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1.1 Example application space for a nanostructured surface. The central figure
presents the pushing and pulling concept from an incident plane wave
(red arrows) in the way of direction control (black arrows). The satellite
figures shows the potential applications of optical communication, silicon
photonics, and propulsion. . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Simulated gold (Au) metal film structures in free space: D is varied be-
tween 1 nm and 90 nm, with W set to 30 nm and 60 nm. In all cases, the
Au sample is illuminated from the top by 632.8 nm light (Ex, Hz), Λ is
400 nm, H is 200 nm. Periodic boundary conditions are enforced on the
left and right, and port boundaries are on the top and bottom. The figure
is taken from [24]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 The normal (y−component) of the force density for a 30 nm wide slot in
Au at various slot depths: (a) 1 nm; (b) 51 nm: (c) 81 nm. The sim-
ulation has an incident power density equivalent to 1 mW of 632.8 nm
laser illumination over a circular spot of diameter 1 µm. For reference,
resonance is achieved at about 46 nm for the 30 nm wide slot. (d) Nu-
merical results for the pressure as a function of slot depth in a Au film
for the two slot widths, calculated for slot depths from 1 nm to 90 nm in
1 nm steps and the pressure P = 〈py〉, in N/m2 determined by integrating
the y−component of force density over the depth of the Au nanostructure.
These values are normalized to a Poynting vector power density of 1 W/m2

and the wavelength is 632.8 nm. The figure is taken form [24]. . . . . . . 8

3.1 (a) The structuring of the surface of a metal film with an array of resonant
cavities can result in an increase in the optical pushing and pulling force
(black arrows), relative to that on a prefect mirror and a planar surface.
The red arrows indicate the direction of the incident light. (b) Simulated
structure with a periodic boundary (left and right) and parameters: period
Λ, slot width W , Au thickness 50 nm, and SiN thickness 50 nm. We
consider deflection with a laser having a free space wavelength of 1070 nm. 10
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3.2 Simulated fields and force densities for the periodic slot structure of Fig. 1(b):
(a)-(c) Strong Push, Λ = 966.4 nm, W = 250 nm, P = 25.7 N/m2; (d)-(e)
Strong Pull, Λ = 692.2 nm, W = 200.4 nm, P = −20.2 N/m2; (g)-(h)
Weak Push, Λ = 886 nm, W = 124 nm, P = 3.26 N/m2. The slot ta-
per was determined according to SEM data from fabricated samples. The
power density for the 1070 nm plane wave is 318 MW/m2, corresponding
to 1 mW over a 1 µm radius circle. . . . . . . . . . . . . . . . . . . . . . . 12

3.3 (a) The three slot arrays with an enhanced optical force: Strong Push, top
left; Strong Pull, top right; and Weak Push, bottom right. SEM image
data indicates: all slots have a length of 11.5µm; for the Strong Push
structure, 9 slots with W = 250 ± 2.2 nm, Λ = 966.4 ± 7.7 nm; for the
Strong Pull structure, 11 slots with W = 200.4 ± 3.4 nm, Λ = 692.2 ±
7.3 nm; and for the Weak Push structure, 11 slots with W = 124±3.3 nm,
Λ = 886 ± 9.8 nm. (b) A higher magnification SEM of the Strong Push
slot array. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 (a) The measurement of deflection uses a quadrant detection system, al-
lowing monitoring of the deflection due to the chopped 1070 nm force laser
(polarized with magnetic field out of the page). (b) Schematic for the ex-
periment. S1: 1070 nm CW fiber force laser (IPG photonics YLR-10-AC);
S2: 640 nm sensing laser (Coherent StingRay); Quad: Quadrant photo-
diode (OSI Optoelectronics SPOT 9D-MI) with 640 nm bandpass filter
and amplifier (OnTrak OT-301); OC: Oscilloscope; LA: Lock-in amplifier;
ND: Neutral density filter; WL: White light source; P: Polarizer; C: Chop-
per; O: Objective lens; M: Silver mirror; B: Beam splitter; L: Lens; CCD:
charge coupled device (camera). The membrane structure location was
adjusted using a computer-controlled X-Y stage. . . . . . . . . . . . . . . 16

3.5 Scanned membrane deflection magnitude (R) as a function of incident
laser position with 1 mW force laser power. The location of the three slot
arrays is clearly visible. The orientation of the three slot arrays differs
from that in Fig. 3.3(a) because the sensing laser is on the opposite side
of the membrane to the slots and the perspective of the SEM image. . . . 18
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3.6 (a) Measured (solid circles) and fitted and predicted (lines) total deflection
as a function of incident laser power: enhanced pushing force (blue), en-
hanced pulling force (red), weak pushing force (green), and planar surface
(yellow). Inset: enlargement of the dashed square region showing mea-
surement error bars. Dotted: fits to the measured data; dashed: fits from
a simulation with a Gaussian beam incident on each slot array; and solid:
fits from a simulation with plane wave illumination of the corresponding
periodic structures using the measured mean slot width and period. (b)
Extracted optical deflection: dashed lines are from the exact slot array
structures; solid lines are from the periodic structure simulations. The
error bars describe sensitivity to structure using the means and standard
deviations of the slot arrays from the SEM images (and are not the ex-
traction errors). The inset shows an expanded scale data. The blue curves
for a large pushing force show about an order or magnitude increase in
pressure relative to the planar surface (yellow). . . . . . . . . . . . . . . . 19

4.1 Optical cavities that enhance the radiation pressure. (a) A symmetric
Fabry-Perot cavity. The mirrors M1 and M2 are two identical slabs with
thickness t separated by d. (b) An asymmetric Fabry-Perot cavity. M1

is a slab with thickness t and M2 is a semi-infinite mirror placed d away
from M1. (c) A nanostructured slot cavity array in a metal. (d) Profile of
the nanostructured slot cavity in (c). A normally-incident plane wave of
wavelength 633 nm and Au with artificially adjusted loss are assumed, as
described in Table 4.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 (a) PM2 on M2 as a function of Q from (4.5), with a linear fit (orange line)
for examples of symmetric and asymmetric Fabry-Perot cavities with the
parameters given in Table 4.1. (b) PM2 as a function of Qω from (4.8).
(c) Net pressure, PM1+M2 , on M1 and M2 as a function of Qω. The dashed
line shows the value of the maximum pressure on a perfect mirror when
the magnitude of the incident power density (Si) is 1 W/m2. A resonant
asymmetric cavity can support larger pressure enhancement than a perfect
reflecting (anti-resonant) surface. (d) Forward (Sf ) and backward (Sb)
power density for the asymmetric cavity AFP3 (overlapping on this scale),
along with the difference (Sf − Sb), in comparison with the incident (Si)
and the net incident (Si − Sr) power densities. As Q increases due to
reduced loss in M1, Sf − Sb approaches Si − Sb. This result establishes
conservation of energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
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4.3 (a) The net pressure on M1 and M2, PM1+M2 , as a function of Qω for
symmetric (diamonds) and asymmetric (stars) Fabry-Perot cavity having
ε′M1 = ε′M2 = −11.82 and ε′′M1 = ε′′M2 = 0.1. We choose the thickness of
M1, t, to be 5, 10, 40, 50, 70, 80, 100, 130 and 150 nm to regulate the cavity
quality factor, Qω, in the regime where enhancement occurs and beyond.
The sub-figure shows an expanded view of the dashed box region for small
Qω. The dashed line shows the value of the maximum pressure on a
perfect mirror when the magnitude of the incident power density (Si) is
1 W/m2. For symmetric cavities (diamonds), the total pressure increases
with increasing Qω, and then approaches the perfect mirror case. For
asymmetric cavities (stars), note that the total pressure dips below that
for Si incident on a perfect mirror for low Qω. These results show that
there is a design region for pressure enhancement. When t becomes large,
the cavity behaves more like a symmetric cavity where the pressures on
M1 and M2 due to Sb and Sf approximately cancel. In this regime, the
net pressure is roughly that from the excitation wave on a planar surface.
The red parabola is from the local linear estimation for the asymmetric
cavity data points with t = 40, 50, 70 and 80 nm and use of (4.16). (b)
Calculated Qω(γ) with γ = 1− |Γ1|2 (asymmetric cavity data points with
t = 40, 50, 70, 80 nm). The blue line is a fit to all points, yielding Qω(γ) =
anγ + bn with an = −4.5350 × 103 and bn = 407.3813. With use of the
point with t = 50 nm which shows the largest enhancement in (a) and the
corresponding Q (blue star symbol with the second largest Q in AFP3)
in Fig. 4.2(a), we find Q = βQω with β = 2.6073. The an and bn provide
local a and b values in (4.16) and the resulting parabolic curve in (a). Note
how well this local, linear picture (the red parabola) captures the pressure
enhancement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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4.4 The pressures on M1 and M2 in the cavity of Fig. 4.1(b) using the Einstein-
Laub (2.3) and Maxwell (2.1) descriptions, with varying loss for M1 (ε′′M1)
and hence varying cavity quality factor, Qω. ε′M1 = ε′M2 = −11.82 is
fixed for both mirrors and ε′′M2 = 0.1. (a) Radiation pressure on M1 in
Fig. 4.1(b), |PM1|, as a function of cavity quality factor, Qω, for the asym-
metric Fabry-Perot cavity having mirror M1 material properties described
as AFP3 in Table 4.1. Varying the mirror material causes Qω to change
and hence the pressure, and this relationship is presented. The black stars
are estimated from Maxwell’s picture in (2.1), assuming there is no trans-
mission through the mirror. The blue star symbols are calculated from
the integral of the force density within the scattering material using the
Einstein-Laub description in (2.3). (b) PM2 from Maxwell’s picture in
(2.1) (black stars) and from the Einstein-Laub force density description in
(2.3) (blue stars). (c) The net pressure, PM1+M2 , from Maxwell’s picture
in (2.1) (black stars) and from the Einstein-Laub force density description
in (2.3) (blue stars). The larger differences with increasing Qω between
the two approaches comes from the assumption of no transmission for M1.
The dashed line shows the value of the maximum pressure on a perfect
mirror when the magnitude of the incident power density is 1 W/m2. The
enhanced pressure can be observed in both approaches. Our conclusion is
that both theories present essentially the same mirror pressure results. . . 36

4.5 Calculated analytical fields in the asymmetric 1D cavity as a function
of propagation distance for the three AFP3 examples with the largest Q
(Qω = 135.84, 120, 107.67 when ε′′M1

= 0, 0.1, 0.2, respectively) in Fig. 4.4.
(a) Magnitude of the electric field and (b) magnitude of the magnetic
field as a function of axial position through the cavity and the mirror
regions for ε′′M1

= 0. The shaded area indicates the positions of M1 and
M2. (c) Magnitude of the electric field and (d) magnitude of the magnetic
field as a function of axial position for ε′′M1

= 0.1. (e) Magnitude of the
electric field and (f) magnitude of the magnetic field as a function of axial
position for ε′′M1

= 0.2. The fields satisfy the boundary conditions and
represent the unique solutions for first resonance that is used to produce
the corresponding data points in Fig. 4.4. From Fig. 4.2(d), with Si =
1 W/m2, for ε′′M1

= 0, Sf = 81.17 W/m2, Sb = 80.80 W/m2 and |Γ1|2 =
0.9610 (Qω = 135.84); for ε′′M1

= 0.1, Sf = 63.8 W/m2, Sb = 63.51 W/m2

and |Γ1|2 = 0.9557 (Qω = 120); for ε′′M1
= 0.2, Sf = 51.41 W/m2, Sb =

51.17 W/m2 and |Γ1|2 = 0.9504 (Qω = 107.67). In all the cases, |Γ2|2 =
0.9955. The corresponding data points in Fig. 4.4(c) based on (2.1) are
obtained with these numbers (at least to the approximation neglecting the
pressure of the excitation light and transmission through M1). . . . . . . . 38
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4.6 Simulation results for the nanostructured slot cavity array in Au, and with
reference to Fig. 4.1(d): Λ = 400 nm, T = 200 nm, Σ is fixed, and D is
varied to determine the resonant depth D from the minimum of |S11|. (a)
Qω (triangles) and resonant slot depth, D (diamonds), as a function of slot
width, Σ. (b) Radiation pressure (asterisks) along with the resonant D
(diamonds) as a function of Σ. In general, smaller Σ results in higher Qω

and larger pressure, consistent with the asymmetric 1D Fabry-Perot cavity
results of Fig. 4.2(d), AFP3. (c) Radiation pressure as a function of Qω,
decomposed into total and gradient (〈fG〉) contributions. The dashed line
shows the maximum pressure on a perfect mirror. The nanostructured slot
cavity supports a pressure enhancement more than an order of magnitude
higher than a perfect mirror. (d) Radiation pressure as a function of Qω

for the lower Q 1D cavities, from Fig. 4.2, in comparison with the slot
pressures from (c). The black line and red dashed line are the linear fits
to the total pressure and 〈fG〉, respectively from the first 8 points in (c).
The blue and red lines are the linear fits to PM2 for AFP1 and SFP1,
which are low-Q Fabry-Perot cavities in the examples considered. The
nanostructured slot cavity is more efficient in delivering radiation pressure
enhancement on a target surface than the 1D Fabry-Perot cavity when the
cavities have the same Q. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Simulation of a periodic nanoslotted Au (ε = −11.8 + i1.23) membrane
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width W fixed at 60 nm, and Au thickness T. The 633 nm plane wave with
H out of plane is illuminated from the top, and the intensity is equivalent
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pressure with Λ = 620 nm, and T from 100 nm to 500 nm. The dashed
red line indicates the pressure on a perfect mirror with same intensity,
and the dashed black line is the zero pressure. We indicate the region
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the pushing pressure region because the plane wave is illuminating from
the top in −y-direction. (c) Calculated power density on the bottom side
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around T = 220 nm. The largest pushing pressure, -5.77 N/m2, occurs
at T = 203 nm. Increasing T to 232 nm will shift the pushing pressure
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6.1 Calculated pressure on a dielectric slab (n = 2) with thickness T sand-
wiched by two semi-infinite dielectric background (n = 4). A light with
633 nm wavelegnth in free space is normally incident from the top and
the intensity is equivalent to 1 mW over 1µm radius circle. (a) Simulation
geometry. (b) Calculated pressure on the slab with T varied from 10 nm
to 300 nm. (c) Electric field in the slab when T is one quarter of a wave-
length in the slab. (d) Electric field in the slab when T is one half of a
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The positive value indicates pulling because the light is incident from the
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ABSTRACT

Li-Fan Yang Ph.D., Purdue University, May 2020. Optical Force Regulation with
Nanostructured Materials. Major Professor: Kevin J. Webb.

