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ABSTRACT 

The Quality by Design (QbD) and Process Analytical Technology (PAT) initiatives of the 

United States Food and Drug Administration (FDA) have stimulated a paradigm shift in 

pharmaceutical product development and manufacturing since the mid-2000s. Specifically, there 

is taking place an accelerating adoption of computer-aided technologies in pharmaceutical 

discovery, development and manufacturing. The adoption of such technologies is driven by factors 

such as increasing expectations of product quality, accelerating time to market, combating drug 

shortages, achieving reduced operating and capital costs, personalizing medications and 

streamlining regulatory compliance. Continuous manufacturing has become one of these emerging 

technologies in the pharmaceutical industry; however, it presents numerous challenges in product 

and process design, as well as systems integration and operations. 

 

This work addresses the implementation aspects of real-time process management (RTPM) 

in the continuous manufacture of oral solid drug products (OSD-CM). OSD-CM involves 

integration of multiple solids processing unit operations, process analyzers, and automation and 

information technology systems to enable the continuous flow and processing of both material and 

process data. Developments in OSD-CM since the 2000s have resulted in novel technologies and 

methods for material processing, designing and configuring individual equipment and PAT tools, 

strategies for active process control, as well as approaches for designing and operating integrated 

processes. As of late 2018, five drug products produced by early adopters of OSD-CM systems 

have received FDA approval. However, numerous challenges remain to be addressed in the 

implementation of individual subsystems, sensing methods and data architectures, to realize all of 

the potential benefits of integrated manufacturing systems. To address these challenges, this thesis 

is focused on process monitoring and system integration while building on previous research in 

RTPM from our research group. 

In the development and implementation of frameworks for robust process monitoring, two 

specific gaps in process monitoring of OSD-CM are addressed in this work. The first is the inline 

sensing of mass flow rate of particulate material, and the second, model-based data reconciliation 

for integrated OSD-CM processes. A novel x-ray-based sensor is studied, and the sensor’s 

capability as an inline PAT tool to provide real-time measurements in OSD-CM is demonstrated. 
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Further, a dry granulation system is investigated for material flow, assessment of established 

models and inline sensors, and the results applied to the development of a process data 

reconciliation and gross error detection framework.  

 

The ultimate goal of system integration is to ensure that the individual system elements 

function reliably as a whole and meet the design performance requirements of the system. However, 

to date, there has been only limited discussion of the management of abnormal conditions during 

operations, to prevent unplanned deviations and downtime, and to sustain system capabilities in 

OSD-CM applications. Moreover, although the sourcing, analysis, and management of real-time 

data have received growing attention, under the label of Smart Manufacturing and Industry 4.0, 

there has been limited discussion of the continued verification of the infrastructure for ensuring 

reliable operations. Hence, this work introduces condition-based maintenance (CBM) as a general 

strategy for continued verification and sustainment of advanced pharmaceutical manufacturing 

systems such as OSD-CM. A vital implementation consideration for manufacturing operations 

management applications such as CBM is a systems architecture and an enabling infrastructure. 

Best practices for implementing such infrastructure are among the bottlenecks in operations 

management of advanced pharmaceutical manufacturing facilities, including OSD-CM. To this 

end, this work advanced the paradigm of Quality by Control (QbC), a hierarchical architecture for 

implementing QbD in pharmaceutical manufacturing. An infrastructure is implemented on the 

OSD-CM testbed at Purdue by utilizing commercially available automation systems, and by 

leveraging enterprise architecture standards. This thesis thus demonstrates an implementation of 

QbC as well as of the relevant features of the emerging operations management paradigm of Smart 

Manufacturing / Industry 4.0. It is envisioned that with the growth in digitalization technologies 

for design, development and implementation of OSD-CM processes, the promises of continuous 

manufacturing will be realized for a broad range of pharmaceutical products across the industry.  
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1 INTRODUCTION 

1.1 Motivation 

Technological progress in the pharmaceutical industry enables the promotion, restoration, 

and maintenance of public health by developing and providing access to medication that can be 

manufactured and administered effectively. Manufacturing innovations in the pharmaceutical 

industry have proliferated since the mid-2000s following the initiatives such as Quality by Design 

(QbD) and Process Analytical Technology (PAT) initiatives of the United States Food and Drug 

Administration (FDA) (FDA, 2004a; Ierapetritou et al., 2016; Troup and Georgakis, 2013; Yu et 

al., 2019). These are fostered not only by the requirement of consistent product quality but by the 

increased expectations for intensified product and process development, mitigating the loss of 

batches and recalls, accelerated time to market, reduced operating and capital costs, real-time 

quality assurance and streamlining regulatory compliance. Consequently, the industry is marching 

towards operational excellence and continuous improvement in the manufacturing space through 

the adoption of advanced technologies for the design and operations of integrated processes (Yu 

and Kopcha, 2017).  

 

Continuous processing to manufacture drug substance and drug products, both in the small 

molecule and large molecule space is among the most notable recent developments in the 

pharmaceutical industry. These developments are driven by an increasing need for sustainable 

process operations, safety, asset utilization and quality risk assessment in process design and 

operations (Allison et al., 2015; CDER US FDA, 2019; Lee et al., 2015; Nasr et al., 2017; National 

Academies of Sciences Engineering and Medicine, 2019). Research efforts since the mid-2000s 

empowered by the QbD and PAT initiatives of the FDA have advanced model-based material 

development, improved equipment and process designs, innovations in process analyzers, and 

integration of unit operations in the systematic pursuit of continuous manufacturing (Kleinebudde 

et al., 2017). Some of the milestones include approvals of five continuously manufactured drug 

products by the FDA through late 2018, the recent draft guidance for continuous manufacturing 

(CDER US FDA, 2019) and growth in the technology providers. However, despite the steady 

advances in novel technologies and innovative methods addressing the individual technology 
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components, the implementation of advanced control in manufacturing facilities has faced 

technical and cultural challenges due to real and perceived regulatory hurdles, as well as an 

implementation gap for manufacturing readiness (Collins, 2018; Ierapetritou et al., 2016; National 

Academies of Sciences Engineering and Medicine, 2019). Importantly, drug shortages caused by 

numerous manufacturing challenges continue to persist (Yu and Kopcha, 2017).  

 

To this end, the pharmaceutical industry is leveraging the recent growth of information 

technology in industrial automation, referred to as Pharma 4.0 (Binggeli et al., 2018; BioPhorum 

Operations Group, 2018; Ding, 2018; Markarian, 2018; Romero-Torres et al., 2017). The 

developments towards Pharma 4.0 is a consequence of the advances of the chemical processing 

industries towards the paradigms increasingly referred to as Industry 4.0 or Smart Manufacturing 

or industrial digitalization. Industry 4.0 practices are underpinned by enabling technologies in 

industrial automation and information technology towards applications such as real-time product 

and process risk assessment, asset management, quality assurance and workforce development. 

These rely on the ability to collect, store, share and utilize manufacturing data for manufacturing 

operations management; and necessitates architectures and supporting infrastructure for system 

integration, data management and process control (ISA, 2010a; Isaksson et al., 2018). 

1.2 Overview 

The central theme of this dissertation is the implementation considerations of real-time 

process management (RTPM) towards the advancement of pharmaceutical manufacturing. RTPM 

encompasses frameworks for process automation such as robust process monitoring, plant-wide 

control, and fault and knowledge management (Giridhar et al., 2011). The process of interest in 

this work is the continuous manufacture of powder-based oral solid drug products (referred to as 

OSD-CM). Notably, this work builds on previous research in RTPM from our research group 

towards the development and implementation of OSD-CM.  

 

There are many system hardware and software components that, together, comprise the 

totality of an OSD-CM process (CDER US FDA, 2019). The unit operations used in OSD-CM are 

not fundamentally new compared to the traditional batch tablet manufacturing methods (García-

Muñoz et al., 2017). The novelty and challenges in OSD-CM arise from the necessity to integrate 
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the component pieces not only for material flow and processing, but also data flow and processing 

(Almaya et al., 2017; Laske et al., 2017). Notably, the necessity to handle particulate material 

across a train of unit operations adds to the complexity of OSD-CM. Consequently, the 

implementation of such integrated processes is not trivial. The interoperability of the component 

pieces in the overall process not only involves combining individual system elements but also 

ensuring that they function collectively as a whole and satisfy the design properties or 

characteristics of the system of interest (SEBoK, 2019a).  

 

This dissertation addresses four main aspects in an attempt to address implementation gaps 

in OSD-CM identified by the research and practitioners community, such as inline mass flow 

sensing and data reconciliation (Ierapetritou et al., 2016), systems integration (Myerson et al., 

2015), and the considerations for maintenance (ASTM Committee E55, 2014; CDER US FDA, 

2019; FDA, 2006). Notably, the objectives of this work were supported by grants awarded by the 

US-FDA for implementation considerations of OSD-CM to advance system architectures and 

operations management towards Industry 4.0 practices. The specific tasks addressed in this work 

are outlined below. 

 

1. Investigation of a novel x-ray based sensor for particulate mass flow rate monitoring to 

advance sensing capabilities in OSD-CM processes. 

 

2. Assessing a dry granulation process for integration in the continuous tableting process and 

for applications in robust process monitoring frameworks. 

 

3. Implementing data architectures in the pilot-scale OSD-CM testbed for Quality by Control 

and Pharma 4.0 practices of operations management.  

 

4. Introducing condition-based maintenance as a general strategy for continued verification 

and maintenance in OSD-CM operations management. 
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1.3 Organization 

This dissertation is organized into 7 chapters and is structured as an amalgamation of edited 

sections from published, or to be published articles, or articles in preparation for submission.    

 

Chapter 2 provides an overview on the modernization of pharmaceutical manufacturing, 

followed by the developments in RTPM for implementing OSD-CM. The chapter highlights the 

rapid evolutions in pharmaceutical manufacturing since the mid-2000s resulting in integrated 

process operations and subsequent advances towards Pharma 4.0. Notably, this chapter is an 

extract from a submitted (under review) book chapter entitled ‘Advancing Smart Manufacturing 

in the Pharmaceutical Industry’ in ‘Smart Manufacturing: Applications and Case Studies’, to be 

published by Elsevier in 2020. The developments from this thesis towards process monitoring, 

abnormal events management and systems integration are also included in relevant sections.   

 

Chapter 3 details the X-ray sensor study and its early stage implementation in the pilot 

plant facility. The majority of the contents of this chapter are reproduced from the article entitled 

‘Application of X-Ray Sensors for In-line and Noninvasive Monitoring of Mass Flow Rate in 

Continuous Tablet Manufacturing’ in ‘Journal of Pharmaceutical Sciences’ (Ganesh et al., 2017). 

Further, advances in the utility of the sensor in the tablet line is highlighted.  

 

Chapter 4 describes the roller compaction study. The contents of this chapter enabled the 

work of our research group towards robust process monitoring systems. The subsequent utility and 

applications from this work are partly published as articles entitled ‘Sensor Network for 

Continuous Tablet Manufacturing’ in ‘Computer Aided Chemical Engineering’ (Ganesh et al., 

2018a) and ‘Sensor Network Robustness Using Model-Based Data Reconciliation for Continuous 

Tablet Manufacturing’ in ‘Journal of Pharmaceutical Sciences’ (Moreno et al., 2019). 

 

Chapter 5 presents excerpts from the article entitled ‘A perspective on Quality-by-Control 

(QbC) in pharmaceutical continuous manufacturing’ published in ‘Computers and Chemical 

Engineering’ (Su et al., 2019c). The excepts discusses the development of Quality by Control, 

which is briefly, an architecture to implement QbD. As a second author in this article, contributions 

from this dissertation included developing the systems integration architecture to demonstrate the 
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QbC framework. These implementation considerations also supported additional RTPM 

applications pursued by the research group, culminating in published works (Moreno et al., 2019; 

Su et al., 2019a, 2018b).  

 

Chapter 6 establishes the requirement of proactive considerations for maintenance 

strategies in OSD-CM. Herein, Condition-based Maintenance (CBM) is introduced as a strategy 

for leveraging the advances in RTPM of OSD-CM for continued verification and sustainment of 

process operations. Such use of real-time data for maintenance management is one of the main 

benefits of integrated data architecture in the ongoing Industry 4.0 or Pharma 4.0 practices of 

operations management. CBM builds on the concepts from previous work of the research group in 

exceptional events management to include considerations for infrastructure failures, aside from 

faults arising from material handling and process disturbances. The aspect of systems architectures, 

a vital consideration for the robust process operations is further discussed, along with illustrating 

the developments in implementing the infrastructure in the pilot scale advanced manufacturing 

tablet manufacturing testbed. The contents of the Chapter are to be submitted for publication in an 

article entitled ‘On Condition-based Maintenance for Process Operations Management in 

Pharmaceutical Continuous Manufacturing.’ 

 

Chapter 7 concludes this dissertation by emphasizing the lessons learned and subsequent 

considerations for future work in the area of process operations management in pharmaceutical 

manufacturing. OSD-CM has considerably matured for industrial applications and regulatory 

considerations. This growth necessitates solutions for process safety, training and development of 

best practices, along with considerations for improved sensing, equipment innovations and 

strategies for operations management.  
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2 ADVANCING SMART MANUFACTURING IN 

PHARMACEUTICAL PROCESS OPERATIONS 

2.1 Introduction 

Smart Manufacturing (SM) and related ongoing industrial automation advances such as 

Industry 4.0 are reshaping manufacturing operations management driven by expectations for 

improved safety, security, quality, asset utilization, time to market, regulatory compliance and 

enhanced customer relations across multiple industries (Baur and Wee, 2015; Moyne and Iskandar, 

2017). This advent of SM in the chemical processing industries for ‘manufacturing intelligence’ 

is a manifestation of cultural and mindset change in utilizing the technological advances in 

communication and information technology, and builds on decades of progress in process systems 

engineering (Bagajewicz, 2009; Christofides et al., 2007; Davis et al., 2015; Edgar and 

Pistikopoulos, 2018; Venkatasubramanian, 2019). SM benefits from multiscale modeling, 

advanced sensors, and equipment-process-enterprise integration achieved in the manufacturing 

space over decades of progress in digital process operations; and is enabled by the integration of 

unit operations with the business units through the progress in digitalization, referred to as the 

Operations Technology and Information Technology (OT/IT) integration (Isaksson et al., 2018). 

Notably, SM relies on underlying components of product and process understanding, process 

monitoring and control, and systems integration; as well as cultural drivers and advances in the 

enabling technologies for systems integration.  

 

In this chapter, an overview of the advances in operations management in pharmaceutical 

manufacturing towards SM by focusing on the developments in OSD-CM. The cultural advances 

and several technological developments in the underlying RTPM component areas, including 

process monitoring and control, fault-tolerant control, exceptional events management, knowledge 

management, and systems integration, are discussed. It must also be noted that significant progress 

along the Industry 4.0 concepts has been achieved in digitalization of pharmaceutical facilities and 

is increasingly referred to as Pharma 4.0. The early stages of Pharma 4.0 is seen in development 

laboratories, supply chain, clinical trials, continuous manufacturing of drug substances, end-to-

end integration of drug substances and drug product manufacturing, and bioprocessing (Herwig et 
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al., 2017; OSIsoft LLC, 2017; Romero-Torres et al., 2018; Steiner and Jornitz, 2017), however 

these topics are beyond the scope of this work. 

2.2 Modernization of Pharmaceutical Manufacturing 

2.2.1 Quality by Design 

While the discovery of the drug substance or the active pharmaceutical ingredient (API) 

has been the traditional focus of the pharmaceutical industry, the development of an effective 

product formulation for the delivery of the API and of the design and operation of processes that 

will consistently and profitably manufacture the product has in recent years drawn increased efforts. 

Drug products include tablets, capsules, film strips, soft gels, skin patches, injectable, etc., where 

the choice of product form is based on the desired drug delivery profiles within the body, the 

mechanical and chemical constraints of the API and patient compliance. Oral solid doses, 

particularly tablets, are the most common form of a drug product as tablets are cheap to 

manufacture, are mechanically and chemically stable and are most convenient to self-administer. 

The manufacturing process, however, requires many capital-intensive, complex steps that use 

numerous associated resources, including equipment, material, and labor; and the associated costs 

constitute about 27% of the cost of a brand name drug product and almost half the cost of a generic 

drug product (Basu et al., 2008). The reader is referred to (Khinast and Bresciani, 2017) for an 

overview of the unit operations involved.  

 

By recognizing that drug shortages and recalls commonly begin with a supply disruption 

related to a product or facility quality, regulatory encouragement towards science and risk-based 

manufacturing has led the developments towards agile, flexible, and robust systems to mitigate 

failures within manufacturing facilities (Lee et al., 2015; Yu and Kopcha, 2017). Importantly, these 

manufacturing failures as well as the limited ability to scale production during emergencies are 

considered a potential threat to public health. The ‘Pharmaceutical cGMPs for the 21st Century: 

A Risk-Based Approach’ and the ‘PAT – A Framework for Innovative Pharmaceutical 

Development Manufacturing and Quality Assurance’ documents by the United States Food and 

Drug Administration (FDA, 2004b, 2004a) in the early 2000s envisioned modernization of the 

pharmaceutical industry through the adoption of innovative manufacturing technologies. Scientific 
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and risk‐based approaches to product development and manufacturing along with the pursuit of 

operational excellence to benefit patients by providing essential medication at consistent quality 

in a timely manner, and the potential to reduce manufacturing associated shortages, recalls and 

costs have driven a paradigm shift in the modernization of pharmaceutical processes.  

2.2.2 Towards cyber-physical systems 

The QbD and PAT initiatives have launched a cultural change serving as innovation drivers 

by encouraging scientific and risk-based approaches to product and process development and 

manufacturing and a departure from the traditional checklist-based operations. QbD and PAT 

encouraged the design of manufacturing systems that could operate in a design space within which 

predefined quality target product profile (QTPP) could be assured using advanced process 

monitoring and control technologies.  

 

Attaining predefined quality, safety, and efficacy is based on product and process 

understanding, and the enabling control strategies. This is achieved by utilizing knowledge gained 

from first principles and empirical modeling, a risk assessment of the processing routes by 

identifying the Critical Quality Attributes (CQAs) and corresponding Critical Process Parameters 

(CPPs) that could impact the product and the implementation of PAT. The control strategy 

involves a planned set of controls, including that of process parameters, process attributes, facility 

and equipment operating conditions, and process testing that ensures process performance and 

product quality to be within the design space. The PAT guidance (FDA, 2004a) and International 

Council for Harmonization guidelines ICH Q8 (R2) Pharmaceutical Development, ICH Q9 

Quality Risk Management and ICH Q10 Pharmaceutical Quality Systems laid the foundations for 

the modernization of pharmaceutical industry via advanced manufacturing methods,  including 

real-time assessment of process performance and product quality.  

 

The fundamental understanding of the product and the process, and the ability to measure 

and control CQAs is the basic principle for development and manufacturing under QbD principles. 

Hence, this necessitates the systematic integration of physical and cyber capabilities throughout 

the life cycle of product development and manufacturing. These include product and process 

modeling, online sensing and process control, knowledge management, and the use of automation 
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systems for implementation. Moreover, such innovations in Chemistry, Manufacturing, and 

Controls (CMC) require effectively sourcing, managing and utilizing the volume, velocity, 

veracity, and variety of the data from equipment and analyzers at multiple scales of operations 

spanning laboratory, pilot-scale development, manufacturing facilities as well as of contract 

manufacturers and suppliers. Moreover, prior CMC knowledge is valuable to accelerate new drug 

development as well as the regulatory review process (Hussain et al., 2019). Knowledge 

management and quality risk management are hence highlighted in ICH Q10 as key enablers for 

the development and implementation of the pharmaceutical quality system to record and manage 

process data as well as observations such as failures, material clogging, cleaning frequency, etc. 

during the product’s life cycle. Furthermore, capture of the knowledge about the products and 

processes, requires linking experimental data and predictions with suitable models. 

 

Process models play an essential role in the progress towards the modernization of 

manufacturing systems (Chatterjee et al., 2017). Under the QbD paradigm, mathematical models 

are essential for encoding pharmaceutical process understanding and can be used effectively 

throughout development and manufacturing, including process design, scale‐up, process 

monitoring, control, and continual improvement. The models may be broadly classified into 

mechanistic or first‐principles models, empirical models, and semi-empirical or hybrid models. 

Many data-driven and mechanistic models have been implemented in pharmaceutical process 

development and manufacture, and these modeling approaches are further evolving for multiple 

objectives. The efforts towards improved agility, flexibility, and robustness in manufacturing 

methods to mitigate the loss of batches, recalls and inconsistent product quality is already resulting 

in a paradigm shift towards model-based approaches to product and process development, process 

control and operations management. Data-driven models are crucial for quantitative monitoring 

using PAT tools as well as the implementation of multivariate statistical process control (MSPC). 

Advances in process understanding are further facilitated by first-principle and hybrid modeling 

of the system. The models are leveraged for reliable process operations in monitoring and 

forecasting systems, open and closed-loop decision support, and plant-wide automation. These 

advancements are ushering pharmaceutical manufacturing into the big data era to leverage models 

and predictive analytics for driving innovations in product development and intensification of 

process operations. As a consequence of business, social and regulatory drivers, and importantly, 
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a deeper understanding of the manufacturing system and its components, these efforts lead towards 

operational excellence and continuous improvement of manufacturing systems. The reader is 

referred to the article (Yu et al., 2014) and the book ‘Comprehensive Quality by Design for 

Pharmaceutical Product Development and Manufacture’ (Reklaitis et al., 2017) for an overview 

on QbD concepts and applications. 

2.2.3 Quality by Control  

The QbD guidance and the ICH Q8, Q9 and Q10 promoted the systematic generation of 

the essential product and process knowledge required to implement continuous operation by 

identifying the critical material/quality attributes, process parameters, and the control strategies 

required to maintain the process operation and the quality of the product under a state of control. 

This was an advancement from Quality-by-Testing (QbT), the quality control approach to testing 

the quality attributes of in-process material or final product at the end of each batch processing 

step. The concept of Quality by Control (QbC) for a model-based paradigm in the systematic 

implementation of QbD approaches following hierarchical control layers was recently introduced 

by our research group (Su et al., 2019c). QbC in pharmaceutical manufacturing envisions that 

quality should not only be designed initially using product and process understanding based on 

QbD, but more robust processes ought to be implemented using active process control approaches 

by benefiting from the increasing product and process knowledge, enabled by state-of-the-art 

industrial automation technologies. 

2.2.4 Continuous Processing 

The regulatory push towards advanced manufacturing opened the doors for innovations 

including in existing unit operations emerging from the systematic integration of product and 

process knowledge, instrumentation and automation systems, compliance protocols and real-time 

process management. Continuous manufacturing promotes the physical integration of two or more 

unit operations with the implementation of real-time monitoring and process control (CDER US 

FDA, 2019). Driven by the expectations of achieving reduced operating and capital costs, lowering 

material inventory, improved product quality and reduced batch to batch variability, safety and 

increased reliability, the development of advanced technologies for the intensification of product 
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development, manufacturing processes and supply chains ensued in earnest. The progress in 

material development further enables reducing the number of processing steps and need for human 

handling during intermediate stages. 

 

Moreover, the expectations of utilizing smaller equipment for longer run durations 

translates into flexibility in scale-up and significantly reduces the size of the manufacturing facility. 

The shift from traditional batch manufacturing and end of line product quality testing to the 

development of continuous manufacturing systems and real-time quality assurance pave the way 

for real-time release testing (RTRT) (OConnor and Lee, 2016). These upgrade the value of process 

data from merely being utilized for end-of-batch quality checks to exploitation in advanced process 

control, process intensification, and model-based development of new products and processes. As 

opportunities emerged to benefit business needs, five drug product filings which employed 

continuous tablet manufacturing processes have received FDA approvals namely, Orkambi from 

Vertex in 2015, Prezista from Janssen in 2016, Verzenio from Eli Lilly and, Symdeko from Vertex 

in early 2018, and Daurismo from Pfizer in late 2018. Generally, continuous manufacturing 

facilities enjoy economies of scale; that is, the investment and operating cost per unit of production 

decrease as the plant design capacity is increased. However, the incentives for continuous 

manufacturing in the pharmaceutical industry are not the same in all aspects as they may be for 

the other industry sectors. The reader is referred to the article by (Steiner and Jornitz, 2017) in the 

book ‘Continuous Manufacturing of Pharmaceuticals’ (Kleinebudde et al., 2017) for a 

comprehensive description of the benefits and historical developments towards continuous 

processing in the pharmaceutical industry.  

 

This modernization journey towards advanced manufacturing technologies is enabled and 

accelerated as a result of significant efforts in overcoming technical, cultural and regulatory 

challenges since the early 2000s, with contributions from multiple academic, industrial and 

regulatory groups. For example, under the US National Science Foundation supported Engineering 

Research Center for Structured Organic Particulate Systems (NSF ERC-SOPS), multiple 

manufacturing process testbeds for solid oral drug products have been developed. Also, the 

Novartis-MIT Center, the Research Center for Pharmaceutical Engineering in Austria and several 

additional research centers and industry-academia-regulatory partnerships have enabled the 
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modernization of pharmaceutical manufacturing in earnest. Importantly, community interactions 

through symposia and forums such as the International Symposium on the Continuous 

Manufacturing of Pharmaceuticals (ISCMP), American Institute of Chemical Engineers (AIChE) 

Pharmaceutical Discovery, Development and Manufacturing (PD2M) Forum, the International 

Forum for Process Analysis and Control (IFPAC) among others, and working groups in multiple 

organizations such as the FDA Emerging Technology Team, the ASTM E55 Committee, the 

International Society for Pharmaceutical Engineers (ISPE) Continuous Manufacturing 

Subcommittee and Pharma 4.0 Special Interest Group, BioPhorum Operations Group, the National 

Academies of Sciences, Engineering and Medicine continue to foster developments in 

modernizing pharmaceutical manufacturing using digital technologies. 

 

Notably, the advances in continuous manufacturing in the small molecule space provided 

the initiatives to advance manufacturing sciences and have received FDA approvals. These 

advances have been instrumental towards the harmonization of regulations across multiple global 

agencies and address the barriers to continuous manufacturing. Furthermore, it has provided the 

necessary encouragement for process intensification achievable through automation and advanced 

manufacturing methods. The lessons learned in small molecule applications of continuous 

manufacturing are stimulating similar developments in the more complex biological products 

domain, where technologies for real-time monitoring of CQA’s are in early stages of development, 

and contamination monitoring and control are quite challenging (National Academies of Sciences 

Engineering and Medicine, 2019). In the forthcoming years, developments through the Industry 

4.0 initiatives are positioned to impact the design, deployment and sustainment of the processes 

and facilities that produce the next generation of life-saving medication. 

2.3 Continuous tablet manufacturing 

Continuous manufacturing processes are a system of systems. In this subsection, the 

integration of existing tablet processing technologies to form a ‘continuous manufacturing’ system 

is discussed. Further, the considerations for such a complex system are briefly highlighted, along 

with the considerations for leveraging the advances in OT/IT integration to progress in this journey.  
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2.3.1 Process  

Oral solid dose manufacturing involves the use of a sequence of unit operations for 

processing drug substances as well as additional ingredients such as excipients, lubricant, and 

coatings to result in the final dosage form. The drug substance is usually a small-molecule organic 

compound manufactured using classical reaction and separation operations to result in a particulate 

solid, often crystalline, at ambient conditions. The manufacturing steps for the drug substance are 

referred to as primary manufacturing. The excipients, lubricants, and other therapeutically inert 

components used to facilitate product handling, manufacturing, administration, dissolution, and 

delivery to the patient, are also particulates at ambient conditions. The downstream manufacturing 

or secondary manufacturing involves the blending of the powders comprising the product 

formulation and compressing the blend into tablets. The secondary manufacturing process 

traditionally follows one of three routes - direct compaction, wet granulation, or dry granulation 

for production of tablets (or capsules). The granulation routes involve additional solids handling 

processes depending on the desired formulation and material properties. Powders that flow well 

and have no segregation issues may be directly compressed after blending. Powders that flow 

poorly or segregate are formed into granules, either using dry granulation which involves pre-

compression into a ribbon followed by milling or using wet granulation which involves 

agglomeration of the particles using a liquid binder, possibly screening to control granule size, 

followed by drying. The secondary manufacturing of powder-based oral solid doses is the 

manufacturing route used as an example in the subsequent discussion.  

