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School of Industrial Engineering

Weldon School of Biomedical Engineering

Dr. Mario Ventresca

School of Industrial Engineering

Dr. Thomas M. Talavage

School of Electrical & Computer Engineering

Weldon School of Biomedical Engineering

Approved by:

Dr. Abhijit Deshmukh

Head of the School Graduate Program



iii

Dedicated to CONN plexity Lab and its members.



iv

ACKNOWLEDGMENTS

Data were provided [in part] by the Human Connectome Project, WU-Minn Con-

sortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657)

funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for

Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at

Washington University. JG acknowledges financial support from NIH R01EB022574,

NIH R01MH108467, Indiana Alcohol Research Center P60AA07611, Purdue Discov-

ery Park Data Science Award “Fingerprints of the Human Brain: A Data Science

Perspective”. Authors thank Dr. Gorka Zamora-Lopez and Dr. Matthieu Gilson for

useful comments.



v

TABLE OF CONTENTS

Page

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 NETWORK SCIENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 FINGERPRINT IN BRAIN CONNECTOMICS . . . . . . . . . . . . . . . . 12

5 THE DIFFERENTIAL IDENTIFIABILITY FRAMEWORK . . . . . . . . . 15

6 AN EXTENSION OF THE FRAMEWORK . . . . . . . . . . . . . . . . . . 20

7 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

8 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

9 POSTHOC ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

10 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



vi

LIST OF FIGURES

Figure Page

3.1 The connectome as a matrix. (a) One of the first efforts to systematically
generate a connectivity matrix for the brain [44]. This matrix represents
the connectivity of 32 neocortical areas involved in visual function in the
macaque monkey, constructed by collating the results of a large number
of published tract-tracing studies in this animal. In this matrix, a black
cross indicates an outgoing projection from the region listed in the row
to the region listed in the column. (b) An updated connectivity matrix
of the macaque comprising 39 cortical areas, as reconstructed from an
online database of tract-tracing studies. This matrix is organized such
that colored elements represent a projection from the region listed in the
column to the region listed in the row (see Chapter 3). The size of the
dots in each matrix element is proportional to the projection distance and
darker colors indicate stronger average reported connectivity strength. (c)
The anatomical locations of the areas listed in the matrix in (b). Darker
colors identify regions with higher total connectivity to the rest of the
network. [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Part of a network that shows the shortest path between nodes i and j.
On the left, highlighted in blue arrows is the shortest path in a network.
On the right shows shortest path and the number of possible exits at each
node on the path highlighted in dotted blue arrows . . . . . . . . . . . . . 8

3.3 Network showing shortest path and the mean first passage time between
nodes i and j. One left, path in brown is the shortest path between nodes
i and j. On the right shows a possible path taken by a random walker
starting from node i to a target node j. . . . . . . . . . . . . . . . . . . . . 9

3.4 In this figure, the node A has the highest betweenness centrality since the
shortest path from any blue node to red node (and vice versa) will include
the node A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11



vii

Figure Page

5.1 Workflow scheme of the Identifiability Framework If . The upper trian-
gular of each functional connectivity matrix (two FCs per subject, test-
retest) is vectorized and added to a matrix where columns are sessions
and rows are their vectorized functional connectivity patterns. Data are
first centered: this is obtained by subtracting the mean µk from each col-
umn (where k goes from 1 to N subjects). Second, the PCA algorithm
extracts the M principal components (i.e. the M functional connectivity
modes with the corresponding M eigenvectors) associated to the whole
population and their relative weights across subjects. The M orthogonal
connectivity modes are then used to reconstruct back the FC of each sub-
ject (k is added back to the data). Colorbars indicate positive (yellow)
to negative (blue) connectivity values: Pearson’s correlation coefficient in
the case of individual FC matrices (left and right sides of scheme), and
unitless connectivity weights in the case of PCA FC-modes. [32] . . . . . . 16

5.2 Differential Identifiability (Idiff ) profiles of network properties for
different fMRI tasks as a function of the number of principal components
used for reconstruction. Each plot shows, for each fMRI task, the Idiff

score associated with functional connectivity (blue solid line) and the Idiff

score of the original functional connectome (red solid line). . . . . . . . . . 17

5.3 Optimal differential identifiability (Idiff ) as a function of the number of
fMRI volumes used for reconstruction on REST1. Bottom: plot shows
the optimal average Idiff across 100 runs, as a function of the number
of fMRI volumes (scanning lengths) used for FC evaluation and subse-
quent reconstruction. Red line with circles denotes the average Idiff for
the original FCs, whereas blue line with circles denotes the identifiability
for reconstructed FCs based on the different number of fMRI volumes re-
tained (blue vertical bars indicate standard deviation across runs). Top:
insets show the Idiff curves (blue line, reconstructed Idiff ; red line, original
Idiff ) per optimal number of PCA components for three different choices
of number of fMRI frames retained (50, 500 and 1,000 fMRI volumes re-
spectively). [32] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

5.4 Identifiability matrices (I) of the original (Orig) and reconstructed (Recon)
data for the Training, (A) and (C), and Validation, (B) and (D) sets
of resting-state functional connectomes without global signal regression
(NoGSR; (A) and (B)) and with global signal regression (GSR; (C) and (D)).19

6.1 NP(If {FC}) Workflow scheme of the Identifiability Framework If as ex-
tended in this work. The Functional connectomes are reconstructed from
the original functional connectomes as described in ?? (blue-green color
scheme). The network properties are then derived from the reconstructed
functional connectomes. (pink-yellow color scheme) . . . . . . . . . . . . . 21



viii

Figure Page

6.2 If {NP(FC)} Workflow scheme of the Identifiability Framework If as ex-
tended in this work. Here, the network properties are derived on the
original functional connectomes. The network properties are then vector-
ized (either upper triangular of the matrix or the entire matrix depending
on the type of network property) and added to matrix where columns are
sessions and rows are the network property values. The PCA algorithm
now extracts M principal components from this matrix which contains the
network property data. The M orthogonal connectivity modes are then
used to reconstruct back the derived network property corresponding to
each subject. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

7.1 NP(If {FC}) Differential Identifiability (Idiff ) profiles of pairwise
properties for different fMRI tasks as a function of the number of prin-
cipal components used for reconstruction. Here, the Identifiability frame-
work was applied on the functional connectomes (If {FC}). Each plot
shows, for each fMRI task, the Idiff score associated with functional con-
nectivity (red solid line) and the Idiff scores on network properties derived
from the reconstructed functional connectomes, NP(If {FC}) (see legend)
for different number of components. . . . . . . . . . . . . . . . . . . . . . . 25

7.2 If {NP(FC)} Differential Identifiability (Idiff ) profiles of pairwise
properties for different fMRI tasks as a function of the number of prin-
cipal components used for reconstruction. Here, the Identifiability frame-
work was applied directly on the network properties derived from the
original functional connectomes (If {NP(FC)}). Each plot shows, for each
fMRI task, the Idiff score associated with functional connectivity (red solid
line) and the Idiff scores on reconstructed network properties derived from
the original functional connectomes, If {NP(FC)} (see legend) for differ-
ent number of components. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7.3 A summary of maximum Idiff values, and corresponding number of com-
ponents for each fMRI task and network property for both NP(If {FC})
and If {NP(FC)}. Each plot shows, for each property and each method
- NP(If {FC}) or If {NP(FC)}, the Idiff score for all tasks. The number
mentioned gives the maximum Idiff score for the corresponding task (y
axis) and the position denotes the number of components (x axis). . . . . . 28

