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ABSTRACT

This dissertation concludes three mathematical works in Inverse Problems as well as an engineering

work in Cyber-Physical Systems. Our mathematical works are in the area of Inverse Problems and

Scattering Theory where the main focuses are on Support theorem of Vectorial Light-ray transform

in Minkowski Spaces, Dynamical X-ray Tomography, and Inverse Scattering of the biharmonic

operator.

For the first project, we prove a support theorem for vector fields whose integral lines vanish

on an open set of light-like lines. In this work, we employ the method of microlocal analysis and

Pseudo Differential Operators. We illustrate the application of our results for the inverse recovery

of the hyperbolic Dirichlet-to-Neumann map through various examples.

The second project is motivated by an inverse problem arising from medical imaging where

we investigate a dynamic operator, A , integrating over a family of level curves when the object

changes between the measurements. Microlocal analysis is used to determine which singularities

can be recovered by the data-set. We prove that not all singularities can be recovered, depending

on the particular movement of the object compare to the X-ray source. We then find sufficient

conditions under which the reconstruction is possible. We also show that one can establish stability

estimates and injectivity results under the Visibility, the Local and Semi-global Bolker conditions.

We illustrate the implementation of our results in Fan-beam geometry.

In the final project, we consider a perturbed biharmonic operator and study the inverse

scattering problem for this operator by investigating the recovery process of the magnetic field A

and the potential field V . Using the high-frequency asymptotic of the scattering amplitude of the

biharmonic operator, we prove the unique recovery of curl A and V − 1
2∇ ·A. By investigating

the near-field scattering, we show that the high-frequency asymptotic expansion up to an error

O(λ−4) (where λ is the frequency or the spectral parameter) recovers the same above quantities

but does not provide any additional information about the magnetic and the potential fields. We

also establish stability estimates for curl A and V − 1
2∇ ·A.

10



Our engineering work is in the area of Cyber-Physical systems where we study Real-time

hybrid simulation (RTHS). By the use of RTHS, which is an efficient technique that investigate

cyber-physical system in a cost-effective way, we introduce powerful indicators to examine the

structural behavior and seismic resilience of a structure through various settings.
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INTRODUCTION

1.1 Inverse Problems

In mathematics and statistics, given a complete set of observation associated with a physical model,

one can utilize the existing theories to make predication on the outcome of system. The process of

predicting the system’s output from the given input is called Forward or Direct Problem. If ”x” and

”y” denote the input and output of a physical model, respectively, the mathematical interpretation

of the forward problem is to estimate the output y = F(x) given the input x. In contrast, the Inverse

Problem is the problem of predicating the system’s input x while the output of the system y is

given. To be more precise, to define an inverse problem one needs to fully understand the forward

operator F which maps objects of interest, parameters which provide information about objects

of interest, and data or measurements. The objective of the inverse problem is to estimate the

input x that cannot be obtained using direct measurements for various reasons due to the loss of

data in an experiment or due the fact that the data is never being measured precisely in the first

place. The below schematic diagram shows the relation between a forward and an inverse problem.

Many real-world applications are in fact Inverse problems, for instance Computed Tomography

(CT), source reconstruction using acoustic waves, or estimating the Earth’s internal structures from

travel-time of seismic waves.
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Figure 1.1. Forward and Inverse Problems.

The main goal of the theory of inverse problem is to study the forward operator and infer

the values of the parameters which characterize the physical model by extracting all possible

information from the available measurements. In this regard, the following features are of practical

importance in the study of inverse problems:

(I) Uniqueness: What information about the object x can we recover?

Under what circumstances one can uniquely determine the model’s unknown parameters utilizing

the known measurements (data)?

(II) Stability: How do errors in the available measurements translate into reconstructions

errors? What are the methods to quantify and characterize reconstruction errors?

(III) Inversion: What are the reconstruction methods? Is there any explicit way to formulate

the inverse operator?

(IV) Partial Data: Can we still reconstruct the object in the Region-of-Interest (ROI) if

the data-set is incomplete?

13



All above questions have pratical applications. Uniqueness and inversion can be considered

as the theoretical aspect of inverse problem theory which provides meaningful insights regarding

a specific problem. On the other hand, question of stability and reconstruction will have practical

applications, for example, in medical imaging to investigate features of interest (like singularities).

In some applications, there are no uniqueness results as one may modify the parameters of interest

by considering any arbitrary diffeomorphism while the measured data will remain the same. Thus,

stability plays a crucial role in reconstruction due to available errors in the measurements. In

Electrical Impedance Tomography (EIT) problems, for example, one can only be hope for to

reconstruct the object x up to a gauge transform. In another instance, real-world CT scans are

done only within the ROI which means only radiating a part of body (like the heart) instead of

the whole body. In this type of problems, it has been shown that the measurements within the

ROI is not sufficient for the reconstruction process, (Stefanov-Uhlmann). However, one practical

way to reconstruct the object within the ROI, is to recover the singularities of the object. In this

regard, microlocal analysis is a very well-suited method that can be used to study above questions,

in particular the stability. Questions of stability are often tied with the notion of ellipticity which

can be utilized in theory of Pseudo Differential Operators and Fourier Integral Operators to study

features of interest, in particular recovery of singularities. This thesis studies above questions

in the following three inverse problems: RabieniaHaratbar (2018); Rabieniaharatbar (2019);

RabieniaHaratbar (2019) :

1- Vectorial Light-Ray Transform of Vector Fields: The first problem is in the area of

Integral geometry where functions, vector fields, and tensor fields can be studied from their integral

over geodesics (lines) rather than local (differential) properties. The study investigates the geodesic

light-ray transform of a vector field in Minkowski spaces and obtains a support theorem when the

available light-rays are limited to an open set.

2- Dynamic X-ray Tomography: The Second problem can be considered in the area

of Dynamic Inverse Problems where the object of interest is no longer stationary. The goal of

this study is to generalize the existing results on dynamic operators to a more integral geometry

problems using microlocal analysis techniques.

3- Inverse Scattering the Biharmonic Operator: The third problem is in the area of

scattering and inverse scattering theory motivated by existing results on Schrödinger operators.
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1.2 Cyber-Physical Systems

Cities and communities around the world and in particular in the U.S. are entering a

new era of transformational change, in which their inhabitants, the surrounding built, and natural

environments are increasingly connected by smart technologies, leading to new opportunities for

innovation, improved services, and enhanced quality of life. Experimental dynamic assessment

of structural units is critical in structural engineering and provides structural engineers a better

understanding of structural integrity at both component and system levels. Taking the cost and

availability of experimental resources into consideration, full-scale experimental evaluation of

structures is a challenging proposition. Therefore, creating inexpensive and trustworthy methods

of measuring structural performance, stability and resilience therefore presents economic benefits

in the form of reduced US federal spending. In chapter 5, we investigate the Real-Time Hybrid

Simulation (RTHS), a cyber-physical technique used to examine the global behavior of structural

systems subjected to earthquake loads that are too large or complex to test in a laboratory.

Utilizing RTHS and Time-Delay Differential Equations, we quantify the sensitivity of

different partitioning choices to de-synchronization at the interface. RTHS is interdisciplinary

and requires deep expertise in vibrations, control, signal processing, and computer engineering.

Most of the past experiments conducted using RTHS have been based on trial and error. In other

words, after selecting a structure and partitioning it into physical and computational components,

the hope is that an actuator controller can be designed to enable the testing to proceed without

considering the global behavior or the potential for instabilities in the experimental feedback loop.

Maghareh, Dyke, Rabieniaharatbar, and Prakash (2017)
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1.3 Preliminaries from Integral Geometry and Microlocal Analysis

Often Inverse Problems describe a phenomenon that arises from a physical system which

can be modeled by a Partial Differential Equation (PDE). Therefore, the objective of an inverse

problem would be to recover the coefficients of the PDE associated to the physical situation.

Inverse Problems are generally ill-posed and highly non-linear even if the corresponding forward

problems are well-defined. By Hadamard’s definition, in a well-posed forward problem, the goal

is to obtain infinite-precision data F(x), for the given input x. In contrast, in an ill-posed problem,

given a noisy data y = F(x)+ε , the objective is to reconstruct x. The full reconstruction, however,

might not be of practical importance in real world application. For instance in medical imaging,

often the image reconstruction of an organ like the heart or the lunge will be of interest compare

to full body reconstruction. Therefore, one needs to acquire tools where an object can be studied

locally.

In this respect, Integral Geometry and Microlocal Analysis provides necessary techniques

to investigate an object locally. Integral Geometry is an area of mathematics where functions,

vector fields, and tensor fields need to be recovered from their integral over geodesics (lines) rather

than local (differential) properties. The main object of study in integral geometry is an Integral

Transform that can be used to do the reconstruction of an object (represented by a function for

instance) from knowledge of integral quantities of the object along lines or planes. On the other

hand, Microlocal Analysis helps us to investigate the discontinuities (singularities) of functions

(all points where their graphs are not smooth curves) in an inverse problem by utilizing the notion

of the Wavefront Set. The Wavefront Set is a classifier that determines the set of points and

directions where the singularities occur (see Figure 1.2). We mainly follow the general approach in

Hörmander (1983b, 1985); Sjöstrand (1982); Taylor (1981); Trèves (1980) to briefly introduce the

necessary techniques and details in microlocal anlysis and in particular the Real-Analytic Theory.
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Figure 1.2. Wavefront Set.

In the following sections, the main integral transforms will be introduced.

1.3.1 X-ray Transforms

X-ray Transform is one of the most important integral transforms which has many real

world applications specifically in medical imaging. To formulate the X-ray transform, let I0 be

the number of X-ray photons impinge on a homogeneous material of thickness ∆x ≈ 0 and I be

the expected number of photons that pass through the material (along a line with length l) without

interacting. By Beer’s Law, we have

∆I = I− I0 =−σ(x)∆x,

where ∆I is the (negative of the) expected number of photons that interact and are removed from
the X-ray beam and σ is the linear attenuation coefficient or the absorption of the body. Then the

differential form of the Beer’s law will take the following form

dI
I
=−σ(x)dx.

Solving the above ODE, one has

17



log(
I0

I
) =

∫ l

0
σ(x)dx.

Therefore, by Beer’s law we have all line integrals of σ (Measurements). In general, note that each

line L ∈Rn can be represented by a point x ∈Rn and a direction θ ∈ Sn−1. Therefore, the intensity

I of the X-rays depends on the (x,θ) ∈ Rn×Sn−1, and solves the transport equation

(θ ·∇x +σ(x))I(x,θ) = 0, (1.1)

with the following initial and boundary conditions:

lim
s→−∞

I(x+ sθ ,θ) = I0, lim
s→∞

I(x+ sθ ,θ) = I1.

Here I0 is the source intensity and I1 is the measurement outside the object. If the function σ is

compactly supported, then the transport equation (1.1) has the following explicit solution

I(x,θ) = I0 e
∫ 0
−∞

σ(x+sθ)ds.

Using the above initial and boundary condition, we have

log(
I1

I0
) =

∫
R

σ(x+ sθ)ds.

We now formally define the X-ray transform of a function f ∈ Rn as its line integrals

X f (L) =
∫

f (L)ds or X f (x,θ) =
∫

R
f (x+ sθ)ds, (x,θ) ∈ Rn×Sn−1.

Here ds is the unit length measure along the line L parametrized by a point x ∈ Rn and a direction

θ ∈ Sn−1.

18



In what we showed above, the transport equation (1.1) is considered as a forward problem

and the X-ray transform is an explicit solution of our forward problem. Therefore, the inverse

problem would be the recovery of the function f from its X-ray transform. In the context of

scattering theory, the recovery process of the function f will be an inverse scattering problem if we

consider I
I0

as the scattering information corresponding to the transport equation (1.1).

1.3.2 Radon Transforms

In the previous section, we defined the X-ray transform of a function as its line integrals.

For a given function one may also think of its integral along all possible planes. This motivates us

to define the Radon Transform of a function f ∈ Rn as its integral over all hyperplanes Π ∈ Rn as

follows:

R f (Π) =
∫

Π

f dS,

where each plane Π is a hyperplane (i.e. (n−1)D plane) and dS is the Euclidean surface measure

on each plane Π. Since each hyperplane Π can be parametrized by following representation ed by

the following written in exactly two different ways in the form

Π = {x ·ω = p}= {x · (−ω) =−p}

with (p,ω) ∈ R×Sn−1, we have

R f (p,ω) =
∫

x·ω=p
f dSx.

Note that, in two dimension the X-ray and Radon transforms are the same, see Figure 1.3.
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Figure 1.3. Parametrization.

Next we define a generalized X-ray and Radon transforms with more general curves and

weights that can be studied, for example, in X-rays of tensor fields of order one (1-forms), Light-ray

Transforms over Minkowski Spaces and Lorentzian manifolds, and Dynamical Operators. We refer

to some of results in Beylkin (1984); Frigyik, Stefanov, and Uhlmann (2008); Guillemin (1985);

Guillemin and Sternberg (1977); B. N. Hahn and Quinto (2016); Homan and Zhou (2017).

1.3.3 Generalized Radon Transforms

Consider the map

x = (x1,x2)−→ φ(t,x),

where the function φ can be an analytic real-valued function. We define the level curves of function

φ as follows:

H(s, t) = {x ∈ X : s = φ(t,x)}, s ∈ R, t ∈ R.

The Generalized Radon Transform is defined by

A f (s, t) =
∫

φ(t,x)=s
µ(t,x) f (x)dSs,t , (1.2)

20



where µ is a new positive and real analytic weight and dSs,t is the Euclidean measure of the level

curves of function φ . We use this operator to study dynamical X-ray tomography problems arising

from field of medical imaging and non-destructive testings. (See Chapter 3.)

1.3.4 Fourier and Inverse Fourier Transforms

In this section, we briefly recall the Fourier transform and its basic properties. In what

follows, we will use the notation 〈x〉= (1+ |x|2) 1
2 , known as the Japanese bracket, for x ∈ Rn.

Definition 1.3.1 Let f ∈C∞(Rn) be an smooth function in Rn. The Schwartz space S = S (Rn)

is the set of all smooth functions f so that, for all α = (α1,α2, . . . ,αn) ∈ Nn and all m≥ 0,

|∂ α
x f (x)| ≤Cαm〈x〉−m, x ∈ Rn.

The natural topology of S is given by the following seminorms:

max
|α≤m|

sup
Rn
〈x〉m|∂ α

x f (x)|.

Definition 1.3.2 For f ∈S , we define the Fourier Transforms and Inverse Fourier Transforms of

the f on Rn as follows

f̂ (ξ ) =
∫

e−ix·ξ f (x)dx,

and

f (x) = (2π)−n
∫

eix·ξ f̂ (ξ )dξ .

Here x represent a point in Rn and ξ represent the direction in the dual space. In engineering

in frequency domain ... It can be shown that the Fourier transform of f decays faster than any

polynomial as |ξ | → ∞. Therefore, a faster decay for the Fourier transform is the consequence of

a higher regularity.
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1.3.5 Symbol Classes

Consider the following differential operator P and the corresponding polynomial, p, in ξ

with x dependent coefficients

P = Σ|α|≤maα(x)Dα , p(x,ξ ) = Σ|α|≤maα(x)ξ α ,

where D = (D1,D2, . . . ,Dm) with D j =
1
i ∂ j. Clearly

Dα f (x) = (2π)−n
∫

eix·ξ
ξ

α f̂ (ξ )dξ .

Using the above property and p(x,ξ ), we have

P f (x) = Σ|α|≤maα(x)Dα f (x) = Σ|α|≤maα(x)(2π)−n
∫

eix·ξ
ξ

α f̂ (ξ )dξ

= Σ|α|≤m(2π)−n
∫

eix·ξ aα(x)ξ α f̂ (ξ )dξ = (2π)−n
∫

eix·ξ aα(x)p(x,ξ ) f̂ (ξ )dξ .

We call the function p with above property the Full Symbol associated to the operator P and show

it by σ(P) = p. We now formally define the symbol in this context.

Definition 1.3.3 For m,η ∈ R, the Symbol Class Sη ,m = Sη ,m(Rn×Rn) is the set of all smooth

functions p : R2n→C so that, for all natural multi-index α,β ,

|∂ α
x ∂

β

ξ
p(x,ξ )| ≤Cαβ 〈x〉η〈ξ 〉m−β , x,ξ ∈ Rn.

We simply denote Sm = S0,m when η = 0. Often

Definition 1.3.4 Let P be an operator with corresponding symbol of class Sm(Ω). The Principal

Symbol of the opeator P, σp(P), is defined by any representative of the equivalence class [σ(P)] ∈
Sm(Ω)

Sm−1(Ω)
.

Similar to Schwartz classes, by introducing the following natural semi-norms

max
|α+β≤N|

sup
Rn
〈x〉−η〈ξ 〉−m+|β ||∂ α

x ∂
β

ξ
f (x,ξ )|,
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pseudo-differential operators form a class operators which is closed under adjunction and composition.

Another subtle definition is the ellipticity of a symbol.

Definition 1.3.5 We say the symbol p ∈ Sm is Elliptic if

|p(x,ξ )| ≥ c〈ξ 〉m, |ξ | � 1

for m ∈ Rn and some c > 0. It can be shown, if p ∈ Sm then 1
p ∈ S−m.

1.3.6 Pseudo Differential Operators (ΨDOs)

In theory, a pseudo-differential operator generalizes the concept of differential operators.

Definition 1.3.6 Let Ω ∈ Rn, f ∈ S (Ω) and p ∈ Sη ,m(Ω). We define the Pseudo-Differential

Operator p(x,D) corresponding the symbol of symbol p as by

p(x,D) f (x) = (2π)−n
∫

Rn
eix·ξ aα(x)p(x,ξ ) f̂ (ξ )dξ .

Definition 1.3.7 We say the operator p(x,D) is an Elliptic Pseudo-Differential Operator if the

symbol p(x,ξ ) is elliptic.

Definition 1.3.8 Let P = p(x,D) be a ΨDO with corresponding symbol p. We say P is an

Smoothing Operator if

p ∈ S−∞ = ∩∞
m=1Sm.

It can be shown that smoothing operators map D
′
(Rn)→ C∞(Rn). Next we define the Schwartz

Kernel of the ΨDO with corresponding symbol p∈ Sm(Ω) and call an integral operator a smoothing

operator if its Schwartz kernel is smooth.

Definition 1.3.9 Let p(x,D) be a ΨDO associated with the symbol p ∈ Sm(Ω). The Schwartz

Kernel Kp of the operator p(x,D) is a distribution D(Ω×Ω) defined by the following oscillatory

integral

Kp(x,y) = (2π)−n
∫

Rn
ei(x−y)·ξ p(x,ξ )dξ .
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One can show that Kp(x,y) is singular on the diagonal of Ω×Ω. We say s Schwartz kernel is

properly supported if for any compact subset K of Ω,

suppKp∩ (K×Ω) and suppKp∩ (Ω×K)

are both compact.

Now consider the cut-off function χ ∈ C∞
0 (R) which one in a neighborhood of zero. For

χ ∈C∞
0 (R), it can be shown that, up to a smoothing operator, every ΨDO has a properly supported

Schwartz kernel. In fact, any Schwartz kernel can be written as

Kp(x,y)χ(|x− y|2)+Kp(x,y)(1−χ(|x− y|2)),

where the first term is a properly supported kernel, while the second term is a smooth kernel.

ΨDOs with proper support maps C∞(Ω)→ C∞(Ω) and they are continuous with L2(Ω)–adjoint

that are also ΨDOs of the same class seeTheorem II.4.1, Taylor (1981).

Definition 1.3.10 Let f ∈ D
′
(Rn). We say that x0 6∈ sing supp f if there exists φ ∈C∞

0 (R
n) such

that φ(x0) 6= 0 and φ f ∈C∞(Rn).

One can conclude the elliptic regularity results for a ΨDo, by using the following lemma Pseudolocal

Property.

Lemma 1.3.1 Let f ∈ E ′(X). Then for any ΨDO P we have

sing suppP f ⊂ sing supp f .

Lemma 1.3.2 (Elliptic Regularity) Let f ∈ E ′(X). Then for any elliptic ΨDO P we have

sing suppP f = sing supp f .
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An elliptic ΨDO is of practical importance as one can construct the corresponding inverse

operator. In fact, let P be a properly supported elliptic ΨDO with corresponding symbol p∈ Sm(Ω).

Then there exists an operator Q with corresponding symbol q ∈ S−m so that

PQ = I +R, R ∈ S−∞.

The operator Q is called a pseudo-inverse of P. [Theorem III.1.3-Taylor (1981)]

As we mentioned earlier, one of the main goals throughout this thesis is to establish Stability

Estimates which is one of the most important features of interests in microlocal analysis. As we

pointed out earlier, stability estimates quantify how error in measurements translate to errors in

reconstruction process. In this study, we follow functional analysis arguments similar to Theorem

V.3.1-Taylor (1981) to establish stability estimates that are in nature similar to the following

lemma.

Lemma 1.3.3 Let P be a properly supported elliptic ΨDO with corresponding symbol p ∈ Sm(Ω),

and K ⊂ Ω compact. Then for every f ∈ Hm = Hm(Ω) with supp f ⊂ K, there exists a constant

C > 0 so that for all s > 0 and corresponding constant Cs > 0, one has

‖ f ‖Hm ≤ C ‖ P f ‖L2 + Cs ‖ f ‖H−s .

Moreover, if the operator P is injective, then there exists a constant C0 > 0 such that

‖ f ‖Hm ≤C0 ‖ P f ‖L2 .

In the next section, we introduce the notion of general oscillatory integrals.

1.3.7 Oscillatory Integrals

Consider the n-dimensional Radon transform

R f (p,ω) =
∫

x·ω=p
f dSx, (p,ω) ∈ R×Sn−1.
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It can be shown the Radon transform can be written in terms of delta function as follows

R f (p,ω) =
∫

Rn
δ (p− x ·ω) f (x)dx.

Note that since the delta function is one-dimensional, one has

δ (p) = (2π)−1
∫

R
eiλ pd p,

where λ is the dual variable corresponding p. Setting ϕ(p,ω,x,λ )= δ (p−x ·ω) and a(p,ω,x,λ )=

(2π)−1, we have

R f (p,ω) =
∫

eiϕ(p,ω,x,λ )a(p,ω,x,λ ) f (x)d pdx.