The use of light to control mechanical systems is of broad importance in science

and technology. From Maxwell’s theory, the maximum optical pressure on a mirror

is twice the average incident power density divided by the velocity of light. Here it

is experimentally demonstrated that, with a specially designed nanostructured mem-

brane, the optical pressure substantially exceeds that on a perfect mirror. Enhanced

pressure is demonstrated by deflection measurement of a patterned gold film on a

silicon nitride membrane, in conjunction with a model and with established error

bounds to draw definitive conclusions. The enhancement of the net optical pressure

with nanostructured material over that on a perfect mirror can be understood as be-

ing due to an asymmetric cavity effect within a modest quality factor regime, and this

is illustrated using a simple one-dimensional model. Therefore, carefully harnessing

the photon confinement in nanostructured material leads to pressure enhancement.

The physical basis of a net pulling force on a structure is presented. Whether

there is a pushing or a pulling pressure can be regulated by excitation of a surface

wave on the front or back side of a nanostructured metal film. This can be achieved

through geometrical and material design, and it is shown that pushing or pulling with

a single structure, depending on wavelength, is possible. Furthermore, an enhanced

pulling pressure can also be achieved in a simple all-dielectric silicon-based system.

Various applications will benefit from optomechanics with pushing or pulling achieved

by control of the characteristic of the incident light.
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1. INTRODUCTION

It has been more than a century now since the radiation pressure experimental work

by Nichols and Hull and also Lebedev confirmed that light can impart a mechanical

force on matter [1, 2], in a manner consistent with the prediction of J. C. Maxwell

[3]. Radiation pressure is now used to propel spacecrafts. Furthermore, the laser

tweezing work of Ashkin [4, 5] and others has led to instruments that are important

for molecular biology [6,7], where beads with the biomolecules attached are moved by

a laser. Concomitant understanding of laser trapping has been important in trapping

atoms and realizing condensates, as is critical in precise clocks that have broad impact

[8–10]. All of this work has relied on planar or homogeneous materials, such as is used

in forming mirrors or beads. While a bead can be moved back and forth in a trap,

radiation pressure pushes a planar mirror. Therefore, some other force is needed to

return the structure to the original position or move it in another way. While strain

can do so, the control is poor. Being able to push or pull a structure is important in

many applications that could be served by optical force actuation, such as beam or

signal control for low-energy, all-optical communication.

A body of theoretical work, for example [11, 12], suggests that the Einstein-Laub

force density expression [13] can explain key optical force experimental results. Two

important experiments in this regard are the 1978 Jones and Leslie mirror experiment

[14] and the 1973 Ashkin and Dziedzic water experiment [4]. Lacking is specific force

density data that can be used to establish a predictive model for design. This can

be interpreted as a need for a combined nanometer-scale force experiment and model

development or a confirmation effort. A lack of such a rigorous combined theoretical

and experimental description has hampered optomechanics and the exploitation of

the mechanical aspects of light and, more generally, electromagnetics.
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Fig. 1.1. Example application space for a nanostructured surface.
The central figure presents the pushing and pulling concept from an
incident plane wave (red arrows) in the way of direction control (black
arrows). The satellite figures shows the potential applications of op-
tical communication, silicon photonics, and propulsion.

By applying the Einstein-Laub force density, we investigate and show that nano-

structured materials will allow overall pushing and pulling pressure from light and

develop a designing methodology. The concept and a suite of applications is illustrated

in Fig. 1.1. The center figure shows nanostructured material with a wave incident

from single direction and a pushing force (in the direction of incident light) and

pulling force (in the opposite direction). The satellite images portray a variety of

applications.

In this thesis, we present a combined numerical simulation and design method

based on field solutions incorporated into a force density description. This is used to

develop an understanding of the relationship between structured material and force.

Experimental work to determine the deflection of a patterned membrane due to a

laser confirms that a pressure greater than that on a planar perfect mirror is possible.



3

With simulations, understanding of how to regulate surface waves on the front and

back of a structure leads to understanding of how to regulate the optical force and to

achieve either a pushing or a pulling force.

Chapter 2 summarizes the electromagnetic force model we utilized. In Chapter 3,

we present our primary work on the experimental demonstration that optical pressure

on a nanostructured surface can be enhanced, greater than that on a perfect mirror,

with the use of structured material and exploiting the third dimension [15]. This can

be understood as an asymmetric cavity effect, as described in Chapter 4, with control

of quality factor (Q) and mirror reflection coefficients, and there is a straight forward

explanation with a 1D cavity [16]. In Chapter 5, we discuss the enhanced pushing

and pulling force achieved by exciting plasmon surface waves on a nanoslotted metal

membrane incorporating a silicon nitride (SiN) layer. By regulating the geometry and

the metal-insulator-metal (MIM) cavity mode, excitation of a surface wave on the

front side (incident wave side) or the back side (the opposite side) of the membrane

allows a collective pushing or pulling pressure, respectively. These results involve

metal and dielectric materials. Applications of metals in optomechanics provides

for surface waves and very small resonant cavities, and both pushing and pulling.

However, metals are relatively lossy and will heat. Consequently undesirable thermal-

based deflection may occur. Also, in certain applications it may be preferable to use

an all-dielectric material system. In Chapter 6 we investigate the enhanced optical

pressure in an all-dielectric material system with the band gap beyond the incident

wavelength to avoid thermal issues. In this initial work, we propose two approaches

that allow a pulling force in the dielectric material. The first approach induces the

pulling force in a low refractive index layer sandwiched between two high refractive

index layers, following earlier work showing analytic solutions for the force on a slab in

some background material [17]. The second approach utilizes evanescent fields from

total internal reflection. The field solution from the evanescent field nature provides

the condition for the gradient force to become significant and to provide a pulling

force in the material.
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2. OPTICAL FORCE MODELING AND OPTICAL

FORCE ON STRUCTURED MATERIAL

2.1 Optical Force Modeling

The pressure on a mirror can be understood at the atomic level, where there is

a momentum exchange between the photon and the atom that can be influenced by

the environment [18]. From Maxwell’s picture, at the macroscopic material level, the

optical force on a surface has been described by a pressure [3]

P =
S(1 + |Γ|2)

v
, (2.1)

where S is the time-averaged normally-incident Poynting vector magnitude (W/m2),

Γ is the field reflection coefficient, and v is the wave velocity in the background,

assumed to be c, the speed of light in vacuum, in this work. Consequently, the

maximum pressure, which is on a perfect mirror, from (2.1) is P = 2S/c N/m2.

However, (2.1) precludes information on how the field interacts with the material.

A fundamental approach is to describe the optical force density in the material

in terms of fields. We utilize the Einstein and Laub force density in material [13], as

we have in our previous work [17, 19–21], and as used by others [12, 22]. Using this

description, the electromagnetic kinetic force density in material media becomes

f =
∂P

∂t
× µ0H−

∂µ0M

∂t
× ε0E + ρE− µ0H× J + (P · ∇)E + µ0(M · ∇)H, (2.2)

with f having SI units of N/m3 and P the polarization, M the magnetization, J the

free electric current density, ρ the free electric charge density, µ0 is the permeability

of free space, and ε0 the permittivity of free space. We consider a time-harmonic,

monochromatic field with frequency dependence exp(jωt) and an isotropic dielectric

response, giving P(r, ω) = ε0χE(r, ω)E(r, ω), with χE the complex electric suscepti-
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bility (and dielectric constant ε = 1 + χE). The time average of the force density in

the frequency domain assuming source-free with dielectric media (2.2) becomes

〈f〉 = (−ê× ĥ)
µ0ε0ω

2
={χEE(r)H∗(r)}+

ε0
2
<{(χEE(r)) ê · ∇)(êE∗(r))}, (2.3)

where <{·} is the real part and ={·} is the imaginary part, E is the phasor electric

field and H the phasor magnetic field, and ê and ĥ their respective unit vectors.

Following a numerical solution for the fields, we use (2.3) to obtain the time-averaged

force density, and then form the total force and hence the pressure (N/m2) by ascribing

an area such as the unit cell in a periodic system. Then the time-averaged pressure is

then calculated by integrating the force density over the unit cell area and dividing by

the unit cell width. Conservation of momentum is inherent in use of (2.3) because this

kinetic force density is formed with use of the classical field momentum [11,13,23].

2.2 Resonant Fields in an Array of Cavities in Gold

In previous work, the simulated pressure on structured material was presented

and the possibility of a pressure greater than on a perfect mirror proposed [24]. We

provide some background on this work as motivation for the results described in this

thesis. Consider the structured Gold (Au) metal film in Fig. 2.1 with free space

above and below. A 2D numerical finite element method solution [25] for the fields

used periodic boundary conditions on the left and right and assumed a plane wave

normally incident from above with Ex, Hz (note the coordinate system in the lower

left of Fig. 2.1). A wavelength of 632.8 nm was used and the complex dielectric

constant for Au was taken from the literature [26]. With the polarization considered,

plasmonic cavity modes, with the basis of resonant metal-insulator-metal (MIM) slot

mode, can form in the slot [27].

A number of structures were analyzed to evaluate the influence of a nanostruc-

tured surface on the optical force experienced by the sample. In order to consider a

situation representative of an experiment, the Poynting vector of the incident plane

wave was normalized for an illumination power density equivalent to 1 mW over a
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uniformly illuminated circular spot size of diameter 1 µm. The average force density

was calculated from (2.3) using the numerical solutions for the fields for slot widths

(W ) of 30 nm and 60 nm, and a sequence of depths (D), and upon integration over

the thickness of the film, found the pressure on the Au film, P = 〈py〉. Plots of the

normal component of the time-average force density, 〈fy〉, are given in Fig. 2.2(a)-(c)

for a 30 nm wide slot and slot depths of 1, 51, and 81 nm. Notice that the force dis-

tribution in the material varies considerably as a function of slot depth. In order to

develop a better picture of the relative force as a function of slot geometry, Fig. 2.2(d)

gives the pressure for the 30 nm and 60 nm slot widths as a function of slot depth

with a (normalized) input power density of 1 W/m2. The maximum pressure occurs

at the resonant depth, and the peak pressure is higher for the 30 nm slot case. The

result indicates a pressure that is about one order of magnitude higher than that on a

perfect mirror. This enhancement can be understood as being due to an asymmetric

cavity [16] and has been verified in experiments [15], that will be discussed in the

following sections.
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Au

W

D

H

P

x

y

z

Λ

Fig. 2.1. Simulated gold (Au) metal film structures in free space: D is
varied between 1 nm and 90 nm, with W set to 30 nm and 60 nm. In
all cases, the Au sample is illuminated from the top by 632.8 nm light
(Ex, Hz), Λ is 400 nm, H is 200 nm. Periodic boundary conditions
are enforced on the left and right, and port boundaries are on the top
and bottom. The figure is taken from [24].
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Fig. 2.2. The normal (y−component) of the force density for a 30 nm
wide slot in Au at various slot depths: (a) 1 nm; (b) 51 nm: (c)
81 nm. The simulation has an incident power density equivalent to
1 mW of 632.8 nm laser illumination over a circular spot of diameter
1 µm. For reference, resonance is achieved at about 46 nm for the
30 nm wide slot. (d) Numerical results for the pressure as a function
of slot depth in a Au film for the two slot widths, calculated for slot
depths from 1 nm to 90 nm in 1 nm steps and the pressure P = 〈py〉,
in N/m2 determined by integrating the y−component of force density
over the depth of the Au nanostructure. These values are normalized
to a Poynting vector power density of 1 W/m2 and the wavelength is
632.8 nm. The figure is taken form [24].
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3. DEMONSTRATION OF ENHANCED OPTICAL

PRESSURE ON A STRUCTURED SURFACE†

The interaction of electromagnetic waves with condensed matter and the resultant

force is fundamental in the physical sciences. The maximum pressure on a planar

surface is understood to be twice the incident wave power density normalized by the

background velocity. We demonstrate for the first time that this pressure can be

exceeded by a substantial factor by structuring a surface. Experimental results for

direct optomechanical deflection of a nanostructured gold film on a silicon nitride

membrane illuminated by a laser beam are shown to significantly exceed those for

the planar surface. This enhanced pressure can be understood as being associated

with an asymmetric optical cavity array realized in the membrane film. The possible

enhancement depends on the material properties and the geometrical parameters of

the structured material. Such control and increase of optical pressure with nano-

structured material should impact applications across the physical sciences.

Li-Fan is responsible for the design and simulation, experiment, and data analysis

with great assistant from Anurup Datta on the membrane fabrication and also the

experiment.

3.1 Introduction

We demonstrate that the optical force on a material is sensitive to the surface

structure and show that the pressure can be substantially larger than on a planar

surface. By measuring the deflection of a membrane having a patterned metal sur-

face, shown schematically in Fig. 3.1(a), we present experimental confirmation of the

† This work is published as
L. -F. Yang, A. Datta, Y. -C. Hsueh, X. Xu, and K. J. Webb, “Demonstration of enhanced optical
pressure on a structured surface,” Phys. Rev. Lett., 122(8), 083901, 2019 (Ref. [15])
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Λ
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x

Au

Au
SiN

(a) (b)

Fig. 3.1. (a) The structuring of the surface of a metal film with
an array of resonant cavities can result in an increase in the optical
pushing and pulling force (black arrows), relative to that on a prefect
mirror and a planar surface. The red arrows indicate the direction of
the incident light. (b) Simulated structure with a periodic boundary
(left and right) and parameters: period Λ, slot width W , Au thickness
50 nm, and SiN thickness 50 nm. We consider deflection with a laser
having a free space wavelength of 1070 nm.

enhanced pressure on a surface that was previously proposed [24]. The physical ba-

sis of the enhancement is an asymmetric resonant cavity array that provides for an

increase in the net pressure. In this way, the structured surface is increasing the

pressure by providing a further nanometer-scale spatial dimension for the interaction

of the light with the material.