7.4 A summary of maximum Idiff values, corresponding number of components
and explained variance retained for each fMRI task and network property
for both NP(If {FC}) and If {NP(FC)}. . . . . . . . . . . . . . . . . . . . 29



ix

Figure Page

7.5 (A) Across tasks and rest differential Identifiability (Idiff ) for Mean First
Passage Time as a function of the number of principal components used
for reconstruction. Solid line and solid shaded area represent the re-
sults for MFPT (If {FC}). Dashed line and hatched area show results
for If {MFPT (FC)} (B) Across tasks and rest differential Identifiability
(Idiff ) for Search Information as a function of the number of principal
components used for reconstruction. Solid line and solid shaded area rep-
resent the results for SI(If {FC}). Dashed line and hatched area show
results for If {SI(FC)} The differential identifiability matrix (as defined
in Methods) is shown at optimal reconstruction for Language task for
(C) MFPT (If {FC}), (D) If {FC} and (E) If {SI(FC)}. The diagonal
elements in each matrix represent Iself and the non-diagonal elements rep-
resent Iothers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7.6 NP(If {FC}) and If {NP(FC)} Differential Identifiability (Idiff ) of
node properties for different fMRI tasks as a function of the number of
principal components used for reconstruction. Each plot shows, for each
task, the Idiff score associated with functional connectivity (red solid line),
the Idiff scores on the network properties derived from the reconstructed
functional connectomes NP(If {FC}) (solid lines, colors - see legend) and
the Idiff scores on the reconstructed network properties derived from the
original functional connectomes If {NP(FC)} (dotted lines, colors - see
legend) for different number of components. . . . . . . . . . . . . . . . . . 31

7.7 Effect of If on task sensitivity of network measures. For each pairwise net-
work property, task sensitivity is measured using ICC between - NP(If {FC})
vs NP(FC) (row a), If {NP(FC)} vs NP(FC) (row b) and NP(If {FC})
vs If {NP (FC)} (row c). First two rows highlight the fact that the If
framework uncovers the inherently distinct signature of different tasks
through derived network properties. The last row shows that certain net-
work properties would benefit more from application of the If framework
on the functional connectomes, while others from application directly on
the network properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

9.1 Each figure shows for each task, the optimal differential identifiability
(Idiff ) that can be uncovered using the Identifiability Framework If when
different levels of noise are added to the Functional connectomes. Different
levels of noise were assessed (horizontal axes on all figures) The shaded
areas represent results within the 2.5 and 97.5 percentiles across repetitions. 38



x

Figure Page

9.2 Each figures shows for each task, the optimal number of principal com-
ponents required to uncover optimal identifiability using Identifiability
Framework If when different levels of noise is added to the Functional
connectomes (xaxis). The shaded region represents the 2.5 and 97.5 per-
centile across repetitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

9.3 Identifiability matrices of Rest. On the left, is the Identifiability matrix of
the Rest original functional connectomes, the center is the Identifiability
matrix of optimally reconstructed functional connectomes and on the right
is the identifiability matrix of functional connectomes reconstructed from
noisy original data. Here the a noise level of 0.5 is added to the FCs of Rest.40



xi

SYMBOLS

If Identifiability Framework

G undirected weighted graph

V set of vertices in a graph G

W is matrix [wij] where wij strength of the edge between nodes vi

and vj

Ki degree of a node i

SPLij Shortest Path Length between nodes i and j

MFPTij Mean First Passage Time starting from node i to j

Cij Communicability between nodes i and j

Wij Driftness between nodes i and j

Ωi↔j sequence of nodes forming the shortest path between nodes i, j

πi↔j {wix, wxy, . . . , wzj} sequence of edge weights forming the shortest

path between nodes i and j

SIij information required to follow the shortest path between nodes i

and j

P Transition probability matrix

Z Fundamental Matrix



xii

ABBREVIATIONS

FC Functional Connectome

fMRI Functional Magnetic Resonance Imaging

HCP Human Connectome Project

ICC Intraclass Correlation Coefficient

NP Network Property



xiii

ABSTRACT

Rajapandian, Meenusree M.S., Purdue University, May 2020. Uncovering Differen-
tial Identifiability in Network Properties of Human Brain Functional Connectomes.
Major Professor: Joaqúın Goñi.

The Identifiability Framework (If ) has been shown to improve differential identi-

fiability (reliability across-sessions and -sites, and differentiability across-subjects) of

functional connectomes for a variety of fMRI tasks. But having a robust single ses-

sion/subject functional connectome is just the starting point to subsequently assess

network properties for characterizing properties of integration, segregation and com-

municability, among others. Naturally, one wonders if uncovering identifiability at the

connectome level also uncovers identifiability on the derived network properties. This

also raises the question of where to apply the If framework: on the connectivity data

or directly on each network measurement? Our work answers these questions by ex-

ploring the differential identifiability profiles of network measures when If is applied

on 1) the functional connectomes, and 2) directly on derived network measurements.

Results show that improving across-session reliability of FCs also improves relia-

bility of derived network measures. We also find that, for specific network properties,

application of If directly on network properties is more effective. Finally, we dis-

cover that applying the framework, either way, increases task sensitivity of network

properties. At a time when the neuroscientific community is moving away from group-

average statistics towards subject-level inferences, we have shown that If is a useful

tool to enhance robustness in FC fingerprints, which permeates to derived network

properties as well.
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1. INTRODUCTION

The analysis of structural and functional human brain connectivity based on network

science has become prevalent for understanding the underlying mechanisms of the

human brain. Using network properties, we are able to understand the topology

of brain connectivity patterns [1–3], integration and segregation [4–8], as well as

communication dynamics [9–12] and association between human cognition and brain

function [13–17]. Until recently, many brain connectivity studies used group-level

comparisons, where data from many subjects are collapsed (e.g. group averaging)

into a representative sample of clinical and healthy population [18–20]. However, this

comes at a price of potentially ignoring intra-group individual variability [21].

Detecting individual differences in functional connectivity profiles thus becomes

important, when associating connectivity profiles with individual behavioral out-

comes. In recent years, publicly available functional connectome datasets [22, 23]

with large sample sizes have enabled the scientific community to account for inter-

individual variability in the human functional connectome (FC). A number of promis-

ing methods that can successfully capture these individual differences have been estab-

lished in recent times [21,24–27]. For instance, work by [28] has shown the existence

of a recurrent and reproducible fingerprint in functional connectomes estimated from

neuroimaging data. This idea has been extended to maximize or minimize subject-

specific and/or task-specific information [29, 30]. These subject-specific fingerprints

have been used to track fluctuations in attention at the individual level [31].

The “Identifiability Framework” [32], based on the group-level Principal Compo-

nent Analysis of functional connectomes that maximizes differential identifiability,

has been shown to improve functional connectome fingerprints within- and across-

sites, for a variety of fMRI tasks, over a wide range of scanning length , and with and
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without global signal regression [32, 33]. Additionally, it has been shown that max-

imising differential identifiability on the functional connectomes provides more robust

and reliable associations with cognition [34] as well as with disease progression [35].

