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ABSTRACT

Sakka, L. Ph.D., Purdue University, May 2020. Techniques for Automatic Fusion of
General Tree Traversals. Major Professor: Milind Kulkarni.

Trees are common data structures that are used in many programs and appli-

cations. In its simplest form, a binary tree can be used to store numbers in sorted

manners. Kd-trees, render trees and abstract syntax trees are more sophisticated

examples of tree structures. Furthermore, in functional programming algebraic data

types are essentially tree structures as well.

In several tree-based applications, a tree is constructed, and several traversals

traverse the tree to perform di↵erent computations. Tree fusion is a transformation

that targets combining and fusing di↵erent traversals that traverse the same tree and

perform them together (ideally in one traversal). Traversal fusion has several perfor-

mance benefits such as reducing the traversing overhead and the memory accesses,

enhancing locality, and eliminating intermediate structures.

Previous work has been done on fusion and was mostly successful either in spe-

cific domains or limited scopes. This work introduces novel techniques for performing

fusion in both imperative and functional programming settings with a focus on gen-

erality. The new techniques target general traversals; minimizing the burden on pro-

grammers and increasing the coverage of the transformation. Furthermore, it exploits

fusion opportunities that previous approaches do not, achieving significant speedups

for a wider range of programs.
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1. INTRODUCTION

Many applications are built around traversals of tree structures: from compilers,

where abstract syntax trees represent the syntactic structure of a program and traver-

sals of those ASTs are used to analyze and optimize code; to web browsers and lay-

out engines, where render trees express the structure of documents and traversals

of those trees determine the location and appearance of elements on web pages and

documents; to solving integral and di↵erential equation of multi-dimensional spatial

functions where kd-trees are used to represent piece-wise functions and operations on

those functions are implemented as tree traversals. On top of that, in a functional

programming setting, an algebraic data type is essentially a tree, and functions that

consume it are tree traversals.

An important consideration in these applications is to reduce the number of times

the tree is traversed by fusing operations from separate traversals that operate on the

same tree. Such fusion has numerous potential benefits; reducing the number of mem-

ory accesses and call instructions, better locality and reduction in cache misses [1],

and elimination of intermediate structures in functional settings, are examples of such

benefits.

There is a fundamental tension between writing trees traversing applications in

the most ergonomic manner—where, for example, a compiler is written as dozens

of individual AST-rewriting passes [2,3]—and writing these applications in the most

performant manner—where many AST traversals must be fused into a single ”or

fewer” traversals. In an attempt to balance these competing concerns, there has been

prior work on compiler and software-engineering techniques for writing simple, fine-

grained tree traversal passes that are then automatically fused into coarse-grained

passes for performance reasons [3–7]. In the world of functional programs, deforesta-

tion techniques rewrite data structure operations to avoid materializing intermediate
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data structures, either through syntactic rewrites [8–10] or through the use of special

combinators that promote fusion [11–15]. Several domain specific fusion frameworks

were introduced.

1.1 Contributions Overview

This work introduces novel techniques for performing fusion in both imperative

and functional programming settings with a focus on generality. The new techniques

target general traversals; minimizing the burden on programmers and increasing the

coverage of the transformation. Furthermore, it exploits fusion opportunities that

previous approaches do not, achieving significant speedups for a wider range of pro-

grams.

Although fusion has the same goal in both imperative and functional settings

(combine work from di↵erent traversals), each setting has its own challenges.

Imperative Settings. In imperative settings, statements can write and read the

same memory locations creating a complicated dependence structure. A fusion trans-

formation should preserve those dependencies and should be able to e�ciently find

a fused schedule that maximizes fusion under such constraints. Chapters 2 and 3

discuss the part of the thesis that is related to fusing imperative traversals. Chapter

2 introduces Treefuser [16] a new fusion approach that is the first to handle general

traversals, and performs partial fusion where traversals are fused on some parts of

the traversed trees but not others.

Chapter 3 introduces Grafter [17] an extension of Treefuser that handles het-

erogeneous trees with low fusion overhead, it introduces type-based partial fusion

and supports more general and complicated patterns of traversals. To sum up, this

work introduces a novel framework for fusing general imperative traversals that have

shown to have a very small overhead and succeeded in fusing general and non-trivial

traversals achieving significant speedups even for even small trees.
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Functional Settings. Unlike imperative traversals where traversals traverse the

same structure. A functional traversal consumes a tree and produces a new tree that

is consumed by the following traversals. Most performance benefits from fusing func-

tional traversal aka as deforestation comes from eliminating intermediate structures.

The main challenge in the general fusion of functional programs is preserving the run

time complexity and guarantee the transformation termination.

Chapter 4 discuss the challenges in general fusion in functional settings, and pro-

pose a deforestation algorithm that consists of fusion, tupling and intensive redun-

dancy analysis that can handle fusing complicated and irregular traversals such as

render tree traversals. The transformation shows that general fusion techniques for

functional settings that have been abandoned for a long time are promising and that—

with good engineering—can fuse complicated programs that cannot be fused using

competing techniques.
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2. TREEFUSER : ANALYZING AND FUSING GENERAL

RECURSIVE TREE TRAVERSALS

This chapter describes the first piece of work in the thesis [16]; a general method for

reasoning about and fusing general imperative recursive tree traversals. The proposed

framework is the first to handle fusion of general traversals. Furthermore, it introduces

partial fusion; which allows finer-grained fusion when total fusion of traversals is not

possible.

2.1 Introduction

Many key applications rely heavily on performing a series of tree traversals. For

example, the DOM (Document The previous chapter Object Model) of a website is

represented as a tree of elements, where each element contains a number of attributes

specifying color, visibility, position, size, etc. The values of these attributes determine

the appearance of a rendered web page. These attributes and elements are dependent

on one another (for example, the width of an element is dependent on the widths and

x-positions of its children elements), so computing the appropriate values requires

traversing the tree numerous times [18]. Closer to home, many compilers use Abstract

Syntax Trees (ASTs) as an intermediate representation, and compilation phases are

expressed as traversals over these ASTs. Again, these traversals read and modify

various attributes of the AST, and are dependent on one another.

An important consideration in these applications is to reduce the number of times

the tree is traversed by fusing operations from separate traversals that operate on the

same node. Such fusion has significant performance benefits as discussed in the thesis

introduction.
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In many cases, such as web browsers, what are conceptually multiple traversals

of the tree are manually fused into fewer traversals. In other cases, traversals can be

expressed using high level abstractions like attribute grammars (for compilers [19] or

DOM rendering [6]) or numerical operators (in MADNESS [20]) that can be fused

using purpose-built frameworks that understand those abstractions (e.g., synthesis-

based schedulers for attribute grammars [18] or ad hoc high level compilers for MAD-

NESS operators [4, 5]).

These approaches su↵er from various drawbacks: immense programmer e↵ort and

brittleness in the case of hand-written optimized traversals (adding a new DOM

pass might require rewriting a large chunk of the renderer due to newly-introduced

dependences), and the restrictions of high level abstractions in the latter (both in the

inability of high level abstractions to capture more complicated traversal patterns and

in the types of fusion decisions that can be made by the optimization framework).

We want the best of both worlds: the ability to write simple, fine-grained traver-

sals to express the computations required by an application, as in approaches using

high level abstractions, while retaining the flexibility to perform more complicated

traversal patterns as in hand-written code (e.g., performing computations between

recursive calls). When these traversals are optimized and fused, we should retain the

same capabilities as in hand-written optimizations. In particular, there are two opti-

mization opportunities that are critical to exploit in order to maximize fusion that,

to our knowledge, existing approaches do not explore:

1. Code motion: By moving computations around within a traversal, fusion oppor-

tunities can be exposed that were previously disallowed. For example, moving

a statement in a traversal from pre-order to post-order can allow it to be fused

with other traversals. Code motion is especially important with fully-general

traversals, where computations can be interleaved with recursive calls, as such

in-order computations can introduce very complex dependence patterns.
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2. Partial fusion: Even if the computations performed by two traversals have

complex dependences that preclude fusion, it may be possible to execute the

traversals together on some parts of the tree but not others yielding some of

the benefits of fusion without requiring complete fusion. As in the case of code

motion, allowing general, complex traversals necessitates partial fusion, as the

more-complicated dependence structure often precludes total fusion of multiple

traversals.

This work presents a general method for traversal fusion of recursive tree traver-

sal programs written in a general-purpose language. This method provides several

novelties: (a) a dependence graph representation of traversals that captures interac-

tions between statements and calls; (b) a dependence test that uses the dependence

graph to determine which fusion opportunities are legal and supports partial fusion

and code motion; and (c) a synthesis procedure for fused traversals that naturally

implements code motion.

We implement our method in a framework called Treefuser, a Clang source-to-

source compiler pass, allowing programmers to express their set of tree traversals using

(a subset of) C++. The pass automatically lifts the tree traversals to Treefuser’s

dependence representation, and then uses a simple greedy heuristic to synthesize a

new, fused implementation of the set of traversals, including moving computations to

remove problematic dependences and performing partial fusion when necessary.

To evaluate the suitability of Treefuser for enabling fine-grained expression of

general tree traversals while supporting fusion, we evaluate several case studies: fus-

ing together passes in Fast Multipole Method, fusing passes over a DOM rendering

tree, and fusing complex AST passes in a compiler. In all three cases, we demonstrate

that Treefuser is able to successfully fuse a substantial portion of the computa-

tion, requiring both code motion and partial fusion to do so. The fused traversals

substantially improve locality and overall performance.
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Outline

The remainder of this chapter is organized as follows. Section 2.2 gives an overview

of our technique and presents a running example that highlights the types of trans-

formations enabled by our framework. Section 2.3 presents a simple, but general,

language for describing tree traversals, defines a dependence analysis for programs

written in this language, and describes a dependence representation for summarizing

dependences within and among traversals. Section 2.4 explains how the dependence

representation can be used to determine the validity of fusion decisions. Section 2.5

describes how Treefuser synthesizes fused traversals from the dependence repre-

sentation. Section 2.6 proves the soundness of the fusion transformation. Section 2.7

describes the Treefuser implementation. Section 2.8 evaluates Treefuser, and

Section 2.9 concludes.

2.2 Overview

This section provides an overview of the Treefuser framework. We first dis-

cuss the opportunities for fusion in a running example (Section 2.2.1). We then

describe how Treefuser constructs a dependence representation for the example

(Section 2.2.2). We then explain how Treefuser uses the dependence represen-

tation to construct a fused traversal, including partial fusion, and show the final

synthesized result (Section 2.2.3). Each of these steps are described in more detail in

the remainder of the chapter.

2.2.1 Running Example

Figure 2.1(a) shows two traversals, f1 and f2, over a binary tree (the argument

n to each traversal represents the node the traversal is currently visiting). While

the traversals perform somewhat complex computations, we can consider each as a

sequence of statements, where compound statements such as if statements are rep-



8

f1(n)    
  if (n = null) return
  f1(n.l)
  f1(n.r)
  if (n.isLeaf) 
    n.v = 1
  else
    n.v = n.l.v + n.r.v

s1

f2(n)    
  if (n = null) return
  if (!n.isLeaf)
    n.x = n.v
    n.l.x = n.x + 2
  n.y = n.v * 2
  f2(n.l)
  f2(n.r)

s2

s3

(a) Two traversals of a binary tree

a

b c

rl

(b) Binary tree

with three nodes

s1(b) s1(c) s1(a) s2(a) s3(a) s2(b) s3(b) s2(c) s3(c)

(c) Original schedule of execution, with dependences

s1

s2

s3

f1, l

f1, r

f2, l

f2, r

(d) Dependence graph, pre-fusion

s1

s2

s3

f1, l

f12, r

f2, l

(e) Dependence graph, post-fusion

fused(n, do1, do2)    
  if (n = null) return
  fused(n.l, do1, false)
  fused(n.r, do1, do2)
  if (do1)
    if (n.isLeaf) 
      n.v = 1
    else
      n.v = n.l.v + n.r.v
  if (do2)
    if (!n.isLeaf)
      n.x = n.v
      n.l.x = n.x + 2
    n.y = n.v * 2
  fused(n.l, false, do2)

s1

s2

s3

(f) Fused traversals

s1(b) s1(c) s2(c) s3(c) s1(a) s2(a) s3(a) s2(b) s3(b)

(g) Schedule of execution, after fusion

Fig. 2.1. Treefuser overview example: fusing two binary tree traversals.
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resented as single statements, interspersed with recursive invocations of the traversal

function that traverse the tree further. Hence, we can consider f1 to perform one

statement per node during its traversal, and f2 to perform two, as shown by the

gray outlined boxes. (For now, we ignore the n = null line of each traversal as that

serves simply to bound the traversals; later we will explain how to soundly handle

such conditions.)

Suppose the two traversals visit the tree shown in Figure 2.1(b), with f1 executing

before f2 leading to the sequence of statements shown in Figure 2.1(c). Each state-

ment is parameterized by which node of the tree it operates on, and arrows between

statements indicate dependences. For example, s1(b) writes to b.v, which is read by

s1(a), s2(b) and s3(b). The vertical line separates the operations performed by the

two traversals. As we see, the tree is traversed twice, and, in particular, each leaf

node is visited twice.

Opportunity for fusion Careful examination of the dependence structure shows

that it may be possible to perform operations from both traversals while visiting

some of the nodes in the tree. In particular, all of the operations on node c can be

performed when the first traversal visits node c (in other words, s2(c) and s3(c) can

be hoisted up to execute immediately after s1(c)). As a result, the second traversal

need not visit the right child of the tree at all, saving one node visit. Note, however,

that the two visits to node b must happen separately: s1 must execute on b before

executing on a, but s2 must execute on a before executing on b. The only way to

achieve this is by visiting b twice. We will now see how Treefuser identifies this

opportunity for fusion.

2.2.2 Dependence Representation

The dependencies between the various operations of two traversals is a dynamic

property: two statements depend on each other depending on where, in a particular

tree, the two statements are being executed. To avoid reasoning about (unknow-
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able) dynamic iterations, Treefuser uses a dependence graph representation that

captures dependences between static instances of statements based on a dependence

analysis. Section 2.3.3 details how this dependence graph is constructed. In short,

each (compound) statement and recursive call in the original traversals is represented

by a node in the dependence graph. Statement nodes are labeled by which traversal

they are from and which (static) statement in that traversal they represent, while

call nodes are labeled by which traversal they are from and by which child that call

descends to.

Figure 2.1(d) shows the dependence graph for the statements of the traversals in

Figure 2.1(a). The graph considers the execution of each traversal rooted at the same

(arbitrary) node in the tree. Directed edges exist between statements if there may

be dependences between those statements when executed at the same node. Hence,

the dependence between s1(a) and s2(a) leads to an edge in the dependence graph

between the node s1 and the node s2. Edges exist between statements and calls if there

may be a dependence between the statement and statements that may execute during

that call. Hence, the dependence between s1(b) and s1(a) leads to an edge between

the call node (f1, l) and the statement node s1. Similarly, edges exist between calls

if there may be a dependence between the statements that may execute during those

calls. The direction of the edges corresponds to the execution of the original, unfused

program: between two nodes from the same traversal, the edge is directed in program

order, and between two nodes from di↵erent traversal, the edge is directed according

to the order of the traversals. Essentially, the dependence graph in Figure 2.1(d)

represents taking the execution graph of Figure 2.1(c) and collapsing the various

vertices for nodes b and c into call nodes representing the corresponding recursive

call.
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2.2.3 Fusion and Code Generation

Two calls to the same child of a tree node are fusable if it is safe for two traversals

to visit that child simultaneously (rather than one traversal completely processing

that child subtree before the second traversal visits it). Two traversals are fully

fusable if all of their child calls are fusable. If only some child calls are fusable, the

two traversals are partially fusable. The dependence graph makes it easy to tell if two

calls are fusable: if the two call nodes in the graph can be merged without creating a

cycle, then the nodes are fusable. Section 2.6 argues that this validity test is sound.

In our running example, we can see that fusing the two calls to the left child

results in a cycle involving s1 and s2. However, fusing the two calls to the right child

does not create a cycle, yielding the dependence graph in Figure 2.1(e).

Given a fused dependence graph, Treefuser synthesizes the fused traversal by

topologically sorting the dependence graph and then generating code as if the result-

ing graph were for a single traversal function (including guards to make sure that a

statement only executes if its original traversal would have executed). Figure 2.1(f)

shows the resulting code. Note that this synthesis procedure automatically incorpo-

rates code motion: in the fused, sorted graph, s3 appears after the traversal visits the

right child, whereas in the original traversal, s3 executed prior to its traversal visiting

the right child. Section 2.4 explains this process in more detail.

The final traversal produces the schedule of execution shown in Figure 2.1(g).

This new schedule preserves all dependences—dependent operations appear in the

same relative order as they did in the schedule of Figure 2.1(c)—but now node c is

only visited once, providing the benefits of fusion (this fused traversal is valid for any

tree, and this reduction in visits grows as the tree grows). The remainder of this

chapter explains how Treefuser achieves this result.
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2.3 A Dependence Analysis for Fusion

This section presents a dependence analysis for fusion. It is a variant of access-

path-based dependence analyses, such as those used by [21] and [22]. Because we

adopt an instance-wise notion of accesses [23] (that is, we consider accesses relative

to a particular node that a traversal is visiting), our dependence test is informed by

that of [24]. First, we present a simple (but general) language for expressing tree

traversals that we will use to build our dependence analysis.

2.3.1 A Language for Tree Traversals

A tree that is being traversed consists of several tree nodes. Each tree node

contains one or more recursive fields (fr ∈ Fr) that point to other tree nodes (we will

often refer to these recursive fields as the “children” of the tree node), and zero or

more local fields (fp ∈ Fp). These local fields can be simple primitive values or can

be pointers to node local objects (objects that can only be reached through that local

field). The nodes are arranged in a tree, connected through the recursive fields, and

rooted at a single root node1.

A tree is traversed by recursive traversal functions whose bodies can be expressed

in the language given in Figure 2.2(a)2. Each function is k-ary: the first parameter

of the function is a reference to the node the traversal operates on; the rest of the

parameters are local variables.

The body of the traversal function is a series of (compound) statements and re-

cursive calls. Each statement can be a single primitive statement (an assignment or

a return) or an if statement that can then be arbitrarily nested. Expressions can

de-reference fields of node and read local variables, and can invoke pure functions.

Assignments can update local variables and primitive fields of node (note that the

1Note that our analysis does not concern itself with proving these properties of the tree; we leave
this to shape analyses [25, 26]. The implementation in Section 2.7 relies on programmer- or shape
analysis–provided annotations to convey these properties.
2Treefuser analyzes programs written in C++, but that respect the constraints of this language
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(a) Language for tree traversal (b) Language for pro-

gram

Fig. 2.2. Treefuser language

recursive fields of node cannot be modified). A recursive call takes one of the recur-

sive fields of node as its first argument and local variables as its remaining arguments

(we will often refer to these recursive calls as “child calls,” as they are invoked on

specific children of the current node). A few things to note about this language:

1. We do not allow loops in the body of the recursive function (unless those loops

can be statically unrolled).

2. Recursive calls do not return values; return values can be de-sugared as writing

to a primitive field of node in the callee, then reading from that primitive field

(via the appropriate recursive field) in the caller.

3. Recursive calls cannot be made conditionally. This can be worked around by

conditionally setting a local variable that is passed into the recursive call that

causes the call to exit immediately.

4. Interestingly, the recursive invocations of the traversal functions: a) do not have

to be invoked on every child, and b) can be invoked on a child more than once.
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In other words, a recursive traversal function may not visit all children of a

node, and may visit the same subtree multiple times.

A program analyzed by Treefuser is a sequence of calls to traversal functions

defined using the language of Figure 2.2(a), all starting at root (Figure 2.2(b)). We

do not consider the existence of intervening code between successive calls to traversal

functions; handling any dependences that arise from such code is a straightforward

extension of the analyses in this work.

Handling di↵erent child types The language of Figure 2.2(a) assumes that all

tree nodes are the same type. This assumption is violated by many tree traversal

codes (e.g., the multitude of node types in a typical AST). We currently handle this

case by merging all the node types into a single node type (a la a tagged union), and

using conditionals to distinguish between the code that should run in each node type.

If a recursive call is made to a child that does not exist for the current node type, that

call sees that the child node is null and returns immediately. This transformation can

be done automatically, though it reduces the precision of our analysis. Chapter 3,

discusses this problem in more details and provides a solution that e�ciently handles

heterogeneous trees.

2.3.2 Access-path Analysis

The first step in Treefuser’s dependence analysis is to perform an analysis to

construct access sets for each compound statement and call in each recursive traversal

function.

We abstract the “o↵-tree” locations that can be accessed by functions as a set

of heap locations h ∈ H—these correspond to whatever representation a (separately

run) alias analysis uses to represent heap locations. We represent accesses to the

nodes and fields of the tree using access paths. A recursive access path is a path

to a node rooted at node. These access paths can be represented by elements of
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the regular set Ar = node(.Fr)
∗. A primitive access path is a path rooted at node

terminating in a primitive field, and can be represented by elements of the regular

set Ap = node(.Fr)
∗.Fp.

Statements Each compound statement s is associated with four sets: a set of heap

locations read and written (Hr(s) and Hw(s) respectively) and a set of primitive

access paths read and written (⇡r(s) and ⇡w(s) respectively). Heap locations read

and written by a statement can be computed via a straightforward dataflow analysis

on the body of the function, treating function calls as no-ops. Unioning together all

of the reads and writes of the component statements of a compound statement yields

Hr(s) and Hw(s).

Generating ⇡r(s) and ⇡w(s) is similar to other analyses [21, 24, 27], so we treat

it briefly here (essentially, we perform an alias analysis on node references, using an

access-path-based representation). Access paths read and written are computed by

an alias analysis that tracks the (set of) recursive access paths referred to by node

references. Assignments to node references generate new recursive access paths for

that node reference in the obvious way (maintaining multiple possible access paths

for the left hand side of the assignment if the right hand side maps to multiple

paths). Assignments to primitive fields of a node reference create write access paths

by appending the primitive field to the access path(s) of the node reference, and uses

of primitive fields in expressions create read access paths by appending the primitive

field to the access path of the node reference. Conditionals in if statements can

generate read accesses, but are otherwise not evaluated; the analysis processes both

branches of the conditional. Access paths associated with node references are joined

in if statements using set union. For a compound statement s, ⇡r(s) is the union of

all the read access paths in the components of the compound statement, and ⇡w(s)

is the union of all the write access paths.