The pressure on a planar mirror from Maxwell’s picture [3] can be expressed as

(2.1). From this picture, the conventional maximum pressure is P = 2S/c N/m2. A

fundamental approach is to describe the optical force density in the material in terms

of fields. We utilized the Einstein and Laub force density in material [13], shown as

(2.2) with (2.3) the averaged term assuming monochromatic field, source free, and

an isotropic dielectric response is written as (2.3). Solving for the fields in a planar

Au mirror with plane wave illumination use (2.3), where the second term is zero with

normal illumination, leads to the force density and hence a pressure that is very close

to that from (2.1) with |Γ| = 1. This pressure on a planar surface thus provides a good
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reference for the results we present. While (2.1) provides a reasonable description for

the force on a planar surface with no transmission, (2.3) allows the 3D structured

material situation to be treated, where both the cross and gradient terms contribute

to the pressure with a structured material.

3.2 Design and Simulation

We use a 50 nm silicon nitride (SiN) membrane coated with 50 nm Au on both

sides and guidance from a 2D numerical (finite element method) field solution of the

periodic geometry in Fig. 3.1(b) [25], with an incident plane wave having a free space

wavelength of 1070 nm. The force density in the material from (2.3) is integrated

over the unit cell area (x − y plane), and the pressure is obtained by normalizing

with the invariant z-direction and the unit cell width (Λ). Two degrees of freedom

were considered, the period (Λ) and the slot width (W ). An elliptical slot taper

(a consequence of the fabrication process) was used with an axial ratio of
√

3, the

Au thickness divided by the taper width at the SiN interface, obtained from a fit to

scanning electron micrograph (SEM) image data for fabricated structures, so the slot

width at the top is larger than W by this amount. The dielectric constant for Au

assumed is −49.05 + i3.65 [26], and that for the SiN membrane was obtained as 3.94

from an ellipsometer measurement.

The simulated field and optical force densities for three geometries that were fab-

ricated are shown in Fig. 3.2, and W and Λ (shown in Fig. 3.1(b)), and the calculated

pressure, P , for each are given in the caption. The plane wave (Ex, Hz) normally

incident from the top has a power density of 318 MW/m2, roughly 1 mW over a

1 µm radius circle. Figures 3.2(a)-(c) show a strong pushing force (Strong Push) sit-

uation (25.7 N/m2) in the direction of the incident Poynting vector, Figs. 3.2(d)-(f)

a strong pulling force (Strong Pull, -20.2 N/m2), and Figs. 3.2(g)-(i) a weak push-

ing (Weak Push) force (3.26 N/m2). The corresponding calculated pressure on the

planar Au-SiN-Au film is 2.11 N/m2 and on a perfect mirror is 2.12 N/m2. The dissi-
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Fig. 3.2. Simulated fields and force densities for the periodic slot
structure of Fig. 1(b): (a)-(c) Strong Push, Λ = 966.4 nm, W =
250 nm, P = 25.7 N/m2; (d)-(e) Strong Pull, Λ = 692.2 nm, W =
200.4 nm, P = −20.2 N/m2; (g)-(h) Weak Push, Λ = 886 nm, W =
124 nm, P = 3.26 N/m2. The slot taper was determined according
to SEM data from fabricated samples. The power density for the
1070 nm plane wave is 318 MW/m2, corresponding to 1 mW over a
1 µm radius circle.
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pated power density from optical absorption calculated in each case is: 227.9 MW/m2

(Strong Push), 141.8 MW/m2 (Strong Pull), and 143.9 MW/m2 (Weak Push). The

planar surface power dissipation is 22.6 MW/m2. The intent was that the weaker

pushing force case to be similar in magnitude to the planar case, and to be substan-

tially smaller than those for the strong pushing and pulling structures. Numerical

convergence studies based on element size refinement and slight rounding of the cor-

ners ensured the accuracy of the solutions for both the fields and the force densities.

There is a metal-insulator-metal (MIM) waveguide mode established involving the

Au and SiN interfaces that produces rather symmetric and competing force densi-

ties. A resonant surface wave at the Au-SiN interface at the bottom of the slot, clear

in Fig. 3.2(b), provides the major pushing force, as is evident in Fig. 3.2(c). This

phenomenon, with the relatively wide slot width, differs from the vertical MIM cav-

ity array that produces an enhanced pressure [24]. The primary contribution to the

pulling force is in the neighborhood of the Au slot, near the SiN surface, as Figs. 3.2(d)

and (f) show for the field and force density, respectively. In this case, the scattered

fields have been adjusted (by varying W and Λ) to produce a total field that imparts

a net negative force. On the contrary, tractor beams pulling beads operate by control

of the incident beam [28], although of course it is the total field also that imparts

the force. The weak pushing force described in Fig. 3.2(i) results from competition

between pushing and pulling forces.

We understand enhanced optical pressure, identified as a magnitude greater than

2S/c, where S is the incident Poynting vector magnitude and c is the speed of light

in vacuum, as being based on the excitation of resonances in the material. In the

situations treated, the surface plasmon waves resonate. By controlling the geometry

variables, the character of the fields and their resonances regulate the force density

hence the pressure.
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3.3 Fabrication

The slot arrays were formed in an Au coating on a SiN membrane (50 nm, Norcada,

Inc.). The suspended square membrane had dimensions of 500 µm × 500 µm and was

supported from four sides on a Si frame of thickness 200 µm. Gold of thickness 50 nm

was deposited on both sides of the membrane using an electron-beam evaporator

(CHA), following deposition of a 5 nm layer of titanium for adhesion. Thus, for

practical purposes, a three-layered symmetric membrane structure made of Au-SiN-

Au was formed. Focused Ion Beam (FIB) milling (FEI Nova 200) was used for

fabrication of the slots on the bottom, recessed side of the structure (with a 10 pA

current). Three periodic slot array structures were milled near the center of the

membrane with nominal dimensions corresponding to those used in the simulations

in Fig. 3.2 and measured dimensions indicated in the caption of Fig. 3.3. The SEM

image for these slot arrays is shown in Fig. 3.3(a). A fourth symmetric location

was used for the planar deflection data. A magnified image of the large pushing

force structure (top left of Fig. 3.3(a)) is shown in Fig. 3.3(b). Images from an SEM

(Hitachi S-4800) with an edge detection method that defines the edges from the local

maximum gradient of the image intensity [29] provided precise geometry information

for the fabricated structures for analysis and extraction purposes.

3.4 Experiment

The membrane was mounted on a glass slide with a hole to allow the 1070 nm

force laser beam to directly illuminate the structured Au surface formed on the back

of the membrane. As Figure 3.4(a) illustrates, the intensity modulated (mechani-

cally chopped at 220 Hz) force laser illuminated the bottom, structured side of the

membrane and a 640 nm sensing laser, positioned on the other (non-patterned) side

and directly opposite the force laser, allowed the membrane deflection to be moni-

tored by measurement of the current from a four quadrant detector. The specifics

of the experiment are shown in Fig. 3.4(b). Measurement of the deflection signal at
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9µm
1µm

(a) (b)

Fig. 3.3. (a) The three slot arrays with an enhanced optical force:
Strong Push, top left; Strong Pull, top right; and Weak Push, bottom
right. SEM image data indicates: all slots have a length of 11.5µm;
for the Strong Push structure, 9 slots with W = 250 ± 2.2 nm, Λ =
966.4 ± 7.7 nm; for the Strong Pull structure, 11 slots with W =
200.4±3.4 nm, Λ = 692.2±7.3 nm; and for the Weak Push structure,
11 slots with W = 124 ± 3.3 nm, Λ = 886 ± 9.8 nm. (b) A higher
magnification SEM of the Strong Push slot array.
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Fig. 3.4. (a) The measurement of deflection uses a quadrant detec-
tion system, allowing monitoring of the deflection due to the chopped
1070 nm force laser (polarized with magnetic field out of the page).
(b) Schematic for the experiment. S1: 1070 nm CW fiber force laser
(IPG photonics YLR-10-AC); S2: 640 nm sensing laser (Coherent
StingRay); Quad: Quadrant photodiode (OSI Optoelectronics SPOT
9D-MI) with 640 nm bandpass filter and amplifier (OnTrak OT-301);
OC: Oscilloscope; LA: Lock-in amplifier; ND: Neutral density filter;
WL: White light source; P: Polarizer; C: Chopper; O: Objective lens;
M: Silver mirror; B: Beam splitter; L: Lens; CCD: charge coupled de-
vice (camera). The membrane structure location was adjusted using
a computer-controlled X-Y stage.

the chopping frequency with a lock-in amplifier removes any deflection bias due to

the sensing laser. By calibrating to a known displacement with a piezoelectric stage

(Thorlabs PE4), we determined that the sensitivity of the lock-in amplifier led to a

displacement accuracy of 0.35 nm, setting the lower bound for the results we show.

3.5 Results and Optical Force Extraction

The data we present is from a single set of experiments with the slot arrays formed

on the same membrane. Using a force laser power of 1 mW, we scanned the membrane
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to obtain the deflection as a function of incident laser position on the membrane,

obtaining the lock-in amplifier results shown in Fig. 3.5. This data allowed location

of the center of the slot arrays based on the local maximum deflection. With the center

of the slot arrays determined, we measured the total deflection with illumination at

the center of each slot array and the symmetric planar point, as a function of incident

laser power. The deflection direction information from the lock-in amplifier phase

data was verified at the four symmetric positions with an oscilloscope. The solid

circle points in Fig. 3.6(a) show the measured (total) deflection and the dotted lines

are a least mean square error fit for optical powers less than 1 mW, selected so that all

of the data is in the small signal, linear regime (with respect to force laser power). The

dotted lines are treated as the measured data for the three slot arrays and the planar

surface. All four measurement locations on the membrane have the same deflection

direction, towards the sensing laser side (and in the direction of the incident force

laser). The total deflection in Fig. 3.6(a) for the Strong Push case is largest, followed

by the Weak Push, Strong Pull, and, far smaller, the Planar case. The Strong Pull

total deflection is less than the Weak Push because the optical force is in the opposite

direction to the thermally-driven deflection. The measurement error bars (that are

more pronounced in the expanded view) were determined based on 100 measurements

with the lock-in amplifier (10 ms integration time for each datum and a total duration

of 1 s), and are found to be negligible for our purposes.

The total deflection in Fig. 3.6(a) has contributions from both the direct optical

force and heating. In the small displacement regime, the total deflection is linearly

related to optical force and heating and can be described as a superposition of direct

optical deflection and thermally-driven deflection. Both terms in (2.3) contribute

to the direct optical force. An additional force contribution is needed to describe

thermally-driven deflection, which is a result of optical absorption. We generate the

simulated optical force from (2.3) and the dissipated power from optical absorption

for each slot structure and the planar membrane using the respective numerical field

solutions. Fitting parameters are used to relate the calculated optical force to de-
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Fig. 3.5. Scanned membrane deflection magnitude (R) as a function
of incident laser position with 1 mW force laser power. The location
of the three slot arrays is clearly visible. The orientation of the three
slot arrays differs from that in Fig. 3.3(a) because the sensing laser is
on the opposite side of the membrane to the slots and the perspective
of the SEM image.
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(a)

(b)

Fig. 3.6. (a) Measured (solid circles) and fitted and predicted (lines)
total deflection as a function of incident laser power: enhanced push-
ing force (blue), enhanced pulling force (red), weak pushing force
(green), and planar surface (yellow). Inset: enlargement of the dashed
square region showing measurement error bars. Dotted: fits to the
measured data; dashed: fits from a simulation with a Gaussian beam
incident on each slot array; and solid: fits from a simulation with plane
wave illumination of the corresponding periodic structures using the
measured mean slot width and period. (b) Extracted optical deflec-
tion: dashed lines are from the exact slot array structures; solid lines
are from the periodic structure simulations. The error bars describe
sensitivity to structure using the means and standard deviations of
the slot arrays from the SEM images (and are not the extraction er-
rors). The inset shows an expanded scale data. The blue curves for
a large pushing force show about an order or magnitude increase in
pressure relative to the planar surface (yellow).
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flection, α m/N, and the thermal dissipation to deflection, β m/W, resulting in a

decomposition of the total deflection as D = αF + βT. Here, D is a vector of mea-

sured total displacements (the data for the three slot array structures and the planar

case), F is a vector whose entries are the corresponding simulated optical forces from

(2.3), and the vector T contains the simulated total dissipated power for each. The

first term (αF) presents the deflection due to the optical force and the second term

(βT) that from optical absorption and hence heating. We use the dotted line fits in

Fig. 3.6(a) to form dD/dPo (a 4 × 1 vector), with Po the variable force laser power,

and then a least squares fit to estimate a single α and β for dF/dPo and dT/dPo,

respectively, that hold for all structures. The accuracy of this procedure is clear in

predicting all experimental data, as shown in the deflection results of Fig. 3.6(a).

Figure 3.6(a) shows the results with two modeling approaches: a simple 2D peri-

odic structure assumed for each slot array with plane wave illumination (solid), and a

more accurate 3D Gaussian beam illumination of each slot array with a sequence of 2D

slice solutions accounting for the beam profile along the length of the slots (dashed).

The fields and force densities for each finite-width structure with a Gaussian incident

field (1/e field at a half-width of 7µm) was found to have similar key features to the

2D periodic case with plane wave illumination. The 2D slice approximation of the

3D solution was investigated by calculating the 3D force and dissipation on a planar

(Ai-SiN-Au) surface by comparing with results from a superposition of 2D slices, and

found to be satisfactory. The simulated results use the experimentally-derived α and

β to relate calculated force and dissipation, respectively, to displacement. The simu-

lated total deflection results using the periodic assumption (with the mean width and

period of each array) compare favorably with those for each slot arrays with Gaussian

beam illumination. All simulated results in Fig. 3.6(a) are sufficiently close to the

measured data to make conclusions regarding extracted optical force deflection and

related enhancement of the pressure.