The function ϕ is the Phase and the function a is called the Amplitude. The integral representation

on the r.h.s above equation is the motivation to define general oscillatory integral operators. To

formally define these operators we first need to define the phase function, Hörmander (1983a).

Definition 1.3.11 Phase A function ϕ(x,θ) ∈ C∞(Ω×Rn) is called a phase function, if for all

(x,θ) ∈Ω×Rn, the following non-degeneracy conditions are satisfied:

(i)I ϕ(x,θ)≥ 0, i.e. |eiϕ(x,θ)| ≤ 1,

(ii)ϕ(x,σθ) = σϕ(x,θ) for all σ > 0, i.e. ϕ is a positively homogeneous function of degree one,

(iii)|ϕ ′x|2 + |θ |2|ϕ
′
θ
|2 > 0, i.e. dx,θ ϕ = ϕ

′
xdx+ϕ

′
θ

dθ 6= 0 on Ω×Rn,

(iv) If dθ ϕ = 0, then the forms

dx,θ (
∂ϕ

∂θ j
), j = 1,2, . . . ,n,

are linearly independent.

Given the phase function ϕ ∈ Ω×Rn and the amplitude (symbol) a ∈ Sm(Ω×Rn), an

Oscillatory Integral Operator is defined by:

Ia,ϕ(x) =
∫

eiϕ(x,θ)a(x,θ)dθ .
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Theorem 1.3.1 Let f ∈C∞
0 (R

n). For the phase function ϕ ∈Ω×Rn and the amplitude a∈ Sm(Ω×

Rn),

〈Ia,ϕ(x), f 〉=
∫∫

Ω×Rn
eiϕ(x,θ)a(x,θ) f (x)dxdθ

is a distribution on Ω for any k with m−k <−n. In addition, the map a→ Ia,ϕ is continuous from

Sm to D
′(k)(Ω), (see Theorem 7.8.2, Hörmander (1983a)).

1.3.8 Fourier Integral Operators (FIOs)

We now are ready to introduced the local theory of Fourier Differential Operators (FIOs)

which are a particular case of Oscillatory Integrals. We refer to Duistermaat (1996); Hörmander

(1983a) for details and definitions. Let Ω = X ×Y ⊂ Rn1 ×Rn2 , ϕ(x,y,θ) be a non-degenerate

phase function defined on Ω×Rn. Let a(x,y,θ) ∈ SM(Ω×Rn) be a local symbol which is a

smooth function with support in a closed and conic subset of Ω×Rn and M = m− n
2 +

n1+n2
4 .

Definition 1.3.12 (Local) We say the operator A is a Fourier Integral Operator, if its Schwartz

kernel is an oscillatory integral. That is

A f (x) =
∫

eiϕ(x,y,θ)a(x,y,θ) f (y)dydθ , for f ∈C∞
0 (Y ).

Remark 1.3.1 Note that if ϕ(x,y,θ) = (x− y) · θ and n1 = n2 = n, we simply have a pseudo

differential operator. We also remark that an FIO is invariantly defined with respect to the phase

function ϕ .

In theory of microlocal analysis, often we need to analyze the regularity of the Schwartz kernel

of an FIO A defined by the phase function ϕ and the amplitude a. This, in fact, leads to find

necessary conditions under which A f is C∞ in a neighborhood of x ∈ X while f is not C∞.

Definition 1.3.13 Let A be an FIO associated with the phase function ϕ and the amplitude a. We

define the Critical Set of the phase function ϕ in Ω×Rn by

Cϕ = {(x,y,θ) ∈Ω×Rn|dθ ϕ = 0}.
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Note that Cϕ is a Coinc set, that is, (x,θ) ∈Cϕ ⇒ (x,rθ) ∈Cϕ for r > 0. In the context of FIO, Cϕ

is also called Characteristic Manifold.

Remark 1.3.2 Since the phase function is non-degenerate, the map T : Cϕ → T ∗(X×Y )\0 with

T (x,y,θ) = (x,ξ ,y,η) := (x,dxϕ(x,y,θ),y,dyϕ(x,y,θ)) ∈ T ∗(X×Y )\0

is an immersion.

Definition 1.3.14 Let ϕ be a phase function. A conic Lagrangian manifold Λϕ is defined by

Λϕ = {(x,ξ ,y,η)|ξ = dxϕ(x,y,θ),η = dyϕ(x,y,θ)}.

The Canonical Relation associated to the phase function ϕ and the FIO A is the twisted Λϕ defined

by

Λ
′
ϕ = {(x,ξ ,y,η)|(x,ξ ,y,−η) ∈ Λϕ}.

Above we represented an FIO locally. To see the global theory of an FIO we refer to Hörmander

(1983a); Taylor (1981).

Consider the microlocal version of double fibration:

where

ΠX(x,y,θ) = (x,ϕ ′x), ΠY (x,y,θ) = (y,−ϕ
′
y).

Definition 1.3.15 We say a local FIO is a graph type if Λ
′
ϕ = ΠX ◦Π

−1
Y is bijective.

In the next section, we show that ϕ parametrizes the wave front set of the FIO’s Schwartz

kernel which is a conic and Lagrangian sub-manifold of T ∗(X×Y )\0.
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1.3.9 Wavefront Set and Analytic Wavefront Set

We now ready to define the wavefront set which is an extension of the notion of sing supp.

In fact, the idea is to determine the singularities of f ∈D ′(X) by studying the Fourier transform of

χ f and its decay near a point.

Definition 1.3.16 [Definition 8.1.2-Hörmander (1983a)] We say that (x0,ξ
0) ∈ Rn× (Rn \ 0) is

not in the Wave Front Set of f ∈D ′(Rn), WF f , if there exists φ ∈C∞
0 (R

n) with φ(x0) 6= 0 so that

for any N, there exists CN such that

|φ̂ f (ξ )| ≤CN(1+ |ξ |)−N

for ξ in some conic neighborhood of ξ 0.

Remark 1.3.3 The above definition is independent of the choice of φ .

Peetre’s theorem Peetre (1959) characterizes differential operators the only linear operators

which do not increase the support of distributions. In a same, the following lemma states that

ΨDOs as the linear operators do not expand the wavefront set. This is the analog of the pseudolocal

property.

Lemma 1.3.4 Let f ∈ E ′(X). Then for any ΨDO P we have

WFP f ⊂WF f .

Lemma 1.3.5 (Elliptic Regularity) Let f ∈ E ′(X). Then for any elliptic ΨDO P we have

WFP f = WF f .

Definition 1.3.17 For the case of a scalar-valued distribution, define the Analytic Wave Front Set,

WFA( f ), as the complement of all (x,ξ ) ∈ T ∗(Rn \0) such that

∫
eiλ |x−y|·ξ− λ

2 |x−y|2
χ(y) f (y)dy = O(e−

λ

C ), λ > 0
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with some C > 0 and χ ∈C∞
0 equal to 1 near x.

Remark 1.3.4 There are three equivalent definitions of Analytic Wave Front Set in the literature

due to Bros and Iagolnitzer (1975), Hörmander (1971), and Sato (1969). It has been shown by

Bony (1977) and Sjöstrand (1982) that all these definitions are the equivalent.

1.3.10 Stationary Phase Method

The method of stationary phase investigates the behavior of the oscillatory integral Iϕ as

λ →±∞ for a general phase function ϕ .

Definition 1.3.18 A point x is stationary point of Iϕ if dϕ(x) = 0.

One can use a partition of unity argument to split the oscillatory integral in a way that the phase

function ϕ has a unique critical point in the support of amplitude a. Note that by using appropriate

coordinates one can assume that this point is at the origin. The following lemma establishes an

estimate which is necessary for our results.

Lemma 1.3.6 Let a ∈C∞
0 (X) and suppa⊂ K. If dϕ(x) 6= 0 in suppa, then the following estimate

holds.

|Iϕ(λ )| ≤
CK

λ
‖ a(x) ‖Ck .

To get the estimate above, one needs to integrate repeatedly with the operator

L =
∇ϕ ·∇
|∇ϕ|2

.

Note that if the phase is non-degenerate then L and reproduces the phase.
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VECTORIAL LIGHT-RAY TRANSFORM IN MINKOWSKI SPACES

* This chapter concludes my original work: ”Support Theorem for the Light-Ray

Transform of Vector Fields on Minkowski Spaces.” Inverse Problems and Imaging, Volume

12, No. 2, 2018: 293-314.

One of the most fundamental questions in mathematics and physics, which has been profoundly

investigated by scientists of different disciplines, is how to determine the shape of the Universe

and whether the Universe is finite, infinite, flat, or curved. To address these fundamental questions,

scientists have proposed and developed various types of studies, for instance, utilizing the oldest

light in the universe, the Cosmic Microwave Background (CMB) radiations. According to NASA,

CMB is the leftover radiation from the Big Bang, which provides key information about the

formation of the early universe, which goes back to 13.8 billion years ago. In this respect, in

1905 Albert Einstein with his theory of Relativity described how space-time is curved and bent by

mass and energy as well as their close relations to the shape of the universe at different stages

of life. Due to the tomographic nature of the CMB radiations, we study Light-ray transform

of vector fields in Minkowski Space-time. Minkowski space is the most common mathematical

structure on which Einstein’s special relativity is formulated. In this study, a vector field is a

mathematical representation of the shape of the universe, the light-ray transform is the available

light-ray measurements (signals) from the early stage of universe, and the goal is to explain the

shape of the universe at early stages from the available signals. Therefore, the mathematical

representation of our goal would be to reconstruct the vector field from its light-ray measurements.

For this purpose, we study a more general problem and found the required geometrical condition

under which one can utilize the light-ray measurements to reconstruct the vector field, even in the

case where the available signals are limited. We generalize the existing results on scalar-valued

functions to vector-valued functions. From the physical point of view, this results work in the

Minkowski setting implies that one could expect to extract information from all signals moving

slower than light and not the one moving faster than light (physically not possible).
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2.1 Existing Results

Let (M,g) be a Lorentzian manifold of dimension 1+n, n≥ 2, with a Lorentzian metric g

of signature (−,+, ...,+). Given a weight κ ∈C∞(M×Sn−1), in general, the weighted Light-Ray

transform of a vector field f is defined by:

Lκ f (γ) =
∫

κ(γ(s),γ ′(s)) fi(γ(s))γ ′
i
(s) ds, (2.1)

where γ = γx,θ is the family of future pointing light-like geodesics (null-geodesics) on M in the

direction of (1,θ), θ ∈ Sn−1. We choose a certain parametrization for the family of light-like

geodesics γ and require the weight function κ to be positively homogeneous of degree zero in

its second variable. The homogeneity of κ makes the parameterization of light-like geodesics

independent.

Light-ray transform has been attracting a growing interest recently, due to its wide range

of applications. One major application of this transform is in the study of hyperbolic equations

with time-dependent coefficients to recover the lower order terms from boundary or scattering

information, see, e.g., Aicha (2015); Guillemin (1985); Ramm and Rakesh (1991); Ramm and

Sjöstrand (1991); Salazar (2013); P. Stefanov (1989); Uhlmann and Vasy (2016a); Waters (2014)

and also recovering the lower order terms of time-independent hyperbolic equations Bellassoued

and Dos Santos Ferreira (2011); Montalto (2014).

In the case where f is a function and supported in the cylinder R×B(0,R) with tempered

growth in the Minkowski space, Stefanov in P. Stefanov (2017) has shown that L f determines

f uniquely. The fact that L f recovers the Fourier transform f̂ of f (w.r.t. all variables) in the

space-like cone |τ|< |ξ | in a stable way, is used to show that the potential in the wave equation is

uniquely determined by the scattering data. Moreover, since f̂ (τ,ξ ) is analytic in the ξ variable

(with values distributions in the τ variable), then one can fill in the missing cone by analytic

continuation in the ξ variable. In a recent work by P. Stefanov (2017), analytic microlocal methods

are applied to show support theorems and injectivity of Lκ for analytic metrics and weights (on an

analytic manifolds M) for functions. In particular, the results in P. Stefanov (1989) are generalized

to a local data and independent of the tempered growth for large t.
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Analytic microlocal method were already used in many works. Boman (1991); Boman

and Quinto (1987) proved support theorems for Radon transforms with flat geometry and analytic

weights, see also Quinto (1993). For related results using same techniques, we refer to Krishnan

(2009); Krishnan and Stefanov (2009) where the support theorem is proved on simple analytic

manifolds, see also Frigyik et al. (2008). Uhlmann and Vasy (2016b) used the scattering calculus

to prove a support theorem in the Riemannian case near a strictly convex point of a hypersurface

in dimensions n ≥ 3 without the analyticity condition, see also P. Stefanov and Uhlmann (2004,

2005, 2008).
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Analytic and non-analytic microlocal analysis have been used to prove the injectivity and

stability estimates for tensor fields of order two and higher. For the tensor fields of order two,

Pestov and Uhlmann (2005) proved the unique recovery of Riemannian metric on a compact and

simple Riemannian surface with boundary, see also Sharafutdinov (1994) for related results. More

general results on injectivity up to potential fields of the geodesic ray transform for tensor fields

of any order on Riemannian manifold can be found in Paternain, Salo, and Uhlmann (2013).

In P. Stefanov and Uhlmann (2005, 2008), a generic s-injectivity up to potential fields and a

stability estimate are established on a compact Riemannian manifold M with non-necessarily

convex boundary and with possible conjugate points. Microlocal method for tomographic problems

is used to detect singularities of the Lorentzian metric of the Universe using measurements of the

Cosmic Microwave Background (CMB) radiation in Lassas, Oksanen, Stefanov, and Uhlmann

(2018). In Melrose (1994), it is described that which singularities are visible and which cannot be

detected. In Krishnan and Stefanov (2009), a Helgason’s type of support theorem is proved for the

geodesic ray transform of symmetric 2-tensor fields on a Riemannian manifold (with boundary)

with a real-analytic metric g. It is shown that the tensor field can be recovered up to a potential

field. In Holman and Stefanov (2010), authors studied the problem of recovery of a covector field

on simple Riemannian manifold with weight. Under some condition on weight, the recovery up

to potential field and uniqueness are shown. See also Denisjuk (2006), for the inversion of three

dimensional X-ray transform of symmetric tensor fields of any order with sources on a curve.

In a recent work by Lassas, Oksanen, Stefanov, and Uhlmann (2019), authors have studied the

weighted light-ray transform L of integrating functions on a Lorentzian manifold over light-like

geodesics. They showed that considering the operator L as a FIO, one can reconstruct the space-like

singularities via a filtered back-projection if there are no conjugate points.
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2.2 Main Results

Our main goal in this paper is to study the local and analytic microlocal invertibility of the

operator L acting on vector fields on the Minkowski time-space R1+n when the weight κ is simply

one. We study the following operator L:

L f (x,θ) =
∫

f (s,x+ sθ) · (1,θ) ds, (2.2)

where γ = γx,θ = (s,x + sθ) is the family of future pointing light-like lines (light-rays) on the

Minkowski time-space R1+n in the direction of (1,θ), with |θ |= 1. Note that above operator is a

special case of the operator defined (2.1).

The main novelty of our work is that L f is known only over an open set of light-like lines,

Γ, on the Minkowski time-space R1+n (the Incomplete data case). Our results can be considered

as a Helgason’s type support theorem. The global invertibility (injectivity) of the operator L (the

Complete data case) up to potential fields is already established, see for example Denisjuk (2006);

Waters and Salazar (2013).

We generalize the method used in P. Stefanov (2017) to study the stable recovery of the

analytic wave front set of vector field f instead of functions, and prove a support theorem in the

Minkowski time-space R1+n. To prove our results, we apply the analytic stationary phase approach

by Sjöstrand (1982) already used by P. Stefanov (2017) and P. Stefanov and Uhlmann (2008), see

also Frigyik et al. (2008); Krishnan (2009); Krishnan and Stefanov (2009).

Theorem 2.2.1 (Main Result) . Let n ≥ 2 and f ∈ E ′(R1+n) be so that supp f expands with a

speed less than one. Let G be an open and connected neighborhood of (x0,θ0) ∈ Rn× Sn−1 and

γx0,θ0 be a light-like line with direction θ0 passing through the point x0.

i) For n = 2, if L f (x,θ) = 0 in G± and if γx0,θ0 does not intersect suppcurl f , then none of

the light-like lines γx,θ , (x,θ) ∈ G±, does. Here G± is an open and connected neighborhood of

(x0,±θ0) in R2×S1.

ii) For n≥ 3, if L f (x,θ) = 0 in G and if γx0,θ0 does not intersect suppd f , then none of the

light-like lines γx,θ , (x,θ) ∈ G, does.
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2.3 Preliminaries

We first state some definitions and a proposition which are necessary for our main result.

Definition 2.3.1 We call a vector u = (u0,u′) space-like if |u0|< |u′|. Vectors with |u0|> |u′| are

called time-like. Light-like vectors are those for which we have |u0|= |u′|.

Definition 2.3.2 We say the set K is light-like convex if for any two pints in K, the light-like

geodesic connecting them lies in K.

Definition 2.3.3 Let K be a subset of Minkowski time-space R1+n. We say K expands with a

speed less than one if

K ⊂ {(t,x) : |x|6C|t|+R}, for some 0 <C < 1 , R > 0.

Remark 2.3.1 Definition 2.3.3 allows us to integrate over a compact interval. In fact, if the supp f

in such a set expands with speed less than one, then the operator defined by (2.2) is integrating

over a compact set including (x0,θ0) ∈ Rn× Sn−1. In other words, the integral of f and χ f have

the same light-ray transform near (x0,θ0), where the function χ is a smooth cut-off with property

χ = 1 in a neighborhood of (x0,θ0).

From now on, we study the operator defined by (2.2). We know that, any three-dimensional

vector field f = ( f0, f1, f2), has a three-dimensional curl f . In other words, one may work with the

curl f to do the analytic recovery of the analytic wave front set. This, however, is not the case

for any vector field f with dimension n > 3 as the generalized curl f , d f , does not have the same

dimension as the vector field f does. This motivates us to introduce an appropriate operator where

it forms an n-dimensional parametrized vector field with all the necessary components of d f for

the analytic recovery process. We now state our first proposition.

Proposition 2.3.1 Let f = ( f0, f1, . . . , fn) ∈ C 1(R1+n,C1+n) be such that | f | and |∂ fi/∂xi| are

bounded by C(1+ |x|)−1−ε with some ε > 0 and constant C > 0. Then for any (x,θ)∈ (Rn×Sn−1)

and v ∈ Rn,

(v.∇x)L f (x,θ) =
∫

γx,θ

f̃v(x) · (1,θ) ds, (2.3)
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where f̃v(x) = ( f̃0v , f̃1v, . . . , f̃nv)(x) ∈S (R1+n) is a parametrized vector field with

f̃iv(x) = ∑
0≤ j≤n

fi j(x)(0,v)
j
(i) = ∑

0≤ j≤n
(∂ j fi−∂i f j)(x)(0,v)

j
(i), i = 1,2, . . . ,n.

Here by (0,v)(i), we mean the i-th component of (0,v) is excluded.

Proof We show this result for n = 3. The proof for higher dimension is analogous. Let f ∈

C 1(R1+3,C1+3) and fix (1,θ) ∈ R× Sn−1. For v ∈ R3, we take the directional derivative of the

operator L f . Therefore,

(v.∇x)L f (x,θ) =
∫

R
(v.∇x) f (s,x+ sθ).(1,θ)ds.

On the other hand, by the Fundamental Theorem of Calculus,

∫
R

d
ds

[ f (s,x+ sθ).(0,v)] ds = 0.

Subtracting above identities, we have

(v.∇x)L f (x,θ) =
∫

R
((0,v).∇z) f (s,x+ sθ).(1,θ)− d

ds
[ f (s,x+ sθ).(0,v)] ds.

Note here that we used z = (t,x) ∈ R1+n to balance the dimension of the two terms on the right

hand side of above equation. Expanding the right hand side and rearranging all terms with respect

to components of (1,θ), i.e., 1,θ 1,θ 2,θ 3, we get

∫
γx,θ

[v1(∂1 f0−∂0 f1)+ v2(∂2 f0−∂0 f2)+ v3(∂3 f0−∂0 f3)]

+[v2(∂2 f1−∂1 f2)+ v3(∂3 f1−∂1 f3)]θ
1 +[v1(∂1 f2−∂2 f1)+ v3(∂3 f2−∂2 f3)]θ

2

+[v1(∂1 f3−∂3 f1)+ v2(∂2 f3−∂3 f2)]θ
3 ds.

Therefore,

(v.∇x)L f (x,θ) =
∫

γx,θ

f̃v(x) · (1,θ) ds.
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Here γx,θ is the light-like lines parameterized by their points of intersection with t = 0 and direction

(1,θ).

Remark 2.3.2 i) For n = 2, setting v to be (1,0) and (0,1) yields to the following identities.

∂1L f (x,θ) =
∫

γx,θ

(∂1 f0−∂t f1)+θ
2(∂1 f2−∂2 f1) ds =

∫
γx,θ

(−c2 +θ
2c0) ds.

∂2L f (x,θ) =
∫

γx,θ

(∂2 f0−∂t f2)+θ
1(∂2 f1−∂1 f2) ds =

∫
γx,θ

(c1−θ
1c0) ds.

where (c0,c1,c2) =: curl f . Similar results can be seen in [P. Stefanov and Uhlmann (2004),

Proposition 2.8].

ii) The vector field f̃v has the following property: for any v ∈ Rn,

(0,v) · f̃v(x) = v1 f̃1v(x)+ v2 f̃2v(x)+ · · ·+ vn f̃nv(x) = 0.

This is analogous to solenoidal condition for vector fields in the Fourier domain.

iii) Each component of f̃v is a superposition of components of curl f (for n = 2) and of the

generalized curl, d f (for n≥ 3.) This is a very important property since it forms an overdetermined

system of equations which helps us to recover the curl and generalized curl, d f .

iv) Clearly

L f = 0 =⇒ (v.∇x)L f = 0, ∀v ∈ Rn.