The natural next step is to assess the impact of such a procedure on subsequent net-

work measurements that characterize topological and communication properties of

functional brain networks.

An open question of great relevance for the Brain Connectomics community is how

to measure and uncover subject fingerprints in network measurements of functional

connectivity. Uncovering reliable connectivity fingerprints is crucial when assessing

clinical populations and when ultimately mapping cognitive characteristics into con-

nectivity [35–37]. Our hypothesis is that improvement in FC fingerprint should also

“propagate” to network derived measurements. An organic way of assessing this

would be to track differential identifiability scores of derived network features as the

differential identifiability on the functional connectomes changes. One could also

proceed with the application of the Identifiability Framework directly on the network

derived features as opposed to using it on FCs. The above mentioned approaches rely

on different principles of what is a fingerprint in a network derived measurement. The

first one assumes that functional connectivity data is “holding” the fingerprints and

propagating them to any network derived measurement. The second one considers

functional connectivity data as a proxy to ultimately estimate a network measurement

with a potentially prominent subject fingerprint.
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2. DATA

The fMRI dataset used in this study is from the publicly available Human Connec-

tome Project (HCP), Release Q3. Per HCP protocol, written informed consent was

obtained from all subjects by the HCP Consortium. Full description of the acquisition

protocol and processing steps is given below.

We assessed the 100 unrelated subjects (54 females, 46 males, with a mean age of

29.1±3.7 years) data subset as provided at the HCP 900 subjects data release [22,38].

This subset of subjects was chosen from the overall dataset to ensure that no two

subjects are family relatives to exclude family-structure co-variables and possible

identifiability confounds in our analysis. The fMRI resting-state runs were acquired

in separate sessions on two different days, with two different acquisitions (left to right

or LR and right to left or RL) per day [39,40]. The seven fMRI tasks were gambling,

relational, social, working memory, motor, language, and emotion. The gambling,

working memory, and motor tasks were acquired on the first day while relational,

social, language, and emotion tasks were acquired on the second day [22, 41]. The

HCP scanning protocol was approved by the local Institutional Review Board at

Washington University in St. Louis. All experiments were performed in accordance

with relevant guidelines and regulations. For all sessions, data from both the left-

right (LR) and right-left (RL) phase-encoding runs were used to calculate connectivity

matrices. These acquisitions are referred to as test and retest (or visits). In order to

avoid confounds between test-retest and phase encoding, runs were evenly distributed

on test-retest along the subjects. Hence, for half of the subjects LR was used as test

and RL as retest and for the other half RL was used as test and LR as retest. This

operation was done for all 7 fMRI tasks. For resting-state, this procedure was done
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for both REST1 and REST2 separately. Full details on the HCP dataset have been

published previously [22,39,40].

A cortical parcellation of 360 brain regions as recently proposed by Glasser et

al [42] was employed. This parcellation is multimodal and took an objective semi-

automated neuroanatomical approach to identify areas bounded by sharp change in

cortical architecture and function connectivity. For completeness, 14 sub-cortical

regions were added, as provided by the HCP release (filename Atlas ROI2.nii.gz);

for which this file was converted from NIFTI to CIFTI format by using the HCP

workbench software [39] (http://www.humanconnectome.org/software/connectome-

workbench.html, command -cifti-create-label).

The minimal preprocessing pipeline from the HCP was used to process the data.

[39] This pipeline included artifact removal, motion correction, and registration to

standard space. Full details on this pipeline can be found in [39,40]. The main steps

were spatial (minimal) preprocessing in volumetric and grayordinate space (i.e. where

brain regions are mapped onto the native mesh cortical surface) [40]; slice-timing

correction; weak high-pass temporal filtering (2000s full width at half maximum)

applied to volumetric and grayordinate forms, in effect removing linear trends in the

data (no low pass filtering was applied in this pipeline); MELODIC ICA [43] applied to

volumetric data; and using FIX to identify artifact components. Artifacts and motion

related time courses were regressed out (i.e. the six rigid-body parameter time series,

their backwards-looking first differences, and the squares of all 12 resulting regressors)

of volumetric and grayordinate data. [40]
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3. NETWORK SCIENCE

The discovery of general properties in terms of network organization across superfi-

cially different systems has enabled the formation of an interdisciplinary field of net-

work science around the use of general analytic methods to model complex networks.

This has allowed us to explore the scope of common or near-universal principles of

network organization, function, growth, and evolution across a variety of real-world

complex systems. Principal among these general methods is graph theory.

The first applications of graph theory to neuroscientific data were published as

early as the end of the twentieth century [44–46] as can be seen in 3.1. The use of graph

theory to model neural connectivity on a microscopic level was paralleled by attempts

to understand macroscopic networks of interconnected cortical areas roughly paral-

leled Ramón’s work. Network diagrams that summarized white matter connections

between cortical areas were drawn by clinical pioneers like Theodor Meynert, Carl

Wernicke, and Ludwig Lichtheim. These were able to successfully explain symptoms

of brain disorder and could connect them to pathological lesions. These models were

able to link the source of specific cognitive disabilities to anomalies in the connectivity

of the cortical areas [47].

The development of such models and statistical techniques that allow for valid

inference on group differences between general and clinical population has paved

the foundation for connectomics. A combination of rapid growth in the science of

networks and technological evolution of methods to measure and visualize brain or-

ganization, across multiple scales of resolution has facilitated the flourishment of the

science of connectomics. A consistent conceptual focus on quantifying, visualizing,

and understanding brain network organization across multiple scales of space and

time is a fundamental characteristic of the burgeoning field of connectomics. [1]
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Figure 3.1. The connectome as a matrix. (a) One of the first efforts to system-
atically generate a connectivity matrix for the brain [44]. This matrix represents
the connectivity of 32 neocortical areas involved in visual function in the macaque
monkey, constructed by collating the results of a large number of published tract-
tracing studies in this animal. In this matrix, a black cross indicates an outgoing
projection from the region listed in the row to the region listed in the column. (b)
An updated connectivity matrix of the macaque comprising 39 cortical areas, as
reconstructed from an online database of tract-tracing studies. This matrix is orga-
nized such that colored elements represent a projection from the region listed in the
column to the region listed in the row (see Chapter 3). The size of the dots in each
matrix element is proportional to the projection distance and darker colors indicate
stronger average reported connectivity strength. (c) The anatomical locations of
the areas listed in the matrix in (b). Darker colors identify regions with higher total
connectivity to the rest of the network. [2]

Such computational models of large-scale brain network dynamics also allow us

to assess the efficacy of invasive and noninvasive brain simulation therapies. These

findings suggest that an understanding of network topology may allow us to predict

expected levels of impairment and prospects for recovery following insult [18], and

to select individually tailored interventions with maximum chances of therapeutic

success [1, 2, 48].

In this work, we select a set of diverse graph theoretic measurements that are

widely used to understand the network topology, communication, integration and
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segregation of the brain networks. These properties are degree strength, shortest

path length, search information, mean first passage time, driftness, communicability,

clustering coefficient and betweenness centrality. As described above, a functional

connectome can be represented as a symmetric square correlation matrix that may

be seen as an undirected weighted graph. Let G = (V,W) be an undirected weighted

graph with set of nodes V = {v1, v2, . . . , vn} and weights W = [wij] where wij is the

strength of the edge between nodes vi and vj.