Calls Each call c contains summaries of all the reads and writes that could be

performed during the invocation of the call (including further recursive invocations).
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Summarizing the heap accesses is straightforward. A call’s heap read and write sets

(Hr(c) andHw(c)) are the unhttps://www.overleaf.com/project/5cbd2fe803073944b64c030eion

of the method body’s statement’s heap read and write sets. Note that because heap

locations cannot be accessed via fields of the tree, the set of possible heap locations

accessed by the recursive invocation is exactly the same as the caller’s.

Summarizing a call’s accesses to the tree is subtle. Because a recursive call can

make additional recursive calls, each access to the tree can repeat, each time being

rooted at a di↵erent node. To capture this information, we define an extended access

path (this follows the approach of [21]). Rather than being a member of the regular

set Ap, an extended access path is, itself, a regular set.

To construct the extended access paths for a particular call, traverse (node.r1, . . . ),

we first construct the base read (respectively, write) set of access paths by unioning all

the read (respectively, write) access path sets of the statements in the method body.

Consider a specific primitive access path in the read set: node.ra.rb.pa. The extended

access path for this path for this call is: node.r1(.Fr)
∗.ra.rb.pa. In other words, we

take the su�x of the access path and insert a regular set consisting of the child that

the recursive call descends to (which represents the root of the access paths in the

immediate callee) followed by zero or more additional children (which represents any

subsequent recursive calls made by the method)3. By constructing extended access

paths for each base access path for a call, we can obtain a set of regular sets whose

union (over) approximates all of the fields of the tree that recursive call might access.

3This is made more precise by using the subset of recursive fields that are actually visited by the
traversal function in question, rather than Fr
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Running example In our running example (Figure 2.1(a)), there are no heap

accesses, so we need to only consider tree access paths. We can obtain the following

access paths for the statements (note that in our example, n represents node):

⇡r(s1) = {n.l.v, n.r.v} ⇡w(s1) = {n.v}

⇡r(s2) = {n.v, n.x} ⇡w(s2) = {n.x, n.l.x}

⇡r(s3) = {n.v} ⇡w(s3) = {n.y}

The extended access paths for the calls are:

⇡r(f1(n.l)) = {n.l(.(l�r))
∗.l.v, n.l(.(l�r))∗.r.v}

⇡w(f1(n.l)) = {n.l(.(l�r))
∗.v}

⇡r(f1(n.r)) = {n.r(.(l�r))
∗.l.v, n.r(.(l�r))∗.r.v}

⇡w(f1(n.r)) = {n.r(.(l�r))
∗.v}

⇡r(f2(n.l)) = {n.l(.(l�r))
∗.v, n.l(.(l�r))∗.x}

⇡w(f2(n.l)) = {n.l(.(l�r))
∗.x, n.l(.(l�r))∗.l.x, n.l(.(l�r))∗.y}

⇡r(f2(n.r)) = {n.r(.(l�r))
∗.v, n.r(.(l�r))∗.x}

⇡w(f2(n.r)) = {n.r(.(l�r))
∗.x, n.r(.(l�r))∗.l.x, n.r(.(l�r))∗.y}

2.3.3 Building a Dependence Graph

We are now prepared to build the dependence graph to capture dependences

between statements and calls, which can help determine when fusion is legal. The key

to the dependence graph is that it captures the execution of every statement and call

across the set of traversals, T , considered for fusion assuming they are executing at the

same node in the tree. This is because the goal of fusion is to merge computations at

the same node of the tree together so that the two traversals can occur simultaneously.

The dependence graph is a directed graph G = (V,E). The graph contains a vertex

for each (compound) statement and call in the set of traversal functions T . Every
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vertex is labeled using a labeling function l ∶ V → T × ({s} ∪ Fr). In other words, a

vertex is labeled with a tuple whose first element is the traversal function the vertex

is from, and whose second element denotes whether the vertex is a statement (labeled

s) or a call (labeled with the recursive field of node that the call descends to).

The edges in the graph are directed, and capture data and control dependences

between statements and calls, both within traversals and across traversals.

For every pair of vertices v1 and v2, where v1 appears before v2 in program order

(either they are in the same traversal and v1 is earlier in the traversal, or v1 appears

in an earlier traversal than v2), (v1, v2) ∈ E i↵ one or more of the following is true:

1. v1 and v2 are part of the same traversal and there is a dependence through local

variables between v1 and v2. This can be established through a straightforward

intra-procedural reaching-definitions analysis.

2. v1 and v2 are part of the same traversal and v1 is a compound statement that

contains a return statement. In this case, v2 is control dependent on v1, as

if v1 returns, v2 will not execute. On the other hand, if v2 contains a return

statement, there will be a control dependence from v1 to v2 to ensure that v1

does execute.

3. Hw(v1) ∩ (Hr(v2) ∪Hw(v2)) ≠ � or Hw(v2) ∩ (Hr(v1) ∪Hw(v1)) ≠ �. In other

words, the two statements or calls access the same heap location, and at least

one of them is a write.

4. v1 and v2 are both statements, and ⇡w(v1) ∩ (⇡r(v2) ∪ ⇡w(v2)) ≠ � or ⇡w(v2) ∩

(⇡r(v1)∪⇡w(v1)) ≠ �. That is, if v1 and v2 are both statements, there is an edge

between them if they share an access path, with at least one of those accesses

being a write.

5. v1 (resp. v2) is a call and its extended access path(s) collide with the (extended)

access paths of v2 (resp. v1). The notion of collision is subtle. Assume, without

loss of generality, that v1 is a call. For each extended access path a1 ∈ ⇡w(v1),



19

we intersect a1 with each (extended) access path in ⇡r(v2) ∪ ⇡w(v2)4, and test

for the emptiness of the resulting regular set. If any such set is non-empty,

then v1 collides with v2. We can perform a similar procedure to check for the

scenario where v2 performs the write and v1 performs any colliding access.

The resulting dependence graph captures the ordering between statements and

calls that must be respected by any attempted traversal fusion: if two statements are

to execute at the same node in the tree at the same time, and there is a dependence

edge between them, they must execute in an order that respects that dependence.

Note that the dependence graph is guaranteed to be acyclic (since the edges are

directed in program order).

Running example Figure 2.1(d) shows the dependence graph for our running

example, leaving out the null test at the beginning of each traversal. Each null test

results in control dependences between that test and all of the other statements/calls

in its traversal.

2.4 Traversal Fusion

This section explains how Treefuser uses the dependence graph to determine

whether fusion is legal.

2.4.1 Traversal Fusion as Child-call Fusion

Fusing together two traversals means executing operations from multiple traversals

while visiting a node of a tree, rather than visiting the node separately for each

traversal. We can phrase the problem of fusing traversals as a problem of fusing child

calls. Suppose two traversals start at the same node (e.g., the root node). If we can

combine recursive calls to the same child from the two traversals, then a single visit to

that child will accomplish the work of both traversals (note that this does not mean

4If v1 is a statement, we can treat its access paths as singleton regular sets.
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the total number of visits is cut in half; after descending to the child, the traversals

may diverge upon further recursive calls).

Viewing fusion as fusing child calls is a generalization of “total” fusion. Suppose

we have two traversals, f1 and f2 that operate over a binary tree. Hence, each traversal

has two recursive calls, one visiting node.l and another visiting node.r. If the two

traversals’ calls to node.l are fused and their calls to node.r are fused, then we have

achieved total fusion: the fused function will traverse the tree just once, and at each

child call will do the work of both f1 and f2. If only some of the children are fused,

then we have achieved “partial” fusion. In Figure 2.1(f), the calls to the right child

are fused together, but the calls to the left child are not. If both traversals are at the

same node, they will both descend to the right child together, but will process the

left child separately. In general, then, the more recursive calls we can fuse together,

the fewer times we will visit nodes in the tree. Indeed, Treefuser’s goal is not to

“fuse traversals.” Instead, its goal is to fuse together multiple recursive calls.

2.4.2 Dependence Test and Fusion

Treefuser constructs a dependence graph as outlined in Section 2.3.3. This

dependence graph can then be used to test whether two calls can be fused together.

First, we slightly modify the labeling function for the graph. Rather than mapping

vertices to traversals and types (l ∶ V → T × ({s} ∪ Fr)), the labeling function maps

vertices to sets of traversals and types (l ∶ V → P(T ) × ({s} ∪ Fr)). The initial

dependence graph’s vertices are all labeled with single-element traversal sets.

Then, we define an operation called fuse, which takes an acyclic graph, G = (V,E),

and two call vertices, v1, v2 ∈ V , where l(v1) = (T1, r1) and l(v2) = (T2, r1) (i.e., both

vertices are calls that descend to the same child). fuse(G,v1, v2) produces a new

graph G′ = (V ′,E′) with:

V ′ is V with v1 and v2 removed, and a new vertex v12 added, where l(v12) = (T1 ∪

T2, r1)
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E′ retains all edges in E that are not incident on either v1 or v2, removes any edge

between v1 and v2, and for edges incident on v1 (or v2), replaces v1 (resp. v2)

with v12.

G′ represents fusing the calls v1 and v2. We can define fusability as follows:

Definition 2.4.1 Two calls, v1, where l(v1) = (T1, r1), and v2, where l(v2) = (T2, r1),

are fusable i↵ fuse(G,v1, v2) is acyclic.

The soundness proof for this definition is in Section 2.6, but the intuition is as

follows. Dependence edges between vertices in G require that the vertices execute

in that order to preserve either data or control dependence. Merging together two

call vertices (i.e., merging together two calls) ensures that those calls fwill happen

simultaneously, so the two visits to the child will occur at the same time. Any other

vertices that are dependent on either of those two calls will still need to respect their

original dependences, and if there is a cycle in the merged graph, there is no program

order that can respect all dependences.

Note that fusion does not require that the two child calls fused together come

from di↵erent traversals. In some settings, it may be more natural to conceive of

a traversal operation as visiting the same subtree multiple times, even though it is

possible to implement the operation with a single visit to a subtree. In such cases,

a programmer can write the “multiple subtree” version of the traversal and rely on

fusion to merge the subtree visits together.

Fusing together two child calls produces G′, and the process of fusing together

further child calls can be repeated recursively. The operation fuse is the fusion mech-

anism; choosing which child calls to apply it to is a policy decision (see Section 2.7)

and di↵erent fusion policies might result in di↵erent fused graphs.

Running example Figure 2.1(d) is the dependence graph for our running example.

There are two possible options for child fusion here: the two calls to the left child

(labeled (f1, l) and (f2, l)), and the two calls to the right child (labeled (f1, r) and
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s1

s2

s3f1, r

f12, l

f2, r

Fig. 2.3. Invalid dependence graph, resulting from attempted fusion of
left children in Figure 2.1(d).

(f2, r)). Figure 2.1(e) shows the result of fusing the two right children, producing

a new merged node (f12, r). Here we see that there are no cycles, so this is a valid

fusion option. Had we tried to fuse the two left children, we would have obtained

the dependence graph in Figure 2.3, producing a cycle, which is an invalid fusion.

Intuitively, this is invalid because the first traversal needs to visit its left child be-

fore computing n.v = n.l.v + n.r.v, while the second traversal needs to compute

n.l.x = n.x + 2 before visiting its left child. If both traversals descend to the left

child at the same time, one traversal will be unable to perform its computations at

the correct time.

2.5 Synthesizing a Fused Traversal

This section describes how Treefuser synthesizes a tree traversal from a depen-

dence graph, taking into account any fused child calls. The key is generating a single

tree traversal function, regardless of how many original traversals are represented in

the dependence graph, and regardless of how many child calls are fused. We begin

by presenting a basic traversal template that generates a valid single traversal for the

unfused dependence graph (Section 2.5.1). We then show how this same template

can be modified to generate traversals for merged children (Section 2.5.2). Finally,

we explain how this synthesis procedure naturally and implicitly incorporates any

required code motion (Section 2.5.3).
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Note that while fusion is a valid operation on any recursive calls to the same child,

whether from di↵erent traversals or from the same traversal, the synthesis procedure

presented here only applies to fusion of calls from di↵erent traversals.

2.5.1 Traversal Template

Treefuser generates a single traversal function from an (unfused) dependence

graph through rewrite rules. Consider a dependence graph generated from a set of

traversals T = {t1, t2, . . .}. The signature of the new traversal function is:

traversef (node, o1, o2, . . . , b1, b2, . . . )

Where o1, o2, etc., are pointers to (local) structures that contain fields corresponding

to the local variable parameters of traversals t1, t2, etc. (assume, without loss of

generality, that the names of the local variables in all of the traversals are unique).5

The variables b1, b2, etc., are boolean variables corresponding to each traversal. Intu-

itively, b1, b2, etc., determine whether a particular traversal is “active” during a given

visit to a node (i.e., during a given execution of the traversal function). The over-

all traversal is called by initializing the o objects to the appropriate local variables,

calling traverse on the root node, and passing in true for all of the boolean variables

(i.e., at the root, all traversals are active).

The next step is filling in the body of the traversal function. The first part of the

traversal function extracts all the local variables from (non-null) objects passed into

traversef and stores them in local variables with the same names as in the original

traversals.

Treefuser then generates a topological sort of the dependence graph to de-

termine the order statements/calls should appear in the body. It then inserts the

statements and calls into the body one by one.

5We use this level of indirection, rather than directly passing local variables, because not all local
variables might exist at a given call site, as we will see later. In such cases, we pass null for the
relevant parameter.
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Statements For each statement si with vertex label ({tj}, s), Treefuser gener-

ates the following code:

if (bj = true) then s′i
label i ∶

where s′i is si with all return statements replaced with

bj = false;goto i

Recall that bj is the variable that determines whether traversal tj is meant to execute

during this visit to a node. Hence, si, which comes from traversal tj should only

execute if bj is true. Moreover, if si calls return, the traversal should truncate at this

tree node and not descend to any further children. This is achieved by having the

traversal turn itself o↵ by setting bj to false, and then skip over the remainder of si

(with the goto statement).

Calls For each recursive call vertex label ({tj}, fr), (i.e., a recursive call that looks

like:

traverse (node.fr, lj1 , lj2 , . . . )), Treefuser generates the following code:

if(bj = true) then

oj.lj1 = lj1 ; oj.lj2 = lj2 ; . . .

traversef (node.fr,null, . . . , oj, . . . , false, . . . , bj, . . . )

In other words, if traversal tj is still active by the time it gets to the call, it initializes

oj with the necessary parameters to execute traversal tj, and passes in null for all

the other objects. It then passes bj into the recursive call (signifying that if tj is st

ill active, it should continue to child fr), and passes false for all the other boolean

variables (signifying that, for this call, no other traversal is active).

Running example Figure 2.4 shows the result of using this transformation to

produce a single traversal covering f1 and f2 from our running example. Note that
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f(n, b1, b2)    
  if (b1) if (n = null)
    b1 = false; goto l1
l1:
  if (b1) f1(n.l, b1, false)
  if (b1) f1(n.r, b1, false)
  if (b1)
    if (n.isLeaf) 
      n.v = 1
    else
      n.v = n.l.v + n.r.v
  if (b2) if (n = null)
    b2 = false; goto l2;
l2:
  if (b2)
    if (!n.isLeaf)
      n.x = n.v
      n.l.x = n.x + 2
  if (b2)
    n.y = n.v * 2
  if (b2) f2(n.l, false, b2)
  if (b2) f2(n.r, false, b2)

s1

s2

s3

Fig. 2.4. Single traversal function generated for running example by
Treefuser.

this fused traversal clearly performs exactly the same work as the original traversals—

indeed, it generates exactly the same schedule of computation as in Figure 2.1(c).

2.5.2 Generating Code for Fused Calls

So what happens if the dependence graph we are synthesizing code from contains

fused calls? Recall that when a vertex in the dependence graph represents a fused call,

its label captures the set of traversals that the call belongs to. Consider generating

code for a fused call with label ({ti, tj}, fr) (a call to child fr from traversals ti and

tj). The generated code for this call is:
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if(bi = true ∨ bj = true) then

if (bi = true) then oi.li1 = li1 ; . . . else oi = null

if (bj = true) then oj.lj1 = lj1 ; . . . else oj = null

traversef (node.fr,null, . . . , oi, oj, . . . , false, . . . , bi, bj, . . . )

The fused call occurs when either of the two traversals are active. The call takes

in both sets of local variables (if both calls are active) and passes in the active status

of both traversals. Hence, if both ti and tj are active when this call is made, the

resulting invocation will execute the statements from both ti and tj. Note that no

other part of the generated code needs to change. All compound statements can keep

their same, single-traversal guards.

Applying this rewrite to the fused graph in our running example (Figure 2.1(e))

yields the code of Figure 2.1(f). Note that this code has redundant checks and

unnecessary checks elided for clarity (for example, both null checks occur at the

beginning of the method body and return if n = null, so can be combined into a

single, unguarded null check).

2.5.3 Code Motion

An interesting side e↵ect of the fusion and synthesis procedure is that code motion

is naturally and implicitly incorporated. The dependence graph tracks dependences

between statements and calls without regard to their original position in their various

traversals (indeed, the only time program order matters in the dependence graph is

in determining the targets of control dependence edges and determining the direction

of dependence edges). As a result, if a statement must move and can move to enable

fusion, the fusion procedure will discover this and the synthesis process will implement

that code motion through its topological sort. If the necessary code motion cannot
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happen due to the existence of other dependences, cycles in the graph will make that

clear.

In our running example, statement s3 is preorder work in traversal f2. However,

because of its dependence on s1, it must appear after s1 in any fused traversal. s1,

in turn, must appear as post-order work due to its dependences on the calls to the

left and right children. The only way to achieve both objectives is to move s3 to be

post-order work as well, which the topological sort achieves.

2.6 Soundness

There are two correctness criteria that must be met for fusion to be sound. First,

we must preserve work: all of the operations performed by a given traversal in the

unfused code must be performed in the fused code, and no more. In other words,

each traversal must visit exactly the same portions of the tree it did before, and no

more. Second, we must preserve dependences: if two operations have a dependence,

then the operations must occur in the same order both in the original, unfused code

and in the fused code.

We address these two criteria in turn.

2.6.1 Preservation of Work

The first step in proving soundness is confirming that the transformed code per-

forms exactly the same amount of work as the original code—in other words, exactly

the same set of operations (statements) are performed. We will show this assuming

that all the dependences are satisfied (a fact we will prove in the next section); as

a result, as long as the fused traversal executes the same set of operations as the

original traversals, we can be sure that the operations each behave the same way.
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Theorem 2.6.1 As long as all dependences are satisfied, a fused traversal method

synthesized from the dependence graph will execute exactly the same set of operations

as in the original, non-fused traversals.

Proof We show two things: i) if a statement or call executes in the original code,

it will execute in the transformed code; ii) if a traversal truncates in the original

code—meaning that traversal stops for a particular subtree—the same will happen

in the transformed code.

1. If a statement executes in the original code, then execution of its traversal must

have proceeded to this statement from the root of the tree without encountering

a return. In the transformed code, the boolean flag controlling execution of

this traversal starts as true. It can only be set to false upon encountering a

return. As long as the flag is true, because we are assuming all dependences are

satisfied, the traversal will make all of the same calls as the original traversal

until it arrives at the statement in question, which will execute.

2. A traversal truncates in the original code by either executing return, ensuring

that it will not visit its children, or by encountering a base case and no longer

making child calls. If truncation happens due to a return, the transformed code

skips over the remainder of the compound statement and sets the boolean flag

to false. This ensures that no more work from the traversal will happen at the

current node and, because that boolean flag cannot be re-set to true without

returning from the current node, ensure that no more work will be performed

even if the traversal descends into children from the current node.

Hence, statements in the fused traversal will execute i↵ they executed in the

original code.
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2.6.2 Preservation of Dependences

The other aspect of soundness is the preservation of dependences: if two (dynamic)

statements occur in a particular order in the original code, and there is a dependence

between them, they must execute in the same order in the fused code. To do otherwise

would lead to di↵erent computational results. Note that we do not care about the

relative ordering of statements that do not have dependences between them (indeed,

the entire point of fusion and other transformations is to alter the execution order

of these statements). We also assume here that the trees being traversed are finite:

each traversal will eventually terminate.

Theorem 2.6.2 Given an original, acyclic dependence graph, G, obtained from a set

of traversals T , a dependence graph G′, obtained by fusing two calls in G, and the

traversal function t′, synthesized from G′: if G′ is acyclic, then all statements that

are ordered by data or control dependences in T execute in the same order in t′.

Proof We consider all possible cases of dependences between statements and calls,

both within a single traversal in T and across multiple traversals in T , and argue that

if a dependence exists in T , it will be preserved in t′. We denote the jth statement

in traversal i as si,j, and the jth call to the kth child in traversal i as cki,j. All

statements and calls are relative to executing at a particular node in the tree, and

hence dependences between statements only occur at that particular node. If any

dependence occurs between operations at di↵erent nodes, that dependence must be

between a statements and a call, or between two calls. Note that here we rely on the

sound overapproximation of dependences produced by the static analysis for building

the dependence graph (Section 2.3).

si,j → si′,j′, si,j → cki′,j′, cki,j → si′,j′: If i = i′, there is a dependence between two state-

ments or a statement and a call from the same traversal in the original code and

this dependence is captured by G. In any fused dependence graph, this edge

still exists. A topological sort of the dependence graph will require that the

first statement appear before the second in t′, so the dependence is preserved.
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If i ≠ i′, this dependence is between two statements/calls in di↵erent traversals.

Note that for the dependence to be in this order, traversal ti must have occurred

before traversal ti′ . This dependence will be reflected in G and preserved in G′,
and, in t′, the operation from the first traversal will appear before the operation

from the second. Because the dependence occurs when the two traversals are at

the same node, the two operations’8 appearing in the same order in t′ su�ces

to preserve the dependence.

cki,j → ck
′

i′,j′: These are two calls, which are captured as separate vertices in G. If k ≠ k′
or if k = k but the two calls are unfused in G′, then this dependence is preserved

by the same argument as the previous case.