For the case where the vector field f is compactly supported,

L f = 0 ≡ (v.∇x)L f = 0, ∀v ∈ Rn.

In fact, the directional derivative of L f with respect to x is zero for all v ∈ Rn, which implies that

L f is constant. Now f is compactly supported, therefore L f = 0.

Above properties motivate us to work with f̃v and (v.∇x)L instead of f and L f in the following

sections.
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2.4 Fourier Analysis

In this section, we consider the case where the light-ray transform is known over all

light-like lines (complete data). This allows us to do the Fourier analysis by fixing the initial

point and stay in a small neighborhood of the direction (1,θ). As we mentioned above, this case

has been already studied. We do this analysis to have some insight for the microlocal analysis part

of our study.

The following proposition is some preliminary results which stats that in the space-like

cone {(τ,ξ ) : |τ|< |ξ |}, the operator (v.∇x)L recovers the Fourier transform of the curl f and the

generalized curl, d f , for n = 2 and n≥ 3, respectively.

Proposition 2.4.1 Let f ∈S (R1+n).

i) For n = 2, if L f (x,θ) = 0 for all x and for θ near ±θ0, then F (curl f ) = 0 for ζ close

ζ0, where ζ0 is the unique space-like vector up to re-scaling with the property (1,±θ0) ·ζ0 = 0.

ii) For n≥ 3, if L f (x,θ) = 0 for all x and for θ near θ0, then F (d f ) = 0 for all ζ near the

set {ζ
∣∣(1,θ) ·ζ = 0}.

Proof i) Let ζ 0 = (τ0,(ξ 1)0,(ξ 2)0) be a fixed space-like vector, and without loss of generality

assume that θ0 =±e2 ∈ R2 such that (1,±θ0) ·ζ 0 = 0. One has

τ
0± (ξ 2)0 = 0 which implies that τ

0 = (ξ 2)0 = 0.

Therefore, the vector ζ 0 has to be in the form of (0,(ξ 1)0,0), which means, up to re-scaling it is a

unique ζ 0 with property (1,±θ0) ·ζ 0 = 0. Hence, one may choose ζ 0 = e1 ∈ R1+2. Note that this

choice of ζ 0 can be done since we may apply Lorentzian transformation to any fixed space-like

vector and transform it to e1. We first state the Vectorial Fourier Slice Theorem for a general set

of lines:

f̂ (ζ ) ·ω =
∫

ω⊥
e−iz·ζ L f (z,ω) dSz, ∀ω⊥ζ , ∀ f ∈ L1(Rn).

To prove this, note that the integral on the RHS equals

∫
ω⊥

∫
R

e−iz·ζ fi(z+ sω)ω idsdSz = ω
i
∫

ω⊥

∫
R

e−iz·ζ fi(z+ sω)dsdSz.
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Set x = z+ sω . Then, it is easy to see that when ω⊥ζ , we have x · ζ = z · ζ and therefore above

integral equals f̂i(ζ ). In this paper, we apply the Vectorial Fourier Slice theorem when the set of

lines is restricted to a set of light-like lines.

By assumption (v.∇x)L f = 0 for all v ∈ R2. Let v be an arbitrary but fixed vector in R2.

For ζ = e1, by Vectorial Fourier Slice theorem we have

0 = ˆ̃fv(ζ ) · (1,θ) = ˆ̃f0v(ζ )+
ˆ̃f1v(ζ )θ

1 + ˆ̃f2v(ζ )θ
2, ∀(1,θ)⊥ζ . (2.4)

Since (1,±θ0) ·ζ = 0, above equation implies ˆ̃fv0(ζ ) = v1(ξ 1 f̂0− τ f̂1)+ v2(ξ 2 f̂0− τ f̂2) = 0,
ˆ̃fv2(ζ ) = v1(ξ 1 f̂2−ξ 2 f̂1) = 0.

The vector v is arbitrary, therefore one may choose two linearly independent vectors, say v1 = θ⊥

and v2 = θ , to conclude

ξ
1 f̂0− τ f̂1 = ξ

2 f̂0− τ f̂2 = ξ
1 f̂2−ξ

2 f̂1 = 0 =⇒ F (curl f )(ζ ) = 0.

Now let ζ = (τ,ξ )∈R1+2 be any non-zero space-like vector. We solve the equation (1,θ) ·

ζ = 0, for θ . Set θ = aξ +bξ⊥. Therefore,

−τ = θ ·ξ = (aξ +bξ
⊥) ·ξ = a|ξ |2 =⇒ a =

−τ

|ξ |2
.

On the other hand,

1 = |θ |2 = (a2 +b2)|ξ |2 =⇒ b =± 1
|ξ |2

√
−τ2 + |ξ |2.

For ξ ∈ R2, we set

θ = θ±(ζ ) =
1
|ξ |2

(−τξ
1∓
√
−τ2 + |ξ |2ξ

2,−τξ
2±
√
−τ2 + |ξ |2ξ

1). (2.5)
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Clearly (1,θ±(ζ )) ·ζ = 0 and θ± are the only two choices with the property |θ±(ζ )|= 1. In order

to have ζ close to ζ0 = e1, we require θ 1
± = 0, so we have

−τξ
1∓
√
−τ2 + |ξ |2ξ

2 = 0.

Since ζ is a space-like vector,
√
−τ2 + |ξ |2 is non-zero which implies that τξ 1 = ξ 2 = 0. Note

that ξ 1 is not zero, otherwise θ±(ζ ) would be undefined. This forces τ to be zero, and therefore

ζ ≈ ζ0 = e1. In particular, this implies that θ = θ±(ζ ) is analytic near ζ 0 = e1 ∈ R1+2 with

θ±(ζ
0) = θ0 =±e2 ∈R2. Hence, θ±(ζ ) is within a neighborhood of ±θ0, θ ≈±θ0, if ζ is within

a neighborhood of ζ0, ζ ≈ ζ0. Considering our choices of direction θ±(ζ ), the equation (2.4) can

be written as

ˆ̃f0v(ζ )+
1
|ξ |2

(−τξ
1+
√
−τ2 + |ξ |2ξ

2) ˆ̃f1v(ζ )+
1
|ξ |2

(−τξ
2−
√
−τ2 + |ξ |2ξ

1) ˆ̃f2v(ζ ) = 0, (2.6)

and

ˆ̃f0v(ζ )+
1
|ξ |2

(−τξ
1−
√
−τ2 + |ξ |2ξ

2) ˆ̃f1v(ζ )+
1
|ξ |2

(−τξ
2+
√
−τ2 + |ξ |2ξ

1) ˆ̃f2v(ζ ) = 0. (2.7)

Subtract (2.7) from (2.6) to get

0 = ξ
2 ˆ̃f1v(ζ )−ξ

1 ˆ̃f2v(ζ ) = (ξ · v)[ξ 2 f̂1(ζ )−ξ
1 f̂2(ζ )], for the fixed v ∈ R2. (2.8)

Multiplying (2.6) by ξ 1 and using (2.8), we get

0 = τ
ˆ̃f1v(ζ )−ξ

1 ˆ̃f0v(ζ ) = (ξ · v)[τ f̂1(ζ )−ξ
1 f̂0(ζ )], for the fixed v ∈ R2. (2.9)

Note that for i = 0,1,2, we expanded ˆ̃fiv(ζ ,v) in (2.8) and (2.9), and rearranged both equations in

terms of f̂i(ζ ), to get the r.h.s of above equations. Now set v = ξ , therefore ξ · v = |ξ |2 6= 0 and

ξ
2 f̂1(ζ )−ξ

1 f̂2(ζ ) = τ f̂1(ζ )−ξ
1 f̂0(ζ ) = 0. (2.10)
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Clearly ξ 2 f̂1(ζ )−ξ 1 f̂2(ζ ) = 0 implies that ˆ̃f1v(ζ ) =
ˆ̃f2v(ζ ) = 0 for v ∈ R2. Plugging ˆ̃f1v(ζ ) = 0

into the LHS of (2.9), we conclude ξ 1 ˆ̃f0v(ζ ) = 0. The vector ζ is space-like with property ξ 1 6= 0,

therefore
ˆ̃f0v(ζ ) = v1(ξ 1 f̂0− τ f̂1)+ v2(ξ 2 f̂0− τ f̂2) = 0.

Since v is arbitrary in R2, any two linearly independent vectors v1 and v2 implies that ξ 2 f̂0−τ f̂2 =

0. Notice that one may use the equation on the r.h.s of (2.10) and the fact that v is an arbitrary

vector to have the same conclusion. This shows that all three components of curl f in Fourier

domain are zeros, and thus F (curl f )(ζ ) = 0.

ii) Let first n= 3 and ζ = ζ 0 be a fixed non-zero space-like vector. Applying the Lorentzian

transformation, we may assume that ζ 0 = e2 := (0,0,1,0) ∈ R1+3. Set

θ(a) = sin(a)e1 + cos(a)e3 = (sin(a),0,cos(a)).

Clearly
∣∣θ(a)|= 1, θ0 = θ(0) = e3, and (1,θ(a)) ·ζ = 0.

By assumption (v.∇x)L f = 0 for all v ∈ R3. Let v be an arbitrary fixed vector in R3. For

ζ = e2, by Vectorial Fourier Slice theorem

0 = ˆ̃fv(ζ ) · (1,θ) = ˆ̃f0v(ζ )+
ˆ̃f1v(ζ )θ

1 + ˆ̃f2v(ζ )θ
2 + ˆ̃f3v(ζ )θ

3, ∀(1,θ)⊥ζ

Plugging θ = θ(a) into above equation we get

0 = ˆ̃fv(ζ ) · (1,θ) = ˆ̃f0v(ζ )+
ˆ̃f1v(ζ )sin(a)+ ˆ̃f3v(ζ )cos(a). (2.11)

Differentiating above equation with respect to parameter a once and twice, we get ˆ̃f1v(ζ )cos(a)− ˆ̃f3v(ζ )sin(a) = 0,

− ˆ̃f1v(ζ )sin(a)− ˆ̃f3v(ζ )cos(a) = 0.

It is easy to see that the last two equations imply that ˆ̃f1v(ζ ) =
ˆ̃f3v(ζ ) = 0 for v ∈ R2. Now by

equation (2.11) we conclude that ˆ̃f0v(ζ ) = 0 for v ∈ R2.

42



Our goal is to show the Fourier transform of the generalized curl of f , F (d f ), is zero. Let

v = (−cos(a),1,sin(a)) ∈ θ⊥ and plug it into ˆ̃fiv(ζ ) = 0 for i = 0,1,3. We have


−(ξ 1 f̂0− τ f̂1)cos(a)+(ξ 2 f̂0− τ f̂2)+(ξ 3 f̂0− τ f̂3)sin(a) = 0,

(ξ 2 f̂1−ξ 1 f̂2)+(ξ 3 f̂1−ξ 1 f̂3)sin(a) = 0,

−(ξ 1 f̂3−ξ 3 f̂1)cos(a)+(ξ 2 f̂3−ξ 3 f̂2) = 0.

One may repeat above differentiation argument for the first equation to conclude that

ξ
1 f̂0− τ f̂1 = ξ

2 f̂0−ξ
0 f̂3 = ξ

3 f̂0−ξ
0 f̂3 = 0.

Using the same argument simultaneously for the second and third equations implies that

ξ
2 f̂1−ξ

1 f̂2 = ξ
2 f̂3−ξ

3 f̂2 = ξ
3 f̂1−ξ

1 f̂3 = 0.

Therefore, F (d f )(ζ ) = 0 for a fixed ζ = e2. One may choose three linearly independent

vectors v1,v2,v3 ∈ R3, and conclude the same result.

To have the result for an arbitrary ζ , we use the fact that the Lorentzian transformation

is transitive and rotates every space-like vector to a space-like vector. Let Lζ 0 be a Lorentzian

transformation with the property L −1
ζ 0 ζ = ζ 0 = e2 and let L with L x = y be a Lorentzian

transformation whose representation in Fourier domain is given by Lζ 0 . By the definition of

Fourier transform, one has

F [(d f )L (.)](ζ ) =
∫
(d f )(L x)eix·ζ dx =

∫
(d f )(y)eiL −1y·ζ ∣∣detL −1∣∣dy

=
∫
(d f )(y)e

iy·L −T
ζ 0 ζ ∣∣detL −1∣∣dy.

Therefore,

F [(d f )L (.)](ζ ) =
∣∣detL −1∣∣F (d f )(L −T

ζ ).

But L T = L and L −1(ζ ) = ζ 0, hence

F [(d f )L (.)](ζ ) =
∣∣detL −1∣∣F (d f )(ζ 0) = 0,
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since F (d f )(ζ 0) = 0. This proves that for any space-like vector ζ near ζ 0, the Fourier transform

of generalized curl of f vanishes as desired. For the general case n > 3, one needs to choose n

linearly independent vectors v1,v2, . . . ,vn ∈ Rn to show F (d f )(ζ ) = 0.

Corollary 2.4.1 Let f ∈ C ∞
0 (R1+n).

i) For n= 2, if L f (x,θ) = 0 for θ near±θ0, then f is a smooth potential field with compact

support, that is, f = dφ with some φ(x)→ 0, as |x| → ∞.

ii) For n > 3, if L f (x,θ) = 0 for θ near θ0, then f is a smooth potential field with compact

support, that is, f = dφ with some φ(x)→ 0, as |x| → ∞.

Proof i) The first part of Proposition 2.4.1 implies that F (curl f ) = 0. Since f ∈ C ∞
0 (R1+2), we

extend f as zero outside of the supp f . Now by analyticity of Fourier transform, F (curl f ) is zero

everywhere. Applying the inverse Fourier transform implies that curl f = 0 everywhere. Since the

time-space R1+2 is a simply connected domain, there exists a finite smooth function φ such that

f = dφ ; in fact let x ∈ supp f and x0 be a point outside of supp f . Let c(t) be a path connecting x0

to x. We define φ as follow:

φ(x) =
∫ x

x0

f (c(t)) · c′(t)dt +φ(x0),

which is smooth and satisfies f = dφ .

ii) By the second part of Proposition 2.4.1 we know that F (d f ) = 0. Similar argument as

part (i) shows d f = 0 and therefore, f is a smooth potential vector field with compact support.

Remark 2.4.1 i) For n = 2 there are two discrete choices of directions, ±θ0, and this is necessary

to have the result. Following example shows that one cannot decrease the number of directions

from two to one. Let ζ be a space-like vector and φ ∈S be supported in the interior of open cone

{|τ|< |ξ |}. Consider θ±(ζ ) defined by (2.8) and set

η = f̂ (ζ ) = (1,
ξ 2√

−τ2 + |ξ |2
,

−ξ 1√
−τ2 + |ξ |2

)φ̂(ζ ).
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Clearly η is a non-zero vector field in the Schwartz space S and is in the kernel of light-ray

transform as it solves (1,θ+(ζ )) · f̂ (ζ ) = 0. Notice that, (1,θ−(ζ )) · f̂ (ζ ) 6= 0. This example does

not provide a compactly supported vector field, however, it shows this is an obstruction to consider

only one light-ray and stay close to it for the reconstruction. For the Minkowski spaces of signature

1+3 or higher, however, this is not an obstruction. For instance when n = 3, one may consider a

two-parameter family of directions, θ(a,b), near a fixed θ0 and do the reconstruction process by

perturbation.

ii) In above proposition for n≥ 3, to show the uniqueness results we performed differentiation

which is not problematic. However, for the stable inversion results, a differentiation may not

preserve the stability. In other words, one may choose several discrete values of non-zero parameters

near zero to create an invertible linear system to get stability estimate results. For discussion, we

refer the reader to proof of Theorem 2.5.1 for n≥ 3.

In the next section, we state a theorem on the recovery of analytic space-like singularities

in the Minkowski case which is a tool to prove our main result.

2.5 Microlocal Recovery of Analytic Wavefront Set

In this section, we mainly follow the analytic microlocal analysis argument to show that

we can recover all space-like analytic singularities of f conormal to the light-like lines along with

integration of operator (v.∇x)L. (See also P. Stefanov (2017), Lemma 3.1)

The definition of Analytic Wave Front Set (or “analytic singular spectrum) a scalar-valued

distribution can be found in Sjöstrand (1982). For a vector-valued distribution ( f0, f1, f2, . . . , fn) ∈

D ′(X ,C1+n), we define the analytic wave front set of f , WFA( f ), as the union of WFA( fi). Note

that, for the vector-valued distribution f , the analytic wave front set WFA( f ) does not specify in

which component f is singular. In our work, we follow the Sjöstrand’s exposition.

Theorem 2.5.1 Let f ∈ E ′(R1+n) and let γx0,θ0 be a fixed light-like line so that γx,θ (s) 6∈ supp f

for |s| ≥ 1/C with some C for all (x,θ) near (x0,θ0).

i) For n = 2, if L f (x,θ) = 0 for all x,θ near (x0,±θ0), then WFA(curl f ) contains no

space-like vectors conormal to γx0,±θ0 .
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ii) For n > 3, if L f (x,θ) = 0 for all x,θ near (x0,θ0), then WFA(d f ) contains no space-like

vectors conormal to γx0,θ0 .

Proof i) Let first f ∈ C 1(R1+2). By assumption L f = 0 only near γx0,θ0 , therefore a localization

is needed. We choose a local chart for the lines close to γx0,θ0 , and without loss of generality we

may assume that x0 = 0 and θ0 =±e2. So we have γ0 = γ0,e2 = (s,0,s).

Since L f = 0, we have (v.∇x)L f = 0 for v ∈ Rn. Let v be an arbitrary fixed vector in Rn

and ζ 0 6= 0 be a space-like vector conormal to γ0 at x0 = 0 with property (1,θ0)⊥ζ 0. Applying the

Lorentz transformation, we may assume that ζ 0 = e1 := (0,1,0) ∈ R1+2. Our goal is to show that

(0,ζ 0) 6∈WFA(curl f ).

Let χN ∈C∞
0 (R

2) be supported in B(0,ε), with ε > 0 and χN = 1 near x0 = 0 so that

|∂ α
x χN | ≤ (CN)|α|, for |α| ≤ N. (2.12)

Then for 0 < ε � 1, λ > 0, and θ near θ0,

0 =
∫

eiλx·ξ (χN(v.∇x)L f )(x,θ)dx =
∫∫

eiλx·ξ
χN(x) f̃v(γx,θ (s)) · (1,θ) ds dx.

If (1,θ) · ζ = 0 with ζ = (τ,ξ ), then γx,θ · ζ = (s,x+ sθ) · ζ = x · ξ . Performing a change of

variable z = γx,θ in above integral yields to

0 =
∫

eiλx·ξ (χN(v.∇x)L f )(x,θ)dx =
∫

eiλx(z,θ)·ξ aN(z,θ) f̃iv(z)(1,θ)
idz (2.13)

=
∫

eiλ z·ζ aN(z,θ) f̃iv(z)(1,θ)
idz,

when (1,θ) ·ζ = 0. Notice that aN(0,θ) = 1.

Now let ζ be a space-like vector near ζ 0 and set θ = θ±(ζ ) (see (2.5)). Plugging θ±(ζ )

into (2.13), we get

∫
eiλ z·ζ ãN(z,ζ ) f̃iv(z)(1,θ±(ζ ))

i dz = 0, near ζ = e1. (2.14)

Here ãN(z,ζ ) = aN(z,θ) where ãN(0,ζ ) = 1. Note also that for ζ ≈ ζ0, we have θ(ζ )≈ θ0.
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In the next step, we apply the complex stationary phase method of Sjöstrand (1982), similar

to the case where it is applied to the Calderón problem with partial data in Kenig, Sjöstrand, and

Uhlmann (2007) and to the integral geometry problem in Frigyik et al. (2008); P. Stefanov and

Uhlmann (2008). We need to analyze the phase function and its critical points.

Fix 0 < δ � 1 and let χδ be the characteristic function of the unit ball B(0,δ ) in R1+2.

With some w, η ∈ R1+2 close to w = 0, η = e1, multiply the l.h.s of (2.14) by

χδ (ζ −η)eiλ (i(ζ−η)2/2−w·ζ )

and integrate w.r.t. ζ to get

∫∫
eiλΦ(z,w,ζ ,η)bN(z,ζ ,η) f̃iv(z)(1,θ±(ζ ))

i dzdζ = 0, (2.15)

where bN = χδ (ζ −η)ãN is a new amplitude and

Φ = (z−w) ·ζ + i(ζ −η)2/2.

Consider the phase function ζ → Φ. If w = z, there is a unique real critical point ζc = η , with

property ℑΦζ ζ > 0 at ζ = ζc. For w 6= z, the phase Φ, as function of ζ , has a unique critical

point ζc = η + i(z−w). We now split the z integral in (2.15) into two parts: over the set Σ =

{z; |z−w| 6 δ/C0}, for some C0 > 1, and then over the complement of Σ. Since |Φζ | has a

(δ -dependent) positive lower bound for z ∈ Σ( for ζ real) and there is no real critical point for

the function ζ → Φ in this set, we can estimate that part of integral. Using the estimate (2.12),

integration by parts N-times w.r.t. ζ , and the fact that on the boundary |ζ −η |= δ , the factor eiλΦ

is exponentially small with λ , we get

∣∣∣∫∫
Σc

eiλΦ(z,w,ζ ,η)bN(z,ζ ,η) f̃iv(z)(1,θ±(ζ ))
i dzdζ

∣∣∣≤C(CN/λ )N +CNe−λ/C.

Note also that in the estimation above we used the fact that

eiλΦ =
Φ̄ζ ·∂ζ

iλ |Φζ |2
eiλΦ.
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Now on the set {z; |z−w|6 δ/C̃},C̃� 1, we apply the complex stationary phase method for the

rest of ζ -integral in (2.15). To estimate (2.15) for z ∈ Σ, we set: ψ(z,w,η) = Φ|ζ=ζc. Therefore,

ψ = η · (z−w)+ i|z−w|2− i
2
|z−w|2 = η · (z−w)+

i
2
|z−w|2.