1. Degree Strength

The degree strength of a node (Ki) in an undirected binary graph is the number

of edges that are connected to the node. Here, we consider the weighted sum

of the edges connected to the node i.

Ki =
n∑
j=1

wij

2. Shortest Path Length

The shortest path length (SPL) between two nodes of an undirected graph is

defined as the minimum number of edges (and thus steps) that separate the

two nodes. For an undirected weighted graph it is the path that results in the

smallest value of the sum of the inverse of edge weights that constitute a path

between a pair of nodes i and j. For such a path, that consists of the following

sequence of nodes, Ωi↔j = {i, x, y, . . . , z, j} with corresponding sequence of edge

weights πi↔j = {wix, wxy, . . . , wzj}, the shortest path length is

SPLij =
∑

wlm∈πi↔j

1

wlm

Note that Ωi↔j = Ωj↔i for shortest paths in any undirected graph.

3. Search Information
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The search information (SIij) for two nodes i and j is the information required

to follow the shortest path [49] i.e. the negative log of the product of probability

of taking the correct exit at every node along the shortest path. In other words,

it can be considered as the information required to reach node j starting from

node i. For a path between nodes i and j that has a sequence of nodes Ωi→j =

{i, x, y, . . . , z, j}, with probability of taking the path P (πi→j) = Πl∈Ω∗i→j
1/kl,

the search information for the path is [50]

SIij = − log2 P (πi→j)

Note that SIij 6= SIji

Figure 3.2. Part of a network that shows the shortest path between nodes i and
j. On the left, highlighted in blue arrows is the shortest path in a network. On
the right shows shortest path and the number of possible exits at each node on the
path highlighted in dotted blue arrows

4. Mean First Passage Time

The mean first passage time (MFPT) is the expected (on average) number of

steps a random walker takes to reach node j (for the the first time) from node
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i [51]. The Mean First Passage Time (MFPT) for a pair of nodes with source i

and target j is

MFPTij =
ζjj − ζij
φj

where φ is the left eigenvector associated with eigen value 1, Z = [ζij] is the

fundamental matrix computed as Z = (I − P + Φ)−1. Here I is the n × n

identity matrix, P is the transition matrix and Φ is an n× n matrix with each

column corresponding to the probability vector φ such that ∀j Φij = φi. Please

note that MFPTij 6= MFPTji.

Figure 3.3. Network showing shortest path and the mean first passage time between
nodes i and j. One left, path in brown is the shortest path between nodes i and j.
On the right shows a possible path taken by a random walker starting from node i
to a target node j.

5. Driftness

We use a measure of communication called driftness [9] which is the ratio of

the mean first passage time and the shortest path of a pair of nodes i and j.

Considering that SPij is the best possible scenario path for a random-walk, this
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measurement is modulating the mean first passage times with respect to the

fastest routes within the network to go from node i to j. Hence, note that

Wij ≥ 1.

Wij =
MFPTij
SPij

6. Communicability

Communicability between two nodes i and j is a measure of network integration

computed as a weighted sum of number of all possible walks between them. [10]

Here, we use a normalization method proposed to handle the disproportionate

influence of highly connected nodes (also known as hubs) in a graph [52]. Note

that this is frequently the case when assessing functional connectomes.

Cij = [eD
−0.5AD−0.5

]ij

where D = diag(K) and K = [ki] where ki is the degree strength of node i, as

defined above.

7. Clustering Coefficient

The clustering coefficient of a node is the tendency of its neighbors to form

cliques. It is the ratio of the total number of triangles a node forms with its

neighbors to the total number of possible triangles that can be formed.

CCi =
2ti

ki(ki − 1)

where ti = 1
2

∑
j,h∈V (wijwihwjh)

1/3 is the geometric mean of triangles around

node i for weighted networks.

8. Betweeness Centrality

The betweenness centrality of a node is the fraction of all shortest paths in a

network that contain that node.



11

Bi =
1

(n− 1)(n− 2)

∑
h,j∈V

h6=j,h6=i,j 6=i

ρhj(i)

ρhj

where ρhj(i) is the number of shortest paths between h and j that pass through

i. It can be seen as a measurement of to what extent a node “lies” between

other pairs of nodes when accounting specifically for shortest-paths.

Figure 3.4. In this figure, the node A has the highest betweenness centrality since
the shortest path from any blue node to red node (and vice versa) will include the
node A
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4. FINGERPRINT IN BRAIN CONNECTOMICS

The concept of individual connectivity fingerprint - the idea that the functional con-

nectivity of the brain differs across as it does across groups was first proposed almost

15 years ago. However, the concept was shelved due to the absence of accurate data

to account for these differences. The availability of large amounts of high resolution

fMRI datasets in recent times have encouraged the scientific community on a quest

to capture inter-individual variability in the human functional connectome. This idea

of individual fingerprint in brain connectomics has become ubiquitous in the cogni-

tive neuroscience way of thinking. They have become critical for the development of

personalized interventions for neuropsychiatric illnesses.

A comprehensive review of the methods that has been explored by the community

and the progress that has been made can be found in [24]. This work used multidi-

mensional scaling to show that each area occupies a unique place within this space of

connections. An area here is a subpart of the brain defined on an anatomical basis,

usually a distinct cytoarchitecture, myelin architecture, and/or receptor architecture,

generally associated with a distinct function. The function of each individual area is

determined in the main by its unique set of connections with the rest of the brain.

Describing areas in terms of their connectivity helps to predict the function. This

concept of connectivity has moved from a single brain region descriptor to a measure

that can predict variability across individuals.

Other promising methods in recent times that can predict variability across indi-

viduals are [25,26]. This work uses data from nine sampled adult humans to demon-

strate that functional brain networks are in large part composed of individual-specific

features that are stable over time. It convincingly demonstrated that the variance in

functional connectivity data is best explained by a combination of factors that are
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both common across individuals and consistently present in single individuals across

sessions. It was found that a shared group-level factor explained slightly more that

30% of the variance in functional connectivity when data was aggregated across indi-

viduals [53, 54] and subject-specific features in the data explained a similar amount

of variance. These features were stable and variance across sessions in individual

patterns over time was minimal.

Substantial proof has also been found of network variants in individuals that are

different from the group-level descriptors [21]. These variants are highly stable within

individuals and are found in characteristic locations and associate with characteristic

functional networks across large groups. These variants also indicate an association

to functional variation. Individuals with similar behaviour show similarity in these

variant characteristics. These results demonstrated that distributions of network

variants may reflect stable, trait-like, functionally relevant individual differences in

functional brain organization.

More recent work showed that individual variability in the entire connectome is

both substantial and reproducible and can act as an identifying “fingerprint” [28].

While the task may change the brain connectivity to some extent, the intrinsic ar-

chitecture is reliable enough across sessions and distinct enough from that of other

individuals to identify the subject from the group regardless of the task during imag-

ing. They further demonstrated through a full cross validated analysis that functional

connectivity profiles can be used to predict the fundamental cognitive trait of fluid

intelligence in novel subjects. This study used pearson correlation as a measure of

similarity between two visits of the same subject.

