
CHARACTERIZING AND OPTIMIZING INTERNET VIDEO STREAMING

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Yun Seong Nam

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2020

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Sanjay G. Rao, Chair

School of Electrical and Computer Engineering, Purdue University

Dr. Ramesh Govindan

Viterbi School of Engineering, University of Southern California

Dr. Bruno Ribeiro

Department of Computer Science, Purdue University

Dr. Felix Xiaozhu Lin

School of Electrical and Computer Engineering, Purdue University

Approved by:

Dr. Dimitrios Peroulis

Head of the School Graduate Program, Purdue University

iii

For my family.

iv

ACKNOWLEDGMENTS

I would like to thank my advisor, Prof. Sanjay Rao, who has been a great mentor

and a sincere friend. I am indebted to Prof. Rao for the helpful guidance he gave me

and the opportunities he created to help me grow my research skills. I have learned

a lot from Prof. Rao, not only the way to conduct first-class research, but also the

way to pursue success and to handle failure.

I am grateful to my Committee members, Prof. Ramesh Govindan, Prof. Felix

Xiaozhu Lin, and Prof. Bruno Ribeiro, for the valuable advice and feedback they

gave on my research and dissertation.

I am thankful to my research collaborators, Prof. Ramesh Govindan, Prof. Bruno

Ribeiro, Dr. Zahaib Akhtar, Ehab, Dr. Ethan Katz-Bassett, Jibin Zhan, Dr. Hui

Zhang and Dr. Jessica Chen for their hard work and contributions to my research.

I am fortunate to have worked with my colleagues at Internet Systems Lab: Ashi-

wan, Chuan, Ehab, Harsh, Russ, Shankar, Sruthi, Yiyang and Zaiwei for those en-

lightening discussions and kind support.

Last but not least, I would like to thank School of Electrical and Computer En-

gineering, Purdue University for funding me as a teaching assistant; and I would like

to thank NSF for funding my research.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . xiii

1 INTRODUCTION . 1

1.1 Overview of video delivery planes . 3

1.2 Motivation . 4

1.3 Contributions . 6

1.4 Thesis Organization . 8

2 UNDERSTANDING VIDEO MANAGEMENT PLANES 9

2.1 Introduction . 9

2.2 The Video Management Plane . 11

2.3 Goals, Methodology & Dataset . 14

2.4 Characterizing Video Management Planes 19

2.4.1 Packaging . 19

2.4.2 Device Playback . 24

2.4.3 Content Distribution . 30

2.4.4 Summary . 34

2.5 Understanding Management Complexity 35

2.6 Management of Syndication . 38

2.7 Related Work . 45

2.8 Conclusion . 46

3 OBOE: AUTO-TUNING VIDEO ABR ALGORITHMS TO NETWORK
CONDITIONS . 48

3.1 Introduction . 48

vi

Page

3.2 Background and Motivation . 50

3.2.1 Background on ABR Algorithms 51

3.2.2 Ensuring High QoE for All Users 52

3.3 Oboe Design . 55

3.3.1 Representing Network State . 55

3.3.2 Offline Mapping of Network States 56

3.3.3 Online ABR Tuning . 60

3.4 Evaluation . 62

3.4.1 Metrics . 63

3.4.2 Methodology . 64

3.4.3 Oboe with RobustMPC . 67

3.4.4 Oboe vs. Pensieve . 69

3.4.5 Oboe with other ABR Algorithms 73

3.4.6 Sensitivity experiments . 75

3.4.7 Oboe Across Various Settings 77

3.4.8 Oboe Overhead . 80

3.5 Deployment Considerations . 80

3.6 Discussion and Future Work . 82

3.7 Related Work . 83

3.8 Conclusion . 84

4 XATU: EXPLOITING A RICHER THROUGHPUT MODEL FOR VIDEO
STREAMING THROUGH NEURAL NETWORKS 85

4.1 Introduction . 85

4.2 ABR algorithms and prediction . 87

4.3 Motivating data analysis . 89

4.3.1 Impact of clustering . 90

4.3.2 Impact of TTFB and chunk size 91

4.4 Xatu design . 94

vii

Page

4.4.1 Xatu overview . 94

4.4.2 Xatu Architecture . 95

4.4.3 Design details . 96

4.5 Evaluation methodology . 100

4.5.1 Prediction schemes compared 101

4.5.2 Datasets and training . 101

4.6 Results . 103

4.6.1 Xatu vs. CS2P: Prediction accuracy 103

4.6.2 Sensitivity study . 105

4.7 Extensibility of Xatu to new information 108

4.8 Potential QoE improvement when integrated with ABRs 111

4.8.1 Integrating Xatu with MPC and causality issue between size of
chunks and throughputs on the training data 112

4.8.2 Evaluation Testbed . 113

4.8.3 Xatu vs. CS2P: ABR algorithm impact 115

4.8.4 Xatu+MPC vs. Pensieve . 116

4.9 Related work . 117

4.10 Conclusion . 119

5 CONCLUSIONS . 120

5.1 Contributions . 120

5.2 Future directions . 121

REFERENCES . 123

VITA . 137

viii

LIST OF TABLES

Table Page

2.1 Streaming protocol file extensions and sample URLs 16

4.1 Median improvements of Xatu over CS2P in various prediction error metrics.104

ix

LIST OF FIGURES

Figure Page

1.1 The Internet video ecosystem. 1

1.2 Video management, control and data planes 4

2.1 A video delivery pipeline. 12

2.2 Dataset characteristics with respect to view-hours and number of publishers.18

2.3 Streaming protocols used in terms of percentages of publishers and view-
hours for past 27 months . 20

2.4 CDF across publishers of percentage of view-hours served via DASH and
HLS in the latest snapshot. 22

2.5 Number of streaming protocols used by publishers (by % of publishers and
by their view-hours). 23

2.6 Target platforms for video publishers . 24

2.7 Percentage of publishers supporting each platforms 25

2.8 Over time, percentage of view-hours, view-hours excluding 3 largest pub-
lishers, and views on each type of platform 26

2.9 CDF of individual view duration for each platform 27

2.10 Percentage of view-hours served by specific devices belonging to the same
platform. 28

2.11 Number of platforms supported per publisher (by % of publishers and by
their view-hours) . 29

2.12 Analysis of CDNs based on percentage of publishers and view-hours for
past 27 months . 31

2.13 Number of CDNs used by publishers (by % of publishers and by their
view-hours). 32

2.14 Correlation between different measures of complexity and publisher view-
hours . 38

2.15 Content syndication is prevalent in our dataset, with some content owners
syndicating to nearly half the full syndicators in our dataset. 39

x

Figure Page

2.16 Bitrate selection decisions for an episode of a popular series by the owner
and ten syndicators. 41

2.17 Average bitrate performance of California based iPad clients of owner and
of syndicator across different ISPs and CDNs. 42

2.18 Rebuffering performance of California based iPad clients of owner and of
syndicator across different ISPs and CDNs. 42

2.19 Storage savings under different syndication models for content served by
an owner and two syndicators. 44

3.1 Performance of ABR algorithms using different configurations for two ses-
sions with different throughput behaviors 53

3.2 Illustrating how policy for setting discount factors in MPC impacts per-
formance for different traces . 54

3.3 The logical diagram of the offline pipeline used by Oboe 57

3.4 Logical diagram of Oboe’s online pipeline 60

3.5 A scatter plot of average bitrate and rebuffering ratio between the Virtu-
alPlayer and real Dash.js player . 64

3.6 The percentage improvement in QoE-lin of MPC+Oboe over RobustMPC
for the Testbed experiment. The distribution of average bitrate, rebuffer-
ing ratio and bitrate change magnitude for the schemes is also shown. . . . 66

3.7 QoE-lin of MPC+Oboe compared to RobustMPC 68

3.8 An example session showing how MPC+Oboe is able to outperform Ro-
bustMPC by reconfiguring the discount parameter when a network state
change is detected. 68

3.9 Validation of our training methodology for Pensieve. 69

3.10 The percentage improvement in QoE-lin of MPC+Oboe over Pensieve
for the 0-6 Mbps throughput region. The distribution of average bitrate,
rebuffering ratio and bitrate change magnitude for the schemes is also shown.70

3.11 CDFs of QoE-lin for MPC+Oboe and Pensieve 71

3.12 Benefits of specializing Pensieve models. Each curve shows the QoE im-
provement of MPC+Oboe relative to each Pensieve model. 73

3.13 QoE improvement of MPC+Oboe over two ways of dynamically selecting
from specialized Pensieve models. 73

xi

Figure Page

3.14 Percentage improvement in bitrate and rebuffering of BOLA+Oboe over
BOLA (a),(b) and HYB+Oboe over HYB (c), (d) 74

3.15 Average QoE-lin of MPC+Oboe with various throughput predictors . . . 76

3.16 Comparing HYB with multiple fixed configurations and HYB+Oboe for
various settings . 78

3.17 Avg. of avg. bitrate and fraction of sessions with rebuffering for HYB+Oboe
and different publisher preferences . 79

3.18 Avg. of avg. bitrate and fraction of sessions with rebuffering for Ro-
bustMPC and different publisher preferences 79

3.19 Comparing prototype Oboe with commercial client side ABR implemen-
tation in average bitrate and rebuffering ratio. 80

3.20 Time between consecutive bitrate switches for two commercial ABRs . . . 81

3.21 Variance in bitrate levels across videos from two content publishers. 81

4.1 (a) cluster size distribution, and (b)-(d) are throughput prediction error
of CS2P and Global-CS2P on example clusters. 89

4.2 Impact of TTFB and chunk size on application throughput and chunk
download time. 92

4.3 Xatu architecture. 97

4.4 Detail of LSTM layer. 100

4.5 Throughput prediction errors with various schemes and understanding
Xatu’s approach. 102

4.6 (a)-(b) an ablation study of Xatu architecture, (c) sensitivity of Xatu to
various loss functions, and (d) Xatu’s Ability of specialization. 106

4.7 Benefits of exposing where objects are served from (Edge or Remote), and
ability of Xatu to leverage such information. 109

4.8 Actual throughputs (a red line), a range of predicted throughputs (a yellow
region) by Xatu depending on chunk sizes, and a predicted throughput
based on a heuristic approach (a blue line) obtained from the emulation
set-up. 112

4.9 QoE-lin of Xatu+MPC and CS2P+MPC from the testbed emulation on
the testing set. 114

4.10 Individual metrics of QoE-lin for Xatu+MPC and CS2P+MPC. 115

xii

4.11 QoE-lin of Xatu+MPC and Pensieve from the testbed emulation. Note
these experiments use a subset of the Primary DataSet and many features
of Xatu are disabled for fair comparison. 117

xiii

ABSTRACT

Nam, Yun Seong Ph.D., Purdue University, May 2020. Characterizing and Optimiz-
ing Internet Video Streaming. Major Professor: Sanjay G. Rao.

Internet video comprises a major portion of Internet traffic today. While core

and access network capacities continue to grow, optimizing Internet video delivery

will remain a challenge, as new forms of video and technology keep emerging, and

content publishers continue to seek higher Quality of Experience(QoE) of users due

to its correlations with user engagement and revenue. The goals of this thesis are to

create a deeper understanding of the Internet video ecosystem and to propose novel

methodologies to improve QoE of Internet video delivery.

In this thesis, we make the following contributions. First, we create a deeper un-

derstanding of video management plane by characterizing it, at scale, along its key

dimensions based on more than 100 content publishers data spanning 27 months, and

we propose new metrics to measure complexity of video management plane. Next,

in order to enhance video control plane, we propose Oboe, a system that improves

the dynamic range of Adaptive Bitrate(ABR) algorithms by automatically tuning

ABR behaviors to the current network state of a client connection to improve QoE

of a wide range of users. Through testbed experiments, we show Oboe significantly

improves performance of several different ABR algorithms. Finally, given that per-

formance of ABRs critically depends on throughput prediction accuracy, we propose

a new throughput prediction approach, called Xatu, to address challenges in existing

prediction methods used by ABRs. Xatu, a learning based throughput prediction

framework, uses richer information (e.g., ISP or chunk size) without apriori parti-

tioning data, and we show that Xatu reduces the prediction error by more than 23%

relative to state-of-the-art throughput prediction.

1

1. INTRODUCTION

Video dominates today’s Internet and will play a larger role going forward. The

average adult in the United States watches over an hour of Internet video a day [1],

and this consumption accounts for over half the traffic on residential networks being

video [2]. The volume of video traffic is projected to double by 2020, when a million

minutes of video traffic will cross the Internet every second [3]. Also delivering high

quality of experience (QoE) is critical since it correlates with user engagement and

revenue [4–6].

Figure 1.1 shows an overview of the Internet video delivery ecosystem. It has

evolved to have several entities. Content publishers serve their videos from content

delivery networks(CDNs), which deploy servers around the world and peer with many

ISP core and access networks, enabling users to access nearby servers and to consume

videos using various playback devices. Since videos must be delivered over various

networks that are highly variable, a conventional approach to delivering videos today

is splitting a video into chunks, encoding chunks with multiple bitrates, and allowing

Fig. 1.1.: The Internet video ecosystem.

2

clients to pick bitrates for each chunk based on client’s network conditions through

adaptive bitrate (ABR) algorithms.

While core and access network capacities continue to grow, optimizing Internet

video delivery will remain a challenge for two reasons. First, new forms of video,

technology, and devices continue to emerge—such as an interactive video content [7],

4K video [8], and virtual reality devices [9]—which will involve more stringent require-

ments. For instance, a user action (e.g., a change of orientation) in an interactive

video can require more tight deadline to ensure responsiveness to user interactivity.

Second, both users and content publishers continue to seek higher QoE. Even though

users consume videos with various devices, they want a TV-like, uninterrupted ex-

perience and leave if QoE does not meet their expectations. Content publishers also

want to provide higher QoE since this is directly related to their revenue [5].

To address challenges in a systematic way, we decompose the Internet video deliv-

ery ecosystem into a series of three planes based on its operations: video management

plane for preparing videos(transcoding/encoding and packaging videos with various

qualities and streaming protocols) and distributing them to content delivery net-

works(CDNs), video control plane for selecting a CDN and video quality to a user,

and video data plane for transporting video chunks through network.

This thesis focuses on video management and control planes for two reasons.

First, understanding video management plane is necessary to help learning its im-

plications for complexity, efficiency, requirements and QoE impact on video delivery.

While there have been some industrial efforts for understanding video management

plane [10–14], we are just scratching the surface in this area, and this plane is rel-

atively unexplored despite of its impacts. Second, video control plane is one of the

key components to improving QoE of users and not mature to ensure good QoE of

all users in a wide range of network conditions.

The goals of this thesis are to create a better understanding of video management

plane and to enhance video control plane in order to improve QoE of users. To this

end, we make the following contributions:

3

• Characterizing video management plane based on more than 100 content pub-

lishers data spanning 27 months in order to understand how it evolved over time

and across publishers, proposing new metrics to quantify the impact of diver-

sity on video management plane operations, and unveiling video management

inefficiency in today’s practice.

• Proposing Oboe, a system that enhances video control plane by adapting ABR

behavior to user network conditions in order to improve QoE of users.

• Developing Xatu, a leaning-based throughput prediction framework, in order to

improve video control plane since performance of ABRs critically depends on

accuracy of throughput prediction.

1.1 Overview of video delivery planes

The Internet video delivery ecosystem consists of three planes based on its oper-

ations: video management, video control, and video data plane.

Video management plane. Figure 1.2(a) shows video management plane(§2.2)

which performs two primary functions. The first function prepares video content

for delivery to users. Preparation involves (i) splitting the video into chunks, (ii)

encoding each chunk at one or more bitrates and encapsulating chunks using HTTP

chunk-based streaming protocols(encoding and packaging) and (iii) distributing video

to CDNs. The second function is developing and maintaining playback software for

the wide range of user devices.

Video control/data plane. Figure 1.2(b) illustrates video control plane(§3.2.1).

The key operation of video control plane is selecting at what bitrate level to fetch

a chunk based on conditions such as the amount of video the client has buffered

and the recent throughput achieved by the client through ABR algorithms in order

to improve QoE of users. It also involves choosing which CDN to direct a user to.

4

(a) Video management plane (b) Video control plane (c) Video data plane

Fig. 1.2.: Video management, control and data planes

Finally video data plane relates to transporting each chunk to the end user as shown

in figure 1.2(c).

Those series of operations and decisions impact QoE metrics such as a video start-

up latency, average bitrate in a video session, average bitrate changes(smoothness)

during the video session, or rebuffering ratio (the fraction of time video is paused

because the playback buffer has drained).

1.2 Motivation

This thesis focuses on video management and control plane since video data plane

is relatively well studied. An exploration of important considerations and associated

challenges follows.

First, understanding video management is key to learn about operational complex-

ity, efficiency, and requirements of Internet video delivery. The Video management

plane comprises a few key dimensions such as streaming protocols, playback devices

and CDNs, and the state of practice for the video management plane is in the curse

5

of choice. There are numerous types of playback devices, streaming protocols, and

CDNs, and the choice of each dimensions (e.g., what devices/stream protocols to

support and how many CDNs to use) significantly impacts user reachability to users,

operational complexity, computation and storage requirements, application perfor-

mance, and QoE of users. Even though understanding video management plane is

important to learning about its impacts, it has been relatively unexplored compared

to the other planes. Even though there are a couple of prior industry reports that

explored related aspects of video management plane [10–14], these studies have sev-

eral shortcomings such as small scale of data, lack of evolutional trend, and little

understanding about content publisher characteristics.

Second, although video control plane has received much attention (e.g., [15–22]),

ABR algorithm design, which is one of key components to improving QoE in video

control plane, remains an active research area because content providers continue to

be interested in improving the performance of video delivery. Current ABR algorithms

perform well on average, but some users can experience poor delivery performance, as

measured by QoE metrics. These users suffer because ABR algorithms have limited

dynamic range: they do not perform uniformly well across the range of network condi-

tions seen in practice because their parameters are sensitive to throughput variability

(§3.2).

Last, even though the performance of ABR algorithms for video streaming criti-

cally depends on accurately predicting application-perceived throughput [23,24], ex-

isting prediction approaches for ABRs have limitations that impact their prediction

accuracy. Based on data analysis from real-world video streaming sessions, we show

two key limitations: (i) their reliance on apriori clustering of video sessions (e.g.,

based on ISP and CDN) prevents them from learning from related clusters, and (ii)

their inability to effectively incorporate important, yet rarely considered, factors such

as the Time to First Byte (TTFB) and the chunk size in the prediction.

6

1.3 Contributions

The main goals of this thesis are creating a deeper understating of video manage-

ment plane and advancing video control plane in order to improve QoE of Internet

video streaming across various conditions and users. To achieve these goals, we have

been working with one of industrial leading companies [25], and this thesis makes the

following three contributions.

Creating a deeper understanding of video management plane. We shed

light on video management plane by characterizing it, at scale, along three key dimen-

sions (§2.4): streaming protocols, playback devices and platforms and CDNs based

on more than 100 content publishers data spanning 27 months. We provide a deeper

understanding of how each dimension/how many instances of each dimension have

evolved over time and across video publishers. We also take an initial step towards

proposing new metrics to measure impacts of diversity of three dimensions on com-

plexity of video management plane operations such as software maintenance, failure

triaging, and packaging overheads (§2.5). Additionally, we demonstrate that today’s

management plane practices may not be well suited for content syndication (§2.6),

in which syndicators license and redistribute content from a content owner. We

found significant diversity with respect to video packaging, playback device support

and CDN use, and current trends suggest increasing diversity in some of these di-

mensions. Also we found that this diversity adds complexity to management, and we

showed that the complexity of many management tasks is sub-linearly correlated with

the number of hours a publisher’s content is viewed. Moreover, today each publisher

runs an independent management plane, and this practice can lead to sub-optimal

outcomes for syndicated content, such as redundancies in CDN storage and loss of

control for content owners over delivery quality.

Enhancing video control plane by increasing dynamic range of ABRs.

We developed Oboe, a system that improves the dynamic range of ABR algorithms

by automatically tuning ABR behavior to the current network state of a client con-

7

nection, specifically to throughput and throughput variability to improve QoE of a

wide range of users. Oboe pre-computes, for a given ABR algorithm, the best possible

parameters for different network conditions, then dynamically adapts the parameters

at run-time for the current network conditions. We demonstrate several aspects of

Oboe performance through real testbed experiments and trace driven simulations,

and show the practical viability of this architecture with results from a pilot deploy-

ment. We integrated Oboe with several existing ABR algorithms [16, 18] such as

MPC, BOLA and HYB and showed significant improvement in several QoE metrics

by 7.2% to 38%. Oboe also betters a recently proposed reinforcement learning-based

ABR [17], Pensieve in part because it is able to better specialize ABR behavior across

different network states.

Improving video control plane by a better throughput framework. We

propose a new throughput prediction approach, Xatu, to address the challenges in

existing prediction methods. Xatu jointly learns a neural network sequence model

with an interpretable automatic session clustering method. Xatu learns clustering

rules across all sessions it deems relevant, and it models sequences with multiple

chunk-dependent features (e.g., TTFB, size) rather than just throughput. We eval-

uate Xatu over datasets of real video sessions along with trace-driven experiments.

Our results show that Xatu significantly improves throughput prediction accuracy by

23.8% relative to CS2P [23] (the state-of-the-art predictor). We also show, through

an example of hierarchical CDNs, that Xatu is extensible, and can achieve better

accuracies if additional information was exposed to video streaming algorithms. To

demonstrate the potential impact of Xatu when integrated ABRs, we combine Xatu

with MPC [16] (a well-known ABR algorithm) and show QoE improvement based on

a heuristic approach, while a more thorough solution is left for a future work.

8

1.4 Thesis Organization

This thesis is organized as follows. Chapter 2 presents a deeper understanding

of video management plane that is based on more than 100 video publishers data

over 27 months. Chapter 3 presents Oboe, which can improve dynamic range of

ABR algorithms to improve QoE of a wide range of users in different network con-

ditions. Chapter 4 proposes Xatu, a learning based throughput prediction approach,

which improves network throughput prediction accuracy of ABRs. Finally, Chapter 5

summarizes the contributions of this thesis and presents future directions.

9

2. UNDERSTANDING VIDEO MANAGEMENT PLANES

2.1 Introduction

Video forms the overwhelming majority of Internet traffic [4,26–28]. The deluge in

video traffic is due both to the popularity of large services like YouTube, Netflix, and

Facebook [29–31] and to the significant increase in Internet video services provided

by publishers who traditionally produced content for broadcast television [32].

An Internet video publisher must (i) split the video into chunks, encode each

chunk at one or more bitrates, and encapsulate chunks using a streaming protocol ;

(ii) develop and maintain playback software for the wide range of user devices; and

(iii) distribute video to Content Delivery Networks (CDNs). We refer to these tasks

as video management plane operations (§2.2), as distinct from control plane opera-

tions that involve selecting which CDN to direct a user to and what bitrate to choose

for each chunk, and data plane operations that involves transporting each chunk to

the end user. Whereas the data and control planes have received much attention

(e.g., [15–22]), video management plane decisions have been relatively unexplored,

even though they impact how many users and devices a publisher can reach, the

computation and storage requirements of content publishers, the complexity of trou-

bleshooting, application performance, and the effort needed to incorporate control

plane innovations such as new bitrate selection algorithms [15–18,33].

This thesis characterizes aspects of video management planes for more than 100

content publishers (§2.3), including 7 of the top 10 subscription video publishers [34],

as well as prominent sports and news broadcasters and on-demand video publishers.

Our dataset comes from a CDN broker [35] and contains metadata for over 100 billion

video views, including metadata about the client (device and application used), video

(publisher, URL, playback duration), and delivery (CDN, performance metrics). The

10

aggregate daily view-hours across all our publishers are comparable to reported values

for Facebook and Netflix.

Two aspects make our data unique relative to published industry reports [10,12,34]

(§2.7). Our data spans 27 months, enabling analysis of management plane practices

over time. It also lets us assess view-hours (the total number of hours content is

viewed) and views (the total number of video sessions) for any slice of the data (e.g.,

how many view-hours or views can be attributed to mobile apps).

Contributions. First, we characterize video management planes along three key

dimensions (§2.4): streaming protocols, playback devices and platforms, and CDNs.

For each dimension, we characterize (i) how each instance (e.g., a specific streaming

protocol, or a specific platform category such as the set-top box) has evolved across

publishers, and over time; and (ii) the number of instances of each dimension used

by a given publisher and its evolution, and how this correlates with the publisher’s

view-hours.

Several common themes run across our analysis of these three dimensions. We

find that, despite significant changes over the 27 month period, no single dominant

alternative has emerged along any dimension. Among streaming protocols, HLS and

DASH have significant usage, while view-hours are almost evenly distributed across

3 CDNs and across 3 platforms (browser, mobile, and set-top). Moreover, more than

90% of view-hours can be attributed to publishers who support more than 1 protocol.

The same is true of publishers who use more than 1 CDN, and publishers who support

more than 1 platform. Publishers with more view-hours tend to support more choices

of protocols, platforms, and CDNs.

Beyond these, our analysis uncovers some new findings: set-top boxes dominate

by view-hours; almost 80% of view-hours are from publishers that support 4-5 CDNs;

and a significant fraction of publishers who use multiple CDNs segregate live and

on-demand traffic by CDN. Our analysis also adds color to known findings. For

example, DASH usage has increased, but this growth is being driven entirely by large

11

publishers. Moreover, while mobile app views have indeed increased, view-hours have

not proportionally increased because view durations on mobile tend to be short.

Second, we take an initial step towards quantifying the impact of three dimen-

sions of diversity on the complexity of management plane operations such as software

maintenance, failure triaging, and packaging overheads (§2.5). We find that metrics

that approximate the complexity of these operations for a publisher are sub-linearly

correlated with the publisher’s view-hours. For example, a publisher with 10× as

many view-hours as another will tend to maintain 1.8× as many versions of its video

playback software.

Third, we demonstrate that today’s management plane practices may not be well

suited for content syndication (§2.6), in which syndicators license and redistribute

content from a content owner. Syndication is prevalent in Internet video, yet syn-

dicators run video management planes that are independent from those of content

owners. As a result, we find cases where, for the same content, owners’ clients ob-

serve significantly different delivery performance than syndicators’ clients. We also

find that more integrated management planes between owners and syndicators can

reduce CDN origin storage requirements for a popular video series by 2×.

Our results further our understanding of video management planes and open the

door for research into new syndication models, complexity metrics, and approaches

to cope with diversity and reduce management complexity.

2.2 The Video Management Plane

A video publisher makes available online live and/or stored video content. Video

content is encoded in different formats, delivered by one or more CDNs, and delivered

to playback software on user devices. The video control and data planes together

achieve chunked adaptive streaming : the data plane streams video chunks over HTTP,

and the control plane adaptively determines, based on network conditions, which

bitrate a chunk is downloaded at, and from which CDN.

12

Fig. 2.1.: A video delivery pipeline.

Each publisher operates a video management plane, a term we use for a pipeline of

automated systems (some with humans in the loop), Fig. 2.1 shows one such pipeline,

that perform two primary functions. The first function prepares video content for

delivery to users. Preparation involves packaging the video content and distributing

content to CDNs for delivery to users. The second function is to develop and maintain

playback software for the wide range of devices on which video is consumed by users.1

Packaging. Packaging achieves two goals: 1) preparing content for adaptive stream-

ing and 2) generating the necessary information for an end user device to perform

playback.

Encoding. The first packaging step transcodes the master video file into multiple

bitrates of encodings such as H.264 [36], H.265 [37] or VP9 [38]. A video bitrate

encodes the video at a certain resolution and a certain quality. A given resolution

can be encoded at different qualities, which differ in the degree of lossy compression

1Other management plane functions, including accounting, billing, and fault isolation, are beyond
the scope of this thesis.

13

applied to trade-off perceptual quality for reduced bandwidth. Publishers optionally

use DRM (Digital Rights Management) software to encrypt the video so that only

authenticated users can access it.2

Each encoded bitrate of the video is then broken into chunks (a chunk is a fixed

playback-duration portion of the video) for adaptive streaming and encapsulated

using a Streaming Protocol (discussed below). Some publishers support byte-range

addressing, where clients can request an arbitrary byte range for a given bitrate

instead of chunks.

Streaming protocols. Streaming protocols define the encapsulation format for

video chunks to enable delivery over the network. A number of streaming protocols

are in use today including Apple’s HLS [39], Microsoft’s SmoothStreaming (MSS [40]),

Adobe’s HDS [41] as well as an open standard MPEG-DASH protocol (DASH) [42].