Clearly the new phase function ψ(z,w,η) satisfies

ψz(z,z,ζ ) = ζ , ψw(z,z,ζ ) =−ζ , ψ(z,z,ζ ) = 0.

For (z,ζ ) close to (0,e1), we use this phase function and apply Theorem 2.8 in Sjöstrand (1982)]

and the remark after it to the ζ -integral above to get

∫∫
Σ

eiλΦ∓(z,w,ζ ,η)bN(z,ζ ,η) f̃iv(z)(1,θ±(ζ ))
i dzdζ

=
∫

Σ

eiλΦ(z,w,ζc,η)bN(z,ζc,η) f̃iv(z)(1,θ±(ζc))
idz

=
∫

Σ

eiλψ(z,w,η)bλ (z,w,η) f̃iv(z)(1,θ±(z,w,η))idz

=
∫

Σ

eiλψ(z,β )bλ (z,β ) f̃iv(z)(1,θ±(z,β ))
idz

=
∫

Σ

eiλψ(z,β ) f̃iv(z)B̃
i
λ±
(z,β )dz = O(λ n/2(CN/λ )N +CNe−λ/C) (2.16)

where β = (w,η), and B̃λ± is a classical elliptic analytic symbol of order 0 with principal part

equal

σp(B̃λ±(z,z,ζ ))≡ (1,θ±(ζ )), up to an elliptic factor near (z,β ) = (0,0,e1),

with θ±(ζ ) = (θ 1
+(ζ ),θ

2
+(ζ )) defined by (2.5). In particular, for (z,w,ζ ) = (0,0,e1) we have

σp(B̃λ±(0,0,e
1))≡ (1,θ±(e1)) = (1,0,±1) = (1,±e2), up to an elliptic factor.
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For z ∈ Σ with δ � 1 and |w| � 1, η close to e1, the variable (z,β ) in (2.16) is near (0,0,e1) and

therefore B̃λ±is independent of N as χN = 1 near the origin. Choose now N so that N ≤ λ/(Ce)≤

N +1 to get the following exponential error on the right,

∫
Σ

eiλψ(z,β ) f̃iv(z)B̃
i
λ±
(z,β )dz = O(e−λ/C). (2.17)

Microlocal Ellipticity. Now we show that for (1,θ±(ζ )), equations in (2.17) form an

elliptic system of equations at (0,0,ζ 0). Let (z,z,ζ ) near (0,0,ζ 0) and v be fixed, and consider the

principal symbols σp(B̃λ±(z,z,ζ )) ≡ (1,θ±(ζ )). Microlocal version of ellipticity is equivalent to

show that for a constant vector field f̃v = ( f̃0v, f̃1v , f̃2v),

(1,θ±(ζ ))i f̃iv = 0

forms an elliptic system. Above equations can be written as

 f̃0v +
1
|ξ |2 (−τξ 1 +

√
−τ2 + |ξ |2ξ 2) f̃1v +

1
|ξ |2 (−τξ 2−

√
−τ2 + |ξ |2ξ 1) f̃2v = 0,

f̃0v +
1
|ξ |2 (−τξ 1−

√
−τ2 + |ξ |2ξ 2) f̃1v +

1
|ξ |2 (−τξ 2 +

√
−τ2 + |ξ |2ξ 1) f̃2v = 0.

By similar arguments as it is shown in Proposition 2.4.1 for n = 2, one may conclude that 0 = ξ 2 f̃1v−ξ 1 f̃2v = (ξ · v)(∂2 f1−∂1 f2)

0 = τ f̃1v−ξ 1 f̃0v = (ξ · v)(∂0 f1−∂1 f0)
=⇒ ∂2 f1−∂1 f2 = ∂0 f1−∂1 f0 = 0.

Clearly ∂2 f1−∂1 f2 = 0 implies that f̃1v = f̃2v = 0 (for definition of f̃iv see Proposition 2.4.1) and

therefore

f̃0v = v1(∂1 f0−∂0 f1)+ v2(∂2 f0−∂0 f2) = 0.

Since v is arbitrary in R2, any two linearly independent vectors v1 and v2 implies that ∂2 f0−∂0 f2 =

0. Therefore, the equation (2.17) leads to the following system of equations
∫

Σ
eiλψ(z,β )[v1(∂1 f0−∂0 f1)(x)+ v2(∂2 f0−∂0 f2)(x)]B0

λ
(z,β )dz = O(e−λ/C)∫

Σ
eiλψ(z,β )[v2(∂2 f1−∂1 f2)]B1

λ
(z,β )dz = O(e−λ/C)∫

Σ
eiλψ(z,β )[v1(∂1 f2−∂2 f1)]B2

λ
(z,β )dz = O(e−λ/C),
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where up to an elliptic factor, we have

σp(Bi
λ
(z,z,ζ ))≡


1 i = 0

θ 1
+(ζ ) i = 1

θ 2
+(ζ ) i = 2.

The vector v is arbitrary in R2. Thus, for any choice of two linearly independent vectors, at

(z,z,ζ )= (0,0,ζ 0) above elliptic system of equations implies that (0,ζ 0) 6∈WFA(curl f ) as desired.

Notice that above system is an overdetermined system of equations since the term ∂1 f2− ∂2 f1 is

repeated in the second and third equations. This is due to the property of (v.∇x)L f and f̃v as we

pointed out on Remark 2.3.2.

Now if f ∈ E ′(R1+2) is a distribution, as stated in the Theorem 2.5.1, the result still holds

in the sense of distributions. In fact, one may take a sequence of C 1-smooth functions which

converges to the distribution f . The equation (2.14) holds for each smooth function. Now the

z-integral in (2.14) can be thought in the sense of distributions as the integrand can be considered

as the action of a distribution on a smooth function.

ii) Let first f ∈ C 1(R1+n). By assumption, L f = 0 only near γx0,θ0 , so we choose a local

chart for the lines close to γx0,θ0 . Since L f = 0, we have (v.∇x)L f = 0 for v ∈ Rn. Let v be an

arbitrary fixed vector in Rn and let x0 = 0 and θ0 =±en. Our goal is to show (0,ζ 0) 6∈WFA(d f ) for

ζ 0 a non-zero space-like vector and conormal to γ0 at x0 = 0. Applying the Lorentz transformation,

we may assume that ζ 0 = en−1 := (0, . . . ,0,1,0)∈R1+n. Let χN ∈C∞
0 (R

n) be supported in B(0,ε),

with ε > 0 and χN = 1 near x0 = 0 so that

|∂ α
x χN | ≤ (CN)|α|, for |α| ≤ N. (2.18)

Then for 0 < ε � 1, λ > 0, and θ near θ0,

0 =
∫

eiλx·ξ (χN(v.∇x)L f )(x,θ)dx =
∫∫

eiλx·ξ
χN(x) f̃v(γx,θ (s)) · (1,θ) ds dx.
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Similar to the first part of theorem, we make a change of variable z = γx,θ to get

0 =
∫

eiλx·ξ (χN(v.∇x)L f )(x,θ)dx =
∫

eiλx(z,θ)·ξ aN(z,θ) f̃iv(z)(1,θ)
idz (2.19)

=
∫

eiλ z·ζ aN(z,θ) f̃iv(z)(1,θ)
idz,

when (1,θ)⊥ζ . Notice that aN(0,θ) = 1.

Let a1,a2, . . . ,an−1, be n − 1 non-zero parameters near zero. We set θ(a1,a2, . . . ,

an−1) to be the n-dimensional spherical coordinates where



θ 1 = sin(an−1)sin(an−2)sin(an−3) . . .sin(a4)sin(a3)sin(a2)sin(a1)

θ 2 = sin(an−1)sin(an−2)sin(an−3) . . .sin(a4)sin(a3)sin(a2)cos(a1)

θ 3 = sin(an−1)sin(an−2)sin(an−3) . . .sin(a4)sin(a3)cos(a2)

θ 4 = sin(an−1)sin(an−2)sin(an−3) . . .sin(a4)cos(a3)
...

θ n−2 = sin(an−1)sin(an−2)cos(an−3)

θ n−1 = sin(an−1)cos(an−2)

θ n = cos(an−1)

Clearly
∣∣θ(a1,a2, . . . ,an−1)

∣∣ = 1, θ(a1,a2, . . . ,0) = en. Considering the n-dimensional spherical

coordinate, one may solve the equation (1,θ) ·ζ = 0 for ζ = (τ,ξ ) to get

ζ ((a1,a2, . . . ,an−1),ξ ) = (−θ(a1,a2, . . . ,an−1) ·ξ ,ξ ).

To simplify our analysis, we show the rest of proof for n = 3. For n > 3, one may repeat the

following arguments to conclude the result. Let

θ(a,b) = sin(a)sin(b)e1 + sin(a)cos(b)e2 + cos(a)e3

be the 3-dimensional spherical coordinates. Plugging θ(a,b) into (2.19) we get

∫
eiλφ(z,ζ )aN(z,θ(a,b)) f̃iv(z)(1,θ(a,b))

i dz = 0, near a = 0,
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where φ(z,ζ ) = z · ζ ((a,b),ξ ) and aN(z,θ(a,b)) = χN(x − sθ(a,b)) with aN(0,(a,b))

= 1. Note that

φz(0,ζ ) = ζ , φzζ = Id.

It is more convenient to work with ζ variable instead of ((a,b),ξ ). So let b be a non-zero

fixed parameter near zero. We show that the map ((a,b),ξ ) → ζ ∈ R1+3 is a local analytic

diffeomorphism near ((0,b),e2). More precisely, the determinant of Jacobean associated with

the map ((a,b),ξ )→ ζ ∈ R1+3 is

−cos(a)sin(b)ξ 1− cos(a)cos(b)ξ 2 + sin(a)ξ 3,

which is equal to −sin(b)ξ 1− cos(b)ξ 2 near a = 0. Now the fixed parameter b (near zero) and

our choice of ζ 0 imply that the determinant is −cos(b) which is non-zero. Hence, one may apply

the Implicit Function Theorem near a = 0 to locally invert the map to ζ → ((a,b),ξ ) ∈R1+3. One

may compute a explicitly to get

a = a(ζ ) =− tan−1(
ξ 3

sin(b)ξ 1 + cos(b)ξ 2 )+ sin−1(− τ√
(sin(b)ξ 1 + cos(b)ξ 2)2 +(ξ 3)2

)

which maps a = 0 to ζ 0 diffeomorphically. Notice that for the fixed parameter b and ζ ≈ ζ 0, a(ζ )

is the unique solution of the equation

−τ =−θ(a,b) ·ξ = sin(a)sin(b)ξ 1 + sin(a)cos(b)ξ 2 + cos(a)ξ 3,

near a = 0. Therefore, we may work in the ζ variables instead of the ((a,b),ξ ) to get

∫
eiλ z·ζ ãN(z,ζ ) f̃iv(z)(1,θ(ζ ))

i dz = 0, near ζ = e2,

where ãN(z,ζ ) = aN(z,θ(a,b)) and ãN(0,ζ ) = 1.

In the next step, we analyze the phase function and its critical points. (A similar argument

as in the first part of theorem by applying the complex stationary phase method of Sjöstrand)
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Fix 0 < δ � 1 and let χδ be the characteristic function of the unit ball B(0,δ ) in R1+3.

With some w, η ∈ R1+3 close to w = 0, η = e2, multiply the l.h.s. of above integral equation by

χδ (ζ −η)eiλ (i(ζ−η)2/2−w·ζ )

and integrate w.r.t. ζ to get

∫∫
eiλΦ(z,w,ζ ,η)bN(z,ζ ,η) f̃iv(z)(1,θ(ζ ))

idzdζ = 0, near ζ = e2, (2.20)

where bN = χδ (ζ −η)ãN is a new amplitude and

Φ = (z−w) ·ζ + i(ζ −η)2/2.

Now consider the phase function ζ → Φ. If w = z, there is a unique real critical point ζc = η ,

which satisfies ℑΦζ ζ > 0 at ζ = ζc. For w 6= z, the phase Φ, as function of ζ , has a unique critical

point ζc = η + i(z−w).

Now we split the z-integral (2.20) into two parts: over Σ = {z; |z−w| 6 δ/C0}, for some

C0 > 1, and then over the complement of Σ. Since |Φζ | has a (δ -dependent) positive lower bound

for |z−w|> δ/C0( for ζ real) and there is no real critical point for the function ζ →Φ in this set,

we can estimate that part of integral. Using the estimate (2.18), integration by parts N-times w.r.t.

ζ , and the fact that on the boundary |ζ −η |= δ , the factor eiλΦ is exponentially small with λ , we

get ∣∣∣∫∫
Σc

eiλΦ(z,w,ζ ,η)bN(z,ζ ,η) f̃iv(z)(1,θ(ζ ))
idzdζ

∣∣∣≤C(CN/λ )N +CNe−λ/C.

Similar to part (i), for above inequality we used the fact that

eiλΦ =
Φ̄ζ ·∂ζ

iλ |Φζ |2
eiλΦ.

Now on the set {z; |z−w| 6 δ/C̃},C̃ � 1, we apply stationary phase method for the rest of

ζ -integral in (2.20). To estimate (2.20) for z ∈ Σ, we set: ψ(z,w,η) = Φ|ζ=ζc . Therefore,

ψ = η · (z−w)+ i|z−w|2− i
2
|z−w|2 = η · (z−w)+

i
2
|z−w|2.
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Notice that ψ(z,w,η) satisfies

ψz(z,z,η) = η = φz(0,η), ψw(z,z,η) =−η =−φz(0,η), ψ(z,z,η) = 0. (2.21)

For (z,ζ ) close to (0,e2), we use this phase function and apply Theorem 2.8 in Sjöstrand (1982)

and the remark after it to the ζ -integral above to get

∫∫
Σ

eiλΦ∓(z,w,ζ ,η)bN(z,ζ ,η) f̃iv(z)(1,θ(ζ ))
i dzdζ

=
∫

Σ

eiλΦ(z,w,ζc,η)bN(z,ζc,η) f̃iv(z)(1,θ(ζc))
idz

=
∫

Σ

eiλψ(z,w,η)bλ (z,w,η) f̃iv(z)(1,θ(z,w,η))idz

=
∫

Σ

eiλψ(z,β )bλ (z,β ) f̃iv(z)(1,θ(z,β ))
idz

=
∫

Σ

eiλψ(z,β ) f̃iv(z)B̃
i
λ
(z,β )dz = O(λ n/2(CN/λ )N +CNe−λ/C). (2.22)

Here β = (w,η) and B̃λ is a classical elliptic analytic symbol of order 0. For z ∈ Σ with δ � 1 and

|w| � 1, η near e2, the variable (z,β ) in (2.22) is near (0,0,e2) and then B̃λ is independent of N

because χN = 1 near the origin. We choose N so that N ≤ λ/(Ce)≤ N +1. Therefore, we get the

following exponential error on the right

∫
Σ

eiλψ(z,β ) f̃iv(z)B̃
i
λ
(z,β )dz = O(e−λ/C).

Since the phase function satisfies the properties in (2.21), on a small neighborhood of ζ 0, we

perform the following change of variable in above integral equation:

(z,w,η)−→ (z,w,ζ ) = (z,w,φz(w,η)),

which yields to ∫
Σ

eiλψ(z,w,ζ ) f̃iv(z)B̃
i
λ
(z,w,ζ )dz = O(e−λ/C). (2.23)
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Here B̃λ is a new classical elliptic symbol of order zero with the principal part of σp(B̃λ (z,z,ζ ))≡

(1,θ(ζ )), up to an elliptic factor. In particular, for (z,w,ζ ) = (0,0,ζ 0) we have

σp(B̃λ (0,0,ζ
0))≡ (1,θ(ζ 0)) = (1,0,0,1) = (1,e3).

As it is shown above, the map (a,ξ )→ ζ is a local diffeomorphsim near a = 0 (equivalently near

ζ 0 = e2). Therefore, we work with the principal symbol in terms of (a,ξ ) instead, which means

up to an elliptic factor

σp(B̃λ (z,z,(a,ξ ))≡ (1,θ(a,b)).

To show (0,ζ 0) 6∈WFA(d f ), we need to form an elliptic system of equations using (2.23). Let

(z,z,(a,ξ ))≈ (0,0,(0,ξ 0)) and v be a fixed vector. For our goal, we slightly perturb θ(a,b) near

a≈ 0 and b. Let

{Θk}3
k=0 = {(1,θ(a,b)),(1,θ(−a,b)),(1,θ(a,−b)),(1,θ(0,b))}

be the set of perturbations of θ(a,b), with property σp(B̃λk
(z,z,(a,ξ )) = Θk, for k = 0,1,2,3.

Microlocal version of ellipticity is equivalent to show that for a constant vector field ( f̃0v, f̃1v , f̃2v , f̃3v),

Θ f̃v = 0

forms an elliptic system of equations. Here the matrix [Θ]4×4 is the associated matrix with above

principal symbols, Θk. The matrix [Θ] is invertible since its determinant equals to

det


1 sin(a)sin(b) sin(a)cos(b) cos(a)

1 −sin(a)sin(b) −sin(a)cos(b) cos(a)

1 −sin(a)sin(b) sin(a)cos(b) cos(a)

1 0 0 1

= 4sin2(a)sin(b)cos(b)(1− cos(a))
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which is non-zero for a and our fixed parameter b near zero. Therefore, Θ f̃v = 0 implies that

f̃v = 0. This means the equation (2.23) with {Θk}3
k=0 leads to the following system of equations

related to θ0 = e3: 

∫
Σ

eiλψ(z,β ) f̃0vB
0
λ
(z,β )dz = O(e−λ/C)∫

Σ
eiλψ(z,β ) f̃1vB

1
λ
(z,β )dz = O(e−λ/C)∫

Σ
eiλψ(z,β ) f̃2vB

2
λ
(z,β )dz = O(e−λ/C)∫

Σ
eiλψ(z,β ) f̃3vB

3
λ
(z,β )dz = O(e−λ/C),

where up to an elliptic factor, we get

σp(Bi
λ
(z,z,ζ ))≡



1 i = 0

sin(a)sin(b) i = 1

sin(a)cos(b) i = 2

cos(a) i = 3.

Here f̃iv is defined by Proposition 2.3.1. Also, the phase function ψ satisfies the conditions (2.21)

and ℑψ > C0|z−w|2 as ψzζ = Id. Note that, some components of d f are repeated in above

equations. This forms an overdetermined system of equations for our fixed vector v ∈ R3. Since

v is arbitrary, for any choice of three linearly independent vectors {vi}3
i=1 ⊆ R3, for (z,z,(z,ξ )) =

(0,0,(0,ξ 0)) one may conclude that (0,ζ 0) 6∈ WFA(d f ), which proves the second part of the

theorem for n= 3. For the general case n> 3, one needs to slightly perturb θ(a1,a2, . . . ,an−1) with

respect to parameters a1,a2, . . . ,an−1. This forms an elliptic system Θ f̃v = 0 for the microlocal

ellipticity discussion and therefore concludes the result. Now for any vector-valued distribution

f ∈ E ′(R1+n), as we pointed out in the proof of part (i), the result remains true in the sense of

distributions.
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Remark 2.5.1 By Fundamental Theorem of Calculus, the potential field is in the kernel of operator

L, so one could only hope to recover curl f for n = 2. For the Riemannian case with dimension

n ≥ 3, foliation (slicing method) can be used to achieve the uniqueness results. One may restrict

x to a two-dimensional plane, say Π = {(t,x) : x3 = · · · = xn = const}, and apply the results in

Theorem 2.5.1 when n = 2. This only recovers some components of the generalized curl of the

vector field f even if different permutations are chosen to fix different components of x. In order

to recover all other components, one needs to perturb above two-dimensional planes. Therefore,

such a slicing technique can be done as the transform is overdetermined. However, additional

assumption which is the information of light-ray for two discrete directions (1,±θ) is required.

Even though the foliation method is a simpler approach for the recovery of the vector field f , we

do not perform foliation to achieve stronger results.

2.6 Proof of Main Result

For our main result we need the following lemma which is a unique analytic continuation

result across a time-like hypersurface in the Minkowski time-space.

Lemma 2.6.1 Let f ∈C ∞(R1+n) and let γx0,θ0 be a fixed light-like line in the Minkowski time-space

so that γx,θ does not intersect supp f for |s| ≥ 1/C with some C for all (x,θ) near (x0,θ0). Fix

z0 = (s0,x0 + s0θ0) ∈ γx0,θ0 , let S be an analytic time-like hypersurface near z0 and assume that

γx0,θ0 is tangent to S at z0.

i) For n = 2, if L f (x,θ) = 0 near (x0,±θ0) and if curl f = 0 on one side of S near z0, then

curl f = 0 near z0.

ii) For n ≥ 3, if L f (x,θ) = 0 near (x0,θ0) and if d f = 0 on one side of S near z0, then

d f = 0 near z0.
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Proof Let n ≥ 3 and assume that z0 ∈ suppd f . By assumption (v.∇x)L f (x,θ) = 0 near (z0,θ0).

Since d f is non-zero only in half space S, then there exists ζ0 such that (z0,ζ0) ∈WFA(d f ), as d f

cannot be analytic at z0. By the definition of analytic wave front set for vector-valued distrubitions,

there exist a component of d f , say fi j = ∂ j fi−∂i f j, where (z0,ζ0) ∈WFA( fi j). In other words, if

the half space S intersects the suppd f , it must intersect at least one of the components of d f , say fi j,

as d f cannot be analytic at the intersection point. Now by Sato-Kawai-Kashiwara Theorem (see

Sato, Kawai, and Kashiwara (1973); Sjöstrand (1982)), (z0,ζ0+sν(z0))∈WFA( fi j), where ν(z0)

is one of the two unit conormals to S at z0. This in turn implies that (z0,
ζ0
s +ν(z0)) ∈WFA( fi j)

as the wave front set is a conic set. Now by passing to limit, we have (z0,ν(z0)) ∈WFA( fi j) since

the analytic wave front set is closed. By assumption on S, that vector is space-like and is conormal

to γ ′x0,θ0
(s0). This contradicts Theorem 2.5.1 part (ii), which implies that d f = 0 and completes

the proof. For n = 2, one may repeat above arguments and use the first part of Theorem 2.5.1 to

conclude the result.