Another study went beyond and used pearson correlation to not only find the

similarity between two visits but also account for the dissimilarity between visits of

different subject. [32] This study while coming up with a novel way of measuring the

fingerprint level of a group subjects, has also introduced a robust framework to max-

imise fingerprint in functional connectomes. It uses a reconstruction procedure based

on group-wise decomposition using principal component analysis in a finite number of
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brain connectivity modes. This Identifiability framework (If ) considerably improved

the differential identifiability and also suggests that the same level of identifiability

can be achieved at lower duration of acquisition lengths.
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5. THE DIFFERENTIAL IDENTIFIABILITY

FRAMEWORK

The Identifiability Framework (If ) based on Principal Component Analysis of func-

tional connectomes has been shown to improve functional connectome fingerprints

within- and across- sites, for a variety of fMRI tasks, over a wide range of scanning

length, and with and without global signal regression [32, 33]. Additionally, it has

been shown that maximising differential identifiability on the functional connectomes

provides more robust and reliable associations with cognition [34] as well as with

disease progression [35].

The assessment of the individual fingerprint relies on the assumption that indi-

vidual connectivity profiles should be more similar to a different visit or session and

should be different from sessions of other individuals. Here, the similarity is measured

as a pearson’s correlation between two connectivity matrices. This idea motivated

the differential identifiability score in [32]. A level of identifiability is measured on a

set of functional connectomes as follows:

Idiff = (Iself − Iothers) ∗ 100

where Iself is the mean of all correlation between the one session of a subject i

to another session of the same subject; Iothers is the mean of all correlation between

sessions of different subjects i and j. These values can constitute an identifiability

matrix where each position i, j denotes the correlation between the functional con-

nectome of subject i test and subject j retest. The workflow of the framework can

be found in

Principal component analysis (PCA) transforms a set of observations into prin-

cipal components that are orthogonal in nature, ranked in a descending order of
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Figure 5.1. Workflow scheme of the Identifiability Framework If . The upper tri-
angular of each functional connectivity matrix (two FCs per subject, test-retest) is
vectorized and added to a matrix where columns are sessions and rows are their
vectorized functional connectivity patterns. Data are first centered: this is obtained
by subtracting the mean µk from each column (where k goes from 1 to N subjects).
Second, the PCA algorithm extracts the M principal components (i.e. the M func-
tional connectivity modes with the corresponding M eigenvectors) associated to the
whole population and their relative weights across subjects. The M orthogonal
connectivity modes are then used to reconstruct back the FC of each subject (k
is added back to the data). Colorbars indicate positive (yellow) to negative (blue)
connectivity values: Pearson’s correlation coefficient in the case of individual FC
matrices (left and right sides of scheme), and unitless connectivity weights in the
case of PCA FC-modes. [32]

explained variance of the original data. The Identifiability Framework (If ) uses this

method to maximise the differential identifiability of a set of functional connectomes.

In this framework, the functional connectome is reconstructed with all the principal

components and are then iteratively reconstructed with a decreasing number of prin-

cipal components. As the principal components are decreased, the differential iden-

tifiability increases, reaches a maximum and then continues to decrease further with

any additional removal of principal components. 5.2 The components are removed

with least explained variance first and progresses towards components of higher ex-

plained variance. This is done because the higher variance components might have
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group-level functional connectivity information, especially the ones that are similar

across the individuals whereas lower variance components might carry subject-level

information and might in turn be noise as the explained variance decreases. The

functional connectome are reconstructed with a number of principal components that

give the maximum differential identifiability at which point the level of identifiability

is the highest for the set of functional connectomes. These functional connectomes

are highly similar across sessions of a subject and highly dissimilar across subjects.

Figure 5.2. Differential Identifiability (Idiff ) profiles of network properties
for different fMRI tasks as a function of the number of principal components used for
reconstruction. Each plot shows, for each fMRI task, the Idiff score associated with
functional connectivity (blue solid line) and the Idiff score of the original functional
connectome (red solid line).

The Identifiability framework is seen to improve the differential identifiability on

functional connectomes of all scanning lengths as can be seen in 5.3. It also reaches

a level of identifiability that may not be ever achieved by increasing the scanning

lengths. The framework also improves differential identifiability across scanners with

or without global signal regression as can be seen in 5.4 [33].
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Figure 5.3. Optimal differential identifiability (Idiff ) as a function of the number of
fMRI volumes used for reconstruction on REST1. Bottom: plot shows the optimal
average Idiff across 100 runs, as a function of the number of fMRI volumes (scanning
lengths) used for FC evaluation and subsequent reconstruction. Red line with circles
denotes the average Idiff for the original FCs, whereas blue line with circles denotes
the identifiability for reconstructed FCs based on the different number of fMRI
volumes retained (blue vertical bars indicate standard deviation across runs). Top:
insets show the Idiff curves (blue line, reconstructed Idiff ; red line, original Idiff ) per
optimal number of PCA components for three different choices of number of fMRI
frames retained (50, 500 and 1,000 fMRI volumes respectively). [32]
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Figure 5.4. Identifiability matrices (I) of the original (Orig) and reconstructed
(Recon) data for the Training, (A) and (C), and Validation, (B) and (D) sets of
resting-state functional connectomes without global signal regression (NoGSR; (A)
and (B)) and with global signal regression (GSR; (C) and (D)).



20

6. AN EXTENSION OF THE FRAMEWORK

In this work, we extend the framework by measuring the effects of the Identifiability

Framework. It is crucial to understand this effect since network properties are widely

used to understand the attributes of brain networks in general, and of functional

connectomes in particular. [1, 2]. To understand this, we measure the differential

identifiability on the derived network properties and how their profiles are as the

number of principal components used in the reconstruction changes.

There are two different procedures that are assessed in this work. The functional

connectomes of each subject (test and retest) are vectorized and added to a matrix,

the columns of which are the runs (test and retest) of each subject, while the rows are

the functional connectivity values of brain region pairs. The m principal components

of this matrix are then ranked by variance explained and included, in an iterative

fashion, to reconstruct the functional connectomes [32]. This is done separately for

each task and rest. Following the reconstruction of the functional connectomes, we

then compute the network property of interest for each subject, on each run (test and

retest). This is referred to as NP(If {FC}) in all further sections where NP is the

network property and FC is the functional connectome.

In another case, network properties are computed on the original functional con-

nectomes for each subject and run. The network properties are subsequently vec-

torized and added to a matrix the rows of which consists of the network property

values corresponding to a pair of brain regions in case of pairwise properties or a

brain region when node properties are derived. The principal components of this ma-

trix are then extracted and iteratively reconstructed using m number of components

with highest explained variance. Since the network properties are the ones being de-

composed in this case, the result of the reconstruction are the corresponding network



21

Figure 6.1. NP(If {FC}) Workflow scheme of the Identifiability Framework If as
extended in this work. The Functional connectomes are reconstructed from the
original functional connectomes as described in ?? (blue-green color scheme). The
network properties are then derived from the reconstructed functional connectomes.
(pink-yellow color scheme)

properties of each individual and each run. This method is subsequently referred to

as If {NP(FC)}).