 

Several of the unit operations in tablet manufacturing such as dry granulation and tablet 

compression are inherently continuous processes, however, they are operated in semi-continuous 

fashion. In particular, these unit operations have traditionally been utilized in recipe-based batch 

processes, by processing a defined amount of input material. The required product quality 

assurance such as blend uniformity, particle size distribution, tablet hardness, and others are 

performed at the end of each of the processes. Various monitoring and control strategies proposed 

for such batch manufacturing relied on a priori determined optimal or nominal process operation 

trajectories or recipes. However, the quality testing performed at the end of the process could result 

in the loss of the entire batch since remedial control actions can only be implemented for 

subsequent batches. Rework of nonconforming batch of product is technically challenging and not 
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acceptable from a regulatory perspective. As a result of such batch-to-batch control strategies, 

significant waste and substantial time delays are encountered before product quality improvements 

are realized.  

 

The advances in material development, process modeling, integration of unit operations, 

and the ability to source and exploit data in real-time for process control and manufacturing 

operations management facilitates process intensification in tablet manufacturing. A continuous 

flow of materials between unit operations driven by equipment innovations and real-time process 

operations management leads to continuous manufacturing of tablets (referred OSD-CM in the 

subsequent discussion). Advances enabled by leveraging process systems engineering methods 

have bolstered the developments in the design of individual unit operations and integrated 

processes, online measurements, and supervisory control for real-time quality assurance (García-

Muñoz et al., 2017; Giridhar et al., 2014; Laske et al., 2017; Markl et al., 2013; Oka et al., 2017; 

Reklaitis et al., 2017; Singh, 2018; Singh et al., 2014; Su et al., 2019c).  

 

The primary solids processing unit operations for OSD-CM are continuous powder feeding 

using loss-in-weight feeders continuous blending, and tablet compression. Loss-in-weight (LIW) 

feeders are used for feeding the API, excipients, inert additives, etc. into the continuous blenders. 

Depending on material properties and formulation, unit operations such as roller compaction, 

milling, wet granulation, drying, and coating could be employed before tableting. OSD-CM 

requires the systematic integration of these solids processing unit operations, along with analytical 

systems, process knowledge, and automation methods (CDER US FDA, 2019). The sensor 

network for active process control and real-time quality assurance is composed of sensors built 

into the unit operations equipment to measure CPPs and process analyzers which measure CQAs. 

The systems integration of equipment and sensors into a supervisory control system enables the 

plant-wide control of the process. A conceptual process schematic, incorporating direct 

compaction and dry granulation alternatives as implemented in the pilot plant testbed at Purdue 

University is shown in Figure 2-2 (Ganesh et al., 2018a).  
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Figure 2-1: Schematic of OSD-CM with direct compaction and dry granulation processing routes 

(Ganesh et al., 2018a) 

2.3.2 A complex system of systems 

Advanced manufacturing systems such as OSD-CM integrate efficient subsystems to 

achieve overall system effectiveness, or simply stated, to ensure that the whole is greater than the 

sum of parts. To assure that products with the desired quality are consistently manufactured over 

time, OSD-CM processes need to operate under a state of control, i.e., to maintain the deviations 

in the process input and output variables within the design space. The first step towards effective 

process operations management thus lies in the development and implementation of multiple levels 

of control strategies. These strategies enable real-time manufacturing decision making by sourcing, 

contextualizing and analyzing massive amounts of sensor data available at higher scan rates from 

individual equipment, analyzers, knowledge management of the process and product, and the 

supervisory distributed control of efficient equipment (Giridhar et al., 2011). This requires 

effective RTPM, broadly involving process control and manufacturing operations management. 

Key considerations include design, development, maintenance, and improvements in process 

operating conditions, refill scheduling, asset operability, scale-up, material tracking, and deviation 

management. The control strategies are generally supported and executed using PAT tools, process 

control, and intelligent alarm management systems, and knowledge management systems. At a 

more advanced level, these essential functions manifest into start-up and shutdown considerations, 

RTRT, Quality Risk Management (QRM), and real-time optimization (RTO) capabilities.  
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The PAT initiative (FDA, 2004a) led to the development and implementation of an 

integrated automation system for product quality assurance by designing, analyzing, and 

controlling manufacturing through timely measurements of quality attributes of raw and in-process 

materials and process conditions. The real-time monitoring of process performance and quality 

attributes of in-process materials employ a combination of methods for process data analytics. 

Product quality information is obtained using in-line, at-line and off-line sensors, as well as virtual 

sensors. Virtual or soft sensors use data-driven, mechanistic or hybrid models for predicting the 

values of the unmeasured or unmeasurable material attributes and process conditions from the 

available measured variables. The soft sensing methods are particularly important as the 

manufacturing CPPs, and CQAs are typically only surrogates for clinically relevant quality 

measurements.  

 

The subsystems and components for implementation involving the equipment, analyzers, 

models, control systems, and communication technologies result in OSD-CM as a complex system 

of systems. The overall system is leveraged to achieve the desired product quality, along with the 

expected social, business, and regulatory objectives. However, the underlying components of 

complex systems have a lifecycle and demand consideration of failure modes by recognizing their 

limitations to achieve the intended benefits of an integrated system. The complexities warrant a 

comprehensive effort for preventing systemic failures (Venkatasubramanian, 2011). Failures in 

integrated systems such as OSD-CM processes lead to uncertainty in product quality assurance, 

resulting in the requirement for increased offline quality testing, time to market, hence impact 

consumer reach. Consequently, this limits the utility of OSD-CM technology. 

 

An effective integrated operations management system design must ensure the robustness 

of monitoring and control systems during manufacturing considering expected and unexpected 

variations, hence must include considerations for system performance monitoring, utilization of 

redundant systems, calibration verifications and device maintenance (ASTM Committee E55, 

2014). Further, the possible long run times for OSD-CM systems warrant additional considerations 

for qualification, maintenance, and cleaning to maintain individual physical assets and the overall 

OSD-CM system in a validated state (CDER US FDA, 2019; Giridhar et al., 2014; Hamdan, 2010). 

To complement the efforts in designing and configuring efficient individual equipment, PAT tools, 
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and process control strategies, managing non-random abnormal conditions in material flow and 

asset operations is essential by establishing process alarms, and corrective and preventive actions. 

While regulatory process control is essential for ensuring the optimal operations of the process, 

statistical process control methods add value for assessing the batch to batch variations in process 

performance and product quality, and further establishing the corrective and preventive action 

plans. This leads to actionable improvements, such as utilizing control performance monitoring 

for control structure re-organizing and proactive maintenance of the system. Numerous methods 

can be implemented for fault detection and diagnosis using specialized hardware systems or soft 

sensing methods. The Guidance for Industry Q9 Quality Risk Management (FDA, 2006) has 

highlighted multiple such tools for risk management. A risk-based assessment of process 

automation and control system design to ensure robust operation and RTRT should include the 

implementations of standards and community guidance such as Code of Federal Regulations (CFR) 

21 Part 11, ISA-88 Batch Control Standard, ISA-95 Enterprise-Control System Integration 

Standard, or the ISPE GAMP 5.0 Good Automation Manufacturing Practice. Hierarchical control 

strategies have been proposed to maintain the quality of the product in response to potential 

variations or disturbance in the process, equipment conditions, incoming raw materials, or 

environmental factors over time (Yu et al., 2014).  

 

A holistic approach to developing control strategies is addressed through the three stages 

of process validation described in (FDA, 2011) for process design, process qualification, and 

continued process verification. The process design stage involves the development of a control 

strategy for achieving the manufacturing process performance and quality expectations. The 

process qualification stage involves assessing the robustness and reproducibility of the integrated 

system, its components as well as the facilities and utilities. The first two stages of the process 

validation provide the necessary understanding of the manufacturing process and associated 

analytical methods. The continued process verification stage involves the assessment of the system 

to be within the state of control during manufacturing. The ability to utilize data from process 

equipment and analyzers for continued process verification would enable real-time assurance of 

process performance, hence of product quality in leading to proactive manufacturing operations 

management such as RTRT.  
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2.4 Developments in OSD-CM Operations Management  

In this subsection, recent progress and perspectives towards the RTPM aspects in OSD-

CM (Giridhar et al., 2014, 2009) are described. Herein, advances in-process monitoring, and 

control, fault-tolerant control, abnormal events management, and knowledge management are 

outlined. These underlying components pave the way for the implementation of OSD-CM and 

benefiting from the digital evolution. 

2.4.1 Process Monitoring 

The development in real-time process analyzers employed in OSD-CM includes those 

based on the use of near infrared (NIR), Raman, ultrasound, x-ray, microwave, capacitance, 

imaging, and laser light scattering signals. While most inline nondestructive measurements employ 

reflectance methods based on NIR and Raman spectroscopy, the developments towards 

transmission measurements such as microwave and x-ray technologies have recently been 

demonstrated for OSD-CM (Austin et al., 2013; Gupta et al., 2015). Further, ensuring material 

balance closure is crucial to maintain robust and profitable continuous operations, and the use of 

x-rays for inline mass flow monitoring was recently reported (Ganesh et al., 2017). These sensing 

technologies are configured to provide non-destructive information related to physical, and 

chemical attributes of the materials based on spectral analysis. These process analyzers are 

comprised of electronic and mechanical components, light sources, optic cables, measurement 

probes and interfaces, and importantly, the methods and software to acquire and analyze the data, 

in real-time. The measurements depend on factors such as the working principles of the sensor, 

probe choice, and locations, material, data filtering, calibration models, etc. Irrespective of the 

technology, the adaptation of methods for real-time monitoring involves significant efforts for 

material sampling, and the collection and utilization of data. This requires extensive amounts of 

materials for calibration and validation. Furthermore, non-random operational challenges such as 

material blockage, sticking, frequent and persistent fouling of inline analyzers, device age, 

calibration models, etc. affect the real-time measurements provided by these sensing systems. At-

line sensors usually involving technologies that are more robust are employed as reference 

methods for the in-line CQA sensors, however, these sensors require a more extended period to 

arrive at a measurement relative to the dynamics of the process and may employ destructive testing 
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of the samples. Nevertheless, the at-line sensors aid in near real-time assessment of process 

performance capabilities using statistical quality control methods; validate CQAs to enable RTRT 

and aid in checking for calibration drifts in the in-line measurement systems. To overcome the 

challenges in configuring individual process analyzers, developments leading to configurations for 

smart or intelligent sensors to simplify device calibrations and automating diagnostics to manage 

non-random events such as fouling (Fonteyne et al., 2015). We refer the reader to a recent review 

(Laske et al., 2017) for additional reading on the PAT tools available for tablet manufacturing.  

 

The developments of such sensing technologies are essential to not only provide a 

measurement of the system for a high level of product and process understanding during 

development but benefit the monitoring and control of the integrated system during manufacturing. 

Importantly, the real-time implementation of control strategies leading to operational excellence 

requires accurate and reliable inline measurements, overcoming the random and non-random 

errors in measurement. This necessitates a sensor network setup comprising of not only the reliable 

individual sensors for product quality monitoring but also for holistic process automation. Robust 

process monitoring capabilities using systematic sensor network designs are essential for the 

timely detection of process deviations and initiating some form of intervention to assure process 

performance and product quality. The data-driven and mechanistic modeling of OSD-CM along 

with the development of real-time sensing technologies enable the developments towards robust 

model-based process automation of the integrated process.  

 

Methods such as univariate statistical quality control, MSPC, and data reconciliation (DR) 

and gross error detection (GED) serve to track individual attributes or variables by subjecting the 

time series measurements to statistical tests for detecting actionable deviations. These methods use 

the real-time data, along with prior information about the statistically characterized error in the 

measurements and a model of the process to predict the most likely state of the process. While 

MSPC methods rely on data-driven models, the utility of mechanistic models in process operations 

leads to DR, GED, and state estimation. The mechanistic models are mostly the component 

material balances, property relations and compaction equations. These methods serve to ensure the 

observability of the process through real-time verification of raw measurements. GED or sensor 

validation refers to the identification of faulty or failed sensors in the process. DR or data 
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rectification is the task of providing estimates for the true values of sensor readings using 

redundancy in the sensor network. This requires a minimum number of sensors such that on the 

occurrence of a measurement failure, the network is still observable. Multiple measurements of 

the same process variable can improve the reliability of that measured variable; however, it does 

not affect the observability of the unmeasured variables. Moreover, sensors using the same 

technology can miss certain process features which can only be seen via measurements utilizing a 

portfolio of alternative technologies. Although the blend uniformity is the primary concern for a 

continuous tableting process, integrating available mechanistic understanding with sufficient 

measurements to maintain network redundancy and observability of unmeasured variables is 

essential for reliable continuous operations. MSPC methods applied to the integrated OSD-CM 

process for monitoring process performance and product quality are reported (Almaya et al., 2017), 

and the process data analysis methods of robust state estimation, DR and GED were recently 

introduced and demonstrated for OSD-CM applications (Ganesh et al., 2018a; Liu et al., 2018; 

Moreno et al., 2019, 2018; Su et al., 2019a).  

2.4.2 Process Control 

Reliably operating a OSD-CM process requires a robust and fault-tolerant supervisory 

control system to manage the effects of common cause disturbances and abnormal events by 

leveraging the capabilities of efficient automated equipment for producing the material at desired 

quality attributes (Su et al., 2018b). The powder processing unit operations are characterized by 

fast dynamics with time constants of seconds or minutes, thereby requiring fast responses from the 

control system. There is also a limited hold-up in each unit operation, and thus the buffering 

provided by material inventory is limited. Additionally, stream recycling or substantial back 

mixing in the process must be avoided in the highly regulated pharmaceutical secondary 

manufacturing process due to the requirements of material tracking. Therefore, aggressive control 

responses are often required to address process disturbances, potentially posing safety threats due 

to dust-generation in the manufacturing process (Singh et al., 2015). Furthermore, variability in 

raw materials upstream also has a rapid and direct impact on downstream processes, which affects 

the in-process materials and final drug product qualities, thereby challenging production. 

Systematic design and implementation of plant-wide control system employing feedback, 

feedforward or multivariable control strategies based on the use of predictive process models are 
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hence crucial to the success of OSD-CM by manipulating the process input variables for achieving 

the target set-points of the controlled variables within their target design space ranges. Plant-wide 

control aims for controlling important plant operating variables, while maintaining safe operating 

conditions, e.g., maintaining the production rate and material quality attributes at desired set point 

by manipulating the necessary operating variables within equipment safety limits. Supervisory 

distributed control systems (DCS) are employed for implementing controller designs such as 

single/multiple-loop controllers, using simple feedback proportional, integral and derivative (PID) 

control, feedforward ratio control, or the advanced model predictive control (MPC) in case of 

strong variable interactions and highly nonlinear process dynamics. It is important to note that the 

developments of appropriate measurement systems leads to the implementation of such regulatory 

and supervisory control strategies.   

 

Architectures to systematically control integrated processes using equipment level 

controllers and supervisory controllers for maintaining the normal operating conditions and 

product quality specifications was recently introduced by the research group and established as the 

Quality by Control framework (Su et al., 2019c). QbC is defined as ‘The design and operation of 

a robust manufacturing system that is achieved through an active process control system designed 

in accordance with hierarchical process automation principles, based on a high degree of 

quantitative and predictive product and process understanding.’ QbC in general enables reliable 

batch and continuous process operations, especially the real-time release in continuous 

manufacturing of pharmaceutical products. A risk-based evaluation framework was further 

proposed to assess the risk of each control layer and determine the most appropriate approach to 

reduce the occurrence and impact of commonly occurring risks (Su et al., 2017). A risk map for 

the manufacturing process can be presented in the form of a matrix, which characterizes the 

likelihood that a risk event will occur and describes its impact on the manufacturing system. Only 

the nominal risks that are acceptable to continuous manufacturing are investigated at the control 

design. An acceptable risk is a risk that is understood and tolerated usually because of the cost or 

difficulty of implementing an effective permanent countermeasure exceeds the expected impact of 

the risk event on process operations.  
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Despite the progress in model-based process control for OSD-CM systems, there are key 

challenges that were highlighted in (Su et al., 2019c), such as lack of shared understanding of 

control theory for broader application in the industry, challenges in developing and implementing 

inline sensors, lack of standardization, and the real and perceived regulatory hurdles for 

implementation of advanced control in manufacturing facilities. Nevertheless, the advances in 

process control for OSD-CM and the growth of enabling tools facilitated by the digitalization of 

manufacturing operations opens the door to process automation and continuous improvement at 

multiple levels, including predictive maintenance, control performance monitoring and structure 

reorganizing. Such improvements can be targeted to achieve tighter tracking of CQA and more 

robust plant-wide control, which will maintain the process within its designed operating space.  

2.4.3 Material Tracking 

Material tracking is of critical importance in pharmaceutical manufacturing and associated 

supply chain and distribution channels. It forms a safeguard for tracing the life cycle of the product, 

as well as aid in resolving the consequences when a drug recall is necessary. For example, when 

an identified drum of API is introduced into the process train, the number of subsequent lots of 

drug product that contains API from this drum could be tracked and quantified (Billups and Singh, 

2018). In addition, by 2023, the United States Drug Supply Chain Security Act will require that 

the pharmaceutical industry implement end-to-end traceability. The availability and access to real-

time data enables potential innovations in quantitative and predictive material tracking in 

continuous processing (Bylo, 2017). The conventional definition of a drug product lot using the 

batch size can be adapted in continuous manufacturing, however, operationally it requires 

additional steps to assure true lot identity. While a lot in batch manufacturing in principle 

experiences the same processing history since the operation is confined to that batch of material, 

a lot in continuous manufacturing is collected over a certain period of time during which ideally 

the material is subject to same operating conditions. Hence, the identity of a lot of product in 

continuous manufacturing can be either defined using an a priori criterion (mass of product or 

duration of a run) or if the need arises, dynamically. In any case, as the material proceeds through 

the process train, its progress must be recorded in terms of measured properties at each point in 

the sensor network, monitored against the allowed design space, and the residence time in each 

equipment based on model predictions or measurements. At the first departure from allowed 
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ranges, the material must be flagged as nonconforming, the termination time of a lot of preceding 

material recorded, and nonconforming material tracked until satisfactory conditions are 

reestablished. These functions require the informatics system under the smart manufacturing 

umbrella to accumulate dynamic data on lot and nonconforming materials statistics, including the 

identity of stages at which departures leading to nonconformance was observed since these can 

offer insights on points and modes of failure, as well the process variation and its propagation.  

 

Among the topics of active research in OSD-CM is that of the material residence time and 

its distribution in each equipment, viz., the residence time distribution (RTD). This vital concept 

in chemical and reaction engineering, has been a focus of attention recently as a tool for material 

tracking in pharmaceutical continuous manufacturing. For example, a statistical approach is often 

adopted for material RTD studies. Typically, the response of a step-change in API concentration 

or the downstream propagation of a tracer composition is experimentally or numerically 

characterized to develop RTD profiles (García-Muñoz et al., 2017; Rogers et al., 2013), 

dimensionless RTD models (Tian et al., 2019), or empirical RTD models based on transfer 

functions (Rehrl et al., 2018). Usually, this RTD understanding corresponds to nominal steady-

state operating conditions, the drawback is that it is not representative of the actual dynamics of 

operations. In the context of continuous manufacturing with active process control as discussed in 

the above section, it is imperative to understand and characterize RTDs under dynamic operating 

conditions. This dynamic feature is useful because material tracking, and product diversion usually 

occur during start-up/shut down or subject to process disturbances that are under dynamic transient 

conditions and the process is actively controlled until reestablishing satisfactory conditions. 

 

Overall, with both the real-time information flow from the sensor network and the 

residence time distribution from the material flow integrated within the smart manufacturing 

framework, the digitalized material tracking capability provides more credible traceability in 

continuous process train, along with a deeper understanding of the root causes of process variation. 

2.4.4 Abnormal Events Management and Maintenance 

To complement the efforts in designing and configuring efficient individual equipment, 

PAT tools, and control strategies for product quality, managing non-random abnormal conditions 
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in material flow and assets such as flow blockage, automation system malfunctions, or equipment 

performance degradation is essential. This requires establishing process alarms based on 

qualitative and quantitative indicators, and further the corrective and preventive action plans for 

sustainment of the process. 

 

Recently, exceptional events management (EEM) and intelligent alarm system (IAS) 

frameworks were introduced to OSD-CM applications to address the issues of fault detection, 

diagnosis and mitigation of abnormal events (Gupta et al., 2013; Hamdan et al., 2012, 2010). 

Qualitative model-based methods such as signed directed graphs, and process history-based 

qualitative trend analysis and quantitative methods such as wavelet analysis and principal 

component analysis were demonstrated to detect faults mainly caused by material blockage and 

buildup. Further, configuring alarms following ISA-18 Standard on Alarm Management in the 

Process Industries (ISA, 2016) and knowledge management using ontologies were discussed.  

 

Furthermore, the process equipment such as feeders, granulators, and tablet presses require 

efficient functioning of their corresponding subsystems and components, such as load cells, 

solenoids, wear strips, gaskets, punch retainers, motors, bearings, lubrication systems, electrical 

connections, and internal controllers among others. In addition to the risks associated with particle 

handling such as fouling, caking, segregation, ratholing, etc., these components wear resulting 

from the use of the equipment. Wear in tooling such as the tablet punches, the leveling changes in 

the tablet press turret due to equipment age manifest into structural malfunctions. These structural 

malfunctions that occur due to wear in the individual equipment could result in a change in the 

information flow between various variables (Venkatasubramanian et al., 2003c). Hence, 

verification of equipment performance during operations as well as between runs after cleaning 

cycles is imperative for ensuring reliable conditions of the equipment and implement strategies to 

avoid the need for unplanned shutdown as well as for robustness in process operations. Real-time 

monitoring of the equipment components considering potential failure modes could benefit the 

implementation of system health monitoring tools and proactive maintenance strategies such as 

Condition-based Maintenance (Ganesh et al., 2018b; OSIsoft LLC, 2017; Vann et al., 2018). 

Standards such as the ISA-108 Technical Report for Intelligent Device Management (ISA, 2015a) 



 

39 

provides further guidance for configuring intelligent devices such as the equipment and sensors 

already used in OSD-CM systems.  

 

Progress towards data-driven practices for maintenance management stands to benefit the 

sustainment and operations of OSD-CM processes. Furthermore, the systematic integration with 

the process-control and real-time optimization layers to facilitate timely execution of mitigation 

strategies or when needed, initiate nonconforming materials tracking and control procedures, are 

important considerations in the design and implementation of robust frameworks for abnormal 

events management.  

2.4.5 Knowledge Management  

Knowledge management frameworks for managing the process data and metadata from the 

OSD-CM process in a systematic manner is vital to support the manufacturing operations 

management functions and the research and development objectives. The information must be 

stored in a structured, semantically rich fashion, to begin with, else it becomes costly, and 

sometimes impossible, to retrieve the desired items of information later, much less in real-time 

(Joglekar et al., 2017, 2014). Notably, capturing development and manufacturing knowledge and 

experience at runtime helps improve production and reduce quality events.  

 

A conceptual design of a knowledge management system for a QbD in drug product 

development was demonstrated as the Knowledge Provenance Management System (Joglekar et 

al., 2017, 2014). The complete provenance of knowledge was captured by modeling the details of 

the associated knowledge generation steps as a combination of hierarchical scientific and business 

workflows. A repository of the process and sensor data along with the recorded metadata of the 

experiment or production run constitutes the workflow. This systematic recording results in the 

provenance of information. Automated recording of process and sensor data and timely 

annotations of troubleshooting activities in a workflow-based repository would provide the 

information base for process development. In addition, such a library benefits manufacturing 

intelligence during process operations to provide timely alerts to operators, and further for the 

development of future products. A workflow also facilitates the ease of access to experimental (or 

process) data, in addition to the accessibility of information between researchers working in the 
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same product or process development group at different times. Finally, it could provide the 

information base for identifying and tracking both lots of good material and lots of nonconforming 

material. Standards such as the ISA-88 Standard for Batch Control (ISA, 2010b) could benefit 

from standardizing workflow tasks.  

 

Ontologies developed for pharmaceutical development and manufacturing decision 

support (Hailemariam and Venkatasubramanian, 2010a, 2010b; Venkatasubramanian et al., 2006) 

were illustrated in fault detection and diagnosis in a OSD-CM subsystem using roller compaction  

(Gupta et al., 2013; Hamdan et al., 2012, 2010). Workflows for capturing the knowledge 

provenance for drug product processing were recently discussed (Joglekar et al., 2014).  

2.4.6 Systems Integration  

Much has been accomplished since the early 2000s in pursuit of QbD and continuous 

manufacturing. The systematic development and integration of unit operations, analytical systems, 

process knowledge, and automation methods has served to raise the visibility and acceptance of 

modern process systems engineering tools, such as process modeling, online sensing and 

intelligent monitoring, active process control, fault diagnosis, material tracking, and real-time risk 

assessment for advanced manufacturing. Recent works in OSD-CM address the integration of the 

systems from an implementation viewpoint (Bhaskar et al., 2017; Giridhar et al., 2014; Markl et 

al., 2013; Moreno et al., 2019; Singh et al., 2014; Su et al., 2019a). These conceptual developments 

in continuous manufacturing have resulted in the demonstration of advanced process control, 

however, manufacturing operations management functions such as process performance 

monitoring, deviation management and materials tracking functions further require the vertical 

integration of the process and local control systems to facility and enterprise systems through 

reliable information technology platforms.  

2.5 Digitalization of Process Operations  

Despite the advances in novel technologies and innovative methods addressing these 

components, the implementation of advanced control in manufacturing facilities face technical and 

cultural challenges (Collins, 2018; Ierapetritou et al., 2016). The development, implementation, 
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and operations of these integrated systems are more complicated than operating individual 

equipment, and the control strategies have become increasingly difficult to maintain due to a lack 

of knowledge management among early developers, system integrators and implementers. 

Moreover, the palette of computer tools deployed for these functions, which could often be 

geographically distributed across a site require considerations for systematic data architecture. In 

addition, the lack of enabling technologies and standardization for data management and 

information technology are among the critical bottlenecks in implementing advanced process 

control in pharmaceutical facilities (Romero-Torres et al., 2017). Moving forward, with the 

increase in assessment, adoption, and development of OSD-CM systems to address business 

objectives, as well as the developments towards plug-and-play systems and a vision of facility 

control rooms in pharmaceutical manufacturing, a unified effort towards implementation and 

manufacturing operations management functions is essential. Some of the expectations and 

ensuing challenges for further advancing the manufacturing readiness level of enabling 

technologies for advanced manufacturing in pharmaceutical processes can be addressed by 

leveraging the cross-industry advances and best practices in industrial automation. 

 

Smart Manufacturing and related ongoing industrial automation evolutions such as 

Industry 4.0 have the potential for implementing the technological developments in 

pharmaceutical manufacturing through the application of state-of-the-art process operations tools, 

architectures and automation methods. As pointed out in (Moyne and Iskandar, 2017), the progress 

in IT systems integration and automation have been critical for the progress of semiconductor 

manufacturing, an industry that has some parallels with pharmaceutical manufacturing in requiring 

precision manufacturing, with high expectations for product quality, while also meeting 

challenging safety and profitability targets. Moreover, the decades of learnings in the 

implementation of automation systems in chemical processing industries captured in multiple 

International Society of Automation (ISA) standards can be leveraged to leapfrog the old 

generation of process data management tools and structures in pharmaceutical manufacturing with 

state-of-the-art implementation using new tools and architectures. For example, architectures 

following ISA-95, ISA-99 and ISA-108 provide the ability to make asset data available for relevant 

manufacturing operations management analyses in real-time by facilitating connectivity between 

isolated functional groups across hierarchies. 



 

42 

3 APPLICATION OF X-RAY SENSORS FOR MASS FLOW RATE IN 

CONTINUOUS TABLET MANUFACTURING 

3.1 Introduction 

Previous work in the research group identified SETXVue XP-300, designed by En’Urga 

Inc. (West Lafayette, IN), as a potential inline and non-invasive particulate mass flow rate sensor. 

In this chapter, the sensor study for utility in OSD-CM with model materials and flow rates as used 

in our pilot scale advanced manufacturing testbed for OSD-CM is described. The offline study for 

sensor integration is published as a peer-reviewed journal publication (Ganesh et al., 2017). 

Additional developments for the integration of the sensor into the pilot plant is discussed. Notably, 

this work was the first application of an inline sensor for mass flow measurement in OSD-CM.  

3.1.1 Requirement of mass flow sensor 

Continuous downstream tablet manufacturing integrates multiple unit operations for solid 

handling and processing of crystallized and dried drug substances, excipients, lubricant etc. into 

tablets. Excipients and the active pharmaceutical ingredient (API) are fed into a continuous blender 

using loss-in-weight (LIW) feeders. Appropriate selection and setup of LIW feeders is extremely 

important to have consistent blend uniformity and feed into the downstream unit 

operations(Cartwright et al., 2013; Engisch and Muzzio, 2012). The powder blend is then fed 

continuously into a tablet press for compaction. Blend uniformity, material handling and blend 

compaction properties are key challenges in processing dry powders. To address these challenges, 

additional unit operation of dry or wet granulation may be employed prior to tablet compaction.   

