
THE ROLE OF PRIORS IN VISUAL PERCEPTION AND THEIR

APPLICATIONS IN COMPUTER VISION

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Vijai Thottathil Jayadevan

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2020

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Edward J. Delp,Chair

Department of Electrical and Computer Engineering

Dr. Zygmunt Pizlo

Department of Psychological Sciences

Dr. Charles A. Bouman

Department of Electrical and Computer Engineering

Dr. Mireille Boutin

Department of Electrical and Computer Engineering

Approved by:

Dr. Dimitrios Peroulis

Head of the School Graduate Program

iii

To my parents, brother and wife.

iv

ACKNOWLEDGMENTS

I would like to thank my advisers Dr. Edward Delp and Dr. Zygmunt Pizlo for

their support and guidance throughout the doctoral program. Having only worked

on computer vision problems prior to arriving at Purdue, I had no exposure to the

field of visual perception. When Dr.Delp introduced me to Dr.Pizlo’s work on visual

perception, I found it to be both interesting and inspiring. I’m grateful to Dr.Pizlo

for helping me understand the world of visual perception through the numerous pro-

ductive discussions we had over the years. I have benefitted immensely from these

discussions and also from his vast knowledge of the historical developments in the

field. I would also like to thank Dr. Mireille Boutin and Dr. Charles Bouman for

serving on my committee and for reviewing my work.

I would like to thank Dr. Tadamasa Sawada for his help and guidance in designing

and conducting the psychophysical experiments that are part of this dissertation. I

would also like to thank my lab mate Aaron Michaux for his help and support. I have

always enjoyed the academic and non-academic discussions we had.

Last but not the least, I would like to thank my parents, Savithri and Jayadevan,

my brother, Sajai and my wife, Ranjini. Their unconditional love and support has

kept me going through the toughest of times, and without them none of this would

have been possible.

This research was supported by the National Eye Institute of the National Insti-

tutes of Health under award number 1R01EY024666-01. The contents of this disser-

tation is solely the responsibility of the authors and does not necessarily represent

the official views of the National Institutes of Health.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . xv

1 INTRODUCTION . 1

1.1 Symmetry and Shape . 3

1.2 Visual Perception as an Ill-posed Inverse Problem 6

1.3 The Symmetry Correspondence Problem 8

1.4 Current Work . 11

1.4.1 Modeling near-symmetrical shapes 12

1.4.2 3D reconstruction of shapes from a real image 13

1.4.3 Skeleton extraction from 3D point clouds by decomposing it
into parts . 14

1.5 Contributions . 15

2 MODELING PERCEPTION OF NEAR-SYMMETRICAL SHAPES 16

2.1 3D Shapes, 2D Orthographic Projections and 3D Recovery 16

2.2 Psychophysical Experiment on 3D Shape Recovery 20

2.2.1 Stimuli . 20

2.2.2 Procedure . 25

2.3 Model . 26

2.4 Control Experiment . 30

2.5 Results . 31

2.6 Discussion . 40

2.7 Website . 45

3 3D SHAPE RECONSTRUCTION FROM A SINGLE IMAGE 49

vi

Page

3.1 Introduction . 49

3.1.1 Overview . 50

3.1.2 Curve extraction . 53

3.1.3 Identifying Candidate Correspondences and Planes 54

3.1.4 Choosing the Correct Correspondences 58

3.1.5 Results . 65

3.1.6 Conclusion . 70

4 SKELETON EXTRACTION FROM 3D POINT CLOUDS BY DECOM-
POSING THE OBJECT INTO PARTS . 71

4.1 Introduction . 71

4.2 Related Work . 74

4.3 Generating Candidate Parts . 78

4.3.1 Estimating Point Normals . 81

4.3.2 Deriving Locally-adaptive Thresholds 81

4.3.3 Detecting Initial Cross-sections 83

4.3.4 Growing Parts . 86

4.4 Optimal Part Selection . 103

4.4.1 Cost Components . 104

4.4.2 Optimal Parts Selection . 106

4.5 Linking Part Skeletons . 107

4.6 User Interface . 111

4.7 Results . 113

4.7.1 Registration Results . 113

4.7.2 Skeleton Extraction Results 121

4.8 Implementation and Run Time . 129

5 SUMMARY AND FUTURE WORK . 130

REFERENCES . 135

vii

Page

A PROOF: ONE-PARAMETER FAMILY OF 3D SYMMETRICAL SHAPES
ARE INCLUDED IN THE FAMILY OF SHAPES THAT THE USER CAN
RECONSTRUCT . 143

VITA . 147

viii

LIST OF TABLES

Table Page

2.1 Asymmetry and compactness characteristics of the 3D shapes 23

2.2 Weights for the asymmetry term in monocular condition 28

2.3 Weights for shapes in binocular condition 30

2.4 Results from the control experiment . 32

ix

LIST OF FIGURES

Figure Page

1.1 Examples of different types of symmetries 4

1.2 Symmetry in man-made objects . 5

1.3 Illustrating the concept of vanishing point using a 2D to 1D projection . . 7

1.4 a) Vanishing point illustration by Egnatio Danti and b) Vanishing point
illustrated on a real image . 9

1.5 3D coordinates from symmetry correspondence 10

2.1 An example of a symmetrical polyhedron. The “top” of the shape is shown
in (a), (b) shows the flat (planar) “bottom” of the shape and (c) shows
the shape’s coordinate system. 21

2.2 Perceived vs. real asymmetry of shapes for (a) subject EP (binocular),
(b) subject EP (monocular), (c) subject VJ (binocular), (d) subject VJ
(monocular), (e) subject ZP (binocular) and (f) subject ZP (monocular) . 33

2.3 Accuracy in identifying symmetrical and asymmetrical shapes in (a) binoc-
ular and (b) monocular condition. Recall that there were 30 symmetrical
and 60 asymmetrical shapes. 35

2.4 Perceived vs. real angles (first column, in radians) and depth (second
column) for three different symmetric shapes. Each row represents the
corresponding plots for a particular shape. (a) and (b) represent the plots
for the shape in (row = 2, column = 5) in set 2, (c) and (d) represent
the plots for the shape in (row = 2, column = 6) in set 5 and (e) and (f)
represent the plots for the shape in (row = 3, column = 3) in set 3 on the
website . 37

2.5 Subject shape vs. reference shape depth plots for symmetrical shapes for
(a) subject EP (binocular), (b) subject EP (monocular), (c) subject VJ
(binocular), (d) subject VJ (monocular), (e) subject ZP (binocular) and
(f) subject ZP (monocular). The numbers 45 and 70 indicate viewing
directions. The green x marks include both 20◦ and 70◦ viewing directions. 38

2.6 Perceived vs. real depth plots for asymmetric shapes for subject VJ in (a)
binocular and (b) monocular condition. 40

https://lorenz.ecn.purdue.edu/\protect \unhbox \voidb@x \penalty \@M \ {}vthottat/shapeexp/chooseshp.php

x

Figure Page

2.7 Shape dissimilarity for (a) subject EP (binocular), (b) subject EP (monoc-
ular), (c) subject VJ (binocular), (d) subject VJ (monocular), (e) subject
ZP (binocular) and (f) subject ZP (monocular). 41

2.8 Subject vs. model shape difference, as function of the model weights, for
symmetrical shapes, for the subject EP, in the binocular condition. (a)
and (b) represent two views of the same shape difference plot. 42

2.9 Two views ((a) and (b)) of the subject vs. model shape difference, as
function of the model weights, for asymmetrical shapes, for the subject
EP, in the binocular condition. 43

2.10 Shape difference for asymmetric shapes in the monocular condition as a
function of the weight of the symmetry term. 43

2.11 The menu for navigating the website . 47

2.12 All shapes from a particular set are displayed . 48

2.13 The shape comparison page . 48

3.1 Planar approximation by using minimum number of planes. 52

3.2 (a) Vanishing Point (b) Symmetry Correspondence Problem. 52

3.3 (a) Different pieces of curves are represented by different colors. (b) Costs
for combining short curves. (c) A low-cost long curve extracted by the
shortest path algorithm. 55

3.4 (a) Overlap from Vanishing Point, (b) Polygonal approximation for the
shape match metric, and (c) Clustered edge orientations. 59

3.5 BIP formulation. 60

3.6 Correspondences (a) and (b) could be chosen simultaneously, but corre-
spondences (a) and (c) cannot, because of the angular overlap from van-
ishing point. 65

3.7 Results for objects A-F: Original Image is shown in row one, row two shows the sym-

metric correspondences detected with corresponding curves shown in same color, the

planes selected are shown in row three, and rows four through six show three different

views of the reconstructed object. 66

3.8 Results for objects G-L: Original Image is shown in row one, row two shows the sym-

metric correspondences detected with corresponding curves shown in same color, the

planes selected are shown in row three, and rows four through six show three different

views of the reconstructed object. 67

xi

Figure Page

3.9 (a) Wrong correspondences resulting from allowing to curves very close to
each other to correspond, (b) the planes picked by the algorithm, (c) and
(d) different views of the reconstruction. 68

4.1 An overview of the algorithm. (a) Candidate parts are first generated.
The points representing the part are shown in blue and the skeletal rep-
resentation of parts are shown in red. (b) An optimal subset of parts,
that can represent the entire point cloud, are selected from the candidate
parts. Different parts are shown in different colors. Also shown are the
individual skeletons of each part. (c) Appropriate connections are made
between skeletons of individual parts to form the final skeletal representation.73

4.2 Our definition of a part is based on translational symmetry. (a) The three
fundamental properties of 3D Axis, 2D cross-sectional contour and scale
function define a part . Parts are formed by sweeping a planar cross-section
through 3D space along a defined axis (a space curve) and simultaneously
applying size scaling as the cross-section is swept along the axis. (b) The
normals to the contour at the various points on the contour are shown.
(c) At each point along the axis, the plane containing the corresponding
2D contour is perpendicular to the axis. Or in other words, the normal of
the plane represents the tangent to the axis at that point. The normals
of the 2D contour lie on the cross-sectional plane and hence they are
perpendicular to the normal of the plane. 76

4.3 Block diagram showing the different steps involved in generating candidate
parts. 80

4.4 Depiction of how a part is grown from an initial cross-sectional cluster
(Cluster 0). Neighboring cross-sectional clusters are shown in alternating
colors. The red curve represents the axis of the part. 82

4.5 (a) The cross-sectional plane is shown in blue, the thin cross-section asso-
ciated with the plane is shown in brown and seed point is shown in red. (b)
All points close to the cross-sectional plane, but not necessarily connected
to the seed point. 84

xii

Figure Page

4.6 Growing parts by method 1. (a) Step 1: take a small step along the
normal of cross-sectional plane of Cluster 0 to obtain an estimate of the
neighboring axis point C̃1. (b) Step 2: Consider a set of planes (planes
in Aθ×Aφ) whose orientation is close to the orientation of the cross-
sectional plane of Cluster 0. Assign a cost to each of these planes using
the same cost function as the one in algorithm 4.1. Only four planes
(blue color) in the set Aθ×Aφ are shown. The green points represent
inliers of the corresponding plane. (c) Step 3: choose the plane from the
set Aθ×Aφ which minimizes the cost computed. This plane represents
the cross-sectional plane of the adjacent cross-section and the inlier set of
this plane represents the adjacent cross-sectional cluster (Cluster 1 in our
example). Top and bottom shows two views of the chosen plane. 85

4.7 Identifying a seed point. (a) All points lying close to the plane are shown
in green. The brown points represent members of cluster 0. The points
within the red circle are unwanted points, not part of the true cross-
sectional cluster. (b) A seed point is identified as the point closest to C̃1,

from among the points lying close to the plane. The seed point and C̃1

are shown in red. (c) Considering only points connected to the seed point
removes the unwanted points and gives us the right cross-sectional cluster. 89

4.8 Registration can help in removing some unwanted points from the neigh-
boring cross-section. 92

4.9 The effect of the value of α on the Von Mises-Fisher distribution. The
location of the north pole on the sphere represents the “mean direction”.
The values on the color-bar represent probability density values. The
greater the value of α, the greater is the concentration of the distribution
around the mean direction. 96

4.10 Illustration of point selection after registration. (a) The two point sets, X
representing the cluster for which we are seeking a match (cluster 0 in our
example) and Y representing the neighboring points, before registration.
(b) The transformed Y, T (yj) = (sRyjp + t,Ryjn), after registration.
(c) Chosen and rejected points, after threshold based selection, shown in
different colors. (d) Having a member of X close by, after transformation,
is not enough to be selected, the point normals should also closely match.
The point normals of all the red points are shown. Also shown are the
point normals of three green points (within the circle) that were rejected.
The point normal orientations of the green points are too different from
that of its neighboring red points, and hence these points are not chosen. 103

xiii

Figure Page

4.11 Skeletons are formed by joining cluster centers. The black lines represent
the skeleton. The length of the skeleton is computed as the sum of the
euclidean distances between cluster centers when traveling from one end
(C0) to the other end (C7) of the part. The turning angles at cluster
centers C1 and C2 are also shown. 105

4.12 Linking all parts that can be potentially linked according to Gcnct can
lead to unnecessary additional connections. (a) The legs can potentially
connect to both the torso and the tail parts. (b) The many links near the
tail of the airplane are unnecessary. 108

4.13 Steps for linking parts. (a) The cross-sectional clusters at the end of parts
are compared to see if the two part skeletons needs to be combined. (b) All
parts identified by the algorithm are shown for a point cloud of an airplane.
Parts 1, 2, 3 and 4 form a clique where the end points of the corresponding
parts meet. In this scenario, the algorithm looks for a common point to
connect the four skeletons together. (c) AB, CD and EF represent three

part skeletons that form a clique of size three. Rays
−→
AB,

−−→
CD and

−→
EF are

obtained by extending the corresponding skeletons. 109

4.14 An example of a clique of size three for which finding a junction point to
interconnect the parts would not be appropriate. The key point is to see
if it’s the same end point of a part that connects to all other parts in the
clique. 110

4.15 The Graphical User Interface . 112

4.16 A synthetically generated GC. 113

4.17 The random sampling of the point cloud could lead to inaccuracies in the
registration if position alone is used to evaluate the fit. 114

4.18 Generating a random 2D cross-sectional contour. (a) Generate a set of
points at equal angular interval of π/4 radians whose distance from the
origin is random. (b) Fit a smooth closed contour (shown in red) to these
points to obtain the 2D cross-sectional contour. 116

4.19 In the legend, “With Normals” refers to the proposed method and “With-
out Normals” refers to the method in [74]. (a) Error in estimated rotation,
expressed in terms of the Frobenius norm of the difference in rotation ma-
trices. (b) Error in the estimated orientation of the cross-sectional plane,
expressed as the angular difference between the plane normals in degrees.
(c) Comparison of the registration costs (same as the one defined in section
4.4.1). (d) Error in estimation of the scaling parameter. 118

xiv

Figure Page

4.20 Results for part identification and skeleton extraction. For each shape the
individual skeletons corresponding to the parts identified by the algorithm
are shown at the top and the linked final skeleton is shown at the bottom. 122

4.21 Qualitative comparison of skeletons extracted by our method with the
methods by Cao et al. [88], and Huang et al. [81]. 123

4.22 The contracted points, at the end of the contraction step in the algorithm
by Cao et al. [88], is shown in red in (a) and (b). The final skeletons
extracted by Cao et al., for point clouds shown in (a) and (b), are shown
in (c) and (d) respectively. 126

4.23 Skeleton extraction with noisy point clouds. (a) Part skeletons extracted
by our method with points belonging to different parts shown in different
colors. (b) Skeleton extraction results from Cao et al.. 126

4.24 (a) Parts extracted for the inter-connected toruses. (b) Final skeleton
obtained after linking part skeletons . 127

4.25 Ambiguity in skeletal representation of parts. (a) The different parts iden-
tified, by our algorithm, are shown in different colors along with the skele-
ton shown as a red curve. (b) Parts identified and part skeletons extracted
for a vale of k1 (in equation 4.17 , constrained C1) slightly lesser than the
maximum feasible value. (c) Part skeletons extracted when the length
component is not part of the overall cost. 128

xv

ABSTRACT

Thottathil Jayadevan, Vijai PhD, Purdue University, May 2020. The Role of Priors
in Visual Perception and their Applications in Computer Vision . Major Professors:
Edward J. Delp and Zygmunt Pizlo.

Three-dimensional (3D) vision is an ill-posed inverse problem. The formation

of the 2D image of a 3D shape/scene is the forward problem, and inferring the 3D

shape/scene from the image is the inverse problem. The ill-posedness is related to

the fact that any given 2D image is consistent with infinitely many 3D interpreta-

tions. In order to produce a unique and ideally correct interpretation, one has to

impose constraints (aka priors) on the family of possible interpretations. Symmetry,

compactness, minimal surface area, planarity etc., are some priors used by the vi-

sual system to deal with the ill-posedness of the problem. In the first part of this

dissertation, a psychophysical experiment conducted to better understand how these

priors operate in the visual system is discussed. In the second part, a method that

uses some of these priors to recover 3D shapes from a single image is described. And

in the last part, a translational symmetry based algorithm to extract curve skeletons

from 3D point clouds by decomposing the point clouds into its parts is presented.

Prior studies have found that, the perception of symmetric abstract polyhedral

shapes, can be well modeled using the above mentioned priors and binocular depth

order information [1]. In this study, it is shown that these priors can be used to

model asymmetrical shapes obtained from affine distortions of symmetric shapes.

The experiment shows that the perception of symmetrical shapes is closer to veridical

in comparison to asymmetrical shapes. Metrics to measure asymmetry of abstract

polyhedral shapes and to measure shape dissimilarity between two polyhedral shapes

are introduced. A control experiment which proves the goodness of the model is also

xvi

presented. A website was developed with all the shapes used in the experiment, along

with the user reconstructed shapes and the model reconstructed shapes.

To recover 3D shapes from a single view, symmetry and planarity constraints

are used. Long smooth curves are extracted from the edge map of an image by

solving the shortest (least-cost) path problem, where the cost function penalizes large

interpolations and large turning angles. Optimal curve matches, that minimize the

number of planes required to approximate the final 3D reconstruction, are then found.

This optimization problem is framed as a binary integer program.

To extract curve skeletons from 3D point clouds, the cloud is decomposed into its

parts. Generalized cylinders (GCs) are used to represent parts. Since, the axis of a

GC is an integral part of its definition, the parts have natural skeletal representations.

Cross-sections of parts are first detected and parts are then grown starting from this

initial cross-sections. Translational symmetry, the fundamental property of GCs,

is employed to grow the parts. A large number of such candidate parts are grown

starting from different positions in the point cloud. Each part is assigned a score based

on how well these parts can be represented as a GC. An optimization algorithm is

then employed to select the best subset of parts, from within the candidate parts, to

represent the decomposition of the object.

1

1. INTRODUCTION

We see things in the world in 3D and our visual perception is almost always veridical.

To a common man, this statement would not be controversial. But, that is definitely

not the case in the long history of research on visual perception. Even in recent times,

there has been numerous studies that question the veridicality of visual perception

[2, 3]. More radical theories about the nature of perception exist. Such theories,

mostly based on evolutionary psychology, question the very existence of a visual

representation of the world. One such example is the interface theory of Hoffman et

al. [4]. The nature of visual representation, i.e., whether it is 2D or 3D, is also a topic

of debate. Hermann von Helmholtz, owing to the 2D nature of the retinal image,

suggested that the visual representation is 2D and not 3D [5]. The argument here

is that, having seen objects in the world from different views many times, the visual

system then draws on this memory to enable veridical perception. David Marr, in his

influential work [6], proposed the concept of a 2.5D representation. According to this

theory, the visual system first infers the visible surface orientations from depth cues.

In the next step, this surface orientation information is used in combination with the

3D models stored in memory to obtain the full 3D representation. A related question

here, is whether visual perception is innate or is it developed as a result of learning

(the empiricism vs. nativism debate).

Research on human 3D shape perception started with two seminal papers pub-

lished the same year in the same journal: Hochberg & McAlister’s [7] and Wallach

& O’Connell [8]. The authors of these papers addressed the fundamental question in

vision: how is the 3D percept of an object produced from a single 2D retinal image.

Hans Wallach, who received his training with one of the founding fathers of the Gestalt

Psychology, started his paper with a note of disappointment that despite numerous

attempts, no Gestalt Psychologist, nor anyone else, was able to show how Prägnanz,

2

or simplicity principle can produce veridical 3D percepts of shapes. So, he turned his

attention to the competing tradition of empiricism, and set out to demonstrate that

it is learning based on motion cues, rather than any innate simplicity predilection,

that teaches human observers about the three-dimensionality of objects. Wallach

and O’Connell showed that when the observer looks at a stationary shadow of an

unstructured 3D polygonal line object, he never perceives a 3D shape. But, when the

3D object rotates, the changing shadow of the rotating object leads to a 3D percept

(they called this “kinetic-depth-effect”). This way, Wallach & O’Connell provided

evidence that motion, in the absence of any other cue, can produce a 3D percept.

However, they did not explain how the 3D percept is actually produced by 2D motion

cue. It was Hay [9] and later Ullman [10] and Longuet-Higgins [11], who formulated

a mathematical and computational theory of kinetic depth effect. The computational

theory is called, after Ullman [10], structure from motion theorem (SFM). What was

obvious to the authors of SFM and was not to Wallach & O’Connell, is that 3D shape

cannot be computed from motion cue without a rigidity predilection, or constraint.

Indeed, all explanations of SFM rely on the assumption that the individual views are

images of the same object and the object is at least approximately rigid. So, in a

sense, Wallach who was looking for an empiristic theory of 3D vision, in which the

role of simplicity constraints is minimal or absent, altogether, ended up providing

experimental evidence for the operation of such a constraint.

Simplicity constraint was an explicit motivation behind the second seminal con-

tribution to our understanding of 3D shape perception that was mentioned in the

previous paragraph [7]. Hochberg & McAlister used Kopfermann’s [12] observation

on the role of viewing direction in perception of a 3D Necker (transparent) cube from

a single 2D line drawing. They observed that a 3D cube, which is characterized by

a high degree of simplicity or redundancy, is always perceived as a 3D shape, except

for very special 2D views, which themselves are very simple. They, like Wallach &

O’Connell, did not provide a computational theory of how the 3D percept is pro-

duced from a single 2D image, but their paper inspired others to continue research

3

on the role of constraints in 3D shape perception (e.g., [13–18]). We now know that

constraints are absolutely essential in 3D shape recovery because this recovery is an

ill-posed inverse problem [19].

Pizlo et al., over the past couple of decades, built on this idea of visual perception

as an ill-posed inverse problem. The story of how these ideas lead to a comprehensive

computational model of visual perception is captured in the book titled “Making a

machine that sees like us” [20]. In this computational model, symmetry plays a very

important role as a fundamental constraint employed by the human visual system.

An appreciation for the fundamental role of symmetry in visual perception is essential

in understanding the motivation behind all the work done as part of this dissertation.

Equally important is understanding the idea of an ill-posed inverse problem and the

key role of priors in solving such problems. The following sections (sections 1.1 and

1.2) provide a brief overview of these concepts. These sections are followed by section

1.3, which illustrates the effectiveness of symmetry prior in solving the inverse problem

of 3D shape reconstruction. And finally, section 1.4, provides an overview of the work

proposed in this dissertation.

1.1 Symmetry and Shape

Defining shape, an intuitively obvious concept to one and all, had been a difficult

task throughout history. Conventionally, shape was understood to be some abstract

property which is invariant under transformation. More specifically, two shapes are

said to be the same if one shape can be transformed into the other by rigid motion,

size-scaling and/or reflection (i.e., by a similarity transformation). The opposing

conclusions reached by Rock & DiVita [21] and Biederman & Gerhardstein [22], in

their respective studies on shape constancy (the ability to identify the same shape

when viewed from different directions), highlight a problem that such a definition can

cause. While the former concluded that shape constancy does not exist, the latter

found that shape constancy does exist. In an attempt to resolve this ambiguity, Pizlo

4

et al. noticed that, one of the problems with such a definition, is the assumption

that all objects have shape. Or in other words, the idea that shape can exist without

shape constancy is the problem. Does a random pattern of dots, a crumbled piece of

paper or a naturally occurring rock have shape? Does it make sense to talk about

shape without shape constancy?

(a) Reflection symmetry (b) Spiral Symmetry

(c) Rotational symmetry (d) Translational Symmetry

Fig. 1.1. Examples of different types of symmetries

Common sense tells us that shape constancy very well exists in our day to day life.

This debate about the existence or non-existence of shape constancy can be settled if

we understand how Pizlo et al. defines shape. According to this definition, the shape

of an object refers to all of its spatially global symmetries (its self-similarities) as

measured by the group of rigid motions, reflections, and size-scaling of the parts within

5

the object itself. According to this definition of shape, the amount of symmetries

within an object would decide the amount of shape it has. Therefore, shape of an

object can be measured on a scale from 0 to 1. All biological forms exhibit some form

of symmetry and therefore have shape. For instance, animal and human bodies are

mirror-symmetric. Apart from this, human and animal body parts, like limbs and

fingers, display translational symmetry. Similarly tree trunks and stems of plants

exhibit translational symmetry and seashells are spirally symmetric. See Figure 1.1

for some examples. Animals are mirror symmetrical because of the way they move.

Plants are symmetrical because of the way they grow [23]. Man-made objects are

symmetrical because of the functions they serve. A completely asymmetrical object

would be dysfunctional.

With these ideas in mind, we notice that, bent wires, the stimuli used by Rock

& DiVita [21], had very little shape. While Biederman & Gerhardstein [22] used

abstract objects composed of generalized cones, which had lots of shape, as stimuli.

This simply means that the latter was studying shape while the former was not.

This also explains the different conclusions reached by these studies. The experiment

conducted by Pizlo & Stevenson [24] and the one by Li & Pizlo [25], provide further

support for the above mentioned definition of shape.

Fig. 1.2. Symmetry in man-made objects

6

1.2 Visual Perception as an Ill-posed Inverse Problem

Three-dimensional (3D) vision is an ill-posed inverse problem. Forming a 2D

retinal or camera image of a 3D object is a forward problem and it is described in the

rules of geometrical optics. Forward problems are usually easy: they are well-posed

and well-conditioned. By well-posed we mean that a solution exists, it is unique

and depends continuously on the data [26]. By well-conditioned we mean that the

solution is computationally stable. More generally, in the theory of inverse problems,

forward problem refers to producing data from a model, where a model could be

a physical object whose image is taken by a camera, patient’s chest whose health

status is represented in the chest X-ray, center of an earthquake which produced

mechanical vibrations detected by sensors on the surface of the Earth, or a natural

law, such as Newton’s second law of motion, tested by a college student by measuring

times and distances of a free-falling object [27]. An inverse problem refers to going

from data to a model. So, an inverse problem consists in making inferences about

the true state of affairs “out there” that led to the data at hand. Most inverse

problems in science and engineering are ill-posed and/or ill-conditioned. In 3D vision,

the ill-posedness is related to the fact that any given 2D image is consistent with

infinitely many 3D interpretations. In order to produce a unique and, ideally, a

correct interpretation, one has to impose constraints (aka priors) on the family of

possible interpretations [19,20,28–31]. Ames’s chair is a classical example illustrating

these observations (go to: http://shapebook.psych.purdue.edu/1.3/). When a

2D image is consistent with a chair interpretation, we see a chair despite the fact that

this image could have been produced by a set of disconnected parts.

So, what are some of the priors that can be used to deal with the ill-posedness of 3D

vision? Given its central role in the definition of shape, it should not be surprising that

symmetry is an important prior. The fact that we see a 3D object called a “chair” is

not because we have seen many chairs in our life, but rather that this kind of an object

is the only 3D symmetrical interpretation of this 2D image. Moreover, symmetry is

http://shapebook.psych.purdue.edu/1.3/

7

ubiquitous in nature and in man-made structures (Figures 1.1 and 1.2). In fact, we are

very likely to see a symmetric object whenever such an interpretation is possible (see

the demo at: http://shapebook.psych.purdue.edu/2.1/Symmetry/). Planarity is

another prior used by the visual system. The famous Ames room illusion and the

demo at http://shapebook.psych.purdue.edu/2.1/Planarity/ provide evidence

for this fact. The idea here again is that we are very likely to perceive planarity

whenever such an interpretation is possible. Compactness is yet another example

of a prior that the visual system employs (see the demo at: http://shapebook.

psych.purdue.edu/2.1/Compactness/). Compactness of a shape is the ratio V 2/S3,

where V is the volume and S is the surface area. Li et al. [32] showed that, for

symmetric objects viewed monocularly, maximum compactness and minimum surface

priors could be used to recover the perceived 3D shape from the 2D image. Specifically,

the 3D shape that maximizes the ratio, V/S3 will model the perceived 3D shape very

well.

Fig. 1.3. Illustrating the concept of vanishing point using a 2D to 1D projection

http://shapebook.psych.purdue.edu/2.1/Symmetry/
http://shapebook.psych.purdue.edu/2.1/Planarity/
http://shapebook.psych.purdue.edu/2.1/Compactness/
http://shapebook.psych.purdue.edu/2.1/Compactness/

8

1.3 The Symmetry Correspondence Problem

If three things are known, a bilaterally symmetric 3D shape can be reconstructed

from its perspective image. These three things are: 1) the intrinsic parameters of

the camera, 2) the symmetry plane and 3) the symmetry correspondence between

various parts of the shape in the image. The intrinsic parameters of the camera can

be obtained by calibrating the camera. The vanishing points in the image can tell

us about the symmetry plane(s) (a shape could have multiple planes of symmetry).

A vanishing point is a point on the image plane where the perspective projection of

3D parallel lines intersect (see Figure 1.4). Therefore, a vanishing point represents

a particular direction in the 3D world. To understand this better, look at Figure

1.3. It represents a 2D to 1D projection. As we project points further and further

away along the orange ray, the direction of the projection line (red) approaches the

direction of the orange ray. This is why the vanishing point is said to be the projection

of a point at infinity. Let a symmetry line be defined as a line connecting two 3D

points that are symmetric with respect to a symmetry plane. Figure 1.4 (b), shows a

symmetric chair. The red lines are the projections of symmetry lines. By definition,

all the symmetry lines for the object shown in Figure 1.4 (b) are perpendicular to

the plane of symmetry, and hence represent the same 3D direction. Therefore, there

is a vanishing point in the image corresponding to that direction, let us call it VP .

If we imagine a 3D line with the same direction as the symmetry lines ,and passing

through the center of perspective projection, this line will intersect the image plane

at VP . Therefore, if we know the vanishing point, we also know the direction of

the normal of the symmetry plane. Two pixels, p and q, are said to symmetrically

correspond if they are the projections of two 3D symmetric points. If the symmetry

correspondence of all the pixels representing the object is known, and if the normal

of the symmetry plane is known, then the object can be accurately reconstructed

in three dimensions up to a scale factor. If the shape is of particular interest, this

scale factor does not really matter, as the shape is scale invariant. Therefore, once

9

we know the normal of the symmetry plane, a convenient distance to the symmetry

plane can be assumed to set the symmetry plane exactly. An expression for the 3D

coordinates of two symmetrically corresponding points, given the symmetry plane

and the intrinsic camera parameters can be derived as follows.

(a) (b)

Fig. 1.4. a) Vanishing point illustration by Egnatio Danti and b) Vanishing point
illustrated on a real image

Without loss of generality, let the principal point on the image be (0, 0). Note,

principal point is the point on the image plane at which the centre of perspective pro-

jection is projected. I.e., it is the point of intersection of the optical axis and the image

plane. Let the equation of the symmetry plane be n1x+ n2y + n3z − d = 0, where

the unit vector n̂ = (n1, n2, n3) represents the normal of the symmetry plane. Let

image points p with coordinates (xp, yp) and q with coordinates (xq, yq) correspond

symmetrically (See Figure 1.5). Let ~dp = (xp, yp,−f), where f is the focal length,

represent the 3D vector from the origin (center of projection) towards p on the image

plane. Let d̂p represent the unit vector in the direction ~dp, i.e., d̂p = ~dp/| ~dp|, where

| ~dp| represents the magnitude of the vector ~dp. Similarly, let d̂q represent the unit

vector pointing towards the image point q. Let the 3D point P, of which p is the

projection, be given by kpd̂p, where kp is a positive scalar value which determines

how much to travel along the direction d̂p to get to the 3D point P. Then, the 3D

10

Fig. 1.5. 3D coordinates from symmetry correspondence

point Q, of which q is the projection, is given by kpd̂p + knn̂, where kn is a scalar

value which determines how much to travel along the direction n̂ from P to get to

the point Q.

The midpoint of the 3D line segment joining P and Q will lie on the symmetry

plane. Therefore,

n̂ · (2kpd̂p + knn̂)

2
= d

=⇒ 2kp(n̂ · d̂p) + kn − 2d = 0

(1.1)

The vector ~d3 = (−yq, xq, 0) is perpendicular to d̂q. Let d̂3 = ~d3/| ~d3|. Since ~d3 is

perpendicular to the vector from the origin to Q, we have:

11

d̂3 · (kpd̂p + knn̂) = 0

=⇒ kp(d̂3 · d̂p) + kn(d̂3 · n̂) = 0
(1.2)

Equations1.1 and 1.2 represent a system of two linear equations with two (kp and

kn) unknowns, which can be easily solved.

From 1.2,

kp =
−d̂3 · n̂
d̂3 · d̂p

kn

Let γ =
d̂3 · n̂
d̂3 · d̂p

=⇒ kp = −γkn (1.3)

Substituting equation 1.3 in 1.1,

kn =
2d

1− 2γ(d̂p · n̂)
(1.4)

Once we have kp and kn, P and Q can be obtained. Note that d̂3 can be chosen in

multiple ways as there are infinitely many directions perpendicular to d̂q. Choosing

a vector lying on a plane parallel to image plane (i.e., with z-coordinate zero, as we

did here) is a stable choice.

1.4 Current Work

Given the central role that symmetry plays in visual perception, the central theme

of the work described in this dissertation is symmetry. There are three main parts

to this dissertation. In the first part a psychophysical experiment is described which

aims at studying the priors employed by the visual system in the perception of near-

symmetrical shapes. The second part focusses on 3D reconstruction of a shape from

a single real image. The broad idea is to employ symmetry and planarity constraints

to reconstruct shapes. The third and final part employs translational symmetry to

decompose a 3D point cloud into parts. A skeletal representation of 3D shapes is

12

obtained from this decomposition. A very brief discussion of these parts is presented

below, with details to follow in the subsequent chapters.

1.4.1 Modeling near-symmetrical shapes

Li et al. tested the subjects’ ability to recover 3D symmetrical shapes from one

or two 2D images (monocular and binocular viewing) [1]. Li et al. also formulated

a computational model that emulated subjects’ performance. In this prior work,

the subject and the model adjusted one parameter representing the 3D aspect ratio

of a symmetrical interpretation. It is known that the aspect ratio is the only free

parameter when a 3D shape is recovered from a single 2D orthographic image by

using 3D symmetry constraint. All other characteristics of the 3D shape are uniquely

determined by the 3D symmetry constraint. Recall that symmetry constraint can

uniquely recover a 3D shape from a perspective image. Li assumed a weaker case,

namely the case of an orthographic image, because when the range of the object in

depth is small compared to the viewing distance, perspective projection reduces to

an orthographic projection. Li et al. showed that the human visual system chooses a

3D symmetrical shape which maximizes a modified compactness expressed as V/S3,

where V and S are the volume and the surface area of the object. The subjects never

reported seeing a 3D asymmetrical object when presented with a 3D symmetrical

one. So, not allowing the subject to recover asymmetrical objects seemed justified.

But in everyday life many objects are not perfectly symmetrical and they are

perceived as not perfectly symmetrical [33]. This is true when we look at a chair with

a broken leg or when we look at an animal body which is not mirror symmetrical

due to articulation of limbs. This kind of cases can often be handled by recovering a

perfectly symmetrical shape and then modifying the recovered object by removing a

part or changing its 3D position [20]. But what about objects, whose global symmetry

has been distorted? In order to shed light on such cases, we had the subjects look

at 3D shapes produced by 3D affine distortion of symmetrical shapes. Will these

13

shapes be perceived as symmetrical? If not, what is the percept? In order to allow

the subject produce what they see, we gave them 3 sliders to adjust: these three

sliders represented all possible 3D affine transformations of the 3D shape in front of

them that leave a 2D orthographic image unchanged. Experiments were run in both

monocular and binocular condition. We show that simple models with a symmetry,

compactness and minimal surface priors can explain the monocular percept. In the

binocular condition, the only additional term required is the binocular depth order.

We ran a control experiment to prove the goodness of the models. The results of this

control experiment and some interesting observations obtained by analyzing this data

are reported. A couple of metrics to measure asymmetry of a polyhedral shape and

to measure the shape dissimilarity between two polyhedral shapes are introduced.

A website with all the shapes (including the real shapes, user reconstructed shapes

and model shapes) was developed. This website would serve as a useful resource, for

interested readers, to directly see all the results from the experiment and to evaluate

for themselves (qualitatively) the results obtained.

1.4.2 3D reconstruction of shapes from a real image

The problem of 3D reconstruction of a shape from a single image, is framed as

a curve matching problem. Once we assume that the object to be reconstructed is

symmetric, all that is left to do is: (i) estimate the plane of symmetry, and (ii) estab-

lish the symmetry correspondence between the various parts of the object. The edge

map of the image of an object serves as a representation of its 2D shape; establishing

symmetry correspondence means identifying pairs of symmetric curves in the edge

map. In this work, we assume that the vanishing point, which establishes the sym-

metry plane up to a scale factor, is known. In addition, we also assume that the focal

length and the direction of gravity are known. We extract long smooth curves from

the edge map by solving the shortest (least-cost) path problem, where the cost func-

tion penalizes large interpolations and large turning angles. We then find the optimal

14

curve matches that minimize the number of planes required to approximate the final

3D reconstruction. This optimization problem is framed as a binary integer program

and solved to obtain the curve matches. Qualitative results of reconstructing images

are presented. While some of the images were taken in the lab using camera with

known intrinsic parameters, results for some images downloaded from the internet is

also provided.

1.4.3 Skeleton extraction from 3D point clouds by decomposing it into

parts

Decomposing a point cloud into its components and extracting curve skeletons

from point clouds are two related problems. Decomposition of a shape into its com-

ponents is often obtained as a byproduct of skeleton extraction. In this work, we

propose to extract curve skeletons, from unorganized point clouds, by decomposing

the object into its parts, identifying part skeletons and then linking these part skele-

tons together to obtain the complete skeleton. We believe it is the most natural way

to extract skeletons in the sense that this would be the way a human would approach

the problem. Our parts are generalized cylinders (GCs). Since, the axis of a GC

is an integral part of its definition, the parts have natural skeletal representations.

We use translational symmetry, the fundamental property of GCs, to extract parts

from point clouds. This method can handle a large variety of shapes because of the

generality of GCs. We also show how this method can be used to extract skeletons

from and identify parts of noisy point clouds. A part based approach also provides

a natural and intuitive interface for user interaction. We demonstrate the ease with

which mistakes, if any, can be fixed with minimal user interaction with the help of a

graphical user interface.

15

1.5 Contributions

• Through psychophysical experiments we show that the monocular perception

of near-symmetrical polyhedral shapes can be well modeled by symmetry, com-

pactness, minimal surface area priors. The same priors in combination with the

binocular depth order information can be used to model the binocular percep-

tion of such shapes.

• We introduce a metric to measure the shape difference between two polyhedral

shapes and a similar metric to measure the amount of asymmetry in such shapes.

• We show that the perception of symmetric shapes are closer to veridical in

comparison to near-symmetric shapes. We also show that, for symmetric shapes,

there is no systematic depth distortion when viewed binocularly.

• We introduce a method which uses planarity and bilateral symmetry to perform

3D shape reconstruction from a single image. We present a method (shortest

path with turning angle penalty) to extract long smooth curves from edge maps.

We also introduce a shape metric that can be used to evaluate if two 2D curves

are the projections of (approximately planar) symmetric 3D curves.

• A method to decompose 3D point cloud into parts is presented. The parts are

represented by GCs and to the best of our knowledge we present the first method

which explicitly uses translational symmetry, the most fundamental property of

the GCs, to extract them. Since, the parts are GCs the algorithm can be used

to extract skeletal representation of 3D shapes represented as point clouds.

• We present an improved version of an existing 3D point cloud registration al-

gorithm by adapting it to the task of GC extraction. We demonstrate the

advantages of a part based approach to skeleton extraction and also present a

GUI to demonstrate the ease with which users can interact with a part based

skeleton extraction algorithm.

16

2. MODELING PERCEPTION OF

NEAR-SYMMETRICAL SHAPES

2.1 3D Shapes, 2D Orthographic Projections and 3D Recovery

Consider a 3D mirror-symmetrical shape represented by N feature points. This

shape can be represented by a 3×N matrix P . Assume that the XY plane is the image

plane. Recall that in an orthographic projection, translation of an object along the

Z coordinate does not change the image, and translation of an object in X and Y

directions results in corresponding translations of the image. Assume that the Y

coordinates of the pairs of mirror-symmetrical points are identical. This means that

the tilt of the symmetry plane is zero (the symmetry plane contains the Y axis).

This situation is illustrated in the following animation: http://shapebook.psych.

purdue.edu/2.2/. If this assumption is not satisfied, the coordinate system can

always be rotated around the Z-axis to make the tilt zero. An orthographic image p

of the 3D point P can be computed as follows:

p =

1 0 0

0 1 0

P (2.1)

Equation (2.1) means that an orthographic image is computed by simply omitting

the Z coordinate. When an orthographic image of a mirror-symmetrical 3D shape is

given, the 3D shape can be recovered up to one unknown parameter. We assume that

the symmetry correspondence problem has been solved in the orthographic image.

This means that all image points are grouped into pairs of corresponding points.

Consider one such pair p1 and p2 that are images of 3D mirror-symmetrical points

P1 and P2. When the tilt of the symmetry plane is zero, the Y coordinates of p1,

p2, P1 and P2 are all the same. So, the Y coordinate is given—it does not have to

http://shapebook.psych.purdue.edu/2.2/
http://shapebook.psych.purdue.edu/2.2/

17

be recovered. What needs to be recovered are the depths of the 3D points: Z1 and

Z2 [34]. This is done as follows:

Z1 =
X2 −X1cos(2σ)

sin(2σ)

Z2 =
X1 −X2cos(2σ)

sin(2σ)

(2.2)

The slant σ of the symmetry plane is the free parameter determining the 3D as-

pect ratio and 3D orientation of the recovered shape (see http://shapebook.psych.

purdue.edu/2.2/). All pairs of symmetrical points of the 3D shape are recovered

this way. Note that when slant is 45◦, the equations in (2.2) become very simple.

As pointed out above, the human visual system chooses the unknown slant, σ, which

maximizes V/S3 (see http://shapebook.psych.purdue.edu/2.3/, where the shape

on the lower right maximizes this ratio). It turns out that good recoveries are also

produced when V and S refer to the 3D convex hull of the recovered 3D shape. Con-

vex hull is needed when 3D contours are recovered from a line drawing of a shape

(see http://shapebook.psych.purdue.edu/1.2/ for several examples).

Consider now a pair of 3D symmetrical shapes from the one-parameter family

characterized by Equations (2.2). We can write an equation mapping one such 3D

shape into the other. This mapping applies to individual points. We no longer have to

keep track of symmetry correspondence, because this correspondence is already in the

3D shapes. So, we only have to show how each 3D point of one shape is transformed

into a 3D point in the other shape. Let the (X,Y ,Z(1)) be a point in 3D shape 1,

and (X,Y ,Z(2)) be the transformed point in 3D shape 2. Note that the X and Y

coordinates of these two points must be the same by the virtue of the fact that these

two 3D shapes produce the same 2D orthographic image. So, only the Z coordinate

changes, as follows:


X

Y

Z(2)

 =


1 0 0

0 1 0

cos(2σ(1))−cos(2σ(2))
sin(2σ(2))

0 sin(2σ(1))
sin(2σ(2))



X

Y

Z(1)

 (2.3)

http://shapebook.psych.purdue.edu/2.2/
http://shapebook.psych.purdue.edu/2.2/
http://shapebook.psych.purdue.edu/2.3/
http://shapebook.psych.purdue.edu/1.2/

18

where σ(1) and σ(2) are the slants of the symmetry plane of these two shapes. In

our previous shape recovery experiments [1], the subject was adjusting the slant of

the symmetry plane of the recovered shape so that the recovered shape matched the

reference shape. The error of the match was evaluated by log2(| tan(σ(1))
tan(σ(2))

|). This error

essentially measures the ratio of aspect ratios of the two shapes, and so it represents

how different the two shapes are.

In the experiment reported in this work, we made several changes compared to

Li et al. [1]. First, the experiment consisted of a number of trials, some of which

contained 3D symmetrical reference shapes while others contained 3D asymmetrical

reference shapes. Asymmetrical shapes were produced by applying a 3D affine trans-

formation to a symmetrical shape. Let H be a 3D symmetrical shape oriented such

that the normal of the symmetry plane is aligned with the x-axis (tilt is zero). An

asymmetrical reference shape H ′ was produced as follows:

H ′ = TH (2.4)

where

T =


t11 0 0

0 1 0

t31 t32 t33


Note that t11, t31, t32 and t33 are positive real numbers. In a trial with a sym-

metrical reference shape, H ′ = H (the 3D affine transformation, T , was an identity

transformation). The subject was shown a static perspective image of H ′ with a

random orientation R and a rotating 3D shape H ′′, where:

H ′′ = ARH ′ (2.5)

and

A =


1 0 0

0 1 0

a31 a32 a33



19

The subject was asked to deform H ′′ by adjusting a31, a32 and a33 of A so that

H ′′ matched the perception of H ′. The form of matrix A implies that X and Y

coordinates of RH ′ and H ′′ are identical, which means that their 2D orthographic

images are identical. More specifically, the family of 3D shapes H ′′ is the entire 3D

affine family corresponding to the 2D orthographic image of RH ′. The 3D percept

will be called veridical when H ′′ recovered by the subject is identical with H ′.

Similar to Li et al. [1], the subject was shown a 2D perspective image and was

adjusting the 3D shape in such a way that a 2D orthographic, rather than perspective

image, stayed the same. This approximation was considered reasonable, considering

the actual sizes of shapes used, relative to the viewing distance. This experiment

could be run without using this approximation. That is, one can form a three-

parameter projective family of 3D shapes that all produce the same 2D perspective

image. The fact that our models produced good fits suggests that the orthographic

approximations used by the model were acceptable. Otherwise, the models would

have to have an additional term measuring the difference between the orthographic

and perspective image. The fact that such a term was not needed in fitting the

model to the subject’s data suggests that the orthographic approximation we used

was acceptable.

Equation (2.5) is deceptively simple. There are two important characteristics of

this equation. First, when H ′ is symmetrical, the family of shapes represented by H ′′

contains both symmetrical and asymmetrical shapes. A one-parameter family of 3D

symmetrical shapes represented by Equation (2.3) is obviously included, because the

transformation in Equation (2.3) is a special case of the transformation in Equation

(2.5). However, the family represented by Equation (2.5) contains many asymmetri-

cal shapes as well. This fact is not too surprising. The converse relation is, however,

surprising. When H ′ is an asymmetrical shape produced by an affine transforma-

tion, Equation (2.4), of a symmetrical shape H, the family of shapes represented by

H ′′ in Equation (2.5) also contains both symmetrical and asymmetrical shapes (see

Appendix A for a proof of this statement). In particular, this family contains a one-

20

parameter family of 3D symmetrical shapes. So, the image of a 3D symmetrical shape

is consistent with both symmetrical and asymmetrical shapes. Similarly, the image

of a 3D asymmetrical shape is consistent with both symmetrical and asymmetrical

shapes. If the subject has a unique 3D percept, the percept is either symmetrical

or asymmetrical, and in either case, the percept must use priors, such as symmetry

and compactness. (Some previous authors did discuss the affine family in the con-

text of 3D shape perception [35], but they focused on the ambiguity of 3D shape

perception, claiming, incorrectly, that the observers never perceive a unique metric

structure. Our subjects did perceive a unique metric structure of 3D shapes and the

3D percept was either veridical or close to veridical. We show in the present work

that the unique and veridical percept is produced by the application of a priori con-

straints to 2D retinal images.) If the percept is sometimes asymmetrical, then it is

obvious that a symmetry prior competes with other priors and with binocular data,

when the session involves binocular viewing. Which priors are needed in the cost

function to account for the subject’s 3D percept? What are the relative weights of

the priors and the sensory data? Can the same cost function account for monocular

and binocular percepts? How veridical is the subject’s percept? These questions are

at least partially answered in the experiments reported below.

2.2 Psychophysical Experiment on 3D Shape Recovery

2.2.1 Stimuli

The stimuli were 3D symmetrical polyhedra and 3D asymmetrical polyhedra. The

asymmetrical stimuli were created by distorting symmetrical ones. Our symmetrical

polyhedra were similar to those used by Li et al. [1]. Two views of one symmetrical

shape are shown in Figure 2.1.

We used abstract shapes to avoid biases, if any, due to familiarity [24,36]. All our

shapes had 16 vertices. They can be thought of as consisting of three hexahedrons,

with one of the faces of each hexahedron being coplanar with one face of the other

21

two hexahedrons. The symmetry plane of the symmetrical shape was perpendicular

to this planar surface of the shape, and the x-axis was the normal of the symmetry

plane.

(a) (b) (c)

Fig. 2.1. An example of a symmetrical polyhedron. The “top” of the shape is shown
in (a), (b) shows the flat (planar) “bottom” of the shape and (c) shows the shape’s
coordinate system.

As mentioned earlier, three-dimensional symmetry is a prior used by the human

visual system. Li et al. [1] also showed the significance of compactness prior in 3D

shape perception of symmetric shapes. In this study, we show how these two priors

operate when the 3D shape is not symmetrical. We generated 3D shapes with varying

degrees of asymmetry and compactness. To measure asymmetry of a shape, we use a

normalized average of absolute difference of corresponding angles. Specifically, con-

sider V1, V2, · · · , V8 to be the eight vertices of a symmetrical polyhedron on one side of

the symmetry plane. Each of these vertices has a symmetrical counterpart. Let these

symmetrical counterparts be represented by V ′1 , V
′

2 , · · · , V ′8 . Each subset of 3 vertices

from all 16 define three angles depending on their order. For instance, the three ver-

tices V 1, V 2′ and V 3, define angles (V1, V
′

2 , V3), (V3, V1, V
′

2) and (V ′2 , V3, V1). For each

of these angles, we have its symmetric counterpart. For the three angles mentioned

above, the symmetric counterparts are (V ′1 , V2, V
′

3), (V ′3 , V
′

1 , V2) and (V2, V
′

3 , V
′

1), re-

spectively. The number of unique angles is therefore given by
(

16
3

)
× 3. Let these

22

unique angles (in radians) be represented by the ordered set A = {α1, α2, · · · , αN}.

We will use the differences between an angle and its symmetric counterpart as a mea-

sure of asymmetry. Let the ordered set A′ = {β1, β2, · · · , βN} represent the symmetric

counterparts of the angles in set A. The measure of asymmetry can now be defined

as:

asym =
1

Nπ

N∑
i=1

|αi − βi| (2.6)

Note that there are only N/2 unique angular differences that can be considered, as

we do not need to count each angle twice. Since we are using the absolute value, the

above calculation would give us just that. Note that among all unique angles possible,

there will be angles that do not represent angles formed by edges of the polyhedron.

The division by Nπ is to normalize the metric to a number between zero and one. For

a perfectly symmetrical shape, the measure will be zero. Our asymmetrical shapes

are affine transformations of symmetrical ones. So, even though the asymmetrical

shapes do not have a plane of symmetry because they are not symmetrical, we can

use a unique “symmetry” correspondence which is the same as the correspondence in

the symmetrical shape that was used to produce the asymmetrical one. Perceptually,

our asymmetrical shapes do look like distorted symmetrical ones. Therefore, one can

refer to our asymmetrical shapes as “near-symmetrical”.

Compactness is computed from the volume V and surface area S of the shape

as V 2/S3. After this ratio is normalized to the compactness of a sphere, one gets

a number between zero and one, and this number is scale invariant. As mentioned

before, we need to have shapes with varying degrees of symmetry and compactness

as part of our stimuli. To accomplish this, each 3D shape (stimulus) is classified as

belonging to one of the groups shown in Table 2.1. In the table, asym and cmp

represent asymmetry and compactness measures of the 3D shape, respectively.

23

Table 2.1. Asymmetry and compactness characteristics of the 3D shapes
aaaaaaaaaaaaaa

Compactness

Symmetry

asym = 0 0.01 < asym < 0.11 asym > 0.11

cmp > 0.38 Group 1 Group 2 Group 3

0.2 < cmp < 0.38 Group 4 Group 5 Group 6

cmp < 0.2 Group 7 Group 8 Group 9

We generated two shapes for each of the nine groups. The resulting 18 shapes

formed a session in the experiment: 6 symmetrical shapes and 12 asymmetrical

shapes. There were five such sessions, with a total of 90 shapes. To generate a

stimulus, a random symmetrical shape was first generated and then modified to pro-

duce a shape belonging to one of the nine groups. Figure 2.1c depicts the orientation

of the initial symmetrical shape with its symmetry plane orthogonal to the X-axis

of the 3D Cartesian coordinate system. The symmetrical shape was aligned so that

the planar bottom of the shape was parallel to the XZ-plane. To modify the com-

pactness, the shape was either stretched or compressed along the X- or Z-axes. This

process generated shapes belonging to groups 1, 4, and 7. To generate asymmetrical

shapes, the original symmetrical shape was repeatedly sheared according to Equation

2.7 until the desired asymmetry level was obtained.


X ′

Y ′

Z ′

 =


1 0 0

0 1 0

0.1 0.1 1



X

Y

Z

 (2.7)

By stretching/compressing the shape to modify compactness and by shearing the

shape to modify asymmetry, stimuli belonging to all nine categories were generated.

Each session had two shapes from each of the nine groups listed in Table 2.1, one

of which was shown to the subjects with the slant of the symmetry plane equal to

45◦ and the other with the slant of either 20◦ or 70◦. Note that asymmetrical shapes

24

do not have any symmetry planes. In those shapes, the slant refers to the YZ-plane,

which was the symmetry plane before shearing. The main motivation for using a 45◦

slant was to have a view that led, in Li et al.’s [1] experiment, to accurate recovery

with both monocular and binocular vision. The motivation for using slants of 20◦

and 70◦, which are close to degenerate views, was to produce large recovery errors.

Once the slant of the shape’s symmetry plane was decided, there was still one degree

of freedom in specifying the exact view of the 3D shape, i.e., the shape can still rotate

around the normal of the symmetry plane. A random angle of rotation was chosen,

subject to two constraints. The first constraint was that at least 10 vertices of the

shape needed to be visible, and the second constraint required at least 5 of the 8

vertices forming the “top” of the shape to be visible. These constraints were designed

by Li et al. [1] to make sure that the 3D shape can be fully recovered by the human

visual system and by the model.

The stimuli were generated using the game engine Unity (known commonly as

Unity3D). To display the stimuli, we used Oculus Rift, a virtual reality (VR) head-

mounted display. Oculus Rift comes with a head tracker and a joystick. Unity has

built-in support for certain VR devices like Oculus Rift. The desired view of the

shape can be obtained in Unity by setting the rotation, translation and scaling trans-

formations of the shape appropriately. Unity also allows the use of both orthographic

and perspective projections to display the shape. In our experiment, we used per-

spective projection. The interocular distance can be set in Unity, based on which

Unity generates appropriate stereoscopic images for Oculus Rift. We used the head

tracker of Oculus to make sure that the head movements of the subject did not change

the simulated position of the eyes with respect to the shape being displayed. This

means that when the subject moved his head, the shape moved the same way. This

is like having the subject’s head on a virtual chin rest. In the actual experiment, the

subjects did not move their head a lot.

25

2.2.2 Procedure

In the experiment, a stationary reference 3D shape was shown in front of the

subject and, on the right, a test adjustable shape was shown rotating. The adjustment

involved the three parameters a31, a32 and a33 from Equation (2.5). The values of these

three parameters were chosen randomly at the beginning of each trial. However, these

initial random values were confined to the range (–3, 3) for a31 and a32 and to the range

(0.1, 3) for a33. This was done to avoid highly distorted shapes. The subject’s task

was to look at the stationary reference shape and adjust the shape of the rotating test

shape on the right side of the screen to match the perceived 3D shape of the reference

shape. The continuous rotation of the test shape was around Y-axis. In order to make

sure that the subjects compared 3D shapes and not 2D images, the test 3D shape was

first rotated by 45◦ around the X-axis before applying the continuous rotation around

the Y-axis. This ensured that none of the views of the rotating test shape matched the

projection of the reference shape. The adjustment of the three parameters was done

using the joystick. The rotating test shape matched, geometrically, the stationary

reference 3D shape for the following values: a31 = 0, a32 = 0 and a33 = 1. The

subject was not shown the values of the three parameters during the trial.

In the binocular viewing condition, the reference shape was rendered at a distance

of one meter from the subject’s cyclopean eye. In the ”monocular” viewing condition,

the subject still viewed with both eyes, but the shape was rendered at a distance of

one kilometer. Note that the object’s size was proportionally scaled up by a factor

of 1000 so that the retinal size of the shape was similar in both viewing conditions.

The average angular distance from the centroid of the shape to its vertex was 10.32◦.

The large distance in the ”monocular” condition meant that the binocular disparity

information available to the subject was negligible. Recall that binocular disparity is

inversely proportional to the square of the viewing distance [37].

Each session consisted of 18 trials. Each subject ran a total of 5 monocular and

5 binocular sessions for a total of 90 trials (90 shapes) in monocular viewing and

26

90 trials in binocular viewing. The same 90 shapes were used in monocular and

binocular viewing and all subjects were tested with the same shapes. However, the

order in which individual subjects were tested with the five sessions and the order

of monocular vs. binocular sessions were randomized. Three subjects were tested,

including two of the authors (VJ and ZP). The third subject was näıve about the

underlying theory. Each session of 18 trials took around 60–90 min to complete.

The subjects were allowed to take breaks at any point of time. Before the actual

experiment started, the subjects were given adequate practice sessions until they felt

comfortable with the task. In the beginning of each trial, the subject was also asked

whether he perceived the shape to be symmetrical or not. Then, the subject adjusted

the rotating shape by using three controls of the joystick. Some shapes looked very

close to perfectly symmetrical, and so, the subject had to decide whether he called

the shape symmetrical or not. In other words, these binary responses might have

confounded the percept with response bias. Note, however, that our main analyses

that included building computational models ignored these binary responses. These

responses were used, however, in some graphs that showed the relation between the

shape recovered by the subject and the reference shape, or the shape recovered by

the model.

2.3 Model

The data collected from the experiment were used to build models. The emphasis

in this work is on the quality of the fit of the model to human results. This is why

we present separate models for monocular and binocular conditions. Within each

viewing condition (monocular or binocular), separate models are also considered for

symmetric and asymmetric shapes. In the Discussion section, we comment on the

possibility of simplifying this approach so that fewer models are used.

Li et al. (2009) showed that, for symmetric shapes viewed monocularly, maximum

compactness and minimum surface priors could be used to recover the perceived 3D

27

shape from the 2D image. Specifically, the 3D shape that maximizes the ratio V/S3,

where V is the volume and S is the surface area of the polyhedron, is very close to

what human observers perceive. Therefore, for symmetrical shapes in the monocular

condition, we used the same model as the one presented in Li et al. (2009). The ratio

V/S3 will hereafter be referred to as modified compactness. This model has no free

parameters.

For asymmetrical shapes in monocular condition, the model consists of a weighted

sum of asymmetry and modified compactness. In our experiment, the subject could

recover an asymmetrical shape, and therefore, the asymmetry term representing the

symmetry prior is explicitly included in the cost function, along with the modified

compactness prior used in Li et al. (2009). The cost associated with a shape H is

given by:

C(H) = WSWSWS × Asym(H)− MCmp(H)

MaxCmp(H)
(2.8)

Here, Asym(H) is the asymmetry measure of shape H, MCmp(H) is the modified

compactness of shape H, WS is the weight of the asymmetry term, and MaxCmp(H)

is the maximum value of modified compactness that can be achieved by a shape,

belonging to the family of shapes, that can be generated from shape H, by applying

the 3D affine transformation in Equation (2.5). The weight decides the importance

of the asymmetry relative to modified compactness of the shape. According to the

model, the shape which minimizes this cost is the perceived shape. To determine the

weight of the asymmetry term, which is the only free parameter, the subject’s data

were used. Let the shapes recovered by the subject and the model be referred to

as subject shape and model shape, respectively. The idea is to find the weight that

minimizes the average shape difference between the subject shape and the model

shape. In order to do this, a metric to perform shape comparison is required. The

asymmetry metric can be modified to obtain a shape difference metric. To compare

two shapes, H1 and H2, Equation (2.6) can be used. The set A = {α1, α2, · · · , αN}

now represents all the possible angles of shape H1 and the set A′ = {β1, β2, · · · , βN}

28

represents the corresponding angles of shape H2. Using this shape difference metric,

the best weight found for each subject in monocular viewing of asymmetrical shapes

is listed in Table 2.2. An exhaustive search was used to determine the weights.

Table 2.2. Weights for the asymmetry term in monocular condition

Subject WSWSWS

EP 5.1

VJ 3

ZP 4

Note that our shape dissimilarity metric, based on comparing angles, is consistent

with the conventional definition of shape, because it is invariant under rigid motion

and size scaling. However, we are not claiming that the human visual system uses our

formula, but examination of our results strongly suggests that whatever the human

visual system uses is likely to be correlated with our measure.

In the binocular condition, for both symmetrical and asymmetrical shapes, the

cost function is a weighted sum of asymmetry, binocular depth order and modified

compactness. Li et al. [1] established the importance of the depth order cue in 3D

shape perception. The asymmetry and modified compactness terms represent the

monocular priors, and the binocular depth order term represents the likelihood (or

the data term). The depth order score for a shape H is computed as follows. For

each pair of visible vertices of shape H, a score is assigned using the function below:

Scr(vi, vj) =
1

1 + e(ki,j×0.5×δi,j)
(2.9)

where vi and vj are two visible vertices of the shape H, δi,j is the absolute value

of binocular disparity (in minutes of arc) between the corresponding vertices in the

reference 3D shape, ki,j = –1 if the two vertices have the same depth order as the

corresponding vertices in the reference 3D shape, and ki,j = 1 if the depth order of

the vertices vi and vj is different from that of the reference shape. Once such a score

29

is assigned to each visible pair of vertices, the depth order score for the shape H is

computed as:

DpOrd(H) = |Ω|

√√√√ ∏
(vi,vj)∈Ω

Scr(vi, vj) (2.10)

where Ω represents the set of all unique pairs of visible vertices of shape H, and |Ω|

represents the number of elements in the set Ω. Equation (2.9) uses a logistic function

to represent visual noise, whereas Li et al. [1] used a cumulative Gaussian distribution

function.

The cost function associated with a shape H in the binocular condition is now

given by:

C(H) = WSWSWS × Asym(H)−WDWDWD ×DpOrd(H)− MCmp(H)

MaxCmp(H)
(2.11)

where WSWSWS and WDWDWD are the weights of the asymmetry term and depth order terms,

respectively. The same cost function is used to model both the symmetrical and

asymmetrical cases but with different weights. Data from the experiment were used

to estimate the weights. The optimal weights found by exhaustive search for each sub-

ject are listed in Table 2.3. The shape which minimizes this cost function represents

the model’s prediction of the perceived 3D shape. Note that the weights for symmet-

rical shapes in binocular viewing are similar across the three subjects. However, for

asymmetrical shapes, there are quite large differences. Li et al. [1] also found some

individual differences in binocular viewing: one subject, whose stereoacuity threshold

was very high, had binocular performance similar to monocular performance. How-

ever, Li et al. only tested symmetrical shapes. As Table 2.3 shows, our three subjects

were all quite similar with symmetrical shapes. It is the asymmetrical shapes that re-

vealed larger individual differences. Specifically, EP’s and ZP’s asymmetry term has

weight which is an order of magnitude greater than the weight of the depth order cue,

while VJ’s weights for these two terms are similar. Furthermore, VJ’s depth order

term has weight greater than the weight of compactness, while ZP’s depth order term

30

has weight smaller than the weight of compactness. It has to be pointed out that

one cannot draw any conclusions about the relative importance of the three terms

in a cost function by just comparing weights, simply because the three terms are

computed using different units. However, one can interpret the relative contribution

of the three terms across subjects, as we did just above.

Table 2.3. Weights for shapes in binocular condition

Subject
WSWSWS (Symmetric

Case)

WDWDWD (Symmetric

Case)

WSWSWS (Asymmetric

Case)

WDWDWD (Asymmetric

Case)

EP 9.7 8.6 10.0 1.0

VJ 7.6 11.5 4.0 5.8

ZP 9.0 14.0 5.0 0.3

To test the accuracy of the model, we started with a control psychophysical ex-

periment, which is described next.

2.4 Control Experiment

In the control experiment, the same set of 3D shapes, as used in the experiment

described above, were used. The subject was shown a stationary 3D shape in the

center and two rotating 3D shapes were shown on the right. One of the rotating

shapes was the shape the subject recovered (subject shape) in the main experiment.

The other 3D shape was the shape recovered by the model (model shape). The

two rotating shapes were shown side by side and the placement of these shapes (left

vs. right) was random from trial to trial. The subject was asked to choose the 3D

shape from the two rotating 3D shapes which best corresponded to his percept of the

stationary 3D shape. The models described above can be considered good models

if the subject has chance performance (50/50). Two of the subjects, EP and VJ,

participated in the control experiment.

31

2.5 Results

The results in Table 2.4 show that the models described above do a good job in

predicting the shape perceived by the subjects because the subject’s performance was

not far from chance. This also means that the shape metric which was used to build

the models is a good measure of the shape dissimilarity between shapes. The fact that

EP chose the model shape in favor of his own shape almost 70% of trials in monocular

viewing could be related to the operation of visual and motor noise when the subject

was recovering shapes in the main experiment. The easiest way to see evidence of this

is to check the data points in Figure 2.2 representing symmetrical shapes perceived

as symmetrical (red diamonds). The asymmetry of the subject shapes is not zero as

it should be, since they were judged by the subjects in the beginning of the trial as

symmetrical. Our models, on the other hand, did not have any noise except for the

finite, but small, steps in the three adjusted parameters when the cost function was

minimized. So, if the models are correct, they may recover 3D shapes that match the

percept better than the shapes recovered by the subject, himself.

An important observation here is that, in the monocular condition, a simple com-

bination of asymmetry and modified compactness, which are global properties of the

shape, can effectively model the abstract shapes that we used. Without using any

other priors, the model was able to account for the subject’s percept. In the binocu-

lar condition, the only additional information required was the binocular depth order

derived from the binocular disparity. Even for shapes which are not perfectly sym-

metrical (near-symmetrical shapes), combining the binocular depth order information

with symmetry and modified compactness priors leads to a good model of shape per-

ception.

32

Table 2.4. Results from the control experiment

Subject Condition
Number of times (out of 90)

the model shape was chosen

EP Monocular 62(68.8%)

EP Binocular 48 (53.3%)

VJ Monocular 40 (44.4%)

VJ Binocular 46 (51.1%)

We already know that the models are good because they produce shapes that

are similar to what the subjects produce. This was shown in the control experiment

described just above. This can also be directly seen by examining the 3D shapes on

the website (https://lorenz.ecn.purdue.edu/~vthottat/shapeexp/chooseshp.

php). Note that the same set of 90 shapes was used, in monocular and binocular

viewing, for all three subjects. This allows more direct comparison of one subject

to another. The website shows the view that was presented in the psychophysical

experiment (in binocular viewing this was one of the two images projected to the left

and right eyes). Next to this view we show the actual reference 3D shape presented

to the subject, the 3D shape recovered by the subject and the 3D shape recovered

by the model. The website contains 540 trials like this (3 subjects × 90 shapes × 2

viewing conditions: monocular and binocular). We do not expect the reader to look

through all 540 trials. However, we felt that the reader should have an opportunity

to view as many as they wish, because no summary statistics will do justice to what

was actually observed. This would also provide the reader with an opportunity to

judge the goodness of the models and that of the metrics we used.

We began the quantitative evaluation of the subject’s and model’s recovery with

symmetrical shapes. Already, Li et al. [1] showed that this recovery is extremely

accurate in binocular vision. However, their subjects dealt with a simpler task, in

which all shapes were symmetrical and the only characteristic that was adjusted was

the aspect ratio. In our experiment, we used both symmetrical and asymmetrical

https://lorenz.ecn.purdue.edu/~vthottat/shapeexp/chooseshp.php
https://lorenz.ecn.purdue.edu/~vthottat/shapeexp/chooseshp.php

33

shapes and the subject adjusted three parameters which allowed them to recover

symmetrical or asymmetrical shapes.

(a) (b)

(c) (d)

(e) (f)

Fig. 2.2. Perceived vs. real asymmetry of shapes for (a) subject EP (binocular), (b)
subject EP (monocular), (c) subject VJ (binocular), (d) subject VJ (monocular), (e)
subject ZP (binocular) and (f) subject ZP (monocular)

34

Figure 2.3 shows the accuracy of identifying symmetrical and asymmetrical shapes

correctly in monocular and binocular viewing by the three subjects. This graph is

based on the binary responses that the subject produced before performing 3D recov-

ery. Note that we are not computing d′ for this discrimination task, although this in

principle could be done. The number of trials is small (30 symmetrical and 60 asym-

metrical shapes), so any estimate of d′ would be quite unreliable. The proportion

correct on symmetrical and asymmetrical trials, which is what we plotted on Figure

2.3, is likely affected by response bias. As a result, we will not be drawing any strong

conclusions based on these proportions. It can be seen in Figure 2.3 that symmetrical

shapes are almost always (80–95% of the time) identified as symmetrical in binoc-

ular viewing. They are also frequently (65–80% of the time) correctly identified as

symmetrical in monocular viewing. The differences among the three subjects were

pretty small. With asymmetrical shapes, VJ was clearly more correct (by a factor of

2) than the other two subjects. It seems that VJ put more emphasis on the depth

order information, as evidenced by the weights in the models. EP and ZP’s binocular

percepts, on the other hand, were affected more by compactness and symmetry priors.

These two priors pushed the binocular percept away from the true, asymmetrical

reference shape and towards symmetrical and compact shapes. When recovering the

shapes, VJ spent twice as much time as EP and ZP. This led to higher precision

in recovering the 3D shapes. This will show up in smaller shape dissimilarities be-

tween the shapes recovered by VJ and the reference shapes, as compared to these

dissimilarities for subjects EP and ZP.

35

(a) (b)

Fig. 2.3. Accuracy in identifying symmetrical and asymmetrical shapes in (a) binoc-
ular and (b) monocular condition. Recall that there were 30 symmetrical and 60
asymmetrical shapes.

Next, look at Figure 2.2, which shows scatterplots of perceived shape asymmetry

(i.e., asymmetry of the shape recovered by the subject) vs. reference shape asym-

metry for four types of trials. The trials have been grouped into four groups based

on the binary responses, symmetrical vs. asymmetrical, that were collected in the

beginning of each trial. The diagonal line represents the points where perceived shape

and reference shape asymmetries are equal. The label ‘Sym-Sym’ indicates symmet-

rical shapes perceived as symmetrical, ‘Asym-Sym’ indicates asymmetrical shapes

perceived as symmetrical, and so on. Red diamonds indicate symmetrical shapes

that were classified as symmetrical. It can be seen that the perceived asymmetry of

these shapes is not zero. This represents the limited precision of the visual system,

as well as limited precision of the motor system. The adjustment task was not easy

because the interaction of the three parameters was not intuitively obvious. So, re-

ducing asymmetry of the shape required coordinated change of all three parameters.

VJ was the most patient from the three subjects—he also spent most time during

the task. Still, most of the symmetrical shapes that were classified as symmetrical

resulted in a subject shape with asymmetry not larger than 0.05. Note that a value

of 1 for shape asymmetry corresponds to an average difference of 180◦ (π radians) be-

36

tween corresponding angles in the left and right half of the shape (see Equation (2.6)).

So, a value of 0.05 corresponds, on average, to a 9◦ difference between corresponding

angles. Examination of the 3D shapes on the website shows that the symmetrical

shapes were almost always recovered as shapes that were not far from symmetrical.

Next, look at Figure 2.4, left column, which shows the scatterplots illustrating

the relation between the angles in the recovered shape and the angles in the reference

shape for three symmetrical shapes recovered by VJ in binocular viewing. The first

row in Figure 2.4 shows the plots for the shape in (row = 2, column = 5) in set 2

for subject VJ in binocular viewing on the website. Note that both row and column

indices start at one. The second row in Figure 2.4 represents the shape (row = 2,

column = 6) in set 5, and the third row in Figure 2.4 represents the shape (row = 3,

column = 3) in set 3 on the website. These three trials illustrate the range of correla-

tions that we observed. The scatterplot on top shows one of the weakest correlations

we observed. Each scatterplot has 16 × 15 × 14/2 data points because we considered

all unique angles formed by all triplets of vertices. All scatterplots for symmetrical

shapes were within the range shown in Figure 2.4. The correlation between perceived

and actual angles is strong, and all data points are clustered around the diagonal.

Figure 2.4, right column, also shows the analogous scatterplots illustrating the re-

lation between the depths of points in the recovered shape and depths of points in

the reference shape for the same three symmetrical shapes viewed binocularly by VJ.

These scatterplots have only 16 data points, which is the number of vertices in our

3D shapes. The Z coordinates of the recovered and the reference shapes were taken

when the shapes had the same 3D orientation relative to the viewer. More precisely,

both 3D shapes, reference and subject, produced the same orthographic image. The

fact that all data points are clustered around the diagonal means that there was no

systematic distortion of binocularly viewed shapes along the depth direction. This

makes sense on rational grounds. Stretching or compressing a 3D symmetrical shape

along the depth direction, when the shape is not viewed from perfectly degenerate

direction, would have destroyed the symmetry of the 3D shape. Since symmetrical

37

(a) (b)

(c) (d)

(e) (f)

Fig. 2.4. Perceived vs. real angles (first column, in radians) and depth (second
column) for three different symmetric shapes. Each row represents the corresponding
plots for a particular shape. (a) and (b) represent the plots for the shape in (row =
2, column = 5) in set 2, (c) and (d) represent the plots for the shape in (row = 2,
column = 6) in set 5 and (e) and (f) represent the plots for the shape in (row = 3,
column = 3) in set 3 on the website

https://lorenz.ecn.purdue.edu/~vthottat/shapeexp/chooseshp.php

38

(a) (b)

(c) (d)

(e) (f)

Fig. 2.5. Subject shape vs. reference shape depth plots for symmetrical shapes for (a)
subject EP (binocular), (b) subject EP (monocular), (c) subject VJ (binocular), (d)
subject VJ (monocular), (e) subject ZP (binocular) and (f) subject ZP (monocular).
The numbers 45 and 70 indicate viewing directions. The green x marks include both
20◦ and 70◦ viewing directions.

39

shapes are almost always perceived as symmetrical, there is not much space for depth

distortion.

Figure 2.5 shows scatterplots of the depths of points for all symmetrical shapes for

the three subjects for monocular and binocular viewing. Note that in the monocular

condition, to ensure that there was no binocular disparity information available, the

shapes were displayed at a depth of 1 km after scaling up the shapes by a factor of

1000. In Figures 2.5 and 2.6, the Z-coordinate values for the monocular condition is

scaled down by a factor of 1000 for better comparison with the binocular condition. It

can be seen that all data points in Figure 2.5, except a few, are close to the diagonal

line. This means that there are no systematic distortions of depth: no systematic

under- or overestimation. Figure 2.6 shows analogous graphs for all asymmetrical

shapes for subject VJ in monocular and binocular conditions (graphs not shown here,

and illustrating the other two subjects are similar). The scatterplots for asymmetrical

shapes are substantially noisier in comparison to the corresponding plots for the

symmetrical shapes. Notice that the distortion (noise) does not seem to be systematic.

The most natural explanation for greater veridicality with symmetrical shapes, as

compared to asymmetrical, is the influence of the priors, especially the symmetry

prior. The strong effect of a symmetry prior implies that the percept of symmetrical

shapes should be more veridical than the percept of asymmetrical ones. This indeed

is the case.

40

(a) (b)

Fig. 2.6. Perceived vs. real depth plots for asymmetric shapes for subject VJ in (a)
binocular and (b) monocular condition.

Figure 2.7 shows shape dissimilarity for all subjects, with the bars grouped into

different cases. The label ‘Sym’ represents the average shape dissimilarity for sym-

metrical shapes. Similarly, ’Asym’ refers to the average shape dissimilarity for asym-

metrical shapes. The label ’All’ indicates the average shape difference for all 90 shapes

in that condition.

Note that the binocular percept is closer to veridical than the monocular percept

is, as can be seen from the subject vs. reference shape dissimilarity values (yellow bar

in the group labeled ’All’). Similarly, perception of symmetrical shapes is closer to

veridical in comparison to asymmetrical shapes. This can also be verified qualitatively

by examining the shapes on the website. Finally, model shapes are closer to the

subject shapes than the reference shapes are. This means that, despite small errors

between the subject shapes and the reference shapes, the model is a good predictor

of what the subjects see.

2.6 Discussion

It has to be pointed out that the 3D shape recovery is quite robust to perturbation

of the weights around their optimal values. A plot of the shape difference between the

41

(a) (b)

(c) (d)

(e) (f)

Fig. 2.7. Shape dissimilarity for (a) subject EP (binocular), (b) subject EP (monoc-
ular), (c) subject VJ (binocular), (d) subject VJ (monocular), (e) subject ZP (binoc-
ular) and (f) subject ZP (monocular).

42

shape recovered by the subject and the shape recovered by the model, as a function

of the weights of the model, shows that there are other weight values which could be

chosen, without increasing the shape difference substantially. As shown in Figure 2.8,

there are flat regions around the optimal weight values for the symmetrical shapes in

the case of subject EP in the binocular condition. This is true for the other subjects,

too. There are obviously some weight values, like choosing WSWSWS < 5, which would

lead to large errors (shape differences), but there is a range of other weight values

with errors close to the optimal error. However, for other cases, like for asymmetrical

shapes in the binocular condition for subject EP (Figure 2.9), there seems to be a

narrow range of weight values that minimize the error. This is also true for subject ZP

but not for subject VJ, i.e., for subject VJ, there are flat regions around the optimal

weights, just like in the case of symmetrical shapes. In short, in some cases, there is

some flexibility in choosing the weights for a good model. The issue of computational

stability of our models in the neighborhood of optimal values of the parameters will

be studied in our future work.

(a) (b)

Fig. 2.8. Subject vs. model shape difference, as function of the model weights, for
symmetrical shapes, for the subject EP, in the binocular condition. (a) and (b)
represent two views of the same shape difference plot.

Next, it has to be pointed out that, even though different models are used for

symmetric objects in monocular and binocular conditions, the relative importance of

43

(a) (b)

Fig. 2.9. Two views ((a) and (b)) of the subject vs. model shape difference, as
function of the model weights, for asymmetrical shapes, for the subject EP, in the
binocular condition.

Fig. 2.10. Shape difference for asymmetric shapes in the monocular condition as a
function of the weight of the symmetry term.

44

symmetry in comparison to modified compactness can be the same in both viewing

conditions. That is, if we minimize Equation (2.8), with the weight WSWSWS equal to that

of the symmetric case in the binocular condition, the model will produce a shape very

close to the one obtained by using the model presented in Li et al. [32]. For instance,

the average shape difference between the shape obtained with the model presented

in Li et al. [32] and the shape obtained by minimizing Equation (2.8) with WSWSWS = 7.6

(the optimal weight for subject VJ) is 1.9 × 10−5, and the maximum shape difference

between the corresponding shapes is 2.3 × 10−4 . A value of 0.01 for the shape

difference metric corresponds to an average difference of 1.8◦ between corresponding

angles of the two shapes being compared. Therefore, a shape difference metric value of

1.9 × 10−5 implies an average difference of 3.4 × 10−3 degrees between corresponding

angles of the two shapes. Furthermore, a shape difference metric value of 2.3 × 10−4

corresponds to an average difference of 4.1 × 10−2 degrees between corresponding

angles of the two shapes. These are extremely small values, and, therefore, the shapes

generated by the two models are essentially the same.

For asymmetrical shapes, the weight of the asymmetry term relative to modified

compactness is similar in monocular and binocular conditions for subjects VJ and

ZP. For asymmetrical shapes, if the binocular model weights for VJ are used for the

monocular model of VJ, the average subject shape vs. model shape difference would

go up by 0.0094. Doing the same for subject ZP would lead to an increase in the

average shape difference of 0.0022 between the subject and the model. These are not

large changes. For asymmetrical shapes for subject EP though, the weight of the

asymmetry term seems to be very different across the two conditions. However, as

shown in Figure 2.10, assigning WSWSWS = 10, for asymmetrical shapes in the monocular

condition for subject EP, will not lead to any substantial change in shape differ-

ence with subject shapes. Therefore, for all three subjects, the weight of asymmetry

relative to modified compactness is similar across conditions.

To summarize the above analysis, we do not need separate models for monocular

and binocular viewing. However, we need two different binocular models per subject:

45

one for symmetrical shapes and the other for asymmetrical shapes. The monocular

model is obtained from either of them by simply dropping the binocular depth order

term. In natural viewing, this “dropping” happens naturally when the effectiveness

of stereoacuity drops with increasing viewing distance and decreasing object size.

Now, how realistic is it to have two different binocular models (cost functions) in

the visual system: one for symmetrical and the other for asymmetrical shapes? How

does the visual system distinguish between symmetrical and asymmetrical shapes in

the first place? If the 3D shape is asymmetrical, the binocular depth order cue can

inform the visual system about the asymmetry. For example, once the 3D symmetry

correspondence is established in a single 2D retinal image, assuming that the 3D

shape is symmetrical (which is always possible—see [38]), stereoacuity can reject this

3D hypothesis. Asymmetrical perception could also result from other biases (priors).

For instance, the visual system might prefer an asymmetrical shape with planar faces

instead of a symmetrical shape that violates planarity of the faces. Next, given

that the importance (weight) of compactness relative to depth order goes up with

asymmetrical shapes, compactness could be another factor leading to an asymmetrical

percept [33]. We have not done any simulations yet to examine this issue, but it seems

reasonable to assume that planarity, compactness and binocular depth order could

all be involved when the visual system decides whether to use the cost function for

symmetrical shape or asymmetrical shape.

2.7 Website

The idea behind the website is to provide interested readers an opportunity to

view the user and model reconstructed shapes. The menu, shown in Figure 2.11,

is used to navigate the website. Figure 2.11 (a) shows the first level, which allows

user to choose the condition and the user. Figure 2.11 (b) shows the second level,

which lets the user select one of the five data sets used in the experiment. Note, the

experiment used five sets of eighteen objects. Each set represents a session. Once a

46

set belonging to one of the two conditions for a particular user is chosen, the user is

shown all the eighteen objects in that set. Figure 2.12 shows such a list of shapes.

The user can now hover over a shape using the mouse pointer to get information

regarding the asymmetry and compactness of that shape. On clicking a shape, the

user navigates to the page where the user can see the 2D view shown to the subjects

and rotating 3D shapes corresponding to the real shape, the user reconstructed shape

and the model reconstructed shape. Figure 2.13 shows such a page. The asymmetry,

compactness and modified compactness values are displayed under each shape. The

page also shows the shape difference metric values for all pairs of shapes. This page

allows the readers to do a qualitative analysis of the effectiveness of the model and

the asymmetry and shape comparison metrics that we employed.

47

(a) (b)

Fig. 2.11. The menu for navigating the website

48

Fig. 2.12. All shapes from a particular set are displayed

Fig. 2.13. The shape comparison page

49

3. 3D SHAPE RECONSTRUCTION FROM A SINGLE

IMAGE

3.1 Introduction

Recovering shapes from a single view has advantages compared to algorithms

based on binocular disparity. Establishing symmetry correspondence (i.e., identi-

fying which two pixels in the image are projections of 3D symmetric points) leads

to more accurate reconstructions in comparison to establishing binocular correspon-

dence, and then using binocular disparity for reconstruction. Reconstructions based

on binocular disparity loose accuracy quickly as the distance between the object and

camera increases. However, reconstructions based on symmetry are more robust to

changes in distance. Moreover, 20 years ago Zabrodsky and Weinshall [39] showed

that using a symmetry prior can substantially improve the accuracy of reconstructions

from multiple views.

Symmetry has been used in the past for 3D reconstruction of objects and scenes;

however, some of these methods [40–42] require extensive user intervention, like man-

ually establishing symmetry correspondences. Methods described in [43, 44] concen-

trate on dense 3D reconstruction of scenes, rather than shape reconstruction from

curves. Sinha et al. [45] considered the symmetric curve matching problem; however,

their dynamic programming algorithm only works with restricted views of the 3D

object. Xue et al. [46] used symmetry to obtain depth maps; however, they used

synthetic images that have planar surfaces bound by straight lines. In our work, we

are interested in estimating a 3D shape representation of the object in the scene.

Though we use a planarity constraint, we are also interested in obtaining shape rep-

resentations for objects with approximately planar surfaces. We accomplish this by

using a planarity measure that counts the number of planes required to approximate

50

the object. For instance, we can approximate the furniture shown in Figure 3.1 with

four planes. Three of these planes are shown in Figure 3.1, and the fourth plane,

not shown, is opposite to the orange plane. This concept is made more clear in the

following sections. In the next section we provide an overview of the algorithm, and

the following sections describe each step in detail. This is followed by results and

conclusions.

3.1.1 Overview

The edge map of the image of an object is often a reasonable representation of its

2D shape, and so it can be used to establish symmetry correspondence by identifying

pairs of points on the edge map that are projections of 3D symmetric points. Points

that symmetrically correspond in an image must be co-linear with the vanishing

point. However, as shown in Figure 3.2 (b), more than two edge pixels can be co-

linear with the vanishing point, and therefore, we need a way to discriminate correct

and incorrect correspondences. It is advantageous to work with smooth curves (if

such curves can be extracted), because it reduces the complexity of the problem (the

number of curves is often much less than the number of edge pixels). Additionally,

curves have shape which can be utilized. Therefore, in this framework, we establish

symmetry correspondence for pairs of 2D curves, instead of just working with pairs

of 2D points.

The first step to solving symmetry correspondence is estimating the position of

the vanishing point in the camera image. There are several methods available in

the literature for estimating vanishing points from monocular images [47–56]. Most

methods involves detection and clustering of oriented edge points [50, 54, 56] or line

segments [47,51,53,57] in images. However, we use the estimates obtained by Michaux

and Pizlo [58], because it is more reliable as it uses binocular information. Note that

if one can identify higher order features like long curves or corners, it is also possible

to partially solve symmetry correspondence without estimating the vanishing point

51

first. Establishing correspondence for one or more pairs of features will lead to the

vanishing point, which can then be used to solve correspondence for the remaining

points and parts of the image. Once the vanishing point is known, the next step is

extracting long meaningful curves, where the word meaningful implies that the curve

would make sense to a human observer. We have evidence that the human visual

system extracts long curves by solving the shortest (least-cost) path problem in the

image [59]. We incorporate this method in our algorithm. Specifically, we minimize

the cost of a path, where the cost is a weighted combination of the interpolations and

turning angles. From now on, we use the term correspondence to denote a pair of 2D

curves that symmetrically correspond to each other in the 3D representation. The

next step is identifying some candidate correspondences and candidate planes (planes

that could be used to approximate the 3D shape of the object). Though we could

start off by assuming that any long curve extracted could correspond to any other

curve, we use a few criteria to reject some unlikely correspondences from the list of all

possible correspondences, resulting in what we refer to as candidate correspondences.

Once we have the candidate correspondences, we evaluate which correspondences lead

to a 3D shape recovery that can be approximated by a minimum number of planes.

This is achieved by converting the problem into a binary integer program and solving

it using the Gurobi solver [60]. Each of these steps are explained in detail in the next

sections.

52

Fig. 3.1. Planar approximation by using minimum number of planes.

(a) (b)

Fig. 3.2. (a) Vanishing Point (b) Symmetry Correspondence Problem.

53

3.1.2 Curve extraction

The first step in curve extraction is edge detection. As mentioned earlier, the

image edge map serves as a representation of the 2D shape of the object. The canny

operator is used with an adaptive threshold to form an edge map. Connected com-

ponents in the edge map are then identified and are broken down, based on gradient

orientation, to get short pieces of curve. The idea is to split the connected compo-

nents at high curvature points, like junctions, to obtain short and smooth pieces of

curves. Figure 3.3 (a), shows short curve pieces obtained for the image of a piece of

furniture. Longer curves are obtained by combining these short curve pieces. This

is achieved by finding the shortest paths between all pairs of short pieces of curve

with a cost function that penalizes spatial separation and large turning angles. To

determine the turning angle and the spatial separation, the end points of the short

curve pieces are first computed. The closest endpoints of two curves decides how the

curves connect, which in turn decides the distance and the turning angle between

them. For instance, consider curve combination a) in Figure 3.3 (b). An approximate

145 ◦ turn is required to continue from the blue curve to the red curve. So what

we are calculating is literally the turning angle. A point to note here is that when

joining curves, rather than straight lines, the direction of the curve (used to calculate

turning angle) is represented by a few pixels near the vicinity of the connecting end

points. After the pairwise distances and turning angles are computed for all curve

combinations, curve combinations with very high turning angles, or very large inter-

polated distances, are rejected. I.e., combining such curves is forbidden. The turning

angle values and distances are then normalized separately, by subtracting the mean

and dividing by the standard deviation. This can result in a negative cost for some

curve combinations, so the absolute value of the minimum is added to avoid this.

Turning angles are weighted one and a half times in comparison to distances. As

shown in Figure 3.3 (b), smooth curves are assigned lower costs. Although shortest

paths between all pairs of short curve pieces are computed, we only use those whose

54

cost is lower than a threshold in the next step. An example of such a low cost path

is shown in Figure 3.3 (c). These long curves are then used to identify candidate

correspondences and candidate planes.

3.1.3 Identifying Candidate Correspondences and Planes

The idea, as mentioned earlier, is to view the correspondence problem as a curve

matching problem. I.e., given a curve, say curve A, we would like to identify another

curve from the set of extracted curves, which is the symmetrical counterpart of A. If

curve B is the symmetric counterpart of curve A, then curve B is said to correspond

to curve A. The set (A, B) is called a correspondence. We have a set of long curves at

the end of the curve extraction step; however, we do not know the correspondences.

The problem of identifying correspondences can be converted into a binary integer

program (BIP). However, candidate correspondences must first be identified in order

to formulate the problem as a BIP. Ideally, the candidate correspondences form a

superset of which the correct correspondences are a subset. Let s1, s2, . . . , sNc repre-

sent Nc extracted long curves. Let SA represent the set of all possible pairs of curves

(correspondences), i.e., SA = {(si, sj) | i 6= j}. Most of the correspondences in this

set are incorrect, and can be rejected based on criteria described later. The idea here

is to select a set of correspondences, SC , such that SC ⊂ SA, and ensure at the same

time that the true correspondences are included in SC . In order to accomplish this,

we use two types of criteria. One type of criteria applies to curves in the 2D image,

and the other applies to the 3D reconstruction of the curves.

2D and 3D Criteria

We use three 2D criteria when choosing candidate correspondences. The first two

criteria deal with necessary conditions, and the third criterion is a heuristic. The first

criterion used to judge whether a correspondence (si, sj) should be a part of SC , is

to look at the overlap between si and sj when viewed from the vanishing point. As

55

(a) (b)

(c)

Fig. 3.3. (a) Different pieces of curves are represented by different colors. (b) Costs
for combining short curves. (c) A low-cost long curve extracted by the shortest path
algorithm.

56

shown in Figure 3.4 (a), curves that truly correspond have a large overlap. Images of

symmetric 3D curves have 100% overlap when viewed from the vanishing point, and

therefore correspondences with low overlap can be safely rejected.

Shape dissimilarity between two 2D curves is another criterion for rejecting cor-

respondences. As long as the 3D symmetric curves are approximately planar, their

projected images have similar shape [61]. Psychophysical experiments show that when

the 2D curves are arbitrarily different, then they are not perceived by observers as

3D or symmetrical [20]. The shape similarity is evaluated for polygonal approxima-

tions of the curves, where the polygonal approximations are obtained by sampling the

curves using rays from the vanishing point (as shown in Figure 3.4 (b)). Comparing

the turning angles at each of the sampled points serves as a shape match metric,

which can be used to decide whether a correspondence should be part of SC . Images

of two planar symmetric curves either always turn the same way, or always turn the

opposite way at each sampled point [20]. For instance, the symmetric curves that

are part of the object in Figure 3.4 (a) turn the opposite way, while those in Fig-

ure 3.4 (b) turn the same way. The signed turning angles are either subtracted or

added, depending on whether the curves turn the same way or the opposite way. The

ambiguity in whether turning angles are added or subtracted is resolved by counting

the number of times that the curves turn in the same way, or the opposite way (at

the sampled points), and then choosing the direction with the maximal count. This

measure leads to a low shape cost for the images of planar symmetric curves, but not

necessarily for non-symmetric curves.

For pairs of straight lines, the shape similarity criterion is ineffective, because

lines always have zero turning angles, up to pixelation error in the image. In such

cases their relative edge orientation can be used to choose candidate correspondences.

I.e., corresponding straight lines usually have similar edge orientations. We use K-

Means to cluster the edge orientations for the entire image into three clusters. We

use three clusters because rectangular objects have three dominant directions. We

then remove edge pixels that are more than one standard deviation away from their

57

cluster center. This results in four clusters of edge pixels (as shown in Figure 3.4 (c)).

Three clusters correspond to the three cluster centers (shown in red, green and blue)

and another set of unclustered edge pixels belonging to none of the clusters(shown in

black). This is done to ensure that pixels with ambiguous edge orientations (i.e., their

edge orientations cannot be assigned to any group with confidence) are not forced into

being part of one cluster or another. When looking for candidate correspondences

between two curves, we insist that of those pixels that are clustered, more than half

of the pixel-wise correspondences belong to the same cluster.

There is one 3D criterion for choosing candidate correspondences: we assume that

3D curves are approximately planar. Therefore, the approximate planarity of a pair of

curves can be used to decide whether or not to include or exclude a correspondence.

To produce a planarity score, we first assume that the two curves correspond and

reconstruct them in 3D. Planes are then fit using RANSAC. The goodness of the

fit tells us if the 3D curves are approximately planar. Curve correspondences that

produce highly non-planar 3D reconstructions can be rejected.

Identifying Candidate Planes

We derive a set of candidate planes, that are used to approximate the 3D object,

from the set of candidate correspondences. First we reconstruct the 3D curve pairs

from the candidate correspondences, and consider each curve pair in turn. These two

3D curves may be co-planar. In this case, we can fit a single plane to both curves

and add it to the list of candidate planes. When curve pairs are not coplanar, we fit

planes to both the 3D curves separately, and add them to the set of candidate planes.

As mentioned before, we assume that the approximate direction of gravity is

known. It is reasonable to assume that most planes used to approximate a real world

object are vertical [20], and this is useful for finding additional candidate planes.

When the individual curves in a curve pair are 3D lines, then we also add the candidate

vertical planes that pass through each 3D line. This is accomplished by minimizing

58

the function:
∑N

i=1(a xi + b yi + c zi − d)2 + α(a g1 + b g2 + c g3)2, where [xi, yi, zi]

represents the points on the 3D line, [a, b, c, d] represents the plane we are seeking,

[g1, g2, g3] represents direction of gravity, and α is a weight factor.

We now have a large set of candidate planes; however, it is very likely that many

planes are redundant. Therefore, mean shift clustering is performed to reduce the

number of planes. Once we have identified the candidate planes and candidate cor-

respondences, we frame the problem of choosing the correct curve correspondences

from SC as a binary integer program as described in the next section.

3.1.4 Choosing the Correct Correspondences

Let c1, c2, . . . , cN ∈ SC be the set candidate correspondences, and π1, π2, ..., πM ∈

ΠC be the set candidate planes, identified in the previous steps. In the next step

we identify, the symmetric correspondences, and the planes, used to approximate the

3D shape of the object. In other words, we choose a subset of the correspondences

in SC , and a subset of planes in ΠC , such that the resulting 3D reconstruction uses

a minimal number of planes, while ensuring that a substantial portion of the object

is still reconstructed. This problem can be formulated as a binary integer program

(BIP).

The table on the left in Figure 3.5 shows the variables involved in the BIP. Each

row represents curve correspondences, while each column represent candidate planes.

Every variable xkij is a binary variable. Two things are implied when a variable xkij is

set (i.e., when xkij = 1). First, the curve correspondence i is chosen as part of the sub-

set of true correspondences. Second, the 3D curve obtained from this reconstruction

is assigned to plane j, which in turn means that plane j is chosen as one of the planes

used to approximate the 3D object. As shown in Figure 3.5, each correspondence

is repeated twice. This is because each correspondence involves two 2D curves from

which two 3D curves are reconstructed, and these two 3D curves need not be assigned

to the same plane. That is, we must be able to assign a single correspondence to one

59

(a) (b)

(c)

Fig. 3.4. (a) Overlap from Vanishing Point, (b) Polygonal approximation for the
shape match metric, and (c) Clustered edge orientations.

60

or two separate planes, and hence, in the BIP, each correspondence is repeated twice.

For example, let us say that the ith correspondence, ci = (sp, sq), then x1
im = 1 and

x2
in = 1 means that the 3D curve resulting from the reconstruction of 2D curve sp,

was assigned to plane πm, and the 3D curve resulting from the reconstruction of the

2D curve sq was assigned to plane πn.

Fig. 3.5. BIP formulation.

The table on the right in Figure 3.5 shows the cost associated with setting each

variable xkij. I.e., wkij represents the cost of choosing correspondence i, and assigning

(associating) the kth 3D curve resulting from the correspondence i to plane j. Here,

k ∈ {1, 2}, and refers to either the first or second reconstructed 3D curve from

correspondence i. The weight, or cost wkij, consists of two terms, and is given by,

wkij = exp(dkij) + β δi. The first term is the exponential of the mean distance

dkij of the kth 3D curve (reconstructed based on the correspondence i) to plane j.

The second term depends on the shape match δi (Figure 3.4 (b)) between the two

2D curves involved in the correspondence, and is measured as the average difference

in turning angles at the sampled points. Correspondences, whose reconstructed 3D

curves are far from the plane, or whose shape match is poor, are removed. The

remaining values are normalized, and then a weighted combination (represented by

61

β) of the two terms is taken. The problem of picking the right correspondences and

planes can now be framed as a constrained BIP as shown below.

minimize wwwTxxx+ µyµyµy

subject to

xT lxT lxT l ≥
(p

100

)
L (C1)

UxUxUx ≤ 1N1N1N (C2)

RxRxRx = 0N0N0N (C3)[
EEE −IM−IM−IM

]xxx
yyy

 ≤ 0M0M0M (C4)

M∑
k=1

yi ≥ 2 (C5)

xkij ∈ {0, 1} ∀ i, j, k (C6)

yi ∈ {0, 1} ∀ i (C7)

62

where,

xxx = (x1
11, x

1
12, .., x

1
1M , x

1
21, x

1
22, ..., x

1
2M , ..., x

1
NM , x

2
11, x

2
12,

.., x2
1M , x

2
21, x

2
22, ..., x

2
2M , ..., x

2
NM)

www = (w1
11, w

1
12, .., w

1
1M , w

1
21, w

1
22, ..., w

1
2M , ..., w

1
NM ,

w2
11, w

2
12, .., w

2
1M , w

2
21, w

2
22, ..., w

2
2M , ..., w

2
NM) ∈ RMN

yyy = (y1, y2, ..., yM), lll = (l1, l2, ..., lMN) ∈ RMN

UUU ∈ RN×(NM), RRR ∈ RN×(NM), EEE ∈ RM×(NM)

IMIMIM is the identity matrix of order M

1N1N1N = (1, 1, ..., 1︸ ︷︷ ︸
N elements

)T , 0N0N0N = (0, 0, ..., 0︸ ︷︷ ︸
N elements

)T , 0M0M0M = (0, 0, ..., 0︸ ︷︷ ︸
M elements

)T

µµµ ∈ RM , µi ∈ (0,∞) ∀ i

The elements of vector yyy are binary variables which indicate whether a plane is

selected or rejected. I.e., if yi = 1 then plane i is selected as a plane that is used to

approximate the 3D object. Constraint C4 is devised to ensure that the elements of

yyy are indicator variables for including or excluding planes. As mentioned before in

Figure 3.5, the columns represent planes. Hence, if any of the variables (xkij) are set

in a column, say j, then constraint C4 ensures that plane j is chosen and yj is set.

This can be achieved by insisting that:

2∑
k=1

N∑
i=1

xkij
2N
≤ yj

The variable µ represents the cost for each included plane, thus biasing the solution

towards fewer planes. Another important constraint that needs to be imposed is that

if one of the variables in row i is set, then one variable in row i+N has to be set too.

This is because we cannot assign one 3D curve (from correspondence i) to a plane,

and not assign the other 3D curve (from correspondence i) to a plane. This can be

achieved by imposing the following constraint for row i:

63

M∑
j=1

x1
ij =

M∑
j=1

x2
(i+N)j

Constraint C3 imposes this condition for all the correspondences (half the rows).

Hence matrix RRR, used to represent this set of constraints, has N rows.

The trivial solution – setting xxx and yyy to the zero vectors – is not interesting, since

there is no reconstructed shape. Constraint C1 ensures that the trivial solution is not

selected. Element l(iM+j) of vector lll represents the length of the curves involved in

correspondence i. Hence, the dot product xT lxT lxT l gives the total length of all the curves

that are part of the selected correspondences. Constraint C1 ensures that this length

is at least p% of L, where L is the total length of all the distinct curve pieces in the

image.

Constraints C2 ensure that the correspondences are unique. The idea here is

that every edge pixel has a unique symmetric counterpart in the 3D object, and

this constraint has to be explicitly imposed in our formulation of the problem. For

instance, in Figure 3.6, correspondences (a) and (b) could be chosen at the same

time, but correspondences (a) and (c) cannot, because of the angular overlap from

vanishing point. For each correspondence, we can identify other correspondences

that have a substantial angular overlap from the vanishing point. This information

is used to add a constraint that only one among those with substantial overlap is

selected. Constraints C2 is a matrix where each row represents this constraint for a

given correspondence.

Since, we do not expect a single plane to approximate any object, we ensure that

at least 2 planes are selected by enforcing constraint C5. We also add a preference for

planes approximately parallel or perpendicular to the symmetry plane, by decreasing

the weight, µi, of such planes to eighty percent of that of other planes.

We refer to straight line edges in the edge map that approximately pass through

the vanishing point as self-symmetric lines. For example, in Figure 3.4 (c), the blue

lines are self-symmetric. They are referred to as self-symmetric because, the sym-

metric counterparts of points on such lines lie on the same line. Since we frame the

64

problem as a curve matching problem, and since we do not expect any other curve/line

to be the symmetric counterpart of a self-symmetric line, we remove these lines from

the edge map prior to all processing. These lines can be fit later to the 3D recon-

struction that was obtained from optimizing the BIP. The 3D orientation of these

lines is the same as the normal of the symmetry plane. The neighborhood informa-

tion from the 2D image is used to determine the exact position (and extent) of these

lines in 3D. A small neighborhood of pixels in the 2D image, around the endpoints

of the self-symmetric line, is considered. After the BIP optimization is complete,

the 3D position of some of these neighborhood pixels may be available depending on

whether the optimization process was able to find matches for them. If 3D positions

are available for pixels in both neighborhoods (corresponding to both end-points of

the self-symmetric line), then we consider all possible lines that go between points in

one neighborhood with points in the other neighborhood. We then pick the 3D line

that is most aligned with the normal of the symmetry plane, to obtain the 3D line

corresponding to the self-symmetric 2D line.

As mentioned before, the BIP is solved using the Gurobi solver [60]. In order to

account for occlusions in the image, we ask the algorithm to reconstruct only 70% of

the pixels in the edge map. Specifically, the value of p in constraint C1 is set to 70.

If a large part of the object is occluded, this value will be too high, and the problem

is infeasible. The value of p is initialized to 70, and is automatically decremented if

the Gurobi solver detects that the problem is infeasible. In practice it does not take

more than a couple of attempts to find a feasible value of p.

Though a large number of correspondences obtained by the optimization process

are correct, it was observed that a few mistakes were made. One of the reasons

for the loss of accuracy comes from the clustering of candidate planes. In order to

obtain better plane estimates, once the optimization process converges and a solution

to the problem is obtained, the planes associated with the correspondences chosen

by the optimization process are identified. Keep in mind that the candidate planes

were obtained from candidate correspondences in the first place, and hence for each

65

chosen correspondence, the planes it added/contributed can be identified. (I.e., the

planes before clustering.) The optimization process is then rerun with these planes as

candidate planes. When the process is rerun, we consider if the new set of candidate

planes requires clustering. It may not, because we expect the new set of candidate

planes to be much smaller than the initial set of candidate planes. Even when the

number of planes is large enough to require clustering, the accuracy of the clustered

planes should be much better. In practice, rerunning the optimization process with

the new set of planes corrects some of the errors made in the first run.

(a) (b) (c)

Fig. 3.6. Correspondences (a) and (b) could be chosen simultaneously, but correspon-
dences (a) and (c) cannot, because of the angular overlap from vanishing point.

3.1.5 Results

Figures 3.7 and 3.8 show some of the results obtained. Some of these images were

taken by us using a Point Grey Bumblebee2 R© stereo camera, and about half were

obtained from the internet. For images taken with the Bumblebee2 R©, we estimated

the vanishing point and the direction of gravity using the algorithm described in [58].

The image from the left camera was then used by our algorithm as input, along with

66

A B C D E F

Fig. 3.7. Results for objects A-F: Original Image is shown in row one, row two shows the symmetric

correspondences detected with corresponding curves shown in same color, the planes selected are

shown in row three, and rows four through six show three different views of the reconstructed object.

the estimates for the vanishing point and the direction of gravity. The focal length and

the principal point were read off of the camera’s firmware. For the internet images we

tried to obtain the estimates of camera calibration parameters and vanishing points

67

G H I J K L

Fig. 3.8. Results for objects G-L: Original Image is shown in row one, row two shows the symmetric

correspondences detected with corresponding curves shown in same color, the planes selected are

shown in row three, and rows four through six show three different views of the reconstructed object.

using existing algorithms [48–50]. These estimates were not reliable. In fact, under

the Manhattan world assumption [54], used by most of these algorithms, two of the

three vanishing points correspond to the direction of gravity, and the normal of the

symmetry plane. But it is difficult to apply to Manhattan world assumption to objects

like E, K, and L, because not all the required vanishing points are salient in the images.

68

(a) (b) (c) (d)

Fig. 3.9. (a) Wrong correspondences resulting from allowing to curves very close to
each other to correspond, (b) the planes picked by the algorithm, (c) and (d) different
views of the reconstruction.

This is perhaps the reason why the automatic vanishing point estimating algorithms

find these images difficult to handle. Therefore, for such images from the internet,

two vanishing points (representing orthogonal directions in 3D) were estimated by

hand. Since, these vanishing points represent orthogonal directions in the 3D space,

the focal length can be obtained if the principal point is assumed – typically the center

of the image. The solution to xV 1 xV 2 +yV 1 yV 2 +f 2 = 0 gives the focal length, where

(xV 1, yV 1) and (xV 2, yV 2) are the two estimated vanishing points, and f is the focal

length. Though estimating the direction of gravity can be challenging, our algorithm

only needs a crude estimate, and hence this is not a problem in general.

The results show that the algorithm was able to obtain a reasonably good repre-

sentation of the 3D shape of the objects. The 3D shape representation is accurate,

in most cases, if we take into consideration that the algorithm was not designed to

take care of occlusions in the image. Shape is a spatially global property and so is

symmetry and planarity. Therefore, enforcing these constraints should lead to good

shape recovery for objects where such regularities (at least approximately) exist. As

an example, for object L, the hind legs are occluded, but the algorithm reconstructs

69

it from a wrong correspondence, and it is consistent with a good shape representation

because of the regularities imposed on the 3D reconstruction. Similarly, the corre-

spondences obtained for the top part of the hind legs (represented by red, brown and

dark blue lines) for object L are not accurate, but the shape representation is still

good.

One of the problems we faced while performing reconstructions, is that when 2D

curves that are very close to each other are allowed to correspond, it often leads to

bad reconstructions, as shown in Figure 3.9. To deal with this issue, we use a distance

threshold to prevent close 2D curves from corresponding. The distance is measured as

the median distance between corresponding points on the two 2D curves. To decide

on the threshold, we first note that the shape of an object is defined mostly by curves

close to the 3D convex hull of the object. Hence, reconstructing 3D curves close to

the hull is more important. Self-symmetric lines are used to dynamically decide this

threshold. For non-degenerate views, the length of self-symmetric lines is a good

estimate of the distance between curves that actually correspond. We choose a value

of 0.4 lss as the distance threshold, where lss is the length of the longest self-symmetric

line. This value works for all images except for object K, for which it had to be set to

0.2 ∗ lss. Using such a threshold means that some of the internal details of the shape

of the object may not be reconstructed, as seen with object F. But this method can

still capture the most important aspects of the 3D shape. A better solution to this

problem is to view 3D shapes as composed of 3D parts, and correspondences should

be found between the images of parts rather than the images of curves. The object in

Figure 3.9 can be thought of as being composed of six parts: four legs, and two flat

surfaces parallel to the ground. Parts either have symmetric counterparts, or they

are self-symmetric. (In Figure 3.9, the legs have symmetric counterparts, and the

flat surfaces are self-symmetric.) Dealing with parts, if they can be reliably detected,

would simplify the problem and make it more robust. Moreover, some work [62, 63]

towards part detection is already available and can be used.

70

The algorithm runtime averages about 15 secs on a 2.8 GHz Intel R© Core i7 quad

core processor with 16 GB RAM. The code is written in Python. Though BIP is an

NP-Hard problem, the number of variables involved in the BIP is usually not more

than 2000. The Gurobi solver can easily handle such problems and usually converges

within a second or two. Setting up the integer program accounts for the bulk of the

runtime. There is ample scope for performance improvements, if it is a priority.

3.1.6 Conclusion

We have designed an algorithm that can effectively reconstruct 3D shapes from

single camera images by employing symmetry and planarity priors. It demonstrates

how these priors can be used to convert an ill-posed problem into a well-posed one.

The results demonstrate the effectiveness of the idea of viewing the reconstruction

problem as a constrained curve matching problem. By shape, some sort of regularity

is implied, and by using regularities like symmetry and planarity we have successfully

reconstructed simple shapes that can explain the given images.

71

4. SKELETON EXTRACTION FROM 3D POINT

CLOUDS BY DECOMPOSING THE OBJECT INTO

PARTS

4.1 Introduction

Decomposing a complex 3D shape into its components is an important problem

that has applications in many fields including computer graphics and computer vi-

sion. Psychological studies have shown that human shape perception and recognition

is based on decomposing complex shapes into simple primitives [22]. Therefore, char-

acterization of a shape by its parts and the connections between them is only natural,

especially for applications involving human interaction. A good example in this re-

gard is the work by Funkhouser e. al [64], which aims at constructing detailed 3D

models by assembling parts extracted from existing models. Part based approaches

also have applications in other area like character animation [65] and surface recon-

struction [66–68].

To decompose a shape into its parts, we first need a good definition for a part.

A good definition of a part would be general enough to capture the wide variety of

part types available in the real world and at the same time be able to decompose a

shape into meaningful units. In this context, generalized cylinders (GCs) introduced

by Binford [69] would serve as a very good definition of a part. A wide variety of

natural as well as man made objects have parts that can be well modeled by GCs.

GCs are formed by sweeping a planar cross-section along a 3D axis, with uniform

size scaling applied to the cross-section as it moves along the axis. An illustration of

this is shown in Fig. 4.2. Translational symmetry is the fundamental property that

defines a GC [20]. In this work, we think of parts of a 3D shape as GCs and employ

translational symmetry to extract them.

72

Decomposing a shape into its components can be thought of as an inverse problem

which is often times also ill-posed. It is an inverse problem because the forming of a

complex 3D shape by interconnecting parts can be thought of as the forward problem

and the ill-posedness comes from the fact that there is no unique solution to the

problem. Solution to ill-posed inverse problems are obtained by imposing additional

constraints (aka priors). In this context, translational symmetry can be thought of

as the prior we use to identify parts which eventually leads to the decomposition of

shapes.

Skeleton extraction methods often times lead to shape decomposition [70–72]. But

in our case it works in the opposite direction. The 3D-axis of a GC, which is integral

to its definition, would serve as the skeleton of the part. Therefore, a GC based

decomposition would naturally lead to skeletonization of the shape. There exist a

method by Zhou et al. [73] which address the problem of decomposing shapes into

GCs. As we point out later, though our method has similarities to their approach,

there are significant differences stemming from the fact that our method works on

unorganized point clouds and theirs on meshes.

As shown in Fig. 4.1, the algorithm has three main steps. In the first step, a

few candidate parts are generated. Not all candidate parts are ideal to represent the

actual parts of the object, and there is often overlap between different candidate parts.

Therefore, an optimal subset of parts are then selected from these candidate parts in

the next step. Note that, every part has an axis associated with it, which serves as

its skeletal representation. Therefore, in the final step, the individual skeletons of the

selected parts are linked appropriately to form the complete skeleton.

It needs to be pointed out that there isn’t a definition of curve skeletons that is

agreed upon by everyone. The medial axis based definition of a skeleton, introduced

for 2D shapes, would result in medial surfaces when extended to 3D shapes. Defining

curve skeletons precisely is even more challenging when 3D shapes are presented as

unorganized point clouds. Analytical methods that attempt to extract curve skeletons

do not usually subscribe to any proper definitions of curve skeletons. However, a curve

73

(a) (b)

(c)

Fig. 4.1. An overview of the algorithm. (a) Candidate parts are first generated.
The points representing the part are shown in blue and the skeletal representation
of parts are shown in red. (b) An optimal subset of parts, that can represent the
entire point cloud, are selected from the candidate parts. Different parts are shown in
different colors. Also shown are the individual skeletons of each part. (c) Appropriate
connections are made between skeletons of individual parts to form the final skeletal
representation.

skeleton can be intuitively defined as a good 1D representation of the 3D shape. In

this context, if we model each part of a shape as a GC, we can obtain a 1D skeletal

representation of the 3D shape that is not only intuitive but also well defined. Though

such a definition will only lead to a skeletal representation for the individual parts,

and obtaining the complete skeletal representation from the part skeletons could

be challenging, a few simple post-processing steps can be employed to obtain the

complete skeleton as we show later.

In order to generate candidate parts, we first detect the cross-section of parts

and then grow parts starting from this initial cross-section to obtain complete parts.

An interesting fact to notice here is that growth explains why many things in na-

ture, like limbs of animals and tree trunks, exhibit translational symmetry [20]. We

employ translational symmetry to grow parts. Specifically, we start with a initial

74

cross-sectional cluster (a small cluster of points representing a thin cross-section) and

grow this cluster by identifying similar clusters in its neighborhood via 3D point set

registration. By combining ideas from [74] and [75] we present a new registration

algorithm that is tailor made for our purpose of growing parts via registration. The

proposed algorithm makes use of the orientation information of the point clouds (i.e.,

the point normals) and this, as we show in the results section, helps it to achieve

greater accuracy in the registration process. In the results section, we also compare

our method to two state of the art methods for skeleton extraction and point out the

advantages of using a part based method. We also present a graphical user interface

(GUI) to demostrate the advantage of using a part based approach to skeletoniza-

tion. Specifically, we show the ease with which mistakes, if any, can be corrected with

minimal user interaction using the GUI.

In the next section we review the past literature relevant to our work. In section

4.3, we explain the procedure to generate candidate parts. Method for selecting

optimal subset of parts and the method for linking selected parts are explained in

Sections 4.4 and 4.5 respectively. The GUI is described in section 4.6 and the results

are presented in section 4.7. This is followed by sections on the implementation details

and conclusion.

4.2 Related Work

We organize the literature review into two sections. First, we discuss methods

from the literature used for curve skeleton extraction. This is followed by a review of

methods for shape decomposition.

Skeleton Extraction

There is a vast body of prior work addressing the problem of curve skeleton ex-

traction. Methods exist to extract curve skeletons from complete surface models, like

polygonal meshes, as well as unorganized point clouds. Methods belonging to the lat-

75

ter category are the most relevant to our work and hence we focus on these methods

for the review. The reader may refer to [76] or [77] for a comprehensive review of the

various skeleton extraction methods that are available.

There exist a class of methods that rely on defining a field on the voxelized internal

volume of shapes. In such methods, the ridges of the field are of particular interest

when it comes to skeleton extraction. For example, in [78], the authors identify

valleys, in the generalized potential field, which connect several seed points, to derive

the axis of the GC representation of the shape. In [79], Siddiqi et al. extract skeletons

by using the fact that the divergence of the euclidean distance transform would be zero

everywhere except at the skeletal points. Song et al. [80] improve upon the results

obtained by Huang et al. [81] by using the distance field to guide the L1-median

skeleton extraction. Note that the appropriate voxelization of unorganized point

clouds is a non-trivial task. Apart from this, as we will demonstrate in the results

section, these methods will not generalize well to certain shapes in comparison to a

part-based approach.

By defining an appropriate real valued function on a compact manifold and then

tracking the evolution of its level sets, Reeb graphs, which capture the topology of

the manifold, can be created. Methods described in [82–84] employ Reeb graphs to

extract skeletons. Authors in [85, 86] extract skeletons by employing Voronoi dia-

grams. Voronoi diagrams can be used to approximate medial surface of shapes and

these can be further pruned to obtain curve skeletons. Tagliasacchi et al. [87] pro-

posed a method, based on the rotational symmetry axis, to extract skeletons from

incomplete point clouds of generally cylindrical shapes. Sharf et al. [70] proposed a

method that is based on the evolution of a deformable model inside the point cloud.

They obtain a first approximation to the skeleton by tracing the growing fronts and

perform further filtering to obtain the final curve skeleton. Cao et al. [88] extend the

mesh contraction method of Au et al. [71] to point clouds and use Laplacian based

contraction followed by topological thinning to obtain curve skeletons. In the results

76

(a)

(b)

(c)

Fig. 4.2. Our definition of a part is based on translational symmetry. (a) The three
fundamental properties of 3D Axis, 2D cross-sectional contour and scale function
define a part . Parts are formed by sweeping a planar cross-section through 3D space
along a defined axis (a space curve) and simultaneously applying size scaling as the
cross-section is swept along the axis. (b) The normals to the contour at the various
points on the contour are shown. (c) At each point along the axis, the plane containing
the corresponding 2D contour is perpendicular to the axis. Or in other words, the
normal of the plane represents the tangent to the axis at that point. The normals of
the 2D contour lie on the cross-sectional plane and hence they are perpendicular to
the normal of the plane.

section, we compare our method with that of Cao et al. and point out the drawbacks

of using a contraction based approach for skeleton extraction.

Shape Decomposition

A variety of methods address the problem of segmentation and semantic labelling

of point clouds [89]. Skeleton extraction methods can some time lead to decomposition

of shapes [70–72]. But model fitting methods, which addresses the problem of shape

decomposition, are the most relevant to our work. Most primitive detection and fitting

methods employ simple primitives for the purpose. For instance, Schnabel et al. [90]

describe an efficient RANSAC based method capable of fitting simple primitives like

77

planes, spheres, cylinders, cones and tori. Attene et al. [91] present a method to

fit simple primitives to triangle meshes using a hierarchical face clustering approach.

GCs, compared to these simple primitives, can represent a much broader range of

shapes.

Lit et al. [92] present an early work on decomposing polygonal meshes into parts

that resemble GCs. They extract approximate curve skeletons by mesh edge con-

traction and then identify the critical points (points where the topology or geome-

try changes) by sweeping a plane, perpendicular to the skeleton branches, over the

mesh. The parts of the mesh between consecutive critical points are then extracted

as components. Though it is not stated explicitly, this method uses the notion of

translational symmetry to identify components/parts. One of the two methods to

grow parts that we describe later has similarities with this method. However, unlike

this method we operate on unorganized point clouds and hence cannot employ their

method of skeleton extraction. Moreover, the second method to grow parts that we

describe later is more sophisticated as it is based on the very definition of a GC (i.e.,

based on translational symmetry), and is more suitable for point clouds. In [78], the

authors first derive a skeleton of the shape using a potential-based skeletonization

approach and then generate the cross-sections with the help of seed points. But if

the shape has to be decomposed into parts, each of which is a GC, the seed points

have to be manually chosen.

There are a number of automatic as well as interactive surface reconstruction

methods that use a GC representation [66–68]. However, they do not explicitly aim

at obtaining an optimal decomposition of the shape into GCs. With regards to

obtaining a GC based decomposition, the work of Goyal et al. [93] and Zhou et

al. [73] are the most relevant to our work. Both these methods work on meshes unlike

our method which takes unorganized point clouds as input. Goyal et al. obtain a

direct parameterization of 3D meshes in terms of sets of locally prominent cross-

sections (PCS). Each set of PCS represent a different sweep component. Zhou et al.

propose a metric to measure cylindricity of a GC. They first extract an over-complete

78

set of local cylinders using the method proposed by Tagliasacchi et al. [87] and then

combine these local cylinders to form longer candidate cylinders. The set of candidate

cylinders is still over-complete and the partition of the shape into GCs is obtained by

solving the exact cover problem. Our approach is similar to that of Zhou et al in the

sense that we too first generate an overlapping set GCs and we choose the best subset

of GCs that cover the shape. However, there are some significant differences between

the two approaches. The most signifacnt difference being that our method operates

on point clouds and not polygonal meshes. Our method to extract GCs is rooted in

the very definition of a GC which is in turn based on translational symmetry. Their

method of scoring the GCs is not applicable to us because we operate on point clouds.

Therefore, we introduce metrics to score GCs based on factors like their self-similarity

(i.e., based on how much one portion of the GC is similar to another portion of the

same GC), length, straightness of axis etc. And finally, we frame the problem of

choosing the final subset of GCs as a binary integer program.

4.3 Generating Candidate Parts

As shown in Fig. 4.2, a GC is formed by sweeping a planar cross-section along a

3D axis, with size scaling applied to the cross-section, as it moves along the axis. Such

objects were referred to as generalized cones by Binford [69]. As per this definition,

every part has an axis. This axis serves as the skeletal representation of the part.

According to this definition of a part, there is a cross-sectional plane associated with

each point on the axis. And as shown in Fig. 4.2 (c), the normal of the cross-sectional

plane associated with a point on the axis, is the tangent to the axis at that point.

This important observation will be employed later in detecting local cross-sectional

planes.

Fig. 4.3, shows the various steps involved in generating candidate parts. Given a

point cloud, the first step in the algorithm is to estimate the point normals for each

point in the cloud. The point normals are nothing but the local surface normals.

79

At the end of this step, we would obtain an oriented set of points and the point

normal orientations, as we show later, would play a very important role throughout

the algorithm. In the next step, we derive local thresholds. The key idea here is

that whenever thresholds are required to be applied (like estimating the closeness of

a point in the cloud to some plane or deciding if two points in the point cloud can

be considered as neighbors), locally adaptive thresholds need to be employed. For

instance, the sparsity/density of the point clouds need not be uniform through out

the cloud. To deal with this issue, we assign a number, which represent the local

distance threshold, to each point in the cloud.

In the next step, we detect what we call “initial cross-sections”. An initial cross-

section is a cluster of points in the cloud that are likely to represent one of the cross-

sections of a part. In Fig. 4.4, cluster 0, represents such an initial cross-section. Such

clusters serve as the starting points to “grow” parts. Keep in mind that all points

in the point cloud are assumed to come from parts which are generalized cylinders.

Therefore, each point in the cloud corresponds to one of the cross-sectional planes

(like the yellow planes in Fig. 4.2 (c)) of one of the parts. Therefore, in this step,

given any point in the cloud, we would like to be able to estimate the orientation

of the cross-sectional plane, passing through that point. Provided, we can find the

orientation of the cross-sectional plane corresponding to a given point in the cloud,

all points sufficiently close (the notion of being sufficiently close will be made more

concrete later) to this cross-sectional plane would constitute what we call an initial

cross-section.

Assume for a moment that given such an initial cross-section, we will be able to

extract the part that the initial cross-section belongs to. For instance, in Fig. 4.4,

given cluster 0, let’s assume we can grow the part and extract the torso of the dinosaur.

We will explain how this can be done later. Since, we would like to extract all parts

of an object we would need at least as many initial cross-sections as there are parts.

In the example of the dinosaur (Fig. 4.4), if we assume that the number of parts

constituting the object is nine (i.e., four limbs, a tail, torso, neck, horn and face), we

80

need at least nine initial cross-sections to extract all the parts. Hence, we cluster the

point cloud into M clusters and find the initial cross-section for each of these clusters.

A large value is chosen for M (close to hundred) to ensure that we detect initial cross-

sections for all the parts. It is better to have some redundant parts than to miss out

on extracting some parts. As shown in Fig. 4.3, the next step is “growing” parts out

Fig. 4.3. Block diagram showing the different steps involved in generating candidate
parts.

of these initial cross-sections. To understand this process consider cluster 0, in Fig.

4.4, which represents an initial cluster. Once we have such a cluster of points, we

search in the neighborhood, of that cluster, for a similar group of points which could

represent the neighboring cross-section of the initial cluster. Cluster 1 in Fig. 4.4

represents such a matching cluster. Note, we will make the notion of similarity/match

concrete later. If we find a matching cluster, we repeat this process of searching for

matching clusters. For instance, cluster 2 is found to be a match for cluster 1. Keep

in mind that our parts are defined by translational symmetry. Therefore, for each

cross-sectional cluster, we will find similar clusters in its neighborhood. Or in other

words, the procedure just described for growing parts from initial cross-sections is

inspired by the definition of parts as generalized cylinders. This process of growing a

part is repeated until there are no more matches to be found. Note, the parts are to

be grown, from the initial cluster, in both directions. In Fig. 4.4 , the clusters in the

two directions are represented by positive and negative cluster numbers respectively.

The three fundamental components of a part is its 2D cross-sectional contour, the

scaling function and the 3D Axis. Since we are dealing with point clouds, the concept

of a 2D contour lying on a plane does not make sense. Hence, the initial cross-section

is a cluster of points and these thin clusters play the role of the 2D cross-sectional

81

contour. In the growing stage we are attempting to determine matches for the thin

cross-sections. Finding such matches would give us an estimate of the scaling function

and also the estimate of the axis of the part. The procedure of finding matches and

how such matches would lead to estimates of the scaling function and the axis would

be explained in the sections below. But the key point to keep in mind is that the

part detection algorithm is attempting to identify parts by using its very definition.

Each of the steps in Fig. 4.3 are explained in greater detail in the sections below.

4.3.1 Estimating Point Normals

Before extracting the candidate parts, we estimate the local surface normal of the

points in the 3D point cloud. We use the software CloudCompare to do this [94]. A

quadratic surface is fit on to the local neighborhood to estimate the normal direction.

But the orientation of these normals (i.e., whether it points towards the inside or

outside of the object) is still ambiguous. To ensure that the normals are oriented in a

consistent fashion, the normals are re-oriented by propagating the normal orientation

starting from a random point with the help of a Minimum Spanning Tree (MST). We

use X = {x1,x2, · · · ,xN} to represent the point cloud. Note, xi = (xip,x
i
n), where

xip ∈ <3 represents the position of the point and xin ∈ <3 is a unit normal representing

the orientation of the normal at the point.

4.3.2 Deriving Locally-adaptive Thresholds

We use minimum spanning tree (MST) to derive local distance thresholds. The

distance to neighboring points in an MST, constructed on the 3D point cloud, is a

good indication of the local sparsity of the point cloud. Therefore, to derive a locally

adaptive distance threshold for a point in the cloud, the distances of the point to

its neighbors, as per the MST constructed on the cloud, can be used. To compute

the MST, we must have an initial graph on the point cloud. Instead of considering

a fully connected graph as input to MST, we construct a graph where every point

82

Fig. 4.4. Depiction of how a part is grown from an initial cross-sectional cluster
(Cluster 0). Neighboring cross-sectional clusters are shown in alternating colors. The
red curve represents the axis of the part.

83

is connected to its hundred nearest neighbors. Though a higher number of nearest

neighbors could be considered, in practice, we found it be sufficient to just consider

the nearest hundred neighbors. The reason for not considering a fully connected

graph is to reduce the time for MST computation. The time complexity for MST is

O(E log V), where V is the number of nodes/vertices in the graph and E is the number

of edges. A fully connected graph would have a time complexity of O(V 2 log V),

whereas considering a fixed number of nearest neighbors, say hundred in our case,

will only have a time complexity of O(V log V). We found that using a fixed, albeit

large enough, neighborhood to create the input graph to MST produced considerable

savings in computation time in practice. We use the k-d tree data structure to speed

up neighborhood queries. Specifically , we use the k-d tree implementation from the

Scikit-learn package [95]. Kruskal’s algorithm implemented in the SciPy package [96]

is used to compute MST.

As mentioned before, the locally adaptive threshold for points in the cloud is

employed, for various purposes, throughout the algorithm. One purpose of the locally

adaptive threshold is to create a connectivity matrix on the point cloud. Or in

other words, the locally adaptive threshold derived for a point in the cloud is used

to determine its neighbours. Therefore, once the MST is computed, we assign a

distance threshold for each individual point in the cloud. I.e., for each point xi in the

point cloud, we set a distance threshold δicnct = 1.5dimax, where dimax is the maximum

among the distances to all the neighbors the point xi is connected to, in the MST. Two

points xi and xj in the point cloud are considered to be connected if deucl(x
i,xj) ≤

maximum(δicnct, δ
j
cnct), where deucl(x

i,xj) is the euclidean distance between the points.

Based on this criterion a connectivity graph, Gcnct, is constructed on the point cloud.

4.3.3 Detecting Initial Cross-sections

As stated earlier, parts are formed by scaled versions of a 2D cross-sectional con-

tour translated along an axis. And since thin cross-sectional clusters serve as an

84

(a) (b)

Fig. 4.5. (a) The cross-sectional plane is shown in blue, the thin cross-section associ-
ated with the plane is shown in brown and seed point is shown in red. (b) All points
close to the cross-sectional plane, but not necessarily connected to the seed point.

approximation to the 2D contour of a part in a point cloud, we would like to detect

them and then use them to grow parts. Given any point in the cloud, we need an

algorithm to detect a thin cross-sectional cluster corresponding to that point. For

instance, in Fig. 4.5 (a), given the red point, we need the algorithm to return the

brown points. The red point is referred to as the seed point as it serves as the starting

point for growing parts. As shown in Fig. 4.5 (a), detecting the orientation of the

cross-sectional plane (shown in blue) passing through the seed point would give us

the thin cross-sectional cluster we are looking for. Because, once we estimate the ori-

entation of the cross-sectional plane passing through the seed point, all points lying

sufficiently close to that plane would represent the thin cross-sectional cluster. We

need to consider only points lying close to the plane and at the same time connected

to the seed point. As shown in Fig. 4.5 (b), considering all points near the plane that

are not necessarily connected to the seed point could lead to the inclusion of some

wrong points as part of the cross-section. Note that the approach described above is

similar to that of Tagliasacchi et al. [87].

We need to detect initial cross-sectional clusters at multiple locations on the point

cloud to be able to extract all the parts. As mentioned before, in the example of the

dinosaur in Fig. 4.4, we need at least nine initial cross-sections. Therefore, the point

85

(a) (b) (c)

Fig. 4.6. Growing parts by method 1. (a) Step 1: take a small step along the normal
of cross-sectional plane of Cluster 0 to obtain an estimate of the neighboring axis
point C̃1. (b) Step 2: Consider a set of planes (planes in Aθ×Aφ) whose orientation
is close to the orientation of the cross-sectional plane of Cluster 0. Assign a cost to
each of these planes using the same cost function as the one in algorithm 4.1. Only
four planes (blue color) in the set Aθ×Aφ are shown. The green points represent
inliers of the corresponding plane. (c) Step 3: choose the plane from the set Aθ×Aφ

which minimizes the cost computed. This plane represents the cross-sectional plane
of the adjacent cross-section and the inlier set of this plane represents the adjacent
cross-sectional cluster (Cluster 1 in our example). Top and bottom shows two views
of the chosen plane.

cloud is clustered into M clusters using k-means clustering [95]. These clusters would

determine the locations at which we would detect thin cross-sectional clusters from

which candidate parts are grown. The idea is to pick one seed point per cluster and

then find the thin cross-section to which the seed point belongs and finally grow parts

out of this thin cross-section. For each cluster, we pick the point in the cluster which

is closest to the k-means cluster center as the seed point. To find the cross-sectional

plane that passes through a seed point, si, we do an exhaustive search. Algorithm 4.1

shows the steps involved in searching for a cross-sectional plane that passes through

a seed point. Note, the algorithm takes as input the connectivity matrix defined on

the clusters, Gclust. If any member of one cluster is connected to any member of the

other cluster, according to Gcnct, then two clusters are considered to be connected.

86

Spherical coordinates are used to sample the unit sphere at regular angular intervals to

obtain the normal directions for the planes. Approximately 30 planes are considered

and these planes are denoted by Aθ×Aφ. Note, all the planes pass through the

seed point, so picking a normal direction for the plane fully defines it. For each

plane an inlier set, B, is first computed. This inlier set, as shown in Fig. 4.5 (a),

contains all points that lie close to the plane and are connected to the seed point. A

cluster dependent distance threshold, δipd = median
(
{djmax | xj ∈ cluster i}

)
, is used

to determine if a point is considered close enough to a plane. We use the adaptive

threshold derived earlier in section 4.3.2 here to decide which points lie close to the

plane.

A cost is then assigned to each plane. The cost, represented by c(θ, φ), is based on

the defenition of the part and measures the average length of projection of the point

normals of the points in B on to the normal of the plane. Ideally, the point normals

will be perpendicular to the normal of the cross-sectional plane and therefore will

have a zero length projection on the normal of the cross-sectional plane. As shown

in Fig. 4.2 (c), the cross-sectional plane (shown in yellow) contains the contour. The

normals to the contour lie on the plane and hence are parallel to the plane and have

projection length of zero on to the normal of the plane. This implies that the plane

that minimizes this cost, for a given seed point, would be the best estimate for the

cross-sectional plane for that seed point. After the costs associated with each plane is

computed the plane that minimizes this cost is selected as the cross-sectional plane.

The inlier set of that plane defines the thin cross-section.

4.3.4 Growing Parts

In the previous step, we identified M initial cross-sectional clusters. Starting from

these initial cross-sectional clusters, parts need to be grown. Two methods are used to

grow parts from initial cross-sections. Both methods are again based on the definition

of a part as a GC. We would refer to these methods as method 1 and method 2 for

87

Algorithm 4.1 Algorithm for finding the cross-sectional plane

Input:

Point cloud : X

Connectivity graph on X: Gcnct

Connectivity graph on the clusters: Gclust

Distance Threshold: δipd

Seed point of ith cluster: si = (sip, s
i
n)

Output: θ, φ

1: function get inliers(X,Gcnct, δ
i
pd, s, n̂)

2: d← n̂ · sip . “·” represents dot product

A is the set of points close to the plane

abs(): absolute value

3: A← {xi | abs(n̂ · xip − d) ≤ δipd}

4: B← {xi ∈ A | xi is connected to s as per Gcnct}

5: return B

6: end function

7: H← {sj | cluster j neighbor of cluster i as per Gclust}

8: for θ ∈ {0, π/6, 2π/6, · · · , 11π/6} do

9: for φ ∈ {0, π/6, π/3, π/2} do

10: n̂← [cos(θ)sin(φ), sin(θ)sin(φ), cos(φ)]

11: B← get inliers(X,Gcnct, δ
i
pd, s

i, n̂)

12: c(θ, φ)←mean
(
{abs(n̂ · xin) | xi ∈ B}

)
13: end for

14: end for

return arg min
θ,φ

c(θ, φ)

88

clarity. While method 1 is very simple, method 2 is much more sophisticated. Before

we describe the methods, we would describe three assumptions that these methods

make. The first assumption is that the scaling function of the GC is smooth and

the second assumption is that the 3D axis of the GC is smooth. Note that we are

looking for matching cross-sectional cluster for the initial cross-sectional cluster in its

neighborhood to grow a part. In this context, the first assumption implies that there

would not be a sudden jump in the scale of a cross-sectional cluster compared to its

neighboring cross-sectional cluster. And the second assumption would mean that the

orientation of the cross-sectional planes of neighboring cross-sectional clusters would

be similar. As an example, in Fig. 4.2 (c), the two yellow planes represent cross-

sectional planes of two close-by cross-sections and therefore have similar orientation.

Also, note that the scale function in Fig. 4.2 (a) is smooth. The third assumption

that both methods make is that the mean of all the points in a cross-sectional cluster

of a part represents a point on the axis of the part. For instance, in Fig. 4.5 (a),

if we take the centre of mass of all brown points, we would obtain a point in the

interior of the torso of the dinosaur. The torso of the dinosaur is a GC and the centre

of mass of the points in the cross-sectional cluster (shown in brown) is assumed to

lie on the axis of this GC. We refer to the centre of mass of points in the cluster as

the cluster center. The axis of the torso, shown in red in Fig. 4.4, is obtained by

joining the cluster centers of the blue and brown clusters. While this assumption is

not generally true, we make such a simplifying assumption to estimate the axis points,

given a cross-sectional cluster. We will demonstrate later that this assumption is a

reasonable assumption for many real-world parts. The following sections will explain

the two methods in detail.

Method 1

As stated above, this is a simple method for growing parts from initial cross-

sectional clusters. Keep in mind that, given an initial cross-sectional cluster, we are

89

(a) (b) (c)

Fig. 4.7. Identifying a seed point. (a) All points lying close to the plane are shown
in green. The brown points represent members of cluster 0. The points within the
red circle are unwanted points, not part of the true cross-sectional cluster. (b) A seed

point is identified as the point closest to C̃1, from among the points lying close to the
plane. The seed point and C̃1 are shown in red. (c) Considering only points connected
to the seed point removes the unwanted points and gives us the right cross-sectional
cluster.

looking for the neighboring cross-sectional cluster to grow the part. For instance, in

Fig. 4.4, we are looking for cluster 1, given the initial cluster, cluster 0. Fig. 4.6,

shows the main steps in this method. As depicted in the figure, the first step is to

obtain a rough estimate of the cluster center of the neighboring cluster, cluster 1.

Let C0 denote the centre of cluster 0 and the normal of the cross-sectional plane

corresponding to cluster 0 be denoted by n̂0. By definition, the cross-sectional plane

of cluster 0 is perpendicular to the axis of the GC (the torso of the dinosaur being

the GC here) at C0. Or in other words, n̂0 is the tangent to the axis of the GC at C0.

Therefore, taking a small step along n̂0 would give us a rough estimate of the axis

point corresponding to cluster 1. Keep in mind that the tangent of a curve provides

a linear approximation to the curve locally. Let this estimate of the neighboring axis

point be denoted by C̃1. I.e., C̃1 = C0 + δstepn̂0, where, δstep represents a small step

size. Fig. 4.6 (a), depicts this process.

In the next step we estimate the orientation of the cross-sectional plane through

C̃1. An exhaustive, but local search is used to estimate the orientation of the cross-

sectional plane. The exhaustive search is identical to the one described in algorithm

90

4.1, but here we only consider planes whose normal orientation is close to n̂0. This

is because, according to the second assumption, the orientation of the cross-sectional

plane of cluster 1 is close to the orientation of the cross-sectional plane of cluster 0

(because the 3D axis is smooth). To obtain planes whose orientation is close to n̂0, an

angle range, ∆ang, and a step number, kstep, is first chosen. Let θ0 and φ0 represent

the azimuth and the zenith angles corresponding to n̂0. Let Aθ represent kstep equally

spaced angles in the range (θ0−∆ang, θ0 +∆ang) and Aφ represent kstep equally spaced

angles in the range (φ0 − ∆ang, φ0 + ∆ang). All planes represented by the cartesian

product, Aθ×Aφ, are considered. We use ∆ang = 12.5 and kstep = 3. This ensures

that all the planes considered have normals which are similar in orientation to n̂0.

The best plane is chosen by using the same criterion as the one described in algorithm

4.1. I.e., for each plane in the set Aθ×Aφ, we compute its inlier set (see algorithm

4.1) and then choose the plane which minimizes the average length of projection of

the point normals of the points in its inlier set on to the normal of the plane.

Considering all points lying close to a plane could lead to problems like the one

shown in Fig. 4.7 (a). To avoid this issue, we need to only consider points lying close

to the plane and connected to a seed point. As shown in Fig. 4.7 (b), the point closest

to C̃1, from amongst the points close to the plane (the green points), is chosen as the

seed point. Choosing only those (green) points that are connected to the seed point

would fix the issue of unwanted points being included in the cross-sectional cluster

(Fig. 4.7 (c)).

The steps described above can be used to find the neighboring cross-sectional

cluster, cluster 1, given the initial cluster. This process can be repeated to obtain the

neighboring cross-sectional cluster, cluster 2 in Fig. 4.4, of cluster 1. There needs to

be a stopping criterion for this process. Or in other words, there needs to be some

criterion that can be checked to see if we have reached the end cluster of a part. Here

is where the first assumption, mentioned earlier, comes into play. Since, the scale

function of a part is smooth, the two neighboring cross-sections would have similar

scale factors. A sudden jump in the scale factor of a neighboring cross-section would

91

indicate that we have reached a junction. For example, in Fig. 4.4, the search for the

neighboring cross-sectional cluster for cluster 2 would fail as all the potential clusters

considered would have a substantially different scale factor.

A very simple metric is employed to measure the scale factor of a cross-sectional

cluster. A local coordinate system is constructed, using PCA, for the cluster. Let the

axes of this coordinate system be represented by a1, a2 and a3, with a1 representing

the maximum variance direction and a3 representing the direction with the least vari-

ance. The axis a3, would have an orientation that is very close to the normal of the

cross-sectional plane of the cross-sectional cluster because the cross-sectional cluster

is thin and close to planar. Let the eigenvalues corresponding to axes a1 and a2 be e1

and e2 respectively. These eigenvalues serve as a good representation for the scale of

the cluster. I.e., bigger cross-sectional clusters would have larger e1 and e2 values and

vice-versa. Let i and j represent two neighboring cross-sections. We treat the combi-

nation of the two eigenvalues, [e1, e2], as a vector. I.e., for cross-section i, we have a

vector [ei1, e
i
2] representing its scale. Similarly the vector [ej1, e

j
2], represents the scale

of cross-section j. We stop growing parts, if abs
(
1 − deucl([e

i
1,e

i
2],[ej1,e

j
2])

‖[ei1,e
i
2]‖

2

)
> ∆eg, where

deucl([e
i
1, e

i
2], [ej1, e

j
2]) represents the euclidean distance between the vectors, abs() rep-

resents the absolute value and ∆eg represents an acceptable threshold for scale differ-

ence between neighboring clusters. The fraction is measuring the percentage change

in the scale between the cross-sectional clusters. A value of one for the fraction would

mean that the size of the cross-section did not change (according to our metric). If the

percentage change in scale of the next cross-sectional cluster compared to the current

cross-sectional cluster is greater than a threshold, it implies that we have reached a

junction and the growing process stops. The growing process also terminates if there

are no further points to be added to the part. For instance, the growing process of

the tail of the dinosaur halts in one of the directions due to this reason. The growth

of the tail stops in the other direction because the junction where the legs meet the

tail is detected.

92

As mentioned earlier, this method is a very simple one in which we depend on

the smoothness of the scale function to grow parts. The termination criterion for the

growth process as well as the metric to compute the scale of a cross-sectional cluster

are also simple. In the next section, we describe a sophisticated method, which we

refer to as method 2, to grow parts which directly takes inspiration from the process

in which GCs are formed from its components (scale function, cross-sectional contour

and 3D axis). Though we use method 2 as the primary method to grow parts, there

are scenarios in which method 1 would be more suitable. Such scenarios will also be

pointed out in the following sections.

Fig. 4.8. Registration can help in removing some unwanted points from the neigh-
boring cross-section.

Method 2

Given a scale function, cross-sectional contour and 3D axis, a GC is formed by

a similarity transformation (i.e., rigid transformation and uniform scaling) of the

contour. I.e., the action referred to as sweeping the 2D contour along an axis, consists

of three transformations (translation, rotation and uniform scaling) applied to the 2D

contour. This implies that the relationship between adjacent cross-sections is defined

by a similarity transformation. In method 2, like in method 1, parts are grown,

starting from an initial cross-sectional cluster (like cluster 0 in Fig. 4.4), by finding

its neighboring cross-sectional cluster. Since, the relationship between neighboring

93

clusters is defined by a similarity transformation, one way to search for a similar

cluster of points is to do registration between the initial cross-section and the points in

its neighborhood. I.e., through registration, we can estimate the similarity transform

that relates the two neighboring cross-sections. In Fig. 4.4, registration between

cluster 0 and the points in its neighborhood would lead to the identification of cluster

1 as its neighbor. Similarly registration between cluster 1 and its neighborhood points

would identify cluster 2 and so on.

Fig. 4.8, demonstrates why method 2, which relies on registration to grow parts,

is necessary to discover meaningful parts in the point cloud. The saffron colored

portion represents the cross-section for which we seek to find a match. The plane

shown in blue represents the actual cross-sectional plane of the neighboring cross-

section.The points lying close to the cross-sectional plane, include many unwanted

points as shown. Deriving a seed point (like in Fig. 4.7 (b)) and looking for the

inlier set (alll points connected to the seed point) will help remove some unwanted

points like the portions of the chair’s front legs. But portions of the chair’s hind legs

still remain in the cluster. Performing a registration would tell us that these points

belonging to hind legs have no match in the cluster for which we seek a match. Such

points for which we fail to find a match can be removed to exactly identify points

belonging to the neighboring cross-section.

In [74], Myronenko and Song present a solution to the registration problem by

treating it as a probability density estimation problem. Note, though the authors

call their method rigid registration, their method actually estimates the similarity

transform that relates the two point clouds being registered. Myronenko and Song,

however, only consider the location of the points being registered. In our case though,

we have an oriented point set with each point having a position and an orientation

(representing the local surface normal). As we demonstrate later, considering the

orientation of the points is important in our case. Therefore, for the registration of

two sets of oriented points, we modify the method in [74] by drawing in ideas from [75].

We first introduce some additional notation and then explain the registration process

94

Algorithm 4.2 Algorithm to estimate parameters R, s, t,α and σ

Input:

Point set 1: X

Point set 2: Y

Output: R, s, t, α, σ

1: Set R = I3, s = 1 and t = (0, 0, 0)T

2: while convergence not achieved do

Compute P:

3: pji =
exp
(
− 1

2σ2‖xip−sR yjp−t‖2

2
+α(xin)TRyjn

)
M∑
m=1

exp
(
− 1

2σ2‖xip−sR ymp −t‖2

2
+α(xin)TRymn

)

Estimate the parameter values, θ, using the above value of P:

4: X̂ = Xp − 1
N
1
(
XT
pP1

)T
5: Ŷ = Yp − 1

N
1
(
sRYT

pP1
)T

6: A = X̂TPT Ŷ

7: B = XT
nP

TYn

8: K1 = tr
(
ŶTd

(
P1
)
Ŷ
)

9: K2 = tr
(
X̂Td

(
P1
)
X̂
)

10: Use the BFGS algorithm with the gradient equations defined in equation 4.16,

to compute optimal values for R, s, α and σ.

11: t = 1
N

(
XT
pP1− sRYT

pP1
)

12: end while

13: return R, s, t, α, σ

95

between two oriented sets of points in the next section. Later sections explain how

this registration process can be employed to grow parts.

Registartion of Two Oriented Point Sets

Let X = {x1,x2, · · · ,xN} and Y = {y1,y2, · · · ,yM} represent the two point

sets to be registered. As mentioned before, xi = (xip,x
i
n), where xip represents the

location and xin represent the point normal of xi. Similarly, yi = (yip,y
i
n). Let

Xp = (x1
p,x

2
p, · · · ,xNp)T be a N × 3 matrix representing the positions and Xn =

(x1
n,x

2
n, · · · ,xNn)T be a N × 3 matrix representing the point normals of X. Similarly,

let Yp and Yn represent the positions and point normals of points in Y respectively.

The diagonal matrix formed from a vector v is represented by diag(v). A column

vector of all ones is represented by 1 and a P × P identity matrix is represented by

IP . The trace of a matrix A is represented by tr(A).

In [74], the authors consider Y as the centroids of a Gaussian mixture model

(GMM) and X as the data points generated by the GMM. The probability density

function for the GMM is then given by:

p(x) =
M∑
j=1

P (j)p(x | j) (4.1)

where p(x | j) = 1
(2πσ2)3/2 exp

(
− 1

2σ2

∥∥xp − yjp
∥∥2

2

)
and P (j) = 1

M
. In our case,

we need the density to also depend on the point normal orientations. Therefore, we

modify p(x | j) with an additional term that depends on the orientation as shown

below:

p(x | j) =
α exp

(
αxTny

j
n

)
2π(exp(α)− exp(−α))

exp
(
− 1

2σ2

∥∥xp − yjp
∥∥2

2

)
((2πσ2)3/2)

(4.2)

The above distribution is obtained by combining the original Gaussian distribution

with another distribution, referred to as the Von Mises-Fisher distribution in direc-

tional statistics. The idea of combining these two distributions was first introduced

96

by Billings and Taylor in [75]. However, they do not involve a scaling parameter

in their transformation. Since, our definition of a part involves uniform scaling, we

cannot leave out the scale factor parameter from the formulation. Unlike [74], we do

not include a uniform distribution to account for noise. Fig. 4.9, shows the effect of

the value of α on the distribution. We place an upper limit of ten on the value of

α to maintain a good balance between the importance of position and orientation of

points.

(a) α = 1 (b) α = 5 (c) α = 10

Fig. 4.9. The effect of the value of α on the Von Mises-Fisher distribution. The
location of the north pole on the sphere represents the “mean direction”. The values
on the color-bar represent probability density values. The greater the value of α, the
greater is the concentration of the distribution around the mean direction.

The central idea behind this approach to registration is to parameterize the distri-

bution defined by Y with a rotation matrix R, uniform scale factor s and a translation

vector t, and then estimate these parameters using maximum likelihood estimation

(MLE) by treating the point set X as the observed data. After the parameterization,

p(x | j) is given by:

p(x | j) =
α exp

(
− 1

2σ2

∥∥xp − sR yjp − t
∥∥2

2
+ αxTnRyjn

)
2π(exp(α)− exp(−α))(2πσ2)3/2

(4.3)

Like in [74], we define P (j | xi) = P (j)p(xi|j)
p(xi)

as the correspondence probability

between points xi and yj. Using the i.i.d data assumption, the negative log-likelihood

is given by:

97

L(θ) = L(R, s, t, σ, α) = −
N∑
i=1

log

(
M∑
j=1

P (j)p(xi | j)

)
(4.4)

Where,

p(xi | j) =
α exp

(
− 1

2σ2

∥∥xip − sR yjp − t
∥∥2

2
+ α(xin)TRyjn

)
2π(exp(α)− exp(−α))(2πσ2)3/2

(4.5)

The Expectation Maximization (EM) algorithm is used to estimate the parameters

that minimize the negative log-likelihood. The algorithm alternates between the E-

step and the M-step until convergence. In the E-step, the posterior probability of the

mixture components are computed as shown below:

P k(j | xi) =
exp
(
− 1

2σ2‖xip−Tp(yjp,θ
(k−1))‖2

2
+α(xin)T Tn(yjn,θ

(k−1))
)

M∑
m=1

exp
(
− 1

2σ2‖xip−Tp(ymp ,θ
(k−1))‖2

2
+α(xin)T Tn(ymn ,θ

(k−1))
) (4.6)

Where Tp(yjp, θ(k−1)) = s(k−1)R(k−1)yjp − t(k−1) and Tn(yjn, θ
(k−1)) = R(k−1)yjn. The

superscript (k − 1) indicates that the parameter values being used are the estimates

from the previous iteration of the EM algorithm. In the M-step, the parameters

need to be estimated by minimizing complete-data negative log-likelihood Q, which

is given by:

Q = −
N∑
i=1

M∑
j=1

P k(j | xi)log
(
P (j)p(xi | j)

)
(4.7)

Considering only terms that depend on θ, we can rewrite Q as:

Q(θ) =

(N∑
i=1

M∑
j=1

P k(j | xi)
(1

2σ2

∥∥xip − sR yjp − t
∥∥2

2
− α(xin)TRyjn

))
+

3N

2
log(σ2)−N log(α) +N log

(
exp(α)− exp(−α)

) (4.8)

Like in [74], taking the partial derivative of Q(θ) with respect to t and setting it

to zero gives:

t =
1

N

(
XT
pP1− sRYT

pP1
)

where P is a M × N matrix with elements pji = P k(j | xi). Substituting t back into

the equation (4.7) and setting X̂ = Xp − 1
N
1
(
XT
pP1

)T
and Ŷ = Yp − 1

N
1
(
sRYT

pP1
)T

,

we get:

98

Q(θ) =
1

2σ2

[
tr
(
X̂Td

(
PT1

)
X̂
)
− 2s tr

(
X̂TPT ŶRT

)
+ s2tr

(
ŶTd

(
P1
)
Ŷ
)]
− α tr

(
XT
nP

TYnR
T
)

+
3N

2
log(σ2)−N log(α) +N log

(
exp(α)− exp(−α)

)
Let A = X̂TPT Ŷ and B = XT

nP
TYn. Using the invariance of trace under cyclic

matrix permutation, the fact that R is orthogonal, we can rewrite Q(θ) as:

Q(θ) =
1

2σ2

[
tr
(
X̂Td

(
PT1

)
X̂
)
− 2s tr

(
ATR

)
+ s2tr

(
ŶTd

(
P1
)
Ŷ
)]
− α tr

(
BTR

)
+

3N

2
log(σ2)

−N log(α) +N log
(
exp(α)− exp(−α)

) (4.9)

The form of equation (4.9) does not allow us to directly apply the method in [74]

to estimate R. Therefore, we use the BFGS algorithm to compute the parameters.

For R to be a proper rotation matrix, it has to satisfy two constraints. I.e., R has to

be an orthogonal matrix whose determinant is one. To avoid having to deal with these

constraints during optimization, a reparameterization of R is necessary. We use the

quaternion based parameterization of R based on [97]. In [97], the authors describe

two different ways to parameterize a rotation matrix. We use the second method

which stereographically projects a 3D hyperplane onto the 4D unit quaternion sphere.

Such a parameterization not only removes the constraints but also provide rational

expressions for the derivative of R, which becomes significant when iterative methods

like BFGS are employed during optimization. The relevant equations from [97] are

provided below.

The rotation matrix corresponding to an unit quaternion q = [q0, q1, q2, q3] is given

by:

R(q) =


q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

 (4.10)

The partial derivatives of the rotation matrix with respect to the components of the

quaternion is given by:

99

∂R(q)

∂q0

= 2


q0 −q3 q2

q3 q0 −q1

−q2 q1 q0


∂R(q)

∂q1

= 2


q1 q2 q3

q2 −q1 −q0

q3 q0 −q1


∂R(q)

∂q2

= 2


−q2 q1 q0

q1 q2 q3

−q0 q3 −q2


∂R(q)

∂q3

= 2


−q3 −q0 q1

q0 −q3 q2

q1 q2 q3



(4.11)

As mentioned earlier, a stereographic projection is employed to project each point,

[x, y, z], on a 3D hyperplane onto a 4D unit quaternion sphere (see Figure 1 in [97]).

This mapping provides a way to represent a unit quaternion using a 3D vector. Given

a point, [x, y, z], on the hyperplane, the corresponding unit quaternion is given by:

β2 = x2 + y2 + z2

q =
1

(β2 + 1)

(
2x, 2y, 2z, 1− β2

) (4.12)

The projection of a unit quaternion q = [q0, q1, q2, q3] onto the hyperplane is given

by:

β2 =
1− q3

1 + q3(
x, y, z

)
=
β2 + 1

2

(
q0, q1, q2

) (4.13)

The partial derivatives of the quaternions with respect to the point ψ = (x, y, z)

is given by:

100

∂q(ψ)

∂x
=

1

(β2 + 1)2


2(β2 + 1)− 4x2

−4xy

−4xz

−4x



∂q(ψ)

∂y
=

1

(β2 + 1)2


−4xy

2(β2 + 1)− 4y2

−4yz

−4y



∂q(ψ)

∂y
=

1

(β2 + 1)2


−4xz

−4yz

2(β2 + 1)− 4z2

−4z



(4.14)

The partial derivative of the rotation matrix, R, with respect to ψ can now be

written as:

∂R(q(ψ))

∂x
=

3∑
j=0

∂R(q)

∂qj

∂qj
∂x

∂R(q(ψ))

∂y
=

3∑
j=0

∂R(q)

∂qj

∂qj
∂y

∂R(q(ψ))

∂z
=

3∑
j=0

∂R(q)

∂qj

∂qj
∂z

(4.15)

The partial derivatives required for optimizing Q(θ) using the BFGS algorithm

are provided below:

101

K1 = tr
(
ŶTd

(
P1
)
Ŷ
)

K2 = tr
(
X̂Td

(
PT1

)
X̂
)

∂Q(θ)

∂σ
=
−1

σ3

(
K2 − 2s tr(ATR) + s2K1

)
+

3N

σ
∂Q(θ)

∂s
=
−1

σ2
tr(ATR) +

s

σ2
K1

∂Q(θ)

∂α
= −tr(BTR)− N

α
+N

exp(α) + exp(−α)

exp(α)− exp(−α)

∂Q(θ)

∂x
=
−s
σ2
tr(AT ∂R

∂x
)− α tr(BT ∂R

∂x
)

∂Q(θ)

∂y
=
−s
σ2
tr(AT ∂R

∂y
)− α tr(BT ∂R

∂y
)

∂Q(θ)

∂z
=
−s
σ2
tr(AT ∂R

∂z
)− α tr(BT ∂R

∂z
)

(4.16)

The steps involved in the registration algorithm are summarized in algorithm 4.2.

Growing Parts Using Registration

In method 2, like in method 1, given an initial cross-sectional cluster, we grow

parts by finding its neighboring cross-sectional cluster. Method 2 uses registration

to find the neighboring cross-sectional cluster. From the definition of a part as a

GC, we know that two cross-sectional clusters of a part are related to each other

by a similarity transformation. In method 2, we use registration to estimate this

transformation. For instance, there exists a rotation R, uniform scale factor s and a

translation t that can transform cluster 0, in Fig. 4.4, to cluster 1. Looking at the

two cross-sectional clusters, we can see that the rotation matrix in this case would

be close to the identity matrix, the scale factor would be close to, but a little less

than, one and the translation vector would point from the center of cluster 0, towards

the center of cluster 1. The registration algorithm takes two point sets as its input.

One of the point sets, X, would be the cluster for which we are seeking a match.

In our example, this would be cluster 0. The idea is to now provide points in the

102

neighborhood of cluster 1 to the registration algorithm as the second point set, Y.

The registration algorithm would then find matches for points in cluster 0 in its

neighborhood leading to the detection of cluster 1. In method 1, we did consider

a group of planes whose orientation is close to the orientation of the cross-sectional

plane of cluster 0. The second point set is formed by all points that are part of the

inlier set of any of these planes (belonging to the set Aθ×Aφ). As illustrated in

Fig. 4.7 (b), these inlier points of various planes in set Aθ×Aφ will contain points

in cluster 1. Some additional point, not part of cluster 1, are also contained in the

inlier sets. But the registration algorithm is capable of dealing with the presence of

some additional points.

Given cluster 0 and the points in its neighborhood, the registration algorithm

estimates the parameters, θ. After registration, we still have to choose points from

the second point set Y to form the neighboring cluster, cluster 1. Fig. 4.10, illustrates

the procedure of identifying points belonging to neighboring cluster, post registration.

A 2D illustration is used for simplicity. As shown, the point yj ∈ Y is chosen only

if it has at least one point xi ∈ X sufficiently close to it and if the point normal

orientations yj and xi are sufficiently close. Points xi and yj are considered sufficiently

close if deucl(x
i
p,y

j
p) ≤ 1.5σ, where σ refers to the standard deviation of the GMM just

estimated using the registration process. The point normal orientations are considered

sufficiently close if the angle between them is less than 15◦.

As described above, the registration process can be used to detect cluster 1 given

cluster 0. This process can be repeated to find a matching cross-sectional cluster

for cluster 1, resulting in the detection of cluster 2. This process of growing a part

stops when a good match cannot be found for a cross-sectional cluster. As mentioned

above, P (j | xi) is defined as the correspondence probability between points in the

two point sets. For each point in X, we can find the best match in Y using the

correspondence probability, P (j | xi). The average angular difference between the

best matches is used to decide whether the growing process needs to be terminated.

103

(a) (b) (c) (d)

Fig. 4.10. Illustration of point selection after registration. (a) The two point sets, X
representing the cluster for which we are seeking a match (cluster 0 in our example)
and Y representing the neighboring points, before registration. (b) The transformed
Y, T (yj) = (sRyjp+ t,Ryjn), after registration. (c) Chosen and rejected points, after
threshold based selection, shown in different colors. (d) Having a member of X close
by, after transformation, is not enough to be selected, the point normals should also
closely match. The point normals of all the red points are shown. Also shown are the
point normals of three green points (within the circle) that were rejected. The point
normal orientations of the green points are too different from that of its neighboring
red points, and hence these points are not chosen.

If the average angular difference between best matches is greater than 15◦, the growing

process terminates.

As depicted in Fig. 4.8, method 2 is better equipped for dealing with junctions and

therefore is the default method to grow parts. But when the cross-sectional cluster

is sparse, the registration process cannot be relied on. The point normal estimation

is itself unreliable in such a scenario. Therefore, method 1 is employed only when

the cross-sectional cluster is sparse. In practice, if the cross-sectional cluster has less

than hundred points in it, method 1 is employed.

4.4 Optimal Part Selection

In the previous section, methods to grow parts were described. The point cloud

was clustered into M clusters and one part per cluster was grown. Given these M

parts, we first assign costs to each part and then select the best subset of parts

that cover the whole point cloud based on these scores. The overall cost has four

components. Below, we first describe each of these components. The process of

104

combining these components to obtain a single cost per part is then described. And

finally we explain how the optimization process, which selects the best parts, is set

up.

4.4.1 Cost Components

The first component is the registration cost. For a good part, the adjacent cross-

sectional clusters would be a good match for each other. Remember, the relationship

between adjacent cross-sectional clusters is defined by a similarity transform and via

the registration process, we have estimated the best similarity transform parameters.

After transformation (with the parameters estimated by the registration algorithm),

the two point sets should be a good match to each other as illustrated in Fig. 4.10 (b).

Once we perform the registration between adjacent clusters of a part, for each point in

the point set X, we can find the best match in point set Y using the correspondence

probability, P (j | xi). The average angular difference between the best matches is

used as the registration cost. Therefore, the registration cost would be low if the

corresponding points in the two point sets have similar orientation. If a part is made

up of k cross-sectional clusters, we would obtain k − 1 registration costs from pairs

of adjacent clusters. To obtain the registration cost, we take the mean of these k− 1

costs.

The second component, referred to as the fit cost, measures the goodness of fit of

the skeleton to the points that constitute the part. This cost is computed in the same

manner as the cost, c(θ, φ), in algorithm 4.1. As explained before, and as depicted

in Fig. 4.2 (c), the point normals are expected to be perpendicular to the normal of

the local cross-sectional plane. The fit cost is designed to penalize any deviations to

this. To compute the fit cost, for a part with k cross-sectional clusters, we compute

the cost, c(θ, φ), for each cross-sectional cluster and take their mean value.

The third component of the overall cost is the length of the part. The length here

refers to the length of the skeleton. Since, skeletons are represented by cluster centers

105

Fig. 4.11. Skeletons are formed by joining cluster centers. The black lines represent
the skeleton. The length of the skeleton is computed as the sum of the euclidean
distances between cluster centers when traveling from one end (C0) to the other end
(C7) of the part. The turning angles at cluster centers C1 and C2 are also shown.

of the cross-sectional clusters, the length is computed as the sum of the euclidean

distances between the centers as you travel from one end to the other end of the part.

For instance, in Fig. 4.11,
6∑
i=0

deucl(Ci, Ci+1) represents the length of the skeleton.

Longer parts are preferred over shorter parts.

Since, we prefer smooth curves as skeleton, the fourth component is the total

turning angle of the skeleton. Fig. 4.11, shows how turning angles are computed. In

the example shown, the total turning angle cost would be

6∑
i=1

θi

6
.

To obtain the overall cost, each individual cost component is first normalized

separately by subtracting the mean and dividing by the standard deviation. Let

cireg, c
i
fit, c

i
len and ciang represent the normalized registration, fit, length and turning

angle costs of part i respectively. The overall cost for part i is then given by: ciovr =

cireg + cifit − cilen + ciang. Note, during optimization we minimize the cost and since

we prefer longer parts over short parts, we subtract the length component instead of

adding it.

106

4.4.2 Optimal Parts Selection

Once we assign a cost to each part, the optimal subset of parts are chosen by

minimizing the following constrained binary integer program.

minimize cccTxxx

subject to
(4.17)

xTaxTaxTa ≥
(
k1

100

)
N (C1)

xTQ xxTQ xxTQ x ≤
(
k2

100

)
N (C2)

where,

xxx = (x1, x2, · · · , xM) ∈ {0, 1}M×1,

ccc = (c1
ovr, c

2
ovr, · · · , cMovr) ∈ RM×1

aaa ∈ NM×1, QQQ ∈ NM×M

The optimization is carried out over the vector xxx, and individual components of

xxx indicate whether a particular part is selected or rejected. I.e., xi = 0 implies that

part i is rejected and xi = 1 implies that it is selected. Vector ccc represents the costs

associated with individual parts. Therefore, by minimizing cccTxxx, we are minimizing

the overall cost. The trivial and uninteresting solution for xxx is the vector of all zeros.

But we are interested in solutions that cover almost all the points in the point cloud.

Note, a point in the cloud is said to be covered if the optimization process selects

a part, of which the point is a member. In order to force the optimization process

to cover most of the points in the point cloud, we impose the constraint C1. The

ith component of vector aaa gives the number of points belonging to part i. Therefore,

imposing constraint C1 would ensure that at least k1% of the total number of points

in the cloud are covered. The total number of points in the cloud is indicated by N .

107

But if two of the selected parts share some points, these points would be counted

twice. Note, a point in the point cloud can be a member of multiple parts. In Fig.

4.1 (a), for example, two parts (in the top-left corner) covering the tail portion have

substantial overlap. If part i covers ni points, part j covers nj points and if the two

parts share ns points, then the total number of points covered by selecting both parts

i and j is ni + nj − ns. To avoid too much overlap between parts, constraint C2 is

imposed. The element qij of QQQ, represents the number of points that parts i and

j share. Thus constraint C2 ensures that the sum of pair-wise overlap (in terms of

number of points) between parts is less than k2% of the total number of points in the

cloud. To see this, note that, the element qij is relevant only when both parts i and j

are selected, i.e., when xi = 1 and xj = 1. Note, the lower triangular part of QQQ is zero

to ensure that the pair-wise overlaps are not penalized twice. In short, the constraints

ensure that most points in the point cloud are covered with little overlap between

parts and the objective function ensures that this is done at a low cost (meaning the

best parts are selected).

The constrained binary integer program, described above, is solved using the

Gurobi solver [60]. Since, the value of M , the number of candidate parts, is usually

small (150 or less), the optimization algorithm converges fast, within a few seconds in

most cases. The result of the optimization procedure is depicted in Fig. 4.1 (b). Once

the individual parts that cover the point cloud are identified, the next step is to link

them to obtain a skeletal representation of the shape. This procedure is explained in

the next section.

4.5 Linking Part Skeletons

The first step in linking skeletons is to determine potential connections among the

various parts. For instance, the legs of the dinosaur in Fig. 4.1 (b) could be linked to

the parts representing the torso or the tail but not to the parts representing the horn

or neck of the dinosaur. I.e., a part can only be linked to a subset of other parts and

108

the first step determines this subset of potential links for each part. To determine if

two parts can be potentially linked to each other, a very simple observation is used.

Two parts, say part A and part B, can be potentially linked only if there is at least

one point in A who is the neighbor of some point in B. To determine if any two points

in the point cloud are neighbors, the connectivity matrix Gcnct, described in section

4.3.2, is used.

(a) (b)

Fig. 4.12. Linking all parts that can be potentially linked according to Gcnct can lead
to unnecessary additional connections. (a) The legs can potentially connect to both
the torso and the tail parts. (b) The many links near the tail of the airplane are
unnecessary.

Linking all the parts that can be potentially linked would lead to strange additional

connections like the one shown in Fig. 4.12. Note, the parts extracted for the dinosaur

and the airplane are shown in Fig. 4.1 (b) and Fig. 4.13 (b) respectively. In the case

of the dinosaur, the problem is that parts that could be combined, stay as separate

parts. The skeletons for parts representing the tail and the torso of the dinosaur

can be combined to form a single smooth curve. This process, of combining skeletal

curve where it is possible, will be helpful later when we attempt to connect the

legs of the dinosaur to the body. On the other hand if the tail and torso remain as

separate parts, interconnecting the two legs, the torso and the tail could be confusing.

Therefore, combining skeletons wherever it is possible would be a good first step. To

decide if two parts can be combined, we check if the cross-sectional clusters at the

109

(a) (b) (c)

Fig. 4.13. Steps for linking parts. (a) The cross-sectional clusters at the end of parts
are compared to see if the two part skeletons needs to be combined. (b) All parts
identified by the algorithm are shown for a point cloud of an airplane. Parts 1, 2,
3 and 4 form a clique where the end points of the corresponding parts meet. In
this scenario, the algorithm looks for a common point to connect the four skeletons
together. (c) AB, CD and EF represent three part skeletons that form a clique of size

three. Rays
−→
AB,

−−→
CD and

−→
EF are obtained by extending the corresponding skeletons.

end are a good match. This is done by registering the end cross-sectional clusters

from the two parts. The end cross-sectional clusters for the torso and the tail of the

dinosaur are shown in Fig. 4.13 (a). After registering the two cross-sections, the

registration cost (the same as the one defined in section 4.4.1) is computed. Keep

in mind that a lower registration cost means that the points in one cross-sectional

cluster, after registration, were able to find, near it, a similarly oriented match from

the other cross-sectional cluster. If the registration cost, measured in terms of angular

difference, is less than a threshold of 35◦ and the scale factor difference from one is

less than 0.5, it is decided to combine the two parts. These thresholds were chosen

after experimenting with a few values.

In the next step, we deal with parts that form connected components. If a part

is only connected to one other part, there is no confusion as to how to link the parts.

In Fig. 4.13 (b), for example, part 5 has only part 1 as a potential link. Therefore,

all that needs to be done is to connect par 5 to part 1. The case with part 6 is also

the same. But when there are connected components, it is not immediately clear

as to how to interconnect them. For instance, in Fig. 4.13 (b), parts 1, 2, 3 and 4

110

Fig. 4.14. An example of a clique of size three for which finding a junction point to
interconnect the parts would not be appropriate. The key point is to see if it’s the
same end point of a part that connects to all other parts in the clique.

form a connected component. The ideal way to interconnect them would be to find

a junction point, and connect all parts to that single point forming one junction. To

find the junction point, rays formed by extending the part skeletons are considered.

Fig. 4.13 (c), shows three part skeletons and the rays obtained by extending them.

For each ray, the point that minimizes the sum of distances to the other rays is found.

In the example in Fig. 4.13 (c), for ray
−→
AB, we find the point on

−→
AB that minimizes

the sum of distances to rays
−−→
CD and

−→
EF . The same is done for rays

−−→
CD and

−→
EF .

Among these points (we get one point per ray), the point with minimum sum of

distances to the other rays is chosen as the junction point.

Finding a junction point to connect together all the members of the connected

component would not be appropriate in the case when both end points of a part

are involved in the clique formation. An example of such a scenario is shown in Fig

4.14. Here, each end point of a part has only one potential link and therefore liking

these parts together is straightforward. Hence, finding a junction point to link all the

members of the connected component, is only appropriate when for each part involved,

it is the same end point that connects to all the other parts in the component. Once,

the issues depicted in Fig. 4.12 are addressed, all remaining potential connections are

made to obtain the final skeleton.

111

4.6 User Interface

One significant advantage of a part based skeleton extraction algorithm is the ease

with which users can interact with the algorithm. For point clouds that are not noisy,

user interaction is unnecessary. But the part based algorithm can handle very noisy

point clouds with little user interaction. To demonstrate the ease of interaction, a

graphical user interface (GUI) was developed. Fig. 4.15, shows the GUI with some

annotations. Since the GUI is not the focus of this work, only a brief overview is

provided and only the relevant features are explained. To begin the processing, the

user can use the file browser to load the point cloud. Once the point cloud is loaded,

the main display would show the rotating point cloud. Note, after each processing

step the main display will update to show the corresponding results. The toolbar

button labelled “Grow Parts” can be used to grow parts from initial cross-sections.

I.e., this button executes steps described in sections 4.3.2, 4.3.3 and 4.3.4. The grown

parts are then displayed on the two-by-two grid display on the right side of the main

display. Note, all the displays (the main display and the grid displays) allow user

interaction. I.e., the users can play/pause the rotation by double clicking on the

display and also manually rotate the display using the mouse/touchpad. The button

labelled “Part Selection”, can then be used to run the optimization routine that

selects the optimal subset of parts. And finally, the “Link Part Skeletons” button

can be used to link the individual part skeletons to obtain the final skeleton. The

user may also choose to simply click the “Skeletonize” button to run all the steps

(of generating parts, selecting optimal parts and linking selected parts) at once. The

message box and the progress bar will provide the user with feedback on the status

of the program execution.

The two buttons labelled “Browse Parts”, can be used to browse through all the

parts generated. The left and right arrows can be used to view the previous and

next four parts respectively. After the parts are generated (by using the “Grow

Parts” button), the users, instead of running the optimization routine, may choose to

112

manually select the parts that they think are the best parts. For this purpose, each

part shown in the grid display is accompanied with a checkbox that will allow the

user to select that part. The users can instead run the optimization routine, which

selects the best subset of parts, and then choose to correct mistakes, if any, made

by the routine. For all parts that the optimization routine selects, the corresponding

checkbox in the grid display would be checked. The user can browse through all the

parts, after the optimization routine is run, and decide to reject the parts chosen

by the routine by unchecking the corresponding checkbox. The user can also add

to the currently selected list of parts by checking the checkbox corresponding to any

unselected part. This procedure, allows the user to easily modify the selection of the

optimizing routine with a few clicks. The user also has the option to permanently

remove noisy parts from the available list of parts by clicking the “Remove” button.

Fig. 4.15. The Graphical User Interface

113

Fig. 4.16. A synthetically generated GC.

4.7 Results

The results are divided into two sections. We first present the results for compar-

ison of the our newly proposed registration algorithm with that of Myronenko and

Song [74]. Next, the results of using the proposed algorithm for skeleton extraction

are presented.

4.7.1 Registration Results

As we described above, we use the registration algorithm to grow parts from initial

cross-sectional clusters. Therefore, it is appropriate to use a similar setting to test the

newly proposed registration algorithm. I.e., we first generate synthetic point clouds

that represent GCs and then measure the accuracy of the registration algorithms in

registering a random cross-sectional cluster with another randomly chosen neighbor-

hood. For instance, in Fig. 4.16, the point cloud corresponding to a GC is shown.

To measure the accuracy of the registration algorithms, we register the source cluster

with the destination cluster. Since, the point cloud was generated by us, we can

measure the accuracy by comparing the registration results with the ground truth.

There are a couple of challenges that the registration algorithm has to overcome

in order to accurately estimate the registration parameters. Understanding these

challenges is important in understanding why it is appropriate to test the registration

114

(a) Random sampling (b) Regular sampling

Fig. 4.17. The random sampling of the point cloud could lead to inaccuracies in the
registration if position alone is used to evaluate the fit.

algorithms in the setting described above. One of the two challenges is related to

the issue of random sampling. I.e., the points on a point cloud can be thought of

as random samples from the surface of the shape. Or equivalently, they are random

samples from a scaled rotated and translated 2D cross-sectional contour. Samples

from two such contours from a point cloud are shown in Fig. 4.17. The point clouds

are shown at the bottom with two contours highlighted, and the highlighted contours

are shown at the top. The point cloud in Fig. 4.17 (a) is obtained by transforming

(i.e., scaling, rotating and translating) 2D contours which are sampled at random,

while the point cloud in Fig. 4.17 (b) is obtained by transforming 2D contours which

are sampled at regular intervals. It is evident that, in the case of contours in Fig. 4.17

(a), due to random sampling, a simple scaling of points in one of the contours would

not produce the other point set exactly. Therefore, using just positional information

to estimate the registration parameters would lead to inaccuracies in the estimate as

115

we would demonstrate later. We would expect the registration algorithm to be able

to handle point clouds like the one shown in Fig. 4.17 (a). Adding the orientation

information in such a scenario will make the registration process more robust and

stable.

To understand the second challenge, keep in mind the process of searching for

a match, described in section 4.3.4. Starting from an initial cross-sectional cluster,

we search for a similar cluster in its neighborhood. The second cluster, therefore,

is obtained from the neighborhood of the initial cluster and almost always has a lot

more points than the initial cluster for which we seek a match. For example, in

Fig. 4.16, the destination cluster is wider and has a lot more points than the source

cluster. Looking just at the positional information of the points, to register the source

cluster with the destination cluster, could lead to wrong estimates for the rotation

parameter. Here again, penalizing large variations in point normal orientation, in

addition to penalizing positional disparity, would significantly improve the estimates

of the registration parameters. This is especially true if the neighborhood cluster has

a lot more points than the initial cluster. Through experiments described below, we

show that adding orientation information can effectively deal with these issues. Note,

the random sampling issue and the issue of trying to find a match in a larger point

cloud are issues encountered when registration is employed to grow parts. Since, the

primary use of registration for us is in growing parts, it is only appropriate to test the

registration algorithms in such a setting.The process of generating the point clouds

is described next, followed by the description of the experiments and their results.

Point Cloud Generation

As shown in Fig. 4.2, a scale function, a 2D cross-sectional contour and a 3D

axis are the three components necessary to generate a GC. The following parametric

equation is used to generate the 3D axis of the GC:

(x(t), y(t), z(t)) = (C1cos(t), C2sin(t), C3t)

116

Where, C1, C2 and C3 are random real numbers in the interval (0, 50). To obtain a

smooth scale function, a sinusoidal curve with a random phase shift is used. Since

scale values cannot be negative, a constant offset is added to the phase shifted sinu-

soid, to ensure that all the values are positive. In fact, the offset added is such that

all values in the scale function are greater than or equal to one. To generate the 2D

cross-sectional contour, we first generate a set of eight points as shown in Fig. 4.18.

The angular intervals between the points are equal and their distances to the origin

is randomly chosen. We then fit a smooth, periodic, spline to these points to obtain

the 2D cross-sectional contour.

(a) (b)

Fig. 4.18. Generating a random 2D cross-sectional contour. (a) Generate a set of
points at equal angular interval of π/4 radians whose distance from the origin is
random. (b) Fit a smooth closed contour (shown in red) to these points to obtain the
2D cross-sectional contour.

To obtain a GC, the 3D axis is sampled at regular intervals. In Fig. 4.2, the red

blobs on the 3D axis represent this discretization. The key idea in the construction of

a GC is to place a rotated and scaled 2D cross-sectional contour at each sample point

along the 3D axis. In fact, the 2D cross-sectional contour is translated in addition to

rotation and scaling and the translation is determined by the 3D axis. The smooth

scale function, defined above, is used to scale the cross-sectional contour along the

3D axis. To obtain a smooth rotation function along the axis, we employ the Frenet-

Serret frame. I.e., at each point on the 3D axis, the tangent, normal, and binormal

117

unit vectors of the axis, determines the rotation that needs to be applied at that

point. Therefore, defining the 3D axis simultaneously defines the rotation that needs

to be applied to the 2D cross-sectional contour along the 3D axis. Fig. 4.2 (a) shows

the GC generated when rotated and scaled 2D cross-sectional contours are placed

at the sample points along the 3D axis. Since, we are interested in a point cloud

representation of the GC, the 2D contour is sampled before applying the scaling,

rotation and translation transformations. Note, the number of samples chosen for

the 2D contour and the 3D axis would determine the sparsity/density of the point

cloud.

Experiments and Results

As mentioned in section 4.7.1 and as depicted in Fig. 4.16, to compare the reg-

istration algorithms, we register a randomly chosen source cluster with a randomly

chosen destination cluster within the GC. We consider two different cases for compar-

ing the registration accuracies. In one case we sample the 2D cross-sectional contour,

before transforming it, randomly (as shown in Fig. 4.17 (a)) and in the other case we

sample the contour at regular intervals (as shown in Fig. 4.17 (b)).

Fig. 4.19, shows the results of comparing the two algorithms for both the cases.

The results were obtained by performing five hundred registrations. I.e., a random

GC point cloud was generated and a randomly chosen source cluster, within the GC,

was registered with a randomly chosen destination cluster. This process was repeated

five hundred times to obtain the results. Note, in the plots, “With Normals” refers to

our method as it utilizes the point normal information. Similarly, the case in which

the 2D contour is sampled at regular intervals is referred to as “Regular” and the

other case is referred to as “Random”.

In Fig. 4.19 (a), the mean error, from the five hundred registrations, in estimating

the rotation matrix is shown. In [98], the author discusses various metrics employed

118

(a) (b)

(c) (d)

Fig. 4.19. In the legend, “With Normals” refers to the proposed method and “Without
Normals” refers to the method in [74]. (a) Error in estimated rotation, expressed in
terms of the Frobenius norm of the difference in rotation matrices. (b) Error in the
estimated orientation of the cross-sectional plane, expressed as the angular difference
between the plane normals in degrees. (c) Comparison of the registration costs (same
as the one defined in section 4.4.1). (d) Error in estimation of the scaling parameter.

to measure the difference between rotation matrices. We use the one based on the

Frobenius norm which is given by:

errrot(RRR1,RRR2) = ‖III3 −RRR1RRR
T
2 ‖F

where RRR1 and RRR2 are the two rotation matrices we want to compare. The value of

this metric will be in the range [0, 2
√

2]. As shown in Fig. 4.19 (a), the proposed

119

method that uses the normal information does better than the one in [74] in both

cases. The difference is much higher in the random case. This is expected because

an error function based just on positional information is less capable of dealing with

the random sampling. Since, it is a little difficult to interpret the metric values for

the rotation error, we also plot the error in the estimated orientation of the cross-

sectional plane in Fig. 4.19 (b). These plots resemble the plots for the rotation error,

but are easier to interpret as the error is measured in terms of the angle between the

actual normal and the estimated normal of the cross-sectional plane and is expressed

in degrees. In the context of growing parts, the accurate estimation of the cross-

sectional plane orientation is crucial because an error in this estimate will accumulate

as more registrations are performed to grow the part.

The comparisons for the registration cost, defined in section 4.4.1, are presented in

Fig. 4.19 (c). Remember, the registration cost is mean difference in the point normal

orientation between a point in the source cluster and its best match (found using the

correspondence probability) in the destination cluster. Also keep in mind that, as

described in section 4.3.4, if this cost is above the threshold of 15◦, the part growth

algorithm will decide that it is unable to find a good match in the neighborhood, and

will terminate the growth process. Therefore, keeping this cost low is essential to

obtain fully grown parts. As shown in Fig. 4.19 (c), proposed algorithm outperforms

the other method in both the cases, significantly so in the case of random sampling.

Also note that the rise in this cost, when comparing the regular case with the random

case, is moderate for our registration method. The use of point normal information

leads to a much more stable algorithm.

Fig. 4.19 (d), shows the error in scale estimate. As it can be seen, the other

method (i.e., the method in [74]) has a smaller scale error compared to our method.

To understand this result better, keep in mind the observation that the estimated

value of the parameter, σ, for our method is almost always much larger than the

value estimated by the other method. For the other method, that only uses the

positional information, to lower the cost, the points in the source cluster has to get

120

as close as possible to the points in the destination cluster, and at the same time

keep the value of σ as small as possible. This can be done by tolerating bigger

differences in point normal orientation. But for our method, since it uses both the

orientation as well as positional information, getting closer to points in the destination

cluster at the expense of larger differences in point normal orientation is not desirable.

Moreover, the error in scale estimates is only about five percent on average in the

worst case, which is not a significant error and does not have much consequences

in the context of growing parts. This is true because the estimated parameters will

decide which points in the neighborhood of a cross-sectional cluster would form the

adjacent cluster. Therefore, the error is scale estimates is tolerable, as long as the

error does not prevent the algorithm from picking the right neighboring points. Keep

in mind that the value of the estimated σ is used to determine the neighbors (see the

explanation of method 2 in page 101). This makes small errors in the scale estimate

insignificant in the context of growing parts, especially because of the higher σ value.

As mentioned earlier, the error in rotation parameter estimates will accumulate as

we perform multiple registrations to grow parts and therefore it is very significant to

get it right. This again shows us why using the point normal orientation information

is important in the context of using registrations to grow parts.

And finally, to demonstrate the ability of our algorithm to handle the second

challenge of registering the source cluster against a much larger destination cluster,

mentioned in section 4.7.1, we ran the following experiment. Like before, we per-

formed five hundred random registration on synthetically generated GC point clouds.

For each GC point cloud, we chose a random source cluster and two different neigh-

boring destination cluster from within the GC. One of the neighboring cluster being

much larger (more number of points included) than the other. We registered the

source cluster against the two neighboring destination clusters for both methods. We

then looked at the proportion of cases, from among the five hundred pairs of registra-

tions for each method, where the registration with a larger destination cluster lead

to larger errors in the estimated rotation parameter. For our registration method, in

121

16.2% of the cases, using a larger destination cluster (which is equivalent to looking

for a match in a larger neighborhood in the context of growing parts) lead to larger

errors in the estimation of the rotation parameter. This proportion was 72.2% in

the case of the other method. This simply shows that our method is more robust to

variations in the neighborhood size as we search for a matching cross-sectional cluster

while growing parts.

4.7.2 Skeleton Extraction Results

Skeleton extraction results for a variety of shapes are shown in Fig. 4.20. For each

shape the individual skeletons for the parts identified by the algorithm are shown at

the top and the linked skeleton is shown at the bottom. An extended gallery of results

for skelton extraction, along with rotating 3D animations, is available at: https:

//web.ics.purdue.edu/~vthottat/skel/. The models were obtained mainly from

the McGill 3D shape benchmark [99] and from the 3D object recognition database,

ObjectNet3D [100]. As can be seen in Fig. 4.20, the algorithm is capable of handling

a wide variety of shapes. Both, flat objects like the circular table top (Fig. 4.20 (f))

and spectacles (Fig. 4.20 (i)), and rounder objects like the unicorn (Fig. 4.20 (h)) or

teddy bear (Fig. 4.20 (j)) are handled well.

As shown in Fig. 4.15, there are three parameters that can be tuned to obtain

the desired results. The number of clusters from which candidate parts would be

grown is one of the parameters. There should be at least as many clusters as there

are parts. Remember, the final parts are selected from the candidate part list by the

optimization algorithm (section 4.4). Therefore, the number of clusters is usually set

to a much higher value. In practice, depending on the shape, we use 50n clusters,

where, 1 ≤ n ≤ 4. The parameters k1 and k2 are the optimization parameters that

are defined in section 4.4. The value of k2, which determines the amount of overlap

between parts in terms of the number of points they share, was set to 0.05 for all

the examples in Fig. 4.20. Keep in mind that it is possible for a point in the point

https://web.ics.purdue.edu/~vthottat/skel/
https://web.ics.purdue.edu/~vthottat/skel/

122

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 4.20. Results for part identification and skeleton extraction. For each shape the
individual skeletons corresponding to the parts identified by the algorithm are shown
at the top and the linked final skeleton is shown at the bottom.

cloud to be assigned to multiple parts. For example, a point at the intersection of

multiple parts would be shared by all parts forming the junction. With k2 = 0.05, less

than five percent of all the points in the point cloud could be shared between various

parts identified by the algorithm. The value of k1 will decide the percentage of points

123

(a) (b) (c) (d) (e) (f) (g)

Cao

et al.

Our

Re-

sults

Huang

et al.

Fig. 4.21. Qualitative comparison of skeletons extracted by our method with the
methods by Cao et al. [88], and Huang et al. [81].

covered by the parts chosen by the algorithm. Note that the optimization problem,

described in section 4.4 may not be feasible for all values of k1. For example, it might

not be possible to cover 100% of the points in the cloud with only 5% overlap. Since,

we would like the parts extracted to cover maximum number of points, the algorithm

picks the maximum possible value of k1. It does so by checking the feasibility, starting

at 90% (i.e., k1 = 0.90). If 90% is feasible then it tries a higher value, else it decreases

the value of k1. This process continues until, the maximum feasible value for k1 is

found. However, sometimes picking a value a little less than maximum feasible value

for k1 gives better results. Hence, the user has the option to modify this value through

the user interface.

We provide qualitative comparison of our results with the results from Cao et

al. [88], and Huang et al. [81] in Fig. 4.21. We use the implementations provided by

the authors themselves for the comparison. We found that using the default parameter

124

settings for methods by Cao et al. and Huang et al., do not produce good results

in most cases. Hence, we manually tuned the available parameters to obtain better

results and the best results that were obtained are presented in Fig. 4.21. Note, while

we and Cao et al. use point normal information in our algorithms, Huang et al. do

not use this information. However, keep in mind that the input to our algorithm is

just a point cloud. As described in section 4.3.1, we estimate the point normals as

a first step of our algorithm. Since the input to all the algorithms is the same, the

algorithm of Huang et al. is not at any disadvantage.

As shown in Fig. 4.21, the method by Huang et al. had difficulty in extracting

skeletons for many of the point clouds shown. For the unicorn and the eagle (Fig.

4.21 (g) and (f) respectively), parts of the skeleton were missing. For the hand (Fig.

4.21 (c)), the connection between the fingers are incorrect. Note, Huang et al. draws

an initial set of samples from the point cloud to start their skeleton extraction process.

We observed that even for the same set of parameters but different initial samples, the

skeletons extracted varied widely. The method by Cao et al. did well on most point

clouds except for the table (Fig. 4.21 (b)) and the suitcase (Fig. 4.21 (e)). In fact,

these two cases demonstrate one of the drawbacks with their approach to skeleton

extraction. As shown in Fig. 4.22, when the contracted points closely represent the

skeleton of the shape qualitatively, like in the case of the eight inter-connected toruses

(Fig. 4.22 (a)), the extracted skeleton (Fig. 4.22 (c)) would correspondingly be good.

But in Fig. 4.22 (b), we can see that at the end of the contraction step, the contracted

points do not resemble the skeleton of the round table top. Correspondingly, the

extracted skeleton fails to provide a good representation for the skeleton of the table

top. Note that distance field based approaches would also share this drawback.

As shown in Fig. 4.21 (b), our method was able to extract a nice straight line

skeleton for the table top, primarily because we are looking to extract part skeletons

first. Similarly, our part based approach was able to extract centered skeletons for the

point cloud shown in Fig. 4.21 (e). These examples show why decomposing objects

into GCs to detect parts and part skeletons can effectively deal with a wide variety

125

of shapes. By modeling the parts as GCs we are introducing a prior (or a bias) in the

algorithm. But this bias can reduce the variability in the results. Since, our parts are

defined by the very generic property of translational symmetry, the algorithm, even

with the bias, can still handle a wide variety of shapes with lesser variability. Fig.

4.23 compares the performance of our algorithm to that of Cao et al. in detecting

skeletons from noisy point clouds. This point cloud represents a rough 3D shape

reconstruction of a rocking chair. Notice that our algorithm successfully identifies

the various parts within the noisy point cloud. For instance, it can be seen that our

algorithm detected the seat of the rocking chair (shown in light green) as a GC. This

demonstrates that using a very basic property like translational symmetry to detect

GCs can be a powerful tool in identifying parts and thereby simplifying the skeleton

extraction problem. This example also shows that our method can be used as the

first step in denoising point clouds and in surface reconstruction.

One of the limitations of our algorithm is that the method we use to link part

skeletons, to form a complete skeleton of the shape, can sometimes lead to anomalies

like the one shown in Fig. 4.24 (b). Keep in mind that we join individual part

skeletons together using straight lines. The drawback of this can be clearly seen in

Fig. . 4.24 (b), where this approach leads to an unnatural looking overall skeleton.

The individual part skeletons of the parts detected by our algorithm shown in Fig.

4.24 (a). Ideally, the point cloud has to be segmented into eight toruses and each

torus would be connected to two its neighbors. However, our algorithm does not

succeed in extracting individual torus skeletons due to the presence of large number

of junction regions where the translational symmetry of a torus breaks. In this case,

the algorithm by Cao et al. succeeds in extracting a better skeletal representation of

the shape as shown in Fig. 4.21 (c). As pointed out earlier, this is due to the fact

that the point cloud at the end of the contraction step closely resembles the skeleton

of the shape.

We would like to point out an interesting observation regarding the ambiguity of

part skeletons for the same part. The part skeleton extracted for the seat of the point

126

(a) (b) (c) (d)

Fig. 4.22. The contracted points, at the end of the contraction step in the algorithm
by Cao et al. [88], is shown in red in (a) and (b). The final skeletons extracted by Cao
et al., for point clouds shown in (a) and (b), are shown in (c) and (d) respectively.

(a) (b)

Fig. 4.23. Skeleton extraction with noisy point clouds. (a) Part skeletons extracted
by our method with points belonging to different parts shown in different colors. (b)
Skeleton extraction results from Cao et al..

cloud of a chair is shown in Fig. 4.25 (a). This result was obtained when the number

of clusters was set to 150 and using the maximum feasible value of k1 = 0.95 (in

equation 4.17 , constrained C1) for this point cloud. Note that by setting k1 = 0.95,

we are asking the algorithm to cover at least 95% of the points in the cloud. In Fig.

4.25 (b), the results obtained by setting k1 = 0.92 is shown. Notice that the parts

extracted are almost the same but the skeleton of the part representing the seat of the

chair is now different. In fact, this result (i.e., Fig. 4.25 (b)) is a qualitative better

127

(a) (b)

Fig. 4.24. (a) Parts extracted for the inter-connected toruses. (b) Final skeleton
obtained after linking part skeletons

128

(a) (b) (c)

Fig. 4.25. Ambiguity in skeletal representation of parts. (a) The different parts
identified, by our algorithm, are shown in different colors along with the skeleton
shown as a red curve. (b) Parts identified and part skeletons extracted for a vale
of k1 (in equation 4.17 , constrained C1) slightly lesser than the maximum feasible
value. (c) Part skeletons extracted when the length component is not part of the
overall cost.

result than the one in Fig. 4.25 (a). Also note that the points at the end cap region

of the GC in Fig. 4.25 (b) are not included by the algorithm as part of the seat.

This shouldn’t be surprising because the translational symmetry based definition of

a GC will not capture the end caps. However, the GC can capture the end caps if

the skeleton is diagonal as is the case with Fig. 4.25 (a). In short, very similar set of

points representing the same part in a point cloud can be well represented by multiple

skeletal curves due to the very general definition of a GC. Another example of such

ambiguity can be seen by comparing the part skeletons in Fig. 4.25 (a) and (c).

Keep in mind that each part was assigned a cost which had four components. One

of the components was length of the part skeleton. Longer part skeletons were given

preference over shorter ones. Fig. 4.25 (c) shows that removing the length component

(i.e., not rewarding or penalizing length of parts) would result in a different set of part

skeletons extracted. Note that the parts are almost the same, but the part skeletons

are different. To summarize, the same part can be represented by multiple skeletal

129

representations as per the definition of a GC. When such situations arise, there will be

ambiguity in choosing the best skeletal representation. Since, our algorithm extracts

parts and lists them as shown in Fig. 4.15, it provides the user with the flexibility of

manually choosing the best skeletal representation according to them.

4.8 Implementation and Run Time

The code is implemented in Python and takes about three minutes to run for a

point cloud containing five thousand points with the number of clusters set to hun-

dred on a 2.8 GHz Intel Core i7 processor with 16 GB RAM. We use Numba [101] to

accelerate the cost function evaluation and gradient calculations used for registering

two 3D point clouds. Note that the registration function is called multiple times

in order to grow a part. Even with a modest estimate of five calls to the registra-

tion function per cluster, the total number of calls would be around five hundred.

Hence, it is essential to be able to quickly evaluate the cost function and compute

gradients for the registration function. Growing parts is the most time consuming

step in the algorithm. Since, two parts can be grown completely independently, this

process is amenable to parallelization. Therefore, there is ample scope to speed up

the computations by parallelizing the part growing stage.

130

5. SUMMARY AND FUTURE WORK

The work done in this dissertation is inspired by the fundamental role of priors,

especially the symmetry prior, in enabling veridical visual perception. The broad

aim, therefore, has been to understand how these priors operate in the process of

visual perception and then design algorithms that utilize this information to help

machines perceive the world as we do. To this end, we described psychophysical

experiments that better our understanding of how these priors are employed by the

visual system and we also described a couple of algorithms which directly employ

these priors to perform 3D reconstruction and 3D point cloud decomposition into

parts.

Through the psychophysical experiments, we showed how symmetry, compactness

and minimal surface area priors can be combined with binocular depth order infor-

mation to model the percept of polyhedral shapes. The effectiveness of the model was

demonstrated with the help of a control experiment. We also showed how the monoc-

ular model can be obtained from the binocular model by just dropping the binocular

depth order term form the binocular model. Metrics were introduced to measure the

dissimilarity between polyhedral shapes and to measure the asymmetry of a polyhe-

dral shape. Note that the shape dissimilarity metric we introduced is invariant to rigid

motion and size scaling and therefore is consistent with the conventional definition

of shape. Using these metrics we showed that the perception of symmetric shapes is

more veridical in comparison to asymmetrical shapes and similarly binocular percep-

tion is closer to veridical than monocular perception. For symmetric shapes viewed

binocularly, we showed the absence of any systematic depth distortion. This is not

surprising because symmetric shapes are almost always perceived as symmetric and

depth distortions would destroy the symmetry of the shape (the shapes are viewed

from non-degenerate directions). A website which shows the results from all 540 tri-

131

als, which include the 3D reference shape and the 3D shapes recovered by the model

and the subjects, was developed and published. This enables the users to judge the

goodness of the model and the metrics by themselves.

Note that we used one model for symmetric shapes and a different model for

asymmetric shapes. The need to have two separate models per subject needs to be

investigated further. If the visual system indeed uses two separate models based

on the symmetry of the shape, then there must be a first step where the visual

system detects symmetrical shapes. Does the visual system use binocular disparity

information to do this ? Or, are there other priors that inform the visual system about

the symmetry of shapes ? This needs to be answered in a future study. In the current

work, we ignored the role of re-projection error. Keep in mind that all the shapes

that the user could generate (by adjusting the three parameters) would produce the

same orthographic image as the reference shape but not the same projective image.

Though the fact that the models used in the prior study by Li et al. [1] and those used

by our current work produced good results indicate that the effect of the re-projection

error would be small, it would be still interesting to quantify it. Since, our shapes

always had planar faces, planarity was an in-build prior. We know that planarity is a

very important prior that the visual system employs. To investigate the significance

of this prior with respect to the other priors, it would be interesting to investigate

the perception of shapes that do not always have planar faces.

In the second part of the dissertation, an algorithm that employs bilateral symme-

try and planarity priors was used to recover 3D shapes from single images. Correspon-

dence problems are common in computer vision when it comes to 3D reconstruction

from images. Usually, distinctive feature points like corners are detected in images

and the corresponding points are matched in multiple images before proceeding to

reconstruct them. Here, to perform 3D reconstruction from a single image, we con-

sider a different kind of correspondence problem. We assume that the shape to be

reconstructed is bilaterally symmetric and then we detect symmetrically correspond-

ing pairs of curves in the edge map of the image. If we know the internal camera

132

parameters and the symmetry plane, the symmetry correspondence between curves

would allow us to reconstruct them up to an unknown scale factor. Note, the un-

known scale factor is a feature of image based reconstructions and that appears here

too. The curves are extracted by finding shortest paths with turning angle penalties

in the edge map. We introduced a metric to match curves, i.e., to decide if two

2D curves are the projections of approximately planar 3D curves. Planarity prior in

combination with the shape match metric is then employed to choose the right curve

correspondences leading to the reconstruction of the shape.

The algorithm can be improved by automatically detecting the vanishing point.

If the shape consists of curves, one could use curve matching to derive the vanishing

point. Self-symmetric lines, if they can be reliably detected, could also be used for this

purpose as they intersect at the vanishing point. Another issue with the algorithm

is problem arising when close by 2D curves are allowed to correspond. The current

algorithm solves this by imposing a minimum distance threshold between curves that

can be considered symmetric counterparts, based on self-symmetric line lengths. But

this solution would prevent the algorithm from reconstructing some of the details of

the 3D shape. This is because it is possible for two symmetrically corresponding 3D

curves to be close to each other (when they are close to the symmetry plane) and then

their projections would be close to each other in the image. The distance threshold

would prevent the detection of such curves as corresponding curves which would end

up in inaccurate reconstructions. A solution to this problem is to match parts rather

than curves. Most parts are translationally symmetric and it is possible that human

visual system is detecting parts first and then finding their correspondences. An

approach based on part detection and matching would exploit the local symmetry

(translational symmetry) of parts and global symmetry (bilateral symmetry) of the

shape to produce better reconstructions.

In the final part of the dissertation an algorithm to decompose 3D point clouds into

its parts was presented. Since, the parts were represented by GCs they have natural

skeletal representations. By linking the part skeletons, a skeletal representation of

133

the 3D shape can be obtained. To extract GCs, we explicitly used translational

symmetry, the property that defines GCs. After detecting initial cross-sections, parts

are grown (in both directions) from them by performing 3D point set registration with

the neighboring points. An improved point set registration algorithm was introduced

for this purpose. After extracting a redundant set of parts, each part was assigned

a score. Based on this score an optimal subset of parts are selected to obtain an

optimal decomposition of the 3D point cloud into GCs. The advantages of a part

based approach over other approaches were demonstrated in the results. With the

help of a GUI, the ease with which the users can interact with the skeleton extraction

algorithm was demonstrated.

As pointed out earlier and depicted in Fig. 4.24, there is scope for improvement

for the method used to link parts. A consistant way of dealing with the ambiguity

in skeletal representation of parts (Fig. 4.25) can also be take up as future work.

The accuracy of the algorithm can be improved by increasing the number of clusters

considered. For instance, more detailed skeletons can be extracted by considering

smaller clusters. But increasing the number of clusters would substantially increase

the execution time because of the additional time spent on registration to grow larger

number of parts and also because of the extra time the optimization algorithm might

take due to increased number of candidate parts. However there is a way to mitigate

this increase in execution time. Currently, there are a number of redundant parts

in the list of candidate parts. A way to evaluate if two parts are equivalent and

remove one of the parts in case they are equivalent would help reduce the number

of parts passed on to the optimization algorithm. Also multiple parts can be grown

simultaneously and hence a parallel implementation of this step could vastly improve

the execution time. Another way to increase the speed of execution would be to look

for appropriate reformulation of the optimization step so that linear relaxations to

the binary integer program can be considered.

This dissertation provides further evidence for the important role that priors play

in visual perception. With the abundant presence of the various symmetries in nature,

134

it shouldn’t be surprising that the visual system employs this prior to enable veridical

perception. By presenting two algorithms (one for 3D reconstruction and the other

for 3D point cloud decomposition), the utility of priors, especially the symmetry

prior, was demonstrated. If the field of computer vision (including machine learning

based vision) aim to create algorithms to perform vision tasks like humans, it seems

imperative that these algorithms explicitly try to take advantage of the symmetries

that exist in the world.

REFERENCES

135

REFERENCES

[1] Y. Li, T. Sawada, Y. Shi, T. Kwon, and Z. Pizlo, “A bayesian model of binocular
perception of 3d mirror symmetrical polyhedra,” Journal of vision, vol. 11,
no. 4, pp. 11–11, 2011.

[2] M. Singh and D. D. Hoffman, Natural Selection and Shape Perception.
London: Springer London, 2013, pp. 171–185. [Online]. Available:
https://doi.org/10.1007/978-1-4471-5195-1 12

[3] D. Purves, B. B. Monson, J. Sundararajan, and W. T. Wojtach, “How biological
vision succeeds in the physical world,” Proceedings of the National Academy of
Sciences, vol. 111, no. 13, pp. 4750–4755, 2014.

[4] D. D. Hoffman, M. Singh, and C. Prakash, “The interface theory of perception,”
Psychonomic bulletin & review, vol. 22, no. 6, pp. 1480–1506, 2015.

[5] J. P. C. Southall, Helmholtz’s Treatise on Physiological Optics: Translated from
the Third German Edition. Dover, 1962.

[6] D. Marr, Vision. New York: W.H. Freeman, 1982.

[7] J. Hochberg and E. McAlister, “A quantitative approach, to figural” good-
ness”.” Journal of Experimental Psychology, vol. 46, no. 5, p. 361, 1953.

[8] H. Wallach and D. O’connell, “The kinetic depth effect.” Journal of experimen-
tal psychology, vol. 45, no. 4, p. 205, 1953.

[9] J. C. Hay, “Optical motions and space perception: An extension of gibson’s
analysis.” Psychological Review, vol. 73, no. 6, pp. 550–565, 1966.

[10] S. Ullman, “The interpretation of structure from motion,” Proceedings of the
Royal Society of London. Series B. Biological Sciences, vol. 203, no. 1153, pp.
405–426, 1979.

[11] H. C. Longuet-Higgins, “A computer algorithm for reconstructing a scene from
two projections,” Nature, vol. 293, no. 5828, p. 133, 1981.

[12] H. Kopfermann, “Psychologische untersuchungen über die wirkung zweidimen-
sionaler darstellungen körperlicher gebilde.” Psychologische forschung, vol. 13,
no. 1, pp. 293–364, 1930.

[13] D. N. Perkins, “How good a bet is good form?” Perception, vol. 5, no. 4, pp.
393–406, 1976.

[14] A. P. Witkin, “Recovering surface shape and orientation from texture,” Artifi-
cial intelligence, vol. 17, no. 1-3, pp. 17–45, 1981.

https://doi.org/10.1007/978-1-4471-5195-1_12

136

[15] M. Brady, A. Yuille, and W. Richards, “Inferring 3d orientation from 2d contour
(an extremum principle),” Natural computation, pp. 99–106, 1983.

[16] K. Sugihara, Machine interpretation of line drawings. MIT press Cambridge,
1986, vol. 1.

[17] T. Marill, “Emulating the human interpretation of line-drawings as three-
dimensional objects,” International Journal of Computer Vision, vol. 6, no. 2,
pp. 147–161, 1991.

[18] Y. G. Leclerc and M. A. Fischler, “An optimization-based approach to the
interpretation of single line drawings as 3d wire frames,” International Journal
of Computer Vision, vol. 9, no. 2, pp. 113–136, 1992.

[19] T. Poggio, V. Torre, and C. Koch, “Computational vision and regularization
theory,” in Readings in Computer Vision. Elsevier, 1987, pp. 638–643.

[20] Z. Pizlo, Y. Li, T. Sawada, and R. Steinman, Making a machine that sees like
us. New York, NY: Oxford University Press, 2014.

[21] I. Rock and J. DiVita, “A case of viewer-centered object perception,”
Cognitive Psychology, vol. 19, no. 2, pp. 280 – 293, 1987. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0010028587900132

[22] I. Biederman and P. C. Gerhardstein, “Recognizing depth-rotated objects: ev-
idence and conditions for three-dimensional viewpoint invariance.” Journal of
Experimental Psychology: Human perception and performance, vol. 19, no. 6,
p. 1162, 1993.

[23] D. W. Thompson, On growth and form, 2nd ed. Cambridge University Press,
1942.

[24] Z. Pizlo and A. K. Stevenson, “Shape constancy from novel views,” Attention,
Perception, & Psychophysics, vol. 61, no. 7, pp. 1299–1307, 1999.

[25] Y. Li and Z. Pizlo, “Depth cues versus the simplicity principle in 3d shape
perception,” Topics in cognitive science, vol. 3, no. 4, pp. 667–685, 2011.

[26] M. Hadamard, “On problems in partial derivatives, and their physical signifi-
cance,” Princeton University Bulletin, vol. 13, no. 49-52, p. 28, 1902.

[27] A. Tikhonov and V. Arsenin, Solutions of ill-posed problems, ser.
Scripta series in mathematics. Winston, 1977. [Online]. Available: https:
//books.google.com/books?id=ECrvAAAAMAAJ

[28] D. C. Knill and W. Richards, Perception as Bayesian inference. Cambridge
University Press, 1996.

[29] Z. Pizlo, “Perception viewed as an inverse problem,” Vision research, vol. 41,
no. 24, pp. 3145–3161, 2001.

[30] ——, 3D shape: Its unique place in visual perception. Mit Press, 2010.

[31] Z. Yang and D. Purves, “A statistical explanation of visual space,” Nature
neuroscience, vol. 6, no. 6, p. 632, 2003.

http://www.sciencedirect.com/science/article/pii/0010028587900132
https://books.google.com/books?id=ECrvAAAAMAAJ
https://books.google.com/books?id=ECrvAAAAMAAJ

137

[32] Y. Li, Z. Pizlo, and R. M. Steinman, “A computational model that recovers the
3d shape of an object from a single 2d retinal representation,” Vision research,
vol. 49, no. 9, pp. 979–991, 2009.

[33] T. Sawada, “Visual detection of symmetry of 3d shapes,” Journal of Vision,
vol. 10, no. 6, pp. 4–4, 2010.

[34] Z. Pizlo, T. Sawada, Y. Li, W. G. Kropatsch, and R. M. Steinman, “New
approach to the perception of 3d shape based on veridicality, complexity, sym-
metry and volume,” Vision research, vol. 50, no. 1, pp. 1–11, 2010.

[35] J. T. Todd and P. Bressan, “The perception of 3-dimensional affine structure
from minimal apparent motion sequences,” Perception & Psychophysics, vol. 48,
no. 5, pp. 419–430, 1990.

[36] M. W. Chan, A. K. Stevenson, Y. Li, and Z. Pizlo, “Binocular shape constancy
from novel views: The role of a priori constraints,” Attention, Perception, &
Psychophysics, vol. 68, no. 7, pp. 1124–1139, 2006.

[37] I. Howard and B. Rogers, “Seeing in depth: Depth perception, vol. 1,” 2002.

[38] T. Sawada, Y. Li, and Z. Pizlo, “Any pair of 2D curves is consistent with a 3D
symmetric interpretation,” Symmetry, vol. 3, no. 2, pp. 365–388, 2011.

[39] H. Zabrodsky and D. Weinshall, “Using bilateral symmetry to improve 3d re-
construction from image sequences,” Computer vision and image understanding,
vol. 67, no. 1, pp. 48–57, 1997.

[40] A. R. François, G. G. Medioni, and R. Waupotitsch, “Mirror symmetry? 2-view
stereo geometry,” Image and Vision Computing, vol. 21, no. 2, pp. 137–143,
2003.

[41] H. Mitsumoto, S. Tamura, K. Okazaki, N. Kajimi, and Y. Fukui, “3-d recon-
struction using mirror images based on a plane symmetry recovering method,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 9,
pp. 941–946, 1992.

[42] N. Jiang, P. Tan, and L.-F. Cheong, “Symmetric architecture modeling with a
single image,” in ACM Transactions on Graphics (TOG), vol. 28, no. 5. ACM,
2009, p. 113.

[43] K. Köser, C. Zach, and M. Pollefeys, “Dense 3d reconstruction of symmetric
scenes from a single image,” in Joint Pattern Recognition Symposium. Springer,
2011, pp. 266–275.

[44] C. Wu, J.-M. Frahm, and M. Pollefeys, “Repetition-based dense single-view
reconstruction,” in Computer Vision and Pattern Recognition (CVPR), 2011
IEEE Conference on. IEEE, 2011, pp. 3113–3120.

[45] S. N. Sinha, K. Ramnath, and R. Szeliski, “Detecting and reconstructing 3d
mirror symmetric objects,” in Computer Vision–ECCV 2012. Springer, 2012,
pp. 586–600.

[46] T. Xue, J. Liu, and X. Tang, “Symmetric piecewise planar object reconstruction
from a single image,” in Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference on. IEEE, 2011, pp. 2577–2584.

138

[47] S. T. Barnard, “Interpreting perspective images,” Artificial intelligence, vol. 21,
no. 4, pp. 435–462, 1983.

[48] J. P. Tardif, “Non-iterative approach for fast and accurate vanishing point de-
tection,” in 2009 IEEE 12th International Conference on Computer Vision,
Sept 2009, pp. 1250–1257.

[49] B. Li, K. Peng, X. Ying, and H. Zha, Simultaneous Vanishing
Point Detection and Camera Calibration from Single Images. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 151–160. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-17274-8 15

[50] Y. Xu, S. Oh, and A. Hoogs, “A minimum error vanishing point detection
approach for uncalibrated monocular images of man-made environments,” in
Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on,
June 2013, pp. 1376–1383.

[51] H. Wildenauer and A. Hanbury, “Robust camera self-calibration from monocu-
lar images of manhattan worlds,” in 2012 IEEE Conference on Computer Vision
and Pattern Recognition. IEEE, 2012, pp. 2831–2838.

[52] B. Li, K. Peng, X. Ying, and H. Zha, “Vanishing point detection using cascaded
1d hough transform from single images,” Pattern Recognition Letters, vol. 33,
no. 1, pp. 1–8, 2012.

[53] A. Almansa, A. Desolneux, and S. Vamech, “Vanishing point detection without
any a priori information,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 25, no. 4, pp. 502–507, 2003.

[54] J. M. Coughlan and A. L. Yuille, “Manhattan world: Orientation and outlier
detection by bayesian inference,” Neural Computation, vol. 15, no. 5, pp. 1063–
1088, 2003.

[55] J. Lezama, R. Grompone von Gioi, G. Randall, and J.-M. Morel, “Finding
vanishing points via point alignments in image primal and dual domains,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2014, pp. 509–515.

[56] P. Denis, J. H. Elder, and F. J. Estrada, “Efficient edge-based methods for
estimating manhattan frames in urban imagery,” in European conference on
computer vision. Springer, 2008, pp. 197–210.

[57] R. T. Collins and R. S. Weiss, “Vanishing point calculation as a statistical infer-
ence on the unit sphere,” in [1990] Proceedings Third International Conference
on Computer Vision. IEEE, 1990, pp. 400–403.

[58] A. Michaux and Z. Pizlo, “Two correspondence problems easier than one,” in
Computational and Mathematical Models in Vision (MODVIS), 2015. [Online].
Available: http://docs.lib.purdue.edu/modvis/2015/session03/5/

[59] T. Kwon, K. Agrawal, Y. Li, and Z. Pizlo, “Spatially-global integration of
closed, fragmented contours by finding the shortest-path in a log-polar repre-
sentation,” Vision research, vol. 126, pp. 143–163, 2016.

http://dx.doi.org/10.1007/978-3-642-17274-8_15
http://docs.lib.purdue.edu/modvis/2015/session03/5/

139

[60] I. Gurobi Optimization, “Gurobi optimizer reference manual,” 2016. [Online].
Available: http://www.gurobi.com

[61] T. Sawada, T. Li, and Z. Pizlo, “Detecting 3-d mirror symmetry in a 2-d camera
image for 3-d shape recovery,” Proceedings of the IEEE, vol. 102, no. 10, pp.
1588–1606, 2014.

[62] T. Lee, S. Fidler, A. Levinshtein, C. Sminchisescu, and S. Dickinson, “A frame-
work for symmetric part detection in cluttered scenes,” Symmetry, vol. 7, no. 3,
pp. 1333–1351, 2015.

[63] A. Levinshtein, C. Sminchisescu, and S. Dickinson, “Multiscale symmetric part
detection and grouping,” International journal of computer vision, vol. 104,
no. 2, pp. 117–134, 2013.

[64] T. Funkhouser, M. Kazhdan, P. Shilane, P. Min, W. Kiefer, A. Tal,
S. Rusinkiewicz, and D. Dobkin, “Modeling by example,” in ACM transactions
on graphics (TOG), vol. 23, no. 3. ACM, 2004, pp. 652–663.

[65] I. Baran and J. Popović, “Automatic rigging and animation of 3d characters,”
in ACM Transactions on graphics (TOG), vol. 26, no. 3. ACM, 2007, p. 72.

[66] G. Li, L. Liu, H. Zheng, and N. J. Mitra, “Analysis, reconstruction and ma-
nipulation using arterial snakes,” ACM Trans. Graph., vol. 29, no. 6, p. 152,
2010.

[67] T. Chen, Z. Zhu, A. Shamir, S.-M. Hu, and D. Cohen-Or, “3-sweep: Extracting
editable objects from a single photo,” ACM Transactions on Graphics (TOG),
vol. 32, no. 6, p. 195, 2013.

[68] K. Yin, H. Huang, H. Zhang, M. Gong, D. Cohen-Or, and B. Chen, “Morfit: in-
teractive surface reconstruction from incomplete point clouds with curve-driven
topology and geometry control.” ACM Trans. Graph., vol. 33, no. 6, pp. 202–1,
2014.

[69] I. Binford, “Visual perception by computer,” in IEEE Conference of Systems
and Control, 1971.

[70] A. Sharf, T. Lewiner, A. Shamir, and L. Kobbelt, “On-the-fly curve-skeleton
computation for 3d shapes,” in Computer Graphics Forum, vol. 26, no. 3. Wiley
Online Library, 2007, pp. 323–328.

[71] O. K.-C. Au, C.-L. Tai, H.-K. Chu, D. Cohen-Or, and T.-Y. Lee, “Skeleton
extraction by mesh contraction,” in ACM transactions on graphics (TOG),
vol. 27, no. 3. ACM, 2008, p. 44.

[72] D. Reniers, J. Van Wijk, and A. Telea, “Computing multiscale curve and surface
skeletons of genus 0 shapes using a global importance measure,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 14, no. 2, pp. 355–368,
2008.

[73] Y. Zhou, K. Yin, H. Huang, H. Zhang, M. Gong, and D. Cohen-Or, “Generalized
cylinder decomposition.” ACM Trans. Graph., vol. 34, no. 6, pp. 171–1, 2015.

http://www.gurobi.com

140

[74] A. Myronenko and X. Song, “Point set registration: Coherent point drift,” IEEE
transactions on pattern analysis and machine intelligence, vol. 32, no. 12, pp.
2262–2275, 2010.

[75] S. Billings and R. Taylor, “Generalized iterative most likely oriented-point (g-
imlop) registration,” International journal of computer assisted radiology and
surgery, vol. 10, no. 8, pp. 1213–1226, 2015.

[76] A. Tagliasacchi, T. Delame, M. Spagnuolo, N. Amenta, and A. Telea, “3d skele-
tons: A state-of-the-art report,” in Computer Graphics Forum, vol. 35, no. 2.
Wiley Online Library, 2016, pp. 573–597.

[77] N. D. Cornea, D. Silver, and P. Min, “Curve-skeleton properties, applications,
and algorithms,” IEEE Transactions on Visualization & Computer Graphics,
no. 3, pp. 530–548, 2007.

[78] J.-H. Chuang, N. Ahuja, C.-C. Lin, C.-H. Tsai, and C.-H. Chen, “A potential-
based generalized cylinder representation,” Computers & Graphics, vol. 28,
no. 6, pp. 907–918, 2004.

[79] K. Siddiqi, S. Bouix, A. Tannenbaum, and S. Zucker, “The hamilton-jacobi
skeleton,” in Proceedings of the Seventh IEEE International Conference on
Computer Vision, vol. 2. IEEE, 1999, pp. 828–834.

[80] C. Song, Z. Pang, X. Jing, and C. Xiao, “Distance field guided l1-median skele-
ton extraction,” The Visual Computer, vol. 34, no. 2, pp. 243–255, 2018.

[81] H. Huang, S. Wu, D. Cohen-Or, M. Gong, H. Zhang, G. Li, and B. Chen, “L1-
medial skeleton of point cloud.” ACM Trans. Graph., vol. 32, no. 4, pp. 65–1,
2013.

[82] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii, “Topology matching for
fully automatic similarity estimation of 3d shapes,” in Proceedings of the 28th
annual conference on Computer graphics and interactive techniques. ACM,
2001, pp. 203–212.

[83] M. Natali, S. Biasotti, G. Patanè, and B. Falcidieno, “Graph-based representa-
tions of point clouds,” Graphical Models, vol. 73, no. 5, pp. 151–164, 2011.

[84] A. Bucksch, R. Lindenbergh, and M. Menenti, “Skeltre,” The Visual Computer,
vol. 26, no. 10, pp. 1283–1300, 2010.

[85] T. K. Dey and J. Sun, “Defining and computing curve-skeletons with medial
geodesic function,” in Proceedings of the fourth Eurographics symposium on
Geometry processing. Eurographics Association, 2006, pp. 143–152.

[86] R. Ogniewicz and M. Ilg, “Voronoi skeletons: Theory and applications,” in
Proceedings 1992 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. IEEE, 1992, pp. 63–69.

[87] A. Tagliasacchi, H. Zhang, and D. Cohen-Or, “Curve skeleton extraction from
incomplete point cloud,” in ACM Transactions on Graphics (TOG), vol. 28,
no. 3. ACM, 2009, p. 71.

141

[88] J. Cao, A. Tagliasacchi, M. Olson, H. Zhang, and Z. Su, “Point cloud skele-
tons via laplacian based contraction,” in 2010 Shape Modeling International
Conference. IEEE, 2010, pp. 187–197.

[89] A. Nguyen and B. Le, “3d point cloud segmentation: A survey,” in 2013 6th
IEEE conference on robotics, automation and mechatronics (RAM). IEEE,
2013, pp. 225–230.

[90] R. Schnabel, R. Wahl, and R. Klein, “Efficient ransac for point-cloud shape
detection,” in Computer graphics forum, vol. 26, no. 2. Wiley Online Library,
2007, pp. 214–226.

[91] M. Attene, B. Falcidieno, and M. Spagnuolo, “Hierarchical mesh segmentation
based on fitting primitives,” The Visual Computer, vol. 22, no. 3, pp. 181–193,
2006.

[92] X. Li, T. W. Woon, T. S. Tan, and Z. Huang, “Decomposing polygon meshes for
interactive applications,” in Proceedings of the 2001 symposium on Interactive
3D graphics. ACM, 2001, pp. 35–42.

[93] M. Goyal, S. Murugappan, C. Piya, W. Benjamin, Y. Fang, M. Liu, and
K. Ramani, “Towards locally and globally shape-aware reverse 3d modeling,”
Computer-Aided Design, vol. 44, no. 6, pp. 537–553, 2012.

[94] “Cloudcompare (version 2.9.1) [gpl software],” http://www.cloudcompare.org/,
2019.

[95] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-
chine Learning in Python ,” Journal of Machine Learning Research, vol. 12, pp.
2825–2830, 2011.

[96] E. Jones, T. Oliphant, P. Peterson et al., “SciPy: Open source scientific
tools for Python,” 2001–, [Online; accessed ¡today¿]. [Online]. Available:
http://www.scipy.org/

[97] G. Terzakis, P. Culverhouse, G. Bugmann, S. Sharma, and R. Sutton, “A recipe
on the parameterization of rotation matrices for non-linear optimization using
quaternions,” Technical report, Technical report MIDAS. SMSE. 2012. TR. 004,
Tech. Rep., 2012.

[98] D. Q. Huynh, “Metrics for 3d rotations: Comparison and analysis,” Journal of
Mathematical Imaging and Vision, vol. 35, no. 2, pp. 155–164, 2009.

[99] J. Zhang, K. Siddiqi, D. Macrini, A. Shokoufandeh, and S. Dickinson, “Re-
trieving articulated 3-d models using medial surfaces and their graph spectra,”
in International workshop on energy minimization methods in computer vision
and pattern recognition. Springer, 2005, pp. 285–300.

[100] Y. Xiang, W. Kim, W. Chen, J. Ji, C. Choy, H. Su, R. Mottaghi, L. Guibas, and
S. Savarese, “Objectnet3d: A large scale database for 3d object recognition,”
in European Conference Computer Vision (ECCV), 2016.

http://www.cloudcompare.org/
http://www.scipy.org/

142

[101] S. K. Lam, A. Pitrou, and S. Seibert, “Numba: A llvm-based python jit
compiler,” in Proceedings of the Second Workshop on the LLVM Compiler
Infrastructure in HPC, ser. LLVM ’15. New York, NY, USA: ACM, 2015, pp.
7:1–7:6. [Online]. Available: http://doi.acm.org/10.1145/2833157.2833162

http://doi.acm.org/10.1145/2833157.2833162

APPENDICES

143

A. PROOF: ONE-PARAMETER FAMILY OF 3D

SYMMETRICAL SHAPES ARE INCLUDED IN THE

FAMILY OF SHAPES THAT THE USER CAN

RECONSTRUCT

The XYZ Cartesian coordinate system of a 3D scene and the xy Cartesian coordinate

system of a 2D image in the scene are set as follows: (i) the Z-axis of the 3D coordinate

system is perpendicular to the image plane πI and πI is Z = 0, (ii) the Z-axis passes

through the origin of the 2D coordinate system, and (iii) the X- and Y-axes of the

3D coordinate system coincide with the x- and y-axes of the 2D coordinate system,

respectively. Under an orthographic projection, a 2D orthographic projection [x, y]T

of a point [X, Y, Z]T in a 3D scene is [x, y]T = [X, Y]T . Assume an object with a 3D

symmetric shape is given. Its symmetry plane is perpendicular to the image plane πI

and normal to the X-axis. A 3D asymmetric shape used in this study was generated

by deforming the 3D symmetric shape using a sub-group of 3D Affine transform:
X
′

Y
′

Z
′

 =


t11 0 0

0 1 0

t31 t32 t33



X

Y

Z

 (A1)

where t11, t31, t32, and t33 are positive real numbers. This symmetric shape is re-

ferred as the “original” symmetric shape for clarity. After this transformation, the

original symmetric shape becomes asymmetric unless t31 = 0. The “symmetry” plane

of the original symmetric shape is not normal to its “symmetry” line-segments any-

more and they are referred as an “asymmetry plane” and “asymmetry line-segments”

after the transformation. The asymmetry line segments are still parallel to one an-

other and are bisected by the asymmetry plane.

144

Consider that this asymmetric shape is randomly rotated and is orthographically

projected to the image plane πI along the Z-axis. Assume that the projections of the

asymmetry plane and the asymmetry line-segments are “not” degenerate. Namely,

the asymmetry plane is not perpendicular to πI and the asymmetry line-segments

are not normal to πI . If their projections are degenerate, the asymmetry plane is

projected to a line in the image and the asymmetry line-segment is projected to a

point in the image.

The orientations of the X- and Y-axes of the 3D coordinate system and of the x-

and y-axes of the 2D coordinate system are re-set so that the X- and x-axes are parallel

with orthographic projections of the asymmetry line segments. Then, an orientation

of the asymmetry line segments can be represented by a vector LN = [1, 0, ZN]T .

Consider two vectors LA1 = [1, 0, ZA1]T and LA2 = [0, 1, ZA2]T that are parallel to the

asymmetry plane.

A subject is asked to choose a 3D shape from a sub-group of Affine transform of

the asymmetric shape in the experiment. The sub-group of 3D Affine transform is

controlled by three parameters and is represented by a matrix TR:

TR =


1 0 0

0 1 0

a31 a32 a33

 (A2)

where a31, a32, and a33 are positive real numbers that the subject can adjust. The

vectors LN , LA1, and LA2 are transformed by TR into TRLN = [1, 0,+ZTZN]T , TRLA1 =

[1, 0,+ZTZA1]T , and TRLA2 = [0, 1,+ZA2]T respectively. Note that the orthographic

image of the asymmetric shape on πI is an invariant of TR. The images of the asym-

metry line segments stay parallel to the X-axis under TR.

In the following part of this appendix, we will show there is always some 3D

symmetric shape that can be obtained by transforming the asymmetric shape by TR.

Symmetry line-segments and a symmetry plane of this symmetric shape are trans-

formed from the asymmetry line-segments and the asymmetry plane of the asym-

145

metric shape. Namely, TRLA1 and TRLA2 are parallel to the symmetry plane, TRLN

is parallel to the symmetry line-segments, and TRLN is perpendicular to TRLA1 and

TRLA2 and is normal to the symmetry plane. Note that the asymmetric shape is

in the sub-group of 3D Affine transform (Equation A1) of the original symmetric

shape and Equation (A2) is another sub-group of 3D Affine transform. Hence, the

asymmetry line-segments still connect pairs of points that were symmetrical pairs of

the original symmetric shape. The asymmetry line-segments are still parallel to one

another and are bisected by the asymmetry plane but the asymmetry line-segments

are not normal to the symmetry plane. Hence, TR transforms the asymmetric shape

into a symmetric shape if TRLN is perpendicular to TRLA1 and TRLA2.

Recall that the images of the asymmetry line-segments are parallel to the X-axis.

Under this condition, the symmetry plane of the symmetric shape transformed from

the asymmetric shape is perpendicular to the ZX-plane [33,34]. The Y-axis is parallel

to TRLA2.

TRLA2 =


0

1

a32 + a33ZA2

 =


0

1

0

 (A3)

and is perpendicular to TRLA1 and TRLN . Then, the orientation of the symmetry

plane can be determined by its slant from the Z-axis. The slant σN of the symmetry

plane can be defined as an angle between the Z-axis and the normal TRLN to the

symmetry plane:

TRLN =


1

0

a31 + a33ZN

 =


1

0

1
tan(σN)

 (A4)

Recall that TRLA1 and TRLN are perpendicular to one another and TRLA1 is

perpendicular to the Y-axis. Hence,

146

TRLA1 =


1

0

a31 + a32ZA1

 =


1

0

−tan(σN)

 (A5)

From Equations (A3), (A4), and (A5), TR for transforming the asymmetric shape

into the symmetric shape can be derived as follows:

TR =


1 0 0

0 1 0

−sin2(σN)ZN−cos2(σN)ZA1

DT

ZA2

DT

1
DT

 (A6)

where DT = sin(σN)cos(σN)(ZN−ZA1). Such TR exists unless ZN = ZA1. If ZN =

ZA1, the asymmetric line-segments are parallel to the asymmetry plane. Equation

(A6) shows there is a one-parameter family of 3D symmetric shapes that can be

transformed from the asymmetric shape. The family can be controlled by the slant

σN of the symmetry plane. These symmetric and asymmetric shapes can be projected

to the identical image.

VITA

147

VITA

Vijai Jayadevan received his bachelor’s degree from Cochin University, India in

2008 and his master’s degree from The University of Arizona in 2013, both in Elec-

trical and Computer Engineering (ECE). He is currently working toward his PhD in

ECE at Purdue University, West Lafayette, and is being advised by Prof. Edward

Delp from the ECE Department and Prof. Zygmunt Pizlo from the Department

of Psychological Sciences. His research interests include computer vision, computer

graphics, machine learning, and signal processing.

148

Publications

V. Jayadevan, E. Delp, and Z. Pizlo, “Skeleton Extraction from 3D Point Clouds

by Decomposing the Object into Parts,” arXiv e-prints, p. arXiv:1912.11932, Dec

2019.

V. Jayadevan, T. Sawada, E. Delp, and Z. Pizlo, “Monocular and binocular

recovery of 3D symmetrical and near-symmetrical shapes,” Journal of Vision,

vol. 18, no. 10, pp. 719–719, 2018.

V. Jayadevan, T. Sawada, E. Delp, and Z. Pizlo, “Perception of 3d symmetrical

and nearly symmetrical shapes,” Symmetry, vol. 10, no. 8, p. 344, 2018.

A. Michaux, V. Kumar, V. Jayadevan, E. Delp, and Z. Pizlo, “Binocular 3D

object recovery using a symmetry prior,” Symmetry, vol. 9, no. 5, p. 64, 2017.

V. Jayadevan, A. Michaux, E. Delp, and Z. Pizlo, “3D shape recovery from real

images using a symmetry prior,” in IS and T International Symposium on Elec-

tronic Imaging Science and Technology, Computational Imaging XV, pp. 106–

115, 2017.

V. Jayadevan, A. Michaux, E. Delp, and Z. Pizlo, “3-d shape recovery from a

single camera image,” in Coputational and Mathematical Models in Vision, 2016.

A. Michaux, V. Jayadevan, E. J. Delp, and Z. Pizlo, “Figure-ground organization

based on three-dimensional symmetry,” Journal of Electronic Imaging, vol. 25,

no. 6, p. 061606, 2016.

	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Symmetry and Shape
	Visual Perception as an Ill-posed Inverse Problem
	The Symmetry Correspondence Problem
	Current Work
	Modeling near-symmetrical shapes
	3D reconstruction of shapes from a real image
	Skeleton extraction from 3D point clouds by decomposing it into parts

	Contributions

	MODELING PERCEPTION OF NEAR-SYMMETRICAL SHAPES
	3D Shapes, 2D Orthographic Projections and 3D Recovery
	Psychophysical Experiment on 3D Shape Recovery
	Stimuli
	Procedure

	Model
	Control Experiment
	Results
	Discussion
	Website

	3D SHAPE RECONSTRUCTION FROM A SINGLE IMAGE
	Introduction
	Overview
	Curve extraction
	Identifying Candidate Correspondences and Planes
	Choosing the Correct Correspondences
	Results
	Conclusion

	SKELETON EXTRACTION FROM 3D POINT CLOUDS BY DECOMPOSING THE OBJECT INTO PARTS
	Introduction
	Related Work
	Generating Candidate Parts
	Estimating Point Normals
	Deriving Locally-adaptive Thresholds
	Detecting Initial Cross-sections
	Growing Parts

	Optimal Part Selection
	Cost Components
	Optimal Parts Selection

	Linking Part Skeletons
	User Interface
	Results
	Registration Results
	Skeleton Extraction Results

	Implementation and Run Time

	SUMMARY AND FUTURE WORK
	REFERENCES
	PROOF: ONE-PARAMETER FAMILY OF 3D SYMMETRICAL SHAPES ARE INCLUDED IN THE FAMILY OF SHAPES THAT THE USER CAN RECONSTRUCT
	VITA