Intraclass correlation coefficient (ICC) represents how strongly measures of a group

are in agreement with each other [55,56]. The higher the ICC value, higher is the level

of agreement. We use ICC [57] to asses the task sensitivity of a network measure,

for each brain region pair and every subject. In this case, the members of the groups

are the different runs (test and retest) of a subject; the different groups represent the

different fMRI task conditions (and rest). The mean task sensitivity is then taken

across all subjects and reported. For this assessment, the functional connectome

(or the network property If {NP(FC)}) was optimally reconstructed, i.e. using the

number of components that gave the highest Idiff score for that task.
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Figure 6.2. If {NP(FC)} Workflow scheme of the Identifiability Framework If as
extended in this work. Here, the network properties are derived on the original
functional connectomes. The network properties are then vectorized (either upper
triangular of the matrix or the entire matrix depending on the type of network
property) and added to matrix where columns are sessions and rows are the net-
work property values. The PCA algorithm now extracts M principal components
from this matrix which contains the network property data. The M orthogonal
connectivity modes are then used to reconstruct back the derived network property
corresponding to each subject.
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7. RESULTS

The dataset used for this study consisted of fMRI scans of the 100 unrelated subjects

from the Human Connectome Project [22]. For each subject, we computed 18 whole-

brain functional connectivity matrices: 4 corresponding to resting-state (2 sessions,

each with test and retest), and 14 corresponding to each of the 7 tasks (each including

two runs; test-retest). The multimodal parcellation used here, as proposed by [42],

includes 360 cortical brain regions. For completeness, 14 subcortical regions were

added [58], hence producing functional connectome matrices (square, symmetric) of

size 374× 374.

In this work, we study the effects of If on the identifiability profiles of network

properties in two different scenarios: 1) when applying differential identifiability on

functional connectivity, NP(If {FC}) and 2) when applying differential identifiability

directly on network properties, If {NP(FC)}.

NP(If {FC}): The functional connectomes (FCs) of each task (including rest)

were vectorized, organized together and then decomposed into principal components

and subsequently reconstructed by adding an increasing number of components or-

dered by their variance explained. After every such reconstruction, a number of

network measurements [see Methods for details] were computed for each FC and Idiff

was found on the derived network properties. This is compared with the Idiff score

estimated directly from the reconstructed functional connectomes - If {FC}. By do-

ing so, we extend the differential identifiability framework to uncover fingerprints in

network properties derived from functional connectomes.

For each task, we observed an optimal point of reconstruction where the differential

identifiability on the FCs was maximized (see Figure 7.1). This optimal point was

always in the neighborhood of half the maximum number of components (which is
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equal to the number of subjects in the data) and produced Idiff values much higher

than fully reconstructed data, i.e. using all the components. These results reaffirm

those reported by [32]. We then assessed Idiff on the following node pair network

properties: Shortest Path Length (SPL), Search Information (SI), Mean First Passage

Time (MFPT), Driftness (W), and Communicability (C). In all cases, there was

an optimal regime of number of components that maximized Idiff (see Figure7.1).

Overall, the Idiff score on all the network properties and functional connectomes

reach the peak at similar number of principal components, ranging between 80 and

110. We can also see that the Idiff on functional connectomes is generally higher

than those on the network properties for all the tasks and for most of the number

of components. One exception is MFPT on Motor task where the Idiff scores on FC

and MFPT produced very similar results for the entire range of principal components.

Another exception is MFPT on Relational task where the peak Idiff of MFPT (If {FC}

is greater than that of If {FC} but the margin of difference is really small (≈ 0.59).

In If {NP(FC)}) the different network properties (refer Methods) were first de-

rived from the original functional connectomes and subsequently decomposed and re-

constructed using the Identifiability framework. Idiff scores were computed on these

reconstructed network properties for different number of components and compared

with those computed from the reconstructed FCs. (see Figure7.2)

As opposed to results shown in Figure7.1 which used NP(If {FC}), network prop-

erties have heterogeneous Idiff profiles with respect to number of components. Com-

pared to Idiff from If {FC}, Search Information has a higher peak Idiff score for all

tasks while Communicability has a higher peak Idiff score for all tasks except resting

state. We also find that MFPT has a very different Idiff profile compared to other

network properties. The Idiff profiles of MFPT from If {MFPT (FC)} increases as we

add the first few component and saturates or decreases gradually as more components

are added (starting around 20 components for all tasks). This is unlike other net-

work properties and functional connectome that share similar Idiff profiles (see Figure
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Figure 7.1. NP(If {FC}) Differential Identifiability (Idiff ) profiles of pair-
wise properties for different fMRI tasks as a function of the number of principal
components used for reconstruction. Here, the Identifiability framework was ap-
plied on the functional connectomes (If {FC}). Each plot shows, for each fMRI
task, the Idiff score associated with functional connectivity (red solid line) and the
Idiff scores on network properties derived from the reconstructed functional connec-
tomes, NP(If {FC}) (see legend) for different number of components.

7.2). A summary of maximum Idiff , corresponding number of components used and

variance retained for NP(If {FC}), and If {NP(FC)} can be seen in Figure 7.3.

The network property with the most different Idiff profiles was between MFPT (If {FC})

and If {MFPT (FC)}. Search Information was the only network property that reached

higher Idiff values for all fMRI tasks for If {SI(FC)}. The difference between Search

Information and Mean First Passage time are assessed in detail in Figure7.5. Shaded

area highlights the variability of Idiff scores across different tasks for NP(If {FC})

(solid area) and If {NP(FC)} (hatched area). Across all tasks, Idiff on If {SI(FC)} is

higher than SI(If {FC}. However, for Mean First Passage time, Idiff on MFPT (If {(FC)}

is higher than (If {MFPT (FC)}. When SI(If {FC}) is derived and optimally recon-

structed, Idiff on Search Information is highest across all tasks. However, under full
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Figure 7.2. If {NP(FC)} Differential Identifiability (Idiff ) profiles of pair-
wise properties for different fMRI tasks as a function of the number of principal
components used for reconstruction. Here, the Identifiability framework was applied
directly on the network properties derived from the original functional connectomes
(If {NP(FC)}). Each plot shows, for each fMRI task, the Idiff score associated with
functional connectivity (red solid line) and the Idiff scores on reconstructed network
properties derived from the original functional connectomes, If {NP(FC)} (see leg-
end) for different number of components.

reconstruction m = 200 (which is equivalent to using the original functional connec-

tomes), Idiff scores are highest for the functional connectome for all fMRI tasks.

We then assessed how differential identifiability varies based on node properties

- Degree, Betweeness Centrality and Clustering Coefficient (Figure 7.6). We find

that the Idiff profiles of NP(If {FC} are similar to that of If {FC}. These also

give a significantly higher optimal Idiff score for Gambling, Language, Motor and

Working Memory tasks for all node properties. Especially in the case of Language

and Motor tasks, Betweeness Centrality gives a significantly higher Id iff of 37 and

35 respectively at optimal reconstruction. For If {NP(FC)}, results show lower and

flatter Idiff profiles for all tasks and a wide range of number of components. Idiff

profiles using NP(If {FC}) of these node properties are in agreement with all pairwise
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properties explored so far. In contrast, the Idiff profiles using If {NP(FC)} on these

node properties are similar to If {MFPT (FC)} only.

Intraclass Correlation Coefficient was used to assess the task sensitivity of each

pairwise network property for three possible cases - NP(If {FC}) vs NP(FC) (row

a), If {NP(FC)} vs NP(FC) (row b) and NP(If {FC}) vs If {NP(FC)} (row c).