 

The stream flow rates are key process variables in a continuous processing line and inline 

measurements of the same are critical for monitoring the throughput, residence time, equipment 

holdup, fouling, leakage and thus, the desired operation of the process. In-line mass flow rate 

measurement of the particulate material in continuous tablet manufacturing is critical at two 

locations – the exit of the API-excipient feeder-blender system and the entry of the tablet press.  
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The material composition and the mass flow rate are the control variables for the feeder-

blender process, in order to implement a ratio control structure that would ensure blend uniformity 

(Su et al., 2017). This flow rate at the exit of the blender is ideally the sum of the flow rates from 

the LIW feeders, and the composition can be calculated from the ratio of the flow rates. The 

throughput from LIW feeders, however depends on the tuning of the feeders done at a set flow 

rate, for a given composition. This also requires appropriate selection and operation of the screw 

conveyor and internal attachments of the LIW feeder. In addition, an appropriate averaging time 

for the loss of material mass in the feeder hopper that are measured using load cells is essential, 

which is again material dependent. Variations in bulk density of the powders in the feeders owing 

to a new lot of raw material or added glidant in the system, could result in a variation or a change 

in the actual flow rate into the blender. In addition, measurement redundancy is essential in 

continuous processing for gross error detection and data reconciliation, an important data analysis 

step in real-time process management(Narasimhan and Jordache, 1999). Because of the variations 

of the throughput from the LIW feeders, and the dynamics of the blender, inline monitoring of the 

control variables viz. the flow rate and composition, at the exit of the blender is critical for ensuring 

process measurements with minimal error, and hence a robust control structure.  

 

The exit flow rate from the blender is a disturbance variable for the downstream processes, 

both for the tablet press in a direct compaction line or for granulation processes. In addition, 

transforming an existing tableting setup to a continuous plant may require use of belt conveyors 

and other material conveying lines, as end-to-end gravity flow between all units in the facility may 

not be feasible. This results in additional time delays and possible variations in material bulk 

density at the tablet press inlet. Hence, monitoring the flow disturbances at the tablet press inlet is 

crucial for furthering the design of robust feedforward control structures. For processes 

incorporating dry or wet granulation, the mass flow rate at the inlet of the tablet press must account 

for the dynamics of the granulation process, and thus measuring the flow rate is imperative at the 

exit. Moreover, monitoring the mass flux in continuous processing is critical for material tracking 

through the system in addition to the development of control system designs for ensuring robust 

process performances. 
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3.1.2 Mass flow sensors 

Volumetric flow measurement of particulate streams is challenging as the bulk density of 

the particulate stream depends not only on material properties but also on storage and 

transportation of the material and its processing history(Hopkins, 2006). A direct mass flow 

measurement accounting for the variations in bulk density is extremely important when one 

considers the limited holdup volume of the equipment downstream (Su et al., 2017).  

 

Mass flow rate measurement of particulate material is more challenging than fluid stream 

measurements because of the complex properties of particulate streams. As a result, this is 

typically achieved by indirect methods such as impact measurement, optical measurement and 

radiation measurement (Grift, 2003). In such methods, the mass flow rate is evaluated as 𝑄(𝑡) =

 𝐴 ∗ 𝜌 ∗ 𝛽(𝑡) ∗ 𝑣(𝑡), where 𝐴 is the cross-sectional area of the conduit, 𝛽(𝑡) is the solids loading 

in the system, 𝑣(𝑡) is the velocity of particle flow and 𝜌 is the true density of the particles(Yan, 

1999). The solids loading of the system is essentially the cross-sectional area occupied by moving 

solids normalized with respect to the conduit cross sectional area.  

 

Impact measurement, optical measurement and radiation measurement techniques are 

some of the methods used for inline mass flow rate measurement of particulate material. Because 

of the vibrations that can arise from the operation of feeders, blender and tablet press and the 

occurrence of materials with wide particle size and shape distributions, impact measurement and 

optical measurement may not be as robust as radiation-based methods for flow rate monitoring in 

a pharmaceutical tableting line. Radiation methods have the advantage of being non-invasive and 

not having moving parts; however, they require appropriate safety arrangements and infrastructure. 

In radiation sensing, a constant level of radiation in the form of microwaves, x-rays or γ-rays is 

measured in the conduit.  The measured intensity level decreases during flow, in comparison to 

absence of any mass flow. This intensity can be assumed proportional to the mass flow density 

and is independent of the particle size distribution within the beam, assuming relative uniformity 

in the material true density. Soft x-ray fields can penetrate the tube material and yield reasonably 

high radiation attenuation, making the system applicable to measuring the particulate flow in the 

tableting system, which have solids loading at about 2%, making it essentially a dilute-phase 

conveying system. The transmitted intensities of the electromagnetic waves after attenuation by 
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particulate flow and without any material flowing obey Beer-Lambert’s law which relates it to the 

material properties and the planar concentration of material (Yan, 1999). 

3.1.3 Purpose 

The current work discusses the feasibility of using an x-ray-based sensor for real-time mass 

flow rate monitoring of dry powder blends and granules using offline steady state conditions. The 

conditions and formulation of the powder blends are such as arise in pilot scale continuous tablet 

manufacturing facilities. The manuscript also discusses the working principle of the sensor, and 

the measurement precision and accuracy observed at these conditions. To the authors’ knowledge, 

the use of a radiometric sensor as a PAT tool for in-line mass flow rate monitoring in continuous 

tablet manufacture has not been previously reported. 

3.2 Materials and equipment 

3.2.1 Materials 

Acetaminophen (APAP) Grade 0048 (courtesy Mallinckrodt, NC, USA), Avicel 

microcrystalline cellulose (courtesy FMC BioPolymer, PA, USA) grades PH-102 (MCC-102) and 

PH-200 (MCC-200), lactose monohydrate grade 310 (courtesy Kerry Inc., WI, USA), magnesium 

stearate and silicon dioxide in varying proportions are used to evaluate the performance of the 

sensor.  2 kg blends consisting of the desired quantities of excipient and APAP are blended offline 

in a 5L Tote bin blender at 16 rpm for 15 minutes. Lubricant or glidant is then added and blended 

for further 5 minutes. Powder blends comprising of the excipient and APAP are processed to 

granules using Alexanderwerk WP120x40 roller compactor at 10 kg/h flowrate, with compaction 

pressure of 50 bar and milling speed of 45 rpm. True density of the powder blend and granules are 

measured using AccuPyc II 1340 pycnometer (Micrometrics Instrument Corp., Norcross, GA), 

with helium as the displacement fluid. 

3.2.2 Sensor description 

The SETXVue XP-300 mass flow meter used in this work is designed by En’Urga Inc., 

(West Lafayette, IN) and has been demonstrated to effectively measure the flow rate of food grains, 

slurries and other multi-phase systems (En’urga Inc., 2014). The instrument is comprised of a soft 
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x-ray point source (10-50 keV) at one end while the other end has an array of horizontal sensors 

for obtaining total planar concentrations and an array of vertical sensors for obtaining the 

particulate flow velocity, in a divergent beam geometry configuration, as shown in Figure 3-1. 

Beam hardening may increase the uncertainty of measurement; however, the effect of beam 

hardening is small as long as the x-ray attenuation is about 5%. Appropriate physical arrangements 

for minimizing effects of beam hardening is made in the lead encased aluminum container that 

houses the equipment. The sensor measurement frequency is 1000 Hz and a suitable sampling time 

required for mass flow monitoring of particulate systems can be defined.   

 

Figure 3-1: Schematic representation of the x-ray sensor SETXvue XP-300, En’Urga Inc.   
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The horizontal arrays measure the X-ray absorption, which is related to the material 

flowing through the system following Beer-Lambert’s law, as given in Eq. 3-1.  

 

 𝐼

𝐼0
= exp [− (

𝜇

𝜌
) 𝑥] Eq. 3-1 

Where 𝐼0 and 𝐼 are the intensities of incident and transmitted x-ray waves respectively, 𝑥 

is the mass thickness that relates to the effective thickness of the material traversed along the wave 

and 𝜇/𝜌 is the material dependent mass attenuation coefficient. For a given x-ray energy level, the 

mass attenuation coefficient can be evaluated according to the chemical composition of the 

compound as a weighted average of the mass attenuation coefficients of the constituent elements 

(Hubbell and Seltzer, 2004). The signals from the array of horizontal sensors are integrated 

according to the Eq. 3-3 to obtain the total mass/unit length, with r being the radius of the conduit 

and -R to R defining the extent of flow. This integrated thickness as measured by the sensor is 

further analyzed as the absorption value, corresponding to the material and the flow rate.   
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Eq. 3-2 
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Eq. 3-3 

 

The vertical sensors are primarily electrodynamic sensors that are at known distances apart 

from each other. The transit time taken by the particles from the upstream sensor to the downstream 

sensor is measured by cross-correlating the absorption signals using a signal correlator. This yields 

the velocity measurement for the stream of particles. A detailed description on the working of 

cross correlation velocimetry is succinctly presented in (Yan et al., 1995).  

 

The equipment is subject to measurement errors resulting from the geometry, system 

design, calibration, material flow properties and the flow rate of the material through the system. 

(Mennell et al., 2000) identify and describe the errors of measurement from a radiometric sensor. 

The current study evaluates the feasibility of SETXvue XP-300 as designed and made available 

by En’Urga Inc. for use in real-time monitoring of flow rate for powder blends and granules.  



 

48 

3.2.3 Experimental Setup 

The adaptation of sensors for real-time measurements in an industrial setting requires 

understanding of the dynamics of the attribute being monitored, which is not straightforward and 

requires a systematic study for calibration (Ierapetritou et al., 2016). The assessment of the utility 

of the x-ray sensor for measuring mass flow rate in real-time includes an experimental setup which 

consistently feeds particulate blends, collects x-ray absorption and velocimetry data from the 

sensor, measures the actual flow rate and analyzes the data to obtain the relationship between the 

sensor measurements and the actual flow rate. This offline arrangement mimics the setup in a 

continuous tableting line, where the flow rate of powder blends at the exit of the feeder-blender 

system or that of granules requires measurement. The mass flux of the particulate stream is 

proportional to the product of velocity with the effective planar mass concentration estimation 

from the horizontal sensors,  

 𝑄 ∝ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ∗ 𝑥 − 𝑟𝑎𝑦 𝑎𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛 Eq. 3-4 

 

The study was carried out in a standalone setup. The powder blends and granules prepared 

offline are loaded into the hopper of the loss-in-weight feeder (KT-35, Coperion K-Tron, Inc., 

Pitman, NJ). The material is fed into a nylon 6,6 tube of 0.75” or 1” outer diameter and 0.0625” 

thickness that is passed through SETXvue XP-300 for monitoring the mass flow rate. This 

arrangement ensures dilute nature of the flowing material for precise measurements from the 

sensor. A Mettler-Toledo ME 4001E weighing scale was used at the exit of the sensor to provide 

an independent measurement of the actual particulate flow rate. The experimental system, as 

shown in Figure 3-2, is also used to calibrate the mass flux sensor and to predict flow rates, which 

are within the calibration range. The assessment of the LIW feeder performance is beyond the 

scope of this work. 
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Figure 3-2: Off-line setup of the x-ray sensor for understanding the usability for inline mass flow 

rate monitoring in a continuous tablet manufacturing line 

3.2.4 Procedure for sensor monitoring 

The x-ray attenuation and velocimetry results are determined using SprayQC, a Microsoft 

Foundation Class based software developed by En’Urga Inc. that accompanies the equipment. The 

x-rays are generated at 30 keV and 0.8 mA. A background reference with no particulate flow is 

carried out and averaged over 5 seconds. The measurements are recorded in real-time every second 

using a National Instruments data acquisition board with a TCP/IP connection to MATLAB. Given 

the use of a loss-in-weight feeder, the flow rate of the powder blend in the tube passing through 

the sensor is assumed to be at steady state. The average flow rate determined from the weighing 

scale measurement is used for calibrating the sensor to enable prediction of an unknown flow rate.  

 

The general procedure for flow monitoring using the sensor is as follows: 

 

1. Establish background reference with no material flow through the sensor. 

2. Feed material using LIW feeder and collect material at the exit of the sensor on a weighing 

scale to independently monitor the actual flow rate through the sensor. 
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3. Start real time monitoring available on SprayQC software and monitor the x-ray 

attenuation and velocimetry for 30 seconds, with measurements collected at every 1 second.  

3.2.5 Analysis of sensor data 

The x-ray attenuation and velocimetry data is obtained at 1 second intervals from the sensor 

using the SprayQC software. The data is recorded in Matlab using a TCP/IP connection setup for 

30 seconds, assuming the powder/granule flow is at steady state during that time interval. The data 

is used as collected or by averaging every two, five or ten seconds to check the measurement 

variation of the sensor over the 30 seconds of monitoring. The relative standard deviations of the 

x-ray attenuation and velocimetry data for a given time average are computed and recorded. The 

flow rate recorded using the catch scale is calibrated to the 30 second averaged data. 

 

Using the relationship of the sensor measurements, the actual vs predicted flow rate of the 

calibration data is presented. The calibration can then be used to predict flow rate of steadily 

flowing material for an unknown flow condition. The root mean square error of the calibration and 

prediction data sets are computed and reported. 

3.2.6 Conditions examined 

The materials and flow rates used for evaluating the sensor are of interest to the continuous 

tablet manufacturing studies being conducted in the pilot plant facility at Purdue University. The 

composition of the powder blends and their purpose are described in Table 3-1. Three LIW feeder 

set points are used for demonstrating the precision of the sensor and calibration. The flow rates at 

these set points are measured using the weigh scale for each condition. Additional LIW feeder set 

points are used for predicting the flow rate using the sensor measurements and the appropriate 

calibration. 
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Table 3-1: Blend compositions and their purpose for the study 

Blend Composition Abbreviation Used Purpose 

100% MCC-200 PH0-(1) Effect of multiple passes of 

material  

Real time flow monitoring 

0, 2, 5, 10% APAP + MCC-200 PH0-(2), PH2, PH5, PH10-

(1)  

Effect of small changes in 

composition 

0, 10, 25% APAP + MCC-200 PH0-(2), PH10-(2), PH25 Effect of tube diameter 

10% APAP + 0.5% MgSt + 

MCC-200 

PH10-L Effect of addition of lubricant  

10% APAP + 0.2% SiO2 + 

MCC-200 

PH10-G Effect of addition of glidant  

10% APAP + MCC-102  G10 Effect of granular material   

Real time flow monitoring 

10% APAP + MCC-200 PH10-(3) Real time flow monitoring 

10% APAP + 45% Lactose + 

45% MCC-200 

LP10 Effect of poorly flowing and 

sticky material  

3.3 Results and discussion 

3.3.1 Sensor measurements 

The sensor measurements of the x-ray absorption and velocimetry of the flowing material 

are captured in SprayQC. Measurement of the x-ray attenuation is displayed as an absorption plot, 

which indicates the integrated mass thickness of particulate presence along the path of the x-rays. 

This measurement represents the cross section averaged solids loading of flowing material in the 

sensing window. A cross-correlation velocimetry plot for velocity measurement in the conduit is 

also recorded. 

 

Representative sensor measurements for x-ray attenuation and velocimetry obtained every 

second using blends PH10-(3) and G10 are displayed in Figure 3-3A and 3-3B respectively. The 

flow rate of blend PH10-(3) ranges from 6 to 10.5 kg/h and that of G10 ranges from 10 to 17 kg/h. 

The real time velocimetry plots for PH10-(3) and G10, as shown in Figure 3-3, indicate good 

precision in velocity measurements for the entire range of flow rates observed. Precision in a 30 

second averaged velocity for all the flow rates observed for a given material is evident as a relative 

standard deviation of under 3% is observed for both powder blends and granules, as indicated in 

Figure 3-4. This is intuitively expected for a given material in a given physical setup, as the 
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particulates are free falling and would have attained the same terminal velocity in the sensor 

window. Possible variations might arise by virtue of the drag caused by varying particle sizes, 

collisions with other particles and the presence of any obstructions in the path of flow. The 

absorption for G10 and PH10-(3) as shown in Figure 3-5, demonstrate the real-time measurement 

for two of the feeders set points for each condition for 30 seconds of monitoring. The x-ray 

absorption can be observed to be dependent on the flow rate of the particulate stream. As expected, 

an increase in x-ray attenuation is observed with an increase in the particulate flow rate, as a result 

the presence of additional material in the sensor window. The figure also indicates the precision 

in average attenuation for flow rates at the same feeder set point that results in a similar throughput 

of the materials handled.  

 

Theoretically the mass attenuation coefficient of a compound could be calculated using a 

weighted sum of the elemental mass attenuation coefficients (Hubbell and Seltzer, 2004). However, 

a direct measurement is used in this study. The attenuation coefficients are computed at 30 keV, 

the condition at which the sensor is used at our facility. The blend compositions used in this study 

have similar mass attenuation coefficients. The positioning of the tube in the sensor also 

determines the velocimetry and absorption measurements in accordance with the divergent beam 

geometry assumptions. A linear relationship for the same is used in the sensor’s model. Hence, the 

mass attenuation coefficient along with the dependence on the setup can be lumped together and 

determined experimentally.  

 

The true densities of the material blends used in the study are in the range 1.52±0.03 g/cc. 

In addition, the sensor measurements for x-ray attenuation and velocimetry in a fixed physical 

setup indicate the linear dependence of the particulate flow rate on the x-ray attenuation for a given 

material, with velocity nearly constant for a given material. Considering marginal variation in the 

true density of the materials for a given blend composition, and the velocimetry precision for a 

given setup, the sensor calibration can thus only reflect the dependence of the flow rate on the 

corresponding x-ray attenuation. However, real-time velocity monitoring enables monitoring 

disturbances, such as no flow or material buildup in the conduit.  
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Figure 3-3: Representative sensor velocity measurements over 30 seconds. A: 10% APAP + 

MCC PH-102 granules G10; B: 10% APAP + MCC PH-200 blend PH10-(3)  

 

Figure 3-4: Average velocity measurements for G10 (19 samples. Flow rate 10 to 17 kg/h) and 

PH10-(3) (19 samples. Flow rate 6 to 10.5 kg/h) 
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Figure 3-5: Representative sensor absorption (x-ray attenuation) measurements over 30 seconds. 

A: 10% APAP + MCC PH-102 granules G10; B: 0% APAP + MCC PH-200 blend PH0-(1) 

 

The variation in x-ray attenuation decreases with an increase in the measurement averaging 

time to 2, 5, 10 seconds, which is calculated by averaging the sensor observations from the said 

number of previous observations, as intuitively expected and as shown in Figure 3-6. Averaging 

the measurements over an increased time window reduces the variability in the sensor 

measurement and this is particularly important at flow rates that do not result in a continuous 

stream of solids, or cohesive materials that result in irregular particulate flow. However, given the 

fast dynamics of the continuous tableting line, an in-line monitoring system with an averaging 

window of less than 5 seconds is desired for process control implementation and a trade-off for 

measurement precision with real-time measurement availability is necessary. Quantification of the 
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relative standard deviation for x-ray attenuation at a given flow rate depends on the material flow 

properties and the dynamics of the feeder used in the system. A representative measurement 

relative standard deviation plot for G10 with three observations at each of the mentioned flow rates 

is shown in Figure 3-7. A careful assessment of the relative standard deviation is important in 

every individual setup, as the sensor measurements are affected by the physical location of the 

sensor and the dynamics of the stream at the inlet of the sensor. This emphasizes the requirement 

to experimentally evaluate the sensor to capture the dynamics of every individual sensor 

application, for obtaining robust flow rate measurements during operation.  

 

  

  

Figure 3-6: Effect of increasing sampling time on monitoring variations 
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Figure 3-7: Changes in measurement RSD based on sampling time. Material displayed: G10 

3.3.2 Effect of reusing material for calibrating the sensor.  

Effects of multiple passes of the powder or granular blend on the measurement of the x-

ray attenuation is investigated using MCC -200. Multiple passes of the powder are carried out by 

collecting and refilling the LIW feeder hopper with the material. Reuse of material can result in a 

change in the flow properties of the blend. This is evident from the variation in the actual flow rate 

of the feeder at the same set point, as shown in Figure 3-8A.  

 

The change in flow rate through the feeder however does not affect the x-ray absorption 

measurement of the particulate stream, as shown in Figure 3-8B. The x-ray absorption of powders 

with a single pass and multiple passes does predict the flow rate of the particulate stream with 

acceptable variation, as shown in Figure 3-8C. The RMSE for single pass and multiple pass are 

0.0874 and 0.0851 g/s respectively, with R2 of approx. 0.97 for both indicating that the sensor 

captures the actual flow rate through the system, irrespective of the minor changes in material 

properties caused by multiple passes. This observation is particularly important for pharmaceutical 

industry applications as the reuse of materials for calibration of PAT tools is desirable to minimize 

consumption of API during development.  
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Figure 3-8: Effect of reusing material for sensor calibration 
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3.3.3 Composition variation 

Blending of the powders fed using LIW feeders is a crucial unit operation required to 

achieve consistent blend uniformity. The dynamics of the LIW feeders, blender and the ratio 

control structure could result in variation in the composition set point of the mixing operation. 

APAP compositions of 0, 2, 5 and 10 wt% with MCC-200 are used to detect the dependence of 

the sensor performance on changes in composition. A composition change in the range considered 

does not significantly change the mass attenuation coefficient of the blend. In addition, as the 

velocity of the materials at the sensor window is similar, the system should not have a dependence 

on the blend composition.  

 

Changes in the APAP composition of the blend do alter the flow properties of the blend, 

with reduced flowability at higher concentrations of APAP. This change in flow properties can be 

observed in Figure 3-9A, where the throughput of the LIW feeder at the same set point improves 

with better flowing material. This observed flow rate dependence on the composition emphasizes 

the requirement of material dependent tuning for the LIW feeders. The variation in material 

composition however does not affect the x-ray absorption measurement of the particulate stream, 

as shown in Figure 3-9B. The RMSE for sensor calibration for the blends considered individually 

and as a single sample is summarized in Table 3-2. Similar RMSE indicates the sensor’s inability 

to distinguish the variation in composition of the material blend. The x-ray absorption of 0 to 10% 

APAP blends with multiple passes, when considered together as a single sample, predict the flow 

rate of the particulate stream with acceptable variation and an R2 of approximately. 0.95, as shown 

in Figure 3-9C. This observation indicates the need for additional sensors to measure the 

composition of the stream exiting the blender unit for the implementation of a robust control 

system.  



 

59 

 

 

 

Figure 3-9: Effect on sensor performance considering operational variations in the composition 

 

1

1.5

2

2.5

3

3.5

14 16 18 20 22 24 26

Fl
o

w
 r

a
te

 (
g/

s)

Feeder Set Point

Observed Flow vs Scale Set Point

PH0-(2)

PH2

PH5

PH10-(1)

A

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 0.5 1 1.5 2 2.5 3 3.5

A
b

so
rp

ti
o

n
 (c

m
)

Flow rate (g/s)

Absorption vs Flow rate

PH0-(2)

PH2

PH5

PH10-(1)

B

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.5 1 1.5 2 2.5 3 3.5 4

A
ct

u
a

l f
lo

w
 r

a
te

 (
g/

s)

Predicted Flow rate (g/s)

Actual vs Predicted - 0, 2, 5, 10% APAP + MCC BlendC



 

60 

Table 3-2: RMSE for variations in composition 

Material RMSE (g/s) 

PH0-(2) 0.08 

PH2 0.11 

PH5 0.08 

PH10-(1) 0.14 

All together 0.11 

3.3.4 Tube diameter 

The sensor measures particulate flow in dilute phase (solids loading less than 2%) by 

monitoring the x-ray attenuation by virtue of presence of material. A low solid loading under free 

falling conditions in the conduit ensures charge retention in the system for velocimetry 

measurements, avoids tube blockages due to particle cohesions and retains the flow properties of 

the particulates. A suitable tube diameter for the setup is essential to maintain the suggested 

conditions for radiometric sensors (Mennell et al., 2000). Material handling observations 

suggested use of 0.75” and 1” tube diameters for flowing materials through the x-ray sensor for 

the range of mass flowrates considered in this study. The measured flow rate is calibrated to the 

average x-ray absorption for 30 seconds of flow for 0%, 10% and 25% APAP with MCC-200. The 

plot comparing the actual flow rate to the predicted flow rate by considering the change in tube 

diameter is presented in Figure 3-10, with R2 for each of the curves greater than 0.92. The plot 

confirms the expectation that where materials with similar true densities flowing at near constant 

velocities would have similar x-ray attenuation that does not vary with tube diameter. However, 

the diameter should not be too large such that the assumptions of divergent beam geometry would 

be violated. Moreover, the setup has to ensure that both powder materials and granules flow 

steadily through the conduit and do not accumulate inside the conduit given the tendency of 

powders to stick the walls. 
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Figure 3-10: Effect on sensor calibration for change in tube diameter  

3.3.5 Presence of lubricant or glidant 

The addition of lubricants and glidant is often necessary in formulations to assure the 

manufacturability of the oral solid dose. 10% APAP with MCC-200 is used to compare the 

performance of the x-ray sensor in presence of such additives. An important reason to add such 

additives is to improve the handling and processing of the blend into tablets.  

 

The addition of the lubricant or glidant at 0.2-0.5 wt% changes flow properties, which can 

be observed from the throughput from the LIW feeder, as shown in Figure 3-11A. However, the 

presence of the additives in the mentioned concentration does not significantly change the mass 

attenuation coefficient of the blend. Thus, this change in material composition does not affect the 

x-ray absorption measurement of the particulate stream, as shown in Figure 3-11B. The presence 

of lubricant or glidant can change the feeder dynamics, thus, emphasizing the need for robust 

particulates transport system design and careful tuning of LIW feeders. Given the insensitivity to 

composition, the use of additional composition sensors is necessary to implement supervisory 

control of the integrated tableting process.  
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Figure 3-11: Effect of sensor measurement on addition of lubricant or glidant to a given blend 
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0.92 and deviation of predicted flow rate within 5% of the actual flow rate for the materials and 

the conditions used in the study. The deviation in sensor monitored flow rate from the actual flow 

rate depends on the measurement standard deviation, the calibration curve, the accuracy of the 

weighing scale used for the calibration setup and the overall dynamics of the particulate flow. 

Materials with better flow properties and handling capabilities have a lower deviation from the 

actual measured flow rate.  

 

 

 

Figure 3-12: Prediction of flow rate using a calibration for a given material  
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The sensor measures the x-ray attenuation of the flowing material and this is calibrated to 

known flow rates at-line, in order to monitor the flow rate in-line. However, depending on the 

dynamics of particulate flow through the sensor, the ability to detect flow rate changes for a given 

material has to be assessed. This depends on the variation in absorption measurement, which is 

material dependent in addition to the averaging time of the measurements that are collected every 

second. Using the absorption measurements averaged over 30 seconds and the corresponding 

sample standard deviations, we can determine if the measurements are able to distinguish between 

flow rates, using a t-distribution test statistic. As the relative standard deviation at 1 second 

monitoring depends on the flow rate of the material as seen in Figure 7, the analysis considers the 

two sample variances to be not equal. This analysis shows that for 9 observations for each material, 

with 3 repeats at 3 different flow set points, using 30 second averaged x-ray absorption 

measurements collected at every 1 second, a flow rate change of approx. 0.3 kg/h can be detected 

for G10 granules and PH0-(1), as shown in Figure 13. However, for LP10, a lactose blend having 

poor flow properties than G10 or PH0, a change in flow rate of approx. 0.45 kg/h flow can be 

statistically detected. It is worth noting again that the difference in flow rate monitoring is at steady 

state flow. A detailed study of in-line mass flow monitoring including detection of changes in flow 

rate to observe real-time flow dynamics of particulate flow in the tableting line is the key objective 

of the future work associated with the sensor. Such a study would bolster the case for the 

integration of the sensor for supervisory control of the process. 

 

 

Figure 3-13: Detection of change in flow rate for a given material.  
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3.4 Inline Monitoring 

The offline study demonstrated the ability to utilize the sensor in the integrated tableting 

line for future implementation of real-time process management. The important takeaways from 

the offline study for use in the integrated tableting line were that the measurement obtained from 

the mass flow sensor depends on the actual flow rate of the material, the blend flowability inside 

the tube passing through the sensor and the physical setup that affects the dynamics of particulate 

flow, in addition to the X-ray parameters. The sensor measurement captures the overall variation 

arising from above mentioned possibilities. Also, as spectral-based instruments are sensitive to 

background referencing, a fixed position of the tube is essential to ensure that the background 

referencing does not drift over time. The averaging time for monitoring the flow rate requires a 

study of the setup at the sensor location and a tradeoff between the RSD value and sacrificing 

information on the process dynamics. Consideration to the dynamics is recommended to be given 

for eventually estimating the desired hopper level to be maintained in the tablet press. 