When the two calls are fused is the interesting case. In the original code, all

of the first call will complete before all of the second call. The dependence

exists because the first call executes one or more statements that one or more

statements in the second call depend on. We must show that, despite the fusion

of the two calls, the necessary statements from the first call still execute before

the relevant statements from the second. We show this by induction on the

maximum depth of the call stacks that originate from the two calls.

We denote the maximum depth of the call chain originating from cki,j as ki, and

from ck
′

i′,j′ as ki′ . Note that ki and ki′ are bounded by the depth of the tree,

as each recursive call moves down to a child node of the tree. Without loss of

generality, assume that ki < ki′ .

Base case: ki = 1: If both ti and ti′ start at node n and invoke cki,j and ck
′

i′,j′ ,

respectively, ending at node n′, there is a dependence between the two traversals

at node n′. Because dependences in the dependence graph are captured relative

to an arbitrary node, this dependence at n′ is captured in the dependence graph

G. Moreover, because ki = 1, the dependence must be from a statement from ti

to a statement or call in ti′ . Hence, this dependence must also exist in G′. The
topological sort ensures that the (static) statement that leads to the operation
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in ti will occur before the (static) statement that leads to the operation in ti′ ,

and hence in the fused case, when both traversals descend to the child at the

same time, the dependence will be preserved, by the same argument as in the

first case above.

Inductive hypothesis: ki = l: Assume that if the call chains rooted at cki,j are

at most l calls deep, that the dependence is guaranteed to be preserved.

Inductive case: ki = l+1: Consider descending one call deep into the call chain

(i.e., both ti and ti′ make their first recursive calls). There must be at least one

dependence between some operation in ti and some operation in ti′ (including

between successive recursive calls). Again, these dependences must be captured

by G. If the dependences involve any operations except cki,j and ck
′

i′,j′ , then

the dependences are also captured by G′, and by the arguments from above,

these dependences are preserved by the fused traversal. If the dependences are

between cki,j and ck
′

i′,j′ , then, because we have moved one level down in the tree,

the maximum depth of the call chain rooted at cki,j is now l. Appealing to the

inductive hypothesis, this dependence is preserved.

Hence, all dependences that exist between traversals in T are overapproximated

and captured in G, and, if two calls in G are fused to produce G′, all such dependences

are preserved by the traversal synthesized from G′.

Note that Theorem 2.6.2 can be applied recursively: the fused graph G′ is, itself, a
valid dependence graph for a recursive traversal. Further fusion that does not create

cycles is valid by the same argument.

2.7 Implementation

Treefuser is implemented as a Clang6 compiler tool. It implements the process

of generating a dependence graph, identifying candidates for fusion, and synthesizing

6http://clang.llvm.org
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a new traversal function, as detailed in the previous sections. The implementation is

publicly available for download7.

2.7.1 Implementation Limitations

Because our prototype implementation of traversal fusion focuses on the challenges

specific to this problem, Treefuser relies on several annotations and restrictions to

simplify the implementation:

1. Rather than building a shape analysis to verify the “treeness” of the structure

being traversed [25,26], Treefuser relies on annotations to identify tree data

structures and recursive fields with in those structures .

2. Treefuser does not allow pointers in the traversal function (except for the

operating tree node). However Treefuser allows the existence of pointers and

loops in external “leaf” 8 functions, which use annotations to abstract the access

e↵ects of the functions rather than analyzing them. These annotated functions

are the only functions allowed to be called in the body of the traversals (other

than the recursive traversing function calls).

3. Section 2.3.1 mentions some other restrictions of the language that exists in

Treefuser as well (i.e: traversals should have void return types), a more

robust implementation can relax many of them as mentioned earlier.

These restrictions are not fundamental limitations of the fusion approach, but

instead are limitations of Treefuser’s prototype implementation. Many of these

restrictions can be relaxed by using more sophisticated analyses in the access-path

construction process (e.g., alias analysis to analyze heap accesses in the program,

interprocedural analysis to handle function calls, and widening operators to account

7https://bitbucket.org/plcl/treefuserrelease.git
8We call these functions leaf functions because they do not call back to any of the traversal functions
considered for fusion.
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for potentially unbounded control flow in traversal bodies). Adding such analyses to

the implementation would both reduce the annotation burden and lift many of the

restrictions on the language. Nevertheless, the annotation burden is quite low even in

our prototype implementation. The next section discusses these annotations in more

detail.

2.7.2 Annotation Usage

Treefuser’s prototype implementation uses annotations on data structures and

e↵ect annotations on “leaf” functions to avoid the need to implement shape and alias

analyses and to allow users to implement more complex control constructs than its

input language allows. This section briefly describes these annotations and shows

an example of using these annotations in a program. Treefuser has four types of

annotations:

1. TF TreeStructure : A class annotation used to identify tree structures.

2. TF TreeRecursiveField : A class member annotation used to identify recursive

fields within the tree structure. This annotation, and the previous one, are used

in lieu of a shape analysis to identify tree data structures.

3. TF Traversal : A function annotation that is used to direct Treefuser to

the functions that it should consider for fusion. Treefuser analyzes and

validates the compliance of the those functions with the restrictions imposed by

the language, and only valid traversals are considered for fusion.

4. TF AbstractAccess((id, access type, access location)�...) : An e↵ect annota-

tion on (leaf) functions that summarizes the read and write e↵ects of these

functions called from traversal functions. These leaf functions have no re-

strictions on the operations they perform, provided they are annotated with

a TF AbstractAccess annotation. The e↵ect summaries are given as a list of

tuples, each of which consists of:
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(a) id: An abstract id that refers to an accessed location or data structure. We

use ids to allow treating operations on complex data types (e.g., inserting

a key into a set) as a single read or write on an abstract location.

(b) access type: Whether the access is a read (’r’) or write (’w’).

(c) access location: Indicates whether the accessed location is a local to the

current node of the tree or global and accessible from all nodes.

Treefuser looks for sequences of “potentially fusable” methods in the remainder

of the code that operate on the same tree and attempts to perform fusion as outlined

in Section 2.4.

Figure 2.5 shows an example of a simple program written in Treefuser that

uses the di↵erent annotations described earlier: a definition of binary tree with a set

of integers stored at each node, keys, along with a mark flag. markNodes is a traversal

that operates on the tree, marking nodes that have the given input key stored in its

keys set. An annotated function, checkLocalSet is used to do the local search in

the keys set, the set keys is abstracted by the id 1 and any functions that access

keys should use the same id.

2.7.3 Fusion Heuristic

Treefuser’s dependence graph abstraction prescribes a test for when call fusion

is legal, and its synthesis procedure generates valid fused traversal methods for any

legal dependence graph. However, the particular order in which calls are fused is

open to exploration. Unfortunately, the space of possible fused traversals is vast.

Choosing to fuse together children in di↵erent orders can introduce di↵erent sets of

dependences (because of the vertex merging step in the fusion process), and hence

di↵erent choices for fusion can lead to di↵erent performance characteristics.

Treefuser implements a simple greedy heuristic. It chooses a call vertex in the

graph as the target call. It then iterates through each remaining unfused call and

attempts to fuse it with the target call. If the call cannot be fused with the target it
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Fig. 2.5. Treefuser code example.

is set aside. Once all unfused calls have been attempted to be fused with the target,

Treefuser chooses another unfused call as the new target call. This process repeats

until no more fusion is possible.

Ultimately, what we desire is a maximization of dynamic fusion: having as many

traversals overlap as much as possible during the execution of the traversal method(s)

on a particular tree. Sadly, heuristics such as maximizing the number of static calls

that are fused (already a challenging objective, due to the combinatorial search space)

may not achieve this goal: fusing together several calls may leave the two calls that

account for the most work in a particular tree unfused. Dynamic fusion is a run-

time property and hence is not particularly amenable to static optimization, though

profiling information may help. We leave a full exploration of e↵ective fusion heuristics

to future work. However, our evaluation does look at the potential e↵ect of the fusion

heuristic on the performance of the fused schedule (Section 2.8.4).
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2.7.4 Optimizations

Traversal simplification The basic code generation strategy described in Sec-

tion 2.5 produces a correct fused traversal, including any opportunities for partial

fusion, but also an ine�cient one. While the fused traversal does not traverse more

nodes of the tree than it has to, it performs more work at each node of the tree than is

often necessary. This is because the fused traversal invokes the same recursive func-

tion at each node. In other words, even if a particular (original) traversal is not active

at a particular node of the tree, the recursive function will still include all of the op-

erations of that traversal. While those operations are masked o↵ by the boolean flags

generated by the fused synthesis, these additional conditional checks can still result

in a substantial number of extra instructions. Moreover, calling traversal functions

with a large number of arguments, even if many of those arguments are null or false,

can add overhead. To mitigate these overheads, Treefuser performs a traversal

simplification optimization.

Recall that fusion in Treefuser boils down to fusing together multiple child

calls in a traversal function. If two child calls are fused among a set of five recursive

traversals, that fused child call will only have two traversals active. However, the

fused function that gets called includes the code of all five traversals, even though the

other three traversals are “deactivated” by passing false for their active flags.

Traversal simplification notes that if only two calls are active for a given child

call, Treefuser can instead synthesize a fused traversal as if those were the only

two traversals in the system. In other words, the called function will only contain code

from the two fused traversals. In the limit, if there is a child call that is unfused—

only one traversal is active—Treefuser will merely call the appropriate original

traversal function on that child. Deciding how to synthesize these smaller, simpler

traversal functions is simple, since the dependence graph representation captures

which traversals are active at each call. In our running example (Figure 2.1(f)),
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traversal simplification will replace the first call to fused with a call to f1, and the

third call to fused with a call to f2

Note that traversal simplification does not necessarily mean that only the code

for active traversals will exist in a traversal function. Traversal functions may be

deactivated due to dynamic e↵ects during the traversal. Traversal simplification op-

erates on a sound, static overestimate of which traversals are active at any point in

an execution.

Improved code motion When performing a topological sort of the fused depen-

dence graph to generate the synthesized code, there are no restrictions on the relative

positioning of statements that do not have any dependences among them. Tree-

fuser attempts to place statements from the same source traversal next to each

other in the synthesized traversal. By doing so, Treefuser can merge together the

guard conditionals that ensure execution only happens when the traversal is active,

and can merge together the jump targets that any returns are directed to. In ad-

dition, Treefuser tries to place dependent statements close together to improve

reuse.

2.8 Experiments and Evaluation

As discussed in the introduction, there are many applications of traversal fusion:

improving locality or parallelism, eliminating intermediate structures, increasing opti-

mization opportunities, etc. The common factor uniting these applications is reducing

the number of node accesses by the set of traversals. We evaluate three case studies,

demonstrating that we are able to substantially reduce the number of times tree nodes

are visited and enhance the performance and the locality of the traversals:

1. We fuse two passes from the popular Fast Multipole Method (FMM) [28].

2. We fuse multiple DOM traversals in a document rendering engine, written in a

general language.
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3. We fuse 6 interlocking abstract syntax tree passes in a small compiler, each

written as a fine-grained traversal9 in a general language.

All three case studies require Treefuser’s code motion to perform e↵ective fu-

sion. While the FMM case study’s passes can be totally fused, the other two case

studies also require Treefuser’s partial fusion to obtain any benefits. We also

evlaute the sensitivity of the fusion transformation to the fusion heuristic by compar-

ing the performance of di↵erent fusing schedules of the AST passes.

Experimental platform As mentioned in Section 2.7, Treefuser is written as

a Clang tool. Traversals are written in subset of C++, and annotated as described

in Section 2.7 for processing with Treefuser. After processing, the synthesized

code is compiled with LLVM version 3.8.0. The execution platform for the various

performance runs is a dual 12-core, Intel Xeon 2.7 GHz Core with 32 KB of L1 cache,

256 KB of L2 cache, and 20 MB of L3 cache.

2.8.1 Case Study 1: Fast Multipole Method

The fast multipole method (FMM) is a numerical technique used to evaluate all

pairwise interactions of a large number of points distributed in a space (e.g. long-

ranged forces in the n-body problem, gravitational potential, and computational elec-

tromagnetic problems) [29, 30].

In this case we are considering the application of computing the gravitational

potential for a large set of points distributed in a two dimensional space, the points

are arranged in quad-tree where each leaf node contains a subset of the points that

reside within a specific subspace, and interior nodes have summary information (e.g.,

the center of mass of all descendant points).

FMM is typically implemented as multiple top-down and bottom-up passes over

the quad-tree. We consider two of these passes: the first traversal, which updates the

9These traversals are too complex to easily express using attribute grammars.
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Fig. 2.6. Speedup of FMM traversals fused by Treefuser

potential of each node based on its siblings, and the second traversal, which propagates

these values down the tree. We made slight modifications to the FMM implementation

from the Treelogy benchmark suite [31] to fit the code into our restricted language

(these modifications mostly consisted of moving complex mathematical computations

into functions annotated with—obvious—read and write e↵ects).

Treefuser was able to fully fuse the two passes and exhibit a performance

improvement up to 35% over the unfused version, Figure 2.6 shows the speedups for

di↵erent input sizes.

2.8.2 Case Study 2: Fusing Render-tree Passes

Tree traversals are common in any document rendering engine, including in web

browsers. Considering a simple scenario: once the web page is acquired as DOM

(Document Object Model) and CSSOM (CSS Object Model), the browser rendering

engine constructs what is known as a render-tree. Then the rendering engine per-

forms multiple traversals upon this tree to display the content on screen: determining

the position of objects on the screen, the style of elements, etc. While these traver-
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sals individually appear to be simple, in the presence of multiple traversals it is not

trivial to fuse them manually. Automatically fusing these traversals can enhance the

performance of the rendering engine without sacrificing programmability.

We have implemented four di↵erent traversals sequentially performed on a binary

render-tree.10 These traversals closely follow the ones shown in [18]. These traversals

require partial fusion: all four traversals can be fused while visiting the left child,

visits to the right child are decomposed into sets of two traversals. When rendering a

tree with 219 − 1 elements, the unfused traversals visit 1835004 nodes in total, while

the fused traversals visit 1048555 nodes, a reduction in node visits of 42.9%. Table 2.1

illustrates the performance benefits of fusing render-tree traversals: Treefuser de-

livers a 45% performance improvement, driven by substantial reductions in L2 and

L3 cache accesses and misses.

Table 2.1.
Performance of render-tree traversals fused by Treefuser.

Performance Parameter Value

Runtime Speedup 1.4515

Normalized L2 Data Cache Accesses 0.5688

Normalized L2 Data Cache Misses 0.5473

Normalized L3 Cache Accesses 0.5474

Normalized L3 Cache Misses 0.4843

2.8.3 Case Study 3: Fusing AST Passes

We implemented a compiler for a simple language (essentially, typed IMP) that

builds an abstract syntax tree (AST) and then performs several AST passes over

10Render-trees are typically binary trees: larger out degrees are captured with the equivalent of
“head” and “rest” pointers.
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that tree to perform various compilation steps. The AST, which is naturally written

using several di↵erent node types, and the traversals are rewritten according to the

procedure described in Section 2.3.1 to yield a single tree node type. The resulting

tree nodes have 12 di↵erent possible children. The six AST passes vary in complexity

from performing constant folding, to a pair of passes that together perform available

expressions analysis (avoiding the iterative nature of dataflow analysis by taking ad-

vantage of the structured nature of the AST [32]). Table 2.2 lists the six passes, their

size in lines of code, and the number of recursive calls they make. These passes are

called in succession. Notably, the passes have complex dependences on one another.

For example, constant folding changes the expressions in the AST, which a↵ects which

expressions are available.

To get a sense of how complex the traversals are, Figure 2.7 shows the dependence

graph for just the available expressions pass—manual fusion of these passes would be

impractical. Further, these passes are non-trivial to express using formalisms such

as attribute grammars due to their complexity (e.g., constant propagation visits one

child type twice, which would have to be decomposed into multiple attributes for

expression in an attribute grammar).

Table 2.2.
Details of the AST fused passes.

Pass LoC # of calls Cumul. analysis

time (ms)

Constant folding 50 12 123

Constant prop. 96 13 137

Find uses 40 12 160

Find defs 47 7 176

Computed exprs. 63 10 187

Available exprs. 100 12 225
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Fig. 2.7. Dependence graph of available expressions pass.

Treefuser performance The final column in Table 2.2 shows the amount of time

Treefuser takes to analyze the dependences in a set of passes and synthesize a fused

traversal. Because analysis time depends on the number and complexity of the passes

analyzed, we give times for various configurations of passes. An entry in the column

for a given analysis pass gives the analysis time for a configuration containing all of

the passes in the table from the first row to the row in question (e.g., the entry for

the constant prop. pass gives the time to fuse the constant prop. and the constant

folding passes, while the entry for the last row gives the time to fuse a program that

uses all six passes).

As we can see, Treefuser takes very little time to analyze and generate fused

traversals. Note, moreover, that most of the analysis time goes in fixed overhead (e.g.,

analyzing the code to find fusable traversals). The analysis complexity itself is O(n2)

where n is the number of statements. (Generating the access paths is O(n), as our

target language does not contain loops, and building the dependence graph is O(n2)

as all pairs of statements/calls must be compared. The complexity of performing

fusion could, in theory, be higher depending on the complexity of the fusion heuristic

used.) In particular, going from analyzing 50 lines of code (row 1) to 400 (row 6)

adds only about .1 seconds to the total analysis time.
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Fig. 2.8. Reduction of the number of static recursive calls for AST traver-
sals fused by Treefuser

.

Static fusion e↵ectiveness The first measure of e↵ectiveness we study is static

fusion e↵ectiveness: given the six passes, each of which invokes some number of child

calls, how many of those calls is Treefuser able to fuse together?

Figure 2.8 11. shows the number of calls made to each recursive field type in the

tree node12.

We find three things: first, some traversals cannot be fully fused with other traver-

sals, however fusing some calls in those traversals is possible, which indicates that

partial fusion is necessary to achieve better reduction in traversal calls. Second, fu-

sion with code motion turned o↵ produces a fused traversal with 37 calls (versus 65

calls in the baseline traversals). Finally, enabling code motion fuses the traversal fur-

ther to just 17 calls. These results suggest that the two key novelties of Treefuser’s

11Data is categorized by the visited child, “total” bar is scaled by a factor of 10 to fit on the chart
12Note that whileBody has seven calls, even though there are only six passes; this is because the
constant propagation AST pass visits the body of the while loop twice.
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transformations, generalized code motion and partial fusion, are necessary to perform

e↵ective fusion.

Dynamic fusion e↵ectiveness Looking at static call fusion alone does not tell

the entire story. Two calls may be fused, but be for portions of the AST that do not

account for much of the traversal. Instead, we also want to investigate dynamic fusion

e↵ectiveness: for a test suite of programs, how many traversal calls are eliminated

by fusion. We examine three di↵erent input programs of di↵erent sizes; Figure 2.9 13

shows the number of times the AST nodes are visited by the di↵erent configurations

of traversals: unfused, fused without code motion, and fused with code motion. We

can see that without code motion, we can reduce the number of node visits by 19%

in aggregate. When combined with code motion, we are able to reduce AST node

visits by 56% in aggregate, demonstrating the ability of Treefuser to substantially

coarsen the computation at each node in the tree.

Performance Fusion has the potential to enhance locality by bringing accesses to

same set of data closer. However, the specific improvements in locality depend on the

amount of data reuse between traversals, and the overall footprint of the computation.

Figure 2.10(a) shows the reduction in L2 and L3 cache misses for three di↵erent input

programs. The amount of reduction in the cache misses di↵ers from one program to

another, but in all cases there is a substantial decrease in the number of misses in

both levels of cache.

The reduction in the cache misses directly a↵ects the runtime of the traversals,

Figure 2.10(a) shows the runtime speedups for the the three programs, with di↵erent

sizes (larger sizes are generated by replicating the functions in the base program

with di↵erent names, to simulate larger whole-program compilation of programs with

similar AST structures). For small ASTs, the runtime is very short, and subject to

13Data is shown across three programs for unfused traversals, fused without code motion, and
fused with code motion, the numbers of visits is normalized to the number of visits in the unfused
traversals.
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Fig. 2.9. Reduction in dynamic number of node visits for AST traversals
fused by Treefuser.

measurement noise, hence there is no consistent performance story.14 Once the ASTs

grow large enough to fill the cache, performance improvements can be seen, with

speedups of up to 70%.

Note that ASTs are not data-intensive structures and the interaction between

the accesses in most traversals is limited to some fields and the node pointer. We

would expect a larger performance improvement in data intensive applications with

larger chunks of data reuse. AST traversals were chosen here to show the ability of

Treefuser to fuse complicated traversals.

Overhead There are two sources of overhead for the fusion transformation. First is

an increase in instruction overhead, due to the additional guards inserted by (partial)

fusion. The measured instruction overhead for the AST passes was relatively low:

10% or less for all three input programs. A second source of overhead is an increase

in instruction misses due to the larger code footprint of fused code. While this

14Note that performing fusion for small trees is akin to performing loop tiling for small matrices—
there is no opportunity for performance gains since the whole structure fits in cache.
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Fig. 2.10. Cache and Runtime performance of AST traversals fused by
Treefuser.

overhead is noticeable for small inputs, for larger inputs the large decrease in data

cache accesses and misses more than compensates.

2.8.4 Sensitivity Analysis

Di↵erent fused schedules might be generated using the general approach discussed

in this work: the fusion heuristic used in constructing the fused graph (Section 2.7.3),

along with the chosen topological order (Section 2.5.1), determine the final fused

schedule. Treefuser uses a greedy approach for generating the fused graph and an

arbitrary topological order in the synthesis process. This section studies the sensitiv-

ity of performance to these choices.

Five di↵erent fused schedules of the AST passes are studied. The fused graphs

of these schedules were generated by applying the greedy approach that is used in

Treefuser, but with the nodes being merged in a di↵erent random order each time

(exploring more sophisticated fusing heuristics is beyond the scope of this work).