We find that the task sensitivity is higher for all network properties when the Iden-

tifiability framework was used (for both NP(If {FC}) and If {NP(FC)}). Between

NP(If {FC}) and If {NP(FC)}, there is no one method that improves task sensitivity

for all network properties.
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Figure 7.3. A summary of maximum Idiff values, and corresponding number of
components for each fMRI task and network property for both NP(If {FC}) and
If {NP(FC)}. Each plot shows, for each property and each method - NP(If {FC})
or If {NP(FC)}, the Idiff score for all tasks. The number mentioned gives the
maximum Idiff score for the corresponding task (y axis) and the position denotes
the number of components (x axis).
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Figure 7.4. A summary of maximum Idiff values, corresponding number of compo-
nents and explained variance retained for each fMRI task and network property for
both NP(If {FC}) and If {NP(FC)}.
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Figure 7.5. (A) Across tasks and rest differential Identifiability (Idiff ) for Mean
First Passage Time as a function of the number of principal components used
for reconstruction. Solid line and solid shaded area represent the results for
MFPT (If {FC}). Dashed line and hatched area show results for If {MFPT (FC)}
(B) Across tasks and rest differential Identifiability (Idiff ) for Search Information
as a function of the number of principal components used for reconstruction. Solid
line and solid shaded area represent the results for SI(If {FC}). Dashed line and
hatched area show results for If {SI(FC)} The differential identifiability matrix
(as defined in Methods) is shown at optimal reconstruction for Language task for
(C) MFPT (If {FC}), (D) If {FC} and (E) If {SI(FC)}. The diagonal elements
in each matrix represent Iself and the non-diagonal elements represent Iothers .
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Figure 7.6. NP(If {FC}) and If {NP(FC)} Differential Identifiability (Idiff )
of node properties for different fMRI tasks as a function of the number of
principal components used for reconstruction. Each plot shows, for each task,
the Idiff score associated with functional connectivity (red solid line), the Idiff

scores on the network properties derived from the reconstructed functional con-
nectomes NP(If {FC}) (solid lines, colors - see legend) and the Idiff scores on the
reconstructed network properties derived from the original functional connectomes
If {NP(FC)} (dotted lines, colors - see legend) for different number of components.
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Figure 7.7. Effect of If on task sensitivity of network measures. For each pairwise
network property, task sensitivity is measured using ICC between - NP(If {FC})
vs NP(FC) (row a), If {NP(FC)} vs NP(FC) (row b) and NP(If {FC}) vs
If {NP (FC)} (row c). First two rows highlight the fact that the If framework
uncovers the inherently distinct signature of different tasks through derived net-
work properties. The last row shows that certain network properties would benefit
more from application of the If framework on the functional connectomes, while
others from application directly on the network properties.
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8. DISCUSSION

Brain connectivity fingerprinting has taken center stage in the neuroscientific com-

munity [21,24–28,59,60]. As we move in this direction, there is a need to improve the

reliability and robustness of individual fingerprint in functional connectomes and on

common network measures extracted from functional connectomes. The Identifiabil-

ity Framework (If ) has shown the capacity to uncover subject fingerprint as measured

by Idiff score in human functional connectomes, regardless of the fMRI task [32]. Im-

proving differential identifiability using the If framework on functional connectomes

(FCs) has been shown to improve the test-retest reliability of FCs and correlation with

fluid intelligence [32]. Here, we extend this framework to show that by maximizing

individual fingerprints in the functional connectomes, we also maximize individual

fingerprint in network properties derived from the connectomes. Furthermore, we

found that uncovering individual fingerprinting on network measurements also im-

proves task signature. In addition, we show that in certain network properties, we

can uncover an even stronger fingerprint if we apply the framework directly on the

network property instead of functional connectomes.

Numerous work has been done to assess the effect of change in parameters of the

acquisition process and the preprocessing pipelines on test-retest (TRT) reliability of

fMRI data [61–64]. The impact of different correlation metrics, inclusion or exclusion

of edges on functional connectomes, as well as the use of global signal regression, have

been explored extensively [59,65–69]. Additionally, TRT reliability is also seen to be

affected by band pass filtering, scan length, sampling rate, network definition of the

weights, and size of voxels for node definition [65, 70, 71]. The fact that the TRT

reliability of the fMRI data and the subsequent estimation of functional connectomes

is affected by such diverse factors, it is important to explore the reliability of the
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derived network properties. Even though TRT reliability is not the only parameter

to take into account when choosing the optimal strategy for brain network analyses,

it surely has to be considered an important factor to help in such an important choice.

Essentially, If works as a group-level data-driven (denoising) procedure where

the components not contributing towards test-retest reliability of FCs are identified

and removed. If doesn’t just improve the overall TRT reliability of a functional

connectome but also improves it locally on an edge-level [32] which should ensure that

both global and local network properties computed using these denoised functional

connectomes are more reliable and robust. As shown in Figure 17.1, If not only

maximizes subject fingerprint at the FC level, but also at the network property level,

which validated our premise. In addition, this convergent behavior is not present

just at the optimal point; the identifiability profile of network properties follows the

identifiability profile of the functional connectomes. In essence, we have shown that

regardless of whether you are using functional connectomes or the network properties

derived from them, using If framework on the functional connectomes would be a

beneficial first step.

A natural next question was to find if If should be applied on functional connec-

tomes and then derive the network properties (NP(If {FC})), or to use it directly on

the network properties derived from original functional connectomes (If {NP(FC)}).

The two approaches are an attempt to understand different principles of what a fin-

gerprint is in a network derived measurement. If {NP(FC)} assumes that functional

connectomes are ”holding” the individual fingerprints and then propagating them to

the network measurements. The fact that maximizing fingerprint of functional con-

nectomes also maximizes the fingerprint in derived network measures, suggests that

functional connectomes do indeed hold a subject fingerprint which is then transmit-

ted to the derived network properties. On the other hand, we also see that for some

network measures (e.g. Search Information), we can uncover a better fingerprint if

we apply the framework directly on the network measure. This suggests that specific

network measures have a subject fingerprint of their own which gets added on to the
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functional connectome fingerprint. Hence, if under some circumstances, the goal is to

maximize the reliability and the individual variability of a specific network property,

one can benefit from applying the If framework on the network property itself, rather

than on FCs.

Notably, in the If {SI (FC)} scenario, the most different Idiff profiles were found

between MFPT and Search Information (Figure 47.5). Search Information consis-

tently provides a better fingerprint across all tasks than functional connectome.

MFPT, however, can neither improve nor match the fingerprint of functional con-

nectomes. Also, it can not retain the fingerprint that is otherwise present is the func-

tional connectomes and is then propgated to MFPT using If {MFPT (FC)}. Hence,

while some properties (i.e., Search Information) can derive higher identifiability than

functional connectomes, properties like MFPT need to be computed on optimally

reconstructed functional connectomes to uncover subject identifiability on it.

These findings show that brain fingerprinting can be improved by adding mul-

tivariate information to “bivariate” measurements such as pairwise correlation used

to estimate FCs. Specifically, individual fingerprint peaks on network measurements

(e.g. Search Information) that are more multivariate and requires more information

on the global topology of the functional network. However, if the information is heav-

ily driven by degree properties (e.g. MFPT), then there is no improvement on the

individual fingerprint (Figure 47.5). This is strongly corroborated by the Idiff profiles

of several node properties under the If {NP(FC)} scenario. These profiles are very

similar to that of MFPT, a network property which has a strong negative correlation

with the degree of the target node. Although If {NP(FC)} of these node properties

have Idiff profiles similar to If {MFPT (FC)}, the maximum Idiff on these node prop-

erties are, for some tasks, significantly higher than If {FC}. Betweeness Centrality,

for example, has a higher subject identifiability for Social and Motor tasks.