3.4.1 Sensor setup and communication to DCS 

To ensure a fixed setup for the position of the tube, and to have an additional measurement 

of blend uniformity using a NIR sensor, a custom box was designed and fabricated collaboratively 

with research group members. This is shown in Figure 3-14. Safety checks for radiation leaks are 

conducted every year, as recommended by the Radiology and Environmental Safety Team at 

Purdue University. The sensor is located at the exit of the second blender, hence the measured flow 

rate will be able to track the dynamics induced by the two blenders.  
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Figure 3-14: Custom physical interface for implementing the X-ray sensor in the OSD-CM 

process 

 

For real-time flow monitoring, SprayQC is setup as a server En’Urga without OPC 

compliance. The data is routed as a TCP/IP data stream and can be interpreted using a suitable 

software. ‘instrfind’ and ‘tcpip’ functions of MATLAB instrument control toolbox are used for the 

same in the current setup. Given a TCP/IP connection, the data from the x-ray sensor can be read 

in any computer with MATLAB in the network, preferably the AppStation computer of the DeltaV 

system for a direct read/write OPC access to the controller  

3.4.2 Inline Calibration 

Calibration requires a known flow rate through the system and is to be done at the intended 

location of use. In recent end-to-end experiments in the pilot plant, frequent fouling and sensor 

network errors required restarting of all sensor data acquisition programs. For the x-ray sensor, 

this meant requirement for background referencing. While other sensors in the network (NIR or 
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weighing scale or AT4) do not require a shut down and can resume measurement, the background 

referencing requires no flow of material through the sensor. Hence, contrast to offline calibrations, 

the x-ray attenuation is recorded without performing a background reference, and instead a 

‘background referencing parameter’ in used for inline monitoring, as shown in the equation below.  

𝑄 = (𝑥 − 𝑎) ∗ 𝑣 ∗ 𝑏1 → (𝑥 − 𝑎) ∗ 𝑏 Eq. 3-5 

 

Where 𝑥 and 𝑣 are the measured values of x-ray attenuation and velocity from the sensor, 

𝑎 is the background referencing parameter, 𝑏1 and 𝑏 are respectively the proportionality constant 

if the velocity measurement is or is not included in the flow rate calculation.  

 

Data from the sensor is recorded at every 1 second and is 1000 Hz averaged measurement 

of the x-ray absorption and velocimetry. The calibration of the x-ray sensor is performed using 

flow rate data from loss-in-weight feeders or by placing a weighing scale at the exit of the sensor. 

Accounting for time delays, each data point of filtered x-ray sensor measurements, total flow rate 

from the LIW feeders or the flow rate monitored using the weighing scale over the experiment 

time are compared in a custom MATLAB code, using ‘fit’ function in the curve fitting toolbox. 

The quality of fit is evaluated by observing the root mean square error and by comparing the total 

mass of powders collected at steady state conditions. The sensor measurement standard deviation 

is estimated using the confidence intervals of the estimated parameters.  

3.4.3 Inline Monitoring Results 

The sensor performance with and without including velocity measurements are analyzed. 

This is shown in Figure 3-15 for 10% APAP + MCC PH-200 blends, with and without SiO2, used 

in recent end-to-end experiments in the pilot plant. As expected from offline understanding, 

addition of SiO2 renders the utility of velocity measurements in the current system ineffective. 

However, it is also seen that absorption measurements are reliable; hence, the flow equation will 

not include velocity measurements.   
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a  

 
b 

 

Figure 3-15: X-ray velocity and absorption measurements for 10% APAP + MCC PH-200, 

without (a) and with (b) SiO2  

 

The calibration relationship can be determined by comparing a known flow rate with the 

absorption measurements. The weighing scale (10 second averaging) is used to understand the 

tracking of the particulate flow dynamics by the sensor. The powders from LIW feeders experience 

two blending operations that result in the observed dynamics. The LIW feeders are observed to 

have an RSD of ~2% at steady state, however, the blending result in a RSD of ~5% in steady state 
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at the feed location of the tablet press, with a moving average time of 10 seconds. This variation 

is also observed using the weighing scale and is tracked by the x-ray sensor, as seen in Figure 3-

16. A design decision to use the appropriate averaging time at this location for a tradeoff between 

the RSD and the flow dynamics is essential. This resulting flow variation is the feed to the tablet 

press and requires consideration for implementing the control system.  

a

 

b

 

Figure 3-16: X-ray absorption tracks the flow rate at the sensor location. LIW flow rate has low 

RSD (a), but blender adds variations to the actual flow, as tracked by the weighing scale (b).  

On calibration, the x-ray sensor accounts for all the mass collected on the weighing scale, 

with an error of <1g for an unknown flow rate when with about 10 minutes of monitoring at 10 

kg/h. The RMSE at steady state is observed to be about 0.5 kg/h in the current setup. For 

demonstration, 3 flow rates (8, 10 and 12 kg/h) for 10% APAP blended with MCC PH-200 or PH-

102 is shown in Figure 3-17. The predicted flow rate for a new ‘unknown’ condition was however 

underestimated. Observations as these where the flow is underestimated or overestimated is a 

constant bias and could be because of the errors in reference standards, pointing to the sensitivity 

of flow rate to the calibration parameters. In x-ray sensor calibration, the parameter 𝑎 depends on 

the setup and is observed to drift by over 1%. A drift over 0.3% for the parameter affects the flow 

measurement by over 1 kg/h. A requirement of inline parameter correction is thereby recognized 

for reliable monitoring.  
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a

 

b

 

Figure 3-17: (a) Calibration of the sensor done by comparing x-ray absorption and LIW or 

weighing scale in the entire time interval. (b) Underestimation of ‘unknown’ the flow rate 

3.4.4 Utility in the sensor network and limitations 

The work so far in integrating the x-ray sensor to the tableting line has proved the sensor 

utility to effectively monitoring the mass flow rate of the material stream. However, demonstrating 

the added benefit for practical implementation of data reconciliation and of the control structures 

is critical.  

 

Recent end-to-end experiments in the pilot plant for the same resulted in frequent fouling 

of sensors and sensor communication errors. Correcting the same required resetting the software 

or settings used for sensor data acquisition. At times, a shutdown was also required to necessitate 

the corrections. Moreover, physical changes after a calibration run using weighing scale to process 

runs has been observed to cause the tube to move rendering the calibration parameters unreliable.  

 

Corrective maintenance for the NIR sensor placed on top of the sensor is observed to result 

in a constant bias for the x-ray absorption measurement. This drift in sensor measurement is shown 

in Figure 3-18. The boxed regions show times at which the bias is observed. Based on unorganized 

experimental records, the NIR sensor or the funnel for the x-ray or both was cleaned before such 

observations.  These observations warrant equation parameters corrections on a timely basis for 

reliability in the measurement. This is desired to be performed without shutting down the process 
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and the use of reconciled estimates of flow rate. Reviewing the parameter and calibration policy is 

critical for reliable measurements. Such continuous improvements for calibration practices of the 

sensor will be investigated along with predictive maintenance practices.  

a

 

b

 

Figure 3-18: Corrective maintenance for sensor fouling causing measurement bias (constant bias) 

3.5 Conclusions 

The measurement obtained from the mass flow sensor depends on the material flow rate, 

the blend flowability inside the tube passing through the sensor and the physical setup that affects 

the dynamics of particulate flow, in addition to the x-ray parameters. The sensor measurement 

captures the overall variation arising from each of the above possibilities; however, it is beyond 

the scope of this work to individually distinguish these components. Recommendations from 

Mennel et al. (Mennell et al., 2000) for tube diameter suggests that the ratio of the distance of the 

tube center from the x-ray source to the tube diameter to be greater than 10, to satisfy the geometric 

assumptions of the equipment design. The tube material used in the study was nylon, however 

additional tube material bear investigation based on the adhesion of powder to the tube. The sensor 

evaluation also requires a LIW feeder capable of delivering particulate material continuously and 

consistently into the sensor, to calibrate the system for accurate measurements. Spectral based 

instruments are also sensitive to background referencing. A fixed position of the tube is essential 

to ensure background referencing does not drift over time. Intuitively, measurement variation can 

be reduced by averaging the x-ray attenuation measurements over a longer time. The averaging 

window for the measurements depends on the flowability of the material and the dynamics of 
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particulate flow at the sensor location, emphasizing the importance of a robust sensor network 

design.  

 

The physical location of the sensor and material composition are the key for detection and 

determining measurement standard deviation. Operational variation in composition and presence 

of glidant or lubricant by small amounts does not affect the sensor for monitoring mass flow rate. 

Our studies demonstrate the ability of the sensor to satisfactorily monitor the particulate flow rate 

of powder blends and granules and thus confirm its suitability as a mass flowrate monitoring device 

for implementation of supervisory control in a continuous tableting line.  

 

 



 

73 

4 ROLLER COMPACTION IN AN INTEGRATED TABLETING LINE 

4.1 Introduction  

As continuous manufacturing would expand to multiple products, granulation methods 

could play an important role in the integrated process train. The dry granulation process, consisting 

of roll compaction and milling unit operations is important in pharmaceutical powder processing 

for size enlargement of powder materials to improve material handling and content uniformity. In 

dry granulation equipment, the powders are fed into a hopper and then conveyed by the feed screw 

between two counter-rotating rolls. By applying a compression force, the powdered materials 

results in a compressed ribbon. Upon exiting the rolls, the ribbon is broken up into granules in a 

hammer mill, generating a granular exit stream. Experimental and modeling studies have 

progressed the prediction and real-time monitoring of ribbon density, the CQA of the roller 

compaction, thereby facilitating QbD of dry granulation in drug product development (Korhonen, 

2017; Nesarikar et al., 2012; Park et al., 2018; Reynolds et al., 2010). Moreover, PAT tools using 

NIR and microwave technologies have been demonstrated to monitor the ribbon density (Acevedo 

et al., 2012; Gupta et al., 2015; McAuliffe et al., 2015). A RTD study for a dry granulation 

integrated tableting line using multiple NIR sensors has been reported (Martinetz et al., 2018).  

 

The objective of this chapter is to address the assessment and integration of the dry 

granulation process and established sensors for the implementation of data reconciliation and 

model-based automation of process operations pursued by the research group. This chapter 

discusses the process model, PAT tools, and the experimental study to enable robust real-time 

process monitoring systems. The chapter is organized as follows. First, a background on the roller 

compaction process model and the PAT tools for ribbon density is discussed. Next, the materials, 

formulation and the experimental and automation setup are described. The Results and Discussion 

section discusses the experimental observations and addresses the application of PAT tools and a 

mechanistic model for real-time monitoring of ribbon density. The ‘Application in the Integrated 

Tableting Line’ section briefly describes the use of this work in the implementation of state 

estimation and supervisory control system for the process. The details are beyond the scope of this 

chapter, and can be referred in published literature (Moreno et al., 2019).  
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4.2 Roller Compaction Background 

4.2.1 Process Model 

Roll compaction is a flow-based system, with material fed into the compaction region using 

screw conveyors. The ribbon density from the roller compaction process is the CQA and depends 

on feed material physicomechanical properties, feeding mechanism, flow rate, roll speed and roll 

force. A powder mechanics model relating the ribbon density to diameter and width of the rolls, 

the roll gap, roll surface pressures and inlet stress conditions at constant roll gap was developed 

by Johanson (Johanson, 1965). The model has been applied widely in pharmaceutical roller 

compaction for the development of finite element method models (Cunningham et al., 2010; Liu 

and Wassgren, 2016; Muliadi et al., 2012), discrete element method models (Mazor et al., 2017), 

dynamic process model (Hsu et al., 2010a), and system models (Gavi and Reynolds, 2014; Park et 

al., 2018). Modifications to address the limitations of Johanson’s model to predict ribbon density 

was recently proposed using Finite Element Method (FEM) studies (Liu and Wassgren, 2016). The 

FEM study also recommends the release region length to be sufficiently long to ensure maximum 

normal stress at the minimum roll gap. A combined Discrete Element Method (DEM)-FEM study 

demonstrated the non-ideality in particulate flow in the roller compaction resulting from the flow 

of material in the hopper and screw conveyor (Mazor et al., 2017). The simulation further 

demonstrated the inherent variation in ribbon density along its width, resulting from the frequency 

of auger-based feeding. 

 

A dynamic model was proposed using Johanson’s fundamental compaction model 

combined with material balance based on volume change in the roll gap region and first order 

models for actuators viz. roll speed, feed screw speed and roll pressure (Hsu et al., 2010a). Further, 

the authors studied a model predictive control strategy for the process (Hsu et al., 2010b). The 

actual implementation of the model integrated control system could not be demonstrated owing to 

lack of development in inline sensors at the time. In an independent study, Reynolds et al. 

(Reynolds et al., 2010) incorporated the inlet and outlet mass flow rate using the screw feeder 

speed and roller speed and analyzed a steady state model for scale up and later in the design of a 

tableting system (Gavi and Reynolds, 2014). Moreover, Reynolds et al. (Reynolds et al., 2010) 

simplified the use of Johanson’s model by using envelope density measurements of process 
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ribbons and not of offline compacts to obtain the material dependent parameters in the 

compressibility equation.  

 

The process model for a roller compaction process consists of the material compaction 

equation constrained by material balance. The actuator impacts ribbon density dynamics; however, 

this work focuses on prediction and monitoring of ribbon density at steady state. This work uses 

the Johanson’s model integrated with the material balance equation, as used by Reynolds et al. The 

model to predict ribbon density is briefly discussed below.  

 

The Johanson model divides the compaction region into the slip region and nip region at 

the nip angle. The nip angle (α) is evaluated by equating the powder stress gradients in the slip and 

nip regions as done in Johanson’s model and can be referred. The nip angle depends on the material 

properties, roll gap and roll diameter. A pressing force (Rf) is responsible for compacting the 

powders between the rolls into sheets or ribbons. The roll force can be related to the peak pressure 

(P0) applied at minimum separation, as shown in Eq. 1. The roll force is applied as a hydraulic 

pressure in roll compaction equipment and is represented as Eq. 4-3. 

𝑅𝐹 =
𝑃0𝑊𝐷𝐹

2
 

Eq. 4-1 

Where, 𝐹 =  ∫ [
𝑆

𝐷

(1+
𝑆

𝐷
−cos 𝜃) cos 𝜃

]

𝐾
𝜃= 𝛼

𝜃=0
cos 𝜃 𝑑𝜃 Eq. 4-2 

𝑅𝐹 = 𝑃ℎ ∗ 𝐴 Eq. 4-3 

Here, W and D are the width and diameter of the roll respectively, and E is the effective 

angle of internal friction. A is the area parameter relating the hydraulic pressure to roll force and 

is available from the equipment user manual. The roll force can also be directly measured using 

pressure transducers.  

 

The ribbon relative density (𝛾𝑅) is then calculated as a function of the feed relative density 

(𝛾0), the peak pressure (P0) and the material compressibility (K) using a power law relationship, as 

shown in Equation 4.  
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𝛾𝑅 = 𝛾0𝑃0

1
𝐾 Eq. 4-4 

 

The material balance equation, assuming a screw feeder is integrated with the compaction 

mechanics. The material balance equation introduced by Hsu et al. simplifies to the equation 

introduced by Reynolds et al. at steady state. The steady state material balance, as shown in Eq 4-

5 relates the ribbon density to the roll speed (NR), feed screw speed (NS), roll gap (S), roll width 

(W) and roll diameter (D). A fitting constant (cS) relates the feed screw speed to the feed mass 

flow rate.  

𝑁𝑆𝑐𝑠 = 𝜌𝑡𝑟𝑢𝑒𝛾𝑅𝜋𝐷𝑁𝑅𝑊𝑆 →
𝑆

𝐷
=  

𝑁𝑆

𝑁𝑅
∗

𝑐𝑠

𝜋𝜌𝑡𝑟𝑢𝑒𝛾𝑅𝐷2𝑊
 Eq. 4-5 

4.2.2 Roller compaction process monitoring 

Modern roll compaction equipment are highly instrumented and provide robust 

measurements of roll speed, feed speed and roll force or the hydraulic pressure impacting roll force. 

A design space for the process parameters can be evaluated using material and operating condition 

specific experiments for a QbD approach to produce ribbons and granules. However, in continuous 

processing, the effect of possible disturbances in feed flow rate and operational variations in 

composition on the ribbon density are to be handled in real-time with a plant wide control system. 

Moreover, powder processing is always susceptible to material ratholing in hoppers, segregation, 

jamming etc. and can be detected by monitoring the CPPs and CQAs. These necessitate the 

requirement of an inline monitoring system, alarm system and a control system for the ribbon 

density for effective plant-wide control (Gupta et al., 2013).  

 

Studies on the same roller compaction system that the current work uses have investigated 

the use of NIR sensor and an in-house microwave sensor (Austin et al., 2014; Gupta et al., 2015) 

for inline monitoring of ribbon density. These studies have indicated the utility of the sensor using 

PLS models for predicting ribbon density with RMSE values of approximately 0.02 g/cc. This 

requires sensor calibration in the actual setup, using the process conditions at normal operating 

conditions. 
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4.3 Materials and methods 

4.3.1 Experimental setup and Materials  

Formulations for experimental demonstration consist of blends comprising of 

Acetaminophen (APAP) Grade 0048 (courtesy Mallinckrodt, NC, USA) and microcrystalline 

cellulose (Avicel, courtesy FMC BioPolymer, PA, USA) grade PH-102. Experiments at normal 

operating conditions of 10% APAP with Avicel PH-102 at a target flow rate of 10 kg/h are 

performed by varying hydraulic pressure to capture the dependence of the ribbon density on 

hydraulic pressure at a fixed composition and flow rate. Hydraulic pressures set points of 30 and 

55 bar are used in an Alexanderwerk WP120 system for a low pressure and a high-pressure 

condition. A hydraulic pressure set point of 45 bar is used additionally at target normal operating 

conditions. The process is operated for a period of approximately two minutes at steady state 

conditions for each experiment. Ribbon samples corresponding to half a circumference of the rolls 

are sampled around 100 seconds into the experiment and analyzed for its envelope density. The 

envelope density of the sampled ribbon sheet is evaluated using GeoPyc 1365 (Micromeritics) in 

the CP3 characterization lab at Purdue University. The samples are broken into smaller 2 cm x 2 

cm squares to fit the 1” diameter measurement chamber. Density obtained using three separate 

analysis are averaged to be indicative of the ribbon porosity for the corresponding process 

conditions. The corresponding thickness of the flakes are measured using Vernier calipers.  

 

Experiments are setup for three purposes. First, evaluating the effect of ribbon density on 

batch loading the hopper and continuous powder feed into the hopper of the roll compaction 

equipment at a target flow rate of 10 kg/h. The mass flow rate at the inlet of the rolls is evaluated 

by timing the mass of 10 wt% APAP by varying the screw speed from 24 to 32 rpm. Second, the 

effect of operational variations in composition at 90 and 110% label claim, and changing flow 

rates (8, 10 and 12 kg/h) at similar hydraulic pressures on model and PAT predictions are 

investigated. The process data from these set of experiments are used for estimating model 

parameters and calibrating the PAT tools for ribbon density. Lastly, the model and PAT tools are 

used for predicting the ribbon density with step changes to the hydraulic pressure, along with 

monitoring at steady state. Table 4-1 and Table 4-2 shows the material and process conditions for 

every experiment.  
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Table 4-1: Experiments for comparison of ribbon density based on feeding conditions 

Experiment  Blending and Loading Conditions RC Equipment Conditions 

A Batch blending and RC Hopper Loading NS = 26 rpm 

NR = 6 rpm 

PH = 30, 40, 50 bar 
B Feeding using Feeding – Blending System 

C Feeding using Feeding – Blending System 

 

Table 4-2: Operating conditions for roller compactor (Alexanderwerk WP120) experiments 

Exp. No. Feed  RC Equipment Conditions 

 APAP wt% Total Flow Rate PH (bar) NR (rpm) NS (rpm) 

1 9 10 30 28 6 

2 9 10 55 28 6 

3 10 10 30 28 6 

4 10 10 55 28 6 

5 11 10 30 28 6 

6 11 10 55 28 6 

7 10 8 30 26 5.5 

8 10 8 55 26 5.5 

9 10 10 30 28 6 

10 10 10 55 28 6 

11 10 12 30 30 6.5 

12 10 12 55 30 6.5 

13 10 10 45 28 6 

14 10 10 45 28 6 

15 10 10 30, 45, 55 28 6 

 

For batch loading of the mixture in the roller compactor hopper, an offline 5L Tote bin 

blender is used to prepare the blend. The bin blender is operated at 16 rpm for 15 minutes. In the 

continuous feed experiments, APAP and Avicel PH-102 are fed using separate Schenck AccuRate 

AP-300 loss in weight feeders into a Gericke GCM-250 continuous blender operating at 200 rpm. 

The blended material continuously feeds the roller compactor hopper. The flow rates from the LIW 

feeders are adjusted for the target throughput and composition.  

4.3.2 Equipment 

An Alexanderwerk WP120 roller compactor is used in a pilot plant facility. The equipment 

has five input variables - screw speed, roll speed, hydraulic pressure, roll gap and milling speed, 

of which roll compaction requires the first four variables. The equipment control system monitors 

and controls these variables. The roll speed and hydraulic pressure are defined by the user, while 
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the feed speed or the roll gap is defined depending on the use of the built-in gap control. Gap 

control is not used in the current work to avoid flow rate fluctuations through the process. The feed 

hopper agitator and vacuum de-aeration system integrated into the equipment are kept on for 

consistent feeding of powders into the compaction region using the screw conveyors. The setup 

uses 120 mm diameter and 40 mm rolls. The top roll is a smooth roll and the bottom roll is a 

knurled roll. During operations, the rolls and the hydraulic pressure are first turned on, followed 

by vacuum deaeration, the feed screw and the feed hopper agitator. Further, an acrylic cheek plate 

is used to observe the flow of powder into the compaction volume for ensuring complete fill of the 

volume between the rolls.  

4.3.3 PAT tools  

A reflectance NIR sensor assembled using CDI Spectrometer and Solvias probe are used 

in the setup. A cavity-based microwave sensor built in-house is setup for an additional 

measurement of the ribbon density. The physical arrangement of the roller compactor was 

modified to accommodate the NIR and microwave sensors. The details of the sensors used in a 

similar setup is available in Gupta et al (Gupta et al., 2015). To ensure robust sampling from the 

NIR sensor, a 3D printed part is designed as a sensor holder to maintain the position and angle of 

the NIR sensor, as shown in Figure 4-1. 

 

Figure 4-1: Roller Compaction setup showing the acrylic side seal, NIR sensor and sampling 

part, microwave sensor 
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The acquisition of raw spectra from the NIR is automated using Spec32 and Matlab 2017b. 

Two raw NIR spectra is recorded every second. A custom Matlab function, formerly developed in 

the research group (Austin et al., 2013), is used in Matlab 2017b for acquiring the microwave 

spectra. The microwave sensor reports a spectra every 7 seconds. For the calibration setup, the 

spectra from both the NIR and microwave sensors are analyzed using ProMV for a PLS model. 

The ribbon density values used in PLS model training is sampled as a uniform distribution from a 

normally distributed ribbon density value with the average and standard deviation corresponding 

to the ribbon density from GeoPyc analysis. Preprocessing reported in (Austin et al., 2014) is used 

to relate NIR and MW spectra to ribbon density. In the calibration step, an average of 10 raw NIR 

spectra is used to build the PLS model. SNV and first derivative preprocessing is used for the 

microwave spectra. For real-time monitoring, every spectrum acquired using the NIR is used to 

report a quantitative value for ribbon density.  

 

The step change experiment is used to predict the ribbon density using the model and PAT 

tools and validate the measurement using the GeoPyc. Process data and spectra from the 

experiment are analyzed offline and reported in this manuscript. The predictions from the models 

are compared with ribbon density measured using GeoPyc. 

4.3.4 Model parameter estimation and utilization 

Equations 4-1 through 4-5 represents the roller compaction process for predicting the 

ribbon density. The roll speed, feed screw speed and hydraulic pressure are operating variables. 

Values for effective angle of internal friction and wall friction angle required for the nip angle are 

assumed as 40.5o and 18o respectively. Parameter A is retrieved from the Alexanderwerk 

equipment manual as 0.369 kN/bar. A custom model comprising of the compaction and material 

balance equations is setup in gFormulate (Process Systems Enterprise). Experimental 

measurements are used to estimate model parameters cS, K and the feed bulk density. These 

parameters primarily depend on the material processed in the equipment. The initial guess for the 

three model parameters is evaluated using offline experiments. The screw conveyor constant is 

estimated by evaluating the flow rate at the exit of the screw conveyor without the rolls. This is 

performed by timing the material collected at the exit of the screw conveyor without the rolls. 

Initial estimates for parameters K and feed bulk density are estimated by performing punch and 
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die experiments in the CP3 characterization lab in a 6 mm die, with compaction forces varying 

from 0.3 to 4 kN. The nip angle is calculated using the parameters estimated from offline 

experiments. Parameter estimation for the three model parameters is performed using the Model 

Validation module in gFormulate. The model parameters are estimated using the envelope density 

and thickness measurements of the ribbons sampled during the process.  

 

The goal is utilization of the model for real-time prediction of the ribbon density. The 

model with estimated parameters is setup in Matlab 2017b on the DeltaV Application Station. The 

roll pressure, roll speed and feed speed values are used to predict the ribbon density.   

4.3.5 Control System 

An Emerson DeltaV 13.3 distributed control system is used to integrate process equipment 

and develop the automation platform in the pilot plant facility at Purdue University. A modular 

network architecture is setup following ISA 95 and DeltaV Security Manual recommendations.  

 

The spectra from NIR and Microwave sensors are acquired using Spec32 and Matlab 2017b 

respectively in a Dell Latitude E7470 laptop with an i7 processor and 8 GB RAM, referred as the 

PAT computer in this manuscript. The spectra values are recorded in Matlab in real-time and used 

for the PLS model development to relate the spectra to ribbon density. Relevant process data is 

accessed in real-time using the OPC toolbox in Matlab 2017b setup in the Application Station for 

automating data extraction after each experimental run. The model predictions for ribbon density 

using the mechanistic model is done using a Matlab function running in the Application Station. 

The data files from every experiment is accessed using a shared folder connected to the PAT 

computer via the DeltaV 2.5 network and uploaded to the knowledge management system. The 

spectra files for the PAT tools are uploaded to a knowledge management system from the PAT 

computer. The connections to the analyzers and OPC communication setup in Matlab required 

access to the Communication Systems Toolbox and OPC Toolbox respectively. The Matlab 

licenses are accessed in the PAT computer and DeltaV Application Station from the Purdue 

network using appropriate configurations for firewalls and IT network in the pilot plant. 
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4.4 Results and Discussion 

4.4.1 Effect of continuous feed on ribbon density 

The effect of feed on the ribbons processed at normal operating conditions of 10% APAP 

with MCC PH-102 at 10 kg/h are performed. Ribbons are produced by (i) pre-blending and batch 

loading of the feed hopper and (ii) feeding-blending using the LIW feeders and blender, at similar 

hydraulic pressure set points. The envelope density of ribbons sampled in experiments is analyzed 

to determine the feasibility of continuous feeding of the hopper. The blend and loading conditions 

are given in Table 4-1 and corresponding envelope densities is shown in Fig 4-2.  

 

 

Figure 4-2: Effect of hopper loading on ribbon density 

The measured ribbon densities at similar processing conditions from batch feeding and 

continuous feeding of the roller compactor hopper demonstrate the feasibility to operate the 

process in a continuous feed setup. The observed variations in the ribbon density could be 

attributed to variations in analytical testing on Geopyc and material bulk density based on ambient 

humidity.  

 

Two further considerations for the feed into the compaction region are crucial for 

implementing model-based approaches for continuous roller compaction. These include the 

powder flow rate through the compaction region and the volume of the region filled by the powders. 
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The mechanistic models assume that the material in the slip region between the rolls is at the 

tapped density, which requires the volume between the rolls to be filled during the process. Further, 

if the roll speed is too low, material can compact and jam the volume between the rolls and if the 

roll speed is too high, the desired compaction will not take place. Hence, the operating roll speed 

should correspond to the feed flow rate and satisfying model assumptions for reliable process 

operations and model-based predictions of the ribbon density.  