47

1.00 1.00 1.00

0.91
0.92 0.91

0.90

0.92

0.94

0.96

0.98

1.00

1.02

N
or
m
al
ize

d	R
un
tim

e

input	program	(tree	size)

math (116M)															calculator	(119M)															 constant(90M)

Fig. 2.11. Sensitivity analysis of fusing and ordering criteria in Tree-
fuser.

Figure 2.1115 shows the runtime of these five fused schedules, normalized to the

best schedule among all of them. It is worth mentioning first that even the worst-

performing schedule shows a significant speedup of (34%, 26% and 6%) for the three

input programs respectively from left to right. While the performance di↵erences

are statistically significant, there is only about a 10% di↵erence between the best-

performing and worst-performing fusion choices. The results shows that it will be

useful to further explore the space of fusion policies, yet, even with an arbitrary

choice, fusion gives a decent speedup.

2.9 Conclusions

This chapter presented Treefuser, a framework for performing fusion of general

tree traversals written in an imperative language. Unlike previous work on fusion

of tree traversals, Treefuser allows programmers to write a series of small, fine-

grained tree traversals in a general-purpose language, without the use of ad hoc, high-

level abstractions, and then automatically merges the traversals together to perform

15The X axis shows the input name and the number of nodes for each of the inputs; the Y axis
shows the runtime of the di↵erent schedules normalized to the best schedule.
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coarser-grained operations at each node in the tree. Treefuser integrates two key

novelties: general code motion that allows more operations to be fused together, and

partial traversal, that allows for the coarsening of computation even if two traversals

are not fully fusable.

The enabling techniques for Treefuser’s transformations are a dependence rep-

resentation that can be extracted from general traversal code, a dependence test that

allows the framework to determine the validity of fusion while accounting for code

motion, and a synthesis procedure that allows complex traversals to be synthesized

from this high level abstraction. We show through three case studies that i) when

there is reuse between traversals, Treefuser is able to provide good performance

benefits; and ii) Treefuser is able to perform intricate partial fusion and code mo-

tion on a series of styling passes over a render-tree and AST traversals in a compiler,

dramatically reducing the number of node accesses in both cases for large trees.
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3. GRAFTER: SOUND, FIND-GRAINED TRAVERSAL

FUSION FOR HETEROGENEOUS TREES

The previous chapter introduces Treefuser, a novel approach for fusing tree traver-

sals using a dependency graph abstraction. However, the previously presented is not

very practical. More specifically, it does not support heterogeneous trees, mutual

traversals, or tree mutations.

This chapter introduces the second part of this thesis; Grafter [33] an exten-

sion for the work presented in chapter 2 that supports a more rich language where

heterogeneous trees can be expressed without loss of e�ciency. Furthermore, grafter

supports traversals that are written as a set of mutually recursive functions, and allow

structural leaf mutations for the traversed tree.

Overall, grafter is capable of performing more fusion (it introduces type based

partial fusion) with lower overhead and achieves better speedups even for small trees

(which Treefuser fail to do).

3.1 Introduction

Many applications are built around traversals of tree structures: from compil-

ers, where abstract syntax trees represent the syntactic structure of a program and

traversals of those ASTs are used to analyze and rewrite code; to web browsers and

layout engines, where render trees express the structure of documents and traversals

of those trees determine the location and appearance of elements on web pages and

documents; to solving integral and di↵erential equation of multi-dimensional spatial

functions where kd-trees are used to represent piecewise functions and operations on

those functions are implemented as tree traversals. There is a fundamental tension

between writing these applications in the most ergonomic manner—where, for exam-
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ple, a compiler is written as dozens of individual AST-rewriting passes [2, 3]—and

writing these applications in the most performant manner—where many AST traver-

sals must be fused into a single traversal to reduce the overhead of traversing and

manipulating potentially-large programs [3].

In an attempt to balance these competing concerns, there has been prior work

on compiler and software-engineering techniques for writing simple, fine-grained tree

traversal passes that are then automatically fused into coarse-grained passes for perfor-

mance reasons [3–7,16]. In the world of functional programs, deforestation techniques

rewrite data structure operations to avoid materializing intermediate data structures,

either through syntactic rewrites [8, 9] or through the use of special combinators

that promote fusion [13]. For web browsers, render-tree passes can be expressed in

high-level, attribute grammar–like languages [6] and then passed to a compiler that

generates fused passes [7]. For solving di↵erential and integral equations, computa-

tions on spatial functions can be expressed using high-level numerical operators [4]

that are then fused together into combined kd-tree passes by domain-specific com-

pilers [4, 5]. In compilers, AST-rewriting passes can be restructured using special

miniphase operations that are then combined (as directed by the programmer) into

larger AST phases that perform multiple rewrites at once [3].

Previous approaches rely on programmers using special-purpose languages or pro-

gramming styles to express tree traversals, limiting generality, Treefuser, by Sakka

et al., o↵ers an alternative [16]. Programmers write generic tree traversals in an

imperative language—a subset of C—with no restrictions on how trees are traversed

(unlike Rajbhandari et al. who limit computations to binary trees traversed in pre-

or post-order [4, 5], or Petrashko et al. who require very specific traversal structures

in miniphases [3]). Treefuser analyzes the dependence structure of the general tree

traversals to perform call-specific partial fusion, which allows parts of traversals to be

fused (unlike other prior work), and integrate code motion which implicitly restruc-

tures the order of traversals (e.g., transforming a post-order traversal into a pre-order
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traversal) to maximize fusion opportunities. Treefuser hence represents the most

general extant fusion framework for imperative tree traversals.

Unfortunately, Treefuser su↵ers from several key limitations that prevent it

from fulfilling the goal of letting programmers write idiomatic, simple tree traver-

sals while relying on a compiler to automatically generate coarse-grained e�cient

traversals. First, Treefuser’s dependence representation requires that trees be ho-

mogeneous: each node in the tree must be the same data type. This means that

to support trees, such as abstract syntax trees, that are naturally heterogeneous,

Treefuser requires programmers to unify all the subtypes of a class hierarchy into

a single type—e.g., a tagged union—distinguishing between them with conditionals.

Second, Treefuser does not support mutual recursion—traversals written as a set

of functions, rather than a single one—requiring the use of many conditionals to

handle di↵erent behaviors. As a corollary of not supporting heterogeneous trees or

mutual recursion, Treefuser does not support virtual functions, a key feature that,

among other things, allows complex traversals to be decomposed into operations on

individual node types. These limitations require expressing traversals with unnatural

code and produce spurious dependences, that can inhibit fusion. Finally, Treefuser

does not support tree topology mutation. While fields within nodes in a tree can be

updated in Treefuser traversals, the topology of the tree must be read-only. This

makes it unnatural to express some AST rewrites (by, e.g., changing a field in a node

to mark it as deleted, instead of simply removing the node) and impossible to express

others.

3.1.1 Contributions

This chapter presents a new fusion framework, Grafter, that addresses these

limitations to support a more idiomatic style of writing tree traversals, getting closer

to the goal of fusing truly general tree traversals. The specific contributions this work

makes are:
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1. Grafter provides support for heterogeneous types. Rather than requiring that

each node in the tree share the same type (as in prior work on fusing general

traversals), Grafter allows recursive fields of a node in a tree to have any

type, enabling the expression of complex heterogeneous tree structures such as

ASTs and render trees.

2. To further support heterogeneous tree types, Grafter supports mutual re-

cursion and virtual functions, allowing children of nodes to be given static

types that are resolved to specific subtypes at runtime, more closely match-

ing the natural way that traversals of heterogeneous trees are written. This

support requires developing a new dependence representation that enables pre-

cise dependence tests in the presence of mutual recursion and dynamic dispatch.

Grafter also adds support in its dependence representation for accommodat-

ing insertion and deletion of nodes in the tree.

3. Grafter generalizes prior work’s call-specific partial fusion to incorporate

type-specific partial fusion. This allows traversals to be fused for some node

types but not others, yielding more opportunities for fusion. Moreover, by

leveraging type-specific partial fusion and dynamic dispatch, Grafter’s code

generator produces simpler, more e�cient fused traversal code than prior ap-

proaches, resulting in not just fewer passes over the traversed tree, but fewer

instructions total.

Table 3.11 summarizes Grafter’s capabilities in relation to prior work. At a high

level, prior work either supports heterogeneous trees but not fine-grained fusion or vice

versa, while Grafter supports both, as well as the ability to write general traversals,

analyze dependences and perform sound fusion automatically.

1We exclude syntactic rewrites of functional programs (e.g., [8]), as their rewrites are not directly
analogous to fusion.
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Table 3.1.
Grafter in comparison to prior work. Note that Grafter provides finer-
grained fusion than TreeFuser.

Approach Hetero-

geneous

trees

Fine-

grained

fusion

General

express-

ivity

Depen-

dence

analysis

Stream fusion [13] 3 7 7 NA

Attribute grammars [7] 3 7 7 3

Miniphases [3] 3 7 7 7

Rajbhandari et al. [5] 7 7 7 7

TreeFuser [16] 7 3 3 3

Grafter 3 3 3 3

We show across several case studies that Grafter is able to deliver substantial

performance benefits by fusing together simple, ergonomic implementations of tree

traversals into complex, optimized, coarse-grained traversals.

3.1.2 Outline

The remainder of the chapter is organized as follows. Section 3.2 provides an

overview of our fusion framework Grafter. Section 3.3 lays out the design of

Grafter: the types of traversals it supports, how it represents dependences given

the more complex traversals, how it performs type-directed fusion, and how it syn-

thesizes the final fused traversal(s). Section 3.4 details the prototype implementation

of Grafter. Section 3.5 evaluates Grafter across several case studies. discusses

related work and Section 3.6 concludes.

3.2 Grafter Overview

Grafter adopts a strategy for fusing traversals where a programmer writes in-

dividual tree traversals in a standard, C++-like language (Section 3.3.1), as functions
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root.f1();
root.f2();

f1(){
		child.f3();
		this.x	=	…;	//	s1
}

f2(){
		…	=	this.x;	//	s2
		child.f4();
}

(a) Unfused code

child.f4()

S1

S2

child.f3()

f12

f1()

f2()

(b) Outline and inline

step

child.f4()

S1

child.f3()

f12

S2

(c) Reorder step

root.f12();

f12(){
		
		this.x	=	…;	//	s1
		…	=	this.x;	//	s2
		child.f34();
}

(d) Fused code

Fig. 3.1. Illustration of steps for fusing mutual traversals in Grafter.

that traverse a tree structure. The fields of each tree node can be heterogeneous, and

part of a complex class hierarchy, and the (mutually) recursive functions that perform

a tree traversal can leverage dynamic dispatch when visiting children of a node. A full

example of this style of program is shown in Figure 3.2, but for illustration purposes,

we use a simple example shown in Figure 3.1(a), with two calls to the functions f1 and

f2. Each of those functions consists of a single statement (s1 and s2, respectively),

and a traversing call on the root’s child, child (f3 and f4, respectively). These two

function calls are not independent of each other: s1 in f1 updates this.x while s2 in

f2 reads this.x. Grafter performs fusion on such traversals to generate a new set

of mutually-recursive functions that perform fewer traversals of the tree.

The fusion process starts with a sequence of traversals that are invoked on the

same node of a tree, in this case root. Note that it is clearly safe to outline the two

calls in Figure 3.1(a) into one call to function f12 that executes the two functions back-

to-back in their original order as shown in Figure 3.1(b) (the two calls are outlined

and then inlined).
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Grafter then creates a dependence graph representation of the new function f12.

This dependence graph represents each call and statement of the traversals as a vertex,

and (directed) edges are placed between vertices if two statements when executing

at a particular node in the tree can access the same memory location (Grafter

borrows this representation from Treefuser [16].) In Figure 3.1(b), there is a

dependence between s1 and s2. We also assume, for illustration purposes, that there

is a dependence between s2 and the call child.f4(). Grafter finds dependences

between calls and statements by considering the transitive closure of what calls may

access. Section 3.3.2 describes how Grafter analyzes accesses to find dependences

and construct the dependence graph.

f12 is now a new, single function that performs multiple pieces of work on root,

and invokes multiple traversal functions on root.child. To optimize the body of f12

its desirable to have s1, s2 executed closer to each other for locality benefits—if they

access shared fields of root, then that data is likely to remain in cache. Furthermore,

if the calls f3 and f4 on child are back-to-back then we can further fuse them into one

call and both save a function invocation and “visit” root.child only once, instead

of twice.

The key challenge to performing this fusion is that the reordering necessary to

bring statements closer together and, more importantly, to bring traversal calls closer

together, is not always safe. Grafter performs reordering for the statements using

the dependence graph, trying to bring traversals of the same child closer to each other

without reordering any dependence edges (and hence violating dependences). This

reordering is done by grouping the traversal calls that visit the same node together.

Figure 3.1(c) shows the results of such re-ordering.

Note that in this example the reordering step changes the traversal f1 from a

post-order traversal to a pre-order traversal (s1 is executed at parents before their

children in f12, while it is executed at the children before their parents in the original

function f1). In other words this reordering involves performing implicit code motion
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that can safely changes the schedule of the traversals for the purpose of achieving

more fusion.

As calls are grouped together, Grafter is presented with new sequences of func-

tions that this same fusion process can be applied to. In our example, the two calls

grouped in the dashed box in Figure 3.1(c) are invoked on the same node of the tree

(root.child), so Grafter can repeat this merging process, creating a new merged

function f34, building a new dependence graph for the merged function, rearrang-

ing its statements, and so on. Each time this re-ordering is performed, more and

more operations from multiple logical traversals on the same node(s) of the tree are

brought closer together, improving locality, and more and more function invocations

from multiple logical traversals are collapsed, reducing invocation overhead and the

total number of times the collection of traversals visit nodes of the tree.

If Grafter encounters a sequence of functions that has been fused before, of

course, it can simply call the already-fused implementation. Grafter bounds the

amount of functions that can be fused together to ensure this process terminates.

Section 3.3.3 describes in detail how Grafter performs its fusion, including how it

handles virtual functions.

Note that encountering cases where an already created fused function is being

called again is the key for having significant performance improvement, since that

means that the locality and traversing overhead enhancements will be achieved re-

cursively. In the limit, instead of 2 traversals visiting each node of the tree once each,

we will have a single traversal that visits each node only once—total fusion. But any

amount of collapsing still promotes locality and reduces node visits.

The end result of Grafter’s fusion process is a set of mutually recursive func-

tions that together form a partially-fused traversal. Crucially, these fused functions

are analyzed on a per-type basis, meaning that fusion can occur partially—not all

sequences of calls in a function need to be fused—and type-specifically—fusion can

occur for some concrete instantiations of virtual functions, but not others. This
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process leads to more fine-grained, precise fusion decisions than prior work such as

Treefuser.

The following section describes the details of Grafter fusion process in details.

3.3 Design

This section describes the design of Grafter’s components in detail. In partic-

ular, we first describe how Grafter analyzes traversal functions to identify depen-

dences, allowing it to build the dependence graph representation used to drive fusion

(Section 3.3.2). Then we explain how Grafter uses the dependence representation

to synthesize new, fused functions (Section 3.3.3). But first, we explain the language

that Grafter uses to express its traversals.

3.3.1 Language

The language programmers use to write traversals in Grafter is a subset of C++,

allowing programmers to integrate fusible tree traversals in larger projects.

A tree in Grafter is defined as an annotated C++ class, where instances of the

class represent tree nodes. We call any such annotated class a tree type. Figure 3.3(a)

shows the grammar for defining tree types. Children of a tree node are pointers to

other tree types (not necessarily the same type as, or a subtype of, the node itself).

Tree nodes can also store other (non-child) objects and primitive fields—we call these

data fields.

Grafter traversals are written as member methods of tree types, implicitly

“visiting” the tree node they are invoked on, and calling other traversal functions

to continue the traversal. We call these traversal methods 2. In order to support

tree children with abstract types, a tree in Grafter can inherit fields and virtual

2For completeness, Grafter allows other methods to be defined for tree types, but if they are not
explicitly annotated as traversal methods, Grafter will not consider them for fusion.
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1 int CHAR_WIDTH;
2
3 class Element {
4 Element *Next;
5 int Height = 0, Width = 0;
6 int MaxHeight = 0, TotalWidth = 0;
7 virtual void computeWidth (){};
8 virtual void computeHeight (){};
9 };

10
11 class TextBox: public Element {
12 String Text;
13 void computeWidth (){
14 Next ->computeWidth ();
15 Width = Text.Length;
16 TotalWidth = Next ->Width + Width;
17 };
18 void computeHeight (){
19 Next ->computeHeight ();
20 Height = Text.Length * (Width/CHAR_WIDTH) + 1;
21 MaxHeight = Height;
22 if(Next ->Height > Height)
23 MaxHeight = Next ->Height;
24 };
25 };
26
27 class Group: public Element {
28 Element *Content;
29 BorderInfo Border;
30 void computeWidth (){
31 Content ->computeWidth ();
32 Next ->computeWidth ();
33 Width = Content ->Width + Border.Size *2;
34 TotalWidth = Width + Next ->Width;
35 };
36 void computeHeight (){
37 Content ->computeHeight ();
38 Next ->computeHeight ();
39 Height = Content ->MaxHeigh + Border.Size*2
40 MaxHeight = Height;
41 if(Next ->Height > Height )
42 MaxHeight = Next ->Heigh;
43 };
44 };
45
46 class End: public Element {
47 };
48
49 int main(){
50 Element *ElementsList = ...;
51 ElementsList ->computeWidth ();
52 ElementsList ->computeHeight ();
53 }

Fig. 3.2. An example of a program written in Grafter.
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traversal methods from other tree types and can specialize inherited virtual traversals

by overriding them.

Figure 3.3(b) shows the grammar for defining a traversal method in Grafter.

Parameters of traversals are objects or primitives and are passed by value; further-

more, without loss of generality, we assume traversals do not have a return value3. The

body of the traversal is a sequence of, non-traversing statements (simple statements)

interleaved with traversing statements (traverse statements), which are function calls

to traversal methods invoked on the traversed node or one of it’s children.

Assignment in Grafter only allows writing to data fields, and hence tree nodes

can not be modified in an assignment statement. Local variables in the body of the

traversal can either be data definitions (primitive or objects), or aliases to tree nodes

(rules 13, 14). Note that an alias variable is a constant pointer to a tree node that can

only be assigned once to a descendant tree node and cannot be changed. These local

variables make it easier to write traversals while precluding the need for a complex

alias analysis4.

Grafter uses new and delete C++ language constructs to support leaf mutations

(constructs 8 and 9 in Figure 3.3(b)). The new statement allows a new tree node to

be constructed and assigned to a specific child field of the current tree node, and

the standard C++delete statement is permitted for deleting child fields (subtrees).

Grafter accepts such statements only if the the trivial constructor or destructor is

called, i.e., user-defined constructors or destructors are not permitted.

Grafter allows traversals to invoke pure functions; those functions can have an

object or primitive return values, and accepts object and variables as parameters.

The bodies of those functions are not analyzed, and the pure annotation indicates to

Grafter that those functions can be considered as read-only functions. Equations

11, and 15 shows the usage of such functions.

3This restriction on return values simplifies Grafter’s design, but is mostly an implementation
detail.
4Grafter could allow more general assignment statements, coupled with a sophisticated alias
analysis, but such support is orthogonal to the goals of this work, so we do not provide it.
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(a) Types definition in Grafter.

(b) Traversals definition and statements in Grafter.

(c) Expressions in Grafter.

Fig. 3.3. Language of Grafter.
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The key operation performed by Grafter traversal methods is accessing data

and child fields. Reads and writes to these fields, whether directly at a node or

through a chain of pointer dereferences.

Accessing a variable in Grafter is done through an access path. An access path

is a sequence of member accesses starting from a field or a node. Accesses paths can be

classified into ¡tree-node¿ and ¡data-accesses¿ (see Figure 3.3(c)). Data accesses can

be further classified, based on the location of the accessed variable, into < on− tree >

and < off −tree > accesses. The former are accesses that start at member fields of the

current node (and hence are parameterized on this, the node the function is called

on), while the latter are to global data (meaning that all invocations of this function

will access the same location, regardless of which node the function is executing at).

Any local alias variables can be recursively inlined in the access path until the

access path is only a sequence of member accesses. Access paths can also be classified

to reads and writes in the obvious way. Note that ¡tree-node¿ accesses appear as

writes only in the new and delete statements.

Figure 3.2 shows an example of a program written in Grafter (we elide the

annotations for brevity). This program consists of a tree of Elements that can be

TextBoxes or Groups of TextBoxes (with a special sentinel End type representing the

end of a chain of siblings). Each Element can point to a sibling Element, and a Group

element can contain content elements. All elements have heights and widths, that are

computed by the traversals computeHeight and computeWidth, respectively.

3.3.2 Dependence Graphs and Access Representations

The primary representation that Grafter uses to drive its fusion process is the

dependence graph [16]. As described in Section 3.2, this graph has one vertex for

each top level statement5 and edges between statements if there are dependences

between them. More precisely, an edge exists between two vertices v1 and v2, arising

5In other words, one vertex for each ¡stmt¿ construct, as shown in Figure 3.3(b).
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from functions fa and fb (fa and fb could be the same function) if, when invoking fa

and fb on the same tree node (i.e., when this is bound to the same object in both

functions), either:

1. v1 and v2 may access the same memory location with one of them being a write;

or

2. v1 is control dependent on v2 (in Grafter’s language, this can only happen if

v1 and v2 are in the same function and either v1 or v2 could return from the

function).

So how does Grafter compute these data dependences?

Access automata

To compute dependences between statements in di↵erent traversals, the first step

is forGrafter to capture the set of accesses made by any statement or call in a given

traversal function. To do so, Grafter builds access automata for each statement.

These can be thought of as an extension of the regular expression–based access paths

used by prior work [16, 24] to account for the complexities of virtual function calls

and mutual recursion.