It was interesting to observe that under the If {NP(FC)} scenario, Betweenness

Centrality maximizes differential identifiability using just the first two components for

Social and Motor tasks and that it was higher than the identifiability of the functional
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connectomes for any number of components. Since Betweenness Centrality can be

used to identify integrative communication hubs in FCs [8], it can be argued that

social and motor tasks display a “hub functional fingerprint”, which can be captured

by the first two principal components.

A complementary assessment to the identification of subject fingerprints is to as-

sess the ability to identify the different tasks used in this study. To do so, we used

intraclass correlation coefficient on the derived network properties. The If framework

improved task sensitivity on the network properties (see Figure 67.7). Regardless of

using the framework on the original functional connectomes or on the network proper-

ties themselves, a higher task sensitivity is obtained using one of the process depending

on the network property. In both cases, the task reliability of the network properties

has improved. The different tasks in the HCP dataset aim to assess different cognitive

processes. Hence, the corresponding connectomes and the network properties derived

from them should, at least to some extent, be task specific. We have shown that using

the If framework uncovers task-related fingerprints where unique cognitive processes

result in differential network properties.
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9. POSTHOC ANALYSIS

Suggestion 1 Identifiability Framework on scale-free and small world networks

One could possibly consider using the Identifiability framework on standard net-

work models such as the scale-free and small world network to understand how iden-

tifiability may or may not be uncovered while using the framework [45,72]. In such a

case, we could generate two networks of a type (either scale free or small world) with

the same properties/features such as the number of nodes, degree etc. (depending

on the type of networks) and consider each network to be different runs of a single

subject. However, this analysis has many shortcomings. In an FC, of any subject

and any run, the nodes are defined by physical brain regions that are the same across

all subjects and sessions. It is then meaningful to compare brain region pair values

of a functional connectome across subjects and sessions. However, in generative net-

works, where the nodes are generated differently, there is no similarity in structure

or function between two generated networks even with the same properties/features.

For example, two small world networks with the same number of nodes, initial degree

of each node and probability or reconnection might be structurally the same network,

but it would be difficult to compare them at the node level because of the way they

are generated. This would require us to match the two network (graph-matching

problem) which is beyond the scope of this work.

Suggestion 2 Effect of noise in Functional Connectome on the Identifiability

Framework.

In this analysis, we add random normally distributed noise (zero mean and 1

standard deviation) noise modulated by a scalar η that is assessed within the range

[0,2] in steps of 0.2. Such modulated noise is added to the Fisher’s transformation [73]

of each whole-brain FC of each subject and each session separately. The optimal
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Figure 9.1. Each figure shows for each task, the optimal differential identifiability
(Idiff ) that can be uncovered using the Identifiability Framework If when different
levels of noise are added to the Functional connectomes. Different levels of noise
were assessed (horizontal axes on all figures) The shaded areas represent results
within the 2.5 and 97.5 percentiles across repetitions.

differential identifiability and the corresponding number of components at which it

is reached is obtained. Note that Idiff was measured, for number of components, on

the reconstructed FCs after undoing the Fisher’s transformation. This experiment is

repeated 50 times on each task separately and for varying levels of noise.

We find that as more noise is added to the FCs, the optimal differential identifia-

bility increases, reaches a peak at a noise level of 0.5 for all tasks and then decreases

as further noise is added. The peak here is higher than what can be obtained in net-

work properties or functional connectomes without the added noise. This is counter

intuitive since one would expect lower differential identifiability when noise is added

even when the framework is used. This can be observed for all tasks and rest. The

optimal differential identifiability reaches values as high as 40 and higher for some

tasks - language and rest. After the noise level goes beyond 0.5, all Idiff values for all

tasks rapidly decay.
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Figure 9.2. Each figures shows for each task, the optimal number of principal com-
ponents required to uncover optimal identifiability using Identifiability Framework
If when different levels of noise is added to the Functional connectomes (xaxis).
The shaded region represents the 2.5 and 97.5 percentile across repetitions.

On the other hand, the number of principal components that are required for

optimal identifiability decreases as more noise is added and becomes almost flat after

a noise level of 1. However, the variation across the repetitions are also higher than

optimal identifiability and which also increases slightly with noise.

Further investigation of Identifiability matrix provides an insight into what hap-

pens when a noise level of 0.5 is added to the Functional Connectomes. When no

framework is used and no noise is added, the Iself values are low which gives an Idiff

score of 17.4. When the framework is used on the original functional connectomes,

the Idiff improves to 26.5 at optimal reconstruction. Here, we can see this is largely

due to the improvement of Iself scores. Although Iothers also increases, the net gain

is towards Iself and this improves identifiability. At optimal reconstruction of noisy

FC, we see that Iself is much higher than Iothers which results in an incredibly high

Idiff score of 40.
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Figure 9.3. Identifiability matrices of Rest. On the left, is the Identifiability matrix
of the Rest original functional connectomes, the center is the Identifiability matrix
of optimally reconstructed functional connectomes and on the right is the identi-
fiability matrix of functional connectomes reconstructed from noisy original data.
Here the a noise level of 0.5 is added to the FCs of Rest.
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10. SUMMARY

To summarize, differential identifiability was found to be always higher on functional

connectomes than on any network properties when the Identifiability framework (If )

is not used. When If improved identifiability on functional connectomes, the iden-

tifiability on the network properties also increased. The framework also improved

the subject fingerprints of the network properties. Not only do they improve at the

optimal point, but the differential identifiability follows the same profile on network

properties as it does on functional connectomes. We also find that applying the iden-

tifiability framework on the network properties instead of functional connectomes

gives higher differential identifiability for some network properties. At optimal re-

construction, we find that Search Information has higher differential identifiability

than functional connectomes across all tasks when the identifiability framework is

applied on search information. This shows that there are network properties that can

uncover better identifiability with framework than the functional connectomes them-

selves. Finally, we found that using the identifiability framework (either on functional

connectomes or network property) improves task sensitivity in all network properties.

Only the unrelated subjects of the Human Connectome project and the cortical

parcellation proposed by [39] are used in this work. Other explorations with other

atlases, parcellations and/or other estimators of functional coupling (other than Pear-

son’s correlation coefficient) would expand on the implications of our work. We have

also limited to commonly used five pairwise and three node network properties. Delv-

ing into other network properties can strengthen this framework further and provide

additional insights in understanding the associations between brain fingerprints, func-

tional connectivity, and network derived properties.
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This study can be extended to clinical applications to understand diseases that

target specific functions of the human brain. Pathology whose signature cannot be

mapped on the functional connectome itself but can be assessed using different net-

work properties. [18, 74, 75] In this case, to retain individual differences and to be

able to differentiate healthy population from clinical ones, we need this study to

understand the advantages of using the Identifiability framework on the functional

connectome or network property. Finally, studying the effect of the framework on the

structural connectome is another natural extension of this work.
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