks.

The fourth model is an ensemble model which combines the previous 3 models

via the stacking technique using logistic regression as the meta classifier. Stacking is

an ensemble method, where a model is built using the output of the base models as

inputs. These new inputs are used to create a new set of predictions.

Sampling Methodology

When machine learning methods are used for unbalanced data sets, they can be-

come very biased to the majority class in order to increase over all accuracy. In order

to decrease the bias we have used two methods. The first method is applied while

dividing the data set into testing and training data. We used stratified sampling

technique in order to make sure that the minority classes are presence in both testing

and training data. The second method used in order to improve the prediction accu-

racy of skewed dependent variables we use under sampling of majority class. This is

done in order to reduce the bias of the machine learning models while predicting the

majority class.
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4.4 Results And Analysis

In order to analyze the predictability of the above discussed anomaly detection

machine learning algorithms we use two types of networks. The first network is the

I65 and I465 freeway interchange. This interchange is one of the main interchanges

near Indianapolis with a lot of merging and diverging sections. This gives us ample

opportunity to record conflicts that may arise due to the traffic comprising of various

SAE level vehicles. The 3 vehicle compositions used to generate the trajectory infor-

mation is as mentioned in Table . The second network used is a 3 by 3 signalized

grid which represents an arterial setup. This setup provides for significant number of

stop and go behavior which result in conflict and hence is useful to analyze. Below

are the figures for the two networks.

Table 4.4. Volume Composition

Dataset type SAE 0 SAE 1 SAE 2 SAE 3 SAE 4 SAE 5

1 16.66% 16.66% 16.66% 16.66% 16.66% 16.66%

2 4.75% 9.5% 14.25% 19% 23.75% 28.5%

3 28.5% 23.75% 19% 14.25% 9.5% 4.75%
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Figure 4.2. Freeway interchange

Figure 4.3. 3 by 3 signalized grid
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Network 1 is I65 and I465 freeway interchange, near Indianapolis. In this partic-

ular network there are 5 merging points and 6 diverging sections. The traffic volume

on the freeway is assumed to be 1,000 vehicles per lane per hour. In total the en-

tire network has 20,700 vehicles per hour. Network 2 has 9 signalized intersection

with a distance of 0.33 miles between each signal. This represents the downtown grid

observed in multiple cities. We attempt to analyze these two networks in the study.

The measures used to analyze the performance of given models are recall and F1

score. This is done because as discussed earlier the dataset is highly imbalanced and

the main interest of this study is to identify the anomalies. Instead of checking just

for accuracy which can give a very biased opinion on the performance of the model,

we need to look at more suitable measures which will reflect the performance of the

model accounting for the special nature of the problem. Recall is used to identify

how well the model is able to identify the positively labeled data points. In order to

compare the performance of the model on the original dataset vs. the dataset with

under-sampled majority class, we train the model on these five datasets and compare

their recall and F1 score. These five datasets include original, 10%,40%,60%, and 90%

under-sampled majority class datasets. An illustrative confusion matrix is presented

for dataset 1 of network 1 in Table 4.5 - Table 4.14. From the analysis of the confusion

matrices for dataset 1 of network 1, we see that the accuracy of all the four models

is higher for the four undersampled sets. This is because the models have been as

highly biased in the case where undersampling is done as compared to the case in

which the entire dataset is used to train the models.

The results from the machine learning models on the simulated datasets has been

presented in the figures below. These models were trained on the original datasets and

undersampled datasets as well. The model performance has been evaluated using the

confusion matrix, recall, F1 Score. The recall and the F1 score for the 3 datasets for

different levels of undersampling of the majority class, are shown in Figure 4.4 - 4.9.

We see that the stacking technique clearly outperforms all the models irrespective of

the extent of sampling or volume composition for both the networks. The technique
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shows strong level of robustness across different scenarios. This is due to the fact

that the ensemble method is able to avoid overfitting as compared to the base models

by blending of the decision boundaries. The base models are able to learn different

aspects of the problem with differential abilities. Stacking combines these capabilities

and creates a robust model with higher accuracy. At the same time neural networks

and XG Boost perform fairly well. Logistic regression performs the worst in all

scenarios.