The extracted optical deflection results as a function of incident optical power

are shown in Fig. 3.6(b). The dashed lines are the results using the more accurate
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slice model with the measured Gaussian beam profile. The mean values of each slot

width and separation for each array were obtained from the SEM images and used to

obtain the simulated results (with the extracted α and β). The substantial differences

between the large pushing force and pulling force deflections and the planar results

represent the force enhancement. In order to appraise sensitivity of the extraction to

geometry variations, we pursued a statistical study, and those results are shown by

the solid lines in Fig. 3.6(b) that have associated error bars. It should be emphasized

that the resulting error bars are not the errors in determining the slot array param-

eters, but are an indication of the sensitivity of the method for determining optical

force deflection to gross variations in the geometry, should there have been factors of

which we were unaware. From the SEM images, we obtained a mean and a standard

deviation for each array slot width and period (see the caption of Fig. 3.3). Based on

the geometry means and the means plus and minus the standard deviations, we cal-

culated the optical force and power dissipation and repeated the least square fitting

process with all the combinations of slot widths and separations for the different sets

of slots, using the simple plane wave model. We determined the standard deviations

of the fitted optical deflections and plot these as the error bars in Fig. 3.6(b). The

error bars are asymmetric because the points and lines were determined using the ge-

ometry’s means, and the means from the statistical treatment are not identical. Note

that even with this rather artificial and extreme set of variations in the extracted

optical deflection, all results in Fig. 3.6(b) are distinct and clearly demonstrate an

increase in deflection based upon slot structure, relative to the planar case. Impor-

tantly, Fig. 3.6(b) shows a force on the structured Au film, in the case of the large

push force (blue), that is approximately an order of magnitude higher than that on

the planar Au surface (yellow).
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3.6 Conclusion

We have demonstrated an enhanced optical force on a metallic surface that de-

pends on the nanostructured features. The increase in optical pressure therefore

results from optical field interaction with the material in the third dimension. The

general principle is that an asymmetric cavity-enhanced field increase, associated with

a resonance, leads to an increase in the force density within the material and hence

to a substantial increase in the total force, relative to the planar case. Control of the

scattered field in the structured material can regulate both the force magnitude and

direction, and allow a negative pressure. The interplay between material structured

at the nanometer-scale and optical force will have substantial consequences in ap-

plications that include all-optical communication, remote actuation, propulsion, and

biophysics. For example, in all-optical communication, optical signals could be used

to move a structure that would then select a different optical (network) path [30,31].

Remote actuation would be enhanced by greater sensitivity and control of the force

direction, both of which might benefit cavity cooling [32,33]. Regulation and enhance-

ment of the optical force should prove interesting in the field of cavity optomechan-

ics [34, 35]. Also, by structuring beads used in optical tweezer experiments related

to biomolecules, more control during experiments to evaluate the influence of force

and torque may be possible with patterned beads [7]. Finally, there has also been

interest in thermomechanical structures, where light is used to heat and deform metal

films [36].

3.7 Contribution

Li-Fan was responsible for the design and simulation, experiment, and data anal-

ysis with great assistant from Anurup Datta, who worked with Prof. Xianfan Xu, on

the membrane fabrication and also the experiment.
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4. ENHANCED OPTICAL PRESSURE WITH

ASYMMETRIC CAVITIES†

In this chapter we theorize and explain that asymmetry in a one-dimensional optical

Fabry-Perot optical cavity is shown to produce a large net pressure, the total on

the two mirrors. Consequently, asymmetric cavity structures that are formed in

this manner can experience a net force that is greater than that resulting from the

excitation light illuminating a perfect mirror. The conditions for this to occur are a

modest quality factor regime, where some influence of the cavity is needed, but when

the quality factor becomes very large the enhancement diminishes. This result is used

to illustrate how structuring a metal surface, thereby forming a plasmonic cavity, can

substantially increase the optical pressure over that possible with a planar interface. It

is shown that the force on one mirror in an asymmetric arrangement can be increased

relative to the other. Importantly, the sum of the pressures on both mirrors increases

through asymmetry and with quality factor, while adhering to conservation of energy.

Using cavity quality factor as a measure, the one-dimensional Fabry-Perot cavity

pressure results are related to pressure enhancement with a structured metal surface

where a different type of mode in an asymmetric cavity is excited, the lowest order

metal-insulator-metal surface plasmon mode. In principle, an optical cavity or cavity

array formed with any material should display this enhanced pressure phenomenon.

The length scale of the resonant structures for visible light can be as small as a few

tens of nanometers, in the case of metals. With this understanding guiding the design

of structured metallic and dielectric materials, a many-fold increase in pressure over

† This work is published as
Y. -C. Hsueh, L. -F. Yang, and K. J. Webb, “Enhanced optical pressure with asymmetric cavities,”
Phys. Rev. B, 99(4), 045437, 2019 (Ref. [16])
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that on a perfect mirror is possible. Consequently, the relatively weak optical force

can become more effective in a variety of scientific and technological applications.

4.1 Introduction

The force density in homogenized media can be obtained from the field solution,

and this leads to a means to calculate the force on a medium [12, 23], the pressure

on a slab [37, 38], and with photonic crystal mirrors [39]. With such an approach

involving a numerical solution for the fields in the material, leading to the force den-

sity and hence pressure, the possibility of increasing the pressure by more than an

order of magnitude over 2S/c from (2.1) with a nanostructured Au surface has been

presented [24], introduced in Chapter 2. This result could be profoundly important

in applications, but the physical basis of the effect has remained unclear. Here, we

present an understanding based on results for an asymmetric 1D Fabry-Perot cavity

and explain how the the sum of the pressures on each mirror can exceed that on a per-

fect mirror. This cavity mode basis leads to a means to achieve pressure enhancement

with a variety of dielectric and metallic materials for remote control, propulsion, and

cavity optomechanics applications. The resulting change in the mathematical picture

of pressure [3] should therefore provide a basis for new directions in optomechanics

for the physical sciences.

We explain optical pressure enhancement on a surface by considering the mirror

pressures in the 1D Fabry-Perot cavities shown in Figs. 4.1(a) and (b), which we

relate to cavity Q and the metal-insulator-metal (MIM) cavity mode in Figs. 4.1(c)

and (d), all in a free space background. Figure 4.1(a) shows a symmetric cavity

containing two identical slab mirrors (M1 and M2) with thickness t, and a cavity

length d, defined as the mirror separation. Figure 4.1(b) shows an asymmetric cavity

with M1 having thickness t and the semi-infinite M2 placed a distance d away from M1.

Figure 4.1(c) shows a nanostructured slot cavity array in metal and the profile of each

slot is shown in Fig. 4.1(d). With an incident field having Hz, the lowest order MIM
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(a) (b)

(c) (d)

Fig. 4.1. Optical cavities that enhance the radiation pressure. (a)
A symmetric Fabry-Perot cavity. The mirrors M1 and M2 are two
identical slabs with thickness t separated by d. (b) An asymmetric
Fabry-Perot cavity. M1 is a slab with thickness t and M2 is a semi-
infinite mirror placed d away from M1. (c) A nanostructured slot
cavity array in a metal. (d) Profile of the nanostructured slot cavity
in (c). A normally-incident plane wave of wavelength 633 nm and Au
with artificially adjusted loss are assumed, as described in Table 4.1.
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Table 4.1.
The cavity mirror material parameters used in the calculations related
to Figs. 4.1(a) and (b). Nomenclature: symmetric Fabry-Perot (SFP),
cases 1 (SFP1) and 2 (SFP2), as in Fig. 4.1(a); asymmetric Fabry-
Perot (AFP), cases 1-3, as in Fig. 4.1(b). The dielectric constant
assumed for Au is εAu = −11.82 + i1.23 at a wavelength of 633 nm,
and in all cases, ε′M1 = ε′M2 = −11.82. The imaginary part of the
dielectric constant for each mirror, ε′′M1 and ε′′M2, is varied as indicated
to adjust the confinement and dissipation in the cavities.

tM1 ε′′M1
tM2 ε′′M2

SFP1 30 nm 0, 0.1, 0.2, · · · , 1 Same as M1

SFP2 50 nm and 1.23

(={εAu})

AFP1 30 nm Semi-infinite 1.23

(={εAu})

AFP2 50 nm

AFP3 50 nm 0.1
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waveguide mode (Ex, Ey, Hz) can be excited, by virtue of the metal dielectric constant

(ε = ε′+iε′′ with ε′ < −1, assuming a free space background) [40]. The coupled surface

plasmon waveguide mode has a wavelength that reduces with decreasing slot width

(Σ), allowing for resonant cavities in gold (Au) where the slot depth (D) and Σ

are just a few tens of nanometers. The cavity in Fig. 4.1(d) has differing reflection

coefficients at the top and bottom of the slot, resulting in asymmetry. We present

radiation pressure simulation results for 1D cavities in Figs. 4.1(a) and (b) and use

these to build physical insight into the influence of structures like Figs. 4.1(c) and (d)

to enhance the pressure.

4.2 Field Solution and Quality Factor for Cavity Pressure

The field solutions in the Fabry-Perot cavities in Figs. 4.1(a) and (b) can be solved

analytically. and we do so for excitation with a single, normally incident plane wave

from the left, allowing the force densities in the mirrors and hence the pressure to

be obtained. Each cavity is a 1D multilayer structure that can be treated using

an established method [41]. A convenient way to do this is to write the impedance

transformation between boundaries m and m+ 1 as

Zm = ηm
Zm+1 − iηm tan kmlm
ηm − iZm+1 tan kmlm

, with m = 4, 3, 2, 1 (4.1)

where ηm, km, and lm are the characteristic impedance, phase constant, and thickness,

respectively, of the mth region, initialized by Z4 = η0, the free space wave impedance

on the right side of M2 in Fig. 4.1(a). The electric field reflection coefficient on

the left boundary in Fig. 1(a) is S11 = (Z1 − η0)/(Z1 + η0), where we have used

scattering parameter notation. The total electric and magnetic fields at Boundary 1

are thus E1 = (1 +S11)E0 and H1 = (1−S11)E0/η0, where E0 is the incident electric

field phasor. Then, the electric and magnetic fields everywhere in this 1D multilayer

structure can be calculated fromEm+1

Hm+1

 =

 cos kmlm iηm sin kmlm

iη−1
m sin kmlm cos kmlm

Em
Hm

 , with m = 4, 3, 2, 1,(4.2)



28

initialized by E1, H1. The field solutions allow the stored energy W , the cavity Q,

the force densities in the mirrors and hence the pressure to be obtained. The fields

in the asymmetric Fabry-Perot cavity shown in Fig. 1(b) can be likewise found. We

choose reflected fields rather than those transmitted because some cavities of interest

have no transmission. The force density expression we utilize here, originally from

Einstein and Laub [13], is shown in (2.2) with the time-averaged form in (2.3).

We define the time-averaged force density due to the first term in (2.3) as 〈fR〉,

where the nomenclature implies that this is the radiation pressure for a planar sur-

face with normal incidence, the usual mirror picture, and the other term due to the

gradient of the field as 〈fG〉. We note that application of (2.3) for normally incident

light on a planar Au mirror and integration over depth produces a pressure for visible

wavelengths that is very close to 2S/c.

We relate the radiation pressure to the cavity Q for the 1D cavities in Figs. 4.1(a)

and (b). With the linear and isotropic relationships D = ε0εE and B = µ0H, in

frequency domain and where D is the electric flux density and B the magnetic flux

density, it is possible to separate electromagnetic field energy into stored and lost

components [42]. Under the assumption that dispersion can be neglected, so ∂ε/∂ω =

0, the time-averaged stored energy surface density (J/m2) is

W =
1

4

∫
l

[
ε′ε0|E(r)|2 + µ0|H(r)|2

]
dl, (4.3)

where l is the spatial variable perpendicular to the mirrors. Likewise, the time-

averaged power dissipation surface density (W/m2) is

Pd =
ω

2

∫
l

ε0ε
′′|E(r)|2dl. (4.4)

The integrations in (4.3) and (4.4) are over the mirrors and the intervening space

(free space in the situations of Figs. 4.1(a) and (b)), and for M2 in the asymmetric

cavity case, the integral in that mirror is over 20δ, with δ the skin depth (e−1 of the

field at the surface).
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The Q can be decomposed into unloaded (accounting for loss within the cavity,

QU) and loaded (describing the radiative loss contribution, QL) as

1

Q
=

1

QU

+
1

QL

, (4.5)

where

QU = ω0
W0

Pd

and QL = ω0
W0

Sr + St

, (4.6)

with ω0 the resonant circular frequency, W0 the total (electric plus magnetic) en-

ergy in the cavity at resonance from (4.3), Pd the power dissipated within the cavity

at resonance from (4.4), and Sr and St the reflected and transmitted Poynting vec-

tor magnitudes, respectively, at resonance. With high cavity finesse and use of a

Lorentzian line model [43,44],

1− |S11(ω)|2 =
1− |S11(ω0)|2

1 + 4 (ω0−ω)2

∆ω2

, (4.7)

and an estimate of Q is

Qω =
ω0

∆ω
, (4.8)

where ∆ω is the half-power bandwidth and the subscript ω indicates this frequency

response measure (with a high Q approximation). Measuring S11 and use of (4.8) to

determine Q circumvents the need to artificially define cavity boundaries.

4.3 Pressure with a One-Dimensional Asymmetric Cavity

Figure 4.2 shows our pressure results for the 1D cavities of Figs. 4.1(a) and (b) at

resonance. We designate symmetric (Fig. 4.1(a)) and asymmetric (Fig. 4.1(b)) Fabry-

Perot cavity cases through the labels SFP and AFP, respectively. In all calculations,

the magnitude of the Poynting vector of the normally incident plane wave (Si) on

the cavity is 1 W/m2, and the free space wavelength is λ0 = 633 nm. The mirror

dielectric constants used are presented in Table 4.1 and based on Au. We vary

only the material loss and thickness to adjust the confinement and dissipation in the
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cavities. The shortest resonant cavity length was determined from the minimum |S11|

as d is adjusted, and all results are for this condition. For the 1D cavities, only 〈fR〉

contributes to the pressure. Positive pressure is in the direction of the wave vector

for the cavity excitation and the excitation Poynting vector. Consequently, M1 has

positive pressure due to excitation and negative pressure due to the cavity field, and

the latter dominates in the cases considered. The pressure on M2 is always positive.

Our central interest is in the sum of the pressures on the two mirrors.