 

Feed flow rate to the compaction region is estimated by evaluating the mass flow rate 

dependence on the screw speed by timing the collection of material at the exit of the screw 

conveyor, without the rolls. Figure 4-3 shows the observed mass flow rate into the compaction 

region by varying the feed screw speed from 24 to 32 rpm. These experimental observations are 

also used to evaluate the initial guess for screw conveyor parameter (cs).  The parameter is 

estimated using ribbon observation. Further, experiments are performed using an acrylic cheek 

plate to observe the flow of powder into the compaction volume during startup and visually 

observe complete fill of the compaction region. Figure 4-4 shows the volume between the rolls 

during start up and operation.  

 

Figure 4-3: Mass throughput of screw conveyor into roll compaction region 
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Figure 4-4: Material filling and discharge from the roller compactor 

4.4.2 Effect of flow rate changes and API changes on ribbon density 

In an integrated processing setup, changes to the feed flow rate from the feeding-blending 

system are likely to maintain quality specifications, production rates, plant wide control loops etc. 

(Martinetz et al., 2017). The control strategy may thus require flow rate changes in the roller 

compaction equipment, and its implication on ribbon density is an important consideration.  

 

Moreover, the feeding blending process may also result in blend uniformity variations 

arising from output variations in the feeders and blender. The ribbon density corresponding to ±10 

percent of label claim variation in feed composition at a single feed flow rate is evaluated. The 

continuous feeding-blending system is used to feed the roll compaction equipment hopper by 

varying the ratio and flow rate set points. Experiments 1 to 6 as shown in Table 4-2 is used for this 

study. The results indicate similar densities at similar operating conditions for the three 

compositions, as shown in Figure 4-5.  
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Figure 4-5: Effect of ribbon density on operational variation in composition and the hydraulic 

pressure 

Ribbon densities corresponding to three feed flow rates are evaluated. The feed speed and 

roll speed are manually adjusted to heuristically match the required conditions in the compaction 

region. A single set point composition of 10% APAP is used for the study. The continuous feeding-

blending system is used to feed the roll compaction equipment hopper by varying the ratio and 

flow rate set points. Experiments 7 to 12 as shown in Table 4-2 are used for this study. The results 

indicate similar ribbon densities at the two different hydraulic pressures for all the three flow rates, 

as shown in Figure 4-6. Hence, by manipulating the feed screw speed and roll speed according to 

the feed flow rate, the ribbon density can be controlled without changing the hydraulic pressure.  

 

Figure 4-6: Effect of flow rate and hydraulic pressure on ribbon density 
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4.4.3 Ribbon density monitoring using PAT Tools 

Inline sensors are essential for real-time monitoring of the CQA for implementation of 

feedback control and for real-time risk assessment for the product quality. The ability of the NIR 

and microwave sensors to monitor ribbon density at the investigated processing conditions is 

discussed in this section.  

 

Since the actual ribbon density from the Geopyc measurements do not vary with the APAP 

variations and flow variations, as discussed in section 4.2, observations from experiments 1 

through 12, along with 13 and 14 are used to calibrate the PLS model for the inline sensors. A two 

latent variable PLS model is fit to relate the raw NIR spectra to the ribbon density with a root mean 

squared error of 0.026 g/cc.  A four latent variable PLS model is built to relate the 1st derivate 

preprocessed microwave spectra to the ribbon density with a root mean square error of 0.018 g/cc. 

Figures 4-7 and 4-8 show the score plot, SPE vs Hoteling’s T2 plot and the observed vs. predicted 

plots for the NIR and MW training data respectively.  

 

Figure 4-7: NIR PLS Model 

 

Figure 4-8: MW PLS Model 
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4.4.4 Mechanistic model parameter estimation and ribbon density predictions 

Model parameters K, ρR and cs require estimation from experimental data. The initial 

estimates for the three parameters are obtained from offline experiments. The compaction 

parameters are obtained from the compressibility experiments performed using the compaction 

simulator. The compact bulk density is fit as a power law function to the corresponding pressure 

applied while preparing the compact. The inverse of the exponent is estimated as K and the pre-

exponential factor is the inlet bulk density. The compressibility curve is shown in Fig 4-9. The nip 

angle is calculated as 11.2o using these values and the assumed values for the effective angle of 

internal friction and the wall friction angle, at 1.5 mm roll gap. 

 

The screw conveyor constant is initially estimated from the mass flow rate dependence on 

the feed screw speed without the rolls. This is shown in Fig 4-3. However, with the presence of 

rolls the powders in the conveyors are densely packed than without the rolls and affect the flow 

throughput. Moreover, the process uses different roll surfaces and the compaction speeds in 

comparison to the compaction simulation experiments. Moreover, non-ideal powder flow in the 

roller compaction region is not accounted for in the offline study. Hence, estimating the parameters 

using ribbon measurements provide better estimates for the compaction. 

 

Figure 4-9: Compressibility curve for initial estimation of parameters K and ρ0 
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Model parameters K, ρR and cs corresponding to the process setup are estimated using 

ribbon density and flake thickness measurements obtained from samples of Experiments 1 to 14. 

The experiments are setup in Model Validation of gFormulate for parameter estimation. A constant 

relative variance model is used for each measurement corresponding to the measured relative 

standard deviation obtained from the Geopyc measurements.  

Table 4-3: Initial and estimated model parameters 

Parameter Offline Experiments RC experiments 

cs (kg/h/rpm) 0.346 0.318 ± 0.005 

K 4.021 4.68 ± 0.27 

ρR (kg/m3) 380.9 386.9 ± 19.1 

 

The observed vs predicted ribbon densities using the parameterized model is shown in Fig 

4-10. An R2 of 0.98 and an RMSE of 12.94 kg/m3 is observed for the model predictions.  

 

Figure 4-10: Observed vs predicted ribbon density using parameterized process model 

4.4.5 Ribbon density monitoring 

Inline sensors are setup using the calibrated PLS model to predict the ribbon density in step 

changes to the hydraulic pressure, as indicated in Experiment 15. Three hydraulic pressure 

conditions are used, and the corresponding ribbons are analyzed for their ribbon density offline. 

Experiment 15 is used to investigate the implementation of the inline sensors to monitor the ribbon 

density. Spectra from NIR and microwave sensors are pre-processed and the ribbon density values 
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are predict using ProMV. In the same experimental setup, with standard inter experiment cleaning 

procedures, a biased measurement is observed for both sensors, as shown in the observed vs 

predicted graph in Figure 4-11. The NIR sensor is seen to under predict the ribbon density and the 

microwave sensor over predicts the ribbon density in the observed experimental duration. However, 

the sensors track the ribbon density qualitatively; hence, the bias in measurement from such a 

sensor can be evaluated and corrected using regularly sampled and analyzed ribbons using an 

offline measurement technique. This bias in measurement requires to be validated before using the 

sensor for real-time process decisions in the control system.  

 

Figure 4-11: Prediction bias of inline sensors in ribbon density monitoring 

The RMSE for predicting the ribbon density using the parameterized model is under 1 

kg/m3, as shown in Figure 4-12. The model validation demonstrates its potential utility to predict 

ribbon density in real-time, and thereby implement the same for real-time process monitoring 

applications. However, it is important to note that material property changes can affect the model 

parameters, and re-estimating the parameters is an important consideration in the real-time 

monitoring workflow.  
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Figure 4-12: Ribbon density prediction using parameterized model 

Model predictions from the mechanistic model predict the ribbon density under 

assumptions of unchanged or within accepted variability in material properties, complete filling of 

the compaction region, zero side seal leakage and unchanged equipment health conditions. 

Spectroscopic sensors importantly measure the CQA in real-time, thereby validating process 

conditions and enabling supervisory control systems. However, as observed, biases in the 

spectroscopic sensors is a concern during implementation for the ribbon density. Hence, an 

integrated framework to leverage model predictions and inline instrumentation systems with the 

application of process systems engineering tools is essential for reliable process monitoring.  

4.5 Applications in the Integrated Tableting Line 

The modeling, experimental and sensor study of this chapter were utilized for applications 

in robust process monitoring, and is available in published literature (Ganesh et al., 2018a; Moreno 

et al., 2019).  

4.5.1 Sensor Network for Continuous Tablet Manufacturing 

In this section, excerpts from (Ganesh et al., 2018a) is reproduced to illustrate the same. 

This work involved a simulated example to illustrate the use of the model in a data reconciliation 

and gross error detection framework for a continuous tableting line until dry granulation. 
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4.5.1.1 Systematic approach to measurement accuracy 

Real-time release testing in continuous tableting requires accurate and reliable inline 

measurements. However, there exist several operational challenges. Spectroscopic sensors, such 

as NIR and microwave, require data pre-processing and analysis before recording in the DCS. 

Calibration of such sensors is material and sensor location specific. Due to a lack of well-

established communication protocols in the industry, tasks such as data acquisition, filtering and 

processing are performed in separate software. Software issues can result in possible 

communication failures, rendering the measurement unavailable for specific periods during the 

process. Handling particulate streams can be subject to frequent fouling of sensor interfaces, 

leading to biased measurements. Further, tablet properties such as hardness, weight and dimension 

are measured at set time intervals minutes apart by destructive testing of the samples drawn. 

Moreover, measurements are always subject to random errors arising from sources such as power 

supply fluctuations, network transmission delays, changes in ambient conditions, etc.  

 

Data reconciliation (DR), gross error detection (GED) and sensor network design (SND) 

have been demonstrated to address such challenges for improved measurement accuracy 

(Narasimhan and Jordache, 1999). DR and GED require direct simultaneous measurement of a 

number of variables which is larger than the process degrees of freedom to permit the estimation 

of all variables in the sensor network. Multiple measurements of the same process variable can 

improve the reliability of that measured variable; however, it does not affect the observability of 

the unmeasured variables. Besides, sensors using the same technology can miss certain process 

features which can only be seen via measurements utilizing a palette of alternative technologies. 

Thus, though the blend uniformity is the primary concern for a continuous tableting process, 

integrating available mechanistic understanding with sufficient measurements to maintain network 

redundancy and observability of unmeasured variables is essential for reliable continuous 

operations.   
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4.5.1.2 Case Study 

 

Figure 4-13: Block diagram for subsystem case study 

In this study, the improvements in the accuracy of estimating the process state achieved 

using DR and GED for a subsystem of the continuous tableting line are demonstrated using three 

case studies representing situations commonly encountered in experimental implementation. We 

only consider the feeding, blending and granulating operations in the continuous manufacturing 

process, leading to the block diagram shown in Figure 4-13. There are seven material streams, and 

we assume there is no loss of material. The process variables are summarized in Table 4-4. 

Table 4-4: Process variables with measurements, NOC mean and standard deviations 

Variable Tool True Value (units) RSD 

F1  API Flow Load Cell 1.00   kg/h 2% 

F2  Excipient Flow Load Cell 9.00   kg/h 2% 

F3  Blender1 Flow - - - 

x3  Blender1 CU NIR 10.00  wt%  6% 

F4  Ribbon Flow - - - 

S  Roll Gap RC equipment 1.960   x 10-3 m 3% 

ρR  Ribbon Density NIR 0.963   kg/m3 6% 

x4  Ribbon CU NIR 10.00  wt%  6% 

F5  Granule Flow - - - 

x5  Granule CU - - - 

F6  Lubricant/Glidant Flow LIW Load Cell 0.055   kg/h 15% 

F7  TP Inlet Flow X-ray 10.00   kg/h 3% 

x7  TP Inlet CU NIR 10.00   wt%  6% 

 

The measurement technologies, if applicable, are indicated in the ‘Tool’ column. The 

corresponding expected true values, and relative standard deviations (‘RSD’ column) of 

measurements obtained from experimental data under steady-state operations are as indicated. All 

the unit operations are represented using overall material balances and component balance for the 

API across each node. Thus, there are eight material balance equations. Further, the flow rate from 

the roller compactor can be calculated using measured values for ribbon density and roll gap as 

Blender 1
Roller 

Compactor
Granulator Blender 2

S1

S2

S3 S4 S5 S7

S6
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shown in the Eq. 4-5. Also, mechanistic understanding of the roll compaction as shown in Equation 

4-1 to 4-4 can be integrated in to the framework.  

 

The set of equations has 3 degrees of freedom for the process, which means the process 

has a minimum requirement of four gross error free measurements for data reconciliation. Table 

4-4 shows the availability of nine inline measurements, leading to six degrees of redundancy (DoR) 

in the system for the GED tests. However, given the frequency of fouling, communication errors, 

requirement of feeder refilling, etc., consistent availability of gross error free measurements from 

these sensors is challenging. Moreover, LIW tuning parameters are material bulk density specific, 

which can vary for the raw materials. Also, calibration models for all the spectroscopic sensors are 

material, location and probe position specific. Hence, the redundancy is crucial to achieving 

robustness of this system.  

Table 4-5: Measured variable estimates after data reconciliation and gross error detection 

Var 
NOC Case 1 Case 2 Case 3 

Mean RSD Mean RSD Mean RSD Mean RSD 

F1 1.000 1.79 1.001 1.92 1.003 1.87 1.001 1.80 

F2 8.997 1.57 9.005 1.55 8.997 1.95 9.004 1.55 

x3 10.002 2.04 10.003 2.13 10.032 2.38 10.004 2.03 

S 1.929 1.68 1.931 1.66 1.929 2.06 1.930 1.66 

ρR 0.955 0.24 0.955 0.24 0.955 0.30 0.955 0.24 

x4 10.002 2.04 10.003 2.13 10.032 2.38 10.004 2.03 

F6 0.055 15.20 0.055 15.04 0.055 15.14 0.055 14.77 

F7 10.051 1.43 10.060 1.41 10.056 1.76 10.060 1.42 

x7 9.948 2.04 9.949 2.12 9.977 2.38 9.949 2.03 

 

The model-based DR and GED problems are solved in MATLAB using the approach 

reported in Moreno et al. (2017). The GED involves solving the global test (GT) and measurement 

test (MT). MT requires linearization of constraints. The bilinear component balances and Equation 

4-5 are linearized using Taylor series expansion. Equation 4-3 is highly nonlinear and is linearized 

as a linear function of roll gap at the corresponding operating conditions. A total of 1000 random 

normal measurements using the mean and standard deviations given in Table 4-5 are simulated. 

Average values of these noisy measurements are compared with the corresponding reconciled 

values to demonstrate the improvement in measurement accuracy and are presented in Table 4-5, 

with units same as those given in Table 4-4.  
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4.5.1.2.1 Normal operating conditions (NOC) 

At NOC, all the nine measurements are expected to be active with true values and RSD as 

shown in Table 4-4. DR and GED for the system of equations result in improved accuracy for most 

process variables, particularly for the CU at all locations, as shown in Table 4-5 (‘NOC’ column), 

while ensuring material balance closure across all units and the process.  

4.5.1.2.2 Case 1: Biased measurement from the NIR sensor 

Suppose the NIR sensor reports the CU for x3 as 15 wt%, while the measurements from the 

rest of the sensors are normal. In such situation, a bias resulting from fouling might be expected. 

By performing GED and DR, this faulty measurement can be rectified. The reconciled estimate 

for the CU at Location 3 is closer to the NOC conditions. The reconciled measurement for a shorter 

duration of gross errors in x3 is shown in Fig. 4-14 (left). The results of the case study are in Table 

4-5 (‘Case 1’ column). 

4.5.1.2.3 Case 2: Biased measurement from X-ray sensor  

During steady-state plant operations, the X-ray sensor at Location 3 (F7) reports a reduced 

flow rate of 8 kg/h. With a granulation process, material losses or ratholing in hoppers are always 

a possibility. However, if both cases are dismissed, the measurement must simply be biased. For 

the X-ray sensor, faulty measurements arising from communication failure or calibration error 

resulting from corrective actions for mitigating fouling are possible. In this case, the GED and DR 

use the existing redundancy in the sensor network to confirm that the process state remains within 

bounds and thus, a shutdown of the process is avoided. The reconciled measurement for a shorter 

duration of gross errors in F7 is shown in Fig. 4-14 (right) and the results are presented in Table 4-

5 (‘Case 2’ column).  

4.5.1.2.4 Case 3: Unavailability of ribbon density sensor  

Calibration of sensors for providing inline measurements of physical properties such as 

ribbon density is challenging. Moreover, installation of such sensors within the compactor at the 

ribbon location may require modifications to the equipment and plant setup. The decision to avoid 

these complexities will result in the unavailability of a direct density measurement. In this case 
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study, we assume ρR is an unmeasured variable, reducing the DoR to five. However, an estimate 

of the ribbon density is important for downstream tableting. DR can accommodate sensor 

unavailability for estimation of CQAs using process models and measurement redundancy. DR 

can provide accurate state estimates as shown in Table 4-5 (‘Case 3’ column), confirming that the 

process is within bounds. 

  

Figure 4-14: The reconciled values for measurements with gross errors. Bias in x3 (Case 1, 

Left figure) and F7 (Case 2, Right figure) 

4.5.1.3 Discussion 

For pharmaceutical processes, a measurement of the blend CU inline after every unit 

operation is essential and is typically achieved using NIR. The measurement RSD for the sensor 

depends on the material, location, spectra averaging, smoothing, etc. The challenge is to maintain 

the RSD within regulatory limits. Newer technologies for direct measurement of process variables 

with simplified calibration are very much desired. However, maintenance action to correct fouling 

of a sensor could result in bias for the measured variable which is beyond acceptable limits. It 

would be infeasible to pause a continuous process frequently to check for such errors. Also, 

ensuring material balance closure is crucial to maintain robust and profitable operations.  

4.5.1.4 Conclusions 

The case studies in this paper illustrate some of the practical challenges in the 

implementation of robust inline sensing in continuous pharmaceutical tableting. Specifically, we 

demonstrate the application of DR and GED to the system of unit operations and sensors using 

mechanistic models and material balance to obtain reliable and accurate estimates of the process 
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state. Expanding this framework to add the models of other unit operations and measurement 

technologies is a part of our current research. Moreover, in ongoing work, we show that the 

application of a DR framework facilitates effective implementation of process control systems (Su 

et al., 2017). Robust process operations using systematic sensing and control systems are essential 

for reliable function of a material-tracking framework, leading to real-time release testing in 

pharmaceutical manufacturing. 

4.5.2 Sensor Network Robustness  

In this section, the reader is referred to the continuous dry granulation example from 

(Moreno et al., 2019). The experimental, modeling and sensing contributions of this work 

contributed to the experimental end-end continuous tableting runs to illustrate the use of the model 

in a data reconciliation and gross error detection framework. In addition, the x-ray system 

discussed in Chapter 3 of this work, and the process level control room network architecture 

described in Chapter 6 were utilized for the implementation of the demonstrated experiments. 

4.6 Summary 

Mechanistic understanding of the roller compaction and implementation of inline sensors 

enable predicting the ribbon density in real-time. Implementing the sensors in real-time required 

significant effort in calibration, overcoming sampling challenges and yet measurement bias is 

observed in quantitative monitoring. As a result, for effective real-time monitoring and model-

based automation, it is imperative to integrate the inline process measurements with mechanistic 

understanding in a systematic framework for reliable estimates of the ribbon density. Hence, the 

developments from this work is used in applications of model-based data reconciliation for robust 

process monitoring. These applications are available in published literature through the works of 

former research group members (Moreno, 2019). 
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5 A PERSPECTIVE ON QUALITY BY CONTROL IN 

PHARMACEUTICAL CONTINUOUS MANUFACTURING 

5.1 Introduction 

Developments since the 2000s following QbD, PAT, and continuous manufacturing in the 

pharmaceutical industry facilitated the applications of process monitoring and control methods for 

the critical quality attributes (CQAs) and critical process parameters (CPPs). Quality by Control 

(QbC) was recently introduced as a framework to bridge the implementation gap between the 

development and implementation of advanced process control methods for the manufacture of 

pharmaceutical products engineered using QbD (Nagy, 2016). These advancements towards real-

time quality assurance from Quality-by-Testing (QbT), the quality control approach to test the 

quality attributes of in-process material or final product at the end of each batch processing step, 

is shown in Figure 5-1.  

 

Figure 5-1: The systematic progression in quality assurance via QbT, QbD, and QbC (Su et al., 

2019c). 
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In this chapter, an overview of the QbC framework is discussed by reprinting relevant 

section excerpts from the article entitled ‘A perspective on Quality-by-Control (QbC) in 

pharmaceutical continuous manufacturing’ published in ‘Computers and Chemical Engineering’ 

(Su et al., 2019c). As a second author in this article, contributions from this dissertation included 

developing the systems integration architecture to demonstrate the QbC framework. To succinctly 

discuss the same, the reprints include the sections discussing (i) the overview of the QbC concept, 

(ii) demonstration on a tablet press, and (iii) the challenges of QbC implementation and a summary 

of key learnings.  

 

Importantly, through the implementation considerations discussed in this chapter, a need 

to develop systematic maintenance practices was a key lesson learned, which led to the work 

discussed in Chapter 6. Furthermore, the architecture discussed in this chapter also supported 

additional RTPM applications pursued by the research group, culminating in published works 

(Moreno et al., 2019; Su et al., 2019a, 2018b). Additional details of the architecture, including 

further improvements is addressed in Chapter 6.  

5.2 Quality-by-Control 

5.2.1 Background  

The QbD guidance has promoted the systematic generation of the essential product and 

process knowledge required to implement continuous operation by identifying the critical 

material/quality attributes, process parameters, and the control strategies required to maintain the 

process operation and the quality of the product under a state of control. Recently, a three-level 

control strategy based on pharmaceutical QbD guidance was proposed, in which the idea of active 

process control was highlighted (Yu et al., 2014). This quality control strategy was then further 

elaborated by Lee and co-workers (Lee et al., 2015) with an emphasis on modernizing 

pharmaceutical manufacturing by transitioning from batch to continuous production. These 

developments have laid the foundations for the idea of QbC  (Simone, Zhang, & Nagy, 2015; Yang, 

Song, & Nagy, 2015; Içten, Nagy, & Reklaitis, 2015; Nagy Z. , 2014).  
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A three-level quality control strategy for a continuous manufacturing process (Yu et al., 

2014) was proposed to maintain the quality of the product in response to potential variations or 

disturbance in the process, equipment conditions, incoming raw materials, or environmental 

factors over time. For example, an intuitive Level-3 quality control strategy imposes tight 

constraints on material attributes and process parameters that affect product quality and relies on 

extensive end-product testing at each processing step to ensure final product quality. This level of 

control is commonly used in batch manufacturing, viz., the QbT, by strictly tracking a recipe 

during operation to ensure that those parameters are maintained within constrains. This level of 

control requires limited understanding, particularly at the early stage of drug development, on how 

raw material and process variability affects product quality. It is too conservative and is neither 

feasible to be effectively implemented in continuous manufacturing processes nor adaptable to 

achieve the benefits of continuous manufacturing (Lee et al., 2015). 

 

The demands on end-product testing can be reduced by using a Level-2 control strategy 

under which variations of raw material attributes and process parameters are maintained within a 

design space. The design space established under the QbD guidance (CDER US FDA, 2009) 

requires the identification of potential sources of raw material and process variability that can 

impact product quality, as well the understanding of the impact that variability from these sources 

has on in-process materials, downstream processing, and drug product quality. Hence, drug 

development at the late stage or pilot manufacturing within a design space allows some flexibility 

in raw material and process parameters and reduces the reliance on extensive end-product testing. 

Intrinsically in continuous manufacturing, the process is operated in such a manner as to be 

consistently within the design space. As a result, Level-2 controls which employ an established 

design space have been implemented in most reported continuous manufacturing facilities using 

multivariate statistical process control methods (Almaya et al., 2017). 

 

However, the operation within the limited design space established during product and 

process development can result in a lack of effectiveness in responding to process disturbances or 

variations that are commonly seen in continuous manufacturing process. For example, when a 

process disturbance leads to a departure of a CQA variable from its targeted setpoint or acceptable 

range, the adjustment of a CPP variable within the limited range allowed by the design space could 
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take a long time to bring the CQA variable back to acceptable criteria, resulting a long period of 

generation of non-conforming material. On the other hand, a more aggressive manipulation of the 

CPP variable, e.g., with an intentional overshoot, which may extend outside of the design space, 

is more likely to return the CQA variable within the design space much sooner. Furthermore, the 

concept of design space is also too rigid to adapt to mismatches in product and process 

understanding, e.g., material compressibility changes due to powder moisture content or particle 

size variations (Gupta et al., 2013).  

 

By contrast, a Level-1 quality control strategy would feature the use of an active process 

control system to monitor and control the quality attributes of materials in real-time. In response 

to a disturbance, process parameters would be automatically and optimally adjusted to ensure these 

quality attributes consistently conform to the established acceptance criteria. This level of control 

represents a high degree of product and process understanding that can also be identified under the 

QbD guidance. The enhanced process understanding, which includes identification of dynamic 

relationships linking critical material attributes (CMAs) and CPPs to CQAs, will enable the design 

of an engineering control system with quantitative and predictive capabilities. As a result, the 

impact of upstream disturbance on downstream processing can be minimized through optimal 

control adjustments and any mismatches in product and process understanding can be mitigated 

with an adaptive and predictive control strategy. The design of such a quantitative and predictive 

control system at Level 1, which is based on the QbD guidance, minimizes the risk of producing 

off-spec product and enables real-time release, is the foundational component of QbC.  

 

As defined by the QbD guidance, the application of the QbD framework also includes the 

design and implementation of a suitable control system, subsequent to the design of the operating 

space. However, the QbD guidance does not suggest a systematic quantitative procedure for the 

design of the suitable control architecture and methodology. In this context, the original QbC idea 

can be extended and enriched as the framework for systematic design of an active process control 

system that enables both the robust design and operation of the pharmaceutical manufacturing 

system. Thus, QbC is a logical extension of QbD which is backward compatible with the QbD 

guidance.  
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The recent progress in mechanistic understanding of processes and advancements in PAT 

tools can also be incorporated within this holistic QbC framework to further the adoption of model-

based process automation and quality assurance in process operations (Pantelides and Renfro, 

2013). Interestingly, a QbC application which highlighted the use of MPC in pharmaceutical 

bioprocesses was reported in. Moreover, as the pharmaceutical industry begins to adopt smart 

manufacturing practices, a modular approach to systems integration and process operations is 

crucial for optimal asset utilization and knowledge management. A systematic integration of 

process equipment, sensors and control systems in accordance with process automation standards 

enables the effective implementation of the real-time data analytics and associated knowledge 

management which are required to achieve RTR testing in pharmaceutical manufacturing.  

5.2.2 Definition 

The definition of QbC can be restated as follows: QbC consists of the design and operation 

of a robust manufacturing system that is achieved through an active process control system 

designed in accordance with hierarchical process automation principles, based on a high degree of 

quantitative and predictive product and process understanding. QbC in general enables reliable 

batch and continuous process operations, especially the real-time release in continuous 

manufacturing of pharmaceutical products.  

5.2.3 Recent development towards QbC 

Recently, with an aim towards integrating design and operations along the QbC paradigm, 

a systematic framework employing appropriate process systems engineering tools was proposed 

to develop and evaluate feasible active process control strategies (Su et al., 2017). Specifically, the 

hierarchical process control structure, as shown in Figure 5-2, structured according to the ISA-95 

Enterprise-Control System Integration Standard, is focused more on the implementation with the 

levels classified according to the scale of their control objectives, not to be confused with that in 

for quality control strategy. For example, in a continuous direct compaction process, the Level 0 

control is often implemented via the programmable logic control (PLC) system that is built into 

the unit operation equipment to control single/multiple CPPs. The Level 1 control relies on the use 

of PAT tools to measure and control CQAs and may encompass multiple unit operations. Hence, 
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the Level 1 control supervises the Level 0 control typically using cascaded single input and single 

output (SISO) control loops with the aim of achieving desired setpoints for CQAs. Level 1 control 

systems often span across unit operations and are designed using efficient feedback/feedforward 

control algorithms to reduce the impact of disturbance that otherwise may propagate downstream. 

A distributed control system (DCS) is employed in this regard for integrating process equipment 

such as the feeders and tablet press and the instrumentation for measuring material properties. The 

distinguishing feature of the more advanced approaches applied at Level 2 is the use of 

mathematical models for validating process measurements, predicting the effects of disturbances 

and changes in the CPPs on the CQAs, fault detection, and intensifying process operations. The 

functionalities provided at Level 2 may include data reconciliation (DR) and gross error detection 

(GED), MPC, and real-time optimization (RTO), among others. 