Of these, Apple’s devices only support HLS, though recent Apple devices allow lim-

ited support for DASH [43]. Some protocols like DASH [42] can support any video

encoding format, while others like HLS only support a fixed set of codecs [44].

Streaming protocols also specify metadata about the video necessary for adapta-

tion by the control plane. This metadata is stored in a manifest file. The manifest

contains information about a number of attributes including the values of available

bitrates for adaptation, the audio bitrates, the time duration of an individual chunk

and the URLs to fetch video chunks etc.

Device Playback. The next function of the management plane is to support the

range of devices on which a user can view the publisher’s content. To enable playback

on them, publishers either provide Video Players embedded in web pages to permit

browser-based viewing or Apps on devices that permit app-based content delivery.

Browser-based video players today are either implemented using JavaScript in-

serted into webpages using native HTML5 support, or using external plugins such

as Flash or Microsoft’s Silverlight. However, several types of devices such as set-top

boxes (e.g. Roku, AppleTV), game consoles (e.g Xbox), smart TVs (e.g. Samsung

2This is orthogonal to TLS encryption of the video during transmission over HTTPS.

14

TV), and mobile devices use app-based playback. To build these apps, publishers

use device-specific SDKs (Software Development Kits, sometimes called Application

Frameworks) which provide support for frame rendering, user controls etc. as well

as bitrate adaptation logic [15–18, 24, 33]. Because publishers may have to support

different devices, and, for a given device, different SDK versions (since users may

take time to upgrade their device SDKs), at any given time publishers may have to

maintain several versions of their app (one for each device-SDK version combination).

Content Distribution. Publishers employ Content Distribution Networks (CDNs).

Some content publishers such as YouTube and Netflix deploy their own CDNs. The

publishers in our dataset serve their videos via third-party CDNs (though some also

use private CDNs). To improve performance and availability, some publishers serve

content through multiple CDNs [19, 20, 45]. Some publishers use a CDN broker to

select the best CDN for a given client view [46]. Even some publishers who only use a

single CDN use a CDN broker for management services such as monitoring and fault

isolation.

Most publishers proactively push content to CDNs. A publisher may either push

packaged chunks to each of its CDNs, or may use a packaging service provided by

a CDN. In the latter case, the publisher pushes the master video file (or live video

stream), and the CDN performs the packaging on behalf of the publisher. The client

playback software retrieves chunks using URLs in the manifest file.

2.3 Goals, Methodology & Dataset

Goals. We want to characterize, at scale, publisher video management plane practices

(with respect to packaging, CDN use, and device support) and how they have evolved

over time. We also present preliminary analyses to understand the implications of

these findings on the complexity of video management, and the performance of video

delivery.

15

Prior industry reports have explored related aspects of video management planes

[10–14] (see §2.7 for details). These studies have four shortcomings that we address

in this thesis. First, they lack a publisher-centric focus, even though publishers make

video management decisions. As a simple example, these studies do not reveal how

many streaming protocols or how many CDNs a publisher uses, but these factors

affect management complexity (§2.5). Second, these studies do not contextualize

their results. For example, consider a finding that few publishers use DASH. If these

publishers are large, they are more likely to drive adoption of DASH than if they

are all small publishers. Third, most studies were one-off, but the video landscape

is continuously evolving. Longitudinal trends can help understand how the video

delivery ecosystem is likely to evolve in the short to medium term. Fourth, in part

because they lack a publisher-centric focus, these studies do not shed light on a

common practice in video delivery, content syndication (§2.6).

Extracting management plane practices from a CDN broker dataset. We

use data from one of the largest brokers in the world. The broker is used by publishers

to monitor playback quality and to select CDNs. The broker provides a monitoring

library which publishers integrate with their video players. The monitoring library

reports per-view information to the broker’s backend. The broker collects data for

devices including desktops, mobiles, and smart TVs.

Our dataset spans 27 months (January 2016 to March 2018) and contains over

100 billion views. For each view, it identifies the video publisher; the manifest’s

URL; device model (e.g., iPhone, Roku); the operating system (e.g., iOS, Android);

HTTP user-agent (for browser views) or SDK and SDK version number (for app

views); the CDN(s) that were used to deliver the content;3 viewing time; and delivery

performance (average bitrate and rebuffering time).

From this data, we can extract, for any given time window (e.g., a month), and

for each publisher: which CDNs the publisher uses, and which devices the publisher’s

content was viewed on. We also infer which streaming protocols a publisher uses by

3During a single view, chunks may be downloaded from multiple CDNs.

16

Table 2.1.: Streaming protocol file extensions and sample URLs

Protocol Extension Sample URL

HLS .m3u8, .m3u http://[...].akamaihd.net/master.m3u8

DASH .mpd http://[...].llwnd.net//Z53TiGRzq.mpd

SmoothStreaming .ism, .isml http://[...].level3.net/56.ism/manifest

HDS .f4m http://[...].aws.com/cache/hds.f4m

parsing the URL for the manifest file. Different streaming protocols use pre-defined

file extension types for their manifest files (Tab. 2.1): for example, HLS manifest files

typically use the .m3u8 file extension4.

For each of these dimensions, we can associate three measures that can help con-

textualize the dimension. Our primary measure, and one used most often in the video

industry [29–31], is the number of view-hours (i.e., the total viewing time in terms of

hours). Using our data, we can examine, for example, the number of view-hours of

a publisher’s content delivered from a given CDN, over HLS, to iPhones. In some of

our analysis, we use the number of views associated with a particular dimension (e.g.,

the number of video plays delivered to Roku players). This is helpful to understand if

view-hours were accumulated from a few long video views or many short video views.

In some analyses, we also measure importance by the number of distinct videos seen.

We do not have this data for all our publishers (some do not report video titles),

so when we use this measure, it is an under-estimate of the total number of distinct

videos.

Dataset limitations. We only have data when publishers have integrated the

broker’s monitoring library. So, we do not have data from publishers that do not use

the library, including the 3 largest video publishers, YouTube, Netflix and Facebook.

4There are two exceptions to this. RTMP can be detected from the protocol specification in the
URL (RTMP instead of HTTP). Progressive downloading uses file extensions corresponding to video
encodings, like .mp4 or .flv.

17

For publishers that do use the library, we cannot definitively differentiate whether

the appearance (or increase in view-hours) of a publisher in our data is due to actual

growth or due to progressive on-boarding of the publisher. Publishers that use the

broker may be predisposed towards using multiple CDNs, and the broker’s role in

CDN choice means that trends in CDN usage in our data may or may not be indicative

of trends in the larger Internet video ecosystem.

The dataset does not include data necessary to investigate three aspects of video

management: Digital Rights Management (DRM) usage, monetization, and encoding

format. To study the video encoding codec, we could have downloaded all unique

manifest URLs in our dataset. This is not only logistically difficult (13 million unique

URLs in March 2018 alone) but also often requires user authentication, and we do

not have subscriptions for all the publishers in our study.

A macroscopic view of the dataset. Video consumption today is dominated by

YouTube, Facebook, and Netflix, which contributed (according to 2016/2017 stud-

ies [28, 30]) 1 billion, 0.1 billion and 0.14 billion view-hours per day respectively.

Beyond these three, there are a large number of video publishers that deliver online

content. In March 2018, our dataset had more than hundred of publishers each with

at least 3000 view-hours in a month. Across all our publishers, the aggregate daily

view-hours is 0.06 billion per day, comparable to Facebook and Netflix in 2016 and

2017. Finally, the publishers in our study together serve 180 countries.

Prominence. Our dataset includes many prominent publishers, including 7 of

the top 10 US subscription-based video publishers [34]. Further, the publishers in our

dataset are diverse, and include international sports broadcasters, major news outlets,

on-demand movies/subscription TV providers and entertainment content providers.

Within these broad categories, the publishers in our dataset are prominent, including

3 of the top 5 Sports broadcasters and 4 of the top 5 Breaking News publishers

according to Alexa category rankings [47].

Distribution of view-hours. In March 2018, the average daily view-hours of

publishers in our dataset ranged from hundreds to tens of millions (actual numbers

18

(a) CDF of percentage of view-hours a day

across publishers in March 2018

(b) Normalized number of publishers per

month for past 27 months

(c) Aggregated average view-hours a day for

past 27 months

Fig. 2.2.: Dataset characteristics with respect to view-hours and number of publishers.

omitted due to confidentiality). Fig. 2.2(a) shows a CDF of percentage of view-hours

a day across publishers. 84% of publishers contribute less than 1% of total view-hours.

However, the top 5% of publishers contribute 65% of the total daily view-hours, while

the biggest publisher contributes 33% of the daily view-hours. This trend is similar

to studies of the web that indicate that the most popular web pages account for a

large fraction of accesses [48,49].

Longitudinal view. Fig. 2.2(b) shows the number of publishers in our dataset

over time (for these, and subsequent analyses, we only count publishers that exceed

3000 view-hours per month). Over the course of 27 months, the number of publishers

19

increased by 32%. Fig. 2.2(c) shows the average daily view-hours aggregated across

publishers over the entire period. The total number of view-hours (solid line) grew by

5× over 27 months. Some of this growth was driven by new publishers that appeared

over time, some by publishers on-boarding their viewers to our broker over time, and

the rest by growth in viewership of existing publishers. The dotted line shows the

view-hours over time for the approximately 45% of publishers that are present for the

entire time period. These publishers experienced a 3× increase in view-hours.

2.4 Characterizing Video Management Planes

We characterize video management planes along three dimensions: packaging, mea-

sured by the streaming protocols used; content distribution, measured by the CDNs

used; and device playback, measured by types of devices and number of application

frameworks. For each dimension d, we ask:

• How has d evolved across publishers?

• How has d evolved in terms of view-hours? For example, does a dominant

practice result from a few big publishers or many small publishers?

• What is the distribution across publishers of number of instances of d? Is it

correlated with publisher view-hours?

Our two-year dataset is too large to process every view, so we use a sequence of two-

day snapshots taken bi-weekly. We use the last snapshot, taken in March 2018, for

the third question.

2.4.1 Packaging

Understanding the prevalence of different streaming protocols is important for

several reasons. First, the amount of work/resource needed to package content is

proportional to the number of streaming protocols supported by a publisher. Also

20

(a) Percentage of publishers that supported

each streaming protocol over time

(b) Percentage of view-hours by each stream-

ing protocol over time

(c) Percentage of view-hours (excluding largest

publisher) by each streaming protocol over

time

Fig. 2.3.: Streaming protocols used in terms of percentages of publishers and view-

hours for past 27 months

the time taken to package content can add delay to live content distribution. Second,

in some cases, support for a streaming protocol can directly impact the set of devices

that can be supported: e.g., until recently publishers needed to support HLS to work

with Apple devices (§2.2).

Prevalence by streaming protocol. Streaming protocols include HTTP-based

protocols as well as RTMP, a protocol for low latency video streaming services [50–52].

21

In our dataset, RTMP only accounted for 1.6% of the view-hours in January 2016

and 0.1% in March 2018. RTMP has compatibility issues with network middleboxes,

scalability limitations [50, 51], and limited device support. For these reasons, our

publishers prefer HTTP-based streaming protocols even though these protocols may

add a few seconds of encoding and packaging delay to live streams. The rest of our

analysis focuses on HTTP-based protocols.

Across publishers. Fig. 2.3(a) shows the percentage of publishers that sup-

ported a given streaming protocol over time (the sum of percentages at any given

point in time exceeds 100% because publishers can support multiple protocols). The

rightmost point of each curve indicates the latest snapshot. In this latest snapshot,

91% of publishers support HLS, likely because many devices and players support

it [53–55]. DASH and SmoothStreaming are currently supported by around 40% of

publishers, but HDS is only supported by 19% of the publishers. Over time, support

for DASH has increased from 10% of publishers to 43%, corroborating a recent survey

of video developers [10]. HDS has steadily lost support. The growth of DASH has

not been at the expense of HLS or SmoothStreaming. Over time, HLS and Smooth-

Streaming support across publishers has remained steady.

By view-hours. We can quantify usage of streaming protocols in terms of view-

hours, unlike existing industry surveys [10, 12]. Fig. 2.3(b) shows the percentage of

view-hours served by different protocols over time. In our latest snapshot, HLS and

DASH are dominant, each accounting for about 38-45% of the view-hours, with the

other two being relatively small. Longitudinally, the most noticeable trend is the

growth in use for DASH from 3% to 38% view-hours. We found that this is due

to a single large publisher that starts to become visible in the dataset from March

2017 onwards. This increase in DASH support noticeably reduces the fraction of

view-hours attributable to the other protocols.

When we remove this publisher (Fig. 2.3(c)), we observe that DASH support from

other publishers only accounts for less than 5% of view-hours overall. To explain

this further, Fig. 2.4 shows the distribution across publishers of the percentage of

22

Fig. 2.4.: CDF across publishers of percentage of view-hours served via DASH and

HLS in the latest snapshot.

view-hours that used a given protocol, only considering publishers that support that

protocol. Even though 40% of the publishers support DASH (Fig. 2.3(a)), half of them

employ it for at most 20% of their view-hours (Fig. 2.4). In contrast, among the 90%

of publishers that support HLS, half use it for at least 85% of their view-hours.

Finally, in Fig. 2.3(b), the growth in DASH due to a single publisher also illustrates

the complexity of a management plane operation: onboarding. In this case, this

publisher slowly moved their clients to our broker over a period of one year, by

gradually integrating the broker’s monitoring libraries into each of its device players.

Number of protocols per publisher. Fig. 2.5(a) explores how many streaming

protocols each publisher supports in the latest snapshot. Each group of bars corre-

sponds to a given number of protocols n and shows the percentage of publishers that

used n protocols (left) and the percentage of view-hours from publishers that used

n protocols (right). While 38% of publishers support 1 protocol, these publishers

account for less than 10% of view-hours. The use of 2 protocols is dominant (38%

of publishers, accounting for nearly 60% of view-hours), and the use of 3 protocols is

also significant.

Fig. 2.5(b) presents the number of protocols used by publishers when bucketed by

their view-hours. The left most bar corresponds to publishers with X view-hours or

less (we do not specify X for confidentiality reasons). The second bar corresponds to

23

(a) Number of protocols supported by pub-

lishers in latest snapshot, as percentage

of publishers and when weighted by their

view-hours

(b) Number of protocols supported by pub-

lishers in latest snapshot, bucketed by

publisher view-hours

(c) Average number of protocols supported

per publisher over time

Fig. 2.5.: Number of streaming protocols used by publishers (by % of publishers and

by their view-hours).

publishers with X to 10X daily view-hours, the next bar to publishers with 10X to

100X view-hours, and so on. Each bar corresponds to the percentage of publishers

in a given bucket, broken down by the number of protocols used by the publishers.

The tallest bar indicates that (i) over 35% of publishers have 100X to 1000X daily

view-hours; and (ii) publishers in this bucket use from 1 to 4 protocols. Outside of

24

Fig. 2.6.: Target platforms for video publishers

publishers in the bucket with the least view-hours, more than 50% of publishers in all

buckets use at least 2 protocols, with all publishers in the 104X−105X bucket (right-

most bar) using 2 protocols. A significant number of publishers in the intermediate

buckets use 3 or 4 protocols.

Fig. 2.5(c) shows changes in the number of protocols used over time. The lower

curve shows the number of protocols averaged across publishers. The upper curve is

the average weighted by the publisher’s view-hours. The weighted average is always

higher, indicating larger publishers tend to use more protocols. Despite fluctuations,

the average number of protocols has remained a bit below two, and the weighted

average higher than two. This consistency is likely because the growth in DASH has

coincided with the decline of HDS.

2.4.2 Device Playback

Understanding the set of user devices that a publisher supports is important be-

cause (i) implementing and maintaining video players for a range of platforms requires

25

Fig. 2.7.: Percentage of publishers supporting each platforms

significant effort; and (ii) the popularity of a platform can impact the publisher’s de-

cision of whether to support it.

Prevalence by platform. Video is consumed (Fig. 2.6) on a variety of devices

which can broadly be classified into two platform types : browsers and apps. Video is

consumed on desktops, laptops, tablets and mobile devices using browsers on these

devices. Video is also consumed using apps on mobile devices, smart TVs, set-top

boxes and gaming consoles. We now explore the prevalence of video consumption

across these 4 app-based platform categories, and across browsers (which includes

browser usage on mobile devices5).

Across Publishers. Fig. 2.7 shows that, over the 27 month period, support

has grown most significantly for set-top boxes and smart TVs (from under 20% of

publishers to above 50% and 60% of publishers respectively today). There has also

been growth in mobile applications, and, as expected, almost all publishers support

browsers and mobile apps today.

By view-hours. Fig. 2.8(a) shows that, by percentage of view-hours served by

different platforms, browser viewership has declined from nearly 60% to less than 25%

5While smart TVs and set-top boxes support browsers, we see very little video consumption on these
browsers.

26

(a) Percentage of view-hours on each plat-

form

(b) Percentage of view-hours on each plat-

form, excluding 3 largest publishers

(c) Percentage of views on each platform

Fig. 2.8.: Over time, percentage of view-hours, view-hours excluding 3 largest pub-

lishers, and views on each type of platform

today. Despite publishers aggressively increasing support for smart TVs during the

last two years, their share of view-hours has stayed at less than 5%. Interestingly,

the set-top category has grown the most, with the largest share of view-hours (nearly

40%) in the latest snapshot, while mobile app viewership has stayed steady at about

20-25%.

To understand whether large publishers bias our observations, Fig. 2.8(b) shows

view-hour trends when we remove the three largest publishers, which account for half

27

Fig. 2.9.: CDF of individual view duration for each platform

the view-hours in our dataset. There are some differences in trends, with mobile

app viewing surpassing all other platforms over time, and set-top viewing growing at

a slower rate. However, the results overall are qualitatively similar, indicating that

platform usage trends in our dataset are not being driven by the largest publishers

alone, unlike the trend with DASH adoption.

By views. The growth in view-hours with set-top boxes could be caused by

longer view durations or by more views. To investigate this further, Fig. 2.8(c)

depicts the fraction of views served across different platforms (including the three

large publishers). While views with set-top boxes have grown to 20% of views in

the latest snapshot, they lag behind the set-top view-hour growth (to nearly 40%

in Fig. 2.8(a)). Taken together, Fig. 2.8(a) and Fig. 2.8(c) suggest that mobile app

views are of shorter duration, while set-top views are of longer duration. Fig. 2.9

confirms this intuition, depicting the CDF of individual view duration (in hours, with

the X-axis truncated at 1 hour) for each platform in our latest snapshot. Only 24% of

mobile and browser views last longer than 0.2 hours, while more than 60% of set-top

views last longer than 0.2 hours.

Trends within platforms. An examination of trends of device usage within

each of the top 3 platforms also shows interesting trends, some well-known, others

28

(a) Web browsers

(b) Mobiles/Tablets (c) set-top boxes

Fig. 2.10.: Percentage of view-hours served by specific devices belonging to the same

platform.

less so. Among browsers, the view-hours for HTML5 increased from about 25% to

nearly 60% within the two year period (Fig. 2.10(a)). This increase came at the

expense of a reduction of view-hours in other browser-based players, especially Flash.

Among mobile devices, view-hours for Android devices have increased significantly

(Fig. 2.10(b)), and both Android and IOS have comparable viewership in the latest

snapshot. Finally, among set-top boxes (Fig. 2.10(c)) Roku devices are dominant in

terms of view-hours, but AppleTV and FireTV account for a non-negligible percentage

of view-hours. Overall, the results indicate that a publisher must not only cope

29

(a) Number of platforms supported by pub-

lishers in latest snapshot, as % of pub-

lishers and when weighted by their view-

hours

(b) Number of platforms supported by pub-

lishers in latest snapshot, bucketed by

publisher view-hours

(c) Average number of platform supported

per publishers over time

Fig. 2.11.: Number of platforms supported per publisher (by % of publishers and by

their view-hours)

with multiple platforms but also multiple devices within each platform, which can

contribute to significant management complexity (§2.5).

Number of platforms per publisher. Fig. 2.11(a) characterizes the number of

platforms supported by publishers. Over 85% of publishers support more than one

30

platform, and over 95% of view-hours are attributable these publishers. 30% of pub-

lishers support all 5 platforms and these publishers account for over 60% of the

view-hours. As with other dimensions, the number of platforms supported increases

with view-hours (Fig. 2.11(b)). For instance in the bucket corresponding to 103X to

104X view-hours, the vast majority of publishers support at least 3 platforms, and

nearly half support all 5 platforms. Finally, Fig. 2.11(c) shows that the average and

the view-hour weighted average of the number of platforms supported by publishers

have increased by 48% and 37% respectively over the two year period. Publishers

support more than 3 platforms on average in the latest snapshot, with the weighted

average being nearly 4.5.

2.4.3 Content Distribution

Once the content is packaged, it is distributed to end users using content distri-

bution networks (CDNs). CDNs work by situating the content closer to the end user.

Understanding this dimension is important because CDN usage can have significant

performance impact [19–21,45]. Further, publishers can employ multiple CDNs which

can lead to complexity in video management (§2.5).

Prevalence by CDN. Across all publishers we observed 36 different CDNs in our

dataset. This list included both regional and international CDNs. Further, some

publishers had their own internal CDNs (sometimes used in conjunction with external

CDNs). Of these, over 93% of the view-hours were served by 5 CDNs, indicating

that video viewership is concentrated among a handful of CDNs. We analyze the

opportunities arising from this consolidation in §2.6.

Across publishers. Fig. 2.12(a) shows the percentage of publishers across time

that use each of the top 5 CDNs (anonymized). One CDN, A dominates, with nearly

31

(a) Percentage of publishers by a CDN they

used over time

(b) Percentage of view-hours by each CDN

over time

Fig. 2.12.: Analysis of CDNs based on percentage of publishers and view-hours for

past 27 months

80% of the publishers using it, while only 30% use the second most dominant CDN

C. Longitudinally, these numbers have remained more or less steady.

By view-hours. Fig. 2.12(b) shows the percentage of the view-hours served by

each of these CDNs. In the current snapshot, 3 CDNs (A, B and C) each account

for 20-35% of the view-hours, while the other 2 account for about 5% or less each.

Some CDNs use anycast to direct a client to a particular server [56], but anycast

is susceptible to BGP route changes that sever ongoing TCP connections, raising

concerns that anycast may not be suitable for large transfers [57]. We discovered

that 1 of the top 3 CDNs in our dataset uses anycast, suggesting that anycast route

instability has not been a blocking factor in the reliable delivery of video chunks.

Longitudinally, CDN A’s share of view-hours has halved, while CDN B’s share has

increased from a few percent to about 20%. We examined the data a little further,

and found that this change is driven by one large publisher who recently became our

broker’s customer. This publisher uses CDNs B and C, driving down A’s share of

32

(a) Number of CDNs used by publishers,

as percentage of publishers and when

weighted by their view-hours

(b) Number of CDNs used by publishers in

latest snapshot, bucketed by publisher

view-hours

(c) Average number of CDNs used across

publishers over time

Fig. 2.13.: Number of CDNs used by publishers (by % of publishers and by their

view-hours).

view-hours. Again, these results highlight the importance of considering view-hours

in the analysis, an aspect not considered by prior work (§2.3).

Number of CDNs per publisher. We next characterize publishers by the number

of CDNs they use.

33

Fig. 2.13(a) shows the percentage of publishers that use a given number of CDNs,

and the percentage of view-hours that may be attributed to these publishers in our

latest snapshot. While more than 40% of publishers use only a single CDN, they

account for less than 5% of the view-hours. In contrast, less than 10% of publishers

use 5 CDNs, but these publishers account for more than 50% of view-hours.

Fig. 2.13(b) shows the number of CDNs used by publishers classified by their

view-hours. The results indicate that the percentage of publishers that use multiple

CDNs increases with the number of view-hours attributable to the publisher. For

example, at the extremes, all publishers with more than 105X view-hours use at least

4 CDNs, while all publishers with less than X daily view-hours use a single CDN. In

the 103X − 104X bucket, the number of CDNs used ranges from 1 to 3, while in the

104X − 105X bucket, the number of CDNs ranges from 1 to 5.

Finally, Fig. 2.13(c) shows the longitudinal trend for the average number of CDNs

used by publishers, and the weighted average (weighted by the publisher’s view-

hours). While there is some growth in the average CDNs per publisher (with the

average exceeding 2 in the latest snapshot), the weighted average grows much faster

and is nearly 4.5 in the latest snapshot.

Live video has some different demands than video-on-demand (VoD), especially

low end-to-end latency from video capture to viewing, and so we were interested

in whether publishers favored particular CDNs for one type of content versus the

other, perhaps due to different CDN features or latency. Of publishers which use

multiple CDNs and serve both live and VoD traffic, 30% use at least one CDN only

for VoD traffic, and 19% use at least one CDN only for live traffic. In one extreme

case, a publisher used one CDN for all its VoD traffic and a different CDN for all its

live video. However, most CDNs that were used exclusively for live content by one

publisher were used exclusively for VoD content by another publisher. Thus, no CDN

dominated others for live video, and our results seem to reflect opaque management

plane decisions of publishers. We have left it to future work to explain the rationale

for CDN choices amongst publishers.

34

2.4.4 Summary

Several common themes run through our analysis of these three dimensions of

management complexity.

• In no dimension does a single alternative dominate in terms of view-hours. View-

hours are roughly equal between HLS and DASH; across browser, mobile, and

set-up; and across three large CDNs.

• More than 90% of view-hours can be attributed to publishers who support more

than 1 protocol. The same is true of publishers who use more than 1 CDN, and

publishers who support more than 1 platform.

• Publishers with more view-hours support more choices in each dimension. The av-

erage number of choices, weighted by view-hours, is 2.2 for protocols, 4.5 for CDNs

and 4.5 for platforms.

• At least two of our trends (increase in DASH usage, and the emergence of 3

CDNs with comparable view-hours) are driven by a large publisher. However,

large providers alone do not drive trends in platform usage.

By assessing the distribution of view-hours, we observe new trends and provide

additional insights on known trends:

• By view-hours, set-top box usage is significant, even exceeding browsers and mobile

apps. This sharp rise of set-top box usage is not well documented and can drive

the adoption of higher resolution video such as 4K video.

• Prior work has not quantified the distribution of multi-CDN usage. We find that

almost 80% of view-hours are from publishers using 4 and 5 CDNs. While 2 or 3

CDNs are sufficient for resilience or load balancing, additional CDNs appear to be

necessary for improved coverage.

• Given industry excitement with DASH [10], we expected to find significant DASH

support among our publishers. While over 40% of our publishers support DASH,

35

one large publisher accounts for almost all DASH view-hours. In working with

publishers, we have experienced quality issues with DASH implementations, so it

might take some more time for the DASH ecosystem to mature to the point where

small publishers also use more DASH.

• Our dataset shows negligible use of RTMP even though several of our publishers

serve live content. RTMP provides low latency live streaming, but it has some

scalability issues and lacks widespread device support.

• Other studies report high mobile view shares [13], and we find that these have

indeed risen over time, but mobile app view-hours have not increased by a corre-

sponding amount, because view durations on mobile devices tend to be small.

• Prior work has quantified the demise of Flash, reporting a 96% drop in Flash views

for one browser [58]. We find a much more modest drop, with about 40% of browser

view-hours attributable to Flash, down from 60% at the beginning of our study.

2.5 Understanding Management Complexity

Our results in §2.4 have shown that publishers must deal with significant diversity

across all components of the management plane. This diversity can impact the com-

plexity of management tasks. In this section, we propose measures to capture this

complexity, and explore how these measures correlate with publisher view-hours, an

approximate indication of publisher size. A correlation indicates that management

complexity is higher for large publishers and low for small publishers. If, however,

even small publishers incur high management complexity, this may indicate a high

barrier to entry since a publisher who targets modest viewership early in its business

growth must still pay for high management costs.

Some examples of video management tasks include:

Software development and maintenance. Video publishers must build and maintain

players for different devices and browsers. Typically, content publishers use device

specific SDKs (released by device vendors, or third parties) [59–61]. A publisher

36

may not only need to maintain multiple code bases corresponding to the different

supported devices (§2.4), but may also need to support multiple versions of the SDKs

to support legacy devices. Besides the one-time development cost, there is an ongoing

maintenance cost associated with rolling out new features, and fixing software bugs.

Packaging. For each video title, a publisher needs to package the content for differ-

ent streaming protocols. Packaging may be performed by the CDN or other third

parties [12,62–64], but the associated overheads remain irrespective of who does the

packaging.