Figure 4.2(a) shows the radiation pressure on M2, PM2 , as a function of Q, cal-

culated from (4.5), with use of (4.6), and the cavity energy determined from (4.3)

and the power dissipation from (4.4). The various symmetric (SFP) and asymmetric

(AFP) cavity parameters are given in Table 4.1. The Q is adjusted by varying the

loss in M1 through ε′′M1
. Changing ε′′M1

has an impact on the coupling between the

incident wave and the cavity, so both QU and QL are varied, and the stored energy

in the cavity changes. The increase in PM2 with increasing Q can be understood

from the pressure presented by Maxwell [3] in (2.1) with |Γ| ∼ 1 and the increasing

forward power density (Sf). A fit (orange line) in Fig. 4.2(a) makes the linear rela-

tionship between pressure and Q clear. Figure 4.2(b) shows PM2 as a function of Qω,

estimated from (4.8), which has a nonlinear relationship to pressure. However, the

general trend between pressure and both Q and Qω are consistent. The nonlinear

character in Fig. 4.2(b) appears at lower values of Qω and can be attributed to the

breakdown of the high-Q approximation. With high Qω, the results in Fig. 4.2(b)

still differ a little from those in Fig. 4.2(a) because the cavity boundaries were (arti-

ficially) described at the outside of the mirror surfaces in determining both W0 and

Q (in Fig. 4.2(a)), while use of the reflection coefficient in (4.7) in determining Qω

from (4.8) did not require a cavity boundary to be defined. We conclude then that

Qω provides a suitable measure to investigate cavity mirror pressure.

Figure 4.2(c) shows the net pressure on M1 and M2, PM1+PM2 = PM1+M2 , for SFP2

and AFP3, the higher Q examples of symmetric and asymmetric cavities, respectively.

When a symmetric cavity is resonant, the forward and backward waves within the
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(a) (b)

(c) (d)

Fig. 4.2. (a) PM2 on M2 as a function of Q from (4.5), with a linear
fit (orange line) for examples of symmetric and asymmetric Fabry-
Perot cavities with the parameters given in Table 4.1. (b) PM2 as a
function of Qω from (4.8). (c) Net pressure, PM1+M2 , on M1 and M2

as a function of Qω. The dashed line shows the value of the maximum
pressure on a perfect mirror when the magnitude of the incident power
density (Si) is 1 W/m2. A resonant asymmetric cavity can support
larger pressure enhancement than a perfect reflecting (anti-resonant)
surface. (d) Forward (Sf ) and backward (Sb) power density for the
asymmetric cavity AFP3 (overlapping on this scale), along with the
difference (Sf −Sb), in comparison with the incident (Si) and the net
incident (Si−Sr) power densities. As Q increases due to reduced loss
in M1, Sf−Sb approaches Si−Sb. This result establishes conservation
of energy.
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cavity have approximately the same amplitude. Therefore, for the symmetric cavity,

PM1 (< 0, the sum of the excitation light pressure, which is positive, and the much

larger negative cavity pressure) is almost the same as PM2 (> 0), but in the opposite

direction and hence a negative number, causing PM1+M2 to be small. This can be

observed from the blue diamond symbols in Fig. 4.2(c), where the total pressure

becomes small as Qω increases. On the other hand, with the asymmetric mirror

arrangement of Fig. 4.1(b), PM2 is slightly larger than PM1 , leading to an increasing

PM1+M2 with increase in Qω over the range considered, as evidenced by the star

symbols in Fig. 4.2(c). The dashed line in Fig. 4.2(c) shows the maximum pressure

on a perfect mirror based on (2.1) when S = 1 W/m2 and Γ = 1. From the AFP3

case in Fig. 4.2(c), given by the blue stars, it is clear that PM1+M2 , enhanced by the

cavity Q, can exceed the maximum pressure on a perfect mirror (2S/c) by a factor of

three (with the same power density incident on the cavity).

Figure 4.2(d) shows the power flow for the asymmetric cavity case of Fig. 4.2(c),

AFP3. Conservation of energy requires that the difference between the forward and

backward Poynting vector magnitudes in the cavity and between the mirrors (Sf−Sb)

be less than or equal to (when the mirrors have no dissipative loss) the net power

density exciting the cavity (Si − Sr). Figure 4.2(d) shows that this is the case and

energy is conserved. The Sf −Sb curve approaches Si−Sr with increasing Q because

the loss in M1 is being reduced. We can thus understand the enhanced net pressure

(PM1+M2) as being regulated by asymmetric cavity control of Sf − Sb and cavity Q,

while maintaining conservation of energy and momentum.

It is interesting to note from the results of Fig. 4.2 that, at the first resonance,

PM1+M2 is largest when the reflection coefficient at the left of M1 (|S11|) is a minimum.

On the contrary, the maximum pressure based upon S(1+|Γ|2)/c = 2S/c occurs when

the reflection coefficient is maximum. The idea that higher reflection produces larger

pressure has led to the use of highly reflecting surfaces achieved with distributed

Bragg reflectors or photonic crystals. Our results indicate, quite differently, that a



33

resonant asymmetric cavity can provide even larger pressure enhancement than the

conventional limit.

To understand the pressure enhancement when the cavity supports even higher

Q, we calculate the net pressure, PM1+M2 , for symmetric and asymmetric Fabry-Perot

cavities with Qω larger than AFP3 in Fig. 4.2(c), finding the results in Fig. 4.3(a).

The dielectric constants of M1 and M2 are fixed to be ε′M1 = ε′M2 = −11.82 and

ε′′M1 = ε′′M2 = 0.1. We adjust thickness of M1, t, to be 5, 10, 40, 50, 70, 80, 100, 130 and

150 nm to gradually increase cavity quality factor, Qω. The symmetric cavities contain

identical thicknesses of M1 and M2. In principle, the symmetric cavity pressure should

approach the perfect mirror case, the dashed line in Fig. 4.2(c) when M1 is very thick

to obtain high Q. This can be observed from the diamond symbols. Note how PM1+M2

increases to approach the dashed line and the perfect mirror situation, indicating the

that internal cavity pressures cancel and the small cavity coupling results in close to

a perfect mirror at M1. For asymmetric cavities (star symbols), notice in Fig. 4.3(a)

that PM1+M2 has a value below the perfect mirror case and initially increases with

increasing Qω, reaches a maximum, and then decreases to the perfect mirror value.

When t becomes large and cavity Q is very high, the cavity behaves more like a

symmetric cavity where the pressures on M1 and M2 due to Sb and Sf cancel. The

net pressure for high Q approaches that from the excitation wave on a planar surface.

We therefore learn by way of example and consideration of the underlying physical

mechanism that there is a regime with modestly high Q where pressure enhancement

with asymmetric cavities can occur.

4.4 Cavity Pressure with Maxwell’s Picture

In Fig. 4.2 we show calculated results for the pressure from a force density stem-

ming from work by Einstein and Laub [13] given in (2.3). Integration of the force

density over the material and normalization to surface area led to the pressure. For the

1D cavity problem we treated and normal incidence, only the first term in (2.3) con-
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tributes. On the other hand, a commonly used picture was proposed by Maxwell [3],

where the radiation pressure is given by (2.1) when there is no transmission through

the mirror.

We compare the pressures on M1 and M2 in Fig. 4.1(b), PM1 and PM2, based on

these two approaches, i.e., with use of (2.1) and (2.3). In applying (2.1) to M1, we

consider only the more significant pressure from the cavity field and hence neglect that

due to the excitation field on this mirror. We choose AFP3 (the asymmetric cavity

in Fig. 4.1(b) with the parameters given in Table 4.1) because of the larger pressure

enhancement and higher Q among the Fabry-Perot cavity examples in Fig. 4.2. The

results for PM1, PM2 and the net pressure, PM1+M2, for AFP3, are shown in Fig. 4.4.

Changing the material in mirror M1 produces a change in cavity Q and hence a change

in the pressure. In Fig. 4.4, the black stars are from Maxwell’s picture in (2.1) and

the blue stars are calculated from (2.3).

We note that PM1 is in the opposite direction of PM2. By using (2.1) for PM1, we

assume that M1 provides high reflection and efficient absorption within the material.

Therefore, the results have the assumption that no transmission occurs through M1,

causing a slightly larger PM1. We can also observe the slight differences between

the pressures calculated from two approaches in Fig. 4.4(b) due to the influence of

the finite penetration (20δ, with δ the skin depth) into M2 in forming the pressure

from (2.3). These small differences are more evident for larger Qω because the scale

is expanded in this regime and reduce with increasing accuracy for the integration

of the force density. The use of (2.1) for M1 produces higher PM1 and hence a

lower estimate for the net pressure, PM1+M2. This can be observed in Fig. 4.4(c)

with increasing Qω. With an increase of Qω, the loss of M1 reduces, causing the

larger differences between the two approaches when we use (2.1) for M1. However,

the enhanced pressure beyond that on a perfect mirror can still be observed when

we apply Maxwell’s picture. Generally, for this 1D problem, we note the excellent

agreement between the two approaches. Our conclusion is that either model would

serve our purpose.
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(a) (b)

Fig. 4.3. (a) The net pressure on M1 and M2, PM1+M2 , as a function
of Qω for symmetric (diamonds) and asymmetric (stars) Fabry-Perot
cavity having ε′M1 = ε′M2 = −11.82 and ε′′M1 = ε′′M2 = 0.1. We choose
the thickness of M1, t, to be 5, 10, 40, 50, 70, 80, 100, 130 and 150 nm
to regulate the cavity quality factor, Qω, in the regime where enhance-
ment occurs and beyond. The sub-figure shows an expanded view of
the dashed box region for small Qω. The dashed line shows the value
of the maximum pressure on a perfect mirror when the magnitude of
the incident power density (Si) is 1 W/m2. For symmetric cavities
(diamonds), the total pressure increases with increasing Qω, and then
approaches the perfect mirror case. For asymmetric cavities (stars),
note that the total pressure dips below that for Si incident on a perfect
mirror for low Qω. These results show that there is a design region
for pressure enhancement. When t becomes large, the cavity behaves
more like a symmetric cavity where the pressures on M1 and M2 due
to Sb and Sf approximately cancel. In this regime, the net pressure
is roughly that from the excitation wave on a planar surface. The red
parabola is from the local linear estimation for the asymmetric cav-
ity data points with t = 40, 50, 70 and 80 nm and use of (4.16). (b)
Calculated Qω(γ) with γ = 1− |Γ1|2 (asymmetric cavity data points
with t = 40, 50, 70, 80 nm). The blue line is a fit to all points, yielding
Qω(γ) = anγ + bn with an = −4.5350× 103 and bn = 407.3813. With
use of the point with t = 50 nm which shows the largest enhancement
in (a) and the corresponding Q (blue star symbol with the second
largest Q in AFP3) in Fig. 4.2(a), we find Q = βQω with β = 2.6073.
The an and bn provide local a and b values in (4.16) and the resulting
parabolic curve in (a). Note how well this local, linear picture (the
red parabola) captures the pressure enhancement.
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(a) (b)

(c)

Fig. 4.4. The pressures on M1 and M2 in the cavity of Fig. 4.1(b) using
the Einstein-Laub (2.3) and Maxwell (2.1) descriptions, with varying
loss for M1 (ε′′M1) and hence varying cavity quality factor, Qω. ε′M1 =
ε′M2 = −11.82 is fixed for both mirrors and ε′′M2 = 0.1. (a) Radiation
pressure on M1 in Fig. 4.1(b), |PM1|, as a function of cavity quality
factor, Qω, for the asymmetric Fabry-Perot cavity having mirror M1

material properties described as AFP3 in Table 4.1. Varying the
mirror material causes Qω to change and hence the pressure, and
this relationship is presented. The black stars are estimated from
Maxwell’s picture in (2.1), assuming there is no transmission through
the mirror. The blue star symbols are calculated from the integral
of the force density within the scattering material using the Einstein-
Laub description in (2.3). (b) PM2 from Maxwell’s picture in (2.1)
(black stars) and from the Einstein-Laub force density description
in (2.3) (blue stars). (c) The net pressure, PM1+M2 , from Maxwell’s
picture in (2.1) (black stars) and from the Einstein-Laub force density
description in (2.3) (blue stars). The larger differences with increasing
Qω between the two approaches comes from the assumption of no
transmission for M1. The dashed line shows the value of the maximum
pressure on a perfect mirror when the magnitude of the incident power
density is 1 W/m2. The enhanced pressure can be observed in both
approaches. Our conclusion is that both theories present essentially
the same mirror pressure results.
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To confirm that we have the correct field solutions, Fig. 4.5 plots the magnitudes

of the electric and magnetic fields through the cavity for the three AFP3 examples

with the largest Q (Qω = 135.84, 120, 107.67 when ε′′M1
= 0, 0.1, 0.2, respectively)

in Fig. 4.4 where there is significant pressure enhancement and high Q. The field

values can be used to verify the corresponding power flow points in Fig. 4.2(d) and

the pressure enhancement for this case. The magnitude of electric field in Fig. 4.5(a),

(c) and (e) and magnetic field in Fig. 4.5(b), (d) and (f) indicate the quasi-even

electric field and quasi-odd magnetic field solutions for the first resonant mode in the

asymmetric cavity. These field solutions clearly satisfy the boundary conditions and

hence represent both the unique and exact field solution for this particular situation.

Consequently, the approximate pressures from (2.1) or the exact results from (2.3)

presented in Fig. 4.4(c) can be verified. We provide the numbers for power flow, Sf

and Sb, and the reflection coefficients at M1 and M2, |Γ1|2 and |Γ2|2, in the caption

of Fig. 4.5, and these produce the corresponding pressure points in Fig. 4.4.