LR

0 1 2 3

0 10475 121 53 27

1 2 0 0 0

2 10 0 0 0

3 5 0 0 0

XGB

0 1 2 3

0 10467 118 51 26

1 15 1 0 0

2 7 1 1 1

3 3 1 1 0

NN

0 1 2 3

0 10469 117 51 26

1 10 2 1 0

2 12 1 0 0

3 1 1 1 0

S

0 1 2 3

0 10470 117 51 27

1 5 2 1 0

2 17 1 0 0

3 0 1 1 0

Table 4.5. Confusion matrix for original Dataset 1 of Network 1
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LR

0 1 2 3

0 9202 108 47 24

1 18 8 2 2

2 9 4 2 1

3 4 1 1 1

XGB

0 1 2 3

0 9211 100 45 20

1 13 16 3 3

2 6 3 4 0

3 3 0 1 3

NN

0 1 2 3

0 9215 97 42 19

1 8 18 1 3

2 8 3 5 1

3 1 1 1 5

S

0 1 2 3

0 9220 94 43 19

1 5 19 1 1

2 7 2 6 3

3 2 4 1 4

Table 4.6. Confusion matrix for 10% undersampled Dataset 1 of Network 1

LR

0 1 2 3

0 6073 100 44 22

1 12 12 4 0

2 6 8 4 1

3 3 1 0 3

XGB

0 1 2 3

0 6079 106 40 16

1 610 10 4 2

2 3 3 7 1

3 2 0 1 8

NN

0 1 2 3

0 6083 92 40 15

1 4 22 1 2

2 6 4 8 2

3 0 1 3 7

S

0 1 2 3

0 6086 88 38 14

1 5 23 2 2

2 3 4 11 3

3 0 2 0 8

Table 4.7. Confusion matrix for 40% undersampled Dataset 1 of Network 1
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LR

0 1 2 3

0 3525 85 37 19

1 5 25 5 1

2 3 10 10 0

3 2 1 0 6

XGB

0 1 2 3

0 3528 72 30 14

1 5 39 5 3

2 3 8 16 1

3 1 0 1 9

NN

0 1 2 3

0 3525 71 31 12

1 5 42 1 1

2 2 5 17 3

3 2 2 3 9

S

0 1 2 3

0 3530 67 20 11

1 5 50 3 3

2 0 6 28 3

3 0 1 0 10

Table 4.8. Confusion matrix for 60% undersampled Dataset 1 of Network 1

LR

0 1 2 3

0 952 70 22 12

1 1 40 7 2

2 1 8 23 0

3 0 2 0 12

XGB

0 1 2 3

0 953 55 10 10

1 1 56 7 3

2 1 4 34 1

3 0 4 1 13

NN

0 1 2 3

0 952 54 10 9

1 1 58 2 1

2 1 6 38 3

3 1 2 2 12

S

0 1 2 3

0 953 59 9 5

1 1 50 3 3

2 0 7 39 3

3 0 1 0 15

Table 4.9. Confusion matrix for 90% undersampled Dataset 1 of Network 1
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Figure 4.4. Network 1 Dataset 1

Figure 4.5. Network 1 Dataset 2

Figure 4.6. Network 1 Dataset 3
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Figure 4.7. Network 2 Dataset 1

Figure 4.8. Network 2 Dataset 2

Figure 4.9. Network 2 Dataset 3
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4.4.1 Conclusions

This work makes a significant contribution in the modeling of risk assessment of

various SAE levels. The conflict analysis framework has been redefined in the AV

context for different SAE levels. The newly defined thresholds attempt to reflect the

surrogate safety measure of time to conflict in the autonomous setting. We attempt to

identify using our proprietary SAE models to generate AV trajectory. This trajectory

is input into the SSAM software developed by FHWA. The software identifies conflicts

between vehicles based on TTC thresholds among others. The TTC output of SSAM

are then compared against the thresholds proposed to identify the risk levels of the

vehicles. Due to the stochastic nature of the SAE levels driving behavior, a very

small percentage of them behave in the risky manner. Using machine learning models

trained on the created datasets a prediction methodology has been attempted. We

looked at four machine learning models, logistic regression, XG Boost, neural networks

and a stacked ensemble of these 3 models. Logistic regression performed the worst

among all 4 models in the case of both the networks. XG Boost performs relatively

better than Logistic Regression. Neural Networks consistently has higher performance

in both the network settings as compared to XG Boost and Logistic Regression. The

stacked ensemble smoothens out the prediction of the 3 base models and provides

higher prediction accuracy in terms of recall and F1 score. therefore, we recommend

a stacked ensemble technique in order to identify risky behavior in the context of

AVs.

This work will be an asset for practitioners, policymakers and researchers to per-

form safety analysis and risk assessment as AV penetration increases in the future.

The model can accommodate different mixes of traffic, and therefore the work can

also be used to test the impact of various permutations of SAE level penetrations.