An access path for a simple statement such as n.x = n.l.y + 1 is straightfor-

ward. The statement reads n.l.y and writes n.x. A simple abstract interpretation

su�ces to compute these access paths (intuitively, we perform an alias analysis on

the function using access paths as our location abstraction [21,27]). The abstract in-

terpretation associates with each local variable an access path, or set of access paths

when merging across conditionals, aliased to that variable. At each read (or write) of

a variable, the access path(s) are added to the read (or write) set of access paths for

that statement. Grafter collects the set of access paths for each top level simple

statement in each traversal function. We do not elaborate further on this process, as

this analysis is standard (and is similar to TreeFuser [16]).
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The more complicated question is how to deal with building access paths for

traversing function calls. Our goal is to build a representation that captures all pos-

sible access paths that could arise as a result of invoking the function. Rather than

trying to construct path expressions to summarize the behavior of function calls,

Grafter directly constructs access automata to account for this complexity. Note

that these access automata are not quite like the aliasing structures computed by

Larus and Hilfinger [21], because Grafter’s representation is deliberately parame-

terized on the current node that a function is invoked on. We describe how Grafter

builds these automata next.

Building access automata for statements

Each top level statement in Grafter has six automata associated with it that

represent reads and writes of local, global and tree accesses (including < on − tree >

and < tree−node > accesses) that can happen during the execution of the statement.

Grafter starts by creating primitive automata. For each access path, a prim-

itive automaton is constructed which is a simple sequence of states and transitions.

Transitions in the automata are the member accesses in the primitive access path ex-

cept for two special transitions: (1) the traversed-node transition which appears only

at the start of an < on− tree > access and replaces this, and (2) the “any” transition

that happens on any member access.

If a primitive access path is a read, then each prefix of the primitive access is

also being read, and accordingly, each state in the primitive automata is an accept

state except the initial state. If a primitive access is being written, then only the full

sequence is written to while the prefixes are read.

There are some special cases to deal with while constructing primitive automata. If

an access ends with a non-primitive type (a C++ object), then accessing that location

involves accessing any possible member within that structure. Such cases are handled

by extending the last state with a transition to itself on any possible member using an
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any transition. Likewise, tree locations that are manipulated using delete and new

statements, writes to any possible sub-field accessed within the manipulated node

and their automata uses any transition to capture that.

Fig. 3.4. Automata that represents summary of read accesses for the
simple statement (width = Content.Width + Border.Size*2).

After the construction of the primitive automata, access automata of simple state-

ments can be constructed from the union of the primitive automata. For example, the

tree reads automaton for a simple statement is the union of the primitive automata

of the tree read accesses in the statement. Figure 3.46 shows the tree read automaton

for the statement:

Width = Content->Width + Border.Size*2;

Finding dependences between statements These automata provide the infor-

mation needed to find dependences between statements. Because each statement’s

automata captures the full set of access paths read (or written) for a statement, and

we are interested in whether the statements have a dependence when invoked on the

same tree node, we can simply intersect the write automaton for a statement with the

read and write automata for another statement to determine if a dependence could

exist—a non-empty automaton means the two statements could access the same lo-

cation.
6eps is epsilon transition, and root is the traversed node transition.
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Building access automata for traversing calls

Representing accesses of traversal calls is not as simple. For a given call statement

we want to construct a finite automaton that captures any possible access path that

could arise during the call relative to the tree node being traversed by caller—including

the fact that a call may invoke more traversals.

When building the access automaton for a traversal call, Grafter first creates a

call graph that includes all the possibly (transitively) reachable functions from that

call. We first note that any o↵-tree data accesses made by any of these reachable

functions are, inherently, not parameterized by the receiver of the traversal calls—

regardless of when and where the function gets called, those access paths will be the

same. Thus, we can simply union those automata together for the functions in the

call graph to capture those accesses.

The situation is more complicated for on-tree accesses, as those are parameterized

by the receiver of the call, this (i.e., the node that is being traversed). To find the

accessed locations relative to this, we need to find two things: the functions that

are reachable during the call (to know which statements are executed), and the tree

nodes that those functions are invoked on, relative to this.

Consider building the access paths for some function f . For each function q

reachable from f , the sequence of children traversed to get to the invocation of q

gives an access path for the node that q is invoked on, relative to the receiver of f .

This access path can be pre-pended to the statements access paths in q to produce

the access paths relative to this (the traversed node in f). For example, when a

function f invokes another function g on a child x of this, it invokes x.g(); the

receiver object of g is this.x. Thus, to incorporate the e↵ects of g in to the access

paths of f , we can prefix the access paths of g with this.x. If g in turn calls h

through child y, then we can prefix the access paths of h with this.x.y and add

them to the access paths of f .
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(a) Step 1: Create labeled call graph. States 2, 3 and 4 cor-

responds to computeWidth() functions for End, TextBox

and Group types respectively.

(b) Step 2: Attach simple statements’ automata and traversed node transition.

(c) Step 3: Minimize automata.

Fig. 3.5. Construction of tree writes automata for the traversing statement
content.computeWidth(). root is the traversed node transition.
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To account for on-tree accesses, Grafter takes the call graph for the traversing

call, and labels each edge with the traversed field that is the receiver for that call.

If the receiver for the call is the currently traversed node (this), the edge is labelled

with the epsilon transition eps. Figure 3.5(a) shows the call graph that is generated

for Content-¿computeWidth() from our running example. Paths in this graph thus

correspond to possible sequences of child-node accesses to reach each function in the

graph. For each function, Grafter then attaches the statement automata of each

simple statement in that function (see the previous section) to the corresponding

node in the call graph. This has the e↵ect of treating the regular language from the

statement automata as the su�x attached to the prefix that designates the receiver

object. Figure 3.5(b) shows the resulting automaton, and Figure 3.5(c) shows the

reduced version.

The pseudo code in Figure 1 illustrates the construction process in detail starting

from a traversing statement. First, the algorithm adds the traversed-node transition.

After that, for each possible called function that corresponds to each possible dynamic

type of the called child, a state that represents all the accesses with in that function is

created, and a transition on the traversed child is added. Accesses within a function

are the union of the accesses of all the statements in the body of the function. Hence,

for the function’s traversing statements, the process will be called recursively. To

guarantee the termination of such process, accesses of a unique function do not need

to have more than one corresponding state in the automata. If a function is already

in the automaton, then a transition to the existing state is added. Since there is only

a finite number of function definitions the process is guaranteed to terminate.

Note that the constructed automata handle the possibility of non-statically-bounded

trees; whenever we encounter a function we already have created a state for, we add

a ”back edge” in the automaton to the state that corresponds to that function. Un-

bounded recursion is hence represented by loops in the automaton.
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Function buildExtendedOnTreeAutomata (CallStmt) :

addTraversedNodeTransition (0, 1)

appendCallAccesses (CallStmt, 1)

Function appendCallAccesses (CallStmt, State) :

for T : CallStmt.VisitedNode.PossibleTypes() do

F = getActualCalledFunction (T, CallStmt)

if ! FunctionToState.find(F) then

FunctionToState[F] = NewState = addState ()

for Stmt : F.body() do

if isCallStmt (Stmt) then
appendCallAccesses (Stmt, NewState);

else
appendStmtAccesses (Stmt, NewState);

end

end

end

addTransition (State, FunctionToState[F], CallStmt.VisitedNode);

end

Algorithm 1: Construction of tree access automata for traversing statements.

Finding dependences between statements and calls The access automata

constructed for calls are no di↵erent than those constructed for statements. By using

the call graph to construct access paths for receiver objects of functions, all the access

paths generated by the final access automata are rooted at the same receiver object

as the automata for statements. Hence, finding dependences between statements and

calls (or calls and calls) can be achieved by intersecting the automata and testing for

emptiness.

3.3.3 Fusing Traversals

Overview At a high level, Grafter performs fusion by repeatedly invoking the

following steps:
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1. Find a sequence L of consecutive traversal functions invoked on the same tree

node n.

2. Outline these traversal functions into a new function fL that is called on n.

If such an fL has already been created in an earlier iteration of this process,

simply call the existing fL.

3. Inline each of the individual traversal functions in fL to expose the work done

on the node n.

4. Reorder the statements in fL to bring statements that access the same fields

closer together and to create new sequences of traversal functions invoked on

the same tree node (typically, some child node of n).

5. Repeat the process for these newly created sequences of calls.

These steps constitute the fusion algorithm of Grafter. In particular, every

time a sequence L is encountered more than once, and hence an existing fL can be

reused, Grafter has exploited an opportunity for fusion. We now explain this fusion

process in more detail, and also sketch a proof of correctness.

Details Fusion starts with a sequence of traversal functions that are invoked at

the same tree node (e.g., the root). Grafter searches for such candidates in the

compiled program and initiates the fusion process for each of them. For example, the

sequence followed by in Figure 3.2 line 51.

Because a given function may be virtual, Grafter first computes all possible

sequences of concrete functions that may be invoked as a result of a sequence of

function calls. For each type T that the sequence of calls can be invoked on, Grafter

constructs a sequence L of concrete calls. In our example, there are three, depending

on whether @ElementList@ points to a @TextBox@, @Group@ or @End@.

For each function sequence L a fused function with label fL is created (if one has

not already been generated). If the label fL does not already exist, then its corre-

sponding function needs to be generated. A dependence graph GL is constructed for
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the statements in the traversals in L. In other words, the fused function is essen-

tially a function containing the inlined statements from each call in the sequence L,

in order. Note that a sequence L may contain the same static function more than

one time (i.e., the same function can be invoked on a given node of a tree more than

once). In this case, GL contains statements from multiple copies of that function,

and the statements from the two copies are treated as coming from di↵erent traversal

functions.

Once GL is constructed, the statements (nodes) in the statement can be reordered

as long as no dependences are violated (as long as a pair of dependent statements are

not reordered). Grafter thus reorders the statements and try to group invocations

on the same node together. It then generates the fused function code, as explained in

the next section. This newly generated function has grouped traversals invocations on

the same node together (and these invocations may have come from di↵erent functions

than the original sequence L), creating new sequences of functions. Grafter then

process these new sequences of functions to generate more fused functions. Whenever

Grafter encounters a sequence of functions it has seen before, it does not need to

generate a new function, but instead inserts a call to the already generated function.

Crucially, if this new sequence is the same as for a function currently being generated,

Grafter just inserts a recursive call to that function.

The end result is a set of mutually recursive fused functions, each for a di↵erent

set of traversals that are executed together at some point. Furthermore each of those

functions is fused independently of the others. This process introduces type-specific-

partial-fusion, since for an invocation of a traversals on a super type, the set of the

called functions that corresponds to each dynamic type are fused independently, and

hence some of them actually might be fusible while others are not.

Note that Grafter only generates new functions for sequences it has not seen

before. Because Grafter limits the number of functions that can be fused together

(see Section 3.4), the number of sequences of functions is finite, and hence fusion is

guaranteed to terminate.
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Proof sketch of soundness The argument for the soundness of Grafter’s fusion

procedure is straightforward. First, we note that the outlining and inlining steps

(steps 2 and 3) in the fusion process are trivially safe because they do not reorder any

computations, and hence cannot break any dependences. Step 4 could potentially

break dependences, but because Grafter performs a dependence analysis, it can

ensure that statements are only reordered if dependences are preserved. Hence, this

step is also clearly sound.

The tricky step in Grafter’s fusion algorithm is the step where it gains the

advantage of fusion: if a sequence of calls to a particular sequence of traversal func-

tions matches a sequence that Grafter has already generated a fused function for,

Grafter immediately replaces the original sequence of calls with a call to the fused

function rather than generating another new function. This is only safe if the already-

fused function will do the same thing as the original function sequence.

To see that this is safe, we note that the process of outlining followed by inlining

means that the code of the fused function fL is not dependent on the node fL is

invoked on—in other words, if the original sequence of traversal functions are invoked

on @root.left@, after outlining and inlining, the statements within fL are relative

to the formal parameter @n@ of fL, and will be exactly the same as if fL were

produced from the same sequence of functions invoked on a di↵erent tree node, such

as @root.right@. In other words, two identical sequences of traversal functions, L and

L′ that are invoked on di↵erent tree nodes will yield identical functions fL and fL′

after outlining and inlining. Because the dependence graph for these functions are

identical, any reordering Grafter does to create a fused function can be applied to

both fL and fL′ . It is obvious, then, that, upon encountering the same sequence of

traversal functions L, even if those functions are invoked on di↵erent nodes, Grafter

can reuse an existing synthesized function.

However, there remains one gap: if, while fusing a sequence of functions L to gen-

erate fL, Grafter encounters the same sequence of invocations L that is reachable

(transitively) from fL, Grafter will substitute a call to fL. In the simplest case,
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if fL contains L, then a new invocation to fL will be inserted into the body of fL.

Hence, in these situations, Grafter is changing the behavior of fL while using it to

replace L. This process feels circular. However, a straightforward inductive argument

on the depth of the call stack (in other words, the number of recursive invocations

of fL before reaching the end of the tree or some base case) shows that this new

invocation of (the rewritten) fL behaves the same as the original sequence L. This

argument mirrors the proof for the soundness of TreeFuser [16, Section 7].

3.3.4 Traversal Code Generation

As described in the previous section, to fuse a sequence of functions L, Grafter

generates a graph G with statements and groups of calls that represents the fused

function fL. The body of the function fL is generated from the graph in a way similar

to TreeFuser [16], yet it incorporates several changes to account for mutual recursions

and virtual calls.

The generated function fL is a global function that takes a pointer to the traversed

node as the first parameter (this function will be called from a virtual function switch

placed in the tree classes). Since the functions in L can be defined in di↵erent classes,

those traversals might be operating on di↵erent types, however since they are all

invoked on the same child, there must be a super type that encloses all of them. This

type is used for the traversed node parameter in the generated function fL. A lattice

for the types traversed in the functions in L is created to find such type. Line 3 in

figure 3.6 shows the result of fusing the two functions that computes the width and

the height for @TextBox@ element in the program shown in figure 3.2.

The traversed node parameter is followed by the traversal’s parameters, and an

integer that represents the set of active traversals, @active flags@. This parameter

can be seen as a vector of flags where each bit determines whether a specific traversal

function is active or truncated at any point during the execution of the fused function.
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1 ...
2 void _fuse__F3F4(TextBox *_r , int active_flags) {
3 TextBox *_r_f0 = (TextBox *)(_r);
4 TextBox *_r_f1 = (TextBox *)(_r);
5 if (active_flags & 0b11) /*call*/ {
6 unsigned int call_flags = 0;
7 call_flags <<= 1;
8 call_flags |= (0b01 & (active_flags >> 1));
9 call_flags <<= 1;

10 call_flags |= (0b01 & (active_flags >> 0));
11 _r_f0 ->Next ->__switch1(call_flags);
12 }
13 if (active_flags & 0b1) {
14 _r_f0 ->Width = _r_f0 ->Text.Length;
15 _r_f0 ->TotalWidth = _r_f0 ->Next ->Width + _r_f0 ->Width;
16 }
17 if (active_flags & 0b10) {
18 _r_f1 ->Height = _r_f1 ->Text.Length *
19 (_r_f1 ->Width / CHAR_WIDTH) + 1;
20 _r_f1 ->MaxHeight = _r_f1 ->Height;
21 if (_r_f1 ->Next ->Height > _r_f1 ->Height) {
22 _r_f1 ->MaxHeight = _r_f1 ->Next ->Height;
23 }
24 }
25 };
26 void TextBox :: __switch1(int active_flags) {
27 _fuse__F3F4(this , active_flags);
28 }
29 void Group :: __switch1(int active_flags) {
30 _fuse__F5F6(this , active_flags);
31 }
32 void End:: __switch1(int active_flags) {
33 _fuse__F1F2(this , active_flags);
34 }
35 int main() {
36 Group *ElementsList;
37 // ElementsList ->computeWidth ();
38 // ElementsList ->computeHeight ();
39 ElementsList ->__switch1 (0b11);
40 }

Fig. 3.6. Sample output code generated by Grafter.
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Those flags are needed because the fused traversals can have di↵erent termination

conditions.

To call the the generated function fL, Grafter replaces the original sequence of

calls with a call to a newly created virtual function that acts as a switch and calls

the corresponding fL for each possible traversed type T . Lines 26-34 in Figure 3.6

shows an example of such switch which is called at line 39. The switch’s arguments

are the arguments of the fused original call expression in addition to an integer that

represents the active traversals. The switch’s arguments are passed to the new fused

function as well as the traversed node (this).

Statements of di↵erent traversals in the fused function should see the traversed

node type the same way they see it in the original function that they came from.

This is needed for accessibility (a field might be defined in a derived type while the

type of the traversed node is a base type) and correctness (a derived class can shadow

a base class variable of the same name). To handle this, an alias of the traversed

node parameter is created with the desired type for each participating traversal using

casting (lines 4 and 5 in figure 3.6) and those aliases are used by the statements

whenever a tree access happens (lines 15-19).

A topological order of the nodes in the graph G is then obtained that represents

the order of the statement in body of the fused function. Each node in the topological

order (which corresponds to a top level statement in one of the traversals) is then

written to the function in order. A simple statement is only executed if the traversal

that it belongs to is not terminated. Return statements terminate a traversal and

updates the corresponding active flags as in TreeFuser [16]. Appropriate flags should

be passed when a fused call is invoked within a traversal. The @call flags@ variable,

defined at line 7 in Figure 3.6, holds the active flags that are passed to the next

traversing call. Lines 7–11 fill in the appropriatef flags from the @active flags@ in the

@call flags@ based on which traversals the outlined calls belong to.
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3.3.5 Limitations of Grafter

Limitations of Grafter’s dependence analyses, fusion procedure, and language

mean that it cannot exploit all possible fusion opportunities for all possible traversal

implementations. Here, we group the limitations of Grafter into three categories.

First, Grafter’s language and implementation have been limited in some ways

merely to simplify the dependence analysis. For example, Grafter does not support

pointers other than to nodes of the tree, but relaxing this simply requires enriching

the access analysis with standard alias analysis techniques. The dependence analysis

can similarly be extended to support loops within traversal functions (that do not

themselves invoke additional traversal functions). In these scenarios, Grafter’s

basic fusion principles need not change. Finally, adding a shape analysis to Grafter

could allow it to avoid annotating data structures to establish that they are trees.

Second, some extensions to Grafter would require extending the machinery

of code generation to handle them. For example, supporting conditional traversal

invocation can be done through syntactic manipulation (pushing the condition into an

unconditionally-invoked traversal function that immediately returns if the condition is

false), but this introduces instruction overhead. Managing conditional calls, traversal

functions invoked within loops, or return values from traversal functions will require

some new strategies for generating fused traversal code, but likely would not require

substantial changes to the rest of the fusion machinery.

Finally, some extensions to Grafter may require devising new theories of fu-

sion: new principles for how a fused traversal actually operates. In this category

are extensions like functions that operate over multiple trees (e.g., traversals that zip

together two trees), or traversals that perform more sophisticated tree mutation such

as rotations.
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3.4 Implementation

Grafter is implemented as a Clang tool that performs source to source trans-

formation for input programs 7.

Grafter uses Clang’s internal AST to analyze the annotated traversals and

tree structure, and performs checks to validate that the annotated traversals satisfies

Grafter’s restrictions. Any traversal that does not adhere to Grafter’s language

is excluded from being fused. Grafter uses OpenFST library [34] to construct

the automata that represent accesses of statements and perform operations on these

automata.

Di↵erent criteria can be used to perform grouping of call nodes in the dependence

graph during fusion. Grafter uses a greedy approach for grouping: it selects an

arbitrary un-grouped call node, and tries to maximize the size of the group by accu-

mulating other un-grouped call nodes. The process continues until there is no more

grouping left. This criteria is su�cient to show significant improvements (Section 3.5),

thus we did not investigate any other approach for grouping.

As mentioned earlier, in order to control the fusion process Grafter must limit

the number of functions that can be fused together. It may seem odd that these

cuto↵s are needed at all, since there are only a finite number of function definitions

in the program. However, if a traversal function calls multiple functions on the same

child node (say, two), and each of those functions call two functions on the same child

node, then it is clear that at each level of the tree, there are more active traversal

functions than at the previous level. Because each step of Grafter’s fusion process

essentially descends through one level of the tree to expose more fusion opportunities,

we will systematically uncover more and more functions to fuse together. Hence the

need for a cuto↵.
7Grafter is available at https://bitbucket.org/plcl/grafter pldi2019/.
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Grafter limits fusion in two ways: by limiting the length of a sequence of

functions to fuse, and by limiting the number of times any one static function can

appear in a group.

3.5 Evaluation

We evaluate Grafter through four case-studies from di↵erent domains, demon-

strating its ability to express traversals over heterogeneous tree structures without

compromising e�ciency, to perform fusion e�ciently, and to significantly enhance the

performance of traversals, even when processing small trees. The four case-studies

are:

• Fusing multiple traversals over a render tree.

• Fusing multiple AST optimization passes.

• Fusing multiple operations on piecewise functions.

• Fusing two fast multipole method traversals.

Experimental platform . Since rendering is a common task performed on mobile

phones, yet the memory on such devices is relatively small, we evaluated the render

tree traversals on a smartphone with Qualcomm Snapdragon 425 SoC. The main

platform, which is used for the other case studies, is a dual 12-core, Intel Xeon 2.7

GHz Core with 32 KB of L1 cache, 256 KB of L2 cache, and 20 MB of L3 cache. All

cache lines are of size 64 B. L1, L2 caches are 8-way associative and L3 cache is 20-

way associative. We have used single-threaded execution throughout our evaluation.

Clang++ was used for compilation with ”-O2” optimization level for all case studies.

For each experiment, we measure four quantities:

1. The number of node visits. This measures the number of times any traversal

function is called on any node in the tree. This provides a performance-agnostic
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measure of fusion e↵ectiveness: the more fusion is performed, the fewer functions

are called per tree node.

2. The number of instructions executed. Synthesizing fused functions requires

additional work to keep track of when various fused traversals truncate, addi-

tional stub virtual functions, etc. On the other hand, fusion reduces call and

memory instructions. Measuring instructions executed provides an estimate of

Grafter’s overall instruction overhead.

3. The number of cache misses. One benefit of fusion we expect to see is improved

locality and reduced memory accesses. Cache misses provide a good proxy for

this.