4.5 Analytical Description of Enhanced Cavity Pressure

Equation (2.1) provides a simple, approximate means to develop an analytical

pressure expression for the 1D cavity. We assume a backward power flow in the

cavity given by

Sb = αQSi, (4.9)

where α is a constant that relates Q to Poynting vector magnitude. Upon neglecting

the transmission through Mirror 1 and assuming high Q such that the pressure due

to the excitation light on Mirror 1 can be neglected, (2.1) yields

PM1 = −Sb
c

(
1 + |Γ1|2

)
(4.10)

= −αQSi
c

(
1 + |Γ1|2

)
. (4.11)

Similarly, the pressure on M2 can be written as

PM2 =
αQSi
c

(
1 + |Γ2|2

)
. (4.12)
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.5. Calculated analytical fields in the asymmetric 1D cavity
as a function of propagation distance for the three AFP3 examples
with the largest Q (Qω = 135.84, 120, 107.67 when ε′′M1

= 0, 0.1, 0.2,
respectively) in Fig. 4.4. (a) Magnitude of the electric field and (b)
magnitude of the magnetic field as a function of axial position through
the cavity and the mirror regions for ε′′M1

= 0. The shaded area
indicates the positions of M1 and M2. (c) Magnitude of the electric
field and (d) magnitude of the magnetic field as a function of axial
position for ε′′M1

= 0.1. (e) Magnitude of the electric field and (f)
magnitude of the magnetic field as a function of axial position for
ε′′M1

= 0.2. The fields satisfy the boundary conditions and represent
the unique solutions for first resonance that is used to produce the
corresponding data points in Fig. 4.4. From Fig. 4.2(d), with Si =
1 W/m2, for ε′′M1

= 0, Sf = 81.17 W/m2, Sb = 80.80 W/m2 and
|Γ1|2 = 0.9610 (Qω = 135.84); for ε′′M1

= 0.1, Sf = 63.8 W/m2,
Sb = 63.51 W/m2 and |Γ1|2 = 0.9557 (Qω = 120); for ε′′M1

= 0.2, Sf =
51.41 W/m2, Sb = 51.17 W/m2 and |Γ1|2 = 0.9504 (Qω = 107.67).
In all the cases, |Γ2|2 = 0.9955. The corresponding data points in
Fig. 4.4(c) based on (2.1) are obtained with these numbers (at least
to the approximation neglecting the pressure of the excitation light
and transmission through M1).
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Summing (4.11) and (4.12), we have

PM1+M2 =
αQSi
c

[
|Γ2|2 − |Γ1|2

]
. (4.13)

Consider the case of an asymmetric cavity where |Γ2| = 1, so (4.13) becomes

PM1+M2 =
Si
c
αQ
[
1− |Γ1|2

]
. (4.14)

We note that Γ1 = f(Q) is smooth but nonlinear. This allows a local, linear approxi-

mation for a range of Q and hence a simple means to incorporate this dependence into

(4.14). Referring to (4.14), we set γ = 1− |Γ1|2 and use the local linear relationship

Q = aγ + b. (4.15)

Substituting 1 − |Γ1|2 = γ = (Q − b)/a into (4.14), we have the quadratic equation

in Q as

PM1+M2 =
αSiQ

ac
[Q− b] . (4.16)

Using this simple, analytical picture, we can gain insight into the enhanced pres-

sure regime in Fig. 4.3(a) and where the maximum PM1+M2 occurs. Equation (4.16)

assumes |Γ2|2 = 1 and AFP3 in Fig. 4.2(a) uses |Γ2|2 = 0.9955 ≈ 1. Therefore, we can

use Fig. 4.2(a) to find Q and hence α in (4.12). This procedure yields α = 0.2027. Be-

cause we calculate Qω and (4.16) is a function of Q, we use the asymmetric cavity data

point with t = 50 nm which shows the largest pressure enhancement in Fig. 4.3(a) to

relate Qω to Q by Q = βQω. Note that this point is also the one in AFP3 with the

second largest Q (blue star in Fig.4.2(a)). Therefore, with use of Fig. 4.2(a), we find

β = 2.6073. We then write

Qω =
1

β
(aγ + b) (4.17)

= anγ + bn, (4.18)

where an = a/β and bn = b/β.

Figure 4.3(b) shows calculated points (t = 40, 50, 70 and 80 nm) for Qω as a

function of γ = 1− |Γ1|2. The blue line in Fig. 4.3(b) is the least mean-square error
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fit to the points and is selected as a line to determine Qω = anγ + bn. We thus

obtained the parameters an < 0 and bn > 0 in (4.16), and an = −4.5350 × 103 and

bn = 407.3813. Use of (4.16) with either Q or Qω, related by Q = βQω, can thus be

used to find the local approximation to PM1+M2 and this is the (red) parabola plotted

in Fig. 4.3(a). The local maximum of the enhancement occurs when Qω is around

200. Notice that this simple, locally linear description nicely captures the essence

of the pressure enhancement. A series of such local solutions will provide the set of

perturbational solutions.

4.6 Pressure with a Slot Array in a Metal Film

To obtain the fields and the corresponding radiation pressure in the nanostruc-

tured slot cavity in a metal film, shown in Fig. 4.1(c), we use a frequency domain finite

element method (FEM) to obtain the numerical field solutions [25]. Port boundaries

are used in this 2-D model to extract S11 and placed 5λ0 above and below the struc-

ture in Fig. 4.1(d). To avoid singularities in the numerical simulations, the corners of

each slot are rounded with radius of 1 nm. The maximum mesh element size in the

scattering material is λ0/200, sufficient to ensure the accuracy of the force density

solutions. The slot depth, D, and width, Σ, are variables and the period is set to

Λ = 400 nm and thickness to T = 200 nm. With a period of Λ = 400 nm, only

the zeroth-order (normal) scattered plane wave propagates. We fix Σ and vary D to

determine the resonant depth from the minimum of |S11|.

The results for the slot resonant D as a function of Σ, labeled by the (red) dia-

monds, are shown on the right axes in Figs. 4.6(a) and (b). A reducing slot width

results in a decreasing slot depth for the first resonance. We apply (4.8) to estimate

Qω for the slot cavity, and the results are shown in Fig. 4.6(a) by the (black) triangles

in conjunction with the left axis. Note that Qω increases with decreasing Σ, which

can be understood by the cavity reflection coefficient at the top of the slot increasing

as Σ is reduced, thereby increasing the lifetime of the guided-wave resonance in the
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(a) (b)

(c) (d)
Fig. 4.6. Simulation results for the nanostructured slot cavity array
in Au, and with reference to Fig. 4.1(d): Λ = 400 nm, T = 200 nm,
Σ is fixed, and D is varied to determine the resonant depth D from
the minimum of |S11|. (a) Qω (triangles) and resonant slot depth, D
(diamonds), as a function of slot width, Σ. (b) Radiation pressure
(asterisks) along with the resonant D (diamonds) as a function of Σ.
In general, smaller Σ results in higher Qω and larger pressure, consis-
tent with the asymmetric 1D Fabry-Perot cavity results of Fig. 4.2(d),
AFP3. (c) Radiation pressure as a function of Qω, decomposed into
total and gradient (〈fG〉) contributions. The dashed line shows the
maximum pressure on a perfect mirror. The nanostructured slot cav-
ity supports a pressure enhancement more than an order of magnitude
higher than a perfect mirror. (d) Radiation pressure as a function of
Qω for the lower Q 1D cavities, from Fig. 4.2, in comparison with the
slot pressures from (c). The black line and red dashed line are the
linear fits to the total pressure and 〈fG〉, respectively from the first
8 points in (c). The blue and red lines are the linear fits to PM2 for
AFP1 and SFP1, which are low-Q Fabry-Perot cavities in the exam-
ples considered. The nanostructured slot cavity is more efficient in
delivering radiation pressure enhancement on a target surface than
the 1D Fabry-Perot cavity when the cavities have the same Q.
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slot and hence QL. The numerical field solutions are used in (2.3) to find the force

density, and this is integrated over the support of the material within the unit cell

and divided by Λ to form the pressure, with the results given by the (black) asterisks

for each value of Σ in Fig. 4.6(b), as indicated on the left axis. The general trends in

Figs. 4.6(a) and (b) are that both Qω and pressure decrease with increasing slot width

(at resonance). The pressure results for the slot cavities in Fig. 4.6(b) are consistent

with the asymmetric 1D Fabry-Perot cavity results of Fig. 4.2(c) for AFP3, where

the pressure increases with Qω. The anomalous pressure result for the smallest Σ in

Fig. 4.6(b) occurs because of the small slot size and the reduced interaction between

the field and the material. Figure 4.6(c) shows the pressure as a function of Qω for

the slot structures. Unlike the 1D Fabry-Perot cavities, the gradient force term, 〈fG〉,

contributes. We separate the contribution of 〈fG〉 from the total pressure (black as-

terisks), and the results are plotted as the red circles in Fig. 4.6(c). In general, the

pressure is proportional to Qω and the relationship is linear for lower Qω. Higher Qω

supports a higher pressure contribution from 〈fG〉, associated with the reducing slot

width, although the total pressure reduces slightly at the highest Qω. The dashed line

is again the maximum pressure on a perfect mirror, from Fig. 4.2(c). Compared to

the net pressure for the AFP3 1D cavity case in Fig. 4.2(d), the slot cavity can pro-

vide a pressure enhancement more than an order of magnitude higher than a perfect

mirror with a relatively low-Q cavity. The gradient of the total pressure in Fig. 4.6(c),

dP/dQω, describes the efficacy of the cavity in enhancing the pressure (per unit Q or

stored energy). In Fig. 4.6(d), we plot the linear fits passing through the origin for

the total pressure and the pressure contributed by 〈fG〉 as black and red dashed lines,

respectively, using the first 8 points (linear region) in Fig. 4.6(c). Linear fits to the

pressure as a function of Qω for SFP1 and AFP1, which involve similar (low) Qω to

the slot cavity, are plotted for comparison as the red and blue lines, respectively, in

Fig. 4.6(d). The nanostructured slot cavity can provide larger pressure enhancement

on the target surface than that (on M2) for the 1D Fabry-Perot cavities we considered

when the cavities have the same Q. This is mainly due to the contribution of the



43

gradient force, 〈fG〉. Consequently, for an incident wave with time-averaged intensity

S, the nanostructured slot cavity can utilize the energy stored in the cavity more

efficiently in creating optomechanical pressure by drawing on both 〈fR〉 and 〈fG〉.

4.7 Conclusion

We have shown that an asymmetric optical cavity can lead to a total pressure as

the sum of that on each mirror that exceeds the pressure on a perfect mirror. This

net pressure is substantial by virtue of the asymmetry and can be controlled by cavity

Q. The enhanced pressure for the nanostructured metal film results from both terms

in (2.3), where the cavity mode resonance influences the fields in the metal and hence

the force density and pressure. Generally, increasing the cavity Q can produce higher

pressure in the metal film slot resonators. The kinetic force density in (2.3) is derived

using conservation of momentum (see [23], for example). Consequently, there is a

rigorous basis for the pressure results shown.

The 1D cavity provides a simple vehicle to understand enhanced optical pres-

sure, defined as the sum of the pressure on both mirrors in a Fabry-Perot cavity.

With planar mirror and the neglection of transmission, the simple pressure descrip-

tion from Maxwell in (2.1) holds and provides a useful comparison and the basis

for a mathematical picture of pressure enhancement. We have provided a rigorous

physical and mathematical pressure development and results. However, there is a

consistent qualitative picture. Conservation of energy has been demonstrated in our

results (Fig. 4.2(d)). The large cavity fields and power flow imply an accumulation

of photons and a larger number of photons per unit time striking the interior walls of

the cavity than is the case for the external mirror surface through which excitation

occurred. The cavity could have been populated with photons by some other means,

such as an internal antenna. Regardless, with appreciable cavity field enhancement,

the pressures from inside dominates. With the introduction of asymmetry in the

cavity mirrors, the pressure on one mirror can exceed the other by an amount that is
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greater than the equivalent excitation light applied to a perfect, planar mirror. As we

have shown, this can occur with satisfaction of energy and momentum conservation.

A surface plasmon is excited in the slot cavity, associated with the lowest-order

MIM mode that propagates for arbitrarily small slot width, allowing for very small

cavities. However, other cavity modes using other materials, including dielectrics, are

expected to also provide pressure enhancement. This is illustrated in the 1D cavity

results we showed, where a surface plasmon was not excited in the metal-like mirrors,

and these could have been replaced with dielectric counterparts with similar results.

There are convenient fabrication methods to form nanocavity arrays in metal,

for example, direct nanoimprinting [45]. With use of optimized, aperiodic structures,

more control and higher pressure should be possible [46], and regulation of the pressure

as a function of wavelength should be possible. The explanation for enhancement we

have provided allows design guidelines for applications that will benefit from enhanced

and controllable optical forces with structured material. For example, beads that

are used in optical tweezers could be structured [47]. Also, the efficacy of vehicle

propulsion using structured materials should improve. More generally, we suggest

that there are new opportunities related to the interaction of waves with structured,

resonant materials and the generation of a mechanical response.

4.8 Contribution

Li-Fan was responsible for the numerical simulation and assisted in analytical

calculation and analysis of results.
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5. ENHANCED PUSHING/PULLING FORCE FROM

PLASMONIC SURFACE WAVE

The interaction between light and material is of fundamental importance. Stemming

from Maxwell’s picture, the maximum time-averaged radiation pressure is achieved

with a perfect mirror. However, recent experimental evidence has confirmed that this

pressure can be exceeded by a substantial factor by structuring the surface of a metal

and exciting plasmon mode resonances. While a negative force can be imparted on a

small particle by control of an optical beam, entire structures are generally thought to

be only pushed by incident light. Recently, a statistical simulation study of aperiodic

dielectric and metal elements provided example structures that could be pulled as

well as pushed, with evidence of a relationship to the character of resonances. We

propose a simple transverse resonant system that can either be pushed or pulled,

depending on dominant fields being established on the front or back, respectively. In

this work, pulling is achieved by exciting a plasmonic wave resonance on the back

side of Au/SiN membrane, excited by a coupling slot. We demonstrate that both

the pushing and pulling pressures can exceed that on a perfect mirror and can be

controlled based on wavelength with light incident from a single direction. Being able

to push and pull structures will be of value in actuation and propulsion applications.