Failure Triaging. Troubleshooting video performance problems is challenging, and

poor performance may be due to a CDN, the network or the user’s device [65, 66],

or a combination of these factors [66]. In addition, performance problems may be

associated with a particular streaming protocol (e.g., manifest files may have errors

for specific protocols).

Measures of management complexity. Each of these tasks has an associated

complexity that depends on the three components we study (protocols, CDNs, and

devices). We list below complexity measures for video management, motivated in part

by prior work on quantifying complexity in other domains such as web page complex-

ity [67], and router configuration complexity [68]. Other measures are possible, and

we have left an extended exploration to future work.

Management plane combinations. One measure of complexity is the number

of unique combinations of CDN, streaming protocol, and the end user’s device that a

publisher supports. This relates to the complexity of triaging failures. A failure can

be caused by one of the components (e.g., CDN or protocol), an interaction between

two components (e.g., a specific CDN’s implementation of HLS), or an interaction

across all three components (e.g., we have observed a failure caused by the interaction

between a Chromecast implementation using SmoothStreaming on a specific CDN).

In the worst case, it might be necessary to examine all combinations to triage a failure:

indeed, the broker whose data we use triages failures automatically by aggregating

37

failure reports across all management plane combinations [69]. More broadly, failure

triaging may also depend on other factors such as the choice of ISP which we do not

consider in this thesis.

Protocol-titles. The product of protocols used by a publisher and the number

of unique video titles for a publisher captures the packaging costs for the publisher’s

content6. Intuitively, each publisher has to package each title separately for each

protocol. This measure determines the compute and storage resources needed to

package the publisher’s contents and can impact the lag experienced by users for live

content.

Unique SDKs. Defined as the number of unique versions of SDKs and browsers

supported by a publisher across all devices, this measure captures the software devel-

opment and maintenance complexity. The metric may also relate to the complexity

of triaging a failure related to the device, if the failure is specific to an SDK version

or browser.

Correlation between management complexity and publisher view-hours.

Fig. 2.14(a) presents a scatter plot that shows how the management plane combina-

tions metric (on a log scale) correlates with the view-hours (on a log-scale) served by

the publisher. We also add a line of best fit using linear regression. The slope of the

line shows that when the view-hours increase by a factor of 10, the number of man-

agement plane combinations increases by a factor of 1.72×, indicating a sub-linear

growth in complexity with publisher size.

Fig. 2.14(b) and Fig. 2.14(c) respectively show similar scatter plots and lines of

best fit for both the Protocol-titles metric, and the Unique SDKs metric. Again, both

graphs indicate that the complexity measures increase sub-linearly with publisher

view-hours: when view-hours increase by an order of magnitude the Protocol-titles

grows by 3.8×, while the Unique SDKs metric grows by 1.8× with the biggest pub-

lishers having to maintain up to 85 different code bases.

6To a first approximation. Packaging cost may also depend on the length of each title, which we do
not have.

38

(a) Management plane combinations

(b) Protocol-titles (c) Unique SDKs

Fig. 2.14.: Correlation between different measures of complexity and publisher view-

hours

In each case, the linear fit is statistically significant, with p-values at the 0.05 level

of significance smaller than 10−9.

2.6 Management of Syndication

We next explore how today’s structure of management planes, where each pub-

lisher makes independent decisions on the choice of protocols, CDNs and playback

devices, can result in sub-optimal performance when content is syndicated. Syndi-

39

Fig. 2.15.: Content syndication is prevalent in our dataset, with some content owners

syndicating to nearly half the full syndicators in our dataset.

cators license and serve content obtained from multiple content owners. Conversely,

content owners may distribute their content through multiple syndicators.

The prevalence of syndication. By manually inspecting the websites of each of

our publishers, we classified about 44% of them as content owners and 43% as full

syndicators who syndicate the entire content from an owner. The rest are partial syn-

dicators which syndicate some, but not all content of an owner (e.g., a single series

instead of an entire video library).

By inspecting full syndicators’ websites, we can determine, for a given content

owner, what fraction of full syndicators have syndicated that owner’s content. Fig. 2.15

shows the CDF of the percentage of syndicators used by each content owner. The

figure shows that syndication is prevalent – more than 80% of content owners use at

least one syndicator, and 20% of content owners syndicate their content to almost

1/3rd of all full syndicators. These numbers are conservative, since a content owner

may use syndicators not in our dataset, and since we have not considered partial

40

syndication. Overall, these numbers suggest that content syndication is significant in

online video delivery.

Incorporating syndication in management planes. Today, because each pub-

lisher runs an independent management plane instance, the easiest way to syndicate

content is that the content owner provides a master or ”mezzanine” copy of the

content to each of its syndicators which then packages and distributes the content

through its video management plane.

In this independent syndication model, sub-optimal outcomes might result be-

cause syndicators can make independent decisions on video packaging choices. In

this thesis, we illustrate two such outcomes to motivate why it is important to study

video management planes: (a) different performance for the same syndicated content

resulting from different bitrate choices; (b) redundancy in CDN storage usage because

multiple copies of the same content can be stored on a CDN using different encodings

or protocols.

To quantify these, we focus on a popular series. In our dataset, we observe that this

series is served independently by the content owner and by 10 other syndicators. For

our bitrate analysis, we focus on a particular episode in the series across all publishers

since the bitrates used to encode the video may vary based on the content [70].

Bitrate choices for syndicated content. As described before, bitrate choices de-

cide, for each platform, the resolutions and qualities at which the video is available.

With independent syndication, an owner and a syndicator can make different bitrate

choices for the same episode of the same series. To obtain these bitrate choices, we

downloaded the manifest files for the episode of interest. The manifest files provide

information about the audio and video bitrates used in the encoding, as well as other

information such as the duration of each chunk. In general, each publisher may have

several manifest files for the same video based on factors such as the streaming proto-

col, type of device, and network connectivity (WiFi, 4G, Wired). For fair comparison,

41

Fig. 2.16.: Bitrate selection decisions for an episode of a popular series by the owner

and ten syndicators.

we compare the manifest files served to the same type of device over the same type

of Internet connection (WiFi, 4G, Wired).

Bitrate choices can vary widely. Fig. 2.16 shows the video bitrates used by

the syndicators (S1 to S10), as well as the bitrates offered by the original content

owner (O) for iPad devices over a WiFi network. The figure shows a significant dif-

ference both in the number of bitrates, the range of bitrates, and individual bitrate

choices. At one extreme, S2 encodes video into only 3 different bitrates, while at the

other, S9 employs 14 bitrates. The owner uses 9 different bitrates and offers a bitrate

that exceeds 8192 Kbps, while the highest bitrate offered by S1 is 7x lower and only a

little above 1024 Kbps. We have also performed a similar comparison for other device

types, and observed similar heterogeneity in bitrate decisions made by the content

owner and various syndicators.

Bitrate choices can impact performance. From our dataset, we can also

observe the performance achieved by clients of some of these syndicators. Two widely

42

(a) On ISP X, CDN A (b) On ISP Y, CDN B

Fig. 2.17.: Average bitrate performance of California based iPad clients of owner and

of syndicator across different ISPs and CDNs.

(a) On ISP X, CDN A (b) On ISP Y, CDN B

Fig. 2.18.: Rebuffering performance of California based iPad clients of owner and of

syndicator across different ISPs and CDNs.

used [5, 71] measures of video delivery performance are the average bitrate of each

view, and the rebuffering ratio (the fraction of the view that experiences rebuffering).

Fig. 2.17 shows the distribution of average bitrates observed by iPad clients of

a syndicator (S7 in Fig. 2.16) and the owner, for our selected episode, across two

different ISP/CDN combinations in March 2018. Further, we restricted the geo-

location of clients to California, USA. Consistently, the content owner’s clients get

much better average bitrates: at the median, the average bitrate of the owner’s

clients is 2.5× that of the syndicator. Interestingly, clients of the owner also perceive

43

lower rebuffering ratios (Fig. 2.18), with almost 40% lower rebuffering at the 90-th

percentile. We observed similar results for other device, ISP and CDN combinations.

While we cannot comprehensively answer why syndicators select widely varying

bitrates, in this case, discussions with the owner and syndicator revealed that the

owner selected its bitrates to provide better experience for its users, while the syn-

dicator’s choices were dictated in part by the increased storage and encoding costs

required for higher bitrates.

Redundancy in CDN storage. Independent syndication can also result in redun-

dant storage in CDNs. In this section, we explore this for a popular series syndicated

by two syndicators from the owner. In this case, the owner stores the series content

on two CDNs A and B, and uses 9 bitrates. One of its syndicators stores the same

series on 3 CDNs A, B and C, but encodes the content using 7 bitrates. Another

syndicator stores the content on A, B and another CDN D, but encodes the content

using 14 different bitrates. These different management choices for the same content

arise largely because of the independent syndication model.

We focus on a setting where publishers proactively push video content to a CDN

origin server which serves cache misses from CDN edge servers [72]. This setting is

commonly used in practice, especially for popular video content. We quantify the

redundancy in storage in CDN origin servers. While there is likely some redundancy

in edge servers as well, this is harder to quantify as that depends on content access

patterns.

Quantifying storage redundancy with independent syndication. To

quantify redundant storage, we first compute the total storage required for the entire

video series by (i) downloading the manifest files of each episode of the series for each

of the three publishers; (ii) multiplying each bitrate in the manifest file by the dura-

tion of the episode, and summing over all bitrates to obtain storage per episode; and

(iii) summing across episodes. This results in a total storage requirement of 1916 TB

across the 3 publishers (content owner and two syndicators) for each of the common

CDNs (A and B).

44

Fig. 2.19.: Storage savings under different syndication models for content served by

an owner and two syndicators.

We next explore the storage savings achievable for this series if a CDN removes

redundant copies of chunks with the same, or similar bitrates (those within a small

tolerance factor). This is motivated by the observation that the syndicators and con-

tent owners often have similar or identical bitrates (Fig. 2.16). This occurs in practice

because, even though publishers make independent bitrate choices, they tend to follow

guidelines recommended by streaming protocol specifications. For example, the HLS

specifications recommend that publishers make available at least one bitrate under

192 Kbps and that each successive bitrate be within a multiplicative factor of 1.5-2×

of the previous [44].

Fig. 2.19 (left three bars) shows the absolute and percentage storage savings with

the above model. Even with a 5% tolerance, CDNs A and B can save 316.1 TBs

(16.5%) each, and at 10%, they can each save 865 TBs (45.2%).

Integrated syndication. Our broker reports that at least one or two of the

publishers in our dataset have attempted integrated syndication, in which the owner’s

content delivery mechanism is integrated into the syndicator’s playback software.

There are two variants of integrated syndication: (i) API integration, where the

45

syndicator uses the owner’s manifest file and CDN; and (ii) app integration, where

the syndicator embeds the owner’s app into its own.

The rightmost bar of Fig. 2.19 shows that with integrated syndication, A and B

each save 1257 TB (65.6%). In addition, especially with app integration, syndica-

tors cannot choose different bitrates than content owners, so performance differences

similar to Fig. 2.17 are unlikely to arise.

While integrated syndication has potential, many logistical challenges must be

addressed to make it a reality. For instance, with app integration, syndicators have

to integrate apps for every owner they syndicate from. While API integration is po-

tentially logistically easier, accounting mechanisms must be developed to distinguish

CDN usage by clients of the syndicator and the owner. Future work should explore

better ways to improve the management of syndication.

2.7 Related Work

Characterizing Video Services. YouTube and Netflix alone have been the subject

of numerous studies over the years [73–83]. This body of work has studied several as-

pects, including 1) architecture, serving strategy and its evolution, 2) characterization

of videos in terms of encoded bitrates, total number of videos, popularity, caching,

and 3) the user access patterns and quality of experience etc. Ghasemi et al. [65]

conducted an in-depth study of Yahoo’s video serving infrastructure to reveal prob-

lems in different points in the video delivery pipeline. Other work has also examined

different types of video services including a Pay-TV [84], cellular video [85], an on-

demand service [86] and user-generated live streaming services [50,51]. These papers

focus on one or a handful of online publishers, but our work focuses on characterizing

management plane practices across a large number of online video publishers.

Industry surveys. Because of the growing interest in Internet video, several indus-

try surveys [10–13] have examined the video ecosystem. A 2017 industry study by

Bitmovin surveyed 380 video developers (individuals or companies associated with

46

the Internet video business in various ways). This study characterized streaming pro-

tocols, encoding formats, devices, DRM etc.. An earlier 2016 study [12] characterized

aggregate distributions across many of the same dimensions as [10]. Another prior

industry survey [14] and an anecdotal report [87] discuss the percentage of publish-

ers that use multiple CDNs (but do not discuss the number of CDNs used, or the

fact different CDNs may be used for live and VoD). While valuable, none of these

reports weight findings by view-hours, or present trends across publishers categorized

by view-hours, or present longitudinal analyses, as we do. Both of these method-

ological differences result in new findings and add insights to known trends. Finally,

while [13] does presents some trends with respect to device usage, other dimensions

are not considered. In addition, we go beyond all these reports by considering the

implications of these trends for management complexity, and syndicated content.

Quantifying diversity and complexity. Prior work has captured diversity of

mobile users [88] and apps [89] and the complexity of web pages [67] and routers [68].

While we draw inspiration from these works, our focus is on video management planes,

a different domain.

2.8 Conclusion

The Internet video management plane, which is responsible for packaging video

content and for ensuring playback across different devices, has received relatively little

research attention. Using data collected by a large broker over a period of two years

from over one hundred video publishers, we find that there exists significant diversity

across the three aspects of video management we study (packaging, CDN usage,

and playback device usage): large publishers support 3-4 protocols, 5 CDNs and 5

different device types. This diversity adds complexity to several management tasks

such as failure triaging, software management, and encoding. We find that complexity

metrics for these tasks are sub-linearly related to the number of view-hours. Finally,

the structure of today’s management planes can lead to variable delivery performance

47

for syndicated content. Integrating management planes for syndicated content can

avoid this as well as reduce CDN origin server storage requirements, and future work

can explore mechanisms for integrated syndication, as well as analyze new complexity

metrics, and approaches to cope with diversity and reduce management complexity.

48

3. OBOE: AUTO-TUNING VIDEO ABR ALGORITHMS

TO NETWORK CONDITIONS

3.1 Introduction

Internet video forms a major fraction of Internet traffic today [26], and delivering

high quality of experience (QoE) is critical since it correlates with user engagement

and revenue [4–6]. To deliver high quality video across diverse network conditions,

most Internet video delivery uses adaptive bitrate (ABR) algorithms [18, 90, 91],

combined with HTTP chunk-based streaming protocols (e.g., Apple’s HTTP Live

Streaming, Adobe’s HTTP Dynamic Streaming). ABR algorithms (a) chop a video

into chunks, each of which is encoded at a range of bitrates (or qualities); and (b)

choose which bitrate level to fetch a chunk at based on conditions such as the amount

of video the client has buffered and the recent throughput achieved by the client.

Within this general framework, ABR algorithms differ in how bitrate level selection

decisions are made, and these decisions impact metrics such as the average bitrate or

the rebuffering ratio. We call these QoE metrics, because they have been shown to

correlate well with QoE [5], but other perceptual video quality metrics [92] may also

influence QoE.

ABR algorithm design remains an active research area because content providers

continue to be interested in improving the performance of video delivery. Current

ABR algorithms perform well on average, but some users can experience poor deliv-

ery performance as measured by the QoE metrics. These users suffer because ABR

algorithms have limited dynamic range: they do not perform uniformly well across the

range of network conditions seen in practice because their parameters are sensitive to

throughput variability (§3.2).

49

Contributions In this thesis, we present the design of Oboe1 (§3.3), a system that

takes the first step towards overcoming these hurdles. Oboe improves the dynamic

range of ABR algorithms by automatically tuning ABR behavior to the current net-

work state of a client connection, specifically to throughput and throughput variabil-

ity.

Oboe’s design is based on the observation made by prior work [93–97] that TCP

connections are well-modeled as traversing a piecewise-stationary sequence of network

states (§3.3.1): the connection consists of multiple non-overlapping segments where

each segment is in a distinct stationary network state. For each possible network

state, Oboe pre-computes, offline, the best parameter configuration for a given ABR

algorithm (§3.3.2). It does this by subjecting the algorithm, for each state, to different

parameter values, and picking the one that results in the best performance. Then,

during video playback, Oboe continuously uses a change-point detection algorithm

to detect changes in network state and selects the parameter identified by the offline

analysis as best for the current state. Thus, if a video session encounters varying

network state during its lifetime, Oboe automatically specializes the ABR parameter

to each state (§3.3.3).

We have implemented Oboe and demonstrated several aspects of its performance

through testbed experiments and trace driven simulations. First, Oboe significantly

improves performance of QoE metrics for three qualitatively different ABR algo-

rithms, one that makes bitrate switching decisions on buffer occupancy alone (BOLA)

[18], another that uses both throughput and buffer occupancy (HYB, a widely de-

ployed algorithm), and a third that also optimizes decisions across a finite lookahead

horizon (RobustMPC) [91]. In each of these cases, Oboe results in significant im-

provement. For instance, Oboe reduces sessions with rebuffering from 33.3% to 5.3%

relative to RobustMPC while also significantly improving a composite QoE metric.

Oboe, when applied to RobustMPC, also performs significantly better than a

newly proposed approach called Pensieve that learns, from real traces (using rein-

1In orchestras all instruments tune to the Oboe.

50

forcement learning), how to adapt to a variety of network conditions. For nearly

80% of the sessions in our dataset, Oboe improves the same composite metric, with

benefits exceeding 20% for 25% of the traces. Compared to Oboe, which can special-

ize parameters to individual network states, Pensieve is unable to specialize across

the entire range of network throughputs. We have tried training specialized Pensieve

models for different ranges of network throughputs and dynamically switching models

based on estimated session throughput. This helps, but a significant gap between the

two approaches still remains (§3.4.4).

While a variety of viable pathways exist to deploying Oboe, we focus on an ar-

chitecture where Oboe and the entire ABR logic are deployed on the cloud which

enables rapid evolution and fine-grain customizability. We show the viability of this

architecture with results from a pilot deployment.

3.2 Background and Motivation

The Internet video delivery ecosystem consists of hundreds of content publishers

and hundreds of client side applications that stream video content to diverse user

devices. Publishers, content delivery networks, and users all seek to improve user

quality of experience (QoE). There are many factors that affect QoE including start

up latency, the average bitrate for a video session, as well as the rebuffering ratio (the

percentage of time playback is stalled because of drained buffer) [5]. Video players

improve QoE using adaptive bitrate (ABR) algorithms which select bitrates for each

chunk while (1) ensuring the bitrate seen by the user is as high as possible and (2)

avoiding rebuffering events at the client. Some ABR algorithms may also try to

minimize the number of bitrate switches to make the playback smooth.

Content publishers serve different types of content including VoD (Video on De-

mand) or Live broadcasts. They may also serve streams of different qualities ranging

from HD (high definition) to SD (standard definition). These differences impact how

they serve videos. For example, publishers who serve VoD content can use player

51

buffers as large as 4 minutes [90], whereas publishers serving live content may have

a time-to-live2 requirement between 15-45 seconds. Similarly, based on the quality of

streams they serve, publishers may use different bitrate levels or chunk sizes. Further,

publishers may have different QoE objectives. For example, some may strictly prefer

to minimize rebuffering and others may relax their tolerance for rebuffering to prior-

itize higher bitrates. We use the term publisher specifications to denote their choice

of bitrate levels, chunk sizes, content type, and rebuffering tolerance.

3.2.1 Background on ABR Algorithms

ABR algorithms fall in two broad categories: (i) those that use both prediction

of network throughput and buffer occupancy [33, 91, 98]; and (ii) those that are pri-

marily based on buffer occupancy [18, 90]. Within the above two categories, ABR

algorithms can be designed using approaches ranging from heuristics to stochastic

optimization. In §3.4, we discuss a recently proposed ABR algorithm based on a

qualitatively different approach, reinforcement learning [17].

MPC: Throughput prediction and buffer occupancy with look-ahead. Se-

lects bitrate by solving an optimization problem MPC [91] predicts through-

put of future chunk downloads based on throughput samples of recently downloaded

chunks, then uses this predicted throughput to select bitrates to optimize a given

QoE function (§3.4) over a look-ahead window of 5 future chunks. The aggressive

version of the algorithm (FastMPC) directly uses a throughput estimate obtained

using a harmonic mean predictor. To compensate for throughput prediction errors, a

more conservative version, RobustMPC, reduces predicted throughput by a discount

factor 1 + d, where d is the maximum error in throughput predictions experienced in

the last five chunk downloads.

2For live content, the time between the event and its broadcast to users. This bounds the maximum
buffer that a player streaming a live event can build.

52

BOLA: Buffer occupancy, selects bitrate by solving an optimization prob-

lem BOLA is a buffer-based algorithm used in Dash.js [99], so it does not employ

throughput prediction in making bitrate decisions [18]. It also models bitrate selec-

tion as an optimization problem which it solves for a given value of the buffer. It

uses a parameter γ which is a ratio of (i) a minimum buffer threshold, below which it

downloads the lowest bitrate and (ii) a target buffer threshold which it tries to main-

tain. Conceptually γ controls how strongly the ABR should avoid rebuffering [18].

Higher values of γ make the algorithm conservative.

HYB: Throughput prediction without lookahead. Selects bitrate using a

simple heuristic An algorithm widely used in production (§3.5), HYB considers

both the predicted throughput and current buffer occupancy (HYB is short for hy-

brid). For each chunk, HYB picks the highest bitrate that can avoid rebuffering.

Specifically, if Sj(i) denotes the size of chunk j encoded at bitrate i, B is the pre-

dicted throughput based on past samples, and L the length of the buffer. HYB picks

the largest bitrate i such that
Sj(i)

B
< L × β. Here, β can have values between 0

and 1 (higher values represent aggressive ABR behavior). β can be tuned to offset

prediction errors in throughput and to compensate for the greedy nature of the ap-

proach which may make it susceptible to future buffering events owing to unexpected

throughput dips.

3.2.2 Ensuring High QoE for All Users

Despite widespread deployment, ABR algorithms continue to be an active area of

research [17,18,33,90,91,98]. This is because, while deployed ABR algorithms work

well on average, they do not work uniformly well across all network conditions. A key

reason for this is that ABR algorithms have parameters (which we henceforth refer

to as configurations) that must be set in a manner sensitive to network conditions.

ABR algorithms need to run on many different networks, ranging from cellular and

WiFi networks at one end, to high-speed broadband connections at the other. Given

53

Fig. 3.1.: Performance of ABR algorithms using different configurations for two ses-

sions with different throughput behaviors

this diversity, network conditions can vary significantly. Packet loss conditions can

vary by an order of magnitude or more across the globe [100]. Network throughputs

can also vary widely: for 90% of traces in a large dataset, the trace’s maximum

throughput is more than twice its average throughput. Yet, unfortunately, most ABR

algorithms today either employ fixed configurations or simple heuristics to adapt these

configurations (§3.2.1).

Figures 3.1(a) and 3.1(b) show how the choice of ABR configuration depends on

network conditions. Figure 3.1(a) shows the bitrate and rebuffering ratio for two client

sessions with the HYB algorithm for three different values of its β parameter, Cons

(Conservative), Mod (Moderate), and Aggr (Aggressive). The throughput behavior

of the two sessions is shown in Figure 3.1(c). If a publisher prefers to eliminate

rebuffering, Mod is suitable for session A, but Cons is better for session B. Figure

3.1(b) shows that BOLA behaves similarly, with Mod being the preferred setting for

session A and Cons for session B, to avoid rebuffering.

54

Fig. 3.2.: Illustrating how policy for setting discount factors in MPC impacts perfor-

mance for different traces

Figures 3.2(a) and 3.2(b) show the difficulty in setting the discount factor with

MPC, by comparing the performance of FastMPC (no discount factor), and Ro-

bustMPC (discount factor set by local heuristic) for two throughput traces with dif-

ferent characteristics. In each figure, the top subgraphs show the available throughput

(green curve) and the throughput estimate of FastMPC (red) and RobustMPC (blue).

For the left graph, although the throughput is generally good, the sudden variations

force RobustMPC to make overly conservative bitrate decisions, as well as incur more

bitrate switches. (bottom subgraph). In contrast, in Figure 3.2(b), the quicker and

more frequent throughput changes (top subgraph) result in FastMPC experiencing

rebuffering (middle subgraph), while RobustMPC does not. This is just one example

illustrating the difficulty in picking parameters – in our evaluations (§3.4), we found

that RobustMPC was itself too aggressive when selecting discount factors for some

traces.

While this section uses synthetic traces for illustrative purposes, our evaluations

with real traces (§3.4) more extensively demonstrate the limitations of current ap-

proaches with respect to selecting parameters and the benefits of automatically tuning

ABR parameters to network conditions.

55

3.3 Oboe Design

Oboe aims to ensure good QoE for all users by enabling ABR algorithms to

perform better across a wide range of network conditions. The configurations of many

ABR algorithms are sensitive to network state, specifically to the value and variability

of the available throughput between the client and the video server. For example, β

in HYB should be smaller when available throughput is highly variable, while γ in

BOLA should be higher. This explains why the algorithms perform differently for

different values of parameters on a given client trace (§3.2.2). However, a line of prior

work [93–97] has observed that network connections are piecewise stationary : that

is, connections can be in one of several distinct states (§3.3.1), where each state is

distinguished by stationarity in the statistical sense (informally, a process is stationary

if its statistical properties including mean and variance do not change over time -

see [101] for a more formal definition).

Oboe leverages the piecewise stationarity of network connections to address the

key challenge of sensitivity of configurations to network conditions. It does so using

a two stage design: (a) an offline stage where it pre-computes the best configuration

choice for each (stationary) network state (§3.3.2), and (b) and an online stage, where

during a session, it detects changes in network state and applies the pre-computed best

configuration for the current (stationary) state (§3.3.3). Oboe can also accommodate

publisher specifications such as session type (live vs. video-on-demand, time-to-live

requirements), bitrate levels or any explicit QoE tradeoffs (e.g., preference between

rebuffering and average bitrate) (§3.3.2), by using these to influence the selection of

the best configuration for each (stationary) network state in the offline stage.

3.3.1 Representing Network State

Most ABR algorithms today adapt bitrates based on the throughput (more pre-

cisely, goodput) achieved by recently downloaded chunks. This perceived throughput

56

already accounts for network delays and loss-rates, as well as the dynamics of the

underlying transport protocol.

The network throughput along a path is not necessarily a stationary process [93–

97]: flows at the bottleneck along a path may change over time resulting in changes

to available throughput, or the bottleneck itself may shift [96]. An analysis of the

throughput traces used in our evaluations (§3.4) confirms the lack of stationarity

when applied to the entire trace. We analyze throughput traces using the Augmented

Dickey-Fuller (ADF [102]) test, a hypothesis test to check for stationarity in a time

series. Our evaluations on a dataset of 15,000 video streaming throughput traces

show that 59.5% were non-stationary (see §3.4.2 for details of the dataset), implying

the presence of distinct mean and/or variance in different segments of the traces.

However, prior work [93–97] shows that TCP connection throughput can be

modeled as a piecewise stationary process; the connection consists of multiple non-

overlapping segments where each segment is stationary and often lasts for tens of

seconds or minutes (e.g., Figure 3.8). Moreover, Zhang et al. [94] show that the

throughput in each segment may be modeled as an i.i.d. process.

Motivated by these observations, Oboe defines network state s by a tuple <

µs, σs >, where µs is the mean and σs the standard deviation of the client-perceived

throughput in a (stationary) segment of the underlying TCP connection.

3.3.2 Offline Mapping of Network States

To map network states to their optimal ABR configurations, Oboe uses a pipeline

(Figure 3.3) consisting of three components – the ConfigEvaluator, the VirtualPlayer

and the ConfigSelector. The ConfigEvaluator takes a stationary throughput trace

as input, which represents a particular network state, and drives the exploration of

different ABR configurations over this trace. It does so by using the VirtualPlayer

which models the dynamics of an actual video player. The VirtualPlayer interfaces

with the ABR algorithm implementation and outputs the performance of different

57

Fig. 3.3.: The logical diagram of the offline pipeline used by Oboe

configurations of the ABR. Finally, the ConfigSelector compares the performance of

different configurations and builds a ConfigMap, which maps a given network state

to the best configuration.

Generating throughput traces for ConfigEvaluator To explore configuration

space of an ABR algorithm on each network state s, ConfigEvaluator needs a sta-

tionary throughput trace to represent s. To generate such a trace, we explored two

different approaches. In one approach, we extracted stationary segments from real

traces using offline change point detection ([103], described in §3.3.3). Change points

capture points where the distribution changes. However, because we are not guaran-

teed coverage (i.e., not all states might be observable in real traces), we also explored

a second approach which involved generating a synthetic trace for each s with s’s

mean and standard deviation, assuming a Gaussian distribution for the throughput

samples. This was motivated by Dinda et al. [95] who showed that the throughput

of TCP flows of the same size in a given stationary segment may be modeled as

a Gaussian distribution (also see §3.3.1). More recent work also shows that TCP

throughput is well modeled as a Markov process, each of whose states may be mod-

eled as a Gaussian distribution [23]. We found that Oboe with synthetic traces

58

performed comparably to stationary segments from real traces. So, ConfigEvaluator

uses synthetic traces.

Specifically, ConfigEvaluator quantizes both mean and standard deviation of through-

put using a quantum (in our experiments, of 50 Kbps), resulting in states (in our

experiments, 10,000), spread over a two dimensional space (in our experiments, 0.05-

10 Mbps) of throughput and standard deviation. For each state, we generate a syn-

thetic stationary trace. We found that the benefits of finer quantization are marginal.

Estimating ABR performance with VirtualPlayer and publisher specifica-

tions Oboe uses VirtualPlayer, a trace-based simulator that mimics the behavior

of an actual video player without downloading or rendering actual videos. It takes

as input a throughput trace and outputs the QoE performance metrics of a video

session for a specified ABR algorithm. We have validated VirtualPlayer in §3.4.7.

In designing VirtualPlayer, we have decoupled ABR logic (Figure 3.3), so the same

implementation of the ABR logic can be used in Oboe’s offline and online stage.

Further, this design provides an interface to the ABR designer through which they

can easily integrate their ABR algorithm with Oboe without having to know about

Oboe’s internals.

The VirtualPlayer also takes into account publisher specifications for bitrate levels,

player buffer sizes (determined by time-to-live requirements) and chunk size. These

specifications are used by VirtualPlayer when it executes ABR algorithms on the

input traces, ensuring that the resulting ConfigMap meets the publisher specifications.

Finally, Oboe also allows the publisher to optionally express an explicit QoE tradeoff

such as maintaining the rebuffering under a desired threshold x%. Oboe derives a

ConfigMap that meets the rebuffering threshold in a best effort manner. We evaluate

the efficacy of this flexibility in §3.4.7.

Building the ConfigMap using ConfigSelector To build the ConfigMap, the

ConfigEvaluator drives the exploration of different configurations for an ABR algo-

rithm. For a given network state s, ConfigEvaluator sweeps through possible configu-

59

rations of the ABR algorithm using the VirtualPlayer. For example, the β parameter

in HYB can take values from 0 to 1, so ConfigEvaluator plays the trace for state s

for multiple values of β (quantized for efficiency, see below) in this range.

For each parameter value ci, VirtualPlayer outputs a performance vector Vi =<

v1, v2, . . . vm > where each vk corresponds to the values achieved by ci for a QoE

metric (e.g., bitrate, rebuffering ratio, and more generally join time and frequency

of switching bitrates [5]). This set of performance vectors with the corresponding

parameter values are then sent to ConfigSelector for picking the best configuration.

ConfigSelector takes the set of performance vectors and determines the best con-

figuration from them using vector dominance. A configuration ci is said to dominate

cj if Vi element-wise dominates Vj (i.e., each element of Vi is better than or equal to

the corresponding element of Vj). This step also takes into account any rebuffering

tolerance, and ConfigSelector applies this tolerance to select the maximal performance

vector. Deferring the selection of the maximal vector for a given rebuffering tolerance

to this stage (instead of filtering vectors in the previous step) is beneficial: it mini-

mizes recomputation by allowing Oboe to quickly compute a new maximal vector if

the publisher changes the rebuffering tolerance. At the end of this stage, Oboe ob-

tains the ConfigMap, a complete mapping of each network state to its corresponding

optimal ABR configuration.

Two optimizations can be used to quicken the rate of exploration of the Con-

figEvaluator. The first is to quantize the parameter sweep, so that configurations

are evaluated at a coarser granularity. This trades off some performance for lower

computational complexity. The second optimization is based on the observation that

there is generally a monotonic relationship between parameter values and the perfor-

mance. For instance, for HYB (§3.2.1), the rebuffering ratio and average bitrate are

monotonically non-decreasing with the parameter β. Based on this observation, we

can instead use an O(log n) binary search of the configuration space instead of doing

a full O(n) sweep of all configurations.

60

Fig. 3.4.: Logical diagram of Oboe’s online pipeline

3.3.3 Online ABR Tuning

Oboe uses the ConfigMap generated offline, and live throughput measurements

from the video player to dynamically change ABR configurations during a video play-

back. It does this by using an online change point detection algorithm [104]. This

algorithm identifies, in an online fashion, if the distribution of the throughput sam-

ples has changed significantly, signaling a state transition. When a change point is

detected, the algorithm also provides the new state s’s mean and standard devia-

tion. Oboe’s ChangeDetector (Figure 3.4) implements the change point detection

algorithm, and the ReconfEngine is responsible for updating the ABR configuration

based on a new network state and the ConfigMap.

Change point detection algorithms Such algorithms analyze a time series and

check if there are regions in the time series where the underlying distribution of the

data changes to a different set of parameters. Offline change-point methods require

the full time series to be available, whereas online methods work with a continuous

stream of samples as they become available. We focus on online methods, since

Oboe identifies change points for an in-progress session and dynamically changes

configurations.

61

While several techniques exist for change point detection [105–110], we focus

on probabilistic methods [104, 111–113]. Further, we use a Bayesian online proba-

bilistic change-point detector [104] for two reasons. First, in [104], a sequence of

observations can be partitioned into non-overlapping states such that the observa-

tions are i.i.d. conditioned on a given network state s. This view aligns well with

the way we have defined a network state (§3.3.1). Further, the algorithm is fast and

requires no prior knowledge about the data stream, matching our scenario. We use

the implementation provided in [103] and integrate it with the ChangeDetector.

Detecting changes in network state During a video session, ChangeDetector is

continually fed with a series of observations of the network throughput, which it uses

to detect state changes. ChangeDetector calculates throughput and standard devia-

tion by only considering those samples which belong to the current state. To generate

inputs to ChangeDetector, one approach is to use each downloaded chunk to obtain

a single throughput sample. However, this may be too coarse-grained, and prevent

detection of changes in network state that occur during the chunk download. Instead,

we use fine grained samples recorded at periodic intervals (tens of milliseconds) during

the download of each chunk. Players such as Dash.js already periodically log inter-

mediate throughput samples during a chunk download, so obtaining these samples

does not incur any additional overhead. We only need to modify players to report

these samples to Oboe. The set of samples are provided to ChangeDetector after the

chunk download, and any change in state is only detected at the end of the chunk

download. This is acceptable since any action that can be taken by the ABR algo-

rithm (such as a bit rate switch) only impacts subsequent chunks. In the rarer case

that an ABR algorithm abandons the download of a chunk that takes too long, the

report is sent when the chunk download is abandoned. §3.4.8 evaluates the overheads

of ChangeDetector.

An alternative approach to changing configurations is to use an exponentially

weighted moving average (EWMA) of the mean and standard deviation of throughput

62

samples and to lookup the corresponding configuration. We experimented with such

an approach and found its performance unsatisfactory. The approach can result in

continual and unnecessary reconfigurations, since throughput may vary across samples

even when the network is (statistically) stationary. Damping these changes can result

in slow reaction times when a reconfiguration is actually beneficial. In contrast, Oboe

(i) models the underlying TCP connection as a sequence of states; (ii) does not make

changes to the configuration within a given network state; and (iii) only reconfigures

when a state change is observed.

Reconfiguring ABR Algorithm When a change in the network state is detected,

the ChangeDetector signals the change and the new network state s to the Recon-

fEngine. The ReconfEngine then searches a neighborhood of radius r in the Con-

figMap to select the configuration to use for state s. Specifically, if state s is a point

in a 2-dimensional space of average throughput and standard deviation of through-

put, then it picks the most conservative ABR configuration within a search radius r

around s. It does this for two reasons. First, because Oboe quantizes the network

states, it might not have precomputed the best configuration for s. Second, the esti-

mated new network state s may have some error, for example, due to inefficiencies in

the client download stack [65]. Given these sources of uncertainty, Oboe chooses to be

safe in its selection of the best configuration for s. Finally, ReconfEngine configures

the ABR algorithm, and the reconfigured ABR algorithm is ready to compute the

bitrate decision to be used for the next chunk at this point.

3.4 Evaluation

In this section, we demonstrate Oboe’s ability to auto-tune three existing algo-

rithms: RobustMPC, BOLA and HYB. We also compare an Oboe-tuned RobustMPC

to Pensieve [17].

63

3.4.1 Metrics

The performance of a video session depends on multiple factors. Average bitrate

and rebuffering ratio were found to have the most impact on user quality of experience

[5], though other factors such as changes in bitrates during a session can play a role

[5]. There is no consensus on how to best capture a user’s QoE. Consequently, ABR

algorithms today are designed to optimize different metrics. For instance, HYB and

BOLA primarily maximize average bitrate subject to low rebuffering. In contrast,

other algorithms [17, 91] have been designed to optimize a QoE metric which is a

linear combination of bitrate, rebuffering and bitrate changes (smoothness).

With Oboe, our primary evaluation goal is to demonstrate the extent to which it

can improve the underlying metrics that an ABR algorithm is designed for. Thus,

our evaluations with BOLA and HYB focus on average bitrate and rebuffering, while

those with MPC+Oboe focus on the linear combination of QoE (which we refer to as

QoE-lin, [91]), defined as follows. For a video with N chunks, let Ri be the bitrate

chosen for chunk i. Then, the magnitude of bitrate changes M may be defined as

M =
∑N−1

i |Ri+1−Ri|. If the session experiences a total of T seconds of rebuffering,

then, QoE-lin(p, c) = 1
N
∗
∑

i(Ri − pT − c ∗ M), where p and c represent scaling

penalties applied to rebuffering and changes in the session. This function may be

viewed as the session QoE averaged over the number of chunks. For our videos that

had a maximum bitrate of 4.3 Mbps, we use p = 4.3 and c = 1 as our default

parameters (following previous work that set default rebuffering penalty equal to the

maximum bitrate value [17,91]).

Even when an algorithm optimizes a metric such as QoE-lin, it is important to

understand the distributions of underlying factors. The underlying factors represent

concrete application performance that publishers understand how to reason about.

Moreover, a unified metric like QoE-lin can obscure important differences. For exam-

ple, two sessions may have the same QoE-lin but different performance in underlying

metrics, leading to varied user experience. So, we also present graphs of these metrics.

64

Fig. 3.5.: A scatter plot of average bitrate and rebuffering ratio between the Virtu-

alPlayer and real Dash.js player

3.4.2 Methodology

Implementation For RobustMPC, we used the implementation available at [114].

Our implementation of BOLA [18] is from the Dash.js player. The implementation

of HYB is a variant of the algorithm used in a large-scale deployment. These ABR

algorithms and Oboe’s online stage (change point detection and ABR reconfiguration)

run on the server in our experiments. Our client runs the Dash.js video player (version

1.2), a reference player implemented in JavaScript by the MPEG-DASH forum [99].

We modified Dash.js to send client player state information (e.g. buffer length, video

play state and throughput measurements) to Oboe (§3.5). This player runs on the

Google Chrome browser (version 61) in our experiments. In §3.5, we show that Oboe

can also be run as a cloud service.

Testbed setup Our evaluations measure ABR performance by delivering a video

stream (the “EnvivioDash3” video from the MPEG-DASH reference videos [115])

from a video hosting server to a client, while varying network conditions using through-

put traces from real user sessions. We use bitrates {300, 750, 1200, 1850, 2850, 4300}kbps

with a 4 second chunk duration and total length of 192 seconds. We focus on this

65

video as it has been used in prior work [17], and we do not consider videos of longer

duration because we only have throughput traces available for a video publisher that

serves short music videos (as we discuss below). The video is hosted on an Apache

server. Both the server and client software run on the same 8-core, 4 Ghz, Intel

i7 commodity desktop with 12 GB RAM running Ubuntu 16.04. Between server

and client, we emulate different network conditions using the Chrome DevTools API

[116]. This allows us to control the upload/download throughput as well as latency

using the Chrome-Remote-Interface based on throughput traces [117]. We use 571

throughput traces3 from our dataset (discussed below) for this emulation. All our

testbed experiments use a client buffer of 2 minutes.

Datasets We use throughput traces from real user sessions collected over a three

month period. Each trace contains the individual chunk sizes and their download

times for on-demand video sessions from a publisher that serves short (4-6 minute)

music videos. We derive throughput by dividing the chunk sizes by their download

durations. The traces contain sessions that used desktops with wired connections

and also sessions on mobile devices using WiFi or cellular connections. Like previ-

ous work [17, 91], we primarily focus on traces that have less than 6 Mbps average

throughput, since this is the regime where bitrate switching decisions are likely to

have QoE impact. We filtered out traces which were too short for playing our entire

192 second video, after which we obtained 5K traces from wired desktops and 4K

sessions from WiFi or 3G/4G mobile devices. Our testbed experiments use a subset

of 571 traces with roughly the same number of traces sampled from each of desktop

and mobile clients.

VirtualPlayer setup Recall that Oboe uses the VirtualPlayer to obtain a Con-

figMap for any ABR algorithm. Since the majority of our results use an actual testbed

with the Dash.js player, the benefits of Oboe in our evaluation results already arise

3Available at https://github.com/USC-NSL/Oboe

66

Fig. 3.6.: The percentage improvement in QoE-lin of MPC+Oboe over RobustMPC

for the Testbed experiment. The distribution of average bitrate, rebuffering ratio and

bitrate change magnitude for the schemes is also shown.

despite any inaccuracies in building the ConfigMap on account of using the Virtu-

alPlayer. That said, we have also verified that the VirtualPlayer does a good job of

tracking the performance of the actual ABR algorithms. For instance, Figure 3.5(a)

and 3.5(b) demonstrates this for the HYB algorithm. The figures shows the correla-

tion for the average bitrate and rebuffering ratio for 100 throughput traces randomly

sampled from our dataset using HYB on the VirtualPlayer compared to using an

actual Dash.js player. For both metrics, the graph closely tracks the y = x line indi-

cating close correlation. Given these close correlations, we use the VirtualPlayer in

§3.4.7 to explore Oboe’s performance over a larger range of diverse settings and our

entire set of traces.

67

3.4.3 Oboe with RobustMPC

We now demonstrate that Oboe can be used to auto-tune RobustMPC, the best

performing variant of the MPC algorithms. The resulting MPC+Oboe uses the best

value of the discount parameter d corresponding to the current network state, replac-

ing RobustMPC’s online adaptation based on throughput estimates obtained over the

past 5 chunks (§3.2).

Figure 3.6(a) shows the CDF of the percentage improvement in QoE-lin of MPC+Oboe

over RobustMPC.4 MPC+Oboe improves QoE-lin for 71% of sessions, with an over-

all average QoE-lin improvement of 17.62% across all sessions. In particular, for 19%

of the sessions, QoE-lin improves by more than 20%. For the sessions MPC+Oboe is

unable to improve RobustMPC, its performance degradation is mostly under 8%. Fig-

ures 3.6(b), 3.6(c) and 3.6(d) show the constituent QoE metrics. While MPC+Oboe

achieves distributionally similar bitrates as RobustMPC as shown in 3.6(b), it signif-

icantly reduces rebuffering across sessions: the number of sessions with rebuffering

reduces from 33.2% to 5.3%. Further, it also achieves better playback smoothness

by improving the median per chunk change magnitude by 38% (Figure 3.6(d)). Fi-

nally, Figure 3.7 shows the CDF of QoE-lin for MPC+Oboe and RobustMPC, and

indicates MPC+Oboe distributionally performs better.

Figure 3.8 illustrates, using a single session, why MPC+Oboe performs better

than RobustMPC. The top graph shows throughput as a function of time, which

includes an initial stable state followed by a drop in throughput. The middle graph

shows how the discount factor d of both RobustMPC, and MPC+Oboe vary (the

predicted throughput for each system is reduced by a factor of 1
1+d

, where d is shown

on the y-axis). During the initial stable state, when prediction errors are low, Ro-

bustMPC steadily lowers its discount factor leading to more aggressive bitrate se-

lections (not shown). This results in a rebuffering event 44 seconds into the session

(lowest graph shows buffer occupancy with 0 indicating a rebuffering event). In con-

4The increase in QoE-lin over RobustMPC relative to the absolute QoE-lin value of RobustMPC
expressed as a percentage.

68

Fig. 3.7.: QoE-lin of MPC+Oboe compared to RobustMPC

Fig. 3.8.: An example session showing how MPC+Oboe is able to outperform Ro-

bustMPC by reconfiguring the discount parameter when a network state change is

detected.

trast, MPC+Oboe does not incur a rebuffering event and maintains a fixed d during

the initial stable state. At 29 sec, it detects a change in the network state and adapts

its discount factor, leading to more conservative bitrate selections.

69

Fig. 3.9.: Validation of our training methodology for Pensieve.

3.4.4 Oboe vs. Pensieve

Pensieve [17] uses deep reinforcement learning [118, 119], a combination of deep

learning with reinforcement learning [120], and has been shown to outperform existing

ABRs, including RobustMPC [17] in some settings. Since MPC+Oboe outperforms

RobustMPC as well, we explore how MPC+Oboe performs relative to Pensieve. Our

experiments use the Pensieve implementation provided by the authors [114].

Pensieve Re-Training and Validation Before evaluating Pensieve on our dataset,

we retrain Pensieve using the source code on the trace dataset provided by the Pen-

sieve authors [114]. This helps us validate our retraining given that deep reinforce-

ment learning results are not easy to reproduce [121].

We experimented with five different initial entropy weights in the author suggested

range of 1 to 5, and linearly reduced their values in a gradual fashion using plateaus,

with five different decrease rates until the entropy weight eventually reached 0.1. This

rate scheduler follows best-practice [122]. From the trained set of models, we then

selected the best performing model (an initial entropy weight of 1 reduced every 800

iterations until it reaches 0.1 over 100K iterations) and compared its performance

to the pre-trained Pensieve model provided by the authors. Figure 3.9 shows CDFs

of QoE-lin for the pretrained (Original) model and the model trained by us (Re-

trained). The performance distribution of the two models are almost identical over

70

Fig. 3.10.: The percentage improvement in QoE-lin of MPC+Oboe over Pensieve

for the 0-6 Mbps throughput region. The distribution of average bitrate, rebuffering

ratio and bitrate change magnitude for the schemes is also shown.

the test traces provided by the Pensieve authors, thereby validating our retraining

methodology.

Having validated our retraining methodology, we trained Pensieve on our dataset

with the same complete strategy described above. For this, we pick 1600 traces ran-

domly from our dataset with average throughput in the 0-6 Mbps range. The number

of training traces, the number of iterations per trace, and the range of throughput

are similar to [17]. We then compare Pensieve and MPC+Oboe over a separate test

set of traces also in the range of 0-6 Mbps (§3.4.2).

Comparison with Pensieve Figure 3.10(a) shows the CDF of the percentage

improvement in QoE-lin for MPC+Oboe over Pensieve. MPC+Oboe outperforms

71

Fig. 3.11.: CDFs of QoE-lin for MPC+Oboe and Pensieve

Pensieve for 81% of the sessions, with a QoE-lin improvement of 23.9% in average

across all sessions. 25% of the sessions achieve more than 20% QoE-lin improve-

ment. For the sessions MPC+Oboe is unable to improve over Pensieve, the perfor-

mance difference is mostly less than 5%. Figures 3.10(b), 3.10(c) and 3.10(d) show

that MPC+Oboe distributionally outperforms Pensieve with respect to all underly-

ing metrics. It reduces the number of sessions with rebuffering from 10.7% to 5.3%,

reduces the median per chunk change magnitude by 43.9%, and improves median and

95th percentile average bitrate by 2.6% and 4.7% respectively. Finally, Figure 3.11

shows the CDF of QoE-lin for MPC+Oboe and Pensieve, and indicates MPC+Oboe

performs distributionally better.

Analyzing Pensieve performance To understand where these performance im-

provements were coming from, we examined the relative performance of these two

schemes in the 0-3 Mbps range (i.e., traces having an average throughput between

0-3 Mbps). In this more constrained range of network conditions, we found that

MPC+Oboe achieves bigger gains over Pensieve (average QoE-lin improvement in

0-3 Mbps is 46.23%). We hypothesize that this performance difference stems from

the fact that Pensieve builds a single model which does not specialize to different

throughput ranges.

72

To test this, we trained a separate Pensieve model only with traces that have

an average throughput between 0-3 Mbps range and compared it with MPC+Oboe.

Figure 3.12 shows the per session QoE-lin improvement of MPC+Oboe compared

to Pensieve models trained for 0-3 Mbps (which we refer to as Pens-Specialized)

and for 0-6 Mbps. The median QoE-lin improvement with MPC+Oboe over Pens-

Specialized is 10.49%, while the median improvement over Pensieve is 19.9%. This

indicates specializing the model does improve Pensieve’s performance.

Thus, Pensieve’s model is as yet unable to create specialized versions of itself based

on the session characteristics. By contrast, Oboe specializes parameters for every net-

work state and therefore performs better. We have also validated Pensieve’s inability

to specialize in several other ways: building a model for the 3-6 Mbps and showing

that it performs better with test data in that range compared to a 0-6 Mbps model;

checking that a 0-6 Mbps model performs better for data in that range compared to

a 0-100 Mbps model; and ensuring that these results hold even when the training

set is doubled. It is hard to pinpoint exactly why Pensieve is unable to learn to be

more conservative in the 0-3 Mbps range; deep neural network models remain a black

box despite efforts by the machine learning community to make these models more

transparent [123], and obtaining such understanding may need further advances in

interpretable deep learning models.

A model selector with Pensieve One way to improve Pensieve’s specialization

might be to train different models for different throughput ranges and use the model

more suited to the network conditions. To test the efficacy of this approach, we used

two models (specialized for 0-3 Mbps and 3-6 Mbps), and tried two different model

selectors. Pens-SelMultiple switches models throughout the session, using the average

throughput of the past 5 chunks. Pens-SelOnce starts with the 0-6 Mbps model,

selects either the 0-3 Mbps or 3-6 Mbps model based on the average throughput of

the first 5 initial chunks, and does not switch thereafter.

73

Fig. 3.12.: Benefits of specializing Pen-

sieve models. Each curve shows the

QoE improvement of MPC+Oboe rel-

ative to each Pensieve model.

Fig. 3.13.: QoE improvement of

MPC+Oboe over two ways of dynam-

ically selecting from specialized Pen-

sieve models.

Figure 3.13 shows CDFs of per-session QoE-lin improvement of MPC+Oboe over

these selectors. MPC+Oboe is able to outperform both Pens-SelMultile and Pens-

SelOnce, with average QoE-lin improvements of 14.2% and 24.32% respectively. Even

though one of the model selection schemes offers some improvements over the 0-

6 Mbps Pensieve model, the benefits are modest. We hypothesize that this behavior

is due to the dynamic selection of distinct Pensieve models, which can interfere with

reinforcement learning’s decision choices, since, during training, the reinforcement

learning algorithm assumes there is no such third party intervention.

3.4.5 Oboe with other ABR Algorithms

Oboe can also improve other existing ABR algorithms such as BOLA and HYB,

which are designed to maximize average bitrate while minimizing rebuffering.

BOLA BOLA+Oboe tunes γ (§3.2), which determines how much the algorithm

strives to avoid rebuffering. BOLA, as implemented in Dash.js, uses a fixed default

value of γ = −10.28. Figure 3.14(a) and 3.14(b) show CDFs of per session per-

formance improvement over BOLA with respect to average bitrate and rebuffering

74

Fig. 3.14.: Percentage improvement in bitrate and rebuffering of BOLA+Oboe over

BOLA (a),(b) and HYB+Oboe over HYB (c), (d)

ratio. BOLA+Oboe maintains the rebuffering ratio of BOLA while improving aver-

age bitrates for more than 83% of sessions with an overall increase of 7.2% in average

across all sessions. For sessions where BOLA+Oboe does not outperform BOLA, its

degradation is less than 3.1%.

HYB The performance of HYB is sensitive to the choice of β parameter, which

HYB+Oboe tunes. In production, HYB uses β = 0.25, determined using A/B tests

in a large-scale deployment. Figure 3.14(c) and 3.14(d) show CDFs of per session

performance improvement of average bitrate and rebuffering ratio over HYB. As with

BOLA, HYB+Oboe maintains similar rebuffering ratios as shown in 3.14(d), but

improves bitrates for 98% of sessions with an overall average bitrate improvement of

8.32% in average across all sessions.

75

3.4.6 Sensitivity experiments

Alternative throughput traces To understand how Oboe works on throughput

datasets beyond those discussed in §3.4.2, we evaluated Oboe on two other datasets,

FCC [124] and HSDPA [125] that have been used in recent work [17, 91]. FCC is

a broadband dataset, while HSDPA contains throughput traces collected from video

streaming sessions over 3G networks in Norway using mobile devices. Our com-

parisons use the traces and a Pensieve model pre-trained for those traces available

at [114]. We focus our evaluations on MPC+Oboe and Pensieve, given that Pen-

sieve has been shown to out-perform existing ABR schemes including RobustMPC

on these traces. Our results show that MPC+Oboe continues to perform better than

RobustMPC on these traces. Further, relative to Pensieve, MPC+Oboe improves

QoE-lin by an average of 6.94% across the FCC dataset and 10.92% across the HS-

DPA dataset. These improvements are more modest than those in Figure 3.10(a).

The vast majority of traces in the FCC and HSDPA set have an average throughput

under 3 Mbps (over 95% for FCC and 98% for HSDPA). The results corroborate Fig-

ure 3.12 which indicates that MPC+Oboe provides more modest gains over Pensieve

when the latter is trained and evaluated on datasets with a narrow throughput range.

MPC+Oboe provides larger gains in settings like the traces discussed in §3.4.2, where

only 41% traces are under 3 Mbps and 59% are in the 3-6 Mbps range.

Alternative throughput prediction methods Our experiments with RobustMPC

rely on throughput prediction based on the harmonic mean of prior throughput sam-

ples (following earlier work [17,91]), with Oboe tuning the configuration to compen-

sate for prediction errors. We next consider if Oboe’s benefits hold if RobustMPC

were to have more accurate throughput predictions, potentially by using alternate

prediction methods [23]. Rather than using a specific prediction technique, we con-

sider an ideal (and unachievable) approach that we denote as Ideal(T), which can

exactly predict the average throughput over the next T seconds. Our experiments

76

Fig. 3.15.: Average QoE-lin of MPC+Oboe with various throughput predictors

were conducted in simulation, using the VirtualPlayer, and the testbed experiment

traces (§3.4.2).

Figure 3.15 shows the average QoE-lin across the traces for RobustMPC and

MPC+Oboe using both the default harmonic mean approach and Ideal(T) for dif-

ferent values of T. Although RobustMPC performs better with an ideal predictor,

Oboe still provides benefits, achieving an average improvement in QoE-lin of 6.34%

for Ideal(5) and of 1.8% for Ideal(10), compared to a 16.1% improvement with the

harmonic mean estimator. While the magnitude of benefits is smaller with the ideal

prediction approach, in practice Oboe will likely result in larger benefits, since even

more sophisticated schemes [23] cannot achieve the ideal predictions, and the errors

are likely to grow with larger T.

Oboe can improve performance over RobustMPC even when an Ideal(T) predic-

tion method is used for two reasons. First, T may not match the duration of chunk

downloads with RobustMPC, which depends on the exact sequence of bitrates chosen

during the look-ahead window. The duration is not known a priori, since RobustMPC

itself determines the bitrates based on a provided prediction. Second, the decisions

made by RobustMPC are over a small look-ahead window, which may not guarantee

optimality over the entire session duration.

77

3.4.7 Oboe Across Various Settings

In §3.4.5 we have shown that Oboe outperforms other ABR algorithms when

compared to their default configurations. We now explore, for HYB, whether Oboe

outperforms all parameter settings of HYB and whether it can tune ABRs based

on content type and publisher specifications. For these experiments, we use the

VirtualPlayer described in §3.3.2.

Comparison against all fixed configurations To explore different fixed config-

urations, we run HYB with 10 different fixed βs and compare with HYB+Oboe. We

summarize the performance for each configuration by considering the (i) median of

the average bitrate and the (ii) 90th percentile of the rebuffering ratio across test

traces. In this experiment, we also consider an Oracle which is the best fixed con-

figuration for each throughput trace with respect to two metrics that HYB tries to

optimize.

Figure 3.16(a) and 3.16(b) compare HYB, HYB+Oboe and Oracle over desktop,

and mobile traces respectively. While Oracle and HYB+Oboe are depicted as single

dots since their performance is uniquely determined, we present a frontier for HYB

that shows its performance for different fixed configuration. Figure 3.16(a) shows that

HYB+Oboe outperforms HYB in the sense that there is no fixed configuration for

HYB that does better than HYB+Oboe performance. HYB+Oboe improves the av-

erage bitrates of the median session by 3.2%, while achieving similar rebuffering ratio.

Alternately, it reduces the 90th percentile rebuffering ratio from 1.9% to 0%, while

maintaining similar bitrates. A similar result holds for mobile traces (Figure 3.16(b)).

Thus, even if publishers were to find the best fixed parameter choice for HYB, Oboe

would outperform that choice because it dynamically adapts the parameters.

Comparison under different publisher specifications Our results so far are

for a VoD (video on demand) setting with a maximum buffer size of 2 minutes.

Figure 3.16(c) depicts performance for live video (which uses a maximum buffer size

78

Fig. 3.16.: Comparing HYB with multiple fixed configurations and HYB+Oboe for

various settings

of 20 seconds to mimic live settings). HYB+Oboe outperforms HYB for this setting,

though we note that the bitrate of both approaches degrades relative to the VoD

setting since the baseline HYB switches to higher bitrates more conservatively owing

to the smaller buffer sizes.

Finally, Figure 3.16(d) depicts performance for higher bitrate levels

({1002, 1434, 2738, 3585, 4661, 5886}kbps) and a chunk size of 5 seconds. Even for

these choices, HYB+Oboe outperforms HYB, demonstrating its ability to adapt to

different publisher specification.

79

Fig. 3.17.: Avg. of avg. bitrate

and fraction of sessions with rebuffering

for HYB+Oboe and different publisher

preferences

Fig. 3.18.: Avg. of avg. bitrate and frac-

tion of sessions with rebuffering for Ro-

bustMPC and different publisher prefer-

ences

Accommodating publisher’s rebuffering tolerance Oboe allows the publisher

to optionally specify explicit rebuffering preferences (§3.3). ABR algorithms such as

RobustMPC which use the QoE-lin function may permit this indirectly by adjusting

QoE-lin weights (§3.2.1). Figure 3.17 shows the effectiveness of these approaches,

showing the average of average bitrates, and the fraction of sessions with rebuffer-

ing for HYB+Oboe. As the publisher makes its rebuffering preference stricter (from

2%-0%), HYB+Oboe achieves lower rebuffering ratios close to the target rebuffer-

ing tolerance. In contrast, Figure 3.18 shows that RobustMPC is less effective at

controlling rebuffering by adjusting its rebuffering penalty when the weight on the

rebuffering term is varied between 100 (strictly avoid rebuffering) to 4.3.5 We find

that even with a very high rebuffering penalty of 100, RobustMPC causes rebuffering

in 11% of the sessions. This shows the benefit of Oboe’s approach which gives direct

control over the underlying metrics.

5We used a change penalty of 0 for fair comparison.

80

Fig. 3.19.: Comparing prototype Oboe with commercial client side ABR implemen-

tation in average bitrate and rebuffering ratio.

3.4.8 Oboe Overhead

Computing the ConfigMap incurs a one-time cost, since the map can be reused

across all clients once the it is built. Computing the best parameter configuration

for one network state takes about 12 seconds on a single core. This task is perfectly

parallelizable, so computing 10K network states (§3.3) will take approximately 3.5

hours to explore with two machines of 48 cores each. We have also analyzed the

processing overhead incurred by the ChangeDetector module of Oboe. We measure

the time taken by ChangeDetector for every decision cycle across our experiments,

and the measurement indicates that the median processing time of ChangeDetector

is around 14 ms. Since each decision is made at a chunk boundary and chunks are 4

seconds, ChangeDetector accounts for less than 0.35% overhead.

3.5 Deployment Considerations

The offline stage of Oboe can be run on the cloud, but several choices exist for the

online stage, ranging from embedding the online stage entirely in the client player, or

moving some or all of the online stage to the cloud. In our implementation, Oboe’s

components run on the server side. This mimics a cloud implementation, which has

81

Fig. 3.20.: Time between consecutive bi-

trate switches for two commercial ABRs

Fig. 3.21.: Variance in bitrate levels

across videos from two content publish-

ers.

the benefits of other cloud software: fast update deployment, device independence,

etc. [126]. We leave a detailed comparison of these choices to future work, but explore,

in this section, the feasibility of running the online stage on the cloud.

To this end, we have implemented a restricted version of HYB+Oboe on AWS.

This limited version of Oboe implements HYB and incorporates tuning based on pub-

lisher specifications but not network state. In our implementation, a client player pe-

riodically reports player state (such as buffer length and current bitrate) and through-

put samples to a Oboe cloud server and receives bitrate decisions in return. For 10

player features and two chunk downloads per second, the communication overhead is

6.4 Kbps, negligibly small compared to the size of video chunks. Figures 3.19(a) and

3.19(b) compare the performance of this implementation against a client player run-

ning HYB over 20K sessions collected during a two-week pilot deployment. Oboe is

comparable in performance to the client side player and even improves bitrate slightly

(because it was tuned to this publisher’s specification).

We expected a cloud implementation would perform worse because of the la-

tency induced by client-server communication. However, we found that most of the

bitrate switching decisions occur on timescales much longer than the client-server la-

82

tencies. Figure 3.20 shows the CDF of the time interval between consecutive bitrate

switches for ABR algorithms in two widely used video players(Adobe’s Flash [127]

and Microsoft Smooth Streaming [128]). The figure shows that over 95% of switching

decisions occur at intervals higher than 1 second for both players. This suggests that

a cloud-based deployment is viable.

3.6 Discussion and Future Work

Performance improvements for all sessions As our results (e.g., Figure 3.6(a))

show, Oboe improves the performance for most but not all sessions relative to the

ABR algorithm it tunes. For instance, after inspecting the results in §3.4.3, we have

found that MPC+Oboe typically improves performance relative to RobustMPC by

reducing rebuffering and/or the magnitude of bitrate changes, but at the expense of

slightly lower bitrates. The resulting QoE-lin is improved for most sessions, indicating

Oboe does a good job of properly balancing the various factors, but some sessions see

lower QoE-lin. More generally, designing an ABR approach that can optimize the

performance of all sessions is a hard problem that needs more research.

Sharing ConfigMap across videos Oboe need not perform offline precomputa-

tion for each individual video, as it can use a single ConfigMap for a class of videos

that follow a similar bitrate encoding scheme. Figure 3.21 shows that two popular

video publishers use similar encoding schemes across two thousand videos each. Pub-

lisher 1 uses 7 distinct bitrate levels, and the coefficient of variance across bitrates

within each level is only 0.13, while Publisher2, uses 10 distinct bitrate levels, and the

coefficient of variance across bitrates within each level is only 0.067. This indicates

the potential to share a single ConfigMap across videos.

Generality of Oboe While we have shown that Oboe can tune a variety of con-

figuration parameters across several ABR algorithms, whether Oboe can tune all

algorithms and all parameters is an open question. It is unclear if Oboe can directly

83

augment Pensieve, since a model learned by reinforcement learning may not interact

well with intermediaries such as Oboe. However, combining the benefits of Oboe and

Pensieve in other ways is an interesting avenue for future work.

3.7 Related Work

Tuning ABR Algorithm Configurations The BBA2 algorithm [90] tunes its

lower reservoir based on buffer occupancy dynamics, while MPC [91] adapts its

throughput discount factor based on past prediction errors (§3.2). In contrast to

such ad-hoc heuristics, Oboe selects configuration parameters based on network state,

and publisher specifications. The approach is generically applicable to many ABR

algorithms. Newer congestion control protocols like BBR [129] estimate network

throughput, which if exposed, could benefit Oboe.

Learning ABR Algorithms Among ABR algorithms that use Reinforcement

Learning and other machine learning techniques [17,130–133], Pensieve [17] has been

shown to perform the best. While Pensieve does not specialize to different through-

put regimes, Oboe performs better by specializing parameter values for each network

state independently.

Other work in self-tuning Beyond ABR algorithms, self-tuning approaches have

been explored in other contexts. Winstein et al. [134] used simulations to determine

TCP parameters for different settings, while Semke et al. [135] proposed tuning

TCP socket buffers to ensure high throughput. More generally, Google Vizier [136]

performs such black-box tuning as a service. While Vizier can potentially be used to

implement the offline phase of Oboe, our work identifies underlying principles (such

as the piecewise stationarity of available throughput) that forms the basis for the

tuning.

84

Video QoE Several researchers have pointed out that sub-optimal ABR perfor-

mance can significantly impact user-engagement and hence revenue [137,138]. Others

have looked at quality issues that occur when multiple players start to compete for

bandwidth [6, 33, 139, 140] In contrast, Oboe improves the QoE performance of sev-

eral ABR algorithms across a range of different network conditions by automatically

tuning their parameters.

3.8 Conclusion

Oboe is a system for automatically tuning ABR algorithms by adapting ABR con-

figurations in realtime to match the current network state. Picking configurations in

a manner informed by network state and publisher preferences distinguishes Oboe’s

approach from heuristics used today that do not consider these factors. Oboe sig-

nificantly improves the performance of BOLA, HYB and RobustMPC; further, for

nearly 80% of the sessions in our dataset, Oboe integrated with RobustMPC im-

proves QoE-lin relative to Pensieve and the improvements exceed 20% for 25% of the

sessions.

85

4. XATU: EXPLOITING A RICHER THROUGHPUT

MODEL FOR VIDEO STREAMING THROUGH NEURAL

NETWORKS

4.1 Introduction

Recent years have seen a tremendous growth in Internet video, and by some

projections [141], video traffic is expected to account for 82% of all Internet traffic by

2022. While access and core network capacity continues to grow, optimizing Internet

video delivery will remain a challenge since we are only beginning to see the adoption

of technologies such as 4K video [8] which may involve bitrates of tens of Megabits per

second, and since there exists (and will likely remain), a wide disparity in the quality

of both fixed and mobile broadband connections across households globally [124].

Video streaming today typically involves splitting video into chunks, each encoded

at multiple bitrates. Clients pick bitrates for each chunk based on local estimations

of throughput [33]. However, predicting throughput is challenging, often leading to

overly conservative bitrate selections, or aggressive selections that result in rebuffer-

ing. While much research has sought to tackle these challenges through the design

of new Adaptive Bitrate (ABR) algorithms [15–18,33,98], the status quo of Internet

video streaming is far from satisfactory today. In a recent consumer survey, 34% of

respondents reported that they encountered buffering problems once in every three

video programs and 24% experienced buffering once in every five videos [142].

In this chapter, we are motivated by two questions: (i) what information can be

made available that can aid in predicting throughput perceived by streaming appli-

cations (henceforth, referred to as application throughput)? (ii) how do we design

frameworks that can leverage such information to improve the accuracy of prediction

for streaming applications? We make the following contributions:

86

First, we present observations from an analysis of a dataset of nearly 100K video

session traces from real users. The analysis indicates that (i) while features such as the

ISP and CDN involved in streaming the video do aid prediction, the state-of-the-art

approach [23] of partitioning data by pre-clustering sessions based on a combination of

these features and learning only from sessions in the same cluster can hurt prediction

accuracy; and (ii) factors such as the Time to First Byte (TTFB) and chunk size

impact application throughput. Yet such factors are not explicitly considered today,

and are not easily incorporated into the state-of-the-art predictor [23].

Second, motivated by these observations, we present Xatu1, a prediction frame-

work for video streaming applications. Xatu considers static features that do not vary

during a session (e.g., ISP, CDN or city), and learns from other sessions with similar

static features, but without apriori partitioning data. Further, Xatu models sequences

involving multiple temporal features that vary across chunks in a session (e.g., TTFB,

chunk size), and not just throughput. To achieve its goals, Xatu proposes a gated

mask neural network mechanism that uses static features to modify the output of

the sequence model, and leverages neural sequence models (specifically, Long Short

Term Memory networks (LSTMs) [143]) that can handle multiple temporal features.

We show that our output-mask approach gives better accuracy in our task than the

traditional approach of combining static and temporal features closer to the input

stage of the sequence model used in other domains [144–146]. We also show that

these masks help interpret the role played by static features, providing a naturally

automated way of clustering sessions in contrast to pre-defining clusters [23].

Third, we evaluate Xatu using a combination of trace-driven experiments using

the above dataset, and emulation experiments. Our key results are:

• Xatu reduces the median of the prediction error across sessions relative to CS2P

by 23.8%. The benefits come from both the ability of Xatu to exploit static features

without pre-clustering data, and from its ability to explicitly model multiple chunk-

dependent features including TTFB and size.

1Named after a Pokemon character that can see into the future.

87

• We illustrate the extensibility of Xatu through a case study that explores the

impact of the CDN layer an object is served from on application throughput. We

show that Xatu can easily exploit new information not traditionally exposed to video

streaming applications to improve prediction accuracies.

• To show a potential impact of Xatu when integrated with ABRs, we combine

Xatu with MPC [16], a widely studied ABR algorithm. While a more thorough study

requires, we show that potential benefit of a composite QoE metric improvement by

38.9% in the median across sessions relative to CS2P based on heuristic approach in

order to combine Xatu with ABRs.

4.2 ABR algorithms and prediction

In HTTP-based streaming, videos are split into chunks (corresponding to a few

seconds of playtime), with each chunk encoded at multiple bitrates (corresponding

to different qualities). A video player selects a bitrate level for each chunk taking

into account the amount of data already buffered locally, and a prediction of how

long downloading a chunk at a given bitrate would take. In doing so the player seeks

to balance multiple video delivery metrics. These metrics include (i) the average

bitrate across chunks; (ii) the rebuffering ratio, i.e., the fraction of the video session

for which the video player encounters rebuffering; (iii) the extent to which bitrate

levels change in the video; and (iv) the join time. A variety of Adaptive Bitrate

(ABR) algorithms have been developed to make these decisions [15–18,24,33], which

primarily differ based on how the algorithms choose which bitrate to use for each

chunk by reconciling the above factors.

While some researchers have investigated the design of ABR algorithms that only

take client buffer occupancy into account [15,18], the vast majority of ABR algorithms

88

rely on predictions of chunk download times. We discuss factors that impact chunk

download times, and current algorithms.

Many factors impact chunk download times. The chunk download time refers to

the time from when a HTTP request is sent for a chunk to when the chunk download

is finished. The download time Di of chunk i may be written as:

Di = TTFBi +Si/BWi (4.1)

Here, TTFBi represents the Time To First Byte (TTFB) (i.e., the time from when a

HTTP request for a chunk is made to when the first byte of a response is received)

for chunk i, Si is the size of the chunk, and BWi is the network throughput. Si/BWi

represents the receive time (i.e., the time from when the first byte of the response is

received to the last byte).

ABR algorithms mainly focus on throughput. Much of the work in the video

streaming literature (e.g., [16, 24, 33]) focus on the application throughput, i.e., the

throughput of each downloaded chunk as perceived by the video player (AppThi =

Si/Di using the above notation). These works do not explicitly model the impact

of chunk size or TTFB. A commonly used approach, first proposed in Festive [33],

and later adopted by others [16, 24], predicts the application throughput of a future

chunk based on the harmonic mean of the application throughput of prior chunks.

More recently, CS2P [23] (the state-of-the-art throughput prediction approach for

ABR streaming), has explored the use of Hidden Markov Model (HMM) for through-

put predictions, leveraging the observation that throughput within a session exhibits

stateful characteristics and depends on hidden states (e.g., number of flows shar-

ing a bottleneck link). Other works (e.g., the implementation of the Dash.js video

player [99]) only consider network throughput and do not consider the impact of

TTFB on chunk download times.

The state-of-the-art approach clusters sessions to aid prediction. CS2P [23]

also observed that sessions sharing a combination of similar features such as ISP, CDN,

user location, and time-of-day tend to have similar throughput patterns. Based on

89

(a) Distribution of cluster sizes. (b) Cluster example 1.

(c) Cluster example 2. (d) Cluster example 3.

Fig. 4.1.: (a) cluster size distribution, and (b)-(d) are throughput prediction error of

CS2P and Global-CS2P on example clusters.

these observations, CS2P (i) clusters sessions based on the above features; and (ii)

trains a HMM model for each combination of features, rather than using a generic

HMM trained across all sessions.

4.3 Motivating data analysis

In this section, we analyze a dataset of real video streaming sessions to understand

the implications for prediction approaches used in ABR algorithms today.

Datasets. Our dataset comprises of approximately 100,000 video session traces from

real users collected by a streaming TV measurement and intelligence platform. These

90

measurements were collected over the course of three months in 2017 from a single

publisher in the United States that serves short videos. For each video session trace,

and for each chunk, the data includes information such as the (i) chunk size; (ii) TTFB

and (iii) the start and end times of the download. Each trace also has anonymized IDs

representing each of the CDN and ISP that served the video session, an anonymized

ID representing the geo-location of user (e.g., city and country), and the time-of-day

when the video session started. Video sessions in our dataset are served by 2 CDNs

and 89 ISPs across 1406 cities, and an average application throughput of sessions

varies from 1.31 Kbps to 94.89 Mbps.

We analyze the data with a view to analyzing two questions (i) does clustering data

in a fashion similar to CS2P [23] improve prediction accuracy; and (ii) the extent to

which factors such as TTFB and chunk size impact application throughput perceived

by video players.

4.3.1 Impact of clustering

We clustered video sessions based on features which include ISP, CDN, city and

time-of-day (we use 6 hour windows starting from midnight which is in the range

suggested in [23]), and trained a HMM for the specific combination of features as

done in CS2P [23].

After clustering data as above, we found many clusters with fewer than 150 ses-

sions, which we filtered as suggested by [23]. After the filtering, we were left with

approximately 100 clusters with up to 800 video sessions in each cluster, and a total

of 27,000 video traces. Figure 4.1(a) shows a CDF of the percentage of sessions that

falls inside each of the remaining clusters. The clusters range in size from about

0.5% of all sessions to about 3% of the sessions. Since CS2P [23] uses each cluster

separately in its training, the apriori clustering approach implies that only a small

portion of the data is available for the training in any given cluster.

91

For sessions in each cluster, we compare the error in predicting application through-

put using a HMM trained at each cluster (which we refer to as CS2P), against that of

using a HMM trained over all sessions across all clusters (which we refer to as Global-

CS2P). We present training methodology details in §4.5.1, and report the normalized

absolute application throughput prediction error per session averaged across chunks

(more formally defined in §4.6.1). Figure 4.1 compares the prediction error of CS2P

against Global-CS2P for three different clusters. In each graph, a curve to the left

corresponds to lower error. While clustering is beneficial in some cases (Fig. 4.1(b)),

it does not always provide benefits (Fig. 4.1(c)) and can even hurt (Fig. 4.1(d)).

More generally, we find that clustering helps if the sessions within the cluster have

sufficiently similar network characteristics, where limiting the HMM to these similar

sessions is beneficial. However, if sessions within a cluster exhibit disparate network

characteristics, the benefits of clustering must be weighed against the fact that the

overall training data is much smaller. Further, pre-clustering data prevents learning

from sessions in other related clusters. For instance, it may be beneficial to learn

from sessions in clusters corresponding to slightly different times of day, or nearby

cities since these sessions may have similar network patterns. We explore this further

in §4.6.1.

4.3.2 Impact of TTFB and chunk size

To understand the impact of TTFB and chunk size on prediction, we analyze the

original dataset but only consider sessions corresponding to the country ID with the

most sessions, which was known to be the US. We summarize our findings:

TTFB can significantly impact chunk download times. For each video session,

we consider the median TTFB and 90%ile TTFB obtained across all chunks down-

loaded in that session. Figure 4.2(a) shows the distribution of the median and 90%ile

TTFB across the sessions. While the median TTFB for most sessions is small, 23%

of the sessions have a median TTFB that exceeds 200 milliseconds, even exceeding 1

92

(a) Median and 90%ile TTFB per session. (b) % of download time due to TTFB.

(c) Distribution of application throughput

across chunks for different size ranges.

Fig. 4.2.: Impact of TTFB and chunk size on application throughput and chunk

download time.

second in a few cases. Further, the 90%ile TTFB of most sessions is high exceeding

300 milliseconds for half the sessions, and exceeding 1 second for nearly 15% of the

sessions.

Figure 4.2(b) shows the percentage of the chunk download time that may be

attributed to the TTFB across all video chunks of all sessions. For 40% of the chunk

downloads, more than 20% of the download time may be attributed to TTFB, while

for 15% of chunks downloads, more than half the download time is attributable to

93

the TTFB. These results indicate that TTFB is a significant contributor to chunk

download time. Yet, TTFB is rarely considered in prediction approaches.

Application throughput depends on chunk size. Fig. 4.2(c) shows the appli-

cation throughput observed by the clients across all chunks in video sessions. The

chunks are categorized by size into different ranges, and each boxplot shows the the

distribution of application throughput for each chunk size range. The box corresponds

to the 25th and 75th percentiles, the horizontal bar to the median, and the end points

of the vertical line correspond to the 10th and 90th percentiles. The figure clearly

shows that the application throughput tends to be higher for larger chunk sizes, a

fact that has not been traditionally modeled in video streaming algorithms.

Modeling the impact of TTFB and chunk size with HMMs is non-trivial.

Explicitly modeling the impact of chunk size and TTFB on download times is not

straightforward with the state-of-the-art approach for prediction in video stream-

ing [23] which uses HMMs. One approach is to build a separate HMM for each range

of chunk sizes. However, this approach is more appropriate if sizes stay within the

range throughout the session. Since a HMM models the network as having a sequence

of state transitions, and given that the size itself might change during the session, it

is not clear how to design a model with multiple HMMs that interact.2

Another option is to model network state as a multivariate distribution whose

output is the tuple that comprises both the TTFB and the network throughput. This

multivariate HMM jointly predicts the TTFB and network throughput for any given

network state. For a given chunk size, the download time is appropriately predicted

from the predicted TTFB and network throughput, at least in theory. However,

when a HMM is trained for this task, it minimizes the prediction error of the tuple

TTFB and network throughout, without caring how these prediction errors impact

the final download time prediction. Directly predicting the final download time is

difficult in HMMs, as we need to explicitly model the inverse distribution of TTFBi

2CS2P [23] was trained on datasets of video streaming sessions where clients picked a bitrate at the
start of the session and ABR was not employed - consequently modeling the dependence on size may
have been less critical.

94

and BWi from Equation (4.1), which does not have a closed form expression for

typical assumptions about the distributions of TTFBi and BWi. In fact, we did try a

multivariate HMM approach and found it led to significantly higher prediction error.

Specifically, the average prediction error for the median session with the multivariate

HMM was 72.4% in contrast to CS2P using a single HMM based on application

throughput which was 43.4%.

4.4 Xatu design

In this section, we present Xatu, which is motivated by the observations in §4.3.

4.4.1 Xatu overview

Xatu’s approach is motivated by two key ideas:

Learn from relevant sessions without apriori clustering and data pre-partitioning.

Xatu uses features such as the ISP, CDN, time-of-day and city to aid predictions. We

henceforth refer to such features as static features since they do not change during

the session.3 However, rather than apriori clustering data based on static features

(as done by CS2P in §4.3.1), Xatu uses these features as inputs, and learns across all

sessions. This allows Xatu to automatically learn from sessions with related but not

identical features (e.g., sessions with different cities, or different values of time-of-day

that may yet have similar network characteristics).

Model sequences with multiple chunk-dependent features (e.g., TTFB,

chunk size). Besides static features, Xatu models multiple features associated with

each prior chunk in the session including the TTFB, chunk size, network throughput,

and download time. We henceforth refer to these features as temporal features, since

they change across chunks within a session. The ability to model multiple temporal

features distinguishes Xatu from current ABR prediction approaches [23, 33] which

3Xatu currently models the CDN as a static feature since switching of CDNs during a session occurs
relatively infrequently, but it is easy to move the CDN to a temporal feature if beneficial.

95

only consider a single temporal feature (application throughput), and do not easily

generalize to multiple features (§4.3.2).

Approach. To achieve these goals, Xatu uses a Long Short Term Memory net-

work (LSTM) [143], which is a special type of Recurrent Neural Networks (RNN)

capable of learning long-term dependencies. There are two key reasons why we use

LSTMs: First, it is a sequence model that can be used to predict the next value

—or next few values— in a time series. Second, it is capable of handling multivariate

inputs, automatically finding complex (including possibly non-linear) relationships

between inputs and outputs. LSTMs have been used successfully in various contexts

including language modeling, text classification, time series modeling, and anomaly

detection. However, using an off-the-shelf LSTM is not enough. An important design

component of Xatu is how we combine both static and temporal features, as seen

next.

4.4.2 Xatu Architecture

Xatu takes two classes of inputs: (i) static features such as ISP and location

(that do not vary during the session); and (ii) temporal features such as TTFB and

download time that vary across chunks. Given n static features of a video session,

denoted s
(j)
1 , . . . s

(j)
n , where each feature can take any of an appropriate set of discrete

values. Likewise, we use d
(j)
i,t to denote temporal feature i (TTFB, size, etc.) of

chunk t of video session j. We use the notation d
(j)
t = (d

(j)
1,t , · · · d

(j)
m,t) to refer to an m-

dimensional vector that contains all temporal features associated with the t-th chunk

of video session j.

In architecting Xatu, an important question is how best to combine the static

and temporal features. A conventional approach, used in question and answer sys-

tems [147–149], is to use static features in the input, as in the architecture shown in

Figure 4.6(a) where the static and temporal features are concatenated at the input

stage. However, a key issue with directly adapting this approach to our context is

96

that the LSTM is not directly aware of which part of the information stays the same

and it may take multiple samples to learn the invariant portions of the inputs.

Rather, Xatu introduces an alternate approach to combine static and temporal

features, shown in Figure 4.3. The architecture comprises separate static and tempo-

ral feature blocks. We use the static features to generate a gate mask: each neuron of

the LSTM output (output related to the temporal features) can be turned off depend-

ing on the static features. The gate mask directly encodes the effect of static features

in the model predictions. In practice, the gate mask is implemented to assume values

in the range (0, 1), to ensure that the static input model is differentiable. To our

knowledge, the closest work to our gated approach is the tangentially related use of

attention for position encoding in Zhang et al. [150]. We empirically evaluate the

benefits of our approach (Fig. 4.3) over the architecture in Fig. 4.6(a) in §4.6.2.

Another alternative to our approach is to concatenate the output of the static and

temporal feature blocks in Figure 4.3 before going through a fully connected layer.

We did not adopt this approach since the static and temporal features interact in

ways that are not easy to interpret. Instead, Xatu’s approach allows us to interpret

the impact of static features as illustrated in §4.6.1.

4.4.3 Design details

We discuss the key building blocks below:

Embedding layer of static features. Figure 4.3 left shows the embedding block

that takes the static features of session j and output the mask z(j). It starts with

Xatu assigning one-hot encodings to all our n categorical features (e.g., ISP name,

CDN name, city, time-of-day, etc.), denoted s
(j)
1 , . . . , s

(j)
n for session j. We classify

the time-of-day into multiple bins (4 bins of 6 hours each in our evaluations), and

treat it as a categorical feature because of its cyclic nature. These n inputs are

then each passed through n multilayer perceptrons (MLPs), fully connected linear

layers with non-polynomial activation functions, Embed
(j)
1 , . . . ,Embed(j)

n ; there are n

97

Fig. 4.3.: Xatu architecture.

distinct MLPs, one for each input. The output of these MLPs are then concatenated

into a single output and passed through another MLP with sigmoid activations (as

many output neurons as there are neurons in the h
(j)
t output (Fig. 4.4) of the LSTM),

resulting in a final output mask z(j). This mask will be latter elementwise multiplied

with ĥ
(j)
t in the selective gate to ensure the throughput prediction is influenced by

the static features of session j.

Temporal features block. Here, we consider predicting the download time of

chunk t + 1 at session j from the sequence d
(j)
1 , d

(j)
2 , . . . , d

(j)
t —as defined earlier—

and the desired chunk size at time t + 1. First, our sequence model mixes elements

of a k-th order Markov chain with the theoretically infinite memory capacity of an

LSTM. That is, rather than only considering the features of chunk t, Xatu considers

the features of the past k chunks of the session, where k is a hyperparameter (k is

referred to as an input frame, and we typically use k = 5). So the input of LSTM

is the concatenation of temporal features from the last k chunks which results in an

98

m × k matrix CONCAT(d
(j)
t−k, . . . , d

(j)
t). Even though in theory an LSTM can learn

both long and short term historical dependencies of inputs, explicitly providing the

last k chunks ensures it pays close attention to recent history. Doing so rather than

just providing the last chunk as input improves prediction accuracy. Another input

is the chunk size that has been requested for time t+ 1.

These inputs are fed into an MLP with hyperbolic tangent (tanh) activations

outputting vector x
(j)
t . For completeness, we also show the schematic of the LSTM

in Figure 4.4. Let c
(j)
t denote the internal memory of the LSTM layer at the end

of time step t (in our context, this corresponds to chunk t of a given video session,

with the memory being set to null state at the start of the session). Given an input

x
(j)
t at time step t, the LSTM combines this input with the memory of the previous

step (c
(j)
t−1), and the previous output (h

(j)
t−1) to produce an output h

(j)
t , and updates

its memory to c
(j)
t . In doing so, the LSTM uses multiple gates as described below.

The forget gate layer (with output f
(j)
t) determines which information from the

previous memory is retained and discarded by the LSTM layer. The input gate layer

(output i
(j)
t) decides which values in the memory are updated, while the tanh layer

produces m
(j)
t which determines new information to be added to the memory. The

memory is updated by combining i
(j)
t and m

(j)
t . The output h

(j)
t is based on combining

the memory (after it goes through a tanh layer), with o
(j)
t (the result of the output

gate which determines which parts of the memory to output). Finally, the temporal

features block outputs ĥ
(j)
t at download of chunk t after the activation.

Combining output of static and temporal blocks. The final output combines

z(j) — which is a function of the static session features s
(j)
1 , . . . , s

(j)
n — with the

output of temporal features block ĥ
(j)
t , resulting in the download time prediction

ŷ
(j)
t+1 = wT

finalh
(j)

t , where wfinal is a vector of parameters of the same size as ht and

99

h
(j)

t = z(j)� ĥ(j)
t is the Hadamard product (�) –element-wise multiplication– between

the mask of the static features z(j) and the output of temporal features block ĥ
(j)
t .

Training Xatu. Our whole framework is simply a function

ŷ
(j)
t+1,c

(j)
t ,h

(j)
t =F

(
s(j),d

(j)
t−k,...,d

(j)
t ,b

(j)
t+1,c

(j)
t−1,h

(j)
t−1,W

)
,

where s(j) is the static session features s
(j)
1 , . . . , s

(j)
n , b

(j)
t+1 is the chunk size requested

for time t + 1, ŷ
(j)
t+1 is a prediction of t+ 1st chunk download time, and W refers to

the set of neural network parameters in all the layers.

To find parameters W by training Xatu, we first define a loss function to evaluate

a prediction accuracy. A loss function L is an sum (or a average) of prediction error

l of chunk t

L
(
y

(j)
1 ,···,y(j)

C(j) ,ŷ
(j)
1 ,···,ŷ(j)

C(j) |W
)

=
C(j)∑
t=1

l
(
y

(j)
t ,ŷ

(j)
t ;W

)
,

where C(j) is a total number of chunks downloaded in session j, and y
(j)
t and ŷ

(j)
t

are the actual and predicted t-th chunk download times of session j, respectively.

The prediction error l
(
y

(j)
t , ŷ

(j)
t

)
can be any form of an error metric such as a square

error or an absolute error between a predicted download time and an observed down-

load time. Then we update parameters W by gradient descent, calculating the loss

gradient as

∂L

∂W
=

C(j)∑
t=1

∂

∂W
l
(
y

(j)
t , ŷ

(j)
t ; W

)
.

The overall optimization samples a session j without replacement from the dataset.

Once all sessions are exhausted, an epoch has ended, and we start again by sampling

sessions without replacement from the dataset. Because h
(j)
t affects all the losses{

l
(
y

(j)
t′ , ŷ

(j)
t′ ; W

)}
t′>t

the computation of the gradient requires a technique called

backpropagation through time (BPTT). However, if the length of video session j,

C(j), is very long, the gradient can either diverge (explode) or vanish (become zero).

To avoid these optimization issues, we split a video session into shorter segments.

Note that each BPTT block will use the last hidden state (for both c
(j)
t and h

(j)
t) from

100

Fig. 4.4.: Detail of LSTM layer.

its previous BPTT block as an initial state, only it will not propagate the gradient

back. At the start of a session, variables c
(j)
1 and h

(j)
1 are both set to zero.

4.5 Evaluation methodology

Our evaluations compare the throughput prediction accuracy achieved by Xatu

relative to CS2P [23] (the state-of-the-art throughput prediction approach for ABR

streaming) based on trace-driven experiments. Our trace-driven experiments use the

datasets described in §4.3 to evaluate the prediction accuracy achieved with Xatu.

In this section, we explain implementation details of throughput prediction al-

gorithms (Xatu and CS2P) and training methodology we use to evaluate different

throughput prediction algorithms.

101

4.5.1 Prediction schemes compared

We compared Xatu and CS2P implemented as follows:

Xatu. We implement Xatu using the PyTorch package [151]. We used a BPTT

size of ten and an input frame size (k) of five in our implementation. We arrived at

these parameters after tuning experiments where we varied each of the parameters

between two and twenty, and chose the settings that resulted in the best accuracy

in our validation dataset (though we note that the performance was comparable for

a wide range of parameter choices). Based also on a hyper-parameter search on the

same validations data, we used 516 hidden units for each layer in Xatu. By default,

the sum of absolute prediction error in each BPTT, loss = ΣB
p=0 | y

(j)
t−p − ŷ

(j)
t−p | , where

B is the BPTT size. We have also considered other loss functions, as we discuss in

§4.6.2.

CS2P. We implemented CS2P using the hmmlearn python package [152]. We use the

dataset described in §4.3 into clusters using the features described in §4.3 and build a

separate HMM for each cluster following [23]. The performance of CS2P depends on

the number of hidden states (N), We vary N between 2 and 20 as suggested by [23],

and pick the best choice of N for each cluster that results in the lowest average

prediction error for that cluster on the validation data.

4.5.2 Datasets and training

Our evaluations were mainly conducted using data collected from real-world video

streaming sessions(§4.3). Specifically, we use the set of 27K traces described in §4.3.1

which we henceforth refer to as the Primary DataSet. Recall that this set was obtained

after clustering sessions based on a combination of static features and filtering out

traces belonging to small clusters(§4.3.1). We use the Primary DataSet to ensure

that the performance of CS2P was not negatively impacted by the presence of traces

from clusters that were too small to allow per-cluster HMM training.

102

(a) Mean NAE(%) with Xatu and CS2P in the

validation set of the Primary DataSet.

(b) Understanding how Xatu obtains its ben-

efits.

(c) 2D projection of z(j) for each cluster

through PCA.

Fig. 4.5.: Throughput prediction errors with various schemes and understanding

Xatu’s approach.

For CS2P, we clustered data using the combination of the features mentioned

above. For each cluster, we used 60% of the traces for training a HMM for that

cluster, 20% for validation, and 20% for testing. Since Xatu does not need a separate

model for each cluster, we merged the training sets from all clusters to train Xatu (we

used a learning rate of 0.01). Likewise, when we evaluate Global-CS2P which involves

a single HMM across all traces, we used the same merged training set across all

clusters. Our experiments related to throughput prediction accuracy report results

for the validation set.

103

4.6 Results

In this section, we evaluate the effectiveness of Xatu in improving throughput pre-

diction accuracy compared to CS2P and its interpretability (§4.6.1). We also evaluate

the benefits of Xatu’s architecture, its sensitivity to various loss functions (§4.6.2),

and its capability of specialization .

4.6.1 Xatu vs. CS2P: Prediction accuracy

We compare the prediction error in application throughput by considering each

session, taking the normalized absolute error (NAE) per chunk, and computing the

mean across chunks. That is, we report

1

C(j)

C(j)∑
t=1

| y
(j)
t − ŷ

(j)
t

y
(j)
t

| ,

where C(j) is the number of chunks downloaded, and y
(j)
t and ŷ

(j)
t are the predicted

and actual throughput for chunk t for session j. Fig. 4.5(a) shows the CDF of the

mean NAE across sessions for Xatu and CS2P in the validation set of the Primary

DataSet (§4.5.2). Xatu reduces the median and 90%ile of the mean NAE across

sessions by 23.8% and 41.8% respectively. We have also considered a wide range of

other metrics to summarize prediction error, and find Xatu consistently out-performs

CS2P. For instance, Xatu reduces the median NAE across chunks in a session by

10.3% for the median session, and the 90%ile NAE across chunks by 20% for the

median session. Tab. 4.1 summaries improvements in several other prediction error

metrics. For instance, we obtained the result in the first row as follows. For each

scheme, we computed the mean of the absolute error across chunks for each session,

and considered the median across sessions. The table shows that Xatu achieves an

improvement of 15.5% for this metric. The other rows may be interpreted similarly.

104

Table 4.1.: Median improvements of Xatu over CS2P in various prediction error

metrics.

Prediction error metrics

(per session)

Improvement

(in a median session)

Mean of absolute error 15.5%

Median of absolute error 16.2%

90%tile of absolute error 13.8%

Mean of square error 25.2%

90%tile of square error 10.1%

Regardless of error metrics, Xatu constantly improves prediction accuracy ranging

from 10.1% to 25.2% over CS2P.

Breaking down factors that help Xatu’s performance. There are two fac-

tors that help Xatu compared to CS2P. First, rather than pre-partitioning data into

clusters, Xatu jointly learns from all data but uses the static features to tailor its pre-

dictions. Second, Xatu considers multiple temporal features such as TTFB and chunk

size. Recall that these features are not easily incorporated in CS2P’s HMM model

which only considers application throughput (§4.3.2). To separate these benefits, we

consider a variant of Xatu that includes all static features but considers application

throughput as the only temporal feature (without considering TTFB and chunk size).

We refer this model as Xatu-St-AppTh.

Fig. 4.5(b) shows boxplots which depict the distribution of the mean NAE across

sessions for Xatu, Xatu-St-AppTh and CS2P. Across all percentiles, Xatu-St-AppTh

achieves lower mean NAE than CS2P, and these benefits may be attributed to Xatu

learning across all relevant sessions rather than only learning from sessions in the

same cluster. Likewise Xatu achieves lower mean NAE across all percentiles, which

105

may be attributed to Xatu using all temporal features including TTFB, and chunk

size, while Xatu-St-AppTh only considers application throughput.

Interpreting results from Xatu. A key aspect of the Xatu architecture is that it

facilitates interpretation of how it uses the static features (§4.4.2). We consider the

gate mask, z(j) (§4.4.2, Fig. 4.3)) associated with each distinct combination of static

features. Fig. 4.5(c) shows results obtained by using Principal Component Analy-

sis (PCA) [153] to project z(j) (a vector of 516 dimensions in our experiments) into

a 2 dimensional space to see whether gate masks for different static feature combina-

tions are similar (each dot corresponds to a different combination which is referred

to as a cluster by CS2P). Several static feature combinations are bunched together

indicating that learning across sessions corresponding to these different combinations

may be beneficial, a fact that Xatu exploits. In contrast, CS2P treats sessions cor-

responding to each combination (cluster) independently. Interestingly, in Fig. 4.5(c),

we found that the top three groups of clusters are from one CDN, and the bottom

three groups of clusters are from another CDN (we have 2 CDNs in our dataset).

For each CDN, the separation into 3 clusters is largely due to time-of-day, (with one

cluster corresponding to both 12am-6am, and 6am-12pm). and the other clusters cor-

responding to 12pm-6pm, and 6pm-12am. These results indicate that Xatu found it

important to have specialized predictions for sessions based on their CDN and time-

of-day. This further points to the advantage of Xatu’s neural network architecture

(§4.4.2) which facilitates interpretation of how static features are used.

4.6.2 Sensitivity study

Benefits of Xatu architecture. Xatu uses a neural network architecture that

combines static and temporal features at the output with each unique set of static

features resulting in a unique gate mask (§4.4.2). In this section, we compare this

architecture of Xatu with an alternate architecture (Fig. 4.6(a)) which we refer to

as Xatu-InpComb that combines the static and temporal features at the input. We

106

(a) Alternative architecture to Xatu combin-

ing static features at the input.

(b) Benefits of Xatu’s architecture

(c) Sensitivity of Xatu to loss functions. (d) Ability of Xatu trained on a larger

throughput range to specialize to a smaller

throughput range.

Fig. 4.6.: (a)-(b) an ablation study of Xatu architecture, (c) sensitivity of Xatu to

various loss functions, and (d) Xatu’s Ability of specialization.

perform an ablation study comparing the two architectures. Fig. 4.6(b) shows the

CDF of mean NAE for Xatu and Xatu-InpComb. Xatu improves the median and

90%ile prediction error across sessions by 9.4% and 15.7% over Xatu-NoGate, showing

the benefits of the gate mask of Xatu in the architecture.

Sensitivity to loss function. Xatu can use any form of loss function during

the training (§4.5.1). To check the impact of various loss functions on through-

put prediction accuracy of Xatu, we tried four different loss functions; (i) loss1 =

ΣB
p=0 | y

(j)
t−p − ŷ

(j)
t−p | , (ii) loss2 = loss1/C(j), (iii) loss3 = ΣB

p=0

(
y

(j)
t−p − ŷ

(j)
t−p

) 2

, and

107

(iv) loss4 = loss3/C(j), where B and C(j) are a size of BPTT and length of session j

respectively, and ŷ
(j)
t and y

(j)
t are a predicted and an actual throughput at download

of chunk t at session j respectively. While loss1 and loss3 use sum of absolute or

square error, loss2 and loss4 divide the sum by a length of a session (C(j) of session

j). Fig. 4.6(c) shows the distribution of mean NAE with Xatu across sessions for

above loss functions. We conclude that even when the evaluation criteria is NAE,

the performance across loss functions shows similar throughput prediction accuracy,

pointing to the robustness of Xatu w.r.t. the chosen loss objective.

Ability of specialization. In the §3.4.4, we point out that Pensieve builds a single

model which does not specialize to different throughput ranges. To evaluate how

effectively Xatu can specialize on different throughput range, we build two models

of Xatu: (i) Xatu-Full, which is trained with all traces in the full throughput range

from 0 to 100Mbps; and (ii) Xatu-Specialized, trained only with a subset of traces

in the training set with average throughput in the range 0 to 10Mbps. Both models

used the version of Xatu without static features and with limited temporal features

as described above. We then evaluated the prediction accuracy achieved by both

Xatu models on the validation set, only considering traces in the range 0 to 10 Mbps.

Fig. 4.6(d) shows the mean NAE achieved with the two models. The curves are

almost indistinguishable and the degradation with Xatu-Full is modest. The median

of the mean NAE across sessions increased only 0.12% and while the 90%ile increased

by 5.2%. We hypothesize that Xatu specializes better that Pensieve, and this is

potentially because it is solving an easier problem (throughput prediction) compared

to Pensieve which seeks to determine best bitrates to pick. More advances may be

needed to get a deeper understanding of the true ability of a neural network model

to specialize in subpopulations of the data.

108

4.7 Extensibility of Xatu to new information

Predicting application throughput only based on information currently available

to video players is an inherently hard problem since the underlying factors that impact

throughput are not visible to the application. In this section, we consider an example

to illustrate (i) how additional auxiliary information not traditionally available to

video streaming applications can aid in the prediction; and (ii) show how Xatu easily

generalizes to incorporate such information when available.

A video content is traditionally served using CDNs, which typically are organized

as a hierarchy of caches [154]. A user request that arrives at a server in an edge cluster

could “hit” at that server, or experience a cache miss in which case the request may be

directed to other upstream servers in the CDN hierarchy, and if necessary, ultimately

the CDN origin, or origin server. We explore the interplay between where a video

chunk is served from, and the impact on application throughput. We then discuss

the implications for prediction.

Controlled measurement. Since the dataset in §4.3 does not include information

on which CDN layer a video chunk was retrieved from, we obtain such a dataset using

a controlled measurement study. Our study was conducted by streaming 500 videos

from 3 different popular video publishers (Twitch, Vimeo and ESPN) from a home

network over a 7 day period in October 2018. Two of the publishers provide the

number of views for the selected videos, and based on this at least 204 of these videos

had more than 10K views.

We focused on these publishers because (i) they are popular publishers (within

Alexa top 100 US rank [155]); (ii) they provide videos that can be viewed without

subscription fees, yet CDN caching is not disabled; and (iii) they use CDNs such as

Akamai [156], Fastly [157] and CloudFront [158] that support special HTTP headers

which allow us to identify which layer in the hierarchy a video chunk was a hit. For

example, for the publishers we considered, CloudFront returns an X-Cache header

as part of every HTTP response it serves, which indicates if the object was served

109

(a) Time series for an example video session. (b) Throughput distribution for chunks

served from Edge and Remote servers.

(c) Xatu’s improvement in prediction accu-

racy with additional information.

Fig. 4.7.: Benefits of exposing where objects are served from (Edge or Remote), and

ability of Xatu to leverage such information.

by Cloudfront or not. For each video session, and each chunk, we collected the time

at which the request was made, the chunk download time, chunk size, and TTFB,

and other information that enabled us to identify where the object was served from.

More details about the information collected and how we classified which CDN layer

a video chunk is served from is discussed in the Appendix. While a more fine-grained

110

classification is possible, we classify objects as being served from an edge server, or a

remote server (henceforth referred to as Edge, and Remote respectively).4

Findings. We next discuss key findings from analyzing the data collected above.

Fig. 4.7(a) shows the time series for an example session from Vimeo corresponding

to a popular video with more than 228K views. The X-axis indicates the chunk id,

and the Y-axis shows the application throughput of each chunk download. For each

chunk, we indicate whether it was served from an Edge or a Remote server using

different symbols for each. The graph shows that even within a session, chunks may

be served from either an Edge or a Remote server with no obvious pattern. When

all videos with more than 10K views were considered, we found that for 50% of the

sessions, 43.1% of chunks or more were served from a Remote server. Further, 73.1%

of these video sessions involved video chunks retrieved from both an Edge and a

Remote server.

Fig. 4.7(b) shows how the application throughput depends on where video chunks

are served from. For each combination of publisher and CDN (e.g., P1/C1 denotes

publisher P1 and CDN C1), we show two boxplots that correspond to the distribution

of application throughput for chunks being served from an Edge or a Remote server.

Note that each publisher could use multiple CDNs. Across all combinations, the

throughput is significantly better when objects are served from an Edge server.

Potential for better predictions. We next show the potential to provide better

predictions with Xatu by leveraging information when available. We add an additional

feature to Xatu which consists of a single bit that indicates whether the next video

chunk will be served from an Edge or a Remote server (we refer to this version as Xatu-

Cache). We use 400 of the 500 traces collected from our controlled measurements

above as our training set, and the remaining 100 traces as a validation set. We

disabled all static features on Xatu and Xatu-Cache, and trained both schemes on

4For Cloudfront and Fastly, Edge indicates an object is served by the CDN, and Remote indicates
otherwise (e.g., S3 [159]). For Akamai, we classified an object as being served by a Remote server
in some cases where multiple servers in the hierarchy experienced a miss, and we were unable to
distinguish whether the object was served from a remote CDN server or the origin

111

the training set. Fig. 4.7(c) shows the mean NAE across sessions in the validation

set with both schemes. Xatu improves the median and 90%ile prediction error across

sessions by 13.1% and 31.5% respectively.

Architectural changes to facilitate sharing of the information above is an important

question in its own right. In the above example, a CDN could provide a video client

with information on whether the next chunk can be fetched from an Edge server

or not. Alternately, if the CDN server were itself to run the ABR algorithm (e.g.,

[17, 24, 160, 161]) it may be easier to share the information. Nevertheless, the results

show the potential benefits of exposing more information to the video application

than available today, and the ability of Xatu to easily leverage such information if

available to improve prediction accuracies.

4.8 Potential QoE improvement when integrated with ABRs

To show the potential benefits of Xatu in terms of video delivery performance, we

have integrated both Xatu and CS2P with MPC, a widely used ABR algorithm [16],

replacing its default harmonic mean throughput predictor. To integrate Xatu with

MPC, we adopted a heuristic approach since there are potential biases due to causality

between chunk sizes and throughputs on our dataset obtained by real-world video

sessions while a more thorough approach (e.g., using a casual model) is left for an

interesting future direction. In this section, we present the causality issue while

integrating Xatu with MPC, an evaluation setup, and potential QoE improvement by

Xatu.

112

Fig. 4.8.: Actual throughputs (a red line), a range of predicted throughputs (a yellow

region) by Xatu depending on chunk sizes, and a predicted throughput based on a

heuristic approach (a blue line) obtained from the emulation set-up.

4.8.1 Integrating Xatu with MPC and causality issue between size of

chunks and throughputs on the training data

Unlike existing approaches [23,33], Xatu provides application throughput predic-

tions that model the dependence on the chunk size 5. However, the model learnt by

Xatu is not immune to biases towards predicting lower throughput for smaller chunk

sizes, and larger throughput for larger chunk sizes [162, 163]. This is because Xatu

has been trained on data that has the actual size selected by a real-world ABR algo-

rithm deployed in the wild, and the size selected by the deployed algorithm correlates

with the network conditions. Fig. 4.8 shows actual throughputs (a red line) and a

range of predicted throughputs by Xatu depending on chunk sizes obtained from the

emulation set-up (descried in §4.8.2). Even though actual throughputs are in a range

of predicted throughputs, predicted throughputs vary depending on chunk sizes due

to causality issue as we described above.

This problem can occur in any data-driven approaches due to a potential data

skew, and can be solved by casual inference [164, 165]. While a more thorough ap-

5Given a chunk size, Xatu predicts download time by default, which can be converted to a chunk-size
dependent application throughput

113

proach is possible by creating a casual model, we left it as an interesting future

direction and used an intuitive heuristic approach as follow to show potential QoE

improvement given such potential biases. Given the fact that actual throughput (a

red line in Fig. 4.8) fall well within the range of predicted throughputs depending on

chunk sizes (a yellow region in Fig. 4.8), MPC provides the median size of each of

the next r chunks for each bitrate candidate. Xatu predicts application throughput

for each of these sizes, and MPC uses the median of the set of predicted throughput

values (a blue line in Fig. 4.8). While our empirical results with this heuristic ap-

proach show QoE improvement, alternate ways to avoid and compensate for the bias

may require more thorough studies and provide stronger performance benefits in the

future.

4.8.2 Evaluation Testbed

To evaluate the performance of ABR algorithms with different predictors, we

create an emulation setup involving video being streamed to a Dash.js video player

on Chrome [99] from an Apache server hosting the video. We emulate traces from

the testing set described above (§4.5.2), and vary both the network throughput and

the TTFB as per the trace. Like previous work [17, 23, 24], we modify the Dash.js

video player so requests for which bitrate to select are sent to a server (which we refer

to as an ABR server). The server queries the appropriate prediction model (CS2P,

or Xatu) and picks the bitrate chosen by MPC for that prediction. Likewise, in the

Pensieve experiments, the server queries the Pensieve model to decide the bitrate.

The client then requests the appropriate chunk from the video server. Based on the

static features (ISP, CDN etc.) of the particular video trace being emulated, the

HMM model for that set of features is consulted in CS2P experiments, while the

static features are used in the model lookup process for the Xatu experiments.

We used one of the reference videos from DASH in all our experiments which has

a total length of 192 seconds [166], with chunk durations of 4 seconds and supporting

114

Fig. 4.9.: QoE-lin of Xatu+MPC and CS2P+MPC from the testbed emulation on

the testing set.

the bitrates {895, 2600, 4729, 9104} Kbps which are corresponding to 480p, 720p,

1080p and 1440p resolution respectively.

The ABR server, video hosting server and a video client run on the same 8-

core, 4 Ghz, Intel i7 desktop with 12 GB RAM running Ubuntu 16.04. To emulate

different network conditions between servers and client, we used the Chrome DevTools

API [167]. This allows us to emulate the network throughput, and RTT between the

client and servers using the Chrome-Remote-Interface based on our traces [168]. All

our testbed experiments use a client buffer of 1 minute like previous work [17].

Like prior work [16, 23, 24], we used QoE-lin to summarize video performance

of an ABR scheme which is a linear combination of the average bitrate, rebuffering

ratio and the average of bitrate change magnitude. Specifically, QoE-lin (P1, P2) =

1
C
∗
[
ΣC

t=1 (Rt − P2 ∗ Vt)− P1 ∗ T
]

where C is a number of chunk downloaded in a

video session, Rt and Vt are a bitrate and a bitrate change magnitude (Mbps) for

a chunk t, T is a total rebuffering time (sec) for the video session, and P1 and P2

are scaling penalties applied to rebuffering and bitrate change magnitude. We use

P1 = 9.1 and P2 = 1 as our default penalties since the maximum bitrate of our video

is 9.1 Mbps.

115

Fig. 4.10.: Individual metrics of QoE-lin for Xatu+MPC and CS2P+MPC.

4.8.3 Xatu vs. CS2P: ABR algorithm impact

Following the analysis and heuristic in §4.8.1, we next evaluate whether the im-

proved throughput prediction accuracy of Xatu potentially translates to better perfor-

mance in terms of video delivery metrics by comparing the performance of the MPC

algorithm when integrated with Xatu (Xatu+MPC), and when integrated with CS2P

(CS2P+MPC). We conduct these evaluations using the setup described in §4.8.2.

We use a random subset of 500 traces chosen from the testing set of the Primary

DataSet (§4.5.2), but only considering traces that have an average throughput less

than 10 Mbps since the highest bitrate of the video is 9.1 Mbps similar to previous

works [16,17,24].

Fig. 4.9 shows the CDF of QoE-lin from the emulation testbed (§4.8.2) on the

testing data (§4.5.2). Xatu+MPC improves the median and 90%ile QoE-lin by 38.9%

and 13.2% respectively over CS2P+MPC. Fig. 4.10(a), Fig. 4.10(b) and Fig. 4.10(c)

116

show CDFs of the individual components of QoE-lin, – the average bitrate (Mbps),

rebuffering ratio (%) and the average bitrate change magnitude (Mbps) – for the

two schemes. While Xatu+MPC maintains similar average bitrate (higher is better)

compared to CS2P+MPC, it reduced the number of sessions that have a rebuffering

event (lower is better) by 26% and improves the median of the average bitrate change

magnitude (lower is better) by 17.4%.

4.8.4 Xatu+MPC vs. Pensieve

We next compare Xatu+MPC to Pensieve, an ABR algorithm that combines

reinforcement learning with deep learning to select bitrates for each chunk. Pensieve

has been shown to out-perform MPC, when a harmonic mean predictor is used [17].

We compare its performance with MPC when the more sophisticated Xatu predictor

is used.

Comparison methodology. We perform the comparison with a subset of 9K traces

chosen from the 27K traces in the Primary DataSet. Our comparisons use a smaller set

because the Pensieve implementation involves CPU-based training and the training

time grows with the number of traces. We used the Pensieve implementation provided

by the authors [169] and retrained a Pensieve model using the methodology described

in [17,24] for our dataset.

The current implementation of Pensieve does not consider static features (ISP,

CDN etc.) and does not consider TTFB. To ensure a fair comparison, and ensure

both approaches consider comparable input features, we consider a limited version

of Xatu, where we disabled all static features, and only considered chunk size and

download time as the temporal features (disabling TTFB and network throughput).

We trained both Xatu and Pensieve picking 60% of the 9K traces randomly as

the training set, and picking 20% for the validation and another 20% for the testing

set (with the training, validation and testing sets being the same for both schemes).

We only considered traces in the testing set with average throughput under 10 Mbps

117

Fig. 4.11.: QoE-lin of Xatu+MPC and Pensieve from the testbed emulation. Note

these experiments use a subset of the Primary DataSet and many features of Xatu

are disabled for fair comparison.

like §4.8.3, and select a random subset of 500 of these traces to evaluate the two

approaches in the testbed experiment.

Results. Fig. 4.11 shows the CDF of QoE-lin of Xatu+MPC and Pensieve from

the testbed video streaming emulation on the testing set. Xatu+MPC improves the

median and 90%ile QoE-lin by 29.2% and 5.8% respectively. We hypothesize that a

key contributing factor to this result is the finding that Pensieve is unable to specialize

to different throughput ranges in §3.4.4. Specifically, we show that the performance

with Pensieve on traces with throughput in the range (0, T1), T1 > 0, degrades when

a model trained on throughput in the range (0, T2) is used relative to a model trained

on the range (0, T1), where T1 < T2. On the other hand, Xatu effectively specializes

the model for different throughput ranges as we shown in §4.6.2.

4.9 Related work

ML in adaptive video streaming. Several works [170–173], most notably Pen-

sieve [17], propose ABR algorithms based on Reinforcement Learning (RL) or bayesian

118

bandits [174] to decide which bitrates to select. In contrast, Xatu uses a neural net-

work for the more limited task of predicting application throughput alone. We have

shown that MPC when combined with Xatu performs better than Pensieve, poten-

tially because the Xatu model is able to specialize (§4.8.4), while Pensieve has been

shown to not specialize as well [24]. Understanding the underlying causes, and devel-

oping ML models that can both specialize and solve the more complex task of bitrate

selection is an interesting avenue for future work, and recent developments may hold

promise [175].

Complementary video related research. Oboe [24] develops ways to tune ABR

algorithm parameters to achieve better performance, and is complementary to Xatu

which focuses on prediction. Oboe when combined with Xatu can potentially achieve

even better performance than either approach alone. Deep neural networks have been

used to learn a mapping from a low quality video to a higher quality version to reduce

dependency on bandwidth [176]. Prior work [177] has shown the theoretical possibility

of oscillations when video is streamed with a caching server. In contrast, we present

measurement results to show video chunks in a session may be served from edge and

remote CDN servers in practice, and explore the potential of improving prediction

with additional information.

Throughput prediction. Prior work has explored TCP network throughput predic-

tion using Support Vector Regression (SVR) [178] and auto-regression techniques [179],

or developed approximate analytical models of TCP throughput [180]. Newer conges-

tion control protocols like BBR [129] estimate network throughput. However, these

works focus exclusively on TCP network throughput, which we argue is just one fac-

tor that impacts the download time of video chunks. For instance, we have shown

that TTFB, and the interplay with cache hierarchy can significantly impact down-

load times. Further, we have compared our approach with CS2P [23] which has been

shown to out-perform many of these techniques. While SVR techniques can include

both static and dynamic features as inputs, Xatu’s approach of combining them at

the output offers better interpretability. In the video streaming context [181] argues

119

the benefits of throughput prediction but does not consider other factors, or provide

a solution.

Applications of LSTMs. LSTMs [143] have been widely applied to many domains

including language modeling and speech recognition (e.g., [144, 144, 182–184]). Re-

cently, LSTMs have been applied to prediction tasks in networking [185–189]. In con-

trast, beyond applying LSTMs, Xatu introduces a neural network architecture that

combines static and temporal features in an interpretable manner, and empirically

explores its benefits(§4.4.2,§4.6.2). Among recent methods for natural language tasks,

self-attention mechanism [150] and attention mechanisms of question-and-answer sys-

tems (e.g., Transformer [146]) modify the input according to a question we want an

answer, or give the question also as input (e.g. BERT [144]). In contrast, Xatu uses

a different type of procedure, where the extra static information is placed in a gate

mask so that Xatu can use static session information and simultaneously learn from

similar sessions in other clusters.

4.10 Conclusion

In this chapter, we make three contributions. First, we have shown that prediction

frameworks for video streaming (i) must not only consider network throughput, but

also a richer set of temporal features including TTFB, and size; and (ii) should

avoid apriori clustering sessions based on static features. Second, we present Xatu, a

general framework to achieve these goals which combines LSTMs with a new gated

mask neural network mechanism, to jointly learn a neural network sequence model

with an interpretable automatic session clustering method. Third, our evaluations

show the benefits of Xatu. Relative to CS2P, Xatu improves the median of the mean

NAE across sessions by 23.8%. Also we show the benefits of Xatu’s neural network

architecture, its ability of specialization and its extensibility. Finally we show the

potential of QoE improvement when Xatu is integrated with ABRs.

120

5. CONCLUSIONS

Video dominates today’s Internet and will play a larger role going forward. While core

and access network capacities continue to grow, optimizing Internet video delivery

will remain a challenge despite recent efforts, as new forms of video and technology

keep emerging, and content publishers continue to seek higher QoE of users due to

its correlations with user engagement and revenue. In this chapter, we present a

summary of our key contributions and future directions.

5.1 Contributions

Creating a deeper understanding of video management plane. We shed light

on video management plane by characterizing it, at scale, along three key dimensions:

streaming protocols, playback devices and platforms and CDNs based on more than

100 content publishers data spanning 27 months. We provide a deeper understanding

on how each dimension/how many instances of each dimension have evolved over

time and across video publishers. We found significant diversity with respect to

those dimensions and the increasing trend in diversity. We also take an initial step

towards proposing new metrics to measure impacts of diversity of three dimensions

on complexity of video management plane operations, and found that the complexity

of many management tasks is sub-linearly correlated with the number of hours a

publisher’s content is viewed. Additionally, we demonstrate that today’s management

plane practices may not be well suited for content syndication (e.g., redundancies in

CDN storage) through the case study.

Oboe: Enhancing video control plane by increasing the dynamic range

of ABRs. We develop Oboe, a system that improves the dynamic range of ABR

algorithms by automatically tuning ABR behavior to the current network state of a

121

client connection, specifically to throughput and throughput variability to improve

QoE of a wide range of users. We demonstrate several aspects of Oboe performance

through real testbed experiments and trace driven simulations, and show the practical

viability of this architecture with results from a pilot deployment. we integrated Oboe

with a couple of existing ABR algorithms [16,18] such as MPC, BOLA and HYB and

showed significantly improvement in several QoE metrics by 7.2% - 38%. Oboe also

betters a recently proposed reinforcement learning based ABR [17], Pensieve in part

because it is able to better specialize ABR behavior across different network states.

Xatu: Improving video control plane by a better throughput framework.

We propose a new throughput prediction framework, Xatu, to address the challenges

in existing prediction methods in ABRs. Xatu jointly learns a neural network se-

quence model with an interpretable automatic session clustering method. Xatu learns

clustering rules across all sessions it deems relevant, and models sequences with mul-

tiple chunk-dependent features (e.g., TTFB, size) rather than just throughput. We

evaluate Xatu over datasets of real video sessions along with trace-driven experiment.

Our results show that Xatu significantly improves throughput prediction accuracy by

23.8% relative to CS2P [23] (the state-of-the-art predictor), and Xatu is extensible

and can achieve better accuracies if additional information was exposed to video

streaming algorithms through an example of hierarchical CDN. We also show poten-

tial improvement in QoE by Xatu while integrated with ABRs through emulation

experiment based on the heuristic approach.

5.2 Future directions

Network assisted video streaming. QoE of video streaming is largely dependent

on a client side logic (e.g., ABRs), and this setting makes it difficult to ensure high

quality of video streaming since local inference of network state based only on client

side information is challenging, and interaction across multiple video players in the

same network without knowing the state of others further complicates the problem.

122

Given recent trends to facilitate computing at edge networks, deploying some video

streaming functionalities into edge networks (e.g., ISP Points of Presence) offers sev-

eral potential benefits. It allows the incorporation of network-side information as

well as other video players in the same network to make an bitrate adaptation deci-

sions in video streaming more efficiently. It is also beneficial for network providers to

coordinate their resources across users while maintaining fairness among users.

Pitfalls in data-driven approaches. While recent efforts of data-driven approaches

in video streaming, including Xatu, show promising improvements, such approaches

could lead to inaccurate or sub-optimal results. As a recent study mentioned [164],

one of major sources of this sub-optimality stems from potential data skews. Data

collected from the real-world may contain a biased causality or be insufficient to make

a reliable model or data-driven decisions. Creating a casual model to capture such

potential biases is an interesting future direction.

Emergence of new forms of interactive video. Beyond traditional video stream-

ing, we are starting to see the emergence of interactive video [190, 191] including

360-degree video (e.g., [7]). Such video has much higher bandwidth requirements

than regular video streaming [192, 193], and the traditional ABR approach, which

can fetch chunks ahead of time for VoD applications, does not suffice since a shift in

user orientation may make the content in the client buffer irrelevant. Also, proac-

tively sending video corresponding to multiple orientations may lead to wasted data.

In practice, it becomes necessary to make trade-offs with regard to the objectives

of responsive interactions and acceptable bandwidth overheads, and modeling such

trade-offs efficiently is an interesting future direction.

REFERENCES

123

REFERENCES

[1] “US Adults Spend 5.5 Hours with Video Con-
tent Each Day,” http://www.emarketer.com/Article/
US-Adults-Spend-55-Hours-with-Video-Content-Each-Day/1012362, Apr.
2016.

[2] “Sandvine Global Internet Phenomena 2016,” June 2016.

[3] “The Zettabyte Era—Trends and Analysis,”
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/vni-hyperconnectivity-wp.pdf, June 2016.

[4] “Cisco: It Came to Me in a Stream... ,” https://www.cisco.com/web/about/
ac79/docs/sp/Online-Video-Consumption Consumers.pdf, 2012.

[5] F. Dobrian, V. Sekar, A. Awan, I. Stoica, D. Joseph, A. Ganjam, J. Zhan, and
H. Zhang, “Understanding the Impact of Video Quality on User Engagement,”
in Proceedings of the ACM SIGCOMM 2011 Conference, ser. SIGCOMM ’11,
2011.

[6] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari, “Confused,
Timid, and Unstable: Picking a Video Streaming Rate is Hard,” in Proceedings
of the 2012 ACM Conference on Internet Measurement Conference, ser. IMC
’12, 2012.

[7] “YouTube 360 Video,”
https://youtube-creators.googleblog.com/2015/03/
a-new-way-to-see-and-share-your-world.html, 2015.

[8] “Can I stream Netflix in ultra hd?” available at https://help.netflix.com/en/
node/13444.

[9] G. D. I. Technology, “Emerging Tech Trends: Virtual and
Augmented Reality Devices,” https://gdit.com/resources/blog/
emerging-tech-trends-virtual-and-augmented-reality-devices.

[10] “Bitmovin: Video Developer Survey,” https://bitmovin.com/whitepapers/
Bitmovin-Developer-Survey.pdf, Sep. 2017.

[11] “DASH-IF: Survey of European Broadcaster on MPEG-
DASH,” http://dashif.org/wp-content/uploads/2015/04/
Survey-of-the-European-Broadcasters-on-MPEG-DASH-Whitepaper-V2.1.
pdf, 2013.

[12] “encoding.com,” http://1yy04i3k9fyt3vqjsf2mv610yvm-wpengine.netdna-ssl.
com/files/2017-Global-Media-Formats-Report.pdf.

http://www.emarketer.com/Article/US-Adults-Spend-55-Hours-with-Video-Content-Each-Day/1012362
http://www.emarketer.com/Article/US-Adults-Spend-55-Hours-with-Video-Content-Each-Day/1012362
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.pdf
https://www.cisco.com/web/about/ac79/docs/sp/Online-Video-Consumption_Consumers.pdf
https://www.cisco.com/web/about/ac79/docs/sp/Online-Video-Consumption_Consumers.pdf
https://youtube-creators.googleblog.com/2015/03/
a-new-way-to-see-and-share-your-world.html
https://help.netflix.com/en/node/13444
https://help.netflix.com/en/node/13444
https://gdit.com/resources/blog/emerging-tech-trends-virtual-and-augmented-reality-devices
https://gdit.com/resources/blog/emerging-tech-trends-virtual-and-augmented-reality-devices
https://bitmovin.com/whitepapers/Bitmovin-Developer-Survey.pdf
https://bitmovin.com/whitepapers/Bitmovin-Developer-Survey.pdf
http://dashif.org/wp-content/uploads/2015/04/Survey-of-the-European-Broadcasters-on-MPEG-DASH-Whitepaper-V2.1.pdf
http://dashif.org/wp-content/uploads/2015/04/Survey-of-the-European-Broadcasters-on-MPEG-DASH-Whitepaper-V2.1.pdf
http://dashif.org/wp-content/uploads/2015/04/Survey-of-the-European-Broadcasters-on-MPEG-DASH-Whitepaper-V2.1.pdf
http://1yy04i3k9fyt3vqjsf2mv610yvm-wpengine.netdna-ssl.com/files/2017-Global-Media-Formats-Report.pdf
http://1yy04i3k9fyt3vqjsf2mv610yvm-wpengine.netdna-ssl.com/files/2017-Global-Media-Formats-Report.pdf

124

[13] “Ooyala: Global Video Index,” http://go.ooyala.com/rs/447-EQK-225/
images/Ooyala-Global-Video-Index-Q4-2017.pdf.

[14] “Level2: Over the top video delivery,” http://www.level3.com/∼/media/files/
white-paper/en cdn wp ovrtopvddlvry.ashx.

[15] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, “A Buffer-
based Approach to Rate Adaptation: Evidence from a Large Video Streaming
Service,” in Proceedings of the 2014 ACM Conference on SIGCOMM, ser. SIG-
COMM ’14, 2014.

[16] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A Control-Theoretic Approach
for Dynamic Adaptive Video Streaming over HTTP,” in Proceedings of the
2015 ACM Conference on Special Interest Group on Data Communication, ser.
SIGCOMM ’15, London, United Kingdom, 2015.

[17] H. Mao, R. Netravali, and M. Alizadeh, “Neural Adaptive Video Streaming with
Pensieve,” in Proceedings of the ACM Conference on Special Interest Group on
Data Communication, ser. SIGCOMM, 2017.

[18] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman, “BOLA: Near-optimal Bitrate
Adaptation for Online Videos,” in Proceedings of the IEEE International Con-
ference on Computer Communications, ser. INFOCOM, 2016.

[19] A. Ganjam, F. Siddiqui, J. Zhan, X. Liu, I. Stoica, J. Jiang, V. Sekar, and
H. Zhang, “C3: Internet-Scale Control Plane for Video Quality Optimization,”
in 12th USENIX Symposium on Networked Systems Design and Implementa-
tion, NSDI 15, 2015.

[20] J. Jiang, V. Sekar, H. Milner, D. Shepherd, I. Stoica, and H. Zhang, “CFA:
A Practical Prediction System for Video QoE Optimization,” in 13th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 16, 2016.

[21] M. K. Mukerjee, D. Naylor, J. Jiang, D. Han, S. Seshan, and H. Zhang, “Prac-
tical, Real-time Centralized Control for CDN-based Live Video Delivery,” in
Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication, ser. SIGCOMM ’15. ACM, 2015.

[22] S. Akhshabi, A. C. Begen, and C. Dovrolis, “An Experimental Evaluation of
Rate-adaptation Algorithms in Adaptive Streaming over HTTP,” in Proceedings
of the Second Annual ACM Conference on Multimedia Systems, ser. MMSys ’11,
2011.

[23] Y. Sun, X. Yin, J. Jiang, V. Sekar, F. Lin, N. Wang, T. Liu, and B. Sinopoli,
“CS2P: Improving Video Bitrate Selection and Adaptation with Data-Driven
Throughput Prediction,” in Proceedings of the ACM Conference on Special In-
terest Group on Data Communication, ser. SIGCOMM, 2016.

[24] Z. Akhtar, Y. S. Nam, R. Govindan, S. Rao, J. Chen, E. Katz-Bassett, B. M.
Ribeiro, J. Zhan, and H. Zhang, “Oboe:Auto-tuning video ABR algorithms
to network conditions,” in Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, ser. SIGCOMM ’18, 2018.

[25] “Conviva,” https://www.conviva.com/.

http://go.ooyala.com/rs/447-EQK-225/images/Ooyala-Global-Video-Index-Q4-2017.pdf
http://go.ooyala.com/rs/447-EQK-225/images/Ooyala-Global-Video-Index-Q4-2017.pdf
http://www.level3.com/~/media/files/white-paper/en_cdn_wp_ovrtopvddlvry.ashx
http://www.level3.com/~/media/files/white-paper/en_cdn_wp_ovrtopvddlvry.ashx
https://www.conviva.com/

125

[26] “Sandvine: Global Internet phenomena report ,” https://www.sandvine.com/
trends/global-internet-phenomena/, 2015.

[27] “Cisco: Visual Networking Index: Global Mobile Data Traffic Forecast
Update 2016-2021 ,” http://www.cisco.com/c/en/us/solutions/collateral/
service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.
html, 2017.

[28] “The Wall Street Journal: YouTube Tops 1 Billion Hours of Video
a Day, on Pace to Eclipse TV,” https://www.wsj.com/articles/
youtube-tops-1-billion-hours-of-video-a-day-on-pace-to-eclipse-tv-1488220851.

[29] “YouTube: You know what’s cool? A billion hours,” https://youtube.
googleblog.com/2017/02/you-know-whats-cool-billion-hours.html.

[30] “Netflix: 2017 on Netflix - A Year in Bingeing,” https://media.netflix.com/en/
press-releases/2017-on-netflix-a-year-in-bingeingl.

[31] “Recode: Facebook Says Video Is Huge – 100-Million-Hours-
Per-Day Huge,” https://www.recode.net/2016/1/27/11589140/
facebook-says-video-is-huge-100-million-hours-per-day-huge.

[32] “comScore: OTT breaks out of its Netflix shell ,” https://www.comscore.com/
Insights/Blog/OTT-Breaks-Out-of-Its-Netflix-Shell, 2017.

[33] J. Jiang, V. Sekar, and H. Zhang, “Improving Fairness, Efficiency, and Stability
in HTTP-based Adaptive Video Streaming with FESTIVE,” in Proceedings
of the 8th International Conference on Emerging Networking Experiments and
Technologies, ser. CoNEXT ’12, 2012.

[34] “Conviva: The 2017 OTT Streaming Market Year in Review,” https://www.
conviva.com/blog/2017-ott-streaming-market-year-review/.

[35] M. K. Mukerjee, I. N. Bozkurt, D. Ray, B. M. Maggs, S. Seshan, and H. Zhang,
“Redesigning CDN-Broker Interactions for Improved Content Delivery,” in Pro-
ceedings of the 13th International Conference on Emerging Networking EXper-
iments and Technologies, ser. CoNEXT ’17, 2017.

[36] “ITU: H.264,” https://www.itu.int/rec/T-REC-H.264.

[37] “ITU: H.265,” https://www.itu.int/rec/T-REC-H.265.

[38] “WebM: VP9,” https://www.webmproject.org/vp9/.

[39] “Apple HTTP Live Streaming,” https://developer.apple.com/streaming/.

[40] “Microsoft: Microsoft Smooth Streaming,” http://www.iis.net/downloads/
microsoft/smooth-streaming.

[41] “Adobe HTTP Dynamic Streaming,” www.adobe.com/products/
hds-dynamic-streaming.html.

[42] “DASH-IF: MPEG-DASH,” https://mpeg.chiariglione.org/standards/
mpeg-dash.

https://www.sandvine.com/trends/global-internet-phenomena/
https://www.sandvine.com/trends/global-internet-phenomena/
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
https://www.wsj.com/articles/youtube-tops-1-billion-hours-of-video-a-day-on-pace-to-eclipse-tv-1488220851
https://www.wsj.com/articles/youtube-tops-1-billion-hours-of-video-a-day-on-pace-to-eclipse-tv-1488220851
https://youtube.googleblog.com/2017/02/you-know-whats-cool-billion-hours.html
https://youtube.googleblog.com/2017/02/you-know-whats-cool-billion-hours.html
https://media.netflix.com/en/press-releases/2017-on-netflix-a-year-in-bingeingl
https://media.netflix.com/en/press-releases/2017-on-netflix-a-year-in-bingeingl
https://www.recode.net/2016/1/27/11589140/facebook-says-video-is-huge-100-million-hours-per-day-huge
https://www.recode.net/2016/1/27/11589140/facebook-says-video-is-huge-100-million-hours-per-day-huge
https://www.comscore.com/Insights/Blog/OTT-Breaks-Out-of-Its-Netflix-Shell
https://www.comscore.com/Insights/Blog/OTT-Breaks-Out-of-Its-Netflix-Shell
https://www.conviva.com/blog/2017-ott-streaming-market-year-review/
https://www.conviva.com/blog/2017-ott-streaming-market-year-review/
https://www.itu.int/rec/T-REC-H.264
https://www.itu.int/rec/T-REC-H.265
https://www.webmproject.org/vp9/
https://developer.apple.com/streaming/.
http://www.iis.net/downloads/microsoft/smooth-streaming
http://www.iis.net/downloads/microsoft/smooth-streaming
www.adobe.com/products/hds-dynamic-streaming.html.
www.adobe.com/products/hds-dynamic-streaming.html.
https://mpeg.chiariglione.org/standards/mpeg-dash
https://mpeg.chiariglione.org/standards/mpeg-dash

126

[43] “Apple: fMP4 support on Apple devices,” https://developer.apple.com/
streaming/examples/, 2016.

[44] “Apple: Technical Note 2224 for HLS Streaming,” https://developer.apple.
com/library/content/technotes/tn2224/ index.html.

[45] J. Jiang, S. Sun, V. Sekar, and H. Zhang, “Pytheas: Enabling Data-
Driven Quality of Experience Optimization Using Group-Based Exploration-
Exploitation,” in 14th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2017, Boston, MA, USA, March 27-29, 2017, 2017, pp.
393–406.

[46] M. K. Mukerjee, I. N. Bozkurt, B. Maggs, S. Seshan, and H. Zhang, “The
Impact of Brokers on the Future of Content Delivery,” in Proceedings of the
15th ACM Workshop on Hot Topics in Networks, ser. HotNets ’16, 2016.

[47] “Alexa: Top 500 sites on the web,” https://www.alexa.com/topsites/category.

[48] V. Almeida, A. Bestavros, M. Crovella, and A. De Oliveira, “Characterizing ref-
erence locality in the WWW,” in Parallel and Distributed Information Systems,
1996., Fourth International Conference on. IEEE, 1996, pp. 92–103.

[49] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and Zipf-
like distributions: Evidence and implications,” in INFOCOM’99. Eighteenth
Annual Joint Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, vol. 1. IEEE, 1999, pp. 126–134.

[50] M. Siekkinen, E. Masala, and T. Kämäräinen, “A First Look at Quality of
Mobile Live Streaming Experience: The Case of Periscope,” in Proceedings of
the 2016 Internet Measurement Conference, ser. IMC ’16, 2016.

[51] B. Wang, X. Zhang, G. Wang, H. Zheng, and B. Y. Zhao, “Anatomy of a Person-
alized Livestreaming System,” in Proceedings of the 2016 Internet Measurement
Conference, ser. IMC ’16, 2016.

[52] “Facebook Live,” https://live.fb.com/.

[53] “Streaming Learning Center: DASH or HLS? Which is the
best format today?” https://streaminglearningcenter.com/blogs/
dash-or-hls-which-is-the-best-format-today.html.

[54] “Theoplayer,” https://www.theoplayer.com/.

[55] “JW Player,” https://www.jwplayer.com/.

[56] M. Calder, A. Flavel, E. Katz-Bassett, R. Mahajan, and J. Padhye, “Analyz-
ing the Performance of an Anycast CDN,” in Proceedings of the 2015 Internet
Measurement Conference, ser. IMC ’15, 2015.

[57] L. Wei and J. Heidemann, “Does Anycast Hang up on You?” in IEEE Inter-
national Workshop on Traffic Monitoring and Analysis, Dublin, Ireland, 2017.

[58] “The Chromium Projects: Flash Usage Trends,” https://www.chromium.org/
flash-roadmap/flash-usage-trends.

https://developer.apple.com/streaming/examples/
https://developer.apple.com/streaming/examples/
https://developer.apple.com/library/content/technotes/tn2224/_index.html
https://developer.apple.com/library/content/technotes/tn2224/_index.html
https://www.alexa.com/topsites/category
https://live.fb.com/
https://streaminglearningcenter.com/blogs/dash-or-hls-which-is-the-best-format-today.html
https://streaminglearningcenter.com/blogs/dash-or-hls-which-is-the-best-format-today.html
https://www.theoplayer.com/
https://www.jwplayer.com/
https://www.chromium.org/flash-roadmap/flash-usage-trends
https://www.chromium.org/flash-roadmap/flash-usage-trends

127

[59] “Apple: AVFoundation framework ,” https://developer.apple.com/
av-foundation/.

[60] “Nexplayer: Nexplayer Software Development Kit,” https://nexplayersdk.
com/.

[61] “Xbox: XDK Software Development Kit,” https://www.xbox.com/en-US/
developers.

[62] “Unified Streaming,” http://www.unified-streaming.com.

[63] “Telestream,” http://www.telestream.net/.

[64] “Amazon AWS Media Package,” https://aws.amazon.com/mediapackage/.

[65] M. Ghasemi, P. Kanuparthy, A. Mansy, T. Benson, and J. Rexford, “Perfor-
mance Characterization of a Commercial Video Streaming Service,” in Proceed-
ings of the ACM Conference on Internet Measurement Conference, ser. IMC,
2016.

[66] J. Jiang, V. Sekar, I. Stoica, and H. Zhang, “Shedding Light on the Structure
of Internet Video Quality Problems in the Wild,” in Proceedings of the Ninth
ACM Conference on Emerging Networking Experiments and Technologies, ser.
CoNEXT ’13, 2013.

[67] M. Butkiewicz, H. V. Madhyastha, and V. Sekar, “Understanding Website Com-
plexity: Measurements, Metrics, and Implications,” in Proceedings of the 2011
ACM SIGCOMM Conference on Internet Measurement Conference, ser. IMC
’11, 2011.

[68] T. Benson, A. Akella, and D. Maltz, “Unraveling the Complexity of Network
Management,” in Proceedings of the 6th USENIX Symposium on Networked
Systems Design and Implementation, ser. NSDI’09, 2009.

[69] “Conviva: Precision Delivery Intelligence,” https://www.conviva.com/
whitepapers/.

[70] “Netflix: Per-title Encode Optimization,” Dec 2015, https://medium.com/
netflix-techblog/per-title-encode-optimization-7e99442b62a2.

[71] Balachandran, Athula and Sekar, Vyas and Akella, Aditya and Seshan, Srini-
vasan and Stoica, Ion and Zhang, Hui, “Developing a Predictive Model of Qual-
ity of Experience for Internet Video,” in Proceedings of the 2013 ACM Confer-
ence on Special Interest Group on Data Communication, ser. SIGCOMM ’13,
2013.

[72] Q. Huang, K. Birman, R. van Renesse, W. Lloyd, S. Kumar, and H. C. Li, “An
Analysis of Facebook Photo Caching,” in Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, ser. SOSP ’13, 2013.

[73] V. K. Adhikari, S. Jain, and Z.-L. Zhang, “YouTube Traffic Dynamics and Its
Interplay with a Tier-1 ISP: An ISP Perspective,” in Proceedings of the 10th
ACM SIGCOMM Conference on Internet Measurement, ser. IMC ’10, 2010.

https://developer.apple.com/av-foundation/
https://developer.apple.com/av-foundation/
https://nexplayersdk.com/
https://nexplayersdk.com/
https://www.xbox.com/en-US/developers
https://www.xbox.com/en-US/developers
http://www.unified-streaming.com
http://www.telestream.net/
https://aws.amazon.com/mediapackage/
https://www.conviva.com/whitepapers/
https://www.conviva.com/whitepapers/
https://medium.com/netflix-techblog/per-title-encode-optimization-7e99442b62a2
https://medium.com/netflix-techblog/per-title-encode-optimization-7e99442b62a2

128

[74] M. Calder, X. Fan, Z. Hu, E. Katz-Bassett, J. Heidemann, and R. Govindan,
“Mapping the Expansion of Google’s Serving Infrastructure,” in Proceedings of
the 2013 Conference on Internet Measurement Conference, ser. IMC ’13, 2013.

[75] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “YouTube Traffic Characterization:
A View from the Edge,” in Proceedings of the 7th ACM SIGCOMM Conference
on Internet Measurement, ser. IMC ’07, 2007.

[76] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Characteristics of YouTube Net-
work Traffic at a Campus Network - Measurements, Models, and Implications,”
Comput. Netw., Mar. 2009.

[77] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, “I Tube, You
Tube, Everybody Tubes: Analyzing the World’s Largest User Generated Con-
tent Video System,” in Proceedings of the 7th ACM SIGCOMM Conference on
Internet Measurement, ser. IMC ’07, 2007.

[78] A. Finamore, M. Mellia, M. M. Munafò, R. Torres, and S. G. Rao, “YouTube
Everywhere: Impact of Device and Infrastructure Synergies on User Experi-
ence,” in Proceedings of the 2011 ACM SIGCOMM Conference on Internet
Measurement Conference, ser. IMC ’11, 2011.

[79] R. Torres, A. Finamore, J. R. Kim, M. Mellia, M. M. Munafo, and S. Rao,
“Dissecting Video Server Selection Strategies in the YouTube CDN,” in Pro-
ceedings of the 2011 31st International Conference on Distributed Computing
Systems, ser. ICDCS ’11, 2011.

[80] Y. Ding, Y. Du, Y. Hu, Z. Liu, L. Wang, K. Ross, and A. Ghose, “Broadcast
Yourself: Understanding YouTube Uploaders,” in Proceedings of the 2011 ACM
SIGCOMM Conference on Internet Measurement Conference, ser. IMC ’11,
2011.

[81] J. Zhou, Y. Li, V. K. Adhikari, and Z.-L. Zhang, “Counting YouTube Videos
via Random Prefix Sampling,” in Proceedings of the 2011 ACM SIGCOMM
Conference on Internet Measurement Conference, ser. IMC ’11, 2011.

[82] V. K. Adhikari, Y. Guo, F. Hao, V. Hilt, Z.-L. Zhang, M. Varvello, and
M. Steiner, “Measurement Study of Netflix, Hulu, and a Tale of Three CDNs,”
IEEE/ACM Trans. Netw., vol. 23, no. 6, Dec. 2015.

[83] T. Böttger, F. Cuadrado, G. Tyson, I. Castro, and S. Uhlig, “A Hypergiant’s
View of Internet,” in SIGCOMM Computer Communication Review, ser. CCR
’18, 2018.

[84] H. Abrahamsson and M. Nordmark, “Program Popularity and Viewer Be-
haviour in a Large TV-on-demand System,” in Proceedings of the 2012 Internet
Measurement Conference, ser. IMC ’12, 2012.

[85] J. Erman, A. Gerber, K. K. Ramadrishnan, S. Sen, and O. Spatscheck, “Over
the Top Video: The Gorilla in Cellular Networks,” in Proceedings of the 2011
ACM SIGCOMM Conference on Internet Measurement Conference, ser. IMC
’11, 2011.

129

[86] Z. Li, J. Lin, M.-I. Akodjenou, G. Xie, M. A. Kaafar, Y. Jin, and G. Peng,
“Watching Videos from Everywhere: A Study of the PPTV Mobile VoD Sys-
tem,” in Proceedings of the 2012 Internet Measurement Conference, ser. IMC
’12, 2012.

[87] “Streamingmedia: Video: The Pros and Cons of a Multi-CDN Strat-
egy,” http://www.streamingmedia.com/Articles/Editorial/Short-Cuts/
Video-The-Pros-and-Cons-of-a-Multi-CDN-Strategy-112351.aspx.

[88] K. Fukuda, H. Asai, and K. Nagami, “Tracking the Evolution and Diversity in
Network Usage of Smartphones,” in Proceedings of the 2015 Internet Measure-
ment Conference, ser. IMC ’15, 2015.

[89] T. Petsas, A. Papadogiannakis, M. Polychronakis, E. P. Markatos, and T. Kara-
giannis, “Rise of the Planet of the Apps: A Systematic Study of the Mobile App
Ecosystem,” in Proceedings of the 2013 Conference on Internet Measurement
Conference, ser. IMC ’13, 2013.

[90] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson, “A Buffer-
based Approach to Rate Adaptation: Evidence from a Large Video Streaming
Service,” in Proceedings of the ACM Conference on Special Interest Group on
Data Communication, ser. SIGCOMM, 2014.

[91] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli, “A Control-Theoretic Approach for
Dynamic Adaptive Video Streaming over HTTP,” in Proceedings of the ACM
Conference on Special Interest Group on Data Communication, ser. SIGCOMM,
2015.

[92] “Toward A Practical Perceptual Video Qual-
ity Metric,” https://medium.com/netflix-techblog/
toward-a-practical-perceptual-video-quality-metric-653f208b9652.

[93] H. Balakrishnan, M. Stemm, S. Seshan, and R. H. Katz, “Analyzing Stability
in Wide-area Network Performance,” ACM SIGMETRICS Performance Eval-
uation Review, vol. 25, pp. 2–12, 1997.

[94] Y. Zhang and N. Duffield, “On the Constancy of Internet Path Properties,” in
Proceedings of the ACM SIGCOMM Workshop on Internet Measurement, 2001.

[95] D. Lu, Y. Qiao, P. A. Dinda, and F. E. Bustamante, “Characterizing and Pre-
dicting TCP Throughput on the Wide Area Network,” in IEEE International
Conference on Distributed Computing Systems, ser. ICDCS, 2005.

[96] J. Jobin, M. Faloutsos, S. K. Tripathi, and S. V. Krishnamurthy, “Understand-
ing the Effects of Hotspots in Wireless Cellular Networks,” in Proceedings of
the Conference of the IEEE Computer and Communications Societies, ser. IN-
FOCOM, 2004.

[97] G. Urvoy-Keller, “On the Stationarity of TCP Bulk Data Transfers.” in Pro-
ceedings of the Passive and Active Measurement Conference, ser. PAM, 2005.

[98] G. Tian and Y. Liu, “Towards Agile and Smooth Video Adaptation in Dy-
namic HTTP Streaming,” in Proceedings of the 8th International Conference
on Emerging Networking Experiments and Technologies, CoNEXT ’12, 2012.

http://www.streamingmedia.com/Articles/Editorial/Short-Cuts/Video-The-Pros-and-Cons-of-a-Multi-CDN-Strategy-112351.aspx
http://www.streamingmedia.com/Articles/Editorial/Short-Cuts/Video-The-Pros-and-Cons-of-a-Multi-CDN-Strategy-112351.aspx
https: //medium.com /netflix-techblog /toward-a- practical-perceptual- video-quality-metric-653f208b9652
https: //medium.com /netflix-techblog /toward-a- practical-perceptual- video-quality-metric-653f208b9652

130

[99] “DASH Industry Forum,” https://github.com/Dash-Industry-Forum/dash.js.

[100] T. Flach, P. Papageorge, A. Terzis, L. Pedrosa, Y. Cheng, T. Karim, E. Katz-
Bassett, and R. Govindan, “An Internet-Wide Analysis of Traffic Policing,” in
Proceedings of the ACM Conference on Special Interest Group on Data Com-
munication, ser. SIGCOMM, 2016.

[101] H. Pishro-Nik, Introduction to Probability, Statistics and Random Processes.
Kappa Research, 2014.

[102] W. A. Fuller, Introduction to Statistical Time Series. John Wiley and Sons,
1976.

[103] “Bayesian Changepoint Detection,” https://github.com/hildensia/bayesian
changepoint detection.

[104] R. P. Adams and D. J. MacKay, “Bayesian Online Changepoint Detection,” in
arXiv:0710.3742v1, 2007.

[105] L. Wei and E. Keogh, “Semi-supervised Time Series Classification,” in Proceed-
ings of the ACM International Conference on Knowledge Discovery and Data
Mining, ser. SIGKDD, 2006.

[106] F. Desobry, M. Davy, and C. Doncarli, “An Online Kernel Change Detection
Algorithm,” IEEE Transactions on Signal Processing, vol. 53, no. 8, pp. 2961–
2974, 2005.

[107] D. R. Jeske, V. Montes De Oca, W. Bischoff, and M. Marvasti, “Cusum Tech-
niques for Timeslot Sequences with Applications to Network Surveillance,”
Computational Statistics and Data Analysis, vol. 53, pp. 4332–4344, 2009.

[108] K. Yamanishi and J.-i. Takeuchi, “A Unifying Framework for Detecting Outliers
and Change Points from Non-stationary Time Series Data,” in Proceedings of
the ACM International Conference on Knowledge Discovery and Data Mining,
ser. SIGKDD, 2002.

[109] E. J. Keogh, S. Chu, D. Hart, and M. J. Pazzani, “An Online Algorithm for
Segmenting Time Series,” in Proceedings of the IEEE International Conference
on Data Mining, ser. ICDM, 2001.

[110] T. Rakthanmanon, E. J. Keogh, S. Lonardi, and S. Evans, “Time Series
Epenthesis: Clustering Time Series Streams Requires Ignoring Some Data,”
in Proceedings of the International Conference on Data Mining, ser. ICML,
2011.

[111] D. Barry and J. A. Hartigan, “A Bayesian Analysis for Change Point Problems,”
Journal of the American Statistical Society, vol. 88, no. 421, pp. 309–319, 1993.

[112] P. Fernhead, “Exact and Efficient Bayesian Inference for Multiple Changepoint
Problems,” Statistics and Computing, vol. 16, no. 2, pp. 203–213, 2006.

[113] X. Xiang and K. Murphy, “Modelling Changing Dependency Structure in Mul-
tivariate Time Series,” in Proceedings of the International Conference on Data
Mining, ser. ICML, 2007.

https://github.com/Dash-Industry-Forum/dash.js
https: //github.com /hildensia /bayesian_changepoint_detection
https: //github.com /hildensia /bayesian_changepoint_detection

131

[114] “Pensieve,” https://github.com/hongzimao/pensieve.

[115] “DASH Industry Forum,” https://dash.akamaized.net/envivio/EnvivioDash3.

[116] “Google-Chrome: Chrome DevTools Protocol,” https://chromedevtools.github.
io/devtools-protocol/tot/Network/.

[117] “Chrome Remote Interface,” https://github.com/cyrus-and/
chrome-remote-interface.

[118] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level
Control Through Deep Reinforcement Learning,” Nature, vol. 518, no. 7540,
pp. 529–533, 2015.

[119] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu, “Asynchronous Methods for Deep Reinforcement Learn-
ing,” in Proceedings of the International Conference on Machine Learning, ser.
ICML, 2016.

[120] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT
press Cambridge, 1998.

[121] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
“Deep Reinforcement Learning that Matters,” in Proceedings of the Association
for Advancement of Artificial Intelligence, ser. AAAI, 2018.

[122] R. J. Williams and J. Peng, “Function Optimization using Connectionist Rein-
forcement Learning Algorithms,” Connection Science, vol. 3, no. 3, pp. 241–268,
1991.

[123] M. T. Ribeiro, S. Singh, and C. Guestrin, “Why Should I Trust You?: Explain-
ing the Predictions of Any Classifier,” in Proceedings of the ACM International
Conference on Knowledge Discovery and Data Mining, ser. SIGKDD, 2016.

[124] “Federal Communications Commission. Raw Data - Measur-
ing Broadband America.” www.fcc.gov/reports-research/reports/
measuring-broadband-america/raw-data-measuring-broadband-america-2016.

[125] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen, “Commute Path Band-
width Traces from 3G Networks: Analysis and Applications,” in Proceedings of
the ACM Multimedia Systems Conference, ser. MMSys, 2013.

[126] “Oracle: 5 Reasons to Consider SaaS for Your Business Applications,” http://
www.oracle.com/us/solutions/cloud/saas-business-applications-1945540.pdf.

[127] “Adobe OSMF player,” http://www.osmf.org.

[128] “Microsoft Smooth Streaming,” http://www.iis.net/downloads/microsoft/
smooth-streaming.

[129] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson, “BBR:
Congestion-Based Congestion Control,” ACM Queue, vol. 14, pp. 20–53, 2016.

https://github.com/hongzimao/pensieve
https://dash.akamaized.net/envivio/EnvivioDash3
https://chromedevtools.github.io/devtools-protocol/tot/Network/
https://chromedevtools.github.io/devtools-protocol/tot/Network/
https://github.com/cyrus-and/chrome-remote-interface
https://github.com/cyrus-and/chrome-remote-interface
www.fcc.gov/reports-research/reports/measuring-broadband-america/raw-data-measuring-broadband-america-2016
www.fcc.gov/reports-research/reports/measuring-broadband-america/raw-data-measuring-broadband-america-2016
http://www.oracle.com/us/solutions/cloud/saas-business-applications-1945540.pdf
http://www.oracle.com/us/solutions/cloud/saas-business-applications-1945540.pdf
http://www.osmf.org.
http: //www. iis. net /downloads /microsoft /smooth-streaming
http: //www. iis. net /downloads /microsoft /smooth-streaming

132

[130] J. van der Hooft, S. Petrangeli, M. Claeys, J. Famaey, and F. De Turck,
“A Learning-based Algorithm for Improved Bandwidth-awareness of Adaptive
Streaming Clients,” in Symposium on Integrated Network Management, ser. IM,
2015.

[131] V. Mart́ın, J. Cabrera, and N. Garćıa, “Design, Optimization and Evaluation of
a Q-learning HTTP Adaptive Streaming Client,” IEEE Transactions on Con-
sumer Electronics, vol. 62, no. 4, pp. 380–388, 2016.

[132] M. Claeys, S. Latré, J. Famaey, T. Wu, W. V. Leekwijck, and F. D. Turck, “De-
sign and Optimisation of a (FA)Q-learning-based HTTP Adaptive Streaming
Client,” Connection Science, vol. 26, no. 1, pp. 25–43, 2014.

[133] F. Chiariotti, S. D’Aronco, L. Toni, and P. Frossard, “Online Learning Adapta-
tion Strategy for DASH Clients,” in Proceedings of the International Conference
on Multimedia Systems, ser. MMSys, 2016.

[134] K. Winstein and H. Balakrishnan, “TCP Ex Machina: Computer-generated
Congestion Control,” in Proceedings of the ACM Conference on Special Interest
Group on Data Communication, ser. SIGCOMM, 2013.

[135] J. Semke, J. Mahdavi, and M. Mathis, “Automatic TCP Buffer Tuning,” in
Proceedings of the ACM Conference on Special Interest Group on Data Com-
munication, ser. SIGCOMM, 1998.

[136] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D. Sculley,
“Google Vizier: A Service for Black-Box Optimization,” in Proceedings of the
ACM International Conference on Knowledge Discovery and Data Mining, ser.
SIGKDD, 2017.

[137] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, and H. Zhang, “De-
veloping a Predictive Model of Quality of Experience for Internet Video,” in
Proceedings of the ACM Conference on Special Interest Group on Data Com-
munication, ser. SIGCOMM, 2013.

[138] S. S. Krishnan and R. K. Sitaraman, “Video Stream Quality Impacts Viewer
Behavior: Inferring Causality Using Quasi-experimental Designs,” in Proceed-
ings of the ACM Conference on Internet Measurement Conference, ser. IMC,
2012.

[139] R. Houdaille and S. Gouache, “Shaping HTTP Adaptive Streams for a Better
User Experience,” in Proceedings of the Multimedia Systems Conference, ser.
MMSys, 2012.

[140] S. Akhshabi, L. Anantakrishnan, A. C. Begen, and C. Dovrolis, “What Happens
when HTTP Adaptive Streaming Players Compete for Bandwidth?” in the
International Workshop on Network and Operating System Support for Digital
Audio and Video, ser. NOSSDAV, 2012.

[141] “Cisco Visual Networking Index: Forecast and Trends, 2017–2022 White
Paper,” https://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/white-paper-c11-741490.html.

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html

133

[142] “New research reveals buffer rage as tech’s newest
epidemic,” https://www.prnewswire.com/news-releases/
new-research-reveals-buffer-rage-as-techs-newest-epidemic-300237001.html.

[143] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural compu-
tation, vol. 9, no. 8, pp. 1735–1780, 1997.

[144] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[145] M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi, “Bidirectional attention
flow for machine comprehension,” ICLR, 2017.

[146] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
 L. Kaiser, and I. Polosukhin, “Attention is All you Need,” in NIPS, 2017.

[147] A. Jabri, A. Joulin, and L. Van Der Maaten, “Revisiting visual question an-
swering baselines,” in European conference on computer vision. Springer, 2016,
pp. 727–739.

[148] M. Malinowski, M. Rohrbach, and M. Fritz, “Ask your neurons: A neural-
based approach to answering questions about images,” in Proceedings of the
IEEE international conference on computer vision, 2015, pp. 1–9.

[149] D. Wang and E. Nyberg, “A long short-term memory model for answer sentence
selection in question answering,” in ACL, vol. 2, 2015, pp. 707–712.

[150] Y. Zhang, V. Zhong, D. Chen, G. Angeli, and C. D. Manning, “Position-aware
attention and supervised data improve slot filling,” in Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing, 2017, pp.
35–45.

[151] “PyTorch,” https://pytorch.org/.

[152] “hmmlearn,” https://hmmlearn.readthedocs.io/en/latest/#.

[153] “Principal component analysis.” https://en.wikipedia.org/wiki/Principal
component analysis.

[154] S. Puzhavakath Narayanan, Y. S. Nam, A. Sivakumar, B. Chandrasekaran,
B. Maggs, and S. Rao, “Reducing latency through page-aware management of
web objects by content delivery networks,” in ACM SIGMETRICS Performance
Evaluation Review, vol. 44, no. 1. ACM, 2016, pp. 89–100.

[155] “US Alexa Rank.” https://www.alexa.com/topsites/countries/US.

[156] “Akamai,” https://www.akamai.com/.

[157] “Fastly,” https://www.fastly.com/.

[158] “Amazon CloudFront,” https://aws.amazon.com/cloudfront/?nc=sn&loc=0.

[159] “Amazon S3.” https://aws.amazon.com/s3/.

https://www.prnewswire.com/news-releases/new-research-reveals-buffer-rage-as-techs-newest-epidemic-300237001.html
https://www.prnewswire.com/news-releases/new-research-reveals-buffer-rage-as-techs-newest-epidemic-300237001.html
https://pytorch.org/
https://hmmlearn.readthedocs.io/en/latest/#
https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis
https://www.alexa.com/topsites/countries/US
https://www.akamai.com/
https://www.fastly.com/
https://aws.amazon.com/cloudfront/?nc=sn&loc=0
https://aws.amazon.com/s3/

134

[160] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar, I. Stoica, and H. Zhang, “A
case for a coordinated internet video control plane,” ACM SIGCOMM Com-
puter Communication Review, vol. 42, no. 4, pp. 359–370, 2012.

[161] A. Ganjam, F. Siddiqui, J. Zhan, X. Liu, I. Stoica, J. Jiang, V. Sekar, and
H. Zhang, “C3: Internet-Scale Control Plane for Video Quality Optimization,”
in 12th USENIX Symposium on Networked Systems Design and Implementa-
tion, NSDI 15, 2015.

[162] J. Pearl, Causality. Cambridge university press, 2009.

[163] S. S. Krishnan and R. K. Sitaraman, “Video Stream Quality Impacts Viewer
Behavior: Inferring Causality Using Quasi-experimental Designs,” in Proceed-
ings of the ACM Conference on Internet Measurement Conference, ser. IMC,
2012.

[164] M. Bartulovic, J. Jiang, S. Balakrishnan, V. Sekar, and B. Sinopoli, “Biases
in data-driven networking, and what to do about them,” in Proceedings of the
16th ACM Workshop on Hot Topics in Networks. ACM, 2017, pp. 192–198.

[165] M. Tariq, A. Zeitoun, V. Valancius, N. Feamster, and M. Ammar,
“Answering what-if deployment and configuration questions with wise,” in
ACM SIGCOMM’08, 2008. [Online]. Available: http://dx.doi.org/10.1145/
1402946.1402971

[166] “DASH IF Test Assets Database,” http://testassets.dashif.org/#testvector/
list.

[167] “Google-Chrome: Chrome DevTools Protocol.” https://chromedevtools.github.
io/devtools-protocol/tot/Network/.

[168] “Chrome Remote Interface.” https://github.com/cyrus-and/
chrome-remoteinterface.

[169] “Pensieve Github.” https://github.com/hongzimao/pensieve.

[170] F. Chiariotti, S. D’Aronco, L. Toni, and P. Frossard, “Online learning
adaptation strategy for dash clients,” in Proceedings of the 7th International
Conference on Multimedia Systems, ser. MMSys ’16. New York, NY, USA:
ACM, 2016, pp. 8:1–8:12. [Online]. Available: http://doi.acm.org/10.1145/
2910017.2910603

[171] M. Claeys, S. Latré, J. Famaey, T. Wu, W. Van Leekwijck, and F. De Turck,
“Design of a q-learning-based client quality selection algorithm for http adap-
tive video streaming,” in Proceedings of the 2013 Workshop on Adaptive and
Learning Agents (ALA), Saint Paul (Minn.), USA, 2013, pp. 30–37.

[172] ——, “Design and optimisation of a (fa) q-learning-based http adaptive stream-
ing client,” Connection Science, vol. 26, no. 1, pp. 25–43, 2014.

[173] J. van der Hooft, S. Petrangeli, M. Claeys, J. Famaey, and F. De Turck,
“A learning-based algorithm for improved bandwidth-awareness of adaptive
streaming clients,” in 2015 IFIP/IEEE International Symposium on Integrated
Network Management (IM). IEEE, 2015, pp. 131–138.

http://dx.doi.org/10.1145/1402946.1402971
http://dx.doi.org/10.1145/1402946.1402971
http://testassets.dashif.org/#testvector/list
http://testassets.dashif.org/#testvector/list
https://chromedevtools.github.io/ devtools-protocol/tot/Network/
https://chromedevtools.github.io/ devtools-protocol/tot/Network/
https://github.com/cyrus-and/chrome-remoteinterface
https://github.com/cyrus-and/chrome-remoteinterface
https://github.com/hongzimao/pensieve
http://doi.acm.org/10.1145/2910017.2910603
http://doi.acm.org/10.1145/2910017.2910603

135

[174] B. Alt, T. Ballard, R. Steinmetz, H. Koeppl, and A. Rizk, “Cba: Contextual
quality adaptation for adaptive bitrate video streaming (extended version),”
arXiv preprint arXiv:1901.05712, 2019.

[175] H. Mao, S. B. Venkatakrishnan, M. Schwarzkopf, and M. Alizadeh, “Vari-
ance reduction for reinforcement learning in input-driven environments,” arXiv
preprint arXiv:1807.02264, 2018.

[176] H. Yeo, Y. Jung, J. Kim, J. Shin, and D. Han, “Neural adaptive content-aware
internet video delivery,” in 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI) 18), 2018, pp. 645–661.

[177] D. H. Lee, C. Dovrolis, and A. C. Begen, “Caching in http adaptive streaming:
Friend or foe?” in Proceedings of Network and Operating System Support on
Digital Audio and Video Workshop. ACM, 2014, p. 31.

[178] M. Mirza, J. Sommers, P. Barford, and X. Zhu, “A machine learning approach
to tcp throughput prediction,” in ACM SIGMETRICS Performance Evaluation
Review, vol. 35, no. 1. ACM, 2007, pp. 97–108.

[179] Q. He, C. Dovrolis, and M. Ammar, “On the predictability of large transfer tcp
throughput,” in ACM SIGCOMM Computer Communication Review, vol. 35,
no. 4. ACM, 2005, pp. 145–156.

[180] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling tcp throughput: A
simple model and its empirical validation,” ACM SIGCOMM Computer Com-
munication Review, vol. 28, no. 4, pp. 303–314, 1998.

[181] X. K. Zou, J. Erman, V. Gopalakrishnan, E. Halepovic, R. Jana, X. Jin, J. Rex-
ford, and R. K. Sinha, “Can accurate predictions improve video streaming in
cellular networks?” in Proceedings of the 16th International Workshop on Mo-
bile Computing Systems and Applications. ACM, 2015, pp. 57–62.

[182] S. Merity, N. S. Keskar, and R. Socher, “Regularizing and optimizing lstm
language models,” arXiv preprint arXiv:1708.02182, 2017.

[183] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the properties
of neural machine translation: Encoder-decoder approaches,” arXiv preprint
arXiv:1409.1259, 2014.

[184] W. Xiong, L. Wu, F. Alleva, J. Droppo, X. Huang, and A. Stolcke, “The
microsoft 2017 conversational speech recognition system,” in 2018 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2018, pp. 5934–5938.

[185] L. Mei, R. Hu, H. Cao, Y. Liu, Z. Han, F. Li, and J. Li, “Realtime mobile
bandwidth prediction using lstm neural network,” in International Conference
on Passive and Active Network Measurement. Springer, 2019, pp. 34–47.

[186] A. Narayanan, S. Verma, E. Ramadan, P. Babaie, and Z.-L. Zhang, “Making
content caching policies’ smart’using the deepcache framework,” ACM SIG-
COMM Computer Communication Review, vol. 48, no. 5, pp. 64–69, 2019.

136

[187] H. D. Trinh, L. Giupponi, and P. Dini, “Mobile traffic prediction from raw data
using lstm networks,” in 2018 IEEE 29th Annual International Symposium on
Personal, Indoor and Mobile Radio Communications (PIMRC). IEEE, 2018,
pp. 1827–1832.

[188] C. Zhang and P. Patras, “Long-term mobile traffic forecasting using deep spatio-
temporal neural networks,” in Proceedings of the Eighteenth ACM International
Symposium on Mobile Ad Hoc Networking and Computing. ACM, 2018, pp.
231–240.

[189] A. Azzouni and G. Pujolle, “Neutm: A neural network-based framework for
traffic matrix prediction in sdn,” in NOMS 2018-2018 IEEE/IFIP Network
Operations and Management Symposium. IEEE, 2018, pp. 1–5.

[190] G. Cheung, A. Ortega, N.-M. Cheung, and B. Girod, “On media data structures
for interactive streaming in immersive applications,” in Visual Communications
and Image Processing 2010. International Society for Optics and Photonics,
2010.

[191] N.-M. Cheung and G. Cheung, “Coding for interactive navigation in high-
dimensional media data,” Emerging Technologies for 3D Video: Creation, Cod-
ing, Transmission and Rendering, pp. 162–186, 2013.

[192] F. Qian, L. Ji, B. Han, and V. Gopalakrishnan, “Optimizing 360 video deliv-
ery over cellular networks,” in Proceedings of the 5th Workshop on All Things
Cellular: Operations, Applications and Challenges. ACM, 2016, pp. 1–6.

[193] X. Liu, Q. Xiao, V. Gopalakrishnan, B. Han, F. Qian, and M. Varvello, “360
innovations for panoramic video streaming,” in Proceedings of the 16th ACM
Workshop on Hot Topics in Networks. ACM, 2017, pp. 50–56.

VITA

137

VITA

Yun Seong Nam is a Ph.D. Candidate in the School of Electrical and Computer

Engineering at Purdue University, advised by Professor Sanjay Rao. His research

interests are in Computer Networking Systems. His research currently focuses on

techniques and novel architectures to deliver high quality video across diverse and

variable network conditions. Prior to his doctoral studies, he received his M.S and

B.S. degree from Columbia University, NYC, U.S. and Yonsei University, Seoul, S.

Korean respectively.

	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	INTRODUCTION
	Overview of video delivery planes
	Motivation
	Contributions
	Thesis Organization

	UNDERSTANDING VIDEO MANAGEMENT PLANES
	Introduction
	The Video Management Plane
	Goals, Methodology & Dataset
	Characterizing Video Management Planes
	Packaging
	Device Playback
	Content Distribution
	Summary

	Understanding Management Complexity
	Management of Syndication
	Related Work
	Conclusion

	OBOE: AUTO-TUNING VIDEO ABR ALGORITHMS TO NETWORK CONDITIONS
	Introduction
	Background and Motivation
	Background on ABR Algorithms
	Ensuring High QoE for All Users

	Design
	Representing Network State
	Offline Mapping of Network States
	Online ABR Tuning

	Evaluation
	Metrics
	Methodology
	 with
	 vs. Pensieve
	 with other ABR Algorithms
	Sensitivity experiments
	Across Various Settings
	Overhead

	Deployment Considerations
	Discussion and Future Work
	Related Work
	Conclusion

	XATU: EXPLOITING A RICHER THROUGHPUT MODEL FOR VIDEO STREAMING THROUGH NEURAL NETWORKS
	Introduction
	ABR algorithms and prediction
	Motivating data analysis
	Impact of clustering
	Impact of TTFB and chunk size

	Xatu design
	Xatu overview
	Xatu Architecture
	Design details

	Evaluation methodology
	Prediction schemes compared
	Datasets and training

	Results
	Xatu vs. CS2P: Prediction accuracy
	Sensitivity study

	Extensibility of Xatu to new information
	Potential QoE improvement when integrated with ABRs
	Integrating Xatu with MPC and causality issue between size of chunks and throughputs on the training data
	Evaluation Testbed
	Xatu vs. CS2P: ABR algorithm impact
	Xatu+MPC vs. Pensieve

	Related work
	Conclusion

	CONCLUSIONS
	Contributions
	Future directions

	REFERENCES
	VITA