We now are ready to state the proof of the main result.

Proof [Proof of Theorem 2.2.1.] Let n ≥ 3. By assumption (v.∇x)L f (x,θ) = 0. The proof

follows from Theorem 2.1, P. Stefanov (2017) replacing L f (x,θ) by (v.∇x)L f (x,θ) and applying

the second part of Lemma 2.6.1.

To conclude the result for n = 2, one may use Lemma 2.6.1 part (i) and repeat the proof of

Theorem 2.1, P. Stefanov (2017).

In the following examples we illustrate how our result imply the recovery of vector field up

to a smooth potential field.

Example1. Let f be a vector field (distribution) supported in cone {(t,x)∈R1+n| |x|< c|t|}

and let Γρ0 be the following surface:

Γρ0 = {(t,x) ∈ R1+n | ψ(t,x) = |x− x0|2− c2|t− t0|2−ρ
2
0 = 0},

for some ρ0 ≥ 0 and 0 < c < 1. Assume now that f integrates to zero over all light-like lines γ in

the exterior of Γρ0 , ext(Γρ0).
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We show the vector field f can be recovered up to a potential field in the ext(Γρ0). By

definition (z,ζ ) is conormal to Γρ0 if and only if

(z,ζ ) ∈ N∗Γρ0 = {(t,x,τ,ξ ) ∈ T ∗(R1+n×R1+n)|(t,x) ∈ Γρ0 ,(τ,ξ ) = 0 on T(t,x)Γρ0}.

Clearly the gradient of ψ , ∇ψ , is normal to surface Γρ0 at (t,x). So by definition σ∇ψ · (dt,dx)

is the conormal vector to surface Γρ0 at (t,x). In fact, to find the conormal we compute the total

differential of ψ , dψ:

dψ(t,x) =−2c2(t− t0)dt +2(x− x0)dx,

and therefore the covector:

(z,ζ ) = (t,x,τ,ξ ) = (t,x,−2σc2(t− t0),2σ(x− x0)) ∈ N∗Γρ0 , for σ ∈ R,

is conormal to Γρ0 . Clearly the ζ = (τ,ξ ) is space-like in the ext(Γρ0) as it is easy to show

|τ| = 2σc2|t− t0| ≤ 2σ |x− x0| = |ξ | in the ext(Γρ0). Therefore, for any decreasing family of ρ

with the property ρ → ρ0, the surfaces Γρ will be a family of analytic time-like hypersurfaces in

the ext(Γρ0).

Let σ = 1
2 , (t0,x0) = (0,0), and fixed ρ > 0 be the smallest one with the property that

supp f ∩Γρ 6= /0 (supp f ∩Γρ is a compact set.) Now assume that γ0 is tangent to Γρ at z0 (i.e.

(z0,ζ0) is conormal to γ̇0). By compactness of supp f , we have γ 6∈ supp f for any γ approaching

γ0 in the ext(Γρ0). Theorem 2.5.1 implies WFA(d f ) contains no space-like vector conormal to γ̇0

since by assumption L f = 0 over all light-like lines γ near γ0 on one side of analytic time-like

hypersurface Γρ , see Figure 2.1. Now using the analytic continuation result, Lemma 2.6.1, we can

recover the vector field f up to a potential field.
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Figure 2.1. Γρ0 with 0 < c < 1.

Example 2. Let f ∈ E ′(R1+n) be so that supp f expands with a speed less than one and let

Γ0 be the following surface:

Γ0 = {(t,x) ∈ R1+n | ψ(t,x) = (|x− x0|−R)2− c2|t− t0|2 = 0}, for some 0 < c < 1.

Assume now that f integrates to zero over all light-like lines γ intersecting supp f outside of the

surface Γ0. We show the vector field f can be recovered up to a potential field in the ext(Γρ),

where the surface Γρ with ρ > 0 is defined as follow:

Γρ = {(t,x) ∈ R1+n | ψ(t,x) = (|x− x0|−R)2− c2|t− t0|2−ρ
2 = 0}.

By definition, the covector:

(z,ζ ) = (t,x,τ,ξ ) = (t,x,−2σc2(t− t0),2σ
x− x0

|x− x0|
(|x− x0|−R)) ∈ N∗Γρ , for σ ∈ R,

is conormal to Γρ . Note that |τ|= 2σc2|t−t0| and |ξ |= |2σ
x−x0
|x−x0|(|x−x0|−R)|= 2σ ||x−x0|−R|.

So in the ext(Γρ), the covector ζ = (τ,ξ ) is space-like (i.e. |τ| ≤ |ξ |.) Thus, for ρ > 0, the surfaces

Γρ will be a family of analytic time-like hypersurfaces.

60



Let σ = 1
2 , z0 = (t0,x0) = (0,0), and ρ > 0 fixed be the smallest one with the property

that supp f ∩Γρ 6= /0. Similar argument as in above example shows that the vector field f can be

recovered up to a potential field on Γρ . The case where c = 0 corresponds to the classical support

theorem for balls.

Figure 2.2. Γ0 with 0 < c < 1.

Note that on the surface Γ0, there is no conormal covector at t = t0 as |x− x0| = R. Being

outside of Γρ guarantees the existence of conormal covector as ρ > 0 on Γρ , see Figure 2.1.

Next example is a partial data case of Example 2 for the inverse recovery of a smooth

potential field for the hyperbolic Dirichlet-to-Neumann (DN) maps. It is known that, all the integral

lines can be extracted from the DN map for hyperbolic (wave) equations, see, e.g., Aicha (2015);

Bellassoued and Dos Santos Ferreira (2011); Ramm and Rakesh (1991); Ramm and Sjöstrand

(1991); Salazar (2013); P. D. Stefanov (1989); Waters (2014). Our result provides the optimal

way of the inverse recovery process up to a smooth potential. A similar result for recovery of the

unknown potential can be found in P. Stefanov and Yang (2018).

61



Figure 2.3. Γ0 with 0 < c < 1.

Example 3. Let f ∈ E ′(R1+n) be so that supp f expands with a speed less than one, and

consider the cylinder [0,T ]× Ω̄ for some T > 0 and Ω ⊂ Rn. In Example 2 we showed that the

vector field f can be recovered up to a smooth potential field in the exterior of Γρ . Now consider

the surface Γ as union of all those exteriors of time-like hypersurfaces for t ∈ [0,T ]. This surface

includes all light-like lines γx,θ = (s,x+ sθ), (z,θ) ∈ Rn× Sn−1, not intersecting the top and the

bottom of the cylinder [0,T ]× Ω̄, see Figure 2.3.

By Theorem 2.2.1, we can recover f up to dφ , φ = 0 on [0,T ]× Ω̄ in the set covered by

those lines for n≥ 3. As we pointed out on Remark 2.4.1, for n = 2 there are two discrete choices

of directions which means that for recovery of f up to a potential dφ one needs to know L f along

light-like γx,θ as well as knowing L f along γx,−θ . Note that our uniqueness results do not require

the vector field to be compactly supported in time. Moreover, we are not considering any Cauchy

data on circles on top and bottom of the cylinder, which means there is no internal measurement.

This is the optimal way one can wish to recover the vector field f in this set. Uniqueness result

in this paper and result in P. Stefanov and Yang (2018) (recovery of the unknown potential q in Γ)

generalize the uniqueness results in Aicha (2015); Bellassoued and Dos Santos Ferreira (2011);

Ramm and Rakesh (1991); Ramm and Sjöstrand (1991); Salazar (2013); P. D. Stefanov (1989);

Waters (2014).
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DYNAMIC X-RAY TOMOGRAPHY

* This chapter concludes my original work: ”Invertibility and stability for a generic class of

radon transforms with application to dynamic operators.” J. Inverse Ill-Posed Probl. 2018;

https://doi.org/10.1515/jiip-2018-0014.

Mathematical Tomography (or slice imaging) is in the forefront of scientific investigation due to

its wide range of applications in medical imaging, biology, material sciences, and non-destructive

testing. For instance, one may cite Cormack’s Nobel Prize in medical imaging in 1979 where the

Nobel Prize Committee realized his work, a Mathematical One.

The goal of tomography is to find the internal structure of an object by sending waves

(acoustic waves or electromagnetic waves like radio/microwaves, visual light, X-rays, γ-rays)

through the object and creating film (tomographic) images of objects using Radon transform.

The intricate mathematical process of image reconstruction (using inverse Radon transform)

from X-ray projection of measured data at many different angles around the patient is called

Computed Tomography (CT). In medical imaging, image reconstruction has fundamental impacts

on image quality and therefore on radiation dose. Therefore, balancing a need for spatial clarity

for diagnostic usefulness while constraining patient radiation exposure is a substantial question in

this respect, as it plays an extremely crucial role in a patient’s health and safety. To reduce the

level of the risk in patient’s treatment, one needs to lower the level of radiation exposure, which

in turns leads to lack of data and therefore fundamental impacts on image quality in terms of

high-resolution reconstructions.
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This chapter, motivated by Cormack’s contributions, is among the main objectives of modern

integral geometry and inverse problems in particular in the area of Dynamic X-ray Tomography.

We investigate the current challenges in data collection and image reconstruction of objects that

move and change their shapes by time. Among the applications of this work, one can consider its

major role in the X-ray CT scanning or MRI (Magnetic Resonance Imaging) of the heart or the

lunges in medical imaging. Ignoring the dynamic behavior of the heart or the lunges, results in

low spatial or temporal resolution of the reconstructed images, which leads to unreliable diagnosis

and therefore irreversible consequences in patients’ health and life. This is not only a pragmatic

question, but an ethical and mathematical one which has been a subject of profound scientific

studies. How much further risk should a patient be exposed in order to treat a current ailment?

Mathematically, what methods can be used to reduce the radiation dose exposure to achieve the

same levels of diagnostic accuracy? We found that one could utilize the proposed Global Bolker

Condition to quantify how errors in the available measurements (X-ray signals) translate into errors

in the image reconstructions of an object for instance the heart. Leveraging the insights provided

by this result, scientists and doctors can answer the crucial question “For a given radiation dose,

what is a desirable image reconstruction with the lowest possible noise without sacrificing image

accuracy, spatial resolution, and most importantly, a patients’ safety and health?”

The chapter concludes my original work which is published in the journal of Inverse and

Ill-posed Problems. RabieniaHaratbar (2019)
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3.1 Existing Results

The Tomography of moving objects has been attracting a growing interest recently, due to

its wide range of applications in medical imaging, for example, X-ray of the heart or the lungs. Data

acquisition and reconstruction of the object which changes its shape during the measurement is one

of the challenges in computed tomography and dynamic inverse problems. The major difficulty

in the reconstruction of images from the measurement sets is the fact that object changes between

measurements but does not move fast enough compared to the speed of X-rays. This means that

some singularities of the object might not be detectable even if the source fully rotates around the

object. The application of known reconstruction methods (based on the inversion of the Radon

transform) usually results in many motion artifacts within the reconstructed images if the motion

is not taken into account. One extreme example will be the case when the object (or some small

part of it) rotates with the same rate as the scanner. This leads to integration over the same family

of rays (see also Natterer (1986)), and therefore, one cannot locally recover all the singularities.

Analytic techniques for reconstruction of dynamic objects, known as motion compensation,

have been used widely for different types of motion. For affine deformation, see Crawford, King,

Ritchie, and Godwin (1996),Desbat, Roux, and Grangeat (2007), B. Hahn (2014), B. N. Hahn

(2014), A. I. Katsevich (1997), A. Katsevich (2008), A. Katsevich (2010), Roux, Desbat, Koenig,

and Grangeat (2004).

For non-affine deformations, there is no inversion formula. Iterative reconstructions, however,

do exist in order to detect singularities by approximation of inversion formulas for the parallel and

fan beam geometries A. Katsevich (2006), as well as cone beam geometry A. Katsevich, Silver, and

Zamyatin (2011). In a recent work, B. N. Hahn and Quinto (2016) studied the dynamic operator

A f (s, t) =
∫

z·ω(t)=s
µ(t,z) f (ψt(z))dSz, ω(t) = (cos t,sin t), (3.1)

with a smooth motion where the limited data case has been analyzed, and characterization of visible

and added singularities have been investigated.
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Our work in this paper is motivated by these dynamic measurements. We first show this

dynamic problem can be reduced to an integral geometry problem integrating over level curves.

By an appropriate change of variable (see next section), A can be written as

A f (s, t) =
∫

ψ
−1
t (x)·ω(t)=s

µ̂(t,x) f (x)dS.

Therefore, we study the following general operator:

A f (s, t) =
∫

φ(t,x)=s
µ(t,x) f (x)dSs,t ,

which allows us to study the original dynamic problem with a more general set of curves (see also

Frigyik et al. (2008),) and then transfer the result to a dynamic operator A given by (3.1).

The dynamic operator A formulated as above falls into the general microlocal framework

studied by Beylkin Beylkin (1984) (see also B. N. Hahn (2014)) which goes back to Guillemin and

Sternberg Guillemin (1985); Guillemin and Sternberg (1977) who studied the integral geometry

problems with a more general platform from the microlocal point of view. See also Frigyik et

al. (2008), where a weighted integral transform has been studied on a compact manifold with a

boundary over a general set of curves (a smooth family of curves passing through every point in

every direction).

3.2 Main Results

The main novelty of our work, compared to previous works which are concentrated on the

microlocal invertibility, is that for the dynamic problem, under some natural microlocal conditions,

the actual uniqueness and stability results have been established. In fact, our imposed natural

microlocal conditions guarantee that one can recover each singularity, and a functional analysis

argument leads to stability results. We show that under these conditions, the dynamic operator is

stably invertible in a neighborhood of pairs (φ ,µ) in a generic set, and in particular, it is injective

and stable for slow enough motion (which is not required to be periodic). This is similar to stability

result studied in Homan and Zhou (2017) for the generalized Radon transform and in Frigyik et al.

(2008) which coincide when the dimension is two.
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The data is cut (restricted) in a way to have the normal operator related to the localized

dynamic operator A as a pseudodifferential operator (ΨDO) near each singularity. We do not

analyze the case where these conditions are not satisfied globally, but our analysis (see B. N. Hahn

and Quinto (2016)) shows that one can still recover the visible singularities in a stable way, and

periodicity or non-periodicity plays no role in the reconstruction process.

We also show that, due to the generality of our approach, our results can be implemented

to other geometries, for instance, fan beam geometry. In a recent work by B. Hahn and Garrido

(2019), a generalized Radon transform has been used to model the dynamic imaging operators.

Using microlocal analysis results, they a reconstruction process which approximates the solution

via a filtered back-projection type algorithm.

In this section, we first introduce the dynamic operator and then reduce it to an integral

geometry problem integrating over level curves. After some necessary propositions, we state our

main results.

Definition 3.2.1 Let X be a fixed open set in R2 and Y be the open sets of lines determined by

(s, t) in R2. For A : C∞
0 (X)→C∞(Y ), the operator of the dynamic inverse problem is defined by

A f (s, t) =
∫

x·ω(t)=s
µ(t,x) f (ψt(x))dSx,

where ω(t) = (cos t,sin t) and the function µ is a non-vanishing smooth weight changing with

respect to the variable t and the position x.

Here ψt is a diffeomorphism in R2, which is identity outside X , smoothly depending on the variable

t, and dSx is the euclidean measure restricted to the lines parametrized by {s = x ·ω(t)}. Notice

that each point (position) x ∈ X , lies on the lines in Y parametrized by (s, t).

The operator A can be written in the following format:

A f (s, t) =
∫∫

R2
µ(t,x) f (ψt(x))δ (s− x ·ω(t))dx.
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Since ψt is a diffeomorphism, by performing a change of variable z = ψt(x), we get x = ψ
−1
t (z)

and therefore, we have

A f (s, t) =
∫∫

R2
J(t,z)µ(t,ψ−1

t (z)) f (z) δ (s−ψ
−1
t (z) ·ω(t)) dz.

From now on, we do most of our analysis on the following general operator:

A f (s, t) =
∫

φ(t,x)=s
µ(t,x) f (x)dSs,t , (3.2)

where µ is a new positive and real analytic weight and the map

x = (x1,x2)−→ φ(t,x),

with analytic function φ , is real-valued. Here dSs,t is the Euclidean measure of the level curves of

function φ , defined as

H(s, t) = {x ∈ X : s = φ(t,x)}, s ∈ R, t ∈ R.

We, first, need to show for any time t and point x, there exists a curve passing through the point x

with direction ω(t).

Proposition 3.2.1 Let H(s, t) be the level curves of φ . Then, locally near (s0, t0) and near a fixed

x0 ∈ H(s, t) the followings are equivalent.

i) The map from the variable t to the unit normal vector ν of the level curves H(s, t):

t −→ ν(t,x) =
∂xφ(t,x)
|∂xφ(t,x)|

, ∂xφ(t,x) 6= 0, (3.3)

is a local diffeomorphism, where ∂x = (∂x1 ,∂x2).

ii) The Local Bolker Condition:

h(t,x) = det
(

∂φ

∂x j ,
∂ 2φ

∂ t∂x j

)∣∣
(t,x)=(t0,x0)

6= 0, (3.4)

holds locally near (s0, t0) and near x0.
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Remark 3.2.1 i) The proof of Proposition 3.2.1 is postponed to the next section. In our setting,

the equation (3.4) is the generalization of what it is known as a Bolker condition in [Theorem 14

(2), B. N. Hahn and Quinto (2016)].

ii) One can always rotate the unit normal vector ν by π

2 (at a fixed point x on the curve) to get

the tangent vector at that fixed point. Now the first part in Proposition 3.2.1 implies that the

map from the variable t to the tangent vector at point x on the level curve H(s, t), is also a local

diffeomorphism.

iii) We work locally near (s0, t0) and a fixed x0 on the level curve. Let l0 denote the unit tangent

(normal) vector at x0. By the first part, for any unit tangent vector l in some small neighborhood

of l0 (l is some perturbation of l0), the map from the variable t to the unit tangent vector at a fixed

point x is a local diffeomorphism. Now the Implicit Function Theorem implies that for any given

t, there exists a curve passing through the fixed point x with a tangent vector l. This indeed is what

to expect if we want the level curves to behave like the geodesic curves.

iv) The local Bolker condition requires that when the object moves in time, the curve changes

its direction. A counterexample when the local Bolker condition does not hold is the case where

an object and the scanner move with the same rate. In this situation, the object can be considered

stationary where it is being scanned with stationary parallel rays. The above proposition guarantees

that locally and microlocally this situation will not happen and the parameter t changes the angle if

we keep the object stationary. (i.e the movement is not going to be synchronized with the scanner)

v) Proposition 3.3.1 in the next section, shows that one can connect the local Bolker condition to

Fourier Integral Operator (FIO) theory by extending the function φ to a homogeneous function of

order one (see Beylkin (1984)), and therefore one can use the condition (3.4) for the analysis.

For main results, we first state the following definitions.

Definition 3.2.2 The function φ satisfies the Visibility condition at (x,ξ )∈ T ∗X \0 if there exists

a pair (s, t) with property φ(t,x) = s, such that ∂xφ(t,x) ‖ ξ . Here T ∗X is the cotangent bundle of

X .
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The visibility condition requires that at a point x and co-direction ξ , locally, there exists a curve

passing through x which is conormal to ξ . As we pointed out in Remark 3.2.1, this property is a

natural property of level curves as are expected to behave like geodesic curves. It also means that

each singularity can be probed locally.

Definition 3.2.3 Let (x0,(s0, t0)) ∈ X ×Y be a fixed point with property s0 = φ(t0,x0). The

function φ satisfies the Semi-Global Bolker Condition at (x0,(s0, t0)) if there exists a neighborhood

of (x0,(s0, t0)), V and U , such that for any (x,(s, t)) ∈V ×U and y ∈ X φ(t,x) = φ(t,y) = s

∂tφ(t,x) = ∂tφ(t,y)
=⇒ x = y. (3.5)

The first equation in (3.5) implies that at instance t, both points x and y belong to the same level

curve φ . The second equation implies that a perturbation in the variable t, cannot distinguish

between these two points as they both belong to the same perturbed level curve. Note that, if

the level curves φ are geodesics, it is required that the point x (close to a fixed point x0) has no

conjugate points along the curve passing through it with conormal ξ . This is indeed a semi-global

condition, as x only varies in the open set V , but y can be anywhere along the level curve φ , not

necessary close to x.

We now are ready to state our main result for the operator A given by (3.2).

Theorem 3.2.1 Consider the operator A with a nowhere vanishing smooth weight µ . Let Σ be

a set of all possible pairs (φ ,µ) which are smooth in some Ck-topology with k an arbitrary large

natural number. Assume that for any (x,ξ ) ∈ T ∗X \ 0, (i) the visibility condition holds and (ii)

the local and semi-global Bolker conditions are satisfied for some (s, t) given by the visibility

condition.

Then within Σ, there exists a dense and open (generic) set Λ of pairs of (φ ,µ) such that locally

near any pair in Λ, the uniqueness results and therefore stability (injectivity) estimates given by

Proposition 3.6.2 hold.

To formulate above result for the dynamic operator A given by (3.1), we first state the

visibility, and the local and semi-global Bolker conditions for A .
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Visibility. This condition implies that for (x,ξ ) ∈ T ∗X \0, the map

t→ ξ

|ξ |
∈ S1 (3.6)

is locally surjective. Here the point (s, t) lies on the level curve s = ψ
−1
t (x) ·ω(t).

Local Bolker Condition. This condition (see Proposition 3.4.1) implies that

h(t,x) = det
(

∂ψ
−1
t (x)·ω(t)

∂x j , ∂ 2ψ
−1
t (x)·ω(t)
∂ t∂x j

)
6= 0. (3.7)

Semi-global Bolker condition (No conjugate points condition). By condition (3.5), semi-global

Bolker condition holds if the map

x→
(
ψ
−1
t (x) ·ω(t),∂t(ψ

−1
t (x) ·ω(t))

)
(3.8)

is one-to-one.

