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ABSTRACT

Moses, Nathan. Ph.D., Purdue University, May 2020. Approximate Roots and the
Hidden Geometry of Polynomial Coefficients. Major Professor: Tzuong-Tsieng Moh.

The algebraic operation of approximate roots provides a geometric approximation

of the zeros of a polynomial in the complex plane given conditions on their symmetry.

A polynomial of degree n corresponds to a cluster of n zeros in the complex plane.

The zero of the nth approximate root polynomial locates the gravitational center of

this cluster. When the polynomial is of degree mn, with m clusters of n zeros, the

centers of the clusters are no longer identified by the zeros of the nth approximate

root polynomial in general. The approximation of the centers can be recovered given

assumptions about the symmetric distribution of the zeros within each cluster, and

given that m > n. Rouché’s theorem is used to extend this result to relax some of

these conditions. This suggests an insight into the geometry of the distribution of

zeros within the complex plane hidden within the coefficients of polynomials.
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1. INTRODUCTION

The algebraic operation of approximate roots provides a geometric approximation of

the zeros of a polynomial in the complex plane given conditions on their symmetry.

1.1 Abhyankar-Moh and the Non-Archimedian Case

The proof of the Abhyankar-Moh Theorem in [1] uses the theory of approximate

roots of polynomials first developed in [2] and published in [3]. In particular, the nu-

merical lemma (3.1) in [1] is born from properties of approximate roots demonstrated

by the second fundamental theorem for the concept of approximate roots in [2].

The theory of approximate roots initially considered the coefficient field of the

polynomials to be Laurent series of an indeterminate. [2] generalizes the coefficient

field to any non-archimedean valued field. In such a case, the zeros of a polynomial

are located in a tree of discs with the zeros of approximate roots as centers.

What remains uninvestigated are the corresponding properties of approximate

roots in an archimedean valued field. To begin that work, this research considers

approximate roots of polynomials with complex coefficients, where the archimedean

valuation of C is the complex modulus.

The geometry in C is rather different than the non-archimedean case. While we

can in both spaces consider discs that contain clusters of the zeros of a polynomial,

discs in a non-archimedean valued field have the property that all points strictly

within the interior of the disc have the same distance to every point on the boundary

of the disc, and therefore every point in the interior has an equal claim as the center.

From this, it follows that all triangles in this geometry are isosceles; this is a different

world than C indeed!
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1.2 Approximate Root Polynomials

√
2 is famously not an integer nor a ratio of two integers; it can, however, be

approximated to arbitrary precision using decimal notation, as can any expression of

the form n
√
c, for n, c ∈ Z+. That is

n
√
c =

∞∑
i=0

bi(
1

10
)i

where bi ∈ Z+ and given {b0, . . . , bk} we can find bk+1, and so on. Applications are

often satisfied with approximations to this (generally infinite and irregular) series,

achieved by truncating as

n
√
c ≈

k∑
i=0

bi(
1

10
)i

for k ∈ Z+. We could, for instance, insist k = 0, in which case n
√
c is approximated by

an integer, which might have useful properties. For example,
√

2 ≈ 1 is not precise

enough for some applications, but is perhaps useful in defining the movement of a

king piece in chess. In general, we can think about approximation to k decimal places

as the equivalent of approximating
n
√

10knc with an integer.

This strategy toward approximate roots of integers naturally extends to approxi-

mating roots of polynomials; this is the primary consideration of this document.

In the simplest case, the root of a polynomial is again a polynomial. For instance,
√
x2 + 2x+ 1 = (x+1). How might we approximate

√
x2 + 1? Similar to the strategy

above, we consider
√
x2 + 1 =

∞∑
i=0

bi(
1

x
)i

where bi ∈ C[x]. In approximation, we set b0 = x, b1 = −1
2
, etc., and we have

√
x2 + 1 = x− 1

2
x−1 + . . .

We can confirm that our approximation is successful thus far by noting that we have

minimized the degree of (x2 + 1 − (x − 1
2
x−1)2). Truncating this approximation, we

can achieve a polynomial approximation, in particular

√
x2 + 1 ≈ x
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Let us formalize this concept.

Suppose f ∈ K[z]. For n
∣∣deg(f), we define an nth approximate root polynomial

(abbreviated as ARP) of f to be g ∈ K[z] such that

deg(f − gn) < deg(f)− deg(g). (1.1)

Note that if deg(gn) > deg(f) then deg(f − gn) = deg(gn) > deg(f); if deg(gn) <

deg(f) then deg(f −gn) = deg(f). Hence the inequality in our definition implies that

deg(gn) = deg(f).

Now, if deg(f) = n, i.e.

f(z) =
n∏
i=1

(z − δi)

So,

f(z) = zn(1− (
n∑
i=1

δi)z
−1 + . . . )

We quickly see that

g(z) = z −

n∑
i=1

δi

n
=⇒ gn(z) = zn(1− (

n∑
i=1

δi)z
−1 + . . . )

So deg(f − gn) ≤ n− 2 and g is an nth approximate root polynomial of f . We note

that, for given f and suitable n, g is unique.

Conveniently, any polynomial f can be identified with its zeros in the complex

plane, of which there are deg(f) according to the Fundamental Theorem of Algebra.

Therefore, algebraic operations on f can be reconsidered as geometric operations on

points in the complex plane. Let us take special notice that in the case of f as above,

the zero of g is the arithmetic mean of the zeros of f . Thus, the algebraic operation of

calculating an nth approximate root polynomial corresponds to a geometric operation

of locating the gravitational center of the cluster of n zeros of f .