4. Overall runtime. Fusion improves locality, but potentially at the cost of in-

creased instruction overhead (as reported by Sakka et al. [16]). The final e↵ec-

tiveness of fusion is hence determined by runtime.

3.5.1 Case Study 1: Render Tree

Tree traversal is an integral part of document rendering. A render tree that rep-

resents the organizational structure of the document is built and traversed a number

of times to compute visual attributes of elements of the document. We implemented

a render tree for a document that consists of pages composed using nested horizontal

and vertical containers with leaf elements (TextBox, Image, etc.).

Figure 3.7(a) shows the structure and the class hierarchy of the render tree. The

tree nodes are of 17 di↵erent types; boxes in the figure represent types, arrows repre-

sent the fields and point to type of the child node. For instance a HorizontalContainer

contains a list of elements that can be accessed through the field Elements. Boxes

with dashed borders are of super-types of the boxes to the right of them. For instance,

an Element can be a TextBox, a Image or a VerticalContainer.
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Figure 3.7(b) shows an example of a page that can be represented using this class

hierarchy.

(a) Class hierarchy of the render tree. (b) The layout of the rendered page.

Fig. 3.7. Class hierarchy of the render tree, and layout of the rendered
page.

Five rendering passes are implemented and listed in Table 3.2. These passes are

dependent on each other. For example, computing the height of an element depends

on computing the width and font style. In Grafter, passes are implemented as

fine-grained, stand-alone functions for each type.

In the first experiment we compared the e↵ectiveness of Grafter and Tree-

Fuser [16], prior work that can also perform (partial) fusion for general recursion. We

produced a baseline that performs no fusion, as well as a version that usesGrafter’s

full fusion capabilities. We also implemented the same passes in TreeFuser [16]. To

accommodate the limitations of TreeFuser, that implementation collapses the types

into a single type, using conditionals to determine which code path to take. Again,
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we evaluate a baseline that uses the TreeFuser language to implement the passes, and

a version that performs as much fusion as possible with TreeFuser.

The page in figure 3.7(b) is replicated to create documents of di↵erent sizes and

are used for the experiments.

Table 3.2.
Render-tree and AST fused passes names.

Render-tree traversals AST traversals

1. Resolve flex widths 1. De-sugar increment

2. Resolve relative Widths 2. De-sugar decrement

3. Set font style 3. Constant propagation

4. Compute height 4. Replace variable references

5. Compute positions 5. Constant folding

6.Remove unused branches

For this experiment we created documents of various sizes by replicating the page

shown in Figure3.7(b). Figure 3.8(a) evaluates the Grafter-fused implementation

of the render-tree case study, normalized to the unfused Grafter baseline, while

Figure 3.8(b) evaluates the TreeFuser-fused implementation, normalized to its unfused

baseline8 9.

Both systems show the expected results of fusion: reduced node visits after fusion,

and reduced cache misses. Nevertheless, on both metrics, Grafter does better than

TreeFuser: due to its finer-grained representation and fusion, it can more aggressively

fuse traversals, resulting in 60% fewer node visits than the baseline, compared to 40%

fewer node visits for TreeFuser. Note that because both the Grafter and TreeFuser
8Number in parentheses is runtime of the baseline. Number of pages on the x axis and normalized
measurement on the y axis.
9For small input sizes, each experiment is run in a loop to achieve a reasonable overall runtime,
then divided through by the number of loop iterations to find the per-run metrics. 95% confidence
intervals for render tree experiments are within ±5% for all measurements except for cache misses of
trees smaller than 50 pages in figure 3.8. For those the intervals expands as the tree size decreases
down to ±60%. Note that for such small trees, the absolute number of misses is quite small.
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(a) Grafter-fused implementation normalized to unfused

Grafter implementation.

(b) TreeFuser-fused implementation normalized to unfused Tree-

Fuser implementation. (1M page baseline does not complete.)

Fig. 3.8. Performance comparison of render-tree passes written in
Grafter and TreeFuser for di↵erent tree sizes.

implementations do the same work, the baselines have exactly the same absolute

number of node visits. This increased fusion is reflected in cache misses: TreeFuser’s

fusion reduces cache misses by 40% while Grafter reduces misses by 80%.

We also see the advantage of Grafter’s type-specific fusion approach: because

fused functions are on a per-type basis,Grafter is able to leverage dynamic dispatch
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to specialize traversals. As a result, it exhibits virtually no instruction overhead

relative to the baseline. TreeFuser, in contrast, has a 30–40% instruction overhead.

All told, these e↵ects mean that TreeFuser cannot achieve performance improve-

ments for the inputs we investigate: the improved memory system behavior cannot

outweigh the instruction overhead. In contrast, Grafter sees substantial perfor-

mance improvements: 20% even for the smallest input (a single page), and 60% for

inputs of 1000 pages or more. And note that this is despite the fact that Grafter’s

baseline is already substantially faster than TreeFuser’s, as seen in the baseline run-

times shown in Figures 3.8(a) and 3.8(b).

Programmability-wise, the overall logical lines of code (LLOC) 10 for the body of

the traversals is the same for both TreeFuser and Grafter. However, those LLOC

are distributed among 55 di↵erent simple functions in Grafter while TreeFuser

requires one function per traversal, with complex conditionals to disambiguate types.

Grafter’s expressive language lets us write simple, e�cient code; andGrafter’s

aggressive, fine-grained fusion lets us automatically wring substantial performance

improvements out of even this e�cient code.

We also evaluated Grafter’s render tree traversal on multiple di↵erent docu-

ments configurations (input trees), with di↵erent properties. The results are summa-

rized in Table 3.3: Grafter achieves speedups between 1.5× and 4.5×11 12.

3.5.2 Case Study 2: AST Traversals

Abstract Syntax Tree (AST) representation of programs is common in modern

compiler frontend. Various validation and optimization passes are performed on AST

representation. We implemented AST passes for a simple imperative language that

has assignments, if statements, functions, and allows certain syntactic sugars. Fig-

10We use Fenton’s definition of LLOC for C++: the number of instructions with the semantic
delimiter [35].
11Doc1 consists of a large number of simple pages. Doc2 is a very large single page with dense deeply
nested components. Doc3 consists of 150 pages of di↵erent sizes and complexities.
12The results in Table 3.3 were collected on the main platform, rather than the mobile platform.
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Table 3.3.
Performance of traversals fused by Grafter normalized to unfused ones
for di↵erent render tree configurations.

runtime cache misses node visits tree size description

Doc1 0.22
0.17 (L2)
0.14 (L3) 0.38 90MByte

105 simple
pages

Doc2 0.65 0.28 (L2) 0.4 4MByte 1 dense page

Doc3 0.47
0.24 (L2)
0.18 (L3) 0.4 58MByte

150 pages of
di↵erent sizes

ure 3.9 shows the language constructs and the class hierarchy of the AST that repre-

sents programs in the language. Node types in the AST belong to di↵erent hierarchy

levels and passes are implemented as virtual functions defined at the top level type.

Table 3.2 shows the six di↵erent AST traversal passes we implemented inGrafter:

two de-sugaring passes for increment and decrement operations, and three optimiza-

tion passes. The constant propagation pass is written as two traversals and works

as follows: the constant propagation traversal looks for constant assignments and for

each of them it initiates a traversal to replace variable references with constants. The

AST passes depends on each other; de-sugaring must happen before the optimization

passes, and removing unused branches depends on constant folding and propagation

since they may produce constant branch conditions. Furthermore, those passes mu-

tate the tree (e.g., to de-sugar an expression, one part of the AST is deleted and

another part is constructed).

We wrote a function that consists of di↵erent statement types, and expressed

it as an AST. This function was replicated in order to obtain bigger trees for the

evaluation. Figure 3.10 shows the performance of the fused AST traversals with

respect to the un-fused ones 13 14. Grafter reduces L2 cache misses by 75% and

13Number of functions on the x axis, and normalized measurements on the y axis.
1495% confidence intervals for the AST experiments are within ±5% for all measurements, except
for the point 103 in Figure 3.10, where confidence intervals are within ±33% for L3 cache misses and±15% for runtime.
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once the tree is big enough, it reduces L3 misses by 70% as well. The fused traversals

have instruction overhead (between 15% and 4%), but that overhead is overcome by

the reduction in cache misses. The fused traversals are 1.25× to 2.5× faster than the

un-fused traversals depending on the tree size.

The instruction overhead is caused by di↵erent AST passes having di↵erent trun-

cation conditions, unlike the render tree traversals, which all completely traverse the

tree and get truncated at the same time. For instance, the “replace variable refer-

ences” pass gets truncated once the reference is reassigned. Because this truncation

is dynamic, parameters of the truncated traversals will kept being passed, and the

truncation flags will continue to be checked, until all traversals truncate, increasing

overhead.

Fig. 3.9. Class hierarchy of the AST used in evaluation with 20 di↵erent
types.

Table 3.4 shows the performance of the fused traversals for di↵erent AST inputs

with respect to the unfused ones. Prog1 consists of a large number of normal-sized

functions. Since all the traversals are fusible across the function list, Prog1 has the

highest reduction in node visits, 34%. On the other hand Prog2 consists of only one

large function, and hence has less reduction in node visits, 8%. Prog3 consists of
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Fig. 3.10. Performance of AST traversals fused by Grafter normalized
to the unfused ones for di↵erent tree sizes.

multiple functions with long live ranges. The tree of Prog3 is the largest and thus

reductions in L3 cache misses are achieved along with a 70% reduction in the runtime.

Table 3.4.
Performance of fused traversals normalized to unfused ones for di↵erent
AST configurations.

Runtime Cache misses Node visits Tree size Description

Prog1 0.71 0.26 (L2) 0.76 8MByte Small functions

Prog2 0.87 0.58 (L2) 0.92 6MByte One large function

Prog3 0.31
0.48 (L2)
0.26 (L3) 0.93 31MByte Long live ranges

3.5.3 Case Study 3: Piecewise Functions

MADNESS (Multiresolution, Adaptive Numerical Environment for Scientific Sim-

ulation) [20] uses kd-trees to compactly represent piecewise functions over a multi-

dimensional domain. The inner nodes of the tree divide the domain of the function

into di↵erent sub-domains, while leaf nodes store the coe�cients of a polynomial that
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estimates the function within the node’s sub-domain. MADNESS uses this represen-

tation to solve di↵erential and integral equations: mathematical operations on these

functions (e.g., di↵erentiation, scaling, sqaring) can be captured as traversals of the

tree.

In this case study, we implemented kd-trees for single variable functions, and

di↵erent traversals to perform computations on these functions. Table 3.5 shows

these traversals. Some of these traversals requires structural changes to the tree. For

example, the multXRange(a, b) traversal multiplies the function in the range [a, b]

by x where x is the variable representing the domain. A leaf node that has a non-

empty intersection interval of its domain and the interval [a, b], needs to be split into

multiple nodes if its domain does not lie completely within the interval [a, b].

Table 3.5.
Description of operator traversals used in piecewise functions case study.

Function Description

1.scale(c) f(x) = cf(x)

2.add(c) f(x) = f(x) + c

3.square() f(x) = f(x) ⋅ f(x)

4.di↵erentiate() f(x) = f (1)(x)
5.addRange(c, a, b) f(x) = f(x) + c(u(a) − u(b))

multXRange(a, b)
f(x) = xf(x) ⋅ (u(a) − u(b))
+f(x) ⋅ (1 − u(a) + u(b))

6.addXRange(a, b) f(x) = f(x) + x(u(a) − u(b))

7.integrate(a, b) ∫
b
a f(x)

8.project(x0) f(x0)

Unlike the previous case studies, the schedule of traversals in this case-study

depends on the constructed equation and di↵ers from one another. Hence, manual

fusion of such traversals is not practical, because it needs to be done for each equation

separately based on the di↵erent operations in the equation. We constructed three
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di↵erent equations that use di↵erent schedules of traversals, shown in Table 3.6. We

evaluated the performance of the fused traversals for each of these equations on a

balanced kd-tree constructed by uniformly partitioning the interval [105,10−5].
Figure 3.11 shows the performance of fused traversals corresponding to the first

equation in Table 3.6 for di↵erent depths of kd-tree, normalized to the unfused ones.15

16 The fused traversals reduce node visits by 83%, and we see a 90% reduction in L2

cache misses. Overall, the fused traversals are faster, with a runtime improvement

ranging from 15% for small trees, to 66% for large ones. Table 3.6 summarizes the

performance of the corresponding fused traversals for each equation normalized to

the unfused ones when performed on a balanced kd-tree of depth 20.
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Fig. 3.11. Performance measurements for fused kd-tree traversals normal-
ized to the unfused ones for di↵erent tree sizes.

3.5.4 Case Study 4: Fast Multipole Method

The fast multipole method (FMM) is a numerical technique used in evaluating

pairwise interactions between large number of points distributed in a space (e.g. Long-

15Depth of the tree on the x axis, and normalized measurement on the y axis.
1695% confidence intervals for kd-tree experiments are within ±1% for all reported measurements
except for L3 cache misses of trees of depth 16, reported in Figure 3.11, where intervals are ±16%.
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Table 3.6.
Performance improvement of di↵erent piecewise functions kd traversals
fused by Grafter.

Equation Runtime Cache misses Node visits

x4(f (2)(x))2 +∑3
i=0 xi 0.66 0.09(L2) 0.51(L3) 0.17

f (5)(x)�x=0 0.49 0.20(L2) 0.51(L3) 0.20

∫
105−105 x3(f(x) + .5)2 ⋅ u(0) 0.88 0.33(L2) 0.65(L3) 0.33

ranged forces in the n-body problem, computation of gravitational potential, and

computational electromagnetic problems) [28].

In this case study, we reimplement the FMM benchmark from TreeFuser inGrafter,

which is based on the implementation from the Treelogy benchmark suite [31].

Figure 3.12 shows the performance of fused traversals for di↵erent input sizes.

Grafter was able to fully fuse the two passes and yield a performance improvement

up to 22% over the unfused version.17 18

0.92 0.91
0.78
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Fig. 3.12. Performance measurements for fused FMM traversals normal-
ized to the unfused ones for di↵erent number of points.

17Number of points on the x axis and normalized measurement on the y axis.
1895% confidence intervals for the FMM experiments are within ±1% for all measurements.
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3.6 Conclusions

This chapter introducedGrafter, a framework for performing fine-grained fusion

of generic tree traversals. In comparison with prior work, Grafter is either more

general (in its ability to handle general recursion and heterogeneity), more e↵ective

(in its ability to perform more aggressive fusion), sound (i.e., without relying on

programmer assumptions of fusion safety), or some combination of all three. We

showed that Grafter is able to e↵ectively fuse together traversals from two domains

that rely on repeated tree traversals: rendering passes for document layout, and

AST traversals in compilers. Not only can Grafter perform more aggressive fusion

than prior work, it also delivers substantially better performance. Grafter allows

programmers to write simple, ergonomic tree traversals while relying on automation

to produce high-performance fused implementations.
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4. GENERAL DEFORESTATION USING FUSION,

TUPLING AND INTENSIVE REDUNDANCY ANALYSIS

This the third part of this thesis, unlike the previous two chapters, this work targets

general fusion in functional programs. Fusion in functional programming has its

challenges that are discussed in this section.

4.1 Abstract

Deforestation, is a classic optimization in functional programming that eliminates

intermediate structures which arise during the evaluation of programs. Traditional

deforestation techniques impose harsh syntactic restrictions on transformation candi-

dates to guarantee fusion safety (i.e., termination and runtime complexity preserva-

tion). Due to those restrictions, compiler writers adopted less general, combinator-

based fusion approaches, such as shortcut fusion.

Tupling is another transformation that combines functions traversing the same

structure into one function. Previous work studied the relationship between tupling

and fusion and suggested that tupling can be used to clean up the redundant work

that results from unsafe fusion [36,37] that might otherwise not preserve complexity.

However, none of the previous work that we know of implemented and evaluated such

a transformation.

In this work, we demonstrate a practical implementation of combined fusion and

tupling, in addition to a novel intensive redundancy analysis that is capable of fusing

fairly complicated traversals, achieving significant speedup over unfused programs

when compiled with the Glasgow Haskell Compiler using both lazy and strict evalu-

ation.
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4.2 Introduction

Fusion and deforestation are well-known transformations that can eliminate tem-

porary intermediate data structures during the evaluation of functional programs.

When performed correctly, fusion reduces data traversal overhead and memory us-

age, resulting in significant speedup.

In general, the goal of fusion is to take functions f1 ∶ A→ B and f2 ∶ B → C where

f2 consumes the output of f1 and produce a function f12 ∶ A → C. The simplest

fusion example might be the composition of two functions map f1 and map f2, over

some regular structure. The unfused program applies map f1 on its input resulting

in a new temporary structure that is then consumed by map f2 to generate the final

output. A fused version, on the other hand, directly generates the output from the

input structure by applying map (f1 ○ f2) on the input.

Fusion/deforestation transformations can be classified into two types. The first

class is transformations that rely on the usage of predefined combinators that have

well defined compositional behavior (the earlier map function for example), and a set

of rewrite rules that optimize them. Shortcut fusion and stream fusion are examples

of such transformations [11–15]. Those approaches are extremely useful when dealing

with lists and simple data structures, where programs can be composed of fusable

combinators. Such transformations are used in modern functional compilers such

as the Glasgow Haskell Compiler, and in their popular data structure libraries. We

term these approaches shallow fusion, because they do not reason about the recursive

definitions of the combinators themselves, thereby greatly simplifying the problem at

the cost of generality.

The second class, deep fusion, deals directly with fusing recursive functions, with-

out baking in known traversals as primitive combinators. Deep fusion is general, but

these techniques have proved di�cult to automate in a practical way [10], and, as

such, they have remained comparatively unexplored for the last two decades. The

most popular deep approach is Wadler’s deforestation [8], which guarantees programs
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in treeless form can be fused safely. Treeless form, however, is very strict: functions

must be linear, and no intermediate data structures are created during a single func-

tion evaluation—ensuring termination and complexity preservation. In his conclusion,

Wadler states ”further practical experience is needed to better assess the ideas in the

paper”.

Without these restrictions, Wadler’s program rewrites might not reach a fixed

point and hence never terminate, or can generate programs that have higher run-

time complexity. In follow-on work, Chin relaxed the treeless form by imposing more

precise requirements on the fused functions [38]. Yet the scope of the programs satis-

fying those requirements remains narrow, with linearity restrictions and restrictions

on intermediate structures. In his conclusion, Chin stated: ”The syntactic crite-

ria proposed in this paper are based on safe approximations. They do not detect all

possible opportunities for e↵ective fusion, merely a sub-class of them”.

Complementing fusion, tupling is a transformation that combines functions that

consume the same input into a single one [39, 40]: it transforms f1 ∶ A → B and

f2 ∶ A → C into f12 ∶ A → B ×C. Chin studied the relationship between tupling and

fusion, and suggested that tupling transformation can enable e↵ective application

of fusion with fewer restrictions on applicability [37]. More specifically, fusion may

introduce multiple traversals of the same subtree when preformed on non-linear terms,

but these additional traversals can be eliminated using tupling. Di↵erent combined

transformation were suggested [9, 37]. However, the proposed approaches were not

implemented or evaluated. Furthermore, syntactic restrictions for termination exist

in those works.

In this paper, we propose a fusion transformation that does not require these

syntactic restrictions—expanding the applicability of deep fusion. To avoid increasing

runtime complexity, tupling and a novel intensive redundancy analysis are used to

clean up redundant computations introduced during (unsafe) fusion. To guarantee

termination, cut-o↵ parameters limit the transformation and force it to backtrack

under certain conditions.
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This paper makes the following contributions:

• We propose a deforestation transformation that combines fusion, tupling, and

intensive redundancy analysis, and which is guaranteed to terminate and may

be incorporated in practical compilers.

• We implemented and evaluated our transformation in a real compiler that op-

erates on a first-order language, with a Haskell backend, showing significant

speedups on a large set of programs. This includes di�cult-to-fuse examples

such as rendering tree-structured documents (like HTML).

• We introduce a novel redundancy analysis techniques that are crucial to elim-

inating redundant work introduced by fusion and tupling for complicated pro-

grams.

• We show that the general, deep fusion is still a promising technique, one that—

with good engineering—can fuse complicated programs which cannot be fused

using competing techniques.

4.3 Background and Motivation

Input tree

f1

f2

f3

Output tree

(a) Input program

F123

Output tree

Input tree

(b) Fusion

Input tree

Output tree

F123

(c) Tupling

Input tree

Output tree

F123

(d) Redundancy

analysis

Fig. 4.1. Intuition behind the proposed transformation structure showing
the major steps.
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As mentioned in the introduction, shallow, combinator-based fusion approaches

are useful when regular structures are traversed by standard patterns. More specif-

ically, such fusion has shown great success in fusing list operations. However, the

usage of such an approach is more limited when dealing with more complicated and

less regular structures and traversals: e.g., document render trees and their traversals.

On the other hand, deep fusion approaches have either been unautomated [10],

or work with a narrowly defined class of input programs that restricts their usage.

Nevertheless, if in some way those restrictions can be relaxed, then we can achieve

fusion for those more complicated and irregular traversals. To revive and make prac-

tical deep fusion requires surmounting two challenges: termination, and preserving

runtime complexity.

Termination Non-termination during fusion can happen when the number of traver-

sals that need to be fused increases with the depth of the traversed structure. For

example, consider the program in Figure 4.2. The function mul2pd multiplies each

element in the input list by 2i, where i is it’s index in the list. It does that by calling

mul2 in each recursion. Hence, each su�x of the list at index n is traversed n times

by mul2, and there are n traversals to fuse at each level.

Fusion does not terminate naturally when applied to this program, because after

each step in the fusion process a new fusion opportunity that was not encountered

before is created. When fusion is applied to this program it will start by fusing

mul2pd with mul2 and generates mul2pd mul2. In the body of the new fused function

mul2pd mul2, an application mul2pd mul2 consumes an application of mul2, fusion will

try to fuse those and the process is repeated ad infinitum.