Now for the dynamic forward operator A given by (3.1), we have the following result:

Theorem 3.2.2 Consider the dynamic operator A with a nowhere vanishing smooth weight µ . Let

Σ be a set of all possible pairs (ψ,µ) which are smooth in some Ck-topology with k an arbitrary

large natural number. Assume that for any (x,ξ ) ∈ T ∗X \0, (i) the visibility condition (3.6) holds

and (ii) the local and semi-global Bolker conditions given by (3.7) and (3.8) are satisfied for some

(s, t) given by the visibility condition.

Then within Σ, there exists a dense and open (generic) set Λ of pairs of (ψ,µ) such that locally

near any pair in Λ, the uniqueness results and therefore stability (injectivity) estimates hold.

Corollary 3.2.1 In particular, for a small perturbation of φ(t,x) = x ·ω(t) where there is no

motion or the motion is small enough (µ ≈ 1), we have the actual injectivity and invertibility

as the set of pairs of (φ ,µ) is included in Λ.

Remark 3.2.2 The Corollary 3.2.1 follows from the fact that the stationary Radon transform is

analytic and for a small perturbation of phase function, the invertibility and injectivity still hold.
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3.3 Preliminaries

In this section, we first prove Proposition 3.2.1 and then connect the local Bolker condition

(3.4) to Fourier Integral Operator theory. At the end, we state some definitions which will be used

in the following sections.

Definition 3.3.1 A set Σ is conic, if ξ ∈ Σ then rξ ∈ Σ for all r > 0.

Proof [Proof of Proposition 3.2.1] i)→ ii) Fix (t0,x0) and let φ(t0,x0) = s0. We work on some

neighborhood of (s0, t0) and x0. Since ∂xφ(t,x) 6= 0, the map (3.3) is well-defined and there exists

a tangent at a fixed time t when x varies. The map (3.3) is a local diffeomorphism, therefore

∂tν(t,x) 6= 0 and its inverse exists with non-zero derivative in a conic neighborhood.

Assume now that h(t,x) = 0. Then there exists a non-zero constant c such that

∂t∂xφ(t,x) = c∂xφ(t,x). (3.9)

Plugging (3.9) into ∂tν(t,x):

∂tν(t,x) =
∂t∂xφ(t,x)
|∂xφ(t,x)|

−∂xφ(t,x)
∂xφ(t,x) ·∂t∂xφ(t,x)
|∂xφ(t,x)|3

we get ∂tν(t,x) = 0, which is a contradiction. Therefore

h(t,x) 6= 0.

ii)→ i) Assume that (3.4) is true. This in particular implies that ∂xφ(t,x) and ∂t∂xφ(t,x) are

non-zero and linearly independent. For any t, let ν(t,x) = ∂xφ(t,x)
|∂xφ(t,x)| denotes the unit normal at

a fixed point x on the curve. To show the map in (3.3) is a local diffeomorphism, we need to show

∂tν(t,x) 6= 0 in a conic neighborhood. Note that this map is well-defined as ∂xφ(t,x) 6= 0. Assume

that ∂tν(t,x) = 0. Then

∂t∂xφ(t,x)
|∂xφ(t,x)|

= ∂xφ(t,x)
∂xφ(t,x) ·∂t∂xφ(t,x)
|∂xφ(t,x)|3
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which implies that

∂t∂xφ(t,x) = c∂xφ(t,x), c =
∂xφ(t,x) ·∂t∂xφ(t,x)
|∂xφ(t,x)|2

.

This contradicts with the fact that ∂xφ(t,x) and ∂t∂xφ(t,x) are linearly independent. Now by

Inverse Function Theorem, the map (3.3) is a local diffeomorphism as it is smooth and its Jacobian

is nowhere vanishing.

One can extend the function φ to a homogeneous function of order one as follow:

ϕ(x,θ) = ψ
−1
argθ

(x) ·θ = |θ |φ(argθ ,x), where θ = (θ 1,θ 2) = |θ |(cos t,sin t) ∈ R2 \0. (3.10)

As we pointed out above, we work locally in a conic neighborhood of t0 and s0. This guarantees

that function argθ is single-valued. To connect the local Bolker condition to Fourier Integral

Operator theory, we have the following proposition.

Proposition 3.3.1 For the function ϕ defined by φ in (3.10), the local Bolker condition (3.4) holds

if and only if

det
(

∂ 2ϕ

∂θ i∂x j

)
6= 0.

Proof Since ∂xϕ = |θ |∂xφ 6= 0, we have

∂ 2ϕ

∂θ 1∂x j =
∂

∂θ 1 (|θ |
∂φ

∂x j ) =
θ 1

|θ |
∂φ

∂x j −
θ 2

|θ |
∂ 2φ

∂ t∂x j ,

and
∂ 2ϕ

∂θ 2∂x j =
∂

∂θ 2 (|θ |
∂φ

∂x j ) =
θ 2

|θ |
∂φ

∂x j +
θ 1

|θ |
∂ 2φ

∂ t∂x j ,

where t = argθ . Assume first that ∂xφ(t,x) and ∂t∂xφ(t,x) are linearly independent. We show that

columns in the matrix ∂ 2ϕ

∂θ i∂x j are linearly independent for i = 1,2. So let

c1
∂ 2ϕ

∂θ 1∂x j + c2
∂ 2ϕ

∂θ 2∂x j = 0.

Then we have

(c1
θ 1

|θ |
+ c2

θ 2

|θ |
)

∂φ

∂x j +(−c1
θ 2

|θ |
+ c2

θ 1

|θ |
)

∂ 2φ

∂ t∂x j = 0.
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Since ∂xφ(t,x) and ∂t∂xφ(t,x) are linearly independent, we have

c1θ
1 + c2θ

2 = 0, −c1θ
2 + c2θ

1 = 0,

which simply implies that c1 = c2 = 0, and therefore ∂ 2ϕ

∂θ i∂x j are linearly independent for i = 1,2.

Assume now that ∂ 2ϕ

∂θ i∂x j are linearly independent for i = 1,2. We show that ∂xφ(t,x) and

∂t∂xφ(t,x) are linearly independent. We first rewrite ∂xφ(t,x) and ∂t∂xφ(t,x) as follow:

θ
1 ∂ 2ϕ

∂θ 1∂x j =
(θ 1)2

|θ |
∂φ

∂x j −
θ 1θ 2

|θ |
∂ 2φ

∂ t∂x j ,

and

θ
2 ∂ 2ϕ

∂θ 2∂x j =
(θ 2)2

|θ |
∂φ

∂x j +
θ 1θ 2

|θ |
∂ 2φ

∂ t∂x j .

Adding the last two equations we get

θ 1

|θ |
∂ 2ϕ

∂θ 1∂x j +
θ 2

|θ |
∂ 2ϕ

∂θ 2∂x j =
∂φ

∂x j .

Consider

−θ
2 ∂ 2ϕ

∂θ 1∂x j =−
θ 1θ 2

|θ |
∂φ

∂x j +
(θ 2)2

|θ |
∂ 2φ

∂ t∂x j ,

and

θ
1 ∂ 2ϕ

∂θ 2∂x j =
θ 1θ 2

|θ |
∂φ

∂x j +
(θ 1)2

|θ |
∂ 2φ

∂ t∂x j .

Adding the last two equations, we have

− θ 2

|θ |
∂ 2ϕ

∂θ 1∂x j +
θ 1

|θ |
∂ 2ϕ

∂θ 2∂x j =
∂ 2φ

∂ t∂x j .

Now assume that

c̃1
∂φ

∂x j + c̃2
∂ 2φ

∂ t∂x j = 0.

In a similar way as we showed above and using the fact that ∂ 2ϕ

∂θ i∂x j are linearly independent for

i = 1,2, we conclude that c̃1 = c̃2 = 0. This proves the proposition.

In principle, Proposition 3.2.1 implies that we can use our analysis with (3.4), see Beylkin (1984).
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3.4 Microlocal Analyticity

In this section, we study the microlocal analyticity of operator A for a given f . We first

compute the adjoint operator.

Adjoint Operator A ∗. Let φ ∈C∞(R× X̃) be given, where X is embedded in an open set

X̃ . We extend our function f to be zero on X̃ \X . Consider now the one-dimensional level curves

H(s, t) = {x ∈ X̃ : s = φ(t,x)}, s ∈ R, t ∈ R

with Euclidean measure dSx induced by the volume form dx in the domain X . There exists a

non-vanishing and smooth function J(t,x) such that

dSs,t(x)∧ds = J(t,x)dx.

Therefore, ∫ T2

T1

∫
R
(A f )ḡdsdt =

∫ T2

T1

∫
R

∫
H(s,t)

µ(t,x) f (x)ḡ(s, t)dSs,tdsdt

=
∫ T2

T1

∫
X̃

µ(t,x) f (x)ḡ(φ(t,x), t)J(t,x)dxdt,

where T1 < t < T2 and 0 < T2−T1� 2π . In the second equality above, we used the fact that the

double integral
∫

R
∫

H(s,t) equals to an integral over X̃ , by Fubini’s Theorem. Thus, the adjoint of

A in L2(X ,dx) is

A ∗g(x) =
∫

R
µ̄(t,x)J̄(t,x)g(φ(t,x), t)dt,

where µ is supported in {t ∈ R : T1 < t < T2}. In fact, the adjoint A ∗g(x) is localized in t and is

an average over all lines or curves H(s, t) that go through x.

Schwartz Kernel. Now we compute the Schwartz kernel of the operator A .

Lemma 3.4.1 The Schwartz kernel KA of A is

KA (s, t,y) = δ (s−φ(t,y))µ(t,y)J(t,y),
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where J(t,y) = |dyφ |= (∑ |∂y jφ |2)
1
2 .

Proof Let Φ(s, t,y) = s−φ(t,y). By (3.2) we have

A f (s, t) =
∫

φ(t,y)=s
µ(t,y) f (y)dSs,t =

∫
φ(t,y)=s

µ(t,y) f (y)|dyΦ||dyΦ|−1dSs,t .

Since ∂y jΦ =−∂y jφ and ∂y jφ 6= 0 when Φ = 0, by Theorem (6.1.5) Hörmander (1985), we have

|dyΦ|−1dSs,t = Φ
∗
δ0.

Here ∗ is pullback with Φ∗δ0 = δ0 ◦Φ. The second integral above can be written as

∫
Φ
∗
δ0µ(t,y) f (y)|dyΦ|dy = 〈Φ∗δ0µ|dyΦ|, f 〉.

Therefore, the Schwartz kernel of A is

KA (s, t,y) = δ (s−φ(t,y))µ(t,y)|dyΦ|.

Remark 3.4.1 One can compute the Schwartz kernel of A ∗ and N = A ∗A :

KA ∗(s, t,x) = δ (φ(t,x)− s)µ̄(t,x)J(t,x),

KN (s, t,x,y) =
∫

R
δ (φ(t,x)−φ(t,y))µ̄(t,x)J(t,x)µ(t,y)J(t,y)dt.

The following lemma shows that the operator A is an elliptic Fourier Integral Operator (FIO).

Lemma 3.4.2 Let M = {(s, t,x) : Φ(s, t,x) = s−φ(t,x) = 0} ⊂Y ×X . Then the operator A is an

elliptic FIO of order −1
2 associated with the conormal bundle of M:

N∗M = {(s, t,x,σ ,τ,ξ ) ∈ T ∗(Y ×X)
∣∣ (σ ,τ,ξ ) = 0 on T(s,t,x)M},

where (s, t,σ ,τ) and (x,ξ ) are the coordinates on T ∗Y and T ∗X, respectively.
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Proof By Lemma 3.4.1 the Schwartz kernel KA has singularities conormal to the manifold M.

Since dimX = dimY = 2, the Schwartz kernel KA is conormal type in the class I−
1
2 (Y ×X ;M), see

(Section 18.2, Hörmander (1985)). This shows that the operator A is an elliptic FIO of order −1
2

associated with the conormal bundle N∗M. Note that σ is a one-dimensional non-zero variable.

We now compute the canonical relation C and show it is a four-dimensional non-degenerated

conic submanifold of N∗M parametrized by (t,x,σ). Note that N∗M is a Lagrangian submanifold

of T ∗(Y ×X).

Proposition 3.4.1 Let C be the canonical relation associated with M. Then

C = {(φ(t,x), t,σ ,−σ∂tφ(t,x);x,σ∂xφ(t,x)
∣∣(φ(t,x), t,x) ∈M, 0 6= σ ∈ R}.

Furthermore, the canonical relation C is a local canonical graph if and only if for any t, the map

x→ (φ(t,x),∂tφ(t,x)) (3.11)

is locally injective and local Bolker condition (3.4) holds.

Proof The twisted conormal bundle of M:

C = (N∗M \0)′ = {(s, t,σ ,τ;x,ξ )
∣∣ (s, t,σ ,τ;x,−ξ ) ∈ N∗M},

gives the canonical relation associated with M. We first calculate the differential of the function

Φ(s, t,x) = s−φ(t,x). We have

dΦ(s, t,x) = ds−∂tφ(t,x)dt−∂xφ(t,x)dx.

Therefore, the canonical relation is given by

C = {(φ(t,x), t,σ ,−σ∂tφ(t,x);x,σ∂xφ(t,x)
∣∣(φ(t,x), t,x) ∈M, 0 6= σ ∈ R}.
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Now consider the microlocal version of double fibration:
where

ΠX(φ(t,x), t,σ ,−σ∂tφ ;x,σ∂xφ) = (x,σ∂xφ),

ΠY (φ(t,x), t,σ ,−σ∂tφ ;x,σ∂xφ) = (φ(t,x), t,σ ,−σ∂tφ).

Our goal is to find out when the Bolker condition (locally) holds for C , that is, ΠY : C → T ∗(Y ) is

an injective immersion. We first compute its differential:

dt,x,σ ΠY =


∂tφ ∂x1φ ∂x2φ 0

1 0 0 0

0 0 0 1

−σ∂ 2
t φ −σ∂ 2

t,x1φ −σ∂ 2
t,x2φ ∂tφ

 .

If dt,x,σ ΠY has rank equal to four, then the Bolker condition is locally satisfied. Indeed, this is

true, as dt,x,σ ΠY has rank equal to four if and only if the condition (3.4) holds. This implies that

dimC = 4. Since the map in (3.11) is one-to-one, the projection ΠY : C → T ∗(Y ) is an injective

immersion. Hence, ΠY is a local diffeomorphism.

The following lemma states whether position singularities and measurement singularities can affect

each other.

Lemma 3.4.3 Let X be a fixed open set in R2 and Y be the open sets of lines determined by (s, t)

in R2. Then, the map

ΠX ◦Π
−1
Y : T ∗(Y )−→ T ∗(X)
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is a local diffeomorphism.

Proof Consider the map ΠY : C → T ∗(Y ). We show that for a given (s, t,σ ,−σ∂tφ) ∈ T ∗(Y ),

one can determine (x,ξ ) ∈ T ∗(X). Since ∂tφ is non-zero (σ and σ∂tφ are both non-zero,) for a

given (s, t) there exists a tangent vector to each level curve H(s, t). By Remark 3.2.1, one can find

a non-zero normal vector ∂xφ on each level curve, and therefore ξ = σ∂xφ . On each level curve

H(s, t), we have s= φ(t,x). Since ∂xφ 6= 0, the Implicit Function Theorem implies that the variable

t determines x. Hence, the map ΠY is a local diffeomorphism.

Now consider the map ΠX : C → T ∗(X). Our goal is to determine (s, t,σ ,−σ∂tφ)∈ T ∗(Y ),

for a given (x,ξ ) = (x,σ∂xφ) ∈ T ∗(X). By Proposition 3.2.1, the map

ξ

|ξ |
=

∂xφ

|∂xφ |
−→ t,

is a local diffeomorphism for a fixed point x provided that the condition (3.4) holds. Thus, (x, ξ

|ξ |)

determines the variable t. In particular, for a given (x,ξ ) this implies that one can identify the

level curve H(s, t), as (t,x) determines φ , and therefore s (on each level curve we have s = φ(t,x).)

Since ξ = σ∂xφ with ξ 6= 0, one can determine σ = |ξ |
|∂xφ | . To determine the last variable σ∂tφ , it is

enough to take the partial derivative of φ with respect to the variable t. Thus, the map ΠX is a local

diffeomorphism. We remind that the above argument is valid when the condition (3.4) is satisfied.

Now since dim(Y )=dim(X) and

ΠX : C → T ∗(X), ΠY : C → T ∗(Y )

are local diffeomorphisms, the map

ΠX ◦Π
−1
Y : T ∗(Y )−→ T ∗(X)

(s, t,σ ,τ) 7−→ (x,ξ )

will be a local diffeomorphism.
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Remark 3.4.2 i) Note that, by [Proposition 4.1.4, Duistermaat and Hörmander (1972)], if we

show one of the maps ΠY or ΠX is a local diffeomorphism, then the other map is also a local

diffeomorphism as dim(Y )=dim(X). We, however, in above lemma have shown that both maps are

local diffeomorphisms, as the proof reveals whether each map will be a global diffeomorphism or

not. In fact, for a fixed (x,ξ )∈ T ∗(X) there might be more than one curve which resolves the same

singularity.

ii) The map ΠY : C → T ∗(Y ) being a local diffeomorphism implies that one can always

track the position singularities (x,σ∂xφ) ∈WF( f ) by having the measurement singularities

(φ(t,x), t,σ ,−σ∂tφ(x,ξ )) ∈WF(A f )

. iii) The map ΠX : C → T ∗(X) being a local diffeomorphism means that for any fixed

position x and covector ξ , there exists a curve not necessarily unique passing through x perpendicular

to ξ .

This means singularities in data, i.e. (x,σ∂xφ) ∈ WF( f ), can affect the measurement

singularities, i.e. (φ(t,x), t,σ ,−σ∂tφ (x,ξ )) ∈WF(A f ).

iv) Proposition 3.4.1 and Lemma 3.4.3 show the local surjectivity of the map

[T1,T2] 3 t→ ∂xφ(t,x)
|∂xφ(t,x)|

∈ S1, for a fixed x.

Note that if the visibility condition holds, then we have the global surjectivity on S1.

3.5 Global Bolker Condition

In this section, we study the microlocalized version of the normal operator N = A ∗A

to prove a stability estimate. It is known that the normal operator N is a ΨDO if the projection

ΠY : C → T ∗(Y ) is an injective immersion (see Proposition 8.2, Guillemin and Sternberg (1979)).

For our analysis, in addition to the visibility and local Bolker conditions, we assume that the

semi-global Bolker condition is satisfied which is similar to the No Conjugate Points assumption

for the geodesics ray transform studied in (Frigyik et al. (2008); Krishnan (2009)).
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To construct the operator N , we perform the microlocalization in a conic neighborhood of

a fixed covector (x0,ξ
0) ∈ T ∗X \0. By the visibility condition, there exists some (s0, t0) such that

φ(t0,x0) = s0 and ∂xφ(t0,x0) ‖ ξ 0; which means for each point x0 and co-direction ξ 0, there exists

a curve passing through x0 where ξ 0 is normal to it. By semi-global Bolker condition, there exists

a pair of neighborhoods of (x0,(s0, t0)), V and U , such that for any (x,(s, t)) ∈V ×U, the visibility

condition is preserved under small perturbations in t variable. We now shrink V and U sufficient

enough such that the local Bolker condition is also satisfied.

Define N = χX A ∗χY A , where χX (x) and χY (s, t) are non-negative cut-off functions in a

neighborhood of x0 and (s0, t0), respectively, with property that the projections ΠX : C → T ∗(X)

and ΠY : C → T ∗(Y ) are embeddings above supp(χX ) and supp(χY ). In fact, the smooth cut-off

functions χX and χY are localizations on the base variables x and (s, t) and they are not ΨDOs. The

following theorem shows that the (microlocalized) normal operator N = χX A ∗χY A is a ΨDO of

order −1.

Theorem 3.5.1 Let (x0,ξ
0) ∈ T ∗X \0 be a fixed covector. Assume that the visibility, the local and

semi-global Bolker conditions are satisfied near (x0,ξ
0). Let χX and χY be non-negative cut-off

functions defined above. Then the operator N = χX A ∗χY A is a classical ΨDO of order −1 with

principal symbol

p(x,ξ ) = (2π)−1
χX

W (x,x,ξ )+W (x,x,−ξ )

h̃(x,ξ )

near (x0,ξ
0). The functions W and h̃ are defined as

W (x,x,ξ ) = χY (φ(t,x), t)|µ(t,x)|
2J2(t,x), and h̃(x,ξ ) =

|ξ |
|∂xφ(t,x)|

h(t,x),

where t = t(x,ξ ) is well-defined locally by Lemma 3.4.3.

Proof For the proof we mainly follow (Lemma 2, Homan and Zhou (2017)). By the equation

(3.2), we have

χY (s, t)A f (s, t) =
∫

φ(t,x)=s
χY (φ(t,x), t)µ(t,x) f (x)dSs,t .
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Considering the Schwartz kernel of the microlocalized normal operator N = χX (x)A
∗χY (s, t)A ,

we split the integration over R into {σ > 0} and {σ < 0}. We have

KN =
∫

R

∫ +∞

0
ei(φ(t,x)−φ(t,y))σ

χX (x)W (t,x,y)dσdt

+
∫

R

∫ +∞

0
e−i(φ(t,x)−φ(t,y))σ

χX (x)W (t,x,y)dσdt = KN + +KN −,

where KN + and KN − are the Schwartz kernels of the operators N + and N − with N = N ++

N −. We first consider KN + . Note that KN + , localized as the function φ , priori satisfies the local

Bolker condition (3.4). By semi-global Bolker condition (3.5), we have φ(t,x) = φ(t,y) = s

∂tφ(t,x) = ∂tφ(t,y)
=⇒ x = y.

Now a stationary phase method implies that KN + is smooth away from the diagonal {x = y}.

Since ∂xφ(t,x) 6= 0, for a fixed x there exists a neighborhood U on which we have normal vectors.

We work on normal coordinates (xi,yi) as coordinates on U ×U , with xi = yi. In these local

coordinates, one can expand the phase function near the diagonal {x = y}. Let

(φ(t,x)−φ(t,y))σ = (x− y) ·ξ (t,σ ,x,y), (3.12)

where ξ (t,σ ,x,y) is defined by the map

(t,σ)→ ξ (t,σ ,x,y) =
∫ 1

0
σ∂xφ(t,x+ τ(y− x))dτ.