 

 

 

1
0
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Figure 5-2: A hierarchical implementation of control systems for a continuous direct compaction process.  
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5.3 Case study: QbC implementation in continuous tableting 

5.3.1 Continuous rotary tablet press 

Tablets are the most common oral solid dosage form. They are manufactured by direct 

compression or by dry/wet granulation, based on material properties and formulation requirements. 

The processing steps involved in direct compression consist of powder feeding, blending and 

tableting unit operations. The case study presented in this work was performed in Continuous 

Solids Processing Pilot Plant at Purdue University. This integrated continuous manufacturing line 

begins with two Schenck AccuRate PureFeed® AP-300 loss-in-weight feeders. These feeders 

continuously feed the API, Acetaminophen (APAP, Grade 0048), and the excipient, 

Microcrystalline Cellulose Avicel PH-200 (MCC 200), into a Gericke GCM-250 continuous 

blender, wherein the two components are mixed. A Schenck AccuRate PureFeed® DP-4 disc 

feeder feeds silicon dioxide as a glidant into another Gericke GCM 250 continuous blender. The 

blended material is conveyed to feed a Natoli BLP-16 rotary tablet press featuring a total of 16 

punch-die stations. 

 

The tablet press is a multi-stage process, in which each station undergoes the following 

main steps: die filling, metering, pre-compression, main-compression, tablet ejection and take-off 

from lower punch. After the blend is fed into the die, the metering stage is adjusted to achieve the 

dosing position, i.e., the volume of powder inside the die. The powder is then locked between 

upper and lower punches during pre-compression and main-compression until the tablet ejection 

and take-off stages are reached. The pre-compression stage serves to remove air trapped in the die 

and to rearrange the particle packing, while the main-compression stage compacts and transforms 

the powder bed into a tablet. The tablet weight can be controlled by changing the dosing position 

subject to variations in powder bulk density, and in filling time due to changes in turret speed, or 

in filling efficacy due to changes in powder flow properties. The in-die tablet thickness is 

determined by the punch displacement which is manually set before the tableting operation for the 

tablet press used in this study. Hence, the maximum main-compression force dependents on the 

amount of powder in the die or, equivalently, on the tablet weight. 
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5.3.2 QbC implementation  

The continuous direct compaction process was integrated with PAT sensors to monitor the 

process operation within the design-space and process control strategies to maintain consistent 

product quality. For example, the API mass fraction was measured in situ using a Near-Infrared 

spectrometer (Control Development, Inc.) at the exit of the first continuous blender. The powder 

flow rate was measured using an X-ray based mass flow meter (SETXvue XP-300, En’Urga, Inc.) 

(Ganesh et al., 2017).  

 

An Emerson DeltaV 13.3 distributed control system is used to integrate process equipment 

and develop the automation system in this pilot-plant-scale facility. A modular and hierarchical 

network architecture has been implemented following ISA 95 and DeltaV Security Manual 

recommendations for systematic implementation of QbC. The network diagram of the pilot plant 

is shown in Figure 5-3. Relevant firewalls are set up based on DeltaV Area Control Network, 

DeltaV and non-DeltaV machine interfacing and access to Purdue’s Network for software licenses. 

The DeltaV workstations are set up as virtual workstations using VMWare Type 1 hypervisor. The 

loss in weight feeders and blender communicate using a Profibus network, while the Yasakawa 

controller on the Natoli BLP-16 tablet press equipment communicates with DeltaV via a VIM2 

card, configured using VIMNet explorer in the Engineering Station. Control modules for the 

process equipment are implemented using DeltaV Control Studio in the DeltaV ProPlus 

Workstation. Relevant process variables are recorded in the DeltaV historian. The DeltaV data 

access server and historian are accessed using the Application Station. The data from PAT Tools 

that are interfaced with the process are acquired in laptop computers consisting of the PAT specific 

hardware and software. Execution of the data reconciliation algorithm is performed in the PAT-

Main laptop. Tools such as KepServerEX, LinkMaster (both Kepware, PTC Inc.) and Matlab’s 

Instrument Control Toolbox (MathWorks Inc.) are used to interface the PATs, the laptops and the 

control system.
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Figure 5-3: Network setup in continuous tablet manufacturing pilot plant at Purdue University. 
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Specifically, the critical-to-quality variables in the tablet press were identified as tablet 

weight, relative density, tensile strength and main compression force. The weight of the tablet 

ultimately determines the API potency within a dose. It also determines the main compression 

force at the pre-set punch displacement, or in-die tablet height, and thus the relative density and 

tensile strength of the tablet, which in turn affect the final product attributes such as tablet 

dissolution behavior. Commercial at-line instruments, such as Sotax AutoTest 4 tablet tester, are 

often employed to measure the tablet weight, as well as tensile strength and dimensions, at a 

frequency of several minutes. However, destructive and time-consuming measurements cannot be 

efficiently integrated with existing process control system to maintain consistent quality 

production in real time. Therefore, an in-house design for real-time tablet weight measurement 

based on a Mettler Toledo ME 4001E balance was employed in this study, as discussed in the next 

subsection. Though a similar design was also used in a recent work for tablet weight control, 

neither the tablet weight measurement reliability and accuracy were thoroughly verified therein, 

nor its validity in enhancing the real-time tablet weight control was confirmed. For example, the 

effect of introducing extra variations due to measurement data imperfection or process control into 

the tablet quality attributes compared to the conventional open-loop or the Level 0 control 

operation was not demonstrated. Another drawback of a sampling time of 20 s in their tablet press 

data acquisition system was also found, which may impede capturing process dynamics and thus 

downgrade the expected process control performance. Hence, in the following sections, a QbD 

understanding of the material properties and tablet press performance is combined with a data 

reconciliation strategy for tablet weight measurement to enhance the QbC implementation for the 

continuous rotary tablet press. 

5.3.3 Active process control of continuous tablet press 

The Natoli BLP-16 tablet press has a built-in PLC panel to manipulate process parameters 

of dosing position and turret speed, which is regarded as a Level 0 control in this context. A Level 

1 control with decoupled PID control loops was designed for a cascaded control of tablet weight, 

tablet production rate, and main compression force by manipulating the setpoints of dosing 

position and turret speed at the Level 0 control. A Level 2 MPC was also designed, in which the 

main compression force was constrained and monitored as it is closely related to the tablet CQAs 

of hardness, tensile strength, and dissolution rate. Emerson DeltaV Control Studio and DeltaV 
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Predict toolbox were utilized for Level 1 and 2 control development and implementation, 

respectively, details of the control loops can be found in Figure 5-4. Note here that both Level 1 

PID control and Level 2 MPC control used the reconciled tablet weight measurement from Level 

2 data reconciliation. Details of system dynamic responses under step changes in dosing position, 

turret speed, and system interactions under Level 1 and Level 2 closed-loop control of the studied 

tablet press can be found elsewhere (Su et al., 2018a). For QbC demonstration purpose in this case 

study, continuous tableting experiments were performed in three different scenarios: (i) Level 0 

control, (ii) Level 1 control, and (iii) Level 2 control to validate the online data reconciliation, as 

well to compare the control system performances, as shown in Figure 5-5. The at-line Sotax AT4 

tester was implemented to sample the tablets during the run to independently verify the final tablet 

quality. 
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 Figure 5-4: The hierarchical Level 1 PID (top) and Level 2 MPC (bottom) control for 

continuous tablet press at DeltaV DCS system. 
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A total of 16 tablets were analyzed at each sampling instant with the Sotax AT4 tester, viz., 

by collecting all the tablets produced in one rotation of the turret. In such a way, variation among 

punch stations and variation with processing time can both be characterized, (see the box plot of 

sampling data points and the zoomed-in inset in Figure 5-5(a). The Level 0 control operation at 

the beginning of the tablet press run in Figure 5-5(a) was to confirm that the reconciled tablet 

weight measurement agreed well with the at-line measurement or to allow the data reconciliation 

to automatically update the critical relative density in order to reduce possible model-plant 

mismatch due to material variation. Note that the reconciled tablet weight measurement started to 

match the Sotax AT4 measurement at the third sample and the updated critical relative density at 

the beginning of the operation in Figure 5-5(c). Furthermore, during the control closed-loop 

operation, the data reconciliation continued updating the model parameter and reached a plateau 

under Level 1 and Level 2 control set-point changes. Even after a reinitialization of data 

reconciliation at time 3600s in Figure 5-5(c) by setting the Kawakita model parameter of critical 

density ρc to its initial value of 0.250, offset between reconciled tablet weight measurement and 

at-line Sotax AT4 measurement was observed but was then gradually reduced with the update of 

critical relative density. Hence, the proposed data reconciliation demonstrated an important feature 

of on-line automatic calibration for tablet weight measurement and was not interfering with the 

control system design. 

 

The control performance of the tablet press was good using both the Level 1 and Level 2 

strategies, viz., the tablet weight reached the setpoints steadily under both control strategies except 

that the Level 2 MPC control showed a more aggressive and promising control performance. 

During the setpoint changes of tablet weight, the tablet production rate was maintained the same 

to adjust to the campaign production or processing capability upstream, e.g., the feeding and 

blending, see Figure 5-5(b). More importantly, variations of the tablet weight among 16 stations 

at steady-state remained the same as the control open-loop operation with current experiment runs, 

(see the box plots of each sampling point in Figure 5-5(a)). Moreover, these variations along the 

processing time were also well preserved and verified under steady-state operation, see the at-line 

tablet weight measurements at setpoint of 234 and 260 mg, except during the time when data 

reconciliation was deliberately reinitialized. Overall, the control system design was shown capable 

of achieving the process automation to reach the targeted tablet weight setpoint automatically and 
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steadily, which is important during process startup or product switch. Another benefit of the active 

process control system is to maintain the tablet weight under common risk of process disturbances 

or material property variations, thus attaining a real-time release strategy. Specifically, the 

performance improvement by the Level 2 MPC is significant in shortening the period of diversion 

of off-spec product during setpoint changes or process disturbance. 

 

 

Figure 5-5: Online integrated data reconciliation and process control of Level 1 and 2 for 

continuous tablet press. 

Level 2 MPC control 

Level 1 PID control 

(b) 

(a) 

(c) 



 

112 

5.4 Challenges of QbC in continuous pharmaceutical manufacturing 

First, systematic frameworks based on sound control engineering theories for process 

control development in continuous pharmaceutical manufacturing have not yet achieved a 

common understanding and wider application in the industry. Classical process control 

engineering theory has matured and been extensively employed in continuous fluid-based 

petroleum and chemical industries. In these applications, process dynamics is often driven by 

chemical reaction or mass transport, which have response times measured in minutes to hours. 

Thus, this process control experience may or may not be directly transferable to the more 

challenging solid-based unit operations typically employed in pharmaceutical secondary 

manufacturing, where physical changes usually occur within seconds or minutes and therefore 

faster response may be required of the control system. Furthermore, in pharmaceutical continuous 

manufacturing there may be limited hold-up in each unit operation to mitigate segregation and thus 

the buffering provided by material inventory is limited. Additionally, stream recycling or 

substantial back mixing in the process must be avoided in highly-regulated pharmaceutical 

secondary manufacturing due to the necessities of maintaining lot identity for material tracking 

purposes. Thus, variability in raw materials upstream has a rapid and direct impact on downstream 

processes, which affect the in-process materials and final drug product qualities. In this regard, 

control system with QbC design should be able to respond to the disturbance rapidly in a predictive 

or combined feedback and feedforward manner, rather than the classical feedback control design, 

making the consistent production of quality solid dosage challenging. 

 

Secondly, deployment of PAT tools in real-time remains challenging given the complexity 

of sensor calibration, and model validations. The sensor positioning, sampling concerns and 

fouling result in measurement drifts and bias, thereby affecting real-time process data accuracy. 

Sensor network design and maintenance for reliable CQA measurements have not been 

systematically studied in continuous manufacturing in pharma industry. It is worth noting that the 

robust mechanical design of traditional manufacturing equipment (such as rotary tablet press, roller 

compactor, etc.) has resulted in minimum variation of CPPs and/or CQAs during operation and 

thus allowed batch pharmaceutical manufacturing to assess quality using post-batch statistical 

quality control (SQC) methods. A QbC active process control system, by contrast, is challenged 

to use possibly noisy and biased CQA measurements to effectively supervise the control of CPPs 
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and minimize the need for batch-end SQC.  These issues impose the need for some degree of 

redundancy in sensor network so as to allow application of methodology such as data 

reconciliation and gross error detection. The data reconciliation strategy has been recently shown 

to be able reduce the measurement noise in a continuous feeding-blending system and to detect 

measurement errors in CQA variables. Further studies on using data reconciliation combined with 

joint state and parameter estimation are needed for QbC implementation to address issues 

associated with the uncertain measurements of CQA’s provided by some spectroscopy-based PAT 

tools.  An important aspect to investigate is the extent to which this integration imposes additional 

dynamics on the process, and how this could potentially amplify variations in CPPs and thus in 

CQAs. 

 

Thirdly, process performance monitoring and continuous improvement in continuous 

manufacturing are seldom reported in the pharma industry.  Continuous improvement is pursued 

in most manufacturing sectors to exploit the deeper understanding of the manufacturing system 

and its components, which naturally develop as manufacturing experience with a product and 

process is accumulated, as also identified in QbD guidance. Despite its potential, continuous 

improvement has not been pursued aggressively in pharmaceutical manufacturing, given the real 

and perceived regulatory burden of approvals required for changes. Hence, the advent of 

continuous pharmaceutical manufacturing with the proposed QbC paradigm opens the door to 

continuous improvement at multiple levels, including predictive maintenance, control 

performance monitoring, control structure re-organizing, etc., since such improvements can be 

targeted to achieve tighter tracking of CQA and more robust plant wide control, which will 

maintain the process within its designed operating space. The direct impact is to allow longer 

continuous runs without forced interruption, reduced frequency and duration of periods during 

which nonconforming materials are generated, and reduced risk that a product lot released may 

include nonconforming material. Herein, three research challenges to be addressed under QbC are 

centered on the use of high frequency sampled data, reduction of process-plant mismatch and 

closed loop model identification, which are captured in Figure 5-6. For example, process model 

identification is one of the important steps in systematically accounting for process uncertainties 

or model-plant mismatch in model-based control strategies in pharmaceutical continuous 

manufacturing.  
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Figure 5-6: Continuous improvement in QbC system in pharmaceutical continuous 

manufacturing. 
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6 CONDITION-BASED MAINTENANCE FOR PROCESS OPERATIONS 

MANAGEMENT IN CONTINUOUS TABLET MANUFACTURING 

6.1 Introduction 

Manufacturing innovations in the pharmaceutical industry have proliferated since the mid-

2000s following the initiatives on  Quality by Design (QbD) and Process Analytical Technology 

(PAT) of the United States Food and Drug Administration (FDA) (FDA, 2004a; Ierapetritou et al., 

2016; Troup and Georgakis, 2013; Yu et al., 2019). One such set of manufacturing innovations 

that are helping industry progress towards operational excellence are the design and operations of 

integrated continuous processes (Yu and Kopcha, 2017). The ultimate goal of such integrated 

systems is to ensure that the individual elements function collectively as a whole and satisfy the 

design properties or characteristics of the overall system (SEBoK, 2019a). The implementation 

challenges and fault scenarios of the subsystems do impact the operations of the integrated system, 

notably, a failure or unplanned downtime in one of the subsystems could result in a downtime of 

the entire process. Failures in advanced pharmaceutical manufacturing systems could lead to 

uncertain quality, resulting in the requirement for increased offline quality testing or issuing recalls, 

hence impacting time to market and consumer reach. Hence, the complexities of the individual 

components and their integration into a larger system warrant comprehensive safety and reliability 

efforts for ensuring the functioning of every component , thus, preventing systemic failures 

(Venkatasubramanian, 2011). This work is, hence, an attempt to introduce Condition-Based 

Maintenance (CBM) as a strategy for continued verification and sustainment of process operations. 

The continuous manufacture of oral solid doses (OSD-CM) is used as a case study to illustrate 

CBM. Six drug products produced via OSD-CM have been approved by the FDA in recent years, 

yet, there has been limited discussion on the  management of abnormal conditions during 

operations, preventing unplanned deviations and downtime, and system sustainment (Gupta et al., 

2013; Hamdan et al., 2012, 2010). 

 

OSD-CM involves a systematized integration of solids processing unit operations, process 

analyzer, and information technology systems (CDER US FDA, 2019; Giridhar et al., 2014; Singh 

et al., 2014; Su et al., 2019c). Research efforts since the 2000s have resulted in data-driven and 

mechanistic models as well as heuristics for the design and operations of the process (Ierapetritou 
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et al., 2016). The real-time process management (RTPM) applications that enable process 

automation, such as process control, material tracking, fault management, and knowledge 

management, rely on process data from direct measurements as well as a combination of methods 

and models for soft-sensing. The sensor network, an integrated system for process monitoring 

encompassing the data sources built into the unit operations equipment, field devices and process 

analyzers, and the data architectures and infrastructure, enables the data flow required for 

managing the process and facility operations. Risk assessment is vital to ensure reliable operation 

of the sensor network for effective supervisory control of critical process parameters (CPPs) and 

critical quality attributes (CQAs) (Su et al., 2017). Although PAT tools and the data management 

infrastructure and system architectures have been developed for the implementation of OSD-CM 

(Brodbeck, 2018; Cao et al., 2018; Laske et al., 2017; Su et al., 2019c); there has been limited 

discussion on continued verification and robustness of the sensing infrastructure (Liu et al., 2018; 

Moreno et al., 2019, 2018; Su et al., 2019a). Hence, this work builds on the advances in RTPM for 

OSD-CM and aims to emphasize the system integration and maintenance aspects required to assure 

sensor network robustness. 

 

Maintenance management is an integration of technical, administrative, and managerial 

actions during a system’s life cycle to ensure the functional utility of an asset. Maintenance 

activities can be broadly classified as reactive or proactive. Reactive maintenance involves 

corrective or emergency maintenance, which is to correct a problem once an imminent risk has 

been manifested as a failure. Proactive strategies aim to manage the failure modes and the ensuing 

consequences before they occur using measures such as time-based or age-based inspection and 

replacement of components, or on detection using prognostic information of a condition that may 

lead to failure or degradation of the functionality of the system (Kothamasu et al., 2006). 

Maintenance activities for life cycle management of assets are not new to pharmaceutical 

manufacturing facilities, and both calendar-based and inter-batch preventive maintenance are 

generally employed (De Felice et al., 2014; Friedli et al., 2010). However, product dependent 

modular integration of unit operations and applicable monitoring technologies, potential increased 

run times as a scale-up strategy, and risks associated with material handling require additional 

considerations for qualification, maintenance, and cleaning of individual physical assets and the 

overall continuous manufacturing system (ASTM Committee E55, 2014; CDER US FDA, 2019).  
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The advances towards Smart Manufacturing or Industry 4.0 for the digitalization of process 

operations management (Davis et al., 2012; Isaksson et al., 2018) are enabling the availability and 

accessibility of real-time process data for proactive practices in fault monitoring, diagnosis and 

maintenance (Anand et al., 2019; Baur and Wee, 2015; Moyne and Iskandar, 2017; 

Venkatasubramanian, 2019). With increasing digitalization of process operations in the 

pharmaceutical industry, strategies for system reliability and proactive maintenance such as CBM 

offer numerous benefits for continuous process improvements through systematized management 

of assets and manufacturing operations (BioPhorum Operations Group, 2019; Herwig et al., 2017; 

Romero-Torres et al., 2017; Vann et al., 2018).  

 

CBM is a proactive maintenance strategy for critical assets or those assets that have 

significant repair and replacement costs or cause significant impact on the process when they fail 

as identified through reliability centered maintenance analysis (Márquez, 2007). While the 

maintenance tasks can be performed following organizational philosophies such as total productive 

maintenance, CBM involves the methods for continuous or periodic assessment of system 

condition to trigger a fault condition based on a measured parameter limit, and further respond to 

the fault with a subsequent maintenance activity (Ahmad and Kamaruddin, 2012; Bengtsson and 

Lundström, 2018; Moubray, 1999; Shin and Jun, 2015). The awareness of system condition in 

order to trigger maintenance action enables reducing the failure risks in the initial stages of 

operation introduced from frequent preventive maintenance. Furthermore, the real-time 

assessment of process and maintenance data leads to lean operations of the manufacturing process 

by reducing the time required to perform a root cause analysis and the ensuing restoration activity. 

CBM has evolved since the mid-1900s with the growth in sensing and communication 

technologies as a key asset optimization and reliability improvement tool and is an enabler for 

predictive maintenance (Center for Chemical Process Safety, 2007; Márquez, 2007; Moubray, 

1999; Moyne et al., 2012; OSIsoft LLC, 2018). It is worth highlighting that CBM, under the name 

of CBM Plus, is the maintenance policy of the United States Department of Defense for the 

assessment, sustainment and operations of defense systems (Office of the Assistant Secretary of 

Defense for Sustainment, 2008) and is recognized as an efficient and effective method of 

maintenance by the International Society of Automation (ISA) Technical Report 108 for Intelligent 

Device Management (ISA, 2015a).  
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The remainder of this article is organized as follows. First, Section 2 discusses the CBM 

framework by providing an overview of the data flow. This is followed by a proposed systems 

architecture for the implementation of CBM for supporting OSD-CM. Section 3 discusses the 

sensor network risks for OSD-CM and the developments in implementation of the systems 

architecture for CBM. A pilot-scale advanced manufacturing testbed for tablet processing is 

utilized for this illustration. The enterprise-control system integration is emphasized, while briefly 

discussing sample faults that may require continued verification during process operations. 

Concluding remarks are provided in Section 4. CBM is a mature maintenance management 

strategy, which could utilize a wide variety of analysis techniques, methods, and tools within the 

diagnosis, prognosis, and decision support systems. However, a detailed review and investigation 

of all of this methodology is beyond the scope of this work. We restrict our focus to those methods 

and tools we find to be most relevant to OSD-CM. 

6.2 Development of a CBM Framework for OSD-CM 

6.2.1 Data Flow 

The data flow for CBM is comprised of three main steps and is illustrated in Figure 6-1. 

This data flow adopts the general workflows for fault detection and digitalization of process 

operations from the published literature (ISA, 2015a; Márquez, 2007; United States Department 

of Defense, 2008; Venkatasubramanian et al., 2003c). These three steps are briefly described in 

this subsection, which also highlights relevant contemporary developments in RTPM for OSD-

CM. The supporting infrastructure for implementation of manufacturing operations functions 

could often be geographically distributed across a site and require considerations for an enterprise 

architecture for system integration. Standardizing the architecture and procedures could allow for 

the adoption of a common approach to integrate the various components of OSD-CM into a 

manufacturing facility for commercial operations, as well as support maintenance, repair and 

operations of the systems. A systems architecture to facilitate the implementation of data flow for 

CBM and additional manufacturing operations functionalities is addressed subsequently.  
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Figure 6-1: Data flow for continued verification and condition-based maintenance 

6.2.1.1 Real-time data: Sensors, Communications and Data Management 

The first step is to ensure the ability to source the data and expand the communication 

network and databases for the collection and contextualization of real-time process data  (Romero-

Torres et al., 2018). Advances in sensing systems for OSD-CM processes (Laske et al., 2017), and 

the use of data management and networked communications facilitate this step (Anand et al., 2019; 

Cao et al., 2018; Ganesh and Hausner, 2019; Su et al., 2019c).  

 

To this end, while active process control strategies for product quality assurance require 

CPP and CQA data, proactive maintenance additionally requires leveraging the asset condition 

data for diagnostics. Process operating condition data, such as device running status and alarms, 

run hours, motor speeds, individual tablet punch forces and standard deviations, device 

temperature and vibrations, oil levels, greasing frequency, spectroscopic instrument device 

temperatures and light intensities may already be configured by equipment vendors as performance 

and safety indicators for system health monitoring, troubleshooting and preventive maintenance. 

Real-time diagnostics from all the individual assets, along with the operational knowledge of the 

integrated system, provides a pathway to continued process verification and proactive maintenance 

planning.  Furthermore, monitoring of material flow rate across the system using inline mass flow 
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sensors such as discussed in (Ganesh et al., 2017) enable the evaluation of process yield in real-

time and consequently enable the detection of flow leakage or process variations. Asset condition 

data, along with the CPPs and CQAs, facilitate the integrated process and asset monitoring at 

multiple hierarchical levels such as plant operators, plant managers, control room engineers and 

research and development personnel for continued process verification and further process 

improvements. It is important to note that integrating the data sources for proactive maintenance 

policies in OSD-CM would require active collaboration between the technology vendors and users 

for identifying the failure modes of the assets and enabling additional sensors and communications 

links.  

6.2.1.2 Process analysis and fault diagnosis 

The second step is the qualitative and quantitative analyses for the assessment of potential 

failure modes in real-time. The maturity in process knowledge enables the extension of the 

diagnostic indicators to prognostic monitoring, thereby facilitating predictive maintenance. While 

a detailed review of the specific methods for fault detection is beyond the scope of this work, the 

Guidance for Industry documents provided by the FDA such as PAT (FDA, 2004a) and Q9 Quality 

Risk Management (FDA, 2006) highlight multiple tools for risk management in the development 

and implementation of pharmaceutical manufacturing processes.  

 

Recent developments in OSD-CM include frameworks such as the exceptional events 

management (EEM) and intelligent alarm system (IAS) to address the issues of fault detection, 

diagnosis and mitigation of abnormal events (Giridhar et al., 2014; Gupta et al., 2013; Hamdan et 

al., 2012, 2010). Herein, qualitative model-based methods such as signed directed graphs, and 

process history-based qualitative trend analysis and quantitative methods such as wavelet analysis 

and principal component analysis were demonstrated to diagnose faults caused primarily by 

material blockage and buildup in OSD-CM subsystems. Methods to monitor sensor failures such 

as robust state estimation, data reconciliation and gross error detection were recently introduced 

and further demonstrated for OSD-CM applications (Moreno et al., 2019, 2018; Su et al., 2019a). 

Statistical process and quality control methods (Montgomery, 2012) have further enabled detecting 

deviations in the process and product (Almaya et al., 2017; Laske et al., 2017). 
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Fault monitoring methods, along with the ability to diagnose the associated root cause, 

provide the required capability to prescribe a maintenance activity or point to the need for 

additional condition assessment to support the prediction of specific downtime event types. Fault 

diagnosis is vital in proactively managing the consequences of a fault, such as the need for 

maintenance actions or emergency responses, instead of reactively responding to unsafe conditions 

and unplanned downtime. The reader may also refer to published literature (Venkatasubramanian 

et al., 2003c, 2003a, 2003b) for a detailed review of qualitative and quantitative methods for fault 

detection and diagnosis in the chemical processing industries. 

6.2.1.3 Maintenance management 

The third step encompasses the feedback path for continued assurance of system conditions 

or the triggering of appropriate notifications such as an alert, an alarm, or a prompt for corrective 

or preventive actions for restoring normal operations based on evidence. This maintenance 

management step involves using the diagnostic checks to verify continued satisfactory operation 

of the system or to trigger operator and supervisor alerts or alarms for abnormal conditions and to 

further schedule a maintenance activity as corrective or preventive task. Notably, these triggers 

enable the CBM framework to respond to alerts or alarms from measurements of the system rather 

than as a reaction to unplanned downtime events (Kothamasu et al., 2006).  

 

Maintenance tasks rely on the identified conditions and subsequent corrective actions 

provided by the technology vendors as well as on the reliability assessments performed during 

process engineering. An automated system could execute these tasks, or may require the assistance 

of supporting technical operations teams (ISA, 2015a). Maintenance activities may require 

verifying the compliance of a subsystem, performing routine tasks such as tightening of 

connections, checking liquid levels and lubrication, or performing an overhauling or rebuilding of 

an asset (Márquez, 2007). Performing these tasks may require spare parts, calibration references, 

and tooling as well as a work order to perform and record the tasks. Moreover, a possible shutdown 

of the process may be required, including updates to manufacturing schedules for performing the 

maintenance action to restore the asset to its required level of operation. Further, real-time risk 

mapping, such as recently introduced for OSD-CM in (Su et al., 2017) can be used to prioritize the 

conditions for maintenance activity.  
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Importantly, maintenance actions only restore the system to its initial functionality. Hence, 

in addition to proactive use of data and maintenance records for continued verification of current 

system conditions, the assessment of potential system improvements to eliminate the root causes 

leading to failures, as well as to update maintenance strategies for effective use of the assets and 

resources is vital for improving system capabilities. Computerized Maintenance Management 

Systems (CMMS) and knowledge management systems aid in managing and optimizing these 

activities (Andrews and Nahas, 2018; Center for Chemical Process Safety, 2007; Joglekar et al., 

2017; Márquez, 2007). 