5.1 Introduction

Maxwell’s picture predicts the maximum pressure on a perfect mirror. However,

we discovered that the optical pressure on a structured metal surface can be substan-

tially enhanced greater than that on a planar surface [24], and demonstrated it with

the optomechanic deflection experiment [15]. We interpreted this phenomenon with

momentum conservation by introducing asymmetric cavity picture with appropriate
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quality factor [16]. While the 1D asymmetric cavity provides insight into pushing

pressure enhancement, we characterized that the field resonance on the material sur-

face will results in enhanced not only pushing but also pulling pressure with aperiodic

structure [48]. The work gives concept of enhanced pulling pressure, but will still re-

quire a compact physical picture with simple system to illustrate the relation between

enhanced pulling pressure and resonant field on the other side of the structure. Here

we present the understanding of promoting enhanced pushing and pulling pressure

by exciting resonant confined field on the same side or the opposite side (to the inci-

dent light) of the membrane. The pulling pressure under this concept can be easily

captured as a pushing pressure pushing against the direction of the incident light.

We investigate this by looking into plasmonic surface wave on a nano-slotted Au

membrane. The resonant transverse surface wave will be excited through metal-

insulator-metal (MIM) cavity mode. Allowing resonant surface wave on either side of

the membrane, enhanced pushing or pulling pressure is promoted. Applying the finite

element method [25] for the field solution and the force density equation (2.3), we ob-

tain interesting examples displaying enhanced pushing and pulling pressure. Further

more we present that the pushing and pulling opto-mechanics can be controlled by

different wavelength on the same designed structure. With the understanding of the

relation between enhanced pushing/pulling pressure and the plasmonic surface wave,

it will guide us to the design of structured metallic and dielectric materials where

increasing in pushing and pulling pressure over that on a perfect mirror is possible.

This will provide useful in applications, especially those where a restoring force may

otherwise be unavailable.

5.2 Single Au Layer

We consider a transversely periodic geometry of slotted Au membrane as shown in

Fig. 5.1(a), where Λ is the periodicity, W is the slot width, and T is the Au thickness.

In the simulation setup the periodic boundary is placed at the left and right forming
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a periodic structure. The perfectly matched layer (PML) is placed at the top and

bottom. A 633 nm plane wave with H out of the plane is illuminating (the red

arrows) from the top. The intensity of the light is equivalent to 1 mW over 1 µm

radius circle. The corners are rounded with a 2 nm quarter circle to avoid numerical

sharp corner effect. The time-averaged y-directed force density in the materials can be

found by (2.3), and the collective y-directed pressure, assuming z-invariant structure,

is calculated by integrating the force density over the unit cell area (x - y plane) and

divided by the unit cell width (Λ). This allows obtaining the vertical pressure on the

periodic structure. The basic concept of this structure is that the incident light will be

coupled into the slotted structure and then excites the transverse waveguide mode(s)

that facilitates the control of the net force. Using relatively simple pictures, such

as surface wave and MIM mode excitation [49–52], we can establish the underlying

principles.

We can estimated the transverse wavelength of the plasmonic surface wave on

the top and bottom of Au at the metal-dielectric interface in Fig. 5.1(a) (here the

dielectric is air) from

β = k0

√
ε1ε2
ε1 + ε2

, (5.1)

where β is the propagation wave vector of the surface wave, k0 is the incident wave

vector in free space, ε1 is the dielectric constant of the dielectric material, and ε2 is

the dielectric constant of the metal. The dielectric constant for Au assumed is -11.8 +

i1.23 [26] for 633 nm wavelength. From (5.1) the estimated propagation wavelength

of the surface wave on air-metal interface is around 620 nm.

We then fix Λ at 620 nm with 60 nm W, then vary T from 100 nm to 500 nm.

The calculated pressure is shown in Fig 5.1(b). In the figure, the dashed red line

indicates the pressure on a perfect mirror with same intensity. The dashed black

line is the zero pressure. We indicate the region above the dashed black line to be

pulling pressure region and the under the pushing pressure region because the plane

wave is illuminating from the top in the −y-direction. Figure 5.1(c) plots the power

density on the bottom side of the Au membrane, i.e. the power density through the
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Fig. 5.1. Simulation of a periodic nanoslotted Au (ε = −11.8 + i1.23)
membrane illuminated by light. (a) Simulation setup with parame-
ters: period Λ, slot width W fixed at 60 nm, and Au thickness T. The
633 nm plane wave with H out of plane is illuminated from the top,
and the intensity is equivalent to 1 mW over 1µm radius circle. (b)
Calculated time-averaged y-directed pressure with Λ = 620 nm, and
T from 100 nm to 500 nm. The dashed red line indicates the pres-
sure on a perfect mirror with same intensity, and the dashed black
line is the zero pressure. We indicate the region above the dashed
black line to be the pulling pressure region and under the pushing
pressure region because the plane wave is illuminating from the top
in −y-direction. (c) Calculated power density on the bottom side of
the Au membrane pointing in −y-direction, with respect to T. Note
that pulling pressure in (b) is promoted when the power density on
the bottom side of Au is increased. The length between the two peaks
in (b) and (c) indicates the MIM mode cavity resonance.
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Fig. 5.2. Simulation results of the largest pushing and pulling pressure
in Fig. 5.1(b) around T = 220 nm. The largest pushing pressure, -
5.77 N/m2, occurs at T = 203 nm. Increasing T to 232 nm will
shift the pushing pressure to the pulling pressure, 0.77 N/m2. Calcu-
lated field and force density distribution of the pushing and pulling
cases are plotted. (a), (c), and (e) show the x-directed electric field
magnitude, y-directed electric field magnitude, and y-directed force
density, respectively, for T = 203 nm, and (b), (d), and (f) the x-
directed electric field magnitude, y-directed electric field magnitude,
and y-directed force density, respectively, for T = 232 nm. From x-
and y-directed electric field distribution, we can see that the resonant
MIM wave in the slot cavity promotes the resonant surface wave on
the top and bottom of Au, and as a result develops large force den-
sity on both surface However we can see that the force density from
the surface wave on the top and bottom competes each other and
therefore reduces the magnitude of pushing and pulling pressure.
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Au slot, with respect to T, pointing to the −y-direction. Comparing Fig. 5.1(b) and

(c) we can see that the pulling pressure is promoted when the power density on the

bottom side of Au membrane is increase. This can be understood as the field forming

the surface wave on the bottom side of the Au which produces pushing force density

against the direction of the incident light to the Au, This will be demonstrated in

Fig. 5.2. This phenomena can also be interpreted from the momentum exchange

view that the pulling force on the bottom of the membrane is induced by the photon

momentum leaving the surface of Au. Figure 5.1(b) and (c) show a periodic variation

of calculated pressure and peak power density around 220 nm. This can be suggested

as the MIM mode resonant wavelength inside the cavity. Also larger T suggest larger

loss, therefore from 5.1(b) and (c) the promoted pulling pressure magnitude as well

as the power density on the bottom side of the Au decrease when T increase.

Figure 5.1(b) shows that the largest pushing pressure occurs at T = 203 nm. The

pushing pressure, -5.77 N/m2, is about 3 times greater than that on the perfect mir-

ror. Increasing T to 232 nm will shift the pushing pressure to the pulling pressure,

0.77 N/m2. We investigate the field solution and calculated the force density distri-

bution of the two corresponding Au thickness. Figure 5.2(a), (c), and (e) show the

x-directed electric field magnitude, y-directed electric field magnitude, and y-directed

force density, respectively, for T = 203 nm, and (b), (d), and (f) the x-directed elec-

tric field magnitude, y-directed electric field magnitude, and y-directed force density,

respectively, for T = 232 nm. From x- and y-directed electric field distribution, we

can see that the surface wave on the top and bottom of the Au are developed with

resonant MIM mode in the slot as shown Fig. 5.2(a) to (d). We here suggest that the

surface wave on the top and bottom of Au are promoted by the MIM wave resonance

in the slot cavity. That is without the resonant MIM mode in the slot, there will

be no enhanced surface wave. This will be demonstrated in Fig. 5.3. When T =

203 nm, less surface wave is developed on the bottom of Au, shown in Fig. 5.2(c),

and result in collective large pushing pressure shown in Fig. 5.2(e). On the other

hand, when T is increased to 232 nm, the surface wave at the bottom is stronger
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Fig. 5.3. Simulation result of the field and force density when T
= 140 nm away from the cavity MIM resonance, where the power
density through the slot is small in 5.1(c). (a) to (c) show the x-
directed electric field magnitude, y-directed electric field magnitude,
and y-directed force density, respectively. From (a) the MIM mode is
not resonant in the cavity, resulting in weak top and bottom surface
wave in (b). This suggests that the resonant MIM mode in the cavity
promotes the top and bottom surface wave. However in (b) there is
still larger surface wave on the top than on the bottom resulting in
more pushing force density on the top of Au, shown in (c). There is
a collective pushing pressure of -3.8 N/m2.
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than that on the top, shown in Fig. 5.2(d). However the field magnitude difference

between the top and the bottom surface wave in the pulling pressure case is much less

than that in the pushing pressure case, resulting in collective small pulling pressure

on Au (Fig. 5.2(f)). From the two cases, especially the enhanced pushing pressure

when T = 203 nm, the plasmonic surface wave can evidently enhanced the pressure

magnitude greater than that on a perfect mirror. However, we also learn that the

co-existed surface waves on the top and the bottom of Au will compete each other

and therefore limits the enhancement of the collective pressure.

Figure 5.3(a) to (c) show the x-directed electric field magnitude, y-directed electric

field magnitude, and y-directed force density, respectively, for T = 140 nm, which is

away from the MIM resonant cavity length. The MIM mode is not resonant due

to the slot cavity condition shown in Fig. 5.3(a). The top surface wave becomes

weak and the bottom surface wave disappears. This verifies our suggestion that the

resonance of the MIM mode promotes the top and bottom surface wave. However

from Fig. 5.3(b) and (c) there are still some surface wave and the force density on the

top, resulting in collective pushing pressure, -3.8 N/m2, which is still slightly greater

than that on the perfect mirror.

5.3 Double Layer with SiN on Top of Au

Single Au layer condition provides direction on designing enhanced pushing or

pulling pressure on a thin membrane by manipulating the top and bottom surface

wave. If either top or bottom surface wave is annihilated, optical pressure can be

greatly enhanced. One approach to eliminate one side of the surface wave is to

develop different surface wave propagation wavelength between the top and bottom

of Au and modify the periodicity to match one of the surface wave wavelength. This

can be achieved by adding dielectric layer to the top or bottom of Au. Figure 5.4(a)

shows this simulation setup for enhanced pushing pressure. We add a 50 nm SiN

layer, refractive index of 2 at 633 nm wavelength, to the top of Au. The 50 nm
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Fig. 5.4. Simulation results of enhanced pushing pressure -20.3 N/m2

by adding 50-nm SiN layer (n = 2) to the top of Au. (a) Simulation
setup with parameters: Λ = 418 nm, W = 60 nm, T = 304 nm. The
incident wave is illuminated from the top with intensity equivalent to
1 mW over 1 µm radius circle. (b) x-directed electric field magnitude
(c) y-directed electric field magnitude (d) y-directed time-averaged
force density From (b) the MIM mode is resonant inside the cavity
which promotes the surface wave on the top of Au in (c). Λ is var-
ied from that in Fig. 5.1 such that the bottom surface wave is not
developed via resonance. Due to the absence of bottom force density
shown in (d), the collective pushing pressure is enhanced greater than
that without SiN layer. We can also see that the field is coupled into
force density in the SiN layer which produces pressure. The pressure
in SiN layer is -0.8 N/m2 and in Au is -19.5 N/m2, so that the field
in Au dominates the enhancement of pressure.
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thickness is selected due to the commerically available product from Norcada. The

modified wavelength of the surface wave between Au and SiN can be roughly estimated

by (5.1) and will depend on the thickness of SiN layer. The dependence can be

understood from that the effective refractive index on the SiN side is characterized by

the proportion of the evanescent field inside the SiN. That is the thicker the SiN layer

the more the effective refractive index will approach 2 and the shorter the propagating

wavelength of the surface wave will be.

By adding SiN layer on the top of Au, we find greatly enhanced pushing pressure -

20.3 N/m2 when Λ = 418 nm and T = 304 nm with W fixed at 60 nm. Figure 5.4(b),

(c), and (d) show the x-directed electric field magnitude, y-directed electric field

magnitude, and y-directed force density distribution, respectively, for the enhanced

pushing pressure. Figure 5.4(b) and (c) show that the surface wave on the top is

excited by the resonant MIM mode in the cavity. Because Λ is varied away from

620 nm, the single Au layer case, the bottom surface wave is not developed due to

the non-resonant condition. The excited surface wave on the top of the membrane

develops the pushing force density. Without the competition of the bottom pulling

force density, the pushing pressure magnitude is greatly enhanced than that on a

single Au layer membrane. From Fig. 5.4(c) and (d) field is coupled to force density

inside the SiN layer as well. We calculate the pressure separately in SiN and Au and

and obtain -0.8 n/m2 of pushing pressure in SiN and -19.5 n/m2 of pushing pressure

in Au, respectively. This indicates that the pressure produced in Au dominates the

pressure enhancement.

5.4 Double Layer with SiN on the Bottom of Au

We have shown that the enhanced pushing pressure by adding SiN layer to the

top of Au. We now explore the enhanced pulling pressure by adding a 50 nm SiN

layer to the bottom of Au. Figure 5.5(a) shows the simulation setup with SiN layer

added to the bottom of Au. When Λ = 420 nm and T = 320 nm with W fixed at
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Fig. 5.5. Simulation results of enhanced pushing pressure 10.12 N/m2

by adding 50-nm SiN layer (n = 2) to the bottom of Au. (a) Simula-
tion setup with parameters: Λ = 420 nm, W = 60 nm, T = 320 nm.
The incident wave is illuminated from the top with intensity equiv-
elant to 1 mW over 1 µm radius circle. (b) x-directed electric field
magnitude (c) y-directed electric field magnitude (d) y-directed time-
averaged force density From (b) the MIM mode is resonant inside the
cavity which promotes the surface wave on the bottom of Au in (c).
Λ is adjusted to match the resonant wavelength of the bottom surface
wave. As a result with the absence of top surface wave as well as
the force density on the top of Au, shown in (d), we have enhanced
pulling pressure. The calculated pressure in SiN layer is 2.04 N/m2

and in Au is 8.08 N/m2.



56

60 nm, and we find enhanced pulling pressure 10.12 N/m2. Figure 5.4(b), (c), and (d)

show the x-directed electric field magnitude, y-directed electric field magnitude, and

y-directed force density distribution, respectively, for the enhanced pulling pressure.