On the diagonal, we have ξ (t,σ ,x,x) = σ∂xφ(t,x) = ξ and the map is a smooth diffeomorphism

as

det(
∂ξ

∂ (t,σ)
)∣∣

x=y

= det
(

∂φ

∂x j ,σ
∂ 2φ

∂ t∂x j

)
= σh(t,x) 6= 0.

Notice that σ = |ξ |
|∂xφ(t,x)| and t = t(x,ξ ) is locally well-defined by Lemma 3.4.3. Therefore,

h̃(x,ξ ) =
|ξ |
|∂xφ |

h(t,x) 6= 0.
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Using the above change of variable (3.12) on the diagonal yields

KN +(s, t,x,y) = (2π)−1
∫∫

R2
ei(x−y)·ξ

χX (x)W (x,y,ξ )|h̃(x,ξ )|−1dξ ,

where the function W is defined above. By restricting the amplitude to diagonal {x = y}, one can

find the principal symbol of KN + . Now the principal symbol of KN is given by the sum of those

for KN + and KN − . Since the weight µ is a positive real analytic function, the normal operator N

is a classical ΨDO with principal symbol p(x,ξ ) provided the function φ satisfies the local and

semi-global Bolker condition. Now since µ is nowhere vanishing and by local Bolker condition

(3.4) h(t,x) 6= 0, the operator N is an elliptic ΨDO if the visibility condition is satisfied.

3.6 Analysis of Global Problem and Stability

In previous sections, we studied the operators A and N . We showed that under the

visibility, local and semi-global Bolker conditions, the microlocalized normal operator N is a

ΨDO of order −1 in a small conic neighborhood of a fixed covector (x,ξ ) ∈ T ∗X \0.

To reconstruct f ∈ L2(X) from its measurements A f using the operator N , we need to

expand our results globally. As we pointed out in the begining of section five, the visibility, local

and semi-global Bolker conditions (which are open conditions in a small conic neighborhood of

(x0,ξ
0)) are required for the analysis. We also employ non-negative cut-off functions χX and χY in

neighborhoods of x0 and (s0, t0), where the projections ΠX and ΠY are embeddings above supp(χX )

and supp(χY ).
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Let K ⊂ X be a compact subset and (x0,ξ
0) ∈ T ∗K \ 0 be a fixed covector. There exists a

pair of conic neighborhoods (V , Ṽ ) with property (x0,ξ
0)∈ V and V b Ṽ such that the visibility,

local and semi-global Bolker conditions are satisfied for Ṽ . Let {Vα} be an open covering for

T ∗K \0. Since T ∗K \0 is conically compact subset of T ∗X \0, by a compactness argument, there

exists a finite subcover of {Vi}. By Theorem 5.1, the microlocally restricted normal operators Ni =

χiX A ∗χiY A are ΨDOs of order −1 supported in a conic neighborhood Vi (where the visibility,

local and semi-global Bolker conditions are satisfied), with the principal symbols

pi(x,ξ ) = (2π)−1
χiX (x)

Wi(x,x,ξ )+Wi(x,x,−ξ )

h̃(x,ξ )
,

where

Wi(x,x,ξ ) = χiY (φ(t,x), t)|µ(t,x)|
2J2(t,x), h̃(x,ξ ) =

|ξ |
|∂xφ(t,x)|

h(t,x),

and t = t(x,ξ ) is well-defined locally by Lemma 3.4.3. Here {χiX} and {χiY } are families of

smooth cut-off functions which are non-negative in neighborhoods of Vi 3 x0 and Ui 3 (s0, t0), with

property that supp χiX ⊂ Vi and supp χiY ⊂Ui. We remind that, the smooth cut-off functions χiX

and χiY are localizations on the base variables x and (s, t) and they are not ΨDOs.

Set N = ∑Ni. Now for any (x,ξ ), there exists k such that χkX (x) 6= 0 and all other terms

are non-negative. Hence ∑Ni is elliptic, and therefore the operator N is a classical ΨDO of order

−1 with principal symbol P(x,ξ ) = ∑ pi(x,ξ ).

Remark 3.6.1 It should be noted that in our analysis, the cut-off functions are used for the C∞

results. For the case of analytic arguments, one cannot use cut-off functions.

In the following proposition, we show that for any neighborhood of a fixed covector (x0,ξ
0)∈

T ∗X \ 0, ellipticity holds along normals in a conic neighborhood of this covector. We point out

that, one can use the ”eating away at supp f ” argument, first stated by Boman and Quinto Boman,

Quinto, et al. (1987), to conclude the similar results.

84



Proposition 3.6.1 Assume that the dynamic operator A satisfies the visibility, the local Bolker,

and the semi-global Bolker conditions for all (s, t) ∈ Y and (x0,ξ
0) ∈ T ∗(X) \ 0. Let φ be a real

analytic function and µ be a positive real analytic weight. Let f ∈ L2(X) with supp f ⊂ X. If

A f = 0 in a neighborhood of some level curves, l0, determined by (s0, t0), then

WFA( f )∩N∗(l0) = /0.

Proof Let (x0,ξ
0) ∈ T ∗X \ 0 be fixed. By the visibility condition, there exists (s0, t0) such that

φ(t0,x0) = s0 and ∂xφ(t0,x0) ‖ ξ 0. Now the proof follows directly from [Proposition 1, Homan

and Zhou (2017)] and applying it to all conormals of the fixed curve l0, determined by (s0, t0).

Remark 3.6.2 For the results in Proposition 3.6.1, we only need the visibility, the local and

semi-global Bolker conditions to be satisfied near N∗(l0). However, to conclude the following

corollary, we need to have the above three conditions satisfied globally, i.e. for all (s, t) ∈ Y and

(x0,ξ
0) ∈ T ∗(X)\0.

Corollary 3.6.1 Under the assumption of Proposition 3.6.1, A f = 0 implies that f = 0.

Proof Let X̃ ⊃ supp f be an open set where the function f is extended to be zero on X̃ \X (X

is embedded in the set X̃ .) Consider all level curves intersecting X̃ . By visibility condition, there

exists a level curve l0 determined by (s0, t0) such that φ(t0,x0) = s0 and ∂xφ(t0,x0) ‖ ξ 0 (i.e. each

singularity is visible). On the other hand, the local and semi-global Bolker conditions guarantee

that there exist some lines in the exterior of supp f . By assumption, A f = 0 for all these level

curves. Now, Proposition 3.6.1 implies that f is analytic in the interior of X̃ . Since f is identically

zero on X̃ \X , f must be identically zero on all of X . Hence A is injective.

The following proposition is a standard stability estimate which follows from elliptic regularity see

(Theorem 2, P. Stefanov and Uhlmann (2004)) and (Proposition V.3.1, Taylor (1981)).

Proposition 3.6.2 Let the real analytic function φ satisfies the visibility, the local and semi-global

Bolker conditions and µ be a positive real analytic weight. Let K be a compact subset of X. Then

for all f ∈ L2(K) and s > 0 there exists C > 0 and Cs > 0 depending on s such that

‖ f ‖L2(K)≤C ‖N f ‖H1(X̃) +Cs f ‖H−s, ∀s.
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Moreover, if N : L2(K)→ H1(X̃) is injective, then there exists a stability estimate,

‖ f ‖L2(K)≤C′ ‖N f ‖H1(X̃)

where C′ > 0 is a constant.

Proof The proof directly follows from Theorem 3.5.1 and above arguments.

Remark 3.6.3 Note that the way the parametrix is constructed in above proposition, one has

control on how the constant C to be chosen. This, however, is not the case for C′ in the second

inequality.

In what follows, we perturb φ and µ , and prove that the perturbation yields a small constant times

an L2-norm of the function f which can be absorbed by the left-hand side of above estimate. The

following lemma is in the spirit of [Lemma 4, Homan and Zhou (2017)].

Lemma 3.6.1 Let A be a dynamic operator satisfying the visibility, the local and semi-global

Bolker conditions with a real analytic function φ and positive real analytic weight µ . There exists

a k� 2 and (φ̃ , µ̃) ∈Ck such that if

‖ φ − φ̃ ‖Ck(R×X̃), ‖ µ− µ̃ ‖Ck(R×X̃)< δ � 1,

then there exists C ≥ 0 depending on the Ck(R× X̃) norm of φ and µ such that

‖ (N − ˜N ) f ‖H1(X̃)≤Cδ ‖ f ‖L2(X̃) .

Here

N = ∑
i

Ni = ∑
i

χiX A ∗
χiY A , ˜N = ∑

i

˜Ni = ∑
i

χiX Ã ∗χiY
˜A

are two microlocally restricted normal operators corresponding µ and µ̃ , respectively, and the

cut-off functions χiX and χiY are defined as above.
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Proof Let (x0,ξ
0) ∈ T ∗(X)\0 be a fixed covector. By the visibility condition, there exists a line

l0, determined by (s0, t0), such that φ(t0,x0) = s0 and ∂xφ(t0,x0) ‖ ξ 0. Let χX and χY be smooth

cut-off functions defined above in neighborhoods of x0 and l0 corresponding to φ ∈Ck with k large

enough. By Lemma 3.4.2 and Remark 3.4.3, for any level curve l close to l0, a perturbation of

φ ∈ Ck results in the perturbation of the family of the level curves near φ(t0,x) = s0. Since the

local and semi-global Bolker conditions are open conditions, the visibility condition is preserved

under the small perturbation in a neighborhood of l0. On the other hand, a priori, we assumed that

φ and φ̃ are δ -close with Ck-topology. Therefore, one can choose the same cut-off function χX

and χY such that both projections ΠY and Π̃Y are embeddings on their support and the visibility,

the local and semi-global Bolker conditions are satisfied in each neighborhood. Therefore for each

i, Theorem 3.5.1 implies that the microlocally restricted normal operators Ni = χiX A ∗χiY A and

˜Ni = χiX Ã ∗χiY
˜A are elliptic ΨDOs with symbols depending on φ , µ and φ̃ , µ̃ , respectively.

We now directly apply the argument on [Lemma 4, Homan and Zhou (2017)] to N ±
i −

˜N ±
i , to conclude that for each i

‖N ±
i − ˜N ±

i ‖L2
c(X̃)→H1(X̃)= O(δ ),

and hence,

‖ (Ni− ˜Ni) f ‖H1(X̃)≤Cδ ‖ f ‖L2(X̃) .

Now the fact that the operator N is a finite sum of operators of the form Ni, as well as using the

triangle inequality

‖ (N − ˜N ) f ‖H1(X̃)≤∑
i
‖ (Ni− ˜Ni) f ‖H1(X̃),

conclude the results.

Next result is a stability estimate for a generic class of dynamic operators satisfying the visibility,

the local and semi-global Bolker conditions.

Theorem 3.6.1 Let X be an open set of points (positions) x lying on lines in Y , where Y is the open

sets of lines determined by (s, t) in R2. Let A : L2(X)→ H1(X̃), satisfying the visibility, the local

and semi-global Bolker conditions, be an injective dynamic operator defined by the real analytic

function φ and positive real analytic weight µ . Then
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i) For any φ̃ ∈ neigh(φ) and µ̃ ∈ neigh(µ) with Ck-topology (k an arbitrary large natural number)

and for all f ∈ L2(K) with K a compact subset of X, there exists C ≥ 0 such that

‖ f ‖L2(K)≤C ‖ Ñ f ‖H1(X̃) .

In particular, the operator ˜A is injective.

ii) The following stability estimate remains true for any perturbation of φ and µ:

‖ f ‖L2(K) /C ≤ ‖N f ‖H1(X̃) ≤ C ‖ f ‖L2(K) .

Proof i) A is injective, thus by Proposition 3.6.2, we have the following stability estimate:

‖ f ‖L2(X̃) ≤ C1 ‖N f ‖H1(X̃) = C1 ‖ ˜N f +(N − ˜N ) f ‖H1(X̃)

≤ C1 ‖ ˜N f ‖H1(X̃) + C1 ‖ (N − ˜N ) f ‖H1(X̃) .

By Lemma 3.6.1, there exists a constant C2 ≥ 0 such that

‖ (N − ˜N ) f ‖H1(X̃) ≤ C2δ ‖ f ‖L2(X̃),

and therefore,

‖ f ‖L2(X̃) ≤ C1 ‖ ˜N f ‖H1(X̃) + C1C2δ ‖ f ‖L2(X̃) .

Letting δ < min{(2C1C2)
−1,1/2} yields

‖ f ‖L2(K) ≤ C ‖ ˜N f ‖H1(X̃) .

Assume now that ˜A f = 0. Then

˜N f = ∑
i

˜A ∗
χi ˜A f = 0, as ˜A f = 0.

The last inequality above implies that f = 0. Hence, the operator ˜A is injective.
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ii) This part follows directly from the first part and the continuity of pseudodifferential operator

˜N .

Proof [Proof of Theorem 3.2.1] The proof directly follows from Theorem 3.6.1.

3.7 Analysis of Dynamic Operator

In this section, we state the implications of our analysis for the partial case, where the

dynamic operator is given by (3.1). This corresponds to the initial example of scanning the moving

object with changing its shape. Some part of above results, the local and semi-global Bolker

assumptions, are also given in [Theorem 14, B. N. Hahn and Quinto (2016)] and the problem of

recovery of singularities has been analyzed. The periodic and non-periodic motions with φ(t,x) =

ψ
−1
t (x) ·ω(t) have been studied in B. N. Hahn and Quinto (2016) to explain which singularities

are visible (see Theorems 24, 26).

Using a change of variable x = ψt(z), the dynamic operator A can be written as:

A f (s, t) =
∫∫

R2
J(t,x)µ(t,ψ−1

t (x)) f (x) δ (s−ψ
−1
t (x) ·ω(t)) dx,

where ψ
−1
t (x) ·ω(t) is the level curve corresponding to A .

Canonical relation. Setting Φ(s, t,x) = s−ψ
−1
t (x) ·ω(t) in Proposition 3.4.1, the canonical

relation C associated with A will be

C = {(ψ−1
t (x)·ω(t), t,σ ,−σ(∂tψ

−1
t (x)·ω(t)+ψ

−1
t (x)·ω⊥(t));x,σ∂xψ

−1
t (x)·ω(t))

∣∣(s, t,x)∈M}.

The microlocal version of double fibration is given by: where

ΠX(ψ
−1
t (x) ·ω(t), t,σ ,−σ∂t(ψ

−1
t (x) ·ω(t));x,σ∂xψ

−1
t (x) ·ω(t)) = (x,σ∂xψ

−1
t (x) ·ω(t)),

ΠY (ψ
−1
t (x) ·ω(t), t,σ ,−σ∂t(ψ

−1
t (x) ·ω(t));x,σ∂xψ

−1
t (x) ·ω(t))

= (ψ−1
t (x) ·ω(t), t,σ ,−σ∂t(ψ

−1
t (x) ·ω(t))).
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Visibility. The operator A satisfies in the visibility condition if for any (x,ξ ) ∈ T ∗X \ 0,

the map given by (3.6) is locally surjective.

Local Bolker Condition. As it is shown in Proposition 3.4.1, the projection ΠY is an

immersion if the matrix dt,x,σ ΠY has rank equal to four or equivalently det(dt,x,σ ΠY ) 6= 0. Since

det(dt,x,σ ΠY ) = det
(

∂ψ
−1
t (x)·ω(t)

∂x j , ∂ 2ψ
−1
t (x)·ω(t)
∂ t∂x j

)
= h(t,x),

the projection ΠY being an immersion is equivalent to the condition (3.4) being non-zero, i.e.

h(t,x) 6= 0.

Semi-global Bolker condition (No conjugate points condition). By condition (3.4), ΠY

is injective if the map

x→
(
ψ
−1
t (x) ·ω(t),∂t(ψ

−1
t (x) ·ω(t))

)
is one-to-one.

The normal operator N is a ΨDO of order −1. Under the local and the semi-global

Bolker conditions, Theorem 3.5.1 implies that the normal operator N associated with the dynamic

operator A is a ΨDO of order −1 with principal symbol p(x,ξ ) near each (x0,ξ
0). The principal

symbol is given by

p(x,ξ ) = (2π)−1|∂xψ
−1
t (x) ·ω(t)| |µ(x,ξ )|

2J2(x,ξ )+ |µ(x,−ξ )|2J2(x,−ξ )

|ξ |h(x,ξ )
,

where t = t(x,ξ ) is locally well-defined by Lemma 3.4.3.

Remark 3.7.1 Note that we do not require the function φ(t,x) to be smoothly periodic.

Fan Beam Geometry. In previous sections, we showed that the dynamic operator A with

φ(t,x) = ψ
−1
t (x) ·ω(t) in parallel beam geometry, belongs to a more general integral geometry

problem. We formulated the visibility, local and semi-global Bolker conditions, and derived our

results for the case when φ(t,x) = ψ
−1
t (x) ·ω(t).
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Figure 3.1. Parallel-Fan beam geometry relation.

Another common geometry which is often used in numerical simulations is Fan beam

geometry. In this geometry, the assumption is that each scan is taken from a boundary point S

(Source) and all directions instantly but the object moves when we change S (see Figure 3.1).

Using the Parallel-Fan beam relation

s = Rsinγ β = t + γ− π

2
,

and finding an appropriate level curve φ , one can show the dynamic operator A (in fan beam

geometry) is also a special case of the general integral geometry problem discussed in this paper.

Although the dynamic operator A has different time-parameterizations in parallel and fan beam

geometries, they both can be categorized by the same general integral geometry problem.
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For simplicity, our analysis in this section is restricted to a static case, i.e. φ(t,x) = x ·

ω(t), as the visibility, the local and semi global Bolker conditions are clearly satisfied when there

is no motion. One can achieve the same results for the general case where the motion is not

necessarily small. We, however, do not provide details on how to formulate the visibility, the local

and semi-global Bolker conditions and rather state that our results are valid if these conditions are

satisfied.

Let lines along which the dynamic operator of f is known, are specified by γ (the angle

between the incident ray direction and the line from the source to the rotation center) and t (the

angular position of the source). Then the fan beam data at time t is given by

AF f (t,γ) =
∫

∞

0
f (S(t)+ pθ(γ)) d p, θ(γ) ∈ S1,

where S(t) is the source at time t which moves along the trajectory with radius R. Here t is both a

parameter along the source trajectory and the time variable. Note also that using the Parallel-Fan

beam geometry relation one can derive the fan beam dynamic operator AF , given by

AF f (t,γ) = AP f (Rsinγ, t + γ− π

2
).

Since the Jacobian ∣∣∂ (s,β )
∂ (t,γ)

∣∣= Rcosγ

is non-zero, the transformation between these two geometries is smooth.

To implement our results in fan beam geometry, we need to find appropriate level curves

φ . Let S(t) be the source and x be the point on the incident ray, see Figure 3.1. We first set

~α = x−S(t) = (x1−Rcos t,x2−Rsin t),

and then compute the perpendicular vector ~α⊥ as follow:

~α⊥ =
sign(x1−Rcos t)

|~α|
(Rsin t− x2,x1−Rcos t) = (cosα

⊥,sinα
⊥).
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We only work with one direction from two possible orientations for~α⊥; say the one with sign(x1−

Rcos t) > 0. For a fixed point x on the incident ray and a specific time t, the polar angle α⊥ is

determined by

α
⊥ = arg(~α⊥) = tan−1 (x1−Rcos t

Rsin t− x2

)
.

We set

φ(t,x) = arg(~α⊥).

Now our results are valid if the visibility, the local and semi-global Bolker conditions are satisfied

for this choice of function φ . Note that, here the function arg is not globally defined but this does

not affect the analysis, as our results are local and we have chosen the branch where sign(x1−

Rcos t)> 0. One can choose another branch of tan−1, however, this plays no role in differentiation

which is involved in all above main three conditions.
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BIHARMONIC OPERATORS AND INVERSE SCATTERING THEORY

* This chapter concludes my original work: ”Inverse Scattering and Stability Estimates for

The Biharmonic Operator.” Under the review in the journal of Inverse Problems.

One of the fundamental theories in mathematics and physics, are Wave Propagations and Scattering

Theory where the main objective is to investigate how radiation or particles are scattered based

on the interaction of incident waves with medium of interest with a certain properties. The

Inverse Scattering Theory is an inverse problem where the goal is to reconstruct geometric/physical

properties of the medium, utilizing the scattered data from the incident wave.

4.1 Existing Results

Consider the following biharmonic equation:

(P−λ
4)u = (∆2 +A ·∇+V −λ

4)u = 0. (4.1)

where ∆ is Laplacian and · is the dot product a · b in Rn. Here A is a vector-valued function

representing the magnetic field and V is a scalar-valued function representing the potential function,

with both A and V regular enough and compactly supported.

The scattering and the inverse scattering problems for the Schrödinger operators have a

long history. One major application of the operator (4.1) is in the study of the theory of vibrations

of beams and the elasticity theory, see Gazzola, Grunau, and Sweers (2010) for the case of the

linear beam equation and Pausader (2010) for the nonlinear scattering problems. In a work by Tyni

and Serov Tyni and Serov (2017), a Saito’s type formula has been proved and it is shown that one

can uniquely recover V − 1
2∇ ·A, where A ∈W 1

p,2δ
(Rn) and V ∈ Lp

2δ
(Rn).

For the well-studied scattering problem of the Schrödinger equations, it has been shown that

one can fully recover curl A and V and there is a gauge invariance, that is, for any two compactly

supported magnetic fields with the same curl the measurement cannot distinguish between them.
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4.2 Main Results

Our goal is to show what information about A and V can be recovered from the high-frequency

asymptotic of scattering amplitude. We do not consider the whole amplitude at zero or near-zero

frequencies (Calderon’s problem). In the case of inverse boundary value problem at zero frequency,

one can fully reconstruct the potential V and magnetic field A, and in particular, there is no gauge

invariance (see Katchalov, Kurylev, and Lassas (2001); Krupchyk, Lassas, and Uhlmann (2012);

Nakamura, Sun, and Uhlmann (1995); Sun (1993)). The main result of this work is the following.