Our proposed transformation handles non-termination by cutting o↵ the transfor-

mation at some certain threshold that is controlled by either the depth of the trans-

formation or the number of fused functions. Although such a cuto↵ means that the

fused code is not treeless (it contains intermediate structure at the cut-o↵ location),

we can still achieve speedups from performing such uncompleted fusion. Especially if



95

Input program:

mul2 [] = []

mul2 (x:xs) = (x * 2) : (mul2 xs)

mul2pd [] = []

mul2pd (x:xs) = (x * 2) : (mul2pd (mul2 xs))

Code after fusion:

mul2pd (x:xs) =

(x * 2) : (mul2pd_mul2 xs)

mul2pd_mul2 (x:xs) =

(x * 2) : (mul2pd_mul2_mul2 xs)

mul2pd_mul2_mul2 (x:xs) =

(x * 2) : (mul2pd_mul2_mul2_mul2 xs)

�

Fig. 4.2. Example of a program with non-termination.

the structure is not linear; for example performing fusion up to depth 10 in a binary

tree can eliminate all intermediate trees that are generated to compute the upper 210

nodes in the tree.

Runtime complexity The other complication that arises from relaxing the syn-

tactic restriction, is preserving runtime complexity. The treeless form imposed by

Wadler [8] enforces that terms in the fused functions are linear. Such linearity guar-

antees that no repeated work gets introduced during the fusion process.

Non-linearity can cause fusion to replicate work or create traversals that did not

exist in the original program, which can change the runtime complexity of the pro-

gram. Consider for example the program in Figure 4.3. A list of integers is traversed

by two functions; the first traversal (sum) aggregates the values in the list and the
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next traversal shifts the elements to the left by dropping the first element and adding

a zero to the tail of the list. This program has a runtime complexity of O(N).

Figure 4.3(d), shows the final result of fusion when performed on those two

functions, the details of the fusion process is explained in the next section. Note

that the fused function shift_sum has a runtime complexity of O(N2)! For every

element in the list, shift_sum calls head_sum (which traverses the complete list again)

to sum the elements in the tail. Although the resulting program does not have explicit

intermediate structures, it has additional traversals that did not exist in the input

program.

Such increase in work can occur when the functions being fused are not linear.

After fusion, all compositions of functions are eliminated. This means that all the

computations operate directly on the input tree to generate some part of the output

tree. And if the original functions are not linear it’s possible that there would be

multiple consuming locations for the input tree, and each of them can become a

traversal. In the example above, shift is non-linear – it consumes the tail of the list

in a recursive call and consumes it to get the first element in the tail. After fusion

those two consuming locations became traversals, (shift_sum) and (head_sum). So what

can we do to eliminate such overhead?

One key observation is that those traversals traverse the same structure and we

can eliminate redundant work if we can combine them into a single large traversal

that traverses the structure only once. Furthermore, since those are compositions

constructed from the same set of original functions, there is a good probability of

repeated work within these traversals that we need to get rid o↵; for example fxfy,

fzfy, fyfz.. all might include some repeated work from fy! Merging those traversals

into a single one makes it easier to detect and eliminate such redundancy.

Tupling is the transformation that combines functions traversing the same input

structure into single function with tupled output. Tupling can eliminate the redun-

dant traversals by traversing the input structure once rather than multiple times;

furthermore, it brings work from di↵erent traversals closer to each and makes it eas-
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data List = Cons Int List � Sing Int

sum :: List → List

sum ls = case ls of

Cons value tail →
let tail ' = sum tail in

let tailValue = head tail ' in

let value ' = value + tailValue in

Cons value ' tail '

Sing value → Sing value

shift :: List → Int

shift ls = case ls of

Cons value tail →
let tail ' = shift tail in

let value ' = head tail in

Cons value ' tail '

Sing value → Sing 0

head :: List → Int

head ls = case ls of

Cons value tail → value

Sing value → value

prog = let ls = .. in

let tmp = sum ls in

shift tmp

Fig. 4.3. Program used as running example through out the paper.

ier to detect and eliminate redundancy. Our proposed transformation performs a

tupling pass after the fusion pass. Figure 4.1(c) illustrates the e↵ect of tupling, where

the input is only traversed once, creating coarser-grained traversals.

Back to our example, we have two functions that traverse the tail: head_sum and

shift_sum. The tupling pass combines those into one function, with the result shown

in Figure 4.9(a). This tupled function brings the computations closer to each other
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and, once simplified, yields the function in Figure 4.9(b). Details of the tupling pass

are explained in the next section.

In the final tupled function, every list tail is consumed only once and the repeated

computation is eliminated using a simple common subexpression elimination (CSE)

pass that is integrated with tupling. The final runtime complexity is O(N) with no

intermediate structures.

CSE is not always su�cient to eliminate redundancy, in more complicated pro-

grams an intensive redundancy analysis followed by several cycles of tupling might

be needed, which is discussed in the next section.

Figure 4.3 visualizes the idea behind the proposed transformation. Fusion elim-

inates compositions of functions making all the operation in the fused function be

written as consumers of the input tree. Tupling then combines those consumers to

eliminate redundant traversals and brings computations closer to each other. Finally,

redundancy analysis runs to unneeded computations.

4.4 Design

This section describes the details of the proposed transformations, we will start

first by defining the language that the transformation assumes:

Our program transformation is defined on a first-order, pure language, with the

grammar shown in Figure 4.4. We use the notation x to denote a vector [x1, . . . , xn],

and xi to denote the item at position i. To simplify presentation, primitives are

dropped from the presented language. The language permits recursive data types,

but as a strict, side-e↵ect free language there can be no cyclic data values.

A program consists of a set of data definitions, function definitions, and the main

expression. A function is a single case expression that destructs the first argument,

which is assumed to be the dominant, traversed input.

The branches of the case expressions are sequences of flattened let expressions

ending with leaf expressions – either a variable, a function application, or a constructor
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Fig. 4.4. Language definition

expression with variable arguments. This language is a simplified version of the actual

language used in the implementation, which supports literals and primitives, and

expressions need not be flattened.

4.4.1 Overview

Figure 4.5 illustrates the high level structure of the proposed transformation. The

transformation converts an input expression to an optimized expression and generates

a new set of functions during that process. The transformation consists of three main

stages; fusion, tupling and redundancy analysis.

During the fusion step compositions of functions are fused and new functions that

represent the compositions of fused functions are generated, the fusion process is

then performed recursively on the new generated functions. Tupling runs next to

combine traversals and eliminate redundant traversals, it’s performed on each func-
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Fusion Pass Tupling Pass
Redundant 

Output 
Elimination

Redundant Inputs 
Elimination

Input Expression,
Function Defintions

Output Expression,
Function Defintions

Fig. 4.5. High-level structure of the transformation showing the main
passes.

tion that is generated during fusion, the tupling is also performed recursively on the

new generated tupled functions. Redundancy analysis is then performed to eliminate

redundant work. The process consists of two passes: output and input redundancy

eliminations, respectively. Eliminating redundancy can allow more functions to be

tupled, and hence tupling runs back-to-back with redundancy analysis until the pro-

cess converges. A simplification pass serves to cleanup, and runs several times during

the transformation. It performs common subexpression elimination and eliminates

unused let bindings which is important to avoid optimizing dead code.

Cycles in this process can result in non-termination; the fusion recursion, the

tupling recursion, and the tupling-redundancy cycle are some of them. We use a

standard “fuel” approach to guarantee termination: the depth of the transformation

is tracked along each cycle and threshold values are used to cut o↵ and move to the

next step.

In the rest of this section, each of the transformation steps is described in more

detail.
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4.4.2 Fusion

The goal of the fusion pass is to eliminate intermediate structures in the program.

Figure 4.6 shows the structure of the fusion pass. It takes an expression and function

definitions as input and returns a new fused expression and a possibly-larger set of

function definitions.

f1_f2 generation

fuse body f1_f2

eliminate constructor's 
consumers

(f1, f2)

already 
fused?

create new function
f1_f2

no

clean up

replace consumer 
application

yes

find candidate

clean up

Fig. 4.6. Fusion pass diagram

The pass starts by identifying a fusion candidate in the processed expression, to

this end it maintains a def-use table that tracks variables that are bound to function

applications, and their consumers. More specifically a candidate for fusion (f1, f2) is

a pair of functions that satisfies the following pattern:

let y = f1 x � in

� f2 x �
In such a case, (f1, f2) represents a fusion candidate and a new function f2 f1

that represents the composition is generated. We call f1 inner (the producer) and

f2 outer (the consumer). Generating the fused function draws on previous fusion

techniques [8,38]. However it’s slightly altered to handle non-treeless expressions, and

preserve the invariant that every function is a single case expression. This invariant

makes the implementation of the optimization easier and more regular.
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To illustrate the fusion process consider the previous example from Figure 4.3.

Functions sum and shift are candidates for fusion. In this example, sum is the producer

and shift is a consumer. As described in Figure 4.6 the first step is to create a new

function shift_sum that represents the composition of shift and sum. It’s created

according to the following rules:

1. The output type of fused function is the output type of the consumer function.

2. The input type of fused function is a concatenation of the inputs of producer

and the consumer excluding the first input of the consumer function.

3. The body of the fused function is the body of the producer with the consumer

function applied to the output of every branch in the producer.

Figure 4.7(a) shows the result of the first step of fusion, a new function shift sum

is created with the appropriate types, and the body of the function is the the body

of sum, with shift applied at each output location.

Next we partially-evaluate the body of the generated function with a pass that

eliminates constructor consumers (similar to “case of known constructor”). This pass

uses its def-use table to look for patterns of the form let x = (K ..) in ... f x

For each such pattern, the function application is replaced with the branch in f

that corresponds to the constructor K after the appropriate instantiations. In our

example (shift out1) and (shift out2) in Figure 4.7(a) are eliminated the result is

shown in Figure 4.7(b). This sub-pass will keep running on the function until there

are no further applications to known constructors.

After the new, fused function is generated, a cleanup pass will run, removing

common subexpressions and unused let bindings: e.g. value’, out1, and shift value’

in our Figure 4.7(b) example. The output of this step is shown in Figure 4.7(c).

Fusion is then performed recursively on the body of the new function, e.g., shift_sum.

There are two candidates in this case (head, sum) and (shift, sum), the first will be

generated through the same cycle while the later is already generated. For each can-

didate, after generating the new fused function, the consumer application is replaced
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Fig. 4.7. Di↵erent steps of fusion pass performed on the running example.

with an application of the new fused function and a clean pass runs to eliminate the

producer application when its last consumer is eliminated. The final result of fusion

is shown in Figure 4.7(d).

There are two cycles in the fusion pass, the recursive fusion, and the recursive

constructor inlining. Each of those is tracked and bounded as described earlier to

guarantee termination.

4.4.3 Tupling

Tupling combines traversals that traverse the same structure and bring computa-

tions closer to each other. Tupling is performed after fusion to eliminate redundant

work that is introduced during fusion. For tupling, we extend the intermediate lan-

guage to include operations on tuples. New expression forms are added for construct-

ing tuples and projecting elements from tuples, plus a new product type.
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 function generation

simplify projections

tuple body new_fun

F1(X..),
F2(X..), ...
[syncedArgs]

already
 created ?

create tupled 
funcitonfind tuple candidate 

clean up
no

replace funciton 
applications

yes

Fig. 4.8. Tupling pass diagram

Figure 4.8 summarizes the tupling pass, which begins by finding a tupling candi-

date. A candidate is a set of independent function applications that all traverse the

same input (have the same first argument in our language).

By independent we mean that none of them directly nor indirectly consumes the

other. For example in the code below, calls to f1 and f2 are not tupleable because f2

indirectly consumes f1 through the intermediate variables y.

let x = f1 tree in

let y = x + 1 in

let z = f2 tree y in

where as f1 and f2 are candidates for tupling in this program.

let x = f1 tree in

let y = 1 in

let z = f2 tree y in

In the running example, the two applications, (shift_sum tail) and (head_sum tail)

in the body of fused function shift_sum shown in Figure 4.7(d) are a candidate. For

each candidate, a tupled function is generated. Figure 4.9(a) shows the tupled function

shift_sum_T_head_sum from the running example. The tupled function is generated accord-

ing to the following rules:
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Fig. 4.9. Code generated during tupling the running example

1. The input type of the tupled function is the type of the traversed tree followed by

the remaining inputs of each of the participating functions. move a note about doing

this during tupling to the redudancy analysis to save space

One important optimization at this point is to analyze shared inputs, and include

them only once in the input list of the tupled function. This guarantees that shared

inputs are bound to the same local variable, and hence allows better redundancy

analysis. In some cases that also can avoid non-termination by eliminating identical

tupleable applications that won’t be seen identical otherwise.

2. The output type of the tupled function is a tuple of the output types of the partici-

pating functions, with nested tuples flattened.

3. The body of the tupled function is a single case expression that destructs the traversed

tree. For each case branch the body of the corresponding branch in each of the

tupled functions is bound to a variable and a tuple of those variables is returned.

Figure 4.9(a) illustrate the final result of this step.

Next, this new function is optimized through a cleanup pass. In our example the re-

dundant application head_sum tail which appears twice in the new tupled function (Fig-

ure 4.9(a)) is eliminated. Tupling is then performed recursively on the body of the new

function.
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At the end of the process, the original function applications that are tupled are elimi-

nated by replacing the first application with the tupled function and the rest with projections

to extract the corresponding output. Figure 4.9(b) shows the final result of tupling in our

running example.

It’s possible for tupling to diverge when the number of the tupleable applications in-

creases with the depth of the tree. Thus, the depth of the recursive tupling cycle has to be

tracked to guarantee termination.

Tupling reverts the runtime complexity of the fused program in our running example

back to O(N), since redundant traversals are eliminated. However, it’s not always enough for

the cleanup pass to eliminate the redundant computations. Furthermore, as the traversals

get more and more complicated, certain redundancies can create avoidable dependencies

that prohibit tupling. The next section describes the redundancy analysis pass which per-

formed a more intensive analysis to overcome those issues.

4.4.4 Redundancy Analysis

Following tupling, redundancy analysis is performed to further optimize the tupled func-

tions. The optimizations performed during this pass are classified into two types; redundant

outputs and redundant inputs. Each is described in detail in this section.

Note that as illustrated in Figure 4.5, tupling is performed again after redundancy

analysis, since eliminating redundancy can enable more tupling to be done by eliminating

some dependences that prohibit tupling.

Redundant outputs

The redundant outputs pass eliminates outputs of functions that appear at di↵erent

indices in the tupled output but always have the same value.

Function ft in the code bellow illustrates such redundancy in its simplest form. The

output of ft is always the same for positions 0 and 1. We will use the notation f0=1t to refer

to that property throughout the section.
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ft :: List → (Int , Int)

ft ls = case ls of

Cons value tail →
let ret = depth tail in

(ret , ret)

Sing value → (0, 0)

Di↵erent circumstances can cause such redundancy to originate. For example,

consider tupling two fused functions, fxfy and fxfz. If the result of fx does not depend

on fz nor on fy, then both functions would have the same output.

Eliminating such redundancy is important for two reasons. First, if this function

is called recursively, then the memory and runtime overhead of creating such a tuple

is eliminated. The second important e↵ect of such elimination is that it allows more

optimizations on the caller side by leveraging the fact the the two outputs are the

same to further eliminate redundant traversals and expressions.

For example, consider the function fx below that calls function ft (illustrated

earlier), where f0=1t . Function fx calls fy twice on each of the outputs of ft.

fx :: List → (Int , Int)

fx ls = case ls of

Cons value tail →
let p = ft tail in

let o1 = fy (proj 0 p) in

let o2 = fy (proj 1 p) + 100 in

(o1, o2)

However after eliminating the redundant output of ft, a cleanup pass will be able

to identify that the two calls to fy are the same and hence eliminate one of them. The

code below shows the result of the optimization. The second output is eliminated

from ft, and the caller of fx is redirected to read the second output from the first. A

cleanup pass then is used to eliminate the redundant application of fy.

ft :: List → (Int)

ft ls = case ls of

Cons value tail →
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let ret = depth tail in

(ret)

Sing v → (0)

fx :: List → (Int , Int)

fx ls = case ls of

Cons value tail →
let p = ft tail in

let y = fy (proj 0 p) in

(y, y + 100)

Redundant output elimination consists of three steps:

1. Identify redundant outputs.

2. Create a new function with redundant outputs eliminated.

3. Fix callers to call the new function and optimize them.

For each tupled function, each two output positions are checked for redundancy,

then the function is rewritten by eliminating the redundant locations. This is done

by updating the output type and the output expressions at each output tuple. Next,

call sites of the original functions are updated such that projections of the redundant

position are projecting the retained position rather than the eliminated redundant

position.

Steps two and three are direct manipulation and rewrites. However, identifying

redundant outputs is not always as trivial as in the previous example.

Inductive Redundant Output Analysis. In the previous example, it was easy

to identify that the outputs at positions 0 and 1 are the same, by simply inspecting

the output of each branch. However the process is not always that simple. Due

to mutual recursion and complicated traversal patterns, a more rigorous inductive

analysis is needed.

Consider the following slightly more complicated example of two mutually-recursive

functions, f1 and f2.
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f1 :: List → (List , List)

f1 ls = case ls of

Cons value tail →
let p = f2 tail in

let o1 = Cons (v+1) (proj 0 p)in

let o2 = Cons (v+1) (proj 1 p) in

(o1, o2)

Sing 0 → (Sing 0, Sing 0)

f2 :: List → (List , List)

f2 ls = case ls of

Cons v tail →
let p= f1 tail in

let y1 = Cons (v*2) (proj 0 p) in

let y2 = Cons (v*2) (proj 1 p) in

(y1, y2)

Sing 0 → (Sing 0, Sing 0)

Looking closely at those two functions, we observe that the second output of f1

and f2 is redundant and matches the first output. But how can we verify that soundly

and systematically?

We want to check if f1 always returns the same output at indices 0 and 1. In other

words, if f0=11 is satisfied. We can do that by checking the output at each branch. In

this example the the following two equalities should be satisfied: (Sing 0 == Sing 0)

and (o1 == o2).

If the application of f1 is a leaf function application (with respect to the execution

call stack) then (Sing 0 == Sing 0) should be satisfied, otherwise if it is a non leaf

application, then (o1 == o2) should hold.

Verifying that (o1 == o2) is equivalent to verifying that Cons (v+1) (proj 0 p)

== Cons (v+1) (proj 1 p), which is true only if (proj 0 p == proj 1 p)—in other

words, if f0=12 is satisfied (since p is bound to f2 function application).
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More precisely, for f0=11 to be satisfied during a non-leaf application at depth l, f0=12

need to be satisfied for depth l+1. In a similar a way f0=12 is satisfied if f0=11 is satisfied

for the next depth.

We can use induction to show that f0=11 is satisfied, under the assumption that the

program terminates, as follows:

Base Case: f0=11 and f0=12 are satisfied during a leaf function application, since (Sing

0 = Sing 0).

Induction hypothesis: Assume that f0=11 and f0=12 holds at depth ¿ l.

Induction step: f0=11 and f0=12 are satisfied during non leaf application at depth l as

a consequence of the induction hypothesis as discussed earlier.

We propose a process through which a compiler can conclude that two outputs of a

given functions at two di↵erent locations are always the same. The process checks all

the conditions that are needed to construct an inductive proof similar to the previous

proof.

We will first describe the process and then explain its soundness. We will use the

example above to illustrate the process, to verify f0=11 .

The process tracks two sets of properties, S1, S2, the former for properties that

need to verified and the latter for the properties that are already verified. A single

property is of the form f0=11 . In our example, at the beginning of the process S1 = {

f0=11 } and S2 = {}.

The process will keep pulling properties from S1 and checks for two things:

Check1: Whether the property is satisfied during a leaf application of the function

(leaf with respect to to the call stack).

Check2: Wether the property is satisfied during a non-leaf application at level l under

the assumption that all properties that need to be satisfied at depth l + 1 are

satisfied.
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If the two checks are satisfied, then the set of properties that need to be satisfied

at depth l + 1 of the call stack for the current property to be satisfied at level l (the

assumptions in check2 ) are extracted. Those properties will then be added to S1 and

the condition that was checked will be moved to S2. If a condition already exists in

S2, then it does not need to be added to S1 again since it is already verified.

Let us explain how the process work more specifically: For each condition fy=zx in

S1, the following will be performed (in our example those are performed first on f0=11 ):

1. All let bindings in fx are inlined in the output tuples except variables that are

bound to function application of other tupled functions. In our example, this

will result in the following function body:

Cons value tail →
let p = f2 tail in

(Cons (v+1) (proj 0 p),

Cons (v+1) (proj 1 p))

Sing 0 → (Sing 0, Sing 0)

2. Each expression in the output tuple is parametrized around the indices of the

projections that appear inside it. The code below shows the result of this step.

Cons value tail →
let x = f2 ls in

(Cons (v+1) (proj p0 x where p0 = 0),

Cons (v+1) (proj p0 x where p0 = 1))

Sing 0 → (Sing 0, Sing 0)

We do such parametrization by traversing the expression in a deterministic

manner such that if two expressions are the same but have di↵erent projection

indices then those indices will have place holders of the same id (p0 in the code

below).

3. Check that the expression at indices y and z from the property (fy=zx ) are the

same in each output in the function. Place holders in the parametrized ex-
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pressions (p0 in our example) are considered equivalent if they have the same

id. If this check fails then our algorithm considers the output locations as not

identical and terminates. Otherwise, this step will satisfy the two checks check1

and check2 that are mentioned earlier for the property fy=zx . More specifically,

a leaf application of fx satisfies fy=zx since we have checked that the outputs are

the same on each possible output branch. And for non-leaf application of fx,

fy=zx is satisfied assuming that the properties that need to be satisfied during

the next level of the call stack are satisfied. Those properties are determined in

a way that guarantees that projections from the same place holders are always

the same, and in such cases, the output expressions are the same. (The next

step explains how those required properties are determined.)

4. Determine the set of properties that need to be satisfied at level l + 1. This

is done by inspecting the corresponding pairs of place holders in the output

expressions at indices y and z. In our example, we only have one (p0 = 0

and p0 = 1, and they are projecting from x, which is bound to f2). Hence the

property f0=12 is generated as a requirement for l + 1.