6.2.2 System Architecture 

6.2.2.1 Approach  

Many hardware and software components together enable the required data flow of the 

CBM framework. To that end, a credible and comprehensive system architecture is essential for 

the interoperability of the component pieces in the overall process, and facilitates the 

implementation by providing guidance for structuring, classifying and organizing information 

(SEBoK, 2019b). Notably, the specific considerations associated with the maintenance of 

machinery and enterprise architectures are captured in multiple industry standards, provided by 

the International Standards Organization (ISO), International Electrotechnical Commission (IEC), 

Society of Automotive Engineers (SAE), Machinery Information Management Open Systems 

Alliance (MIMOSA), Department of Defense Architecture Framework (DoDAF), ISA, User 

Association of Automation Technology in Process Industries (NAMUR) and other industry 

specific standards. While a detailed review of these standards is beyond the scope of this work, 

some ISA standards are outlined to highlight the considerations of communication and network 

architectures, human-machine interfaces, equipment modes, and intelligent device configurations 

required in the systems integration for CBM applications. 

 

A high-level operational concept graphic for the data and information flow required for 

systems integration, highlighting select ISA standards, is shown in Figure 6-2 and is briefly 

described below. The concepts from the ‘functional hierarchy’ and ‘manufacturing operations 

management’ models of the ISA-95 Standard on Enterprise-Control System Integration (ISA, 

2010a) are primarily adopted for this architecture. The functional hierarchy model of ISA-95 
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suggests the hierarchical classification of a manufacturing facility into three main domains, namely, 

process control (levels 0-2), manufacturing operations management (Level 3) and business 

planning and logistics (Level 4). The process control domain involves the considerations of 

physical assets and the monitoring and control of the production process, while activities such as 

maintenance are a Level 3 function, in addition to production, quality and inventory management. 

Information exchange must take place between the hierarchical levels for executing operations in 

the manufacturing facility. Recent architectures continue to expand on the basic idea of ISA-95 

mainly through advances in sensing and information technology systems that facilitate the secure 

integration of Levels 2 and 3 for real-time information exchange. Such synthesis advances RTPM 

implementation towards the Industry 4.0 paradigm (Isaksson et al., 2018; Lopez et al., 2018). For 

example, architectures are increasingly referred to as edge (Levels 0-2 comprising the physical 

location of manufacturing assets and additional measurement devices such as the at-line and off-

line sensors) and the cloud (Levels 2-4 comprising the network of tools used for implementation 

of the analyses required for advanced process control, manufacturing operations management and 

enterprise resource planning). The integration of multiple automation and information technology 

tools addressing these hierarchical levels enables the overall operations management of the system 

of interest.   
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Figure 6-2: Systems Integration for Process Operations Management highlighting ISA Standards for standardizing the implementation 

of an integrated continuous manufacturing system 
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Maintenance management may often require vendor assistance and the use of product 

manuals with the support of specialists connected remotely from widely distributed geographical 

sites. Hence, in addition to the hierarchical ISA-95 models, the ‘zone and conduit model’ of ISA-

99 Standard on Security for Industrial Automation and Control Systems (ISA, 2007) is leveraged 

to guide the network configurations, enabling connectivity between functions while ensuring 

cybersecurity. Furthermore, the aspects of functional areas, intelligent devices and maintenance 

processes in ISA-108 Technical Report for Intelligent Device Management (ISA, 2015a) are 

leveraged. As defined in ISA-108, an intelligent device has digital communication and 

supplementary functions such as diagnostics in addition to its basic functionality. Herein, 

diagnostics is defined as an automated function to detect faults, malfunctions, deviations and 

variations of hardware or software components of the device. Hence, the goal for OSD-CM is to 

emphasize the use of diagnostics from built-in systems in the equipment, sensors and automation 

tools to guide operators and control rooms on infrastructure faults. Furthermore, with the rise of 

intelligent sensing technologies as ‘Internet of Things’ devices, the above considerations from 

ISA-95, ISA-99 and ISA-108 enable hierarchical integration into the system architecture.  

 

Additional ISA standards facilitate implementation of the architecture; however, they are 

not employed in this work given its focus on proactive maintenance management. The equipment 

state models defined in the ISA-88 Standard for Batch Control (ISA, 2010b) and the ISA-106 

Technical Report on Procedure Automation for Continuous Process Operations (ISA, 2013) can 

assist defining the current asset operating scenario. The ISA-101 Standard on Human Machine 

Interfaces for Process Automation Systems (ISA, 2015b) can be leveraged in the context of human-

machine interface. The ISA-18 Standard on Alarm Management in the Process Industries (ISA, 

2016), and the ISA-84 Standard on Identification of Mechanical Integrity of Safety Controls, 

Alarms and Interlocks in the Process Industry (ISA, 2012) further benefit in standardizing the 

engineering and implementation of sensors and methods for fault detection, configuring process 

alarms and operator notifications of abnormal process conditions or equipment malfunctions using 

measurements of process conditions and logic. 

 

Notably, some recent works in OSD-CM have proposed adopting such ISA standards. 

Frameworks adopting the ISA-88 Standard for Batch Control (ISA, 2010b) in defining equipment 
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operation modes for managing recipes and supervising device states were recently addressed 

(Brodbeck, 2018; Cao et al., 2018). Previous work from our research group proposed adopting the 

Process Condition Model from ISA-18 for intelligent alarm management in OSD-CM (Gupta et 

al., 2013), as well as Quality by Control, a hierarchical framework following ISA-95 for QbD 

implementation (Su et al., 2019c, 2017).  

6.2.2.2 A CBM Architecture for OSD-CM 

With the approach to systems integration described above, a proposed high-level view 

following the CBM+ OV-1 architecture (Office of the Assistant Secretary of Defense for 

Sustainment, 2008) for the data and information flow required in implementing CBM in OSD-CM 

is shown in Figure 6-3 and described below. The architecture is a general representation and can 

be applied to both batch and continuous manufacturing processes. Specific details of this 

application depend on the system of interest. They are the subject of ongoing research but are not 

addressed in this work.  
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Figure 6-3: Data Architecture for Proactive Maintenance Management in CM 
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An OSD-CM process operation comprises multiple physical devices at the Level 0 of ISA-

95, such as equipment and sensors constituting the ‘Physical Process’; and the incorporation of 

these physical devices at Levels 1 and 2 of ISA-95 enables the integrated OSD-CM process, shown 

as ‘Process Level Control Rooms.’ Systematic frameworks for supervisory control of 

pharmaceutical processes at Levels 0-2, referred to as Quality by Control, was recently presented 

(Su et al., 2019c). For functional use in the integrated OSD-CM process, the individual equipment 

and sensors usually require configuration with capabilities for digital communications and 

supplementary functions, such as diagnostics, in addition to the basic material processing or 

sensing function. These device-level diagnostics are essential in ensuring effective functioning and 

the identification of abnormalities, such as communication errors, calibration expiration, 

subsystems or component failures, or breach of device safety in the subsystems. Further, 

diagnostics for control systems input and output communications (I/O) and of the overall process 

are crucial for continued verification of normal operations in the integrated system. Alarms in 

response to disruptions in process conditions such as those related to safety, material blockage and 

communication failures are reported to the process level operator stations or control rooms, which 

consequently require steps for intervention to return the process to normal operations.  

 

‘Facility or Enterprise-level Control Rooms’ or technical operations command centers at 

ISA-95 Levels 3-4, enable procedures for managing the consequences of failures for CAPA. These 

include activities such as composing deviation reports, issuing maintenance work orders, providing 

operator support, updating process logistics, tracking inventory of spare parts and maintenance 

aids, and executing process reengineering for continuous improvements. The ‘Communication 

Network and Databases’ facilitate the automation of Level 3 applications for improved operations 

support at Levels 0-2 in real-time. Notably, this integration enables access to real-time data from 

the physical process for enterprise transactions, thereby exposing the process to cybersecurity 

concerns. Thus, a reliable infrastructure for communications and data management to bridge the 

two domains is vital. Recent developments in industrial automation resulting in the availability of 

capable and reliable information technology systems to bridge these two domains is one of the 

major enablers of CBM and additional RTPM applications following Industry 4.0 practices. 
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6.3 Implementation in an OSD-CM Testbed 

6.3.1 Sensor Network Risks for OSD-CM Operations 

Structural malfunctions that occur due to wear in the individual equipment could result in 

a change in the information flow between various variables (Venkatasubramanian et al., 2003c). 

Hence, the operational risks in the sensor network components, as well as the impacts of material 

handling on the sensing infrastructure, such as those summarized in Figure 6-4, and others, if not 

adequately addressed, may render advanced process control and strategies for real-time product 

quality assurance ineffective. Since these failures can degrade the utility of the integrated system, 

it is essential to take steps that would ensure robustness during operations, such as system 

performance monitoring, calibration verifications, and device maintenance (Su et al., 2019c). 

Some of these risk considerations affecting the components of the sensor network are briefly 

outlined next.  

 

Figure 6-4: Failure root causes in the sensor network components requiring robust design and 

diagnostics for continued verification in process operations 
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6.3.1.1 Equipment 

Process equipment, such as feeders, granulators, and tablet presses, used in OSD-CM are 

critical not only for material processing, but also for enabling plantwide control and providing data 

for process diagnostics and additional operations management functions. The equipment rely on 

efficient functioning of their corresponding subsystems and components, such as load cells, 

solenoids, wear strips, gaskets, retainers, motors, bearings, lubrication systems, electrical 

connections, and internal controllers among others. However, the assurance that these components 

are functioning as desired is not always easy to attain and the sheer number of these subsystems 

and components in an integrated OSD-CM system increase system complexity. Process operations 

are further challenged by the risks associated with handling of particulates, such as fouling, caking, 

segregation, and rat-holing. In addition, wear in machinery tooling could result in unacceptable 

product quality, cause product leakage and thus affect process performance and the information 

flow for quality assurance. Furthermore, the subsystems for device level control of CPPs may fail 

due to poor equipment handling or safety design. The subsystems for lubrication and temperature 

control of the moving parts may further experience leakage, which could affect the product quality. 

Consequently, the verification of equipment performance during operations as well as between 

runs after cleaning cycles is imperative to ensure reliable conditions of the equipment and avoid 

the need for unplanned shutdowns.  

6.3.1.2 Instruments 

Process analyzers or PAT tools are critical for OSD-CM operations, as these provide direct 

or inferential measurements of CPPs and CQAs. The data from these tools facilitate aspects of 

real-time quality assurance, advanced process control and additional manufacturing operations 

management functions. Importantly, these instruments are comprised of electronic and mechanical 

components, light sources, optic cables, measurement probes and interfaces, and further, the 

analysis methods and software to acquire and analyze the data in real-time. Device age such as 

reaching the limit of the average rated life of the light source, damages to the optic fibers, 

calibration models and certifications, device safety and exposure limits and others require 

considerations for proactive asset management. For example, for a fault in the inline near-infrared 

(NIR) sensors, the mitigation could require cleaning the sensing window and routine verification 

of the calibration model as well as further updating the sensor design to manage and mitigate the 

fouling conditions. However, if a light source is nearing rated average life, corrective or preventive 
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actions may require providing inventory of critical components and scheduling the corresponding 

PAT experts for recalibrations to facilitate short downtimes. These events are generally 

manageable during operations through device start-up and shut-down procedures, and through 

configuration of real-time diagnostic indicators in the programs running the analytics for continued 

verification. Moreover, managing the parametric changes in the models of these analytical system 

that could affect the decisions of the supervisory control strategies requires effective model 

maintenance (García-Muñoz et al., 2017; Miyano et al., 2015). A discussion on the maintenance 

of analytical models is an important area of concern for the OSD-CM community, however it is 

beyond the scope of this work which is focused on the holistic architecture for system integration. 

In addition to the instrument degradation and chemometric model management, process 

measurements from field devices include random errors arising from sources such as power supply 

fluctuations, network transmission and signal conversion noise, analog input filtering, and changes 

in ambient conditions which increase overall complexity (Narasimhan and Jordache, 1999). 

Furthermore, material handling of powders is an inherent challenge in all solid processing facilities. 

Non-stationary events or gross errors such as frequent sensor fouling arising from particulate 

processing affect the measurement accuracy. These events could result in a sensor network that is 

no longer observable, thereby affecting real-time process monitoring systems and subsequent data 

driven applications (Bagajewicz, 2010) and necessitate continued verification of the real-time 

process data sources during operations. 

6.3.1.3 Integrated System 

Although an individual item of equipment or PAT tool may be configured satisfactorily in 

standalone mode, OSD-CM necessitates communications between the individual components and 

a suite of information technologies for the continuous flow and processing of material and data. 

Automation systems and the information technology infrastructure, including hardware, software, 

and network devices, require reliable communication architectures and systematized 

implementation. Real-time data analytics and decision making at multiple hierarchical levels and 

functional roles for quality assurance further require additional considerations for systematic data 

management such as configurations of data connectors and cybersecurity on automation network, 

transient faults, buffer/memory, or data packet loss in the network and handling multiple databases. 

Further, the underlying hardware and software associated with automation systems could have 

abrupt unpredictable failures, hence raising consideration of network and component redundancy, 
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as well as proactive strategies for ensuring effective functioning. Also, the implementation of 

control strategies in supervisory control systems require engineering updates and maintenance of 

software programs, or control modules, for reliable operations. These modules may rely on tuning 

parameters that are also affected by equipment age and operating conditions. Failures of the control 

system are addressed as one of the main challenges for Quality by Control (QbC), thereby 

necessitating considerations for system robustness such as control performance monitoring, 

control structure re-organizing and overall system maintenance for targeted improvements to 

achieve tighter tracking of CQA and more robust plant-wide control (Su et al., 2019c). 

6.3.2 Testbed description 

The case study discussed in this work uses the advanced manufacturing testbed of the 

Center for Particulate Products and Processes at Purdue University (Purdue CP3). As discussed in 

Section 2, a system architecture enables the use of real-time process data for proactive fault 

analysis and maintenance management, hence CBM. An implementation example of the 

enterprise-control system integration architecture is discussed in the case study. Subsequently, 

example fault scenarios in equipment and process analyzers that may require continued 

verification during process operations and proactive maintenance considerations are discussed. As 

noted earlier, this work aims to emphasize the system integration and maintenance aspects for 

sensor network robustness. Additional ongoing research on failure modes of the process, and the 

corresponding condition monitoring and maintenance considerations will be reported in 

subsequent publications.  

 

The conceptual schematic of the process for OSD-CM in the Purdue CP3 facility, 

incorporating the direct compaction and dry granulation processing alternatives is shown in Figure 

6-5 (Ganesh et al., 2018a). The testbed is comprised of assets from multiple vendors, therefore 

requires a modular and vendor-agnostic integration of the unit operations, PAT tools and 

supervisory control systems for the continuous flow and processing of material and data (Ganesh 

et al., 2018a; Moreno et al., 2019; Su et al., 2019a, 2019c, 2019b).  
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Figure 6-5: Schematic of CM with direct compaction and dry granulation processing routes 

(Ganesh et al., 2018a) 

The case study explores a subset of the process to illustrate the systems architecture for 
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Figure 6-6: Subset of the OSD-CM process to illustrate CBM systems architecture 
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6.3.3 Enterprise-Control System Integration 

6.3.3.1 Architecture Overview 

The implementation of the systems architecture proposed and illustrated in Figures 6-2 and 

6-3 requires three vital infrastructural considerations. The first involves the integration of the 

equipment and the sensors at the process control domain at Levels 0-2; second, the integration of 

the process into the manufacturing operations management domain at Level 3; and, third, the 

implementation of Level 3 functions. To this end, DeltaV 13.3 (Emerson) is used for the data 

management and plant-wide automation through the ‘Process Level Control Room’, while OSIsoft 

PI System (OSIsoft, LLC) and SmartFactoryRx (Applied Materials, Inc.) are employed for the 

setup of the ‘Facility/Enterprise Level Control Room’. An overview of the data flow is shown in 

Figure 6-7 and Figure 6-8, with the ‘zone and conduit’ diagram for the network connections shown 

in Figure 6-9. While each of these tools has multiple capabilities, they are implemented for specific 

purposes in the testbed to leverage the existing control systems in the testbed, which are described 

subsequently. It is to be noted from these figures that (i) the functional data flow follows ISA-95 

to integrate process equipment that are configured as (ii) intelligent devices as defined in ISA-108 

for material processing and sensing, while (iii) network architectures to host the machines and 

enable machine to machine communications follow ISA-99.  

 

Figure 6-7: Enterprise-Control System Integration in the CP3 OSD-CM Testbed 
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Figure 6-8: An overview of the data flow from Assets to Control Platforms in the Testbed 
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6.3.3.2 Process/Site Level Control Room  

Architectures to systematically implement Levels 0-2 using equipment level and 

supervisory controllers for maintaining the normal operating conditions and product quality 

specifications were recently introduced by the research group and established as the Quality by 

Control (QbC) framework. To this end, a DeltaV 13.3 distributed control system (DCS) provided 

by Emerson is used for the modular integration of the individual units to result in an integrated 

OSD-CM process for the implementation of QbC. The DCS is configured to facilitate the 

integration of equipment and PAT tools with the controller for plant-wide process control. The 

DeltaV controller is physically installed in the pilot plant facility, and the workstations are 

deployed using virtualization technologies. The control modules and operator interfaces for plant-

wide control applications are configured using DeltaV Control Studio in the DeltaV ProPlus 

Workstation, while the data access server and the continuous historian are accessed using the 

DeltaV Application Station. The KT-20 loss-in-weight feeder and Natoli NP-400 tablet press 

equipment communicate with DeltaV via ethernet I/P, while the object linking and embedding for 

process control (OPC) data access (DA) protocol is used for communications with the PAT tools, 

as shown in Figure 6-9. The different colored arrows representing data flow are intended to indicate 

the different communication protocols required to establish the integrated system. As shown, the 

communications must be harmonized as the data flow progresses from the physical process to the 

DCS. Establishing these connections usually requires physical communication cards based on the 

protocol or access to the OPC DA server of the system. While the physical I/O cards used to 

connect the equipment are stable communications links, direct access of the OPC servers to 

connect PAT tools raises cybersecurity considerations. Connecting PAT tools to the DeltaV OPC 

server thus required the application of data transfer adapters using tools such as KepServerEX, 

LinkMaster (both Kepware, PTC Inc.) and Matlab’s Instrument Control Toolbox (MathWorks 

Inc.). Product guidance documents such as DeltaV Security Manual are utilized to manage the 

complexity in the systematized integration of the devices with the DCS. More detailed descriptions 

of the network architecture at Levels 0-2 for active process control applications are reported in our 

previous works (Moreno et al., 2019; Su et al., 2019c, 2019a).  

6.3.3.3 Facility/Enterprise Level Control Room 

While the integration at Levels 0-2 of ISA-95 enables the supervisory control of OSD-CM, 

applications such as CBM involve the integration of the process with the manufacturing operations 
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management domain corresponding to Level 3 of ISA-95. The integration of Levels 0-2 with Level 

3-4 for the implementation of this work required an expansion of the infrastructure. To this end, 

the DeltaV system is implemented as the edge control system of ‘Facility X’, and the PI System 

provided by OSIsoft is used to bridge the process control domain and manufacturing operations 

domain. This ‘Facility X’ houses the OSD-CM process and forms a part of the ‘Purdue CP3’ 

facility zone, as shown in Figure 6-9. The SmartFactoryRx platform provided by Applied Materials 

is then implemented to make use of data from the PI System for ISA-95 Level 3 applications. The 

SFRx platform enables the development and systematized implementation of data-driven and 

mechanistic analyses in a drag-and-drop workflow-based strategy engine for asset and facility 

management functions. Applications such as process performance monitoring, maintenance 

management, and knowledge management can be implemented using its built-in functionalities, 

interfaces with external proprietary and open source programs, and web service interfaces (Moyne 

et al., 2012; Vann et al., 2018). The data flow for Level 3 systems is harmonized using the PI 

System, as shown with the data flow colors in Figure 6-9. 

 

The PI System and SmartFactoryRx workstations configured using virtualization 

technologies are hosted in Purdue’s Enterprise Network, and the lab managed ‘Purdue CP3’ Zone 

respectively to replicate a cloud environment for data aggregation, and analyses as shown in Figure 

6-9. The zoning of networks facilitates configuring network security protocols. Moreover, the 

layering of the control zones enables leveraging resources provided by Purdue in the form of 

software licenses for tools such as MATLAB that may be required for developing the data driven 

applications. Studies on the use of the integrated infrastructure for applications in the testbed is an 

ongoing research activity; while in this work, the PI System is used in subsequent illustrations as 

a representative process visualization tool at the facility control room level. 

 

The PI System is comprised primarily of the PI Data Archive, the time-series historian and 

PI Asset Framework, a repository for asset-centric models, hierarchies, objects, and equipment 

(OSIsoft LLC, 2018). The PI Interface Configuration Utilities (PI-ICU) enable the data connection 

between data sources and the PI Data Archive. The data tags are configured as PI Points in the 

Data Archive. Additionally, the Data Archive is an essential security layer between the edge and 

the systems for Level 3 applications. The corresponding PI Points are accessed using the PI Asset 
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Framework in real-time. The PI Asset Framework is used to contextualize the PI Points as Asset 

Models and define user access to the databases to facilitate cybersecurity and enable further 

analysis. PI Vision, a PI System tool is used for visualization and to interface with external 

software such as SFRx using System Development Kits (SDKs). As the integration layer of data 

sources from the process domain for manufacturing operations management, the PI Data Archive 

is configured to harmonize tag naming for systematizing the access, security and use of the data. 

6.3.4 Fault Scenarios in Data Flow 

The development of process automation systems for OSD-CM necessitates data exchange 

at multiple hierarchical levels. Moreover, to connect to the different communication protocols in 

each of the unit systems, multiple hardware and software components are required. Some fault 

scenarios arising in the IT infrastructure and automation systems experienced in the testbed are 

summarized in Table 6-1. It is the possible occurrences of these types of scenarios that require the 

continued verification of data quality for assurance of the usability of real-time data from the field 

sources for the supervisory applications.  

Table 6-1: Sample Fault Scenarios that occur in the IT infrastructure and automation systems 

Failure Root Causes Diagnostic Sources Maintenance 

Actions 

Data adapters Communication 

Failure 
Cybersecurity 
Network 

Configuration 

Infrastructure software 

flags 

Inspect I/O Card 
Inspect Cables 
Inspect security 

settings and 

network 

configurations 
Verify architecture 

Control Modules Control Module Error 
Model and Tuning 

Error 

Control Module Flags 
Model Flags 

Update Software 
Model 

Maintenance 

 

For example, a fault in the data adapters could have root causes such as communication 

failure, network settings causing cybersecurity concerns and network mapping conflicts. 

Fortunately, the automation systems enable the configuration of flags to monitor these faults and 

to trigger alerts. These flags can then be integrated into fault trees for root cause identification. 

However, failures in the components of automation systems usually require offline updates to the 
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respective modules, replacement of the associated hardware, and also potentially a complete 

reconfiguration of the system that may result in downtime. Aspects such as robust and secure 

network architectures, redundancy, time-based inspection of the hardware components, and 

proactive maintenance of IT systems can aid in preventing or reducing such downtimes. Similar 

considerations for the control modules require control performance monitoring (Su et al., 2019c). 

For CBM, the components of the OSD-CM process are configured considering the data flow 

diagnostics, however, it is also important to consider the devices that are not available as off-the-

shelf intelligent devices. Following Figure 6-9, the tablet press is used to illustrate the data flow 

from equipment in the physical process at Level 0 to the facility level control room at Level 3, 

while the NIR sensor is used to illustrate the same for a PAT tool.  

 

The NP-400 is equipped by Natoli with an Allen Bradley ControlLogix PLC that controls 

the subsystems of the tablet press. Indeed, the tablet press itself is an amalgamation of multiple 

subsystems configured as an intelligent device by the vendor to provide diagnostic data in addition 

to performing its tablet processing functionality. The PLC is connected to the DeltaV DCS using 

Ethernet I/P. Establishing this connection requires an ethernet cable, a communication network 

with the VIM2 I/O card and corresponding data adapters. The VIM2 card requires its own set of 

communication adapters with the DCS that are configured using the DeltaV ProPlus workstation 

to map the process variables from the tablet press into the DCS. In addition to their use in 

developing plant-wide control strategies, the DCS data tags are accessible from the OPC DA server 

through the DeltaV Application Station. This data flow enables the implementation of Levels 0-2 

functions. Similarly, the Multieye2 NIR provided by InnopharmaLabs is configured with Quanta, 

proprietary software which controls the spectrometer, records spectral data and enables CQA 

predictions using suitable models. The OPC DA3 server provided with the Quanta software 

enables real-time communication of the data to the DeltaV DCS. Therein, data adapters using 

KEPServerEX and LinkMaster are used to establish the communication between the Quanta OPC 

DA 3 server and DeltaV OPC DA 2 server. For secure connections between the workstations, an 

OPC unified architecture (OPC UA) adapter through KEPServerEX is used. Limitations in 

KEPServerEX require LinkMaster to write data into the DeltaV OPC server for process control 

purposes. For Level 3 applications, a PI-ICU to directly read from KEPServerEX in the 

Application Station is implemented.  
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As evident from the above description, the communication variety among the component 

equipment and analyzers results in a complicated data flow to the DCS. Standardization of the 

interfaces for this data by the PAT tool and DCS vendors could simplify the maintenance 

requirements of these interfaces. However, in a modular setup such as the testbed used in this case 

study, software flags at each of these interfaces allow for continued verification of the data flow. 

These software flags, such as a time stamp or connection status tags from the equipment and 

automation systems, are used in abstraction hierarchies, a qualitative model-based fault detection 

method, to configure triggers for abnormal conditions and the corresponding prescriptive actions 

to minimize the resources required for corrective action. Furthermore, proactive monitoring of this 

data flow will involve regular time-based inspection of the cables and communication hardware 

as well as collaboration with Purdue Engineering Computers Network for IT Securities. At present, 

unfortunately, failures in the data flow can be detected only after a component itself fails but the 

condition triggers at the data interfaces enable quick resolution of the root cause for maintenance 

purposes.  

 

The data integration in the DeltaV DCS enables the development of automation modules 

for the supervisory control of the integrated process, facilitating the implementation of a ‘Process 

Level Control Room.’ To integrate the process into a technical operations command center or the 

‘Facility Level Control Room’ for Level 3-4 functions, a PI-ICU is configured to access the OPC 

servers hosted in the DeltaV Application Station. The PI-ICU enables the collection and storage 

of data into the PI Data Archive following appropriate considerations of security and data 

compression. The data tags from the PI Server are then used in the PI Asset Framework to create 

the facility and equipment hierarchies. A screenshot of the PI Asset Framework is shown in Figure 

6-10. PI Asset Analytics and PI Vision are then utilized to configure triggers on the real-time data 

for continued verification of the data flow and visualization of operator alerts in the facility using 

a traffic light system.  
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Figure 6-10: Data from assets of Facility ‘X’ for Level 3 applications 

The operations dashboard for the entire process is shown in Figure 6-11, which is 

simultaneous accessible on the process floor as well as the enterprise control rooms. As shown, a 

green status indicates a working condition, while the red indicates a system shutdown or fault 

status. The gray color indicates stand-by status. In this illustration, the testbed researcher uses the 

traffic lights as alerts for the required corrective or preventive action. The ongoing configuration 

of SmartFactoryRx system is designed to automate a workflow to utilize the triggers to not only 

alert the operator, but to further initiate corresponding maintenance actions. 
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Figure 6-11: Dashboard of the Process in the ‘Facility Level Control Room’. Top: Inactive or 

connection requiring a maintenance action. Bottom: Continued Verification of Data Flow. 

6.3.5 Fault Scenarios in Process Instrumentation 

Individual PAT tools used for inline and at-line monitoring of CPP or CQA usually consist 

of three components, namely, the sensing device, a program to control the instrument and analyze 

the data, and the cables connecting the sensor to the computer. For the measurement to be useful 

for real-time quality assurance and advanced process control of the integrated process, the 

measurements must be communicated to a supervisory control system and require additional 

considerations for data transfer. Each of these components has failure modes that may render the 
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data unreliable or unavailable, hence requiring device diagnostics to identify abnormal conditions 

and their corresponding root causes. Some example faults in the process instrumentation and 

potential data sources for fault diagnostics and maintenance actions are summarized in Table 6-2. 

The failure scenarios are illustrated with a weighing balance and the AT-4. The simple weighing 

scale is used to collect tablets exiting the tablet press chute and to record the cumulative weight of 

the tablets produced, while the AT-4 is used as the at-line tablet property measurement tool, as 

shown in Figure 6-12. The balance is configured in-house for this application and resembles a 

‘non-intelligent’ device in its setup, while the AT-4 system is an intelligent device provided by 

Sotax with its diagnostics and data exchange servers.  