Theorem 4.2.1 Let V and A ∈ Ck(R3) for k large enough. Then the high-frequency asymptotic

expansion of scattering amplitude a(ω,θ ,λ ) up to O(λ−4) recovers curl A and V− 1
2∇·A uniquely.

In other words, for another pair (Ã,Ṽ ) with scattering amplitude ã so that a = ã +O(λ−4),

then curl A = curl Ã and V − 1
2∇ ·A = Ṽ − 1

2∇ · Ã. We prove the following high-frequency

approximation of the scattering amplitude

a(ω,θ ,λ ) = iλθ · Â(λ (ω−θ))+V̂ (λ (ω−θ))+O(λ−1) as λ → ∞.

We study the near-field scattering problem and show that knowing the high-frequency asymptotic

expansion up to an error of order O(λ−4) recovers the same two above quantities but contains no

additional information about A and V . Our recovery process is constructive and explicit, and in

principal stable, but we do not formally study stability.

4.3 Preliminaries

Our goal is to find a special solution of equation (4.1) and corresponding amplitude which

are called scattering solution and scattering amplitude. We first define the outgoing resolvent and

solution which are fundamental notations.

Definition 4.3.1 We define the outgoing free resolvent operator R0(λ ) := (∆2−λ 4)−1 from C∞
0 to

C∞ as the analytic continuation of the operator

F (R0(λ ) f )(ξ ) =
f̂ (ξ )

|ξ |4−λ 4 , from I m λ > 0 to C.
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Definition 4.3.2 Let V and A ∈ Ck(R3) for k large enough. We denote the outgoing resolvent

operator by R(λ ) : C∞
0 (R

n)→C∞(Rn) and define as

R(λ ) = lim
ε→0+

(∆2 +A ·∇+V −λ
4− iε)−1.

Definition 4.3.3 Given λ ∈ C, we say that the function u is λ -outgoing, if there exists c > 0 and

f ∈ E ′ such that u||x|>c
= R0(λ ) f||x|>c

. In applications, the constant c is larger than the radius of the

support of the perturbations.

For f ∈C∞
0 (R

3), we have the following integral operator representation

[R0(λ ) f ](x) =
∫

G0(x,y,λ ) f (y)dy, G0(x,y,λ ) =
eiλ |x−y|− e−λ |x−y|

8πλ 2|x− y|
. (4.2)

where G0 is a 3-dimensional fundamental solution of ∆2−λ 4, i.e. the kernel of (∆2−λ 4− i0)−1.

Note that the operator ∆2−λ 4 can be written as (−∆−λ 2)(−∆+λ 2). Since the operator−∆+λ 2

is elliptic, i.e. the principle symbol is |ξ |2+λ 2, there is no geometric optics. The operator−∆−λ 2

is the Helmholtz operator.

We now formulate the scattering amplitude where the derivation mainly follows Tyni and

Serov (2017). Let u = eiλx·θ + usc be a solution for equation (4.1), with eiλx·θ the harmonic

plane wave with incoming direction θ ∈ S2 (i.e. incident wave which is neither outgoing nor

incoming), and usc the scattered solution which is assumed to be outgoing. To formulate the

scattering amplitude a, we first formulate the Lippmann-Schwinger integral equation. One has

(∆2 +A ·∇+V −λ
4)(eiλx·θ +usc) = 0 =⇒ (∆2−λ

4)(eiλx·θ +usc) =−(A ·∇+V )u

=⇒ (∆2−λ
4)usc =−(A ·∇+V )u =⇒ usc =−[R0(λ )(A ·∇+V )]u.

Since usc is an outgoing scattered solution, one may invert the operator (∆2−λ 4) to have an explicit

formula for the scattering solution usc using equation (4.2):

usc =−
∫

G0(x,y,λ )
(
A(y) ·∇+V (y)

)
u(y,θ ,λ )dy.
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Note that since A and V are compactly supported, by definition R0(λ )(A ·∇+V ) is outgoing and

therefore usc is unique. On the other hand,

(∆2 +A ·∇+V −λ
4)(eiλx·θ +usc) = 0 =⇒ usc =−[R(λ )(A ·∇+V )]eiλx·θ ,

where R(λ ) is defined by Definition 4.3.2 We need to justify that the r.h.s of the last equation is

also outgoing. Assume that the resolvent exists for some λ . Similar to [Corollary 4.4, Tyni and

Serov (2017)], by the resolvent identity,

R(λ )−R0(λ )=−R0(λ )(A·∇+V )R(λ ) =⇒ R(λ )=R0(λ )+
∞

∑
k=1

(
−R0(λ )(A·∇+V )

)kR0(λ ).

Using Agmon’s estimates, one can show the above series converges in H1
−δ

and hence a unique

solution exists. Therefore, for a compactly supported function, R(λ ) is a well-defined outgoing

operator and the following important identity holds

usc =−[R0(λ )(A ·∇+V )]u =−[R(λ )(A ·∇+V )]eiλx·θ .

We are particularly interested in an outgoing solution of (4.1). Since every outgoing solution has

a far-field pattern (see ?), for any (ω,θ ,λ ) ∈ S2×S2×R+, there exists a function a = a(ω,θ ,λ )

such that

u(x,θ ,λ ) = eiλx·θ −C3
eiλ |x|

λ 2|x|
a(ω,θ ,λ )+O(

1
|x|2

), as |x| → ∞,

where ω = x
|x| is an outgoing direction. The scattering amplitude a(ω,θ ,λ ) is given by

2.2a(ω,θ ,λ ) =
∫

e−iλω·y(A(y) ·∇+V (y))u(y,θ ,λ )dy. (4.3)

The scattering amplitude a measures scattering in direction θ , for a plane wave at frequency λ

propagating in direction ω . Next section provides necessary tools to proof the main result. We use

the above representation of scattering solution to find appropriate estimates for our results.

4.4 High Frequency Asymptotic Expansion

Consider the following ansatz expansion for the solution of biharmonic equation (4.1):
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u(x,θ ,λ ) = eiλx·θ (a0 +
i
λ

a1 +
1

λ 2 a2 +
1

λ 3 a3 +
1

λ 4 a4 +
1

λ 5 a5 +O(
1

λ 6 )) = eiλx·θ a.

Since the wave before entering the support is just a plane wave eiλx·θ propagating in direction

θ ∈ S2, we assume the following initial condition where a0(x,θ)|x·θ�0
= 1 and ai(x,θ)|x·θ�0

= 0

for i = 1,2,3, . . . . The proposition below gives explicit expression for the coefficient ai for the

measurement up to O(λ−3).

Proposition 4.4.1 If u is the solution of biharmonic equation (4.1), then for i = 0,1, . . . ,5, the

coefficient ai solves the following zero-initial condition system of equations:
a0 = 1, a1 = 0, 4(θ ·∇)a2 = θ ·A, 4i(θ ·∇)a3 =−2(∆+2(θ ·∇)2)a2 +V,

4i(θ ·∇)a4 =−2(∆+2(θ ·∇)2)a3 + i(4(θ ·∇)∆+θ ·A)a2,

4i(θ ·∇)a5 =−2(∆+2(θ ·∇)2)a4 + i(4(θ ·∇)∆+θ ·A)a3 + i(∆2 +A ·∇+V )a2.

(4.4)

Moreover, for

E(x,θ ,λ ) := u(x,θ ,λ )− eiλx·θ (1+
1

λ 2 a2 +
1

λ 3 a3) = u(x,θ ,λ )− eiλx·θ (1+ ã), (4.5)

the following estimates hold;

‖ E(x,θ ,λ ) ‖L2(R3)= O(λ−4), ‖ E(x,θ ,λ ) ‖H1(R3)= O(λ−3).

Proof Let u(x,θ ,λ ) = eiλx·θ a be solution of biharmonic equation (4.1). Since A ·∇(eiλx·θ a) = eiλx·θ [iλA ·θ +A ·∇]a

∆2(eiλx·θ a) = eiλx·θ [∆2 +4iλ (θ ·∇)∆−2λ 2∆−4λ 2(θ ·∇)2−4iλ 3(θ ·∇)+λ 4]a,

we have

(P−λ
4)u= eiλx·θ [−4iλ 3(θ ·∇)−2λ

2(∆+2(θ ·∇)2)+iλ (4(θ ·∇)∆+A·θ)+∆
2+A·∇+V ]a= 0.
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Rearranging all terms with respect to the power of λ and equating singular coefficients, we get the

following transport equations for ai:

O(λ 3) : −4i(θ ·∇)a0 = 0,

O(λ 2) : 4(θ ·∇)a1−2(∆+2(θ ·∇)2)a0 = 0,

O(λ ) : −4i(θ ·∇)a2−2i(∆+2(θ ·∇)2)a1 + i(4(θ ·∇)∆+θ ·A)a0 = 0,

O(1) : −4i(θ ·∇)a3−2(∆+2(θ ·∇)2)a2− (4(θ ·∇)∆+θ ·A)a1 +(∆2 +A ·∇+V )a0 = 0,

O(λ−1) : −4i(θ ·∇)a4−2(∆+2(θ ·∇)2)a3 + i(4(θ ·∇)∆+θ ·A)a2 + i(∆2 +A ·∇+V )a1 = 0,

O(λ−2) : −4i(θ ·∇)a5−2(∆+2(θ ·∇)2)a4 + i(4(θ ·∇)∆+θ ·A)a3 + i(∆2 +A ·∇+V )a2 = 0.

The first transport equation above and the initial condition a0|x·θ�0
= 1 implies that a0 ≡ 1. To

compute a1, by the second equation above we have

4(θ ·∇)a1(x)−2(∆+2(θ ·∇)2)a0(x) = 0 =⇒ (θ ·∇)a1(x) = 0.

Since a1|x·θ�0
= 0, therefore a1 ≡ 0. Considering the transport equation corresponding O(λ ), we

have

−4i(θ ·∇)a2(x)−2i(∆+2(θ ·∇)2)a1(x)+i(4(θ ·∇)∆+θ ·A(x))a0(x)= 0=⇒ (θ ·∇)a2(x)=
1
4

θ ·A(x).

Integrating the last equation along the flow x+ tθ yields∫ 0

−∞

(θ ·∇)a2(x+ sθ) ds =
1
4

∫ 0

−∞

θ ·A(x+ sθ) ds.

Since θ ·∇ = ∂t along the null bi-characteristics (i.e. x ·θ = t), one has∫ 0

−∞

∂sa2(x+ sθ) ds =
1
4

∫ 0

−∞

θ ·A(x+ sθ) ds =⇒ a2(x) =
1
4

∫ 0

−∞

θ ·A(x+ sθ) ds,

which is the X-ray transform of the magnetic field A along the lines x ·θ = t. Notice that for i =

3,4,5 all the coefficients ai depend on the potential and magnetic fields V and A can be computed

recursively, by considering the transport equation corresponding to O(λ−i) and integrating along

the flow as above.
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Our next goal is to establish an estimate for the error term E(x,θ ,λ ) in (4.5). Since u solves

the biharmonic equation, we have

−(P−λ
4)E(x,θ ,λ ) = (P−λ

4)
(
eiλx·θ (1+ ã)

)
= eiλx·θ [−4iλ 3(θ ·∇)−2λ

2(∆+2(θ ·∇)2)+ iλ (4(θ ·∇)∆+A ·θ)+∆
2 +A ·∇+V ]

(
1+ ã

)
.

Expanding the r.h.s of above equation and using transport equations (4.4) implies that

−(P−λ
4)E =

eiλx·θ

λ

(
−2(∆+2(θ ·∇)2)a3 + iλ 2(4(θ ·∇)∆+A ·θ)(ã)+λ (∆2 +A ·∇+V )(ã)

)
.

Notice that although the scattering solution usc = u− eiλ ·θ is outgoing (see Definition 4.3.2), the

above error term E is not outgoing as it has infinite support. To apply the resolvent R(λ ), we first

need to localize the r.h.s of above error in L2(R3): Let the compact set K denotes the support of

perturbation ∇ ·A+V , and χ ∈C∞
0 (R

3) be a smooth cut-off function such that χ(x) = 1 near the

support K. We define

Eχ(x,θ ,λ ) := u(x,θ ,λ )− eiλx·θ (1+χ ã),

where u = eiλx·θ +usc solves the biharmonic equation (4.1). For all x away from K, χ(x) = 0, and

therefore E = usc is outgoing. On the other hand, for λ � 1, E is outgoing as χ(x) = 1 for x ∈ K.

We have

−(P−λ
4)Eχ = eiλx·θ

(
λ
(
−4i(θ ·∇)(χa2)+iθ ·A)

)
−
(
4i(θ ·∇)(χa3)+2(∆+2(θ ·∇)2)(χa2)+V

)
+

1
λ

(
−2(∆+2(θ ·∇)2)(χa3)+ i(4(θ ·∇)∆+A ·θ)(χa2)

)
+

1
λ 2

(
i(4(θ ·∇)∆+A ·θ)(χa3)+(∆2 +A ·∇+V )(χa2)

)
+

1
λ 3 (∆

2 +A ·∇+V )(χa3)

)
Using the Lie bracket notation and the fact that χA = A and χV =V

−(P−λ
4)Eχ = eiλx·θ

(
−4iλ 3[θ ·∇,χ]ã−2λ

2([∆+2(θ ·∇)2,χ]ã
)
+ iλ [4θ ·∇∆+A ·θ ,χ]ã
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+[∆2 +A ·∇+V,χ]ã+
χ

λ

(
−2(∆+2(θ ·∇)2)a3 +λ (∆2 +A ·∇+V )ã+ iλ 2(4θ ·∇∆+A ·θ)ã

))
= eiλx·θ (E1 +

χ

λ
E2).

Now we may apply the resolvent R(λ ) to both sides of the above equation as the r.h.s is compactly

supported. Our goal is to show that ‖ Eχ ‖L2= O(λ−4), for λ > 0 large enough. Note that since

ã=O(λ−2), the problematic terms in establishing the estimate for Eχ in the r.h.s of above equation

will be

λ
2[∆+2(θ ·∇)2,χ]ã = O(1) and λ

3[θ ·∇,χ]ã = O(λ ), (4.6)

as the rest of above terms are of O(λ−1) which combined with the resolvent estimates given by

Agmon’s estimate gives the desired estimates for Eχ . Consider the first term in (4.6). By the

resolvent identity

R0(λ )−R(λ ) = R0(λ )(A ·∇+V )R(λ ) =⇒ R(λ ) = R0(λ )(I− (A ·∇+V )R(λ )).

Therefore,

R(λ )
[
λ

2eiλx·θ [∆+2(θ ·∇)2,χ]ã
]
= R0(λ )(I− (A ·∇+V )R(λ ))

[
λ

2eiλx·θ [∆+2(θ ·∇)2,χ]ã
]

= R0(λ )
[
λ

2eiλx·θ [∆+2(θ ·∇)2,χ]ã
]
−R0(λ )(A ·∇+V )R(λ )

[
λ

2eiλx·θ [∆+2(θ ·∇)2,χ]ã
]

= I1 +I2.

Similarly, for the second term in (4.6), one has

R(λ )
[
λ

3eiλx·θ [θ ·∇,χ]ã
]
= R0(λ )(I− (A ·∇+V )R(λ ))

[
λ

3eiλx·θ [θ ·∇,χ]ã
]

= R0(λ )
[
λ

3eiλx·θ [θ ·∇,χ]ã
]
−R0(λ )(A ·∇+V )R(λ )

[
λ

3eiλx·θ [θ ·∇,χ]ã
]
= J1 +J2.

Now we are ready establish estimates for I1, I2, J1, and J2. Note that the integrands in above

free-resolvent operators are compactly supported and therefore, all integrals above are well-defined

(see equation (4.2)).

Estimating I2, J2. By Agmon’s estimate
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‖I2 ‖L2
−δ

=‖ R0(λ )(A ·∇+V )R(λ )
[
λ

2eiλx·θ [∆+2(θ ·∇)2,χ]ã
]
‖L2
−δ

≤ C0

λ
‖ (A ·∇+V )R(λ )

[
eiλx·θ [∆+2(θ ·∇)2,χ]ã

]
‖L2

δ

≤ C0

λ

(
‖ A ·∇R(λ )

[
eiλx·θ [∆+2(θ ·∇)2,χ]ã

]
‖L2

δ

+ ‖V R(λ )
[
eiλx·θ [∆+2(θ ·∇)2,χ]ã

]
‖L2

δ

)
≤ C0

λ
(
C1

λ 4 +
C2

λ 5 ) = O(λ−5),

where we used the fact that A, V are compactly supported. Similarly,

‖J2 ‖L2
−δ

=‖ R0(λ )(A ·∇+V )R(λ )
[
λ

3eiλx·θ [θ ·∇,χ]ã
]
‖L2
−δ

≤C0 ‖ (A ·∇+V )R(λ )
[
eiλx·θ [θ ·∇,χ]ã

]
‖L2

δ

≤C0

(
‖ A ·∇R(λ )

[
eiλx·θ [θ ·∇,χ]ã

]
‖L2

δ

+ ‖V R(λ )
[
eiλx·θ [θ ·∇,χ]ã

]
‖L2

δ

)
≤C0(

C1

λ 4 +
C2

λ 5 ) = O(λ−4),

Estimating I1, J1. We mainly follow the idea in P. D. Stefanov (1989) to estimate I1, J1. Let

Γ be the set where the derivatives of χ is supported, and

S = {y = x+ tθ | x ∈ B(0,R), t ≥ 0}.

Then for any x ∈ B(0,R) and y ∈ Γ∩ S the kernel G0(x,y,λ ), given by (4.2), is smooth as x 6= y.

We have

I1 = R0(λ )(λ
2eiλx·θ [∆+2(θ ·∇)2,χ]ã)(x)

=
∫ eiλ (|x−y|+y·θ)− e−λ |x−y|eiλy·θ

8π|x− y|
[∆y +2(θ ·∇y)

2,χy ]ã(y)dy

=
∫

K(x,y,λ ,θ)[∆y +2(θ ·∇y)
2,χy ]ã(y)dy
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Splitting the above integral, we have oscillating integrals with a real phase function φ1(x,y) =

|x−y|+y ·θ and a complex phase function φ2(x,y) = y ·θ + i|x−y|. The contribution of the phase

φ2 is exponentially small as there is a lower bound of |x− y|. In fact, for λ large enough, away

from the diagonal {x = y}, the term e−λ |x−y| exponentially approaches to zero. Therefore, we can

concentrate on the phase φ1, by employing the stationary phase method. By a simple calculation,

one has

∇yφ1 =
y− x
|y− x|

+θ =⇒ θ ·∇yφ1 =
(y− x) ·θ
|y− x|

+1 > 1,

for any x ∈ B(0,R) and y ∈ Γ∩S. Since

eiλφ1 =
∇yφ1 ·∇y

iλ |∇yφ1|2
eiλφ1,

multiple integration by parts yields ‖I1 ‖L2
−δ

(Rn)=O(λ−4). Similarly, several integration by parts

on
J1 = R0(λ )(λ

3eiλx·θ [θ ·∇,χ]a)(x) =
∫

λK(x,y,λ ,θ)[θ ·∇y,χy]ã(y)dy.

yields ‖J1 ‖L2
−δ

(Rn)= O(λ−4).

It remains to establish ‖ E ‖H1
−δ

(Rn)= O(λ−3). Consider the operator ∇R(λ ) : L2
δ
(Rn)→

L2
δ
(Rn), with

3.4∇R(λ )[eiλx·θ (E1 +
χ

λ
E2)]. (4.7)

Since R(λ ) is the resolvent with constant coefficient, the gradient, and the resolvent commute.

Therefore, the problematic terms in (4.7) will be the same as the ones discussed in (4.6) and

all terms of the form R0(λ ) f and R(λ ) f in (4.7) will have the desired H1
δ

estimates by Agmon’s

estimate. Now we need to revisit the argument for those terms in (4.7) with stationary phase similar

to I1 and J1, where an integration by part argument has been used to establish estimates. We

recall that we do not use Agmon’s estimates to find H1
δ

estimates. Applying the gradient directly

to K(x,y,λ ,θ), one has

K(x,y,λ ,θ) = λ K̃(x,y,λ ,θ)

where K̃ is smooth bounded away from the diagonal {x = y}. Now integration by parts argument

establishes the desired H1
δ

estimates of O(λ−N), where N depends on the regularity of magnetic

field A and potential function V . This proves the proposition.
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4.5 Near-field Scattering

In this section we study the near-field scattering problem. Let u be the biharmonic solution

of equation (4.1) and BR be a ball with radius R > 0 large enough containing the perturbation

A and V (suppA∪ suppV ⊂ BR). To study the near-field scattering, we only consider u|x·θ=R
as

our scattering data and do not study the scattering amplitude to reconstruct the high-frequency

asymptotic expansion of the solution. In the following proposition, we demonstrate that all terms

up to order O(λ−4) contains no additional information.

Proposition 4.5.1 Assume that the scattering data u|x·θ=R
is known up to error of order O(λ−4).

Then

i) The scattering data recovers curl A and V − 1
2∇ ·A.

ii) The scattering data known up to error of order O(λ−4) contains no additional information on

A and V .

Proof i) Let u and ũ be a pair of biharmonic solutions corresponding to pairs (A,V ) and (Ã,Ṽ )

such that

(u− ũ)|x·θ=R
= O(λ−4).

By Proposition 4.4.1, we have

a2(x) =
1
4

∫ 0

−∞

θ ·A(x+ sθ) ds,

which is the X-ray transform of the magnetic field A along the lines x+ tθ , (see Sharafutdinov

(n.d.)). The function δu = u− ũ has near-field data up to the error of order O(λ−4). Hence

δa2 ≡ 0 implies that there exists a compactly supported function φ such that δA = dφ . This shows

that the scattering data recovers curl A. To show the scattering data recovers V − 1
2∇ ·A, we recall

that

4i(θ ·∇)a3(x) =−2∆a2(x)−4(θ ·∇)2a2(x)+V (x).

To have an explicit formula for a3 we need to invert the Radon transform as follows: by integrating

above equation along the flow and using the fact that θ ·∇ = ∂t and (θ ·∇)a2(x) = 1
4θ ·A(x