5. The checked property is then moved from S1 to S2, and each property that is

generated in the previous step is added to S1 if its not already in S2.

6. The process is repeated on the next property in S1 until either S1 becomes

empty or an unsatisfied condition is encountered. If S1 becames empty, then

the starting property fy=zx and all properties in S2 hold.

In our example, the process will be repeated for the condition f0=12 , then this

condition will be moved to S2 and f0=11 wont be added to S1 since its already in S2.

Hence, at the end of the process the compiler knows that f0=11 and f0=12 hold.

Theorem 4.4.1 At the end of the process described earlier, if S1 is empty then all

the properties in S2 are satisfied.
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Proof We will prove the theorem by induction on the depth of the call stack during

the evaluation of any of the functions in S2. The call stack is considered to expand

at applications of tupled function. The proof assumes that the program terminates.

Base Case. Every property in S2 is satisfied if its evaluation is a leaf application in

the call stack. This follows directly from check1 mentioned earlier, which is performed

during step 3 in the process above on each property before it is moved to S2.

Induction hypothesis. Assume that each property in S2 holds at depth ¿ l.

Induction step. We can show that at depth l any property in S2 holds as the

following:

(1) Any property in S2 is satisfied if all properties that need to be satisfied at l+1

hold. This is done at step 3 for every property before it is moved to S2.

(2) For any property in S2, all the properties that need to be satisfied at l + 1

are also in S2. During step 4 all such needed properties are generated and added to

S1 unless they are already in S2. This means that any property that needs to be

satisfied is already in S2, since everything in S1 eventually moves to S2 and S1 is

empty.

(3) By the induction hypothesis, all properties in S2 hold at depth l+1, thus from

(1) and (2) all properties in S2 holds at depth l.

The output of the optimized mutual recursion is shown in the code bellow. The

output program traverses the tree on time instead of traversing every branch twice

recursively.

f1 :: List → (List)

f1 ls = case ls of

Cons value tail →
let p = f2 ls in

let o1 = Cons (v+1) (proj 0 p)in

(o1)
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Sing 0 → (Sing 0)

f2 :: List → (List , List)

f2 ls = case ls of

Cons v tail →
let p = f1 ls in

let y1 = Cons (v*2) (proj 0 p) in

(y1)

Sing 0 → (Sing 0)

Redundant inputs

The redundant inputs pass targets eliminating inputs of functions when they are

not needed. Eliminating such inputs removes the overhead of passing them, espe-

cially in recursive functions. It also allows better optimization on the callee and the

caller site by possibly eliminating related computations. Furthermore, it can elimi-

nate dependences and allow more tupling. This section will describe several types of

redundant inputs that are handled in our transformation.

Shared inputs Function applications that consume the same input at di↵erent

input positions can be optimized by unifying such arguments into one argument.

Doing so enables more optimization in the body of the function, since all arguments

will be bound to the same local variable.

Although this optimization is performed during tupling, it is performed here again

because the output redundancy pass can result in more shared input opportunities.

Unconsumed inputs Unconsumed inputs are inputs that are not used in the body

of the function that consumes it. Fusion can result in such inputs. For example,

consider a fused function, fxfya b, where b is originally an argument of fy. If the
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input b is not needed to construct the output of fx, then although it is used in fy,

that usage will be eliminated in the body of fxfy.

Non-recursively consumed inputs This pass eliminates inputs that are returned

as output without being further consumed in the function. Thus the caller can be

rewritten to use them directly. The code below shows an example of such inputs.

f2 :: List → List → List

f2 ls1 ls2 = case ls1 of

Cons v tail →
let z = f1 tail in

(Cons (v*2) z, ls2) in

Sing 0 → (Sing 0, ls2)

4.5 Limitation Discussion

Unlike previous work, one of the goals is of this paper is to show that syntactic

restriction needs not to be followed for general fusion, which can help us to get

significant performance improvements on a larger set of applications.

The syntactic restriction that establishes limitations has been studied thoroughly

for individual optimizations. However, performing such an analysis for a transforma-

tion that is composed of di↵erent sub-optimizations is extremely hard. Instead, an

experimental and intuition-based approach is followed in this work.

Back to discussing the limitations of the transformation; our work (Unlike pre-

vious) can handle non-termination and non-linearity in isolation. However, an issue

might arise when a program has both of these properties at the same time. The AST

benchmark in section 4.7 is an example of such a program.

The argument for that follows from the following intuition, first non-termination

by itself is not an issue since our framework handles that by trimming the transfor-

mation, also when its combined with linear terms that wont be a problem since no

repeated work would be created in that case.
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Second nonlinear terms, when combined with fusion that naturally terminates

are also not an issue. Since fusion will guarantee that all function applications are

consuming the same input as illustrated in figure 4.1(b), and hence tupling will be

capable of combining them and eliminating redundant work.

However, when non-linear terms are combined with non-naturally terminated fu-

sion, the following can happen. Fusion does not guarantee in such a case that all the

function applications are written in terms of the same input tree (compositions do

still exist and the state in figure 4.1(b) might not be achieved). But non-linearity,

on the other hand, can introduce redundant work that in such case is not guaranteed

to be tupled since not all the function applications are written in terms of the same

input. (Figure 4.3) . The failure of tupling any redundant traversals will result in

more work to do and worse performance.

4.6 Implementation

The proposed transformation was implemented as a pass in Gibbon [41] a compiler

for a small subset of Haskell. Gibbon has a Haskell front end and can be prompted

to output the transformed program into Haskell output. Hence, we used Gibbon to

perform Haskell source-to-source transformation.

To control termination, all cycles in the transformation are controlled by a max-

imum depth of 10 in all the reported experiments unless otherwise noted, the max

depth threshold can be overridden using a compiler flag.

4.7 Evaluation

We evaluated our transformation on a large set of programs showing its ability to

fuse them, achieving better performance and lower memory usage.

We divided the evaluated programs into two sets: a set of programs inspired by

previous related work, and a set of more complicated programs that involve larger

traversals. For each experiment, we evaluated the output Haskell programs in lazy and
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strict modes. Strict mode is achieved via the Strict pragma in GHC.We also report an

experiment that measures the e↵ect of each major pass in the transformation. And

finally, we discuss a case in which our transformation was not able to consistently

achieve a speedup.

Experimental platform: We ran our experiments on a Intel Xenon E5-2699 CPU,

with 65GB of memory running Ubuntu 18.04 and GHC 8.8.1. All programs are

compiled using the -O3 optimization level and the runtime numbers are collected by

taking the average of 10 program executions.

4.7.1 Surveyed Simple Programs

The first set of programs is extracted and inspired from previous work, each one

of those programs is a composition of two functions. Table 4.1 contains the evaluated

programs – programs 1-4 operate on lists while programs 5-9 operate on trees. Most

of the programs are self explanatory, while programs 3,4 and 5 are explained in section

4.2. Program 10 consumes a list of lists.

For each program, we show runtimes that correspond to the fused and the unfused

versions in both lazy and strict modes. In addition to that, three properties are shown:

natural termination, linearity, and whether the program is in treeless form. Programs

not in treeless form are unsafe fusion candidates in Wadler’s deforestation [8].

Under strict evaluation, the fused version has better performance for most pro-

grams and does not introduce any slowdown, with speedups up to more than 5X .

One the other hand under lazy evaluation a runtime regression is caused by fusion

for three programs. One reason for that is that for some programs, fusion happens

naturally during lazy evaluation where the order of evaluation matches the order of

the fused computation. In such cases the overhead that is associated with syntactic

fusion is not justified. Specifically the overhead due to tuples packing and unpack-

ing, and the introduced coarser-grained traversals. Program 9 is an interesting case;

the function flipRec flips each tree at depth d, d times. Fusion does not terminate
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naturally on the program, however when truncated at depth 10 it eliminates all the

additional traversal up to that level, and for a tree of depth 13 that is eliminating

almost all of the work, achieving more than 100X speedup. Overall for programs in

table 4.1 fusion achieves speedups with geo-mean of 2.4 in lazy evaluation and 2.6 in

strict evaluation.

Table 4.1.
Comparison of the runtime of the fused and unfused programs under lazy
and strict evaluation. Programs in this table are ported or inspired form
previous work.

natural

termination
linear treeless

lazy strict

unfused fused unfused fused

1. append (append ls) 3 3 3 0.47s 0.42s 1.51s 1.28s

2. sum (square ls) 3 3 3 0.37s 0.25s 0.99s 0.36s

3. shift (sum ls) 3 7 7 22.9ms 31.8ms 11.4ms 7.0ms

4. mul2pd ls 7 3 7 2.56s 2.38s 0.60s 0.58s

5. mul2pd tree 7 3 7 1.56s 0.42s 0.89s 0.32s

6. seteven (sumup tree) 3 7 7 1.11s 1.07s 0.95s 0.52s

7. sum (flatten tree) 3 3 3 0.69s 0.8s 1.66s 1.3s

8. flip (flip tree) 3 3 3 0.53s 0.28s 0.68s 0.48s

9. flipRec (flipRec tree) 7 3 7 3.18s 2ms 0.75s 1ms

10. sum (flatten mtrx) 3 3 3 1.16s 1.52s 1.37s 1.35s

4.7.2 Larger Programs

In this section we consider another set of programs that are larger and more

application oriented:

Render Tree Render trees are used in render engines to represent the visual com-

ponents of the rendered document. A render tree is consumed by di↵erent functions

to compute the visual attributes of elements of the document. We implemented a

render tree for a document that consists of pages composed of nested horizontal and
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vertical containers with leaf elements (TextBox, Image, etc.). We implement five

traversals that traverse the tree to compute height, width, positions and font style

of the visual elements of the document. Each traversal consists of a set of mutually

recursive functions. In total, the program consists of more than 40 functions with

more than 400 lines of code. Table 4.2 shows four entries for the render tree, fus-

ing 4 passes and fusing 5 passes with two di↵erent inputs. Fusion reduces memory

usage and achieves speedups up to 3X for all programs under both lazy and strict

evaluation.

Piecewise Functions Kd-trees can be used to compactly represent piecewise func-

tions over a multi-dimensional domain. The inner nodes of the tree divide the domain

of the function into di↵erent sub-domains, while leaf nodes store the coe�cients of

a polynomial that estimates the function within the node’s sub-domain. In this pro-

gram, we implemented a kd-tree for single variable functions, and di↵erent traversals

to construct and perform computations on these functions such as adding constant,

multiplying variable and adding two functions. Table 4.2 shows the speedups for three

di↵erent programs that are expressed using di↵erent compositions of those functions

along with the corresponding equations. A binary tree of depth 22 is used to represent

those functions.

Fusion achieves up to 5X speedups on those programs and significantly reduces

the memory usage. The third program has a relatively lower speedup than the first

two, and the reason is that the function that adds two piecewise functions consumes

two trees, but our fusion performs fusion across one of them only.

E↵ect of di↵erent passes. Table 4.3 shows the runtime of the fused programs

when the transformation is truncated at its major three stages: fusion, tupling, and

redundancy analysis. Render tree is the most complicated program, and it utilizes

both tupling and redundancy analysis to achieve speedups especially in strict mode.

Simpler, non-linear programs need tupling only to eliminate redundancies and achieve
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Table 4.2.
Comparison of the runtime and total memory allocated of di↵erent fused
and unfused programs under lazy and strict evaluation.

lazy strict

unfused fused unfused fused

4 render tree passes [input 1] 1.02s — 767MiB 0.53s — 551MiB 1.14s — 461MiB 0.47s — 228MiB

4 render tree passes [input 2] 3.79s —2.52GiB 2.26s — 1.85GiB 2.24s —1.53GiB 1.23s — 823MiB

5 render tree passes [input 1] 1.25s — 968MiB 0.49s — 590MiB 1.63s — 583MiB 0.63s — 291MiB

5 render tree passes [input 2] 4.97s — 3.16GiB 2.16s — 2.01GiB 4.24s —1.924GiB 1.73s — 1.04GiB

piecewise functions 1 (f 1 = x3 + x2 + x + 1) 5.06s — 6.37GiB 0.88s — 2GiB 4.99s — 4.71GiB 1.65s — 2.75GiB

piecewise functions 2 (f 2 = x2 + x) 3.55s — 4.78GiB 0.76s — 1.9GiB 3.71s — 3.96GiB 1.53s — 2.65GiB

piecewise functions 3 (f 3 = (f 1)
2 + f 2 ) 15.0s — 28GiB 5.56s — 19GiB 12.1s — 11.28GiB 6.00s — 6.59GiB

5 binary tree traversals 4.12s — 2.5GiB 3.10s— 1.46GiB 2.08s — 864MiB 0.77s — 480MiB

speedups. Finally, although the piecewise functions program is large and not trivial,

due to its linearity it only requires fusion to achieve its speedup.

Does it always work? There is no guarantee that this transformation is always

safe from a runtime perspective. Although for strict evaluation the transformation

does not reduce the runtime for almost all the benchmarks, we encountered one

case where the performance of the fused program varies between 2x speedup and 2x

slowdown for di↵erent inputs. We implement a sequence of 7 functions that optimize

and evaluate first-order lambda calculus expression. The program’s traversals are

complicated from a fusion perspective and hard to fuse. Specifically because we are

dealing with expressions only, not functions, fusion opportunities are less likely to be

found at that level.

For that specific program, a threshold of 10 for the depth of the transformation was

too large for the transformation to terminate in a reasonable time. Furthermore, the

code size grows very quickly since the number of di↵erent compositions of functions

and traversed structures can get very large. Future work includes more investigation

to analyze that benchmark and determine the causes of the slowdowns for some inputs

and whether it’s something that can be handled by the transformation.
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Table 4.3.
Runtime of the fused programs when the transformation is truncated at
the its three main satges.

Unfused Fusion Fusion + Tupling
Fusion + Tupling

+ Redundancy Elimination

lazy strict lazy strict lazy strict lazy strict

4 render tree passes [input 2] 3.79s 3.24s 2.23s 3.22s 4.07s 1.68s 0.76s 0.46s

5 render tree passes [input 1] 1.25s 1.63s 0.74s 1.15s 0.70s 1.05s 0.49s 0.63s

shift (sum ls) 22.9ms 11.4ms 58.6s 45.6s 31.8ms 7.0ms 31.8ms 7.0ms

5 binary tree traversals 4.12s 2.08s 1.87s 2.46 3.10 0.77 3.10 0.77

piecewise functions 3 15.02s 12.10s 6.82s 5.64s 6.82s 5.64s 6.82s 5.64s

4.8 Conclusion

Deforestation is an important optimization in functional programs due to their

stateless nature. Practical fusion optimizations that are adopted by compilers utilize

combinator-based fusion techniques. While those are easy to implement, they address

a narrow set of fusion opportunities, and require programs to be built using specific

combinators.

In this work we propose and implement a practical fusion transformation that

operates directly on general recursive functions. We utilize fusion, tupling and redun-

dancy analysis to increase the applicability of such transformations and mitigate or

eliminate any performance side e↵ects. The proposed transformation shows signifi-

cant speedup over GHC optimized Haskell code. We hope that this work will inspire

and motivate more work to be done on practical, general deforestation techniques.
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5. RELATED WORK

5.1 Fusion for imperative programs

5.1.1 Fusion for regular programs

Fusion and similar transformations form the basis for many crucial compiler op-

timizations. In the world of regular programs (programs that operate over dense

matrices and arrays), loop fusion is a common optimization that improves locality

(by reducing the number of times that an array or matrix is accessed) by merging the

bodies of two (or more) loops together [42–44]. Perhaps the most popular framework

for performing fusion is the polyhedral framework [45–47], which uses a high level

dependence representation that allows compilers to reason about the dependences

between loops and explore di↵erent fusion possibilities prior to synthesizing code to

implement a fused schedule. These approaches are not suitable for traversal fusion,

as the dependence representation applies to loops over arrays with a�ne access func-

tions.

5.1.2 Fusion for irregular programs

The most directly related work, however, optimizes series of traversals, typically by

fusing together multiple passes. Di↵erent systems where proposed, in these systems,

the programmer aids the tool by expressing their tree traversals in a structured form.

Miniphases For example, in miniphases [3], the programmer writes an AST trans-

formation as a collection of “hooks” or callbacks that observe individual syntax nodes

and act on them, while abstracting the recursion over the tree so that it is han-

dled by the underlying framework. The user manually groups these miniphases into
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tree traversals, but there is no guarantee of equivalence between fused and unfused

executions—that soundness burden is on the programmer. This style of decomposing

passes is often approximated in many compiler implementations—strategies for it are

part of compiler writer folklore. It also appears explicitly in software frameworks such

as the a nanopass framework [2].

Attribute grammars Another specialized way to express tree traversals is by us-

ing attribute grammars [48]. In recent work, [18] showed how complex web page

rendering passes can be expressed using attribute grammars and then scheduled us-

ing a combination of fusion and parallelization [18]. While their approach is highly

e↵ective, attribute grammars are restrictive in the kinds of traversals they can ex-

press: a single complex traversal might require a careful decomposition into several

interlocking attributes. Moreover, existing attribute grammar scheduling frameworks

do not support partial fusion.

Tree transducers Attribute grammars are a special case of tree transducers, which

are automata that recognize tree languages (equivalently, traverse trees) and produce

an output as they go [49,50]. Macro tree transducers allow for more arbitrary compu-

tations by allowing the transducer to accumulate context as it traverses the tree [51].

There has been a significant investigation into the composition of various types of

tree transducers [52–54]. Tree transducers, like attribute grammars, require express-

ing traversals in a particular formalism, in contrast to our more natural, code-like

expression. Moreover, because our language for fusion admits fairly general compu-

tations and interleaving of computation and traversal, we believe that our approach

covers a more general class of problems than tree transducers, though this requires

further study. Finally, to our knowledge, there is no analog in transducer composition

to our notion of partial fusion.

However, to our knowledge, none of these approaches handle as general a class of

programs and fusion opportunities as Grafter: for example, we are not aware of a

tree transducer solution for partial fusion.
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Fusion in MADNESS simulation package [4,5] looked at fusing kd-tree traver-

sals in the MADNESS simulation package. They capture the various kd-tree passes

in MADNESS using a high-level representation and then reason about when fusion is

legal using a dependence test similar to that of [24]. Rajbhandari et al.’s abstraction

only supports pre- and post-order traversal, requires that every node in the traversed

tree have the same structure, and requires that each traversal be compatible (i.e., that

each traversal visit all the children of a node), and hence is not expressive enough

to handle, e.g., arbitrary AST traversals. As a result of these limitations, their opti-

mization framework also does not handle general code motion, and does not support

partial fusion.

5.2 Fusion for functional programs

Traversal in functional programs are dense with intermediate structures; each tree

traversal in a functional program results in an intermediate tree that is traversed by

the following traversal. Hence ”fusion” in the functional world is usually associated

with eliminating such intermediate structures in addition to combining work from

di↵erent traversals. Such fusion is usually also referred to as ”Deforestation”.

5.2.1 Deep fusion approaches

In 1977, Burstall and Darlington [10] provide a a calculation method to transform

recursive equations so as to reach a fused program, however decisions for applying

transformations are left to the programmer. More recent work [55] unified several

previous fusion approaches under one theoretical and notational framework based on

recursive coalgebras.

Wadler’s deforestation is the most popular deep fusion approach [8], in this work

expressions of functions written in treeless can be transformed using a recursive ap-

plication of some rewrite rules into a treeless form. Di↵erent extensions to Walder’s
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approach came next trying to relax the treeless form requirement using a consumer-

producer model [38,56]. However, the approach did not make its way to mainstream

compilers due to its syntactic restriction. Such syntactic restrictions are introduced to

guarantee the termination of the transformation and to avoid an increase in runtime

complexity.

Tupling Another ”fusion” transformation that is more close to the fusion in the

imperative word is tupling [39]. Tupling targets combining work from di↵erent

traversals but not eliminating intermediate structures. It looks at functions that

traverse the same structure and merge them into one function that returns the outputs

of the merged functions in a tuple. While fusion looks at sequential invocations of

traversals where each operates on the output of the previous one, tupling targets

independent functions that traverse the same structure.

A previous study showed that fusion and tupling are correlated and applying each

of them can lead to optimization opportunities of the other [37, 39]. A combined

transformation was proposed where the two optimizations interleave, yet we do not

know of any practical implementation and evaluation for the proposed optimization.

5.2.2 Shallow fusion

Another approach of fusion that is more popular in practical implementation, es-

pecially when optimizing functions operating on lists is shortcut fusion [14]. Such

approaches operate on high-level constructs(map, fold, filter, build..etc) and are de-

fined as rewrite rules.

In practice, functional programming languages have settled on using libraries of

combinators with known fusion transformations. For example, in the Haskell ecosys-

tem, many everyday libraries use the stream fusion approach [13] and variations on

it. This combinator style works well for collections (arrays, lists, etc) but is sharply

more limited than general recursive functions on trees. One example of this fact is

that compiler writers cannot use such frameworks for fusing AST traversals.
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5.2.3 Additional Related Works

Domain-specific languages [57, 58] and data-parallel libraries [59–61] typically in-

clude fusion rules that merge multiple data-parallel transformations of their data

collections. For example, these systems frequently provide map and fold operations

over multi-dimensional arrays (dense or sparse). These systems typically manipulate

an explicit abstract syntax representation to perform fusion optimizations, and can

generally be classified with the combinator-based approaches we discussed in section

4.3.

In contrast, libraries that expose iterator or generator abstractions can often

achieve fusion by construction and avoid the necessity of fusion as a compiler op-

timization (which may not always succeed).

For example Rust (or C++) iterators1 provide a stream of elements without nec-

essarily storing them within a data structure; likewise a Rust (rayon) parallel map op-

eration, simply returns a new parallel iterator without creating a new data structure.

In functional contexts as well, libraries often provide data abstractions where a client

can “pull” data, or where a producer pushes data to a series of downstream consumers

(as in “push arrays” [62]. All these techniques amount to fusion-by-construction pro-

gramming. However, in these approaches the programmer often needs to manually

intervene if they do want to explicitly store a result in memory and share it between

consumers.

1https://doc.rust-lang.org/book/ch13-02-iterators.html
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