Table 6-2: Sample Fault Scenarios that occur in individual PAT Tools 

Failure Root Causes Diagnostic Sources Maintenance 

Actions 

Device Limitation Maximum Capacity 
Average Rated Life 
Temperature 

Device Data Calibrate Sensors 
Change Parts 

Physical Setup Sensor Holder Design 
Blockage 
Communication 

Failure 

Visual Inspection 
Device Software Flags 

Change device 

setup 
Change cables 

Programming and 

Models 

Device Software 

Issue 
Model Failure 

Device Software Flags 
Model Flags 

Update Software 
Model 

Maintenance 
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Figure 6-12: Tablet weight measurement for real-time monitoring and control (Su et al., 2019c) 

The balance serves as a non-redundant mass flow rate measurement for the integrated 

sensor network; hence, a reliable measurement from this sensor is imperative for robust monitoring 

and control (Moreno et al., 2019; Su et al., 2019a). To record the flowrate measurement, the 

balance is connected to a laptop computer via RS232 cable to collect the measurement data of total 

weight on the scale, then processed for the flow rate measurement using MATLAB (MathWorks 

Inc.) Instrument Control Toolbox. For a reliable raw measurement from the sensor, from an asset 

setup point of view, first the total weight on the scale must be below the load cell’s rated limits, 

and to obtain the flow rate measurement, the cables from the sensor have to be securely connected 

to the computer, and the program that collects and analyzes the data must be robust. Importantly, 

some of the analyses performed on the raw measurements of the sensor may require access to 

software licenses. Continued verification of the sensor’s reliable functioning requires visibility of 

the total weight on the scale and an assurance that the physical connections and software enabling 

data acquisition data and processing are active. Triggers are configured for these device limitations 

to alert an operator for corrective action, such as a required change of the collection bucket during 

process operations to safeguard the load cell. While the operator can manage the total weight on 
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the scale and thus such a change is not a maintenance action, similar triggers can be configured to 

identify some safety concerns, preventing an unscheduled process downtime.  

 

The AT-4 is used to sample tablets for at-line analysis, and these primary test method 

analyses provide vital data for quality assurance and model maintenance. However, while the 

collection and measurement of samples are automated through the device, the physical setup and 

transfer chutes could result in a blockage. Such blockage results in a failed measurement from the 

process, thereby requiring operator alerts and further considerations to improve the physical setup. 

The AT-4 system is provided as an intelligent device by the vendor, and the diagnostic data is 

accessed using the OPC DA2 server on the device. Furthermore, for potential additional ‘Internet 

of Things’ devices, the AT-4 is setup to illustrate the data flow and fault considerations for such 

intelligent devices, as shown in Figure 9. Data tags corresponding to device alerts and alarms are 

identified and used in the alerts to prevent an unplanned shutdown of the process. The operator 

dashboard at the control room employing the device diagnostics is shown in Figure 6-13.  

 

 

Figure 6-13: Alert indicating material blockage and measurement failure in the at-line sensor 
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While the above illustrations can be managed by the operator to ensure timely 

measurements from the analyzers, damage to the cable and physical connections, software, and 

calibrations require additional support or spare parts and subsequent maintenance considerations. 

Additionally, measurements provided by the load cells require periodic verifications using 

reference weights. For proactive maintenance, although damage to the cables or software failure 

cannot be predicted, a record of load cell recertification and license expiration dates provide 

information to schedule the corresponding activities during a planned downtime proactively. In 

addition, with a record of the frequency of occurrence of failure root causes, software maintenance 

to update the data transformation workflow or cable replacements may be desired. 

6.3.6 Fault Scenarios in Process Equipment 

The tablet press, a critical asset in the integrated CM process, is, by itself, a multi-stage 

process and is treated as such in this illustration. The equipment is comprised of multiple stations 

for tablet compaction, during which material in each station undergoes the following major steps: 

die filling, metering, pre-compression, main-compression, tablet ejection and take-off from the 

lower punch, as shown in Figure 6-14. The setpoints for the operating condition at each of these 

stages are implemented by a subsystem comprised of mechanical and electrical components, with 

alarms or system diagnostics built into the equipment control system to provide notice of abnormal 

conditions. Some faults scenarios in equipment that could affect the functionality of the integrated 

process, and potential diagnostic and maintenance actions are summarized in Table 6-3. 

 

 

Figure 6-14: Major steps in a rotary tablet press (Su et al., 2019c) 
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Table 6-3: Sample Fault Scenarios that occur in the tablet press 

Failure Root Causes Diagnostic Sources Maintenance 

Actions 

Subsystem Failure Subsystem Safety 

Design 

PLC & HMI Error 

Communication 

Failure 

Device Data and Alarms 

Process Models 

Inspect 

Subsystems 

Update Software 

Verify device 

settings 

Physical Setup & 

Operating 

Conditions 

Tool installation 

Equipment Leveling 

Punch penetration 

Visual Inspection 

Condition monitoring 

Process Models 

Verify device 

settings, 

subsystem 

calibrations, setup 

Consumables Grease or Lubricant 

Levels  

Dust Handling 

Device Data and Alarms 

Visual Inspection 

Vacuum system inspection 

Replenish 

consumables 

Tool or part wear Wear strip 

Tablet Punch 

Assembly 

Turret Balancing 

Device Data and Alarms 

Visual Inspection 

Process Models 

Maintain tools 

Change parts 

 

Wear in the tablet press tooling such as punches, subsystems, scrapers or dosing cams; 

alignment changes of the turret; consumption of grease and barrel oil require regular equipment 

maintenance for effective operations (Bundenthal, 2017; Natoli Engineering Company Inc, 2019). 

Further, the PLCs used for the integration and control of these multiple subsystems require regular 

software updates. The risk considerations for these subsystems are generally managed through 

equipment start-up and shut-down procedures, operator training and device maintenance. 

Furthermore, the equipment is configured as an intelligent device to provide alarms. Nevertheless, 

unanticipated downtime in the tablet press could result in an unplanned shutdown of the entire 

process and thus continued verification of performance and operator support for troubleshooting 

of the failure modes is important for quick turnaround. Moreover, gradual wear in the equipment 

could result in a change in the information flow between various variables (Venkatasubramanian 

et al., 2003c). To illustrate this possibility, a main compression force subsystem failure and wear 

of the turret assembly are discussed further.  

 

A recent malfunction of the main compression thickness control loop was encountered but 

did not trigger an alarm in the device PLC. As the process was in operation under active process 

control, the process model or digital twin, also used in model predictive control, detected this 
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malfunction. The details of the process model were discussed in previous works (Su et al., 2019a, 

2019b, 2018a). An early stage use of the digital twin for condition monitoring of this fault is 

illustrated in Figure 6-15. The digital twin predicts the tablet weight (Twei), pre-compression force 

(Pcom), main compression force (Mcom), and tablet production rate (Prod) over a receding 

prediction horizon. The model prediction errors were calculated based on the real-time 

measurements of these controlled variables, were populated in a moving-window time, and were 

compared to the historical error distributions model prediction error distributions. The unflagged 

main compression thickness control failure could be identified from a shift in the error distribution 

for main compression force, as seen in Figure 6-15 b, and used for root cause analysis of the main 

compression stage.  

(a) 

 

(b) 

 

Figure 6-15: Model prediction error distribution based on a digital twin as a fault monitoring 

strategy 

Equipment troubleshooting supported remotely by the tablet press vendor recognized the 

above subsystem failure as a safety design for the main compression thickness assembly, which 

was caused by a previous improper equipment shutdown. As the gap between the punches was not 

accurately available after a thickness encoder failure, no set-point changes were allowed to prevent 

crashing the lower punch into the upper punch. The immediate corrective action required 



 

150 

disassembling the tablet punches and further, verifying the calibrations for the thickness at the 

main compression station, usually performed as a maintenance activity. Additionally, the 

preventive action required updating the standard operating procedures for startup to ensure that the 

subsystem is operational before loading the material and performing a shutdown of the system. It 

should be noted that troubleshooting with the vendors was performed remotely, which required a 

reliable and secure network to connect over the internet. 

 

The physical setup between the feed frame and the turret of the tablet press uses a wear 

strip. The wear strip prevents the contact between moving parts and is subject to deterioration. 

Moreover, the turret assembly is supported by the main frame assembly, and regular operations 

necessitate rebalancing the inspections of these parts to prolong the life of the equipment and 

importantly ensure the functionality of the subsystems for the process. Wear in these parts 

eventually is manifested as powder leakage in the tablet press, as shown in Figure 16. While these 

faults can be identified by the vendor and experienced user of the tablet press, such leakage reduces 

the overall yield of the process. Such leakage can be detected using level sensors in the hopper or 

by monitoring the material balance across the equipment in real-time. The dashboard in Figure 6-

16 shows the mass flow rates that are used as a trigger criterion in the testbed. Once the necessity 

of maintenance is established, spare parts, tools and maintenance procedures must be available to 

enable the maintenance activities.  
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Figure 6-16: Leakage arising from wear in the tablet press, with utilization of mass balance for 

condition monitoring  

6.4 Concluding Remarks 

OSD-CM processes enable the continuous flow and processing of material and information 

through the systematic integration of solids processing unit operations, supported by analytical 

systems, process knowledge, and automation methods. Some of the failure modes arising in these 

individual units during process operations of OSD-CM could result in unplanned downtime, and 

further impact product quality or process productivity. Mitigation of such disturbances necessitates 

continued system verification and the development and implementation of maintenance strategies 

for reliable operations. Moreover, maintenance considerations are crucial to manage process risks 

during the product’s life cycle.  

 

In this work, CBM is introduced in terms of its rationale for continued verification and 

sustainment for reliable operations. CBM is a mature maintenance management strategy, intended 

to proactively monitor and manage the conditions that may lead to failure or diminished 

functionality of the system, instead of strictly relying on time-based inspection and replacement of 

components or reacting to unplanned events. The data flow for CBM is comprised of three 

workflows for data sourcing, analysis for fault detection, and lastly, operations support. Notably, 
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developments in OSD-CM address multiple aspects of the CBM framework and thereby, facilitate 

proactive maintenance management. This work builds on these advances in RTPM for OSD-CM 

and emphasizes the system integration and maintenance aspects for sensor network robustness.  

 

A systems architecture required for the CBM data flow is discussed, and its implementation 

in a testbed for OSD-CM is illustrated, along with discussing some potential fault scenarios of the 

infrastructure. The implementation leverages the advances in emerging technologies that are 

integral to the current wave of Industry 4.0 practices for manufacturing operations management. 

Ongoing research includes utilizing the infrastructure implemented in the testbed to address 

consideration of additional failure modes in the sensor network components and the corresponding 

methods for condition monitoring and subsequent maintenance. With the increase in 

implementation of continuous manufacturing, frameworks such as CBM, enabled by process 

knowledge and the availability of real-time data, can directly support continued verification, 

maintenance, and operational excellence. The proactive use of process data and modern 

maintenance practices can be effectively exploited in manufacturing operations in the 

pharmaceutical industry ranging from single unit operation to a series of physically integrated unit 

operations, whether batch, hybrid or continuous.  

 

 



 

153 

7 FUTURE DIRECTIONS 

7.1 OSD-CM process development and implementation 

The modernization of tablet manufacturing through continuous manufacturing requires the 

systems integration of numerous unit operations, sensing devices and information technology 

systems to enable the continuous flow and processing of both material and process data. 

Developments in OSD-CM since the 2000s have resulted in novel technologies and methods for 

material processing, designing and configuring individual equipment and PAT tools, strategies for 

active process control, as well as approaches for designing and operating integrated processes. Till 

late 2018, five drug products produced by early adopters of OSD-CM systems have received FDA 

approval. Yet, numerous challenges remain to be addressed in the implementation of individual 

subsystems, sensing methods and data architectures to realize all of the potential benefits of 

integrated manufacturing systems. Notably, utility of the system necessitates holistic 

considerations for numerous components such as (i) equipment, (ii) particulate processing, (iii) 

sensing, (iv) data analytics and automation, (v) information technology, (vi) human factors and 

(vii) maintenance, repair and support. Consideration for these components is essential for the 

realization of the potential benefits of integrated systems. It is recommended that each of these 

components be assessed on manufacturing readiness levels (Office of the Secretary of Defense 

Manufacturing Technology Program, 2018) so as to bridge the gaps from research to development 

to implementation for manufacturing.  

 

This work attempted to address some gaps in process monitoring and systems integration 

for implementing OSD-CM processes. These involved demonstrating an x-ray-based mass flow 

sensor, investigating the roller compaction for integrated process operations, implementing data 

architectures for RTPM applications, and introducing condition-based maintenance as a strategy 

for continued verification of the integrated process. The pursuit of these objectives utilized the 

Purdue CP3 pilot-scale tablet manufacturing testbed; and resulted in infrastructure developments 

in the testbed towards achieving the continuous flow of material and data required for OSD-CM 

operations. In this subsection, opportunities in improving and advancing the outcomes from this 

work are further highlighted.  
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Chapter 3 discussed the assessment of the x-ray-based mass flow sensor. While this work 

demonstrated its utility in the testbed, the practical use of the sensor presented multiple challenges 

at the location envisioned due to its size. Moreover, the utility of process analyzers for use in the 

manufacturing process require connectors for both its physical setup, and its communications for 

utility in the integrated process. While an acrylic box was constructed for the x-ray to overcome 

the challenges in physical setup, the sensor software is designed for use as a standalone 

characterization system and presented challenges for data integration into the control system. In 

building the required data adapters for its use in the process and supporting its use in integrated 

process runs, it also came to light that the testbed lacked a robust data architecture for RTPM. As 

a result, further developments for its use in supervisory control was not pursued, and instead the 

work progressed towards considerations described in Chapters 5 and 6. Through recent advances 

in the testbed, the x-ray sensor can be investigated for its utility at the exit of the tablet press, as 

well as in the continuous wet granulation applications. Additional use of the sensor may require a 

physical rebuild of the device through collaboration with the vendor.  

 

Chapter 4 discussed the technology transfer study for the integration of the roller compactor 

process into the continuous tableting line. The assessment enabled the demonstration of robust 

process monitoring systems discussed in (Moreno, 2019). However, the limitations observed in 

the existing equipment such as hopper design, equipment age, interfacing capabilities with sensors 

and upstream and downstream units challenged its utility in the continuous line. To this end, 

through collaborations with the equipment vendor a redesign of the system was pursed. The 

collaborations to redesign the equipment commenced in May 2018 and the updated unit was 

received in the testbed in August 2019. Improvements to the hopper design, sensing locations, and 

the physical interfaces to connect to the upstream and downstream unit operations do enable 

further end-to-end continuous manufacturing studies. A short study on assessment of the new 

equipment with the sensors implemented is recommended to be first pursued to evaluate the device 

level control systems. Additionally, the control system of the device requires integration into the 

testbed data infrastructure. Establishing this connection following the systems integration 

framework discussed in Chapters 5 and 6 is a suitable short project to learn the importance of data 

architectures required for supervisory control.  
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Chapter 5 discussed the implementation of QbC. A requirement to develop systematic data 

architectures and maintenance practices surfaced and led to the work discussed in Chapter 6. 

Notably, Chapter 6 addressed the individual components for maintenance management and 

emphasized a holistic systems architecture. While an infrastructure is implemented to support the 

operations management applications, there exists a need to investigate the analysis techniques, 

methods, and tools within the diagnosis, prognosis, and decision support systems. Furthermore, 

continuous powder flow and longer durations of equipment use require considerations for safety 

such as dust handling, equipment cleaning and validation, and subsystem verification. To this end, 

methods for condition monitoring of equipment and tactical decisions for proactive maintenance 

can be adopted from published works such as (Márquez, 2007; Moubray, 1999). Furthermore, 

considerations for probabilistic risk assessment and material tracking are essential to safeguard 

and track product quality. While methods for addressing these problem features exist, the sensing 

schemes in OSD-CM require further developments towards technology readiness in process 

operations. Importantly, the data architectures implemented in the testbed can be used for 

demonstration of such methods.  Ongoing efforts in the testbed to expand the sensing scheme such 

as the assessment of mass flow rate sensors, Raman sensors and further considerations for 

equipment health monitoring devices such as for vibration monitoring could significantly advance 

the holistic maintenance management framework. 

 

Knowledge management systems for capturing metadata information such as equipment 

parts, raw material properties, lab conditions, operators, cleaning procedures etc. in addition to the 

time-series data stand to benefit effective process development, troubleshooting, and importantly, 

predicting and preventing operational losses (Andrews and Nahas, 2018; Joglekar et al., 2017). 

Importantly, the FDA recently introduced the ‘Knowledge-aided assessment & structured 

applications’ initiative to enrich the effectiveness, efficiency, and consistency of regulatory quality 

oversight through lifecycle management of products and facilities, and information sharing in a 

standardized and structured format (Yu et al., 2019). Recognizing the need for knowledge 

management, this work briefly aimed to build a knowledge management system using KProMS 

with Dr. Girish Joglekar following works such as (Hailemariam and Venkatasubramanian, 2010b; 

Joglekar et al., 2014; Venkatasubramanian et al., 2006). However, the lack of a data infrastructure 

in the testbed for systematized implementation of knowledge management workflows motivated 
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this work to build such an infrastructure discussed in Chapter 6. The systems architecture 

implemented in the testbed now facilitates the further development of knowledge management 

systems. 

 

Lastly, data architectures require customization for every process. Chapter 6 provides 

insights on integrating individual devices into the systems architecture. It is recommended that for 

the long-term use of the device in the testbed, the data standards be followed. A major requirement 

to rebuild the infrastructure was lack of standardization and protocols in the setup of the data 

architecture. This consequently also resulted in a cyberthreat to the lab. Hence, while process 

analyzers and equipment provide valuable insights for process engineering, research focused on 

implementation of RTPM requires some basic understanding of the data architectures and 

associated failure modes. It is hence also important to undergo a minimum training for the use of 

the automation systems before making changes in the testbed, in addition to the process equipment 

and instrumentation. Importantly, the tools, technologies and devices used in the testbed will keep 

evolving, and it is recommended to engage with the technology vendors to ensure intended use of 

the respective systems. 

7.2 Continuous vs. batch: Leveraging digitalization for lean processes 

Continuous manufacturing has been receiving increasing attention in the pharmaceutical 

industry driven by the expectation of achieving reduced operating and capital costs, improved 

product quality and increased reliability. While this mode of manufacture is new to the 

pharmaceutical industry, it is widely practiced in many industry sectors, such as refining and 

petrochemical, bulk chemical, food and minerals processing. It most commonly involves the 

processing of fluids, liquid or gases, although particulate and granular materials and suspensions 

are also handled. In these industries the continuous manufacturing plant or line is usually dedicated 

to a specific product and is typically operated without interruption around the clock with only 

infrequent shut-down to perform maintenance functions or in case of emergency. A continuous 

manufacturing line is normally designed for a nominal production rate and while that rate can be 

reduced within a limited range, typically further reductions lead to unsatisfactory product outputs 

or damage to equipment. Generally, continuous manufacturing facilities enjoy economies of scale, 

that is, the investment and operating cost per unit of production decrease as the plant design 
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capacity is increased. The incentives for continuous manufacturing in the pharmaceutical industry 

are not the same in all aspects as they may be for the other industry sectors and, thus, it is important 

to understand what the essential elements of the continuous manufacturing mode are, and which 

aspects are really introduced to adapt to the needs of a specific industry sector. 

 

With the developments following QbD and PAT, the pharmaceutical discovery, 

development and manufacturing community continues to embrace digital technologies for product 

and process engineering, as well as operations management. Integrated continuous manufacturing 

systems provide a means to manufacture a high-quality drug product; however, the progress 

towards the digitalization of assets, process operations, and management are applicable to the 

optimal processing route required for the business case of the product under development. As 

shown in Figure 7-1, the availability and accessibility of process data enabling the necessitated 

process automation and operations management strategies are vital to produce the product, for 

which the process may or may not require a continuous flow of material.  
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Figure 7-1: The infrastructure for the integration of operations and information technologies 

enables the continuous flow of material and data required for continuous process operations 

Moreover, while innovator companies are selectively adopting continuous processes, the 

overwhelming majority of pharmaceutical plants employ batch operations. Hence, a challenge lies 

in enabling the adoption of continuous manufacturing and other advanced manufacturing concepts 

given the business constraints created by the huge sunk investment in existing batch facilities.  

Further, while modern process systems engineering tools for advanced manufacturing tools are 

now coming into prominence, they have not been adopted to any significant extent in 

pharmaceutical batch manufacturing, especially in the generic sector. A low hanging fruit for 

modernizing existing batch operations without the penalty of replacing process equipment is to 

retrofit these facilities with sensors for real-time process monitoring, models for dynamic profile 

optimization, process controls which ensure that consistent end-points are achieved for each 

operation and scheduling tools which facilitate effective campaign and change-over management. 
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Such retrofits have potential to improve product quality, increase process reliability and reduce the 

cost of manufacture. Depending on case-specifics, this may allow the process to exceed or come 

close to the benefits which could be achieved by the replacement with a new fully continuous 

process, while in others it will only bring part of the benefits. Hence, while the advances in data 

management and analysis is enabling operations management innovations, it is vital to analyze the 

unit operations for the material processing as a “lean” system comprising of a spectrum of 

processing alternatives from batch to hybrid batch/continuous to fully continuous based on case-

specific technical constraints imposed by material properties, kinetics, and transport phenomena, 

and processing conditions as well as economics and scale. 
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APPENDIX A: NETWORK ARCHITECTURES 

The process automation systems in the testbed utilize hardware such as programmable 

logic controllers (PLCs) embedded in process equipment, personal computer controllers to 

communicate and operate PAT tools, distributed control systems for the integration of the unit 

operations, and data historians required for holistic process operations management. The reader is 

referred to (Nixon, 2012; Seborg et al., 2010) for an introductory overview of digital systems for 

process control.  

 

The network architecture illustrating the configuration of the communication links and the 

workstations used for the development of a modular and hierarchical network architecture in the 

testbed discussed in this thesis is presented in Figure A-1. At the process level, the equipment 

PLCs and personal computers connected to the PAT Tools are configured using suitable 

communication protocols in the Emerson DeltaV 13.3 distributed control system. The DeltaV 

controller, DeltaV workstations and the I/O cards installed on the DeltaV base plate form the 

‘DeltaV Area Control Network.’ The communication between the DeltaV controller and the 

process equipment is established using input-output cards, such as Profibus and EtherNet I/P. For 

example, as shown in the figure, the Profibus network comprises the three Schenck feeders and 

the blender, the VIM network comprises the roller compactor, and the VIM2 network comprises 

the tablet press and the K-Tron feeder. For devices whose communications are not supported in 

the existing DeltaV setup, such as the personal computer controllers for the PAT tools, additional 

software tools such as MATLAB, KepServerEx and LinkMaster are configured as suitable data 

adapters. These data adapters facilitate establishing the required connectivity with the personal 

computers using the OPC DA 2 or UA communication protocol with the DeltaV Application 

Stations. The network enabling the OPC communication is configured and illustrated in the figure 

as the ‘DeltaV 2.5 Network’. Such layering of networks is known as a De-Militarized Zone (DMZ) 

network. These are implemented following cybersecurity guidelines provided in the DeltaV 

Security Manual and with elementary know-how of IT networking, which can be referred in 

YouTube courses such as (Eli the Computer Guy, 2013).  
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Figure A-1: Network Architecture showing the functionality of the workstations in the testbed 
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The DeltaV ProPlus is the main DeltaV workstation used for engineering the control 

system. These include configuring the I/Os, control strategies, operator securities, human-machine 

interfaces, etc. The DeltaV Application Station is typically the gateway to external 

communications for the implementation of 3rd party tools and also hosts the DeltaV historian. The 

DeltaV OPC DA 2 server installation on this workstation enables the read and write access to 

process data and requires configurations of Microsoft security protocol known as distributed 

component object model (DCOM). Data from the PAT Tools are communicated through this OPC 

server for use in the implementation of plant-wide control strategies. The networks are layered 

using routers to enable the machine-machine communications required for plant-wide control in 

the manufacturing facility. Such layering also facilitates accessing software licenses for tools such 

as MATLAB hosted in Purdue’s Network without compromising the Windows Securities and 

DCOM settings required in the implementation of OPC DA communications. Routers are set up 

between DeltaV 2.5 Network, the Manufacturing Network, and Purdue Network. Further, a 

workstation with an installation of VIMNet explorer, a tool for configuring the VIM and VIM2 

I/O cards, is located on Manufacturing Network. The VIMNet Explorer is also connected to the 

respective VIM networks to facilitate the configurations.  

 

The DeltaV workstations are set up as virtual machines using VMWare ESXi Type 1 

hypervisor. The VMWare ESXi server stations are connected to the ‘Manufacturing Network’. 

The virtual machines are accessed using a vSphere client installed in a computer that is also 

connected to the same network (Manufacturing Network). Thin client machines are further setup 

in the Manufacturing Network to enable access to the workstations using the remote desktop 

protocol. In the current testbed setup, engineering the I/Os, control strategies, deployment, and 

maintenance of the systems requires access to the relevant hardware, physically located in the 

testbed facility. The integration of the process equipment, DeltaV I/O and controller, DeltaV 

workstations, the PAT tools, and their corresponding personal computers and the networking 

components such as switches, routers, and thin clients together form the ‘Process Level Control 

Room’ for the implementation of ISA-95 Levels 0-2 in the tablet manufacturing testbed. 

 

As discussed in Chapter 6, holistic manufacturing operations management also requires the 

implementation of ISA-95 levels 3 and 4 functions. In the ongoing developments towards 
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achieving Industry 4.0 functionalities, the accessibility to real-time process data enables the 

effective implementation and management of Levels 3 and 4 services. To this end, infrastructures 

such as the OSIsoft PI System and the Applied Materials SmartFactoryRx are configured as 

representative tools for the corresponding functionalities at the ‘Facility Level Control Room.’ 

This is further illustrated in Section 6.3.3. The workstation for the OSIsoft PI System is deployed 

as a virtual machine in Purdue’s ITaP Network as an illustration of a cloud-based workstation. 

This virtual machine is managed by Purdue’s IT resources and is built using Microsoft Hyper V. 

The PI System is managed by the automation administrator of the testbed and is accessible through 

Purdue’s network using Purdue and Windows credentials. The workstation for the 

SmartFactoryRx is implemented as a virtual machine using VMWare ESXi and is managed by the 

testbed admin, similar to the ones hosting the DeltaV workstations. 

 

While Figure A-1 presented the network architecture illustrating the functionality of the 

workstations and the devices, Figure A-2 shows the hardware infrastructure diagram of the 

automation infrastructure managed in the testbed facility. These represent the three lab managed 

servers along with the respective virtual machines hosted in them, the DeltaV controller and I/O 

cards, and the corresponding the network connections for implementing the numerous local area 

networks resulting in the integrated system. Notably, a managed switch is used for the 

configuration of virtual LANs, thereby enabling the use of a single device for managing multiple 

networks. The IP addresses are hidden in the image for security purposes of the testbed 

infrastructure. The networks are connected using a pfsense router, also installed as a virtual 

machine in the lab servers. 

 

It is worth noting here that the DeltaV infrastructure is localized to the tablet manufacturing testbed 

assets and relies on wired and bus-based communications with the assets. However, the ongoing 

increase in the use of software-based communications such as OPC using appropriate networking 

aids and tools such as KepServerEx enables the implementation of OSIsoft PI System and Applied 

Materials SmartFactoryRx, facilitating the development of a facility-level control room to manage 

intelligent devices and implement end-to-end control strategies effectively.
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Figure A-2: Hardware configuration of the servers, equipment, PAT Tools and additional systems managed in the testbed 
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Figure A-3: Suggested reorganization and expansion of the networks to accommodate additional labs under a common digital 

infrastructure 
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Figure A-3 presents a proposed change to the architecture as part of the ongoing scaling 

efforts of the digital infrastructure to support additional pharmaceutical manufacturing processes. 

While the OSIsoft PI System was already installed for immediate deployment to other research 

labs, the network configurations of the SmartFactoryRx workstations must be moved from the 

tablet manufacturing testbed to the enterprise level. Further, additional tools such as SynTQ for 

PAT data management, gFormulate for implementation of digital twins, and knowledge 

management systems may be required as part of the standard digital layer supporting operations 

management research in multiple processes, dispersed geographically across the Purdue campus. 

The IT architectures developed for the tableting testbed can be replicated in the additional facilities 

towards the overall goals of standardizing the operations management layer for all of the advanced 

pharmaceutical manufacturing research labs at Purdue. 
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