With this work as a foundation, extensions of future work can be in multiple ar-

eas. Research divisions at insurance firms can assess the risk levels of of autonomous

vehicles by calibrating this model with the ground data.
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5. CONCLUSIONS

5.1 Summary

The landscape analysis of AVs via the 28 interviews and 33 surveys conducted,

revealed various critical key conclusions. It is evident that the market introduction

of autonomous vehicles (AVs) will take two directions. Vehicles with a low level of

autonomy will be available for retail purchase, whereas Original Equipment Manu-

facturers (OEMs) and transportation service providers will deploy highly automated

vehicles via Transportation-as-a-service model. Furthermore, CAVs will take an evo-

lutionary, path of development. In addition, the deployment of robo taxis will be

done on a city-by-city basis, because Society of Automotive Engineers (SAE) level 4

vehicles that would be employed will have an operational design domain restricted

by geo-fencing. Also, current partnerships between CAV stakeholders are extremely

weak. Strengthening these offers the potential to guide CAV evolution in a more ef-

ficient and constructive manner. Moreover, the large scale at which CAV technology

will be deployed leaves it vulnerable to issues that will cause a poor consumer will-

ingness to purchase, high prices, and OEMs being left behind in a disruptive market.

This must be accounted for in future deployment decisions Lastly, the stakeholders

have falling short of building transformative collaborations and disagree on key CAV

matters, such as the need for connectivity. A consensus must be built to facilitate

efficient CAV evolution in the future.

The fact that AVs would be very different in their performance based on the level

of autonomy led us to study the various impacts that they will have on road traffic.

The mobility analysis indicates that mobility in SAE level 1 always exceeds that

of SAE level 0, because the former has a consistently higher acceleration for given

conditions. SAE level 2 provides more lateral stability and therefore less implied
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accidents than level 1 or 0 due to lower lateral deviations. For level 3, the key

consideration is to model the transition between human and system control. In SAE

level 4 we model the operation of autonomous vehicles in Operational Design Domain

(ODD) and transition to minimal risk conditions outside ODD. SAE level 5 overcomes

the impact of these transitions and hence has a better mobility than the lower SAE

levels. We also performed penetration studies for various SAE mixes in the road

traffic and analyzed their mobility impacts. The models can help policymakers to

understand the impact of autonomous vehicles on mobility and guide them in making

critical policy decisions.

The safety aspect of AVs has not be studied earlier at the SAE level. In this

study we create a framework which can be used to evaluate risk levels for various

SAE classes. Firstly based on previous data on manner of collision we define different

TTC thresholds for the different risk class for each SAE level. Using our in house

built models which mimic the different levels of autonomy we run simulations to

capture the trajectory of AVs. Using this trajectory data and threshold levels we

identify the riskiness of the all vehicles across each SAE level. We used this data

as our input we build a prediction model which identifies riskiness in SAE vehicles

based on their trajectory data. We used machine learning models namely logisitc

regression, neural networks, XGBoost and an ensemble model which stacks the three

machine learning algorithms to attempt to identify the risk level of vehicles. In order

to do that we utilize the anomaly framework due to the sparseness of the data which

reflects real life settings. The majority class is undersampled in order to reduce

the bias in the model and to improve the prediction accuracy for the risk labels.

We created 3 datasets for 2 networks. The first network was the I-70 and I-465

intersection and the second network was a 3 by 3 grid . These two networks were

chosen in order to test the effectiveness of the prediction model in diverse networks

and different volume compositions. We found the ensemble method which combines

the prediction capcility of the three base models performs better than the rest. In a
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data scarce environment this model which combines conflict analysis framework and

microsimulation environment can be very valuable.

5.2 Limitations

The main limitation this work faces is due to the challenge it faces in terms of

validating the results. The modeling of AVs is based on sound assumptions and the

results therefore reflect the reasonable foundations of the model. At the same time

the work will need validation in terms of calibration of the parameters used for the

mobility and safety analysis. As data will become more available in the future we

expect to validate and calibrate our models.

The machine learning models we have built are based on the simulated trajectories

from the AVs. Again, the fact the data is simulated can raise a few questions but

currently not all SAE levels are even on roads which limits the extent to which they

can be currently validated.

5.3 Future work

A series of future works can be an extensions of this work. Some of them are as

below.

1. The SAE modeling can be built into a tool which can be used by OEMs, state

agencies and transportation consulting firms.

2. The SAE modeling be made more detailed by adding more automated function-

alities, like traffic jam assist, emergency braking etc to the model and testing

their impacts.

3. The models can be tested for different traffic conditions to look at the impacts

in more diverse scenarios
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4. The impact on SAE 4 level vehicles on travel demand will be a useful research

problem.

5. Driver risk prediction tool can be used in future models which predict route risk

as a combination of driver risk and other external factors.

6. Further work can be done on identification and analysis of issues and the critical

challenges which will dictate and affect the DSRC and 5G paths.

7. As the data for various SAE level vehicles become more available, models which

combine functional as well as data driven models will go a long way in creating

safer as well as efficient autonomous vehicles
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