In this case, the geometry is similar to the enhanced pushing pressure structure but

with SiN layer added to the bottom. T is adjusted to develop MIM mode resonance

in the slot cavity shown in Fig. 5.4(b). Then the bottom surface wave is promoted

as shown in Fig. 5.4(c). The produced force density on the bottom with the absence

of top force density shown in 5.4(d) results in enhanced pulling pressure. Field, same

as the enhanced pushing pressure case, is coupled into the force density in the SiN

layer. The calculated pulling pressure in SiN is 2.04 N/m2 and 8.08 N/m2 in Au,

respectively. Compared to the enhanced pushing pressure magnitude when adding

SiN to the top of Au, the enhanced pulling pressure magnitude when adding SiN to

the bottom of Au is smaller. This can be understood that the bottom surface wave

is developed by partially transmitted field through the slot. Therefore with similar

structure the magnitude of surface wave as well as the force density on the bottom

side of the membrane will be smaller than that on the top side of Au.

5.5 Wavelength Controlled Pushing and Pulling Pressure

We have investigated the physics and guideline of designing for enhanced top and

bottom surface wave with enhanced pushing and pulling pressure. We found that the

enhanced pressure can be achieved by adding dielectric layer to the top or bottom

of Au with the right periodicity. From another view, varying the wavelength of the

incident wave achieve the same goal as varying the periodicity for a resonant surface

wave. Consequently and methodically, we can design a wavelength-controlled pushing

and pulling pressure on the same nano-structure. We now add a dielectric layer to

the top and a SiN layer to the bottom of Au. In Fig. 5.6(a), a 10 nm of dielectric layer

with different refractive indices (n = 1.5, 2, 2.5) is added to the top of Au and a 40 nm

SiN layer is added to the bottom. The top dielectric layer is thinner than the bottom
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SiN is because from the previous results we notice that larger pushing pressure is

easier to established than the pulling pressure for the same thickness of SiN layer,

and thinner top dielectric layer will allow pushing pressure magnitude comparable

to the pulling pressure magnitude for practical purpose. We find interesting results

when the Au thickness T is 306 nm and the periodicity Λ is 460 nm. Fig. 5.6(b) shows

the calculated time-average y-directed pressure by varying the incident wavelength

from 400 nm to 800 nm with different refractive index of the top dielectric layer. The

refractive index of SiN is 2 at 633 nm, approximated as constant over the wavelength

range used. The wavelength depended dielectric constant of Au is applied [26]. In

Fig. 5.6(b), the green curve shows the calculated pressure of the original refractive

index of 2 of SiN for the top dielectric layer. We can see that around 570 nm incident

wavelength the membrane has the the largest pushing pressure about -3 N/m2 and

the largest pulling pressure about 6 N/m2 around 630 nm incident wavelength. We

like to show that, for practical purpose, the magnitude of the largest pushing and

pulling pressure and the corresponding wavelength can be adjusted by changing the

refractive index of the top dielectric layer. This can also be identified by Eq. (2.3)

that the value of refractive index contribute to force density inside the material (from

P). In Fig. 5.6(b), the refractive index of the top dielectric layer differs from 1.5 (blue

curve), 2 (green curve), and 2.5 (red curve). The corresponding significant changes

are presented at the magnitude of the largest pushing and pulling pressure. When

the refractive index of the top layer becomes smaller (n = 1.5) even larger pulling

pressure (about 8 N/m2) and smaller pushing pressure (about -2 N/m2) is realized.

On the other hand, the larger refractive index (n = 2.5 the red curve), exhibits a

balanced magnitude between pushing and pulling pressure around 4 N/m2. As a

result, if one seeks the pressure control with equal magnitude, the red curve will be

a more favorable design. Figure 5.6 presents the schematic with many degrees of

freedom to achieve wavelength controlled pushing and pulling pressure on the same

structure. For example, the refractive index can be tuned not only on the top but

also on the bottom dielectric layer. One can also use the same dielectric material
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Fig. 5.6. Calculated wavelength-dependent pressure for a dielectric-
clad Au membrane showing pushing (negative pressure) and pulling
(positive pressure), depending on wavelength. (a) Geometry with
40 nm SiN (n = 2 at 633 nm, approximated as constant over the
wavelength range used) on the bottom and 10 nm dielectric with three
different refractive indices on top (n = 1.5, 2, 2.5). A plane wave is
normally incident from the top with an intensity corresponding to
1 mW over 1 µm radius circle. (b) Calculated pressure: n = 1.5
(blue curve), n = 2 (green curve), and n = 2.5 (red curve) when
T = 306 nm, Λ = 460 nm, and slot width W = 60 nm. Note the
pushing force (-3 N/m2) around 570 nm and pulling (6 N/m2) in the
neighborhood of 630 nm when n = 2 for the top dielectric layer.

for the top and bottom layer but with different thickness. As discussed before the

thickness of dielectric layer will modify the effective dielectric constant to the surface

wave, and from (5.1) the incident wavelength for the resonant top or bottom surface

wave will differ due to the different thickness of the dielectric layer.

5.6 Conclusion

Conventionally, when designing for optomechanics to achieve maximum optical

force or pressure exerted on the materials, laser propulsion [53] for example, one would

follow the principle of (2.1) for design to achieve as high reflectivity as possible. Here

we build an understanding of controlling the enhanced magnitude and the pressure

direction with the excitation of resonant surface plasmonic waveguide modes in Au

(with SiN). The significant physical issue demonstrated in this work is the realization
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of a enhanced pushing and pulling pressure greater than that on a perfect mirror

by exciting field resonance on either side of the simple structured membrane from

a single direction plane wave illumination. The pulling force in this picture can be

simply understood as a pushing force on the opposite side of the structure against to

the direction of incident wave. This provides the important physics for the guideline

of design to achieve pulling force by developing resonant field on the other side the

structure, the plasmonic surface wave in our example. We have demonstrated this by

binary aperiodic structure using dielectric material and metal [48]. Compared to [48],

we propose a simple layer system design to easily achieve pulling pressure. There are

others have presented pulling force, for example the tractor beams pulling particles

by the control of the incident light [28]. We here present that instead of manipulating

the incident light, a simple plane wave incidence on the designed structure which can

be easily fabricated can provide enhanced pulling pressure on opto-mechanics. This

will open significant opportunities to opto-mechanic applications.
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6. STRUCTURED DIELECTRIC OPTOMECHANICS

To circumvent the influence of heating on metals, we take interest in all-dielectric

materials where their band gap is beyond the incident wavelength, so no thermal

effect will occur. All-dielectric structures offer promise for a range of applications

and mitigate heating and thermal deflection. We have learned that regulation of the

character of resonances in structured dielectrics can provide for pushing or pulling [48].

However, a simple dielectric film system is of interest for force regulation, including

realizing a pulling force.

We discover that from the analytic solution in earlier work, a thin, low dielectric

constant film in a higher dielectric constant background can provide a negative force

on this film [17]. Then a numerical simulation to demonstrate this will be of interest.

On the other hand, from the second term of (2.3), or the gradient term, it reveals

that with positive dielectric constant, a pulling force can be established from the

evanescent nature of the field. That is, the gradient force can provide the condition

for a pulling pressure. One simple way to establish an evanescent field in dielectric

material is from internal total reflection, when light is incident from a high dielectric

constant region onto a low dielectric constant region above the critical angle. The

two strategies are straightforward and easy to fabricate. We will apply silicon (Si)

and SiN in our simulation setup, for they are widely employed in the silicon photonics

industry.

6.1 Pulling force on dielectric layer in higher dielectric constant back-

ground

In the three-region problem discussed in [17], where a slab is embedded in a

background material with a specified dielectric constant, the analytic solution of the



61

optical pressure in the slab suggested that a lower dielectric constant of the slab

placed in a higher dielectric constant background can promote pulling pressure with

specific slab thickness.

Figure 6.1(a) shows the simulation setup. A dielectric slab with thickness T and

refractive index of 2 is sandwiched by two semi-infinite background with refractive

index of 4. The light is normally incident from the top with 633 nm free space

wavelength. The intensity is equivalent to 1 mW over 1 µm radius circle. Fig. 6.1(b)

calculates the y-directed pressure when T varies from 10 nm to 300 nm. Because

the light is incident from the top, a positive value indicates a pulling pressure. We

observe a periodic variation of pulling pressure with respect to T. We then investigate

the electric field and y-directed force density distribution for the largest pressure and

the zero pressure cases. Figure 6.1(c) and (e) plot the electric field and force density

in the slab, respectively, when T equals to one quarter of a wavelength in the slab.

The asymmetric electric field contributes to all pulling force density and therefore

promotes the largest pulling pressure. On the other hand, in Fig. 6.1(d) and (f),

when T equals to one half of a wavelength in the slab, the symmetric electric field

contributes equal amount of the pushing force density to the pulling force density.

This results in zero pressure. We can then conclude that the largest pulling pressure

occurs on the slab when T = (2m + 1)λn=2

4
, and the zero pressure occurs when T

= (m+ 1)λn=2

2
, where m = 0, 1, 2, ... and λn=2 is the wavelength in the slab (n = 2).

6.2 Pulling Force from Internal Total Reflection

With light incident from a high dielectric constant region onto a low dielectric

constant region above the critical angle, an evanescent (decaying) field results in the

low dielectric constant region. This can be achieved in a waveguide geometry and

by coupling light with a few grating periods formed in the dielectric. Figure 6.2(a)

shows the electric field magnitude (with magnetic field out of the page) with oblique

incidence from a region with refractive index (n) 4 to a film with refractive index 2
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Fig. 6.1. Calculated pressure on a dielectric slab (n = 2) with thickness
T sandwiched by two semi-infinite dielectric background (n = 4). A
light with 633 nm wavelegnth in free space is normally incident from
the top and the intensity is equivalent to 1 mW over 1µm radius circle.
(a) Simulation geometry. (b) Calculated pressure on the slab with T
varied from 10 nm to 300 nm. (c) Electric field in the slab when T
is one quarter of a wavelength in the slab. (d) Electric field in the
slab when T is one half of a wavelength in the slab. (e) Y-directed
force density in the slab when T is one quarter of a wavelength in the
slab. (f) Y-directed force density in the slab when T is one half of a
wavelength in the slab. The calculated pulling pressure in (b) presents
a periodic variation from 0 N/m2 to 0.75 N/m2. The positive value
indicates pulling because the light is incident from the top. (c) and
(e) show that when T is one quarter of a wavelength in the slab, the
asymmetric distribution of the electric field promotes all pulling force
density in the slab and therefore produces the largest pulling pressure.
On the other hand, (d) and (f) show that when T is one half of a
wavelength in the slab, the symmetric distribution of the electric field
introduces equal amount of the pushing force density to the pulling
force density in the slab and results in zero pulling pressure.
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Fig. 6.2. Simulation of an obliquely-incident plane wave (magnetic
field out of the page) from a high refractive index (n = 4) material to
low refractive index (n = 2) film (−160 ≤ y ≤ 160 nm) with a free
space wavelength of 633 nm and an intensity corresponding to 1 mW
over 1 µm radius circle. (a) Electric field magnitude, showing the
evanescent field in the n = 2 film. (b) Calculated gradient pressure
from the second term in (2.3) (blue curve), Poynting-like pressure from
the first, cross term of (2.3) (green curve), and the total pressure (red
curve) on the low refractive index material. The black dashed line is
corresponding pushing pressure magnitude on a perfect mirror. Note
that there is a pulling force for smaller angles (beyond the critical
angle) and a pushing force for large angles, allowing the direction of
the force to be adjusted with angle.

(−160 ≤ y ≤ 160 nm), showing the evanescent field in this region. The resulting

pressure determined from (2.3) for the n = 2 region is shown in Fig. 6.2(b), with the

separation of the terms: cross is the first term in (2.3) (green curve) and gradient

is the second (blue curve). Notice from Fig. 6.2(b) that there is a range of incident

angles (in the neighborhood of and beyond the critical angle) where the pressure is

positive, indicating pulling, and a region where there is a pushing force. We will

simulate practical situations that exploit this effect, with the goal of implementation

on a SiN membrane.
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7. SUMMARY

Maxwell’s picture of radiation pressure predicts that the maximum optical pressure

could not exceed twice the averaged power density of the incident light divided by

the background light speed. This is the case for a perfect, planar mirror, where the

force is in the direction of incident light. This conventional view is widely recognized

and utilized. We have experimentally demonstrated that with a nanostructured Au

film on a SiN membrane, the collective optical pressure can exceed that on a perfect

mirror, that is the maximum result predicted by Maxwell’s prediction. In the ex-

periment, the enhanced optical pressure is characterized by the membrane deflection

and the Einstein-Laub force equation. Applying a 1D cavity model, we attribute

the enhancement of the net optical pressure on nanostructured material over that

on a perfect mirror as an asymmetric cavity effect, controlled by the quality factor

(Q) and the mirror reflection coefficients. Harnessing the photon confinement in the

asymmetric cavity explains the basis of the pressure enhancement. We have also

discovered that exciting the plasmonic surface wave on the front side or the back

side of the Au membrane accompanied with SiN layer will establish a corresponding

enhanced pushing and pulling pressure, respectively. This can be easily understood

as the surface wave on the front side pushing the membrane and the surface wave on

the back side pulling (pushing against the opposite direction to the incident light) the

membrane. This provides the physical picture of exciting pushing/pulling pressure

from a plane wave illumination. Besides the nanostructure involving metal materials,

we have studied and explored the opportunity to excite the pulling and even enhanced

pulling pressure on simple all-dielectric material systems (silicon based) with dielec-

tric material in a higher dielectric constant background and by exploiting the nature

of evanescent field to the gradient force.
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We would like to emphasize conservation of momentum in relation to the enhanced

optical pressure presented in Chapter 4. The enhanced net force on the cavity is a

result of the cavity asymmetry and quality factor. After establishing the resonance,

the momentum exchange between the photons and the cavity satisfy Newton’s second

law of motion. This can be understood by the analogy of a harmonically oscillating

pendulum, where the small external driving force to overcome loss maintains the

resonant condition and a large potential/kinetic energy.
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