In this case, we have found the zero of the nth ARP at the gravitational center

of the roots of f . In [2], where K is non-archimedean, any value in the interior of a

disc can be identified as a center. In the case of K = C, small perturbations from the

center cannot be identified with the center, and therefore we ought to expect those
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Figure 1.1. Cluster with Gravitational Center

deviations from centers of clusters to accrue. Therefore, the spirit of this project is one

of sufficiently bounding the accumulating error in our polynomial approximations that

we might preserve the useful properties elaborated in the non-archimedean case [2].

The nth approximate root polynomial is achieved in a straightforward way when

deg(f) = n, but generally how well does an nth ARP of f geometrically approximate

the zeros of f?
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2. ELEMENTARY SYMMETRIC POLYNOMIALS

Before considering approximate root polynomials more generally, we introduce no-

tation and obtain some results concerning elementary symmetric polynomials. This

simplifies the work to follow, as the coefficients of a polynomial are elementary sym-

metric polynomials in its zeros.

Consider x = (x1, . . . , xn).

Let the k-th elementary symmetric polynomial be defined as

ek(x) =
∑

1≤i1<···<ik≤n

xi1 . . . xik

for k > 0. Let e0(x) = 1.

Then we have the following property:

n∏
i=1

(z − xi) =
n∑
j=0

(−1)jej(x)zn−j (2.1)

Note that this property holds for any arbitrary n and therefore ek can be considered

as a function of any positive integer number of variables.

Let xi = σ + δi and δ = (δ1, . . . , δn). Then we have the following expansion of

elementary symmetric polynomials of binomials:

ek(x) =
k∑
j=0

(
n− j
k − j

)
ej(δ)σ

k−j (2.2)

Note that (2.1) above is a special case of (2.2) when k = n. Yet we can plug (2.2)

into (2.1) to get:

n∏
i=1

(z − xi) =
n∑
j=0

(−1)j
( j∑
k=0

(
n− k
j − k

)
ek(δ)σ

j−k
)
zn−j (2.3)
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Now suppose we have ω = {ω1, . . . , ωn} so that the ωi are the n distinct nth-roots

of unity, that is:

n∏
i=1

(z − ωi) = zn − 1 (2.4)

Then by comparing (2.1) and (2.4), we see:

ej(ω) =


1 j = 0

0 0 < j < n

(−1)n−1 j = n

(2.5)

If the xi are vertices of a regular polygon in the complex plane, they are of the

form:

xi = σ + rωi

where σ and r are constants. Then with δ = (rω1, . . . , rωn),

ej(δ) = ej(ω)rj (2.6)

and by (2.2), (2.6), and (2.5):

ek(x) =
k∑
j=0

(
n− j
k − j

)
ej(δ)σ

k−j =
k∑
j=0

(
n− j
k − j

)
ej(ω)rjσk−j

=

(
n

k

)
σk +

(
0

k − n

)
(−1)n−1rnσk−n =


(
n
k

)
σk 0 ≤ k < n

σn + (−1)n−1rn k = n

(2.7)

Thus, we see how elementary symmetric polynomials yield simplified results when

our points are distributed as vertices of regular polygons or, in other words, symmet-

rically placed on a circle in the complex plane.
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3. 2 CLUSTERS OF n ZEROS

Only assuming that we can divide the zeros of a polynomial into two clusters of equal

counts, say of n points, we can take its nth approximate root polynomial. What can

we say about the zeros of the nth ARP?

That is, suppose f ∈ K[z] is of the form

f(z) =
n∏
i=1

(z − σ1 − δ1,i)(z − σ2 − δ2,i).

Let δ1 = (δ1,1, . . . , δ1,n) and δ2 = (δ2,1, . . . , δ2,n). By (2.3),

n∏
i=1

(z − σ1 − δ1,i) =
n∑
j=0

(−1)j
( j∑
k=0

(
n− k
j − k

)
ek(δ1)σ1

j−k
)
zn−j

= zn
(

1−
((n

1

)
e0(δ1)σ1 +

(
n− 1

0

)
e1(δ1)

)
z−1

+
((n

2

)
e0(δ1)σ1

2 +

(
n− 1

1

)
e1(δ1)σ1 +

(
n− 2

0

)
e2(δ1)

)
z−2 + . . .

)
Without loss of generality, we may choose σ1 so that e1(δ1) = 0. So,

n∏
i=1

(z − σ1 − δ1,i) = zn
(

1−
((n

1

)
σ1
)
z−1 +

((n
2

)
σ1

2 + e2(δ1)
)
z−2 + . . .

)
Similarly, we can have

n∏
i=1

(z − σ2 − δ2,i) = zn
(

1−
((n

1

)
σ2
)
z−1 +

((n
2

)
σ2

2 + e2(δ2)
)
z−2 + . . .

)
So

f(z) = z2n
(

1−
((n

1

)
σ1 +

(
n

1

)
σ2
)
z−1

+
((n

2

)
σ1

2 + e2(δ1) +

(
n

2

)
σ2

2 + e2(δ2) +

(
n

1

)(
n

1

)
σ1σ2

)
z−2 + . . .

)
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Let

g(z) = z2
(

1− (σ1 + σ2)z
−1 +

(
σ1σ2 −

e2(δ1) + e2(δ2)

n

)
z−2
)

Then

g(z)n = z2n
(

1−
(
n

1

)
(σ1 + σ2)z

−1

+
((n

2

)
(σ1 + σ2)

2 +

(
n

1

)
(σ1σ2 −

e2(δ1) + e2(δ2)

n
)
)
z−2 + . . .

)
Comparing the coefficients of z in f(z) and g(z)n, some algebra shows that the

highest three coefficients agree, so deg(f − gn) < 2n − 2. Hence, g(z) is our nth

approximate root polynomial of f(z).

Now the zeros of g(z) can be found by the quardratic formula, which locates them

as

z =
σ1 + σ2

2
±
√

(
σ1 + σ2

2
)
2

− σ1σ2 +
e2(δ1) + e2(δ2)

n

=
σ1 + σ2

2
±
√

(
σ1 − σ2

2
)
2

+
e2(δ1) + e2(δ2)

n

If e2(δ1)+e2(δ2)
n

= 0, then the zeros of g(z) are σ1 and σ2, the centers of our two

clusters of zeros of f(z). Since h(z) =
√
z is continuous, we can regard e2(δ1)+e2(δ2)

n
as

an error term that contributes to the zeros of our nth approximate root polynomial

deviating from those centers.

Since

2e2(δ1) +
n∑
i=1

δ1,i
2 = e1(δ1)

2 = 0

We have e2(δ1) = −1
2

n∑
i=1

δ1,i
2 and similarly e2(δ2) = −1

2

n∑
i=1

δ2,i
2

So bounding the sum of the squared deviations of the zeros of f(z) from σ1 and

σ2 can ensure that the zeros of g(z) are arbitrarily close to these cluster centers.

But what does this mean geometrically? For instance, by reparametrization, we

can set σ1 + σ2 = 0, so σ1 = −σ2 = σ and

z = ±
√
−σ1σ2 +

e2(δ1) + e2(δ2)

n
= ±

√√√√
σ2 −

n∑
i=1

δ1,i
2 +

n∑
i=1

δ2,i
2

2n
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whose magnitude is the geometric mean of the magnitudes of σ ±
√
ε where ε =

n∑
i=1

δ1,i
2+

n∑
i=1

δ2,i
2

2n
, the average of the squares of the δj,i. The geometric meaning of the

average of the δj,i is transparent: in terms of physics, this is our center of mass; in

terms of statistics, this is our mean. What is the geometric meaning of ε?
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4. POWER SUMS AND MOMENTS

Let the kth power sum be defined as

pk(x) =
n∑
i=1

xki

Then our work in the previous section can be rewritten as

2e2(δi) + p2(δi) = e1(δi)
2 = 0

This case is generalized by Newton-Girard as

kek(x) =
k∑
j=1

(−1)j−1ek−j(x)pj(x) (4.1)

or alternatively

pk(x) = (−1)k−1kek(x) +
k−1∑
j=1

(−1)k−1+jek−j(x)pj(x) (4.2)

Since the coefficients of polynomials are elementary symmetric expressions of the

zeros, these formulae give us a way to relate the coefficients of our polynomial to

power sums of the zeros.

In finding g, our nth approximate root polynomial of f , we seek a polynomial

that, when raised to the nth power, agrees in the first d + 1 coefficients of highest

degree, where d = deg(g). This is a reasonable expectation, since f and hence g can

be considered monic, and therefore g has d coefficients to be determined. Because

the nth ARP only concerns itself with the first d + 1 coefficients, g is not so much

approximating just f , but a whole family F of polynomials, who agree in the first

d + 1 coefficients. Notably, both f and gn are members of F . In this way, the nth

approximate root polynomial can be considered as a map from the nd dimensional

space of monic polynomials of degree nd to the d dimensional space of polynomials
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of degree d, where F is the fiber over g. As F has (n − 1)d coefficients that are

undetermined by g, we realize that much of the information in f was lost in the

process of taking the nth ARP. What information has been preserved?

We saw in Chapter 1 that, when deg(f) = n, deg(g) = 1, and our nth approximate

root polynomial has only one zero. It chooses this zero to be the gravitational center

of the zeros of f ; since g approximates all members of F equally, it follows that the

zero of g is the gravitational center of all the members of F . We now have a new

geometric definition of F : all the polynomials whose roots have the same center as

the roots of f .

In Chapter 3, deg(g) = 2, so geometrically g has two zeros with which to approx-

imate f . By reparametrization, we centered f at the origin; notably, that centered g

as well. Hence some of the information in g is the center of f , but with two points

we expect that g can do better.

By (4.1), with k = 1, 2, 3

e1(x) = p1(x)

2e2(x) = e1(x)p1(x)− p2(x)

3e3(x) = e2(x)p1(x)− e1(x)p2(x) + p3(x)

Since we can always reparametrize so that e1(x) = p1(x) = 0, we can force

e2(x) = − p2(x)

2

e3(x) =
p3(x)

3

So we see that the first few coefficients of a centered f are directly proportional

to the power sums of its zeros. The first power sum has much geometric intuition; in

physics, it is the center of mass; in statistics, it is the mean; in both, it is called the

first moment. In fact, pk(x) corresponds to the kth moment: for k = 2, physics calls

this rotational inertia and statistics calls this variance; for higher k, we might have
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names like skew and kurtosis, but our names and intuition for the geometric properties

they measure quickly run out. (This situation is complicated by the fact that we are

operating in the complex plane. This means that squares, and thus second moments,

can be negative – or, more generally, complex – while statistics doesn’t allow, for

instance, negative variance).

With the zeros of g given as x = (x1, . . . , xd), let us consider gn. Since we can

assume f is centered at the origin, e1 of the zeros of f is 0, and the same goes for gn.

e2 of the zeros of gn is (
n

1

)
e2(x) +

(
n

2

)
e1(x)2 = ne2(x)

since e1(x) = 0. In this case, since we know e2 and p2 are directly proportional, we

know that the zeros of g have 1
n

the second moment of that of the zeros of f .

We could go further, for higher degrees of g and correspondingly to higher mo-

ments, but the author’s geometric intuition in this area depends on scientific expe-

rience that is inadequate. To quote the translated end of Riemann’s Habilitation

Dissertation [4]:

This path leads out into the domain of another science, into the realm

of physics, into which the nature of this present occasion forbids us to

penetrate.
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5. m CLUSTERS OF n ZEROS

Suppose we have m clusters of n zeros of a polynomial f(z). Then Chapter 3 becomes

but the case m = 2. We could, naturally, proceed to the cases of three and four clus-

ters, but we soon encounter limitations. Note that in Chapter 3, upon discovering

g(z), we used the quadratic formula to locate its zeros. While there are (increasingly

cumbersome and therefore relatively opaque) formulae for cubic and quartic poly-

nomials, the Abel-Ruffini Theorem indicates that this strategy proves impossible for

higher degrees. Since locating the zeros of an nth approximate root polynomial of

f(z) when deg(f) = mn means solving for the zeros of a mth degree polynomial, we

must alter our strategy in the general case of m clusters of n zeros.

We realize however, from our experience in Chapter 3, that we can expect the

error in the zeros of an nth approximate root polynomial of f(z) locating the centers

of the clusters of the zeros of f(z) to be in terms of elementary symmetric polynomials

in the deviations within the clusters from the center of the cluster, δj,i. In Chapter 2,

we found in (2.4)− (2.7) that almost all of the elementary symmetric polynomials of

the δj,i vanish when the clusters of the zeros are arranged as the vertices of a regular

polygon. We leverage this assumption in pursuit of the results of this section.

Suppose f ∈ K[z] is of the form

f(z) =
m∏
j=1

n∏
i=1

(z − σj − δj,i)



14

Let

xj,i = σj + δj,i

xj = (xj,1, . . . , xj,n)

σ∗j = (σj, . . . , σj)

δj = (δj,1, . . . , δj,n)

fj(z) =
n∏
i=1

(z − xj,i)

Then

f(z) =
m∏
j=1

n∏
i=1

(z − xj,i) =
m∏
j=1

fj(z)

.

We use (2.2) to get

ek(xj) =
k∑
l=0

(
n− l
k − l

)
el(δj)σ

k−l
j

If we assume the zeros of each fj(z) are vertices of a regular polygon, we may

suppose δj,i = rjωi where rj is a constant, and {ωi} are the n distinct nth-roots of

unity. Then by (2.5) and (2.6)

el(δj) =


1 l = 0

0 0 < l < n

(−1)n−1rlj l = n

5.1 Case: m < n

Then for 0 ≤ k ≤ m

ek(xj) =

(
n

k

)
σkj

and

fj(z) =
n∏
i=1

(z − xj,i) =
n∑
k=0

(−1)kek(xj)z
n−k
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whose highest m+ 1 degree terms agree with the highest m+ 1 degree terms of

n∏
i=1

(z − σj) =
n∑
k=0

(−1)kek(σ
∗
j )z

n−k =
n∑
k=0

(−1)k
(
n

k

)
σkj z

n−k

As the highest m + 1 degree terms of f(z) are determined by the highest m + 1

degree terms of the fj(z), the highest m+ 1 degree terms of f(z) must agree with the

highest m+ 1 degree terms of

f ∗(z) =
m∏
j=1

n∏
i=1

(z − σj)

Now, the nth approximate root polynomial of f ∗(z) is clearly

g(z) =
m∏
j=1

(z − σj)

as f ∗(z)− g(z)n = 0.

Since g(z) is determined by the first m + 1 terms of f ∗(z) and deg(g) = m, g(z)

is evidently also an nth ARP of f(z). As in Chapter 4, we can think of f and f∗ as

both being in the fiber above g.

As g(z) is in factored form, we see that the zeros of g(z) are exactly the centers of

the clusters, σj. Hence, when each cluster is symmetical and the number of zeros in

each cluster exceeds the number of clusters, we precisely locate the centers with the

zeros of the nth approximate root polynomial. We could think of this in the sense

that each cluster has enough influence on g(z) that the nth ARP ignores the pull of

other clusters in determining each cluster’s center.

5.2 Case: n ≤ m

Then for 0 ≤ k ≤ n

ek(xj) =


(
n
k

)
σkj k < n

σnj + (−1)n−1rnj k = n
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So

fj(z) =
n∏
i=1

(z − xj,i) =
n∑
k=0

(−1)kek(xj)z
n−k = −rnj +

n∑
k=0

(−1)k
(
n

k

)
σkj z

n−k

= −rnj +
n∑
k=0

(−1)kek(σ
∗
j )z

n−k = −rnj +
n∏
i=1

(z − σj)

And

f(z) =
m∏
j=1

(
− rnj +

n∏
i=1

(z − σj)
)

Note that the highest n degree terms of fj(z) agree with the highest n degree

terms of
n∏
i=1

(z − σj). So, the highest n degree terms of f(z) agree with the highest n

degree terms of

f ∗(z) =
m∏
j=1

n∏
i=1

(z − σj)

The next highest degree term of f(z), that of degree nm−n, has a coefficient that

differs from the corresponding coefficient of f ∗(z) by
m∑
j=1

rnj . In general, lower degree

terms have coefficient differences in the form of a sum of a product of some rnj and

some elementary symmetric polynomials of all the σi, save σj.

As the nth approximate root polynomial of f ∗(z) is clearly

g∗(z) =
m∏
j=1

(z − σj)

and deg(g∗) = m, the m + 1 coefficients of g∗(z) are determined by the highest

m + 1 degree terms of f ∗(z). In particular, the highest n degree terms of g∗(z) are

determined by the highest n degree terms of f(z). Unfortunately, m+1 > n, so g∗(z)

is not generally the nth approximate root polynomial of f(z) (unless, say, all rj = 0,

the trivial case). Hence, the rj constitute an error term; bounding the radius of our

clusters ever tighter yields a better and better approximation of the cluster’s center.

We may think of this as each cluster being more tight-knit or, alternatively, more

distinct. Can we make the effect of this error term more precise?
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6. CONTINUITY OF COMPLEX SOLUTIONS

Just as the coefficients of a polynomial are elementary symmetric polynomials of the

polynomial’s zeros, and therefore the coefficients vary continuously according to the

zeros, so too do the zeros depend continuously on the coefficients.

We can see this clearly using Rouché’s Theorem.

6.1 Rouché’s Theorem

Let f and g be analytic in a simply connected domain U . Let C be a simple

closed contour in U . If |g(z)| < |f(z)| for every z on C, then the functions f(z) and

f(z) + g(z) have the same number of zeros, counting multiplicities, inside C.

Proof. Let ht(z) = f(z) + tg(z). Then, by the argument principle, the number of

zeros of ht(z) in the interior of C is

1

2πi

∮
C

h′t(z)

ht(z)
dz

Note that

|ht(z)| = |f(z) + tg(z)| ≥ |f(z)| − t|g(z)| ≥ |f(z)| − |g(z)| > 0

So ht(z) is a homotopy between f(z) and f(z) + g(z) such that the number of

zeros of ht(z) in the interior of C is a continuous, integer-valued function of t ∈ [0, 1],

and hence constant.

Say f(z) is a polynomial with m zeros strictly within ε > 0 of some z0. We know

that g(z) = f(z) + δ with

|δ| < min
|z−z0|=ε

|f(z)|

then for all z on the boundary of the disc of radius ε around z0

|g(z)− f(z)| = |δ| < |f(z)|
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and by Rouché’s Theorem, g(z) has exactly m roots within ε of z0 as well.

(It would be nice if we had a multivariate generealization for Rouché’s Theorem.

For instance, suppose we have a system of equations gj(ε1, . . . , εn) = 0 for 1 ≤ j ≤

n, where each gj is a polynomial of degree j in the variables εi. Can we use a

generalization of Rouché’s Theorem to determine a bound on the solution of the new

system of equations g̃j = 0 where g̃j = gj + δj?)

In Chapter 5, we saw that the difference between coefficients of f(z) and f ∗(z) were

in terms of products involving rkj . This inequality indicates that we can bound the

zeros of our polynomial arbitrarily close to the centers of our clusters by sufficiently

bounding rj, i.e. the radii of the clusters.

Let us make better use of this technique by examining a specific case.

6.2 Case: n = m

Then as before, g∗(z) =
m∏
j=1

(z − σj) and the nth approximate root polynomial of

f(z) is

g(z) =

m∑
j=1

−rnj

n
+

m∏
j=1

(z − σj) =

m∑
j=1

−rnj

n
+ g∗(z)

Then for z ∈ CR,j, the circle of radius R around σj, so z = σj + Rζ, for |ζ| = 1,

we want

|g(z)− g∗(z)| =

∣∣∣ m∑
j=0

rnj

∣∣∣
n

< min
z∈CR,j

|g∗(z)| = min
|ζ|=1
|R

m∏
i=1
i 6=j

(σj − σi +Rζ)|

If

R < |σj − σi +Rζ| < |σj − σi| −R

That is

R <
|σj − σi|

2

Then ∣∣∣ m∑
j=1

rnj

∣∣∣
n

< Rm
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is a sufficient condition for |g(z)− g∗(z)| < |g∗(z)| on CR,j and hence for g(z) to have

a zero within CR,j.

If we say that r is the maximum of the rj, then

∣∣∣ m∑
j=0

rnj

∣∣∣
n

< rn < Rm becomes r < R,

since n = m. Thus, so long as our clusters are sufficiently separated (r <
|σj−σi|

2
for all

i, j), then the zeros of our approximate root is within r of the corresponding center.

Specifically, if for all j, rj = r, then we have that the zeros of the approximate roots

are each located within the disc associated with each cluster.

A final note about continuity of complex solutions: As small deviations of the

zeros of a polynomial produce similarly small deviations in coefficients (and vice

versa) we realize that we might, in practice, be able to relax our assumptions about

the symmetry in the zeros of our polynomial. Thus, our work here represents an ideal

circumstance that likely bears useful results in wider applications.
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7. FINDING THE ERROR

Let

f(z) =
m∏
i=1

n∏
j=1

(z − σi − δi,j)

An nth approximate root polynomial (APR) of f is a polynomial

g(z) =
m∏
i=1

(z − σi − εi)

such that

g(z)n =
m∏
i=1

(z − σi − εi)n =
m∏
i=1

n∏
j=1

(z − σi − εi)

whose coefficients of the highest m + 1 degree z terms agree with the corresponding

z terms of f .

Note that if xi = x for all i, we have ek(xi) =
(
n
k

)
xk.

g(z)n =
n∑
j=0

( ∑
j1+···+jm=j

0≤ki≤ji

m∏
i=1

(
n− ki
ji − ki

)
eki(εi)σ

ji−ki
i

)
zn−j (7.1)

We also can choose the ci so that e1(δi) = 0.

Using (7.1), we look at the coefficients of z corresponding to 1 ≤ j ≤ m. (Note

both polynomials are monic, so j = 0 is trivial.)

Case m = 1

(j = 1) =⇒
(
n

1

)
ε1 = 0

Case m = 2, n = 1

(j = 1) =⇒ ε1 + ε2 = 0

(j = 2) =⇒ ε2σ1 + ε1σ2 + ε1ε2 = 0



21

Case m = 2, n = 2

(j = 1) =⇒
(

2

1

)
ε1 +

(
2

1

)
ε2 = 0

(j = 2) =⇒
(

2

1

)
ε1σ1 + ε21 +

(
2

1

)(
2

1

)
ε2σ1 +

(
2

1

)(
2

1

)
ε1σ2 +

(
2

1

)(
2

1

)
ε1ε2

+

(
2

1

)
ε2σ2 + ε22 = e2(δ1) + e2(δ2)

Case m = 2, n > 2

(j = 1) =⇒
(
n

1

)
ε1 +

(
n

1

)
ε2 = 0

(j = 2) =⇒
(
n− 1

1

)(
n

1

)
ε1σ1 +

(
n

2

)
ε21 +

(
n

1

)(
n

1

)
ε2σ1 +

(
n

1

)(
n

1

)
ε1σ2

+

(
n

1

)(
n

1

)
ε1ε2 +

(
n− 1

1

)(
n

1

)
ε2σ2 +

(
n

2

)
ε22

= e2(δ1) + e2(δ2)

Case m = 3, n = 1

(j = 1) =⇒ ε1 + ε2 + ε3 = 0

(j = 2) =⇒ ε2σ1 + ε3σ1 + ε1σ2 + ε1ε2 + ε1σ3

+ε1ε3 + ε3σ2 + ε2σ3 + ε2ε3 = 0

(j = 3) =⇒ ε3σ1σ2 + ε2σ1σ3 + ε2ε3σ1 + ε1σ2σ3 + ε1ε3σ2

+ε1ε2σ3 + ε1ε2ε3 = 0

Case m = 3, n = 2

(j = 1) =⇒
(

2

1

)
ε1 +

(
2

1

)
ε2 +

(
2

1

)
ε3 = 0

(j = 2) =⇒
(

2

1

)
ε1σ1 + ε21 +

(
2

1

)(
2

1

)
ε2σ1 +

(
2

1

)(
2

1

)
ε3σ1 +

(
2

1

)(
2

1

)
ε1σ2

+

(
2

1

)(
2

1

)
ε1ε2 +

(
2

1

)(
2

1

)
ε1σ3 +

(
2

1

)(
2

1

)
ε1ε3 +

(
2

1

)
ε2σ2 + ε22
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+

(
2

1

)(
2

1

)
ε3σ2 +

(
2

1

)(
2

1

)
ε2σ3 +

(
2

1

)(
2

1

)
ε2ε3 +

(
2

1

)
ε3σ3 + ε23

= e2(δ1) + e2(δ2) + e2(δ3)

(j = 3) =⇒
(

2

1

)
ε2σ

2
1+

(
2

1

)
ε3σ

2
1+

(
2

1

)(
2

1

)
ε1σ1σ2+

(
2

1

)(
2

1

)
ε1ε2σ1+

(
2

1

)(
2

1

)
ε1σ1σ3

+

(
2

1

)(
2

1

)
ε1ε3σ1 +

(
2

1

)
ε21σ2 +

(
2

1

)
ε21ε2 +

(
2

1

)
ε21σ3 +

(
2

1

)
ε21ε3

+

(
2

1

)(
2

1

)
ε2σ1σ2 +

(
2

1

)
ε22σ1 +

(
2

1

)(
2

1

)(
2

1

)
ε3σ1σ2 +

(
2

1

)(
2

1

)(
2

1

)
ε2σ1σ3

+

(
2

1

)(
2

1

)(
2

1

)
ε2ε3σ1 +

(
2

1

)(
2

1

)
ε3σ1σ3 +

(
2

1

)
ε23σ1 +

(
2

1

)
ε1σ

2
2 +

(
2

1

)(
2

1

)
ε1ε2σ2

+

(
2

1

)
ε1ε

2
2 +

(
2

1

)(
2

1

)(
2

1

)
ε1σ2σ3 +

(
2

1

)(
2

1

)(
2

1

)
ε1ε3σ2 +

(
2

1

)(
2

1

)(
2

1

)
ε1ε2σ3

+

(
2

1

)(
2

1

)(
2

1

)
ε1ε2ε3 +

(
2

1

)
ε1σ

2
3 +

(
2

1

)(
2

1

)
ε1ε3σ3 +

(
2

1

)
ε1ε

2
3 +

(
2

1

)
ε3σ

2
2

+

(
2

1

)(
2

1

)
ε2σ2σ3 +

(
2

1

)(
2

1

)
ε2ε3σ2 +

(
2

1

)
ε22σ3 +

(
2

1

)
ε22ε3 +

(
2

1

)(
2

1

)
ε3σ2σ3

+

(
2

1

)
ε23σ2 +

(
2

1

)
ε2σ

2
3 +

(
2

1

)(
2

1

)
ε2ε3σ3 +

(
2

1

)
ε2ε

2
3

=

(
2

1

)
e2(δ1)σ2+

(
2

1

)
e2(δ1)σ3+

(
2

1

)
e2(δ2)σ1+

(
2

1

)
e2(δ3)σ1+

(
2

1

)
e2(δ2)σ3+

(
2

1

)
e2(δ3)σ2

Case m = 3, n = 3

(j = 1) =⇒
(

3

1

)
ε1 +

(
3

1

)
ε2 +

(
3

1

)
ε3 = 0

(j = 2) =⇒
(

2

1

)(
3

1

)
ε1σ1 +

(
3

2

)
ε21 +

(
3

1

)(
3

1

)
ε2σ1 +

(
3

1

)(
3

1

)
ε3σ1 +

(
3

1

)(
3

1

)
ε1σ2

+

(
3

1

)(
3

1

)
ε1ε2 +

(
3

1

)(
3

1

)
ε1σ3 +

(
3

1

)(
3

1

)
ε1ε3 +

(
2

1

)(
3

1

)
ε2σ2 +

(
3

2

)
ε22

+

(
3

1

)(
3

1

)
ε3σ2 +

(
3

1

)(
3

1

)
ε2σ3 +

(
3

1

)(
3

1

)
ε2ε3 +

(
2

1

)(
3

1

)
ε3σ3 +

(
3

2

)
ε23

= e2(δ1) + e2(δ2) + e2(δ3)

(j = 3) =⇒
(

3

1

)
ε1σ

2
1 +

(
3

2

)
ε21σ1 + ε31 +

(
3

2

)(
3

1

)
ε2σ

2
1 +

(
3

2

)(
3

1

)
ε3σ

2
1

+

(
2

1

)(
3

1

)(
3

1

)
ε1σ1σ2 +

(
2

1

)(
3

1

)(
3

1

)
ε1ε2σ1 +

(
2

1

)(
3

1

)(
3

1

)
ε1σ1σ3
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+

(
2

1

)(
3

1

)(
3

1

)
ε1ε3σ1 +

(
3

1

)(
3

2

)
ε21σ2 +

(
3

2

)(
3

1

)
ε21ε2 +

(
3

1

)(
3

2

)
ε21σ3 +

(
3

2

)(
3

1

)
ε21ε3

+

(
3

1

)(
2

1

)(
3

1

)
ε2σ1σ2 +

(
3

1

)(
3

2

)
ε22σ1 +

(
3

1

)(
3

1

)(
3

1

)
ε3σ1σ2 +

(
3

1

)(
3

1

)(
3

1

)
ε2σ1σ3

+

(
3

1

)(
3

1

)(
3

1

)
ε2ε3σ1 +

(
3

1

)(
2

1

)(
3

1

)
ε3σ1σ3 +

(
3

1

)(
3

2

)
ε23σ1 +

(
3

2

)(
3

1

)
ε1σ

2
2

+

(
2

1

)(
3

1

)(
3

1

)
ε1ε2σ2 +

(
3

1

)(
3

2

)
ε1ε

2
2 +

(
3

1

)(
3

1

)(
3

1

)
ε1σ2σ3 +

(
3

1

)(
3

1

)(
3

1

)
ε1ε3σ2

+

(
3

1

)(
3

1

)(
3

1

)
ε1ε2σ3 +

(
3

1

)(
3

1

)(
3

1

)
ε1ε2ε3 +

(
3

2

)(
3

1

)
ε1σ

2
3 +

(
2

1

)(
3

1

)(
3

1

)
ε1ε3σ3

+

(
3

1

)(
3

2

)
ε1ε

2
3 +

(
3

1

)
ε2σ

2
2 +

(
3

2

)
ε22σ2 + ε32 +

(
3

2

)(
3

1

)
ε3σ

2
2

+

(
2

1

)(
3

1

)(
3

1

)
ε2σ2σ3 +

(
2

1

)(
3

1

)(
3

1

)
ε2ε3σ2 +

(
3

1

)(
3

2

)
ε22σ3 +

(
3

2

)(
3

1

)
ε22ε3

+

(
3

1

)(
2

1

)(
3

1

)
ε3σ2σ3 +

(
3

1

)(
3

2

)
ε23σ2 +

(
3

2

)(
3

1

)
ε2σ

2
3 +

(
2

1

)(
3

1

)(
3

1

)
ε2ε3σ3

+

(
3

1

)(
3

2

)
ε2ε

2
3 +

(
3

1

)
ε3σ

2
3 +

(
3

2

)
ε23σ3 + ε33

= e2(δ1)σ1 + e3(δ1) +

(
3

1

)
e2(δ1)σ2 +

(
3

1

)
e2(δ1)σ3 +

(
3

1

)
e2(δ2)σ1 +

(
3

1

)
e2(δ3)σ1

+e2(δ2)σ2 + e3(δ2) +

(
3

1

)
e2(δ2)σ3 +

(
3

1

)
e2(δ3)σ2 + e2(δ3)σ3 + e3(δ3)

Case m = 3, n > 3

(j = 1) =⇒
(
n

1

)
ε1 +

(
n

1

)
ε2 +

(
n

1

)
ε3 = 0

(j = 2) =⇒
(
n− 1

1

)(
n

1

)
ε1σ1+

(
n

2

)
ε21+

(
n

1

)(
n

1

)
ε2σ1+

(
n

1

)(
n

1

)
ε3σ1+

(
n

1

)(
n

1

)
ε1σ2

+

(
n

1

)(
n

1

)
ε1ε2 +

(
n

1

)(
n

1

)
ε1σ3 +

(
n

1

)(
n

1

)
ε1ε3 +

(
n− 1

1

)(
n

1

)
ε2σ2 +

(
n

2

)
ε22

+

(
n

1

)(
n

1

)
ε3σ2 +

(
n

1

)(
n

1

)
ε2σ3 +

(
n

1

)(
n

1

)
ε2ε3 +

(
n− 1

1

)(
n

1

)
ε3σ3 +

(
n

2

)
ε23

= e2(δ1) + e2(δ2) + e2(δ3)

(j = 3) =⇒
(
n− 1

2

)(
n

1

)
ε1σ

2
1+

(
n− 2

1

)(
n

2

)
ε21σ1+

(
n

3

)
ε31+

(
n

2

)(
n

1

)
ε2σ

2
1+

(
n

2

)(
n

1

)
ε3σ

2
1
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+

(
n− 1

1

)(
n

1

)(
n

1

)
ε1σ1σ2 +

(
n− 1

1

)(
n

1

)
ε1

(
n

1

)
ε2σ1 +

(
n− 1

1

)(
n

1

)(
n

1

)
ε1σ1σ3

+

(
n− 1

1

)(
n

1

)(
n

1

)
ε1ε3σ1+

(
n

1

)(
n

2

)
ε21σ2+

(
n

2

)(
n

1

)
ε21ε2+

(
n

1

)(
n

2

)
ε21σ3+

(
n

2

)(
n

1

)
ε21ε3

+

(
n

1

)(
n− 1

1

)(
n

1

)
ε2σ1σ2+

(
n

1

)(
n

2

)
ε22σ1+

(
n

1

)(
n

1

)(
n

1

)
ε3σ1σ2+

(
n

1

)(
n

1

)(
n

1

)
ε2σ1σ3

+

(
n

1

)(
n

1

)(
n

1

)
ε2ε3σ1 +

(
n

1

)(
n− 1

1

)(
n

1

)
ε3σ1σ3 +

(
n

1

)(
n

2

)
ε23σ1 +

(
n

2

)(
n

1

)
ε1σ

2
2

+

(
n− 1

1

)(
n

1

)(
n

1

)
ε1ε2σ2+

(
n

1

)(
n

2

)
ε1ε

2
2+

(
n

1

)(
n

1

)(
n

1

)
ε1σ2σ3+

(
n

1

)(
n

1

)(
n

1

)
ε1ε3σ2

+

(
n

1

)(
n

1

)(
n

1

)
ε1ε2σ3+

(
n

1

)
ε1

(
n

1

)
ε2

(
n

1

)
ε3+

(
n

2

)(
n

1

)
ε1σ

2
3+

(
n− 1

1

)(
n

1

)(
n

1

)
ε1ε3σ3

+

(
n

1

)(
n

2

)
ε1ε

2
3 +

(
n− 1

2

)(
n

1

)
ε2σ

2
2 +

(
n− 2

1

)(
n

2

)
ε22σ2 +

(
n

3

)
ε32 +

(
n

2

)(
n

1

)
ε3σ

2
2

+

(
n− 1

1

)(
n

1

)(
n

1

)
ε2σ2σ3+

(
n− 1

1

)(
n

1

)(
n

1

)
ε2ε3σ2+

(
n

1

)(
n

2

)
ε22σ3+

(
n

2

)(
n

1

)
ε22ε3

+

(
n

1

)(
n− 1

1

)(
n

1

)
ε3σ2σ3+

(
n

1

)(
n

2

)
ε23σ2+

(
n

2

)(
n

1

)
ε2σ

2
3+

(
n− 1

1

)(
n

1

)(
n

1

)
ε2ε3σ3

+

(
n

1

)(
n

2

)
ε2ε

2
3 +

(
n− 1

2

)(
n

1

)
ε3σ

2
3 +

(
n− 2

1

)(
n

2

)
ε23σ3 +

(
n

3

)
ε33

=

(
n− 2

1

)
e2(δ1)σ1+e3(δ1)+

(
n

1

)
e2(δ1)σ2+

(
n

1

)
e2(δ1)σ3+

(
n

1

)
e2(δ2)σ1+

(
n

1

)
e2(δ3)σ1

+

(
n− 2

1

)
e2(δ2)σ2 + e3(δ2) +

(
n

1

)
e2(δ2)σ3 +

(
n

1

)
e2(δ3)σ2 +

(
n− 2

1

)
e2(δ3)σ3 + e3(δ3)

. . .

We observe that when, for all i, all δi,j are equal to the same δi, we have εi = δi.

This in particular is always the case when n = 1. How do we see that from the

equations?

This is precisely the situation where our parenthetical desire in the previous section

for a multidimensional generalization of Rouché’s Theorem would be helpful. Intu-

itively, small deviations on the right hand side from zero should have small effects on

the εi.
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8. HIDDEN GEOMETRY IN THE COEFFICIENTS OF

POLYNOMIALS

Working with ARPs has drawn our attention to the patterns and information within

the coefficients of polynomials. We have noted that

f(z) = zn + c

geometrically represents a regular n-gon in the complex plane, and

f(z) = (zn + c)zm = zn+m + czm

represents the same, but with m points also added at the figure’s center.

We know from Rouché’s Theorem that any polynomial with nearly the same co-

efficients as f has nearly the same geometric arrangement of points. Therefore we

can think of the nth coefficient after the highest degree polynomial term as carry-

ing information about the n-gon-ness of that polynomial’s points. Further, since we

know that a polynomial of degree n can represent any arrangement of n points in the

complex plane, we can consider that the first n+ 1 terms of a polynomial determine

n points that it generally resembles. For instance, the first 4 terms of a polynomial

can be considered as containing information about the triangleness of its roots.

Natuarally, as the ARP considers the first coefficients only, an ARP is an nth root

approximation of this geometric sketch.
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A. APPROXIMATE ROOT PLOTS

This appendix provides visual representations of the zeros of ARP (in blue) and the

zeros of the polynomials they approximate (red). All figures were created by software

developed exclusively by the author.

Since we found that the ARP located centers of clusters best when n > m, we

examine the circumstances where we expect the ARP to perform most poorly, i.e.

when n = 2 and m grows.

At the end, we consider plots of a couple cases of polynomials of small degree (4

and 6 respectively) where the approximate root zero is just on the boundary of the

discs containing the clusters of roots.

(a) m = 2 (b) m = 3

(c) m = 4 (d) m = 5

Figure A.1. Chains with 2 ≤ m ≤ 5
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(a) m = 6 (b) m = 7

(c) m = 8 (d) m = 9

(e) m = 10 (f) m = 11

(g) m = 12 (h) m = 13

Figure A.2. Chains with 6 ≤ m ≤ 13
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(a) m = 2 (b) m = 3

(c) m = 5 (d) m = 7

(e) m = 8 (f) m = 9

(g) m = 10 (h) m = 12

Figure A.3. Ladders with m = 2, 3, 5, 7, 8, 9, 10, 12
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(a) Degree 4 (b) Degree 6

Figure A.4. Boundary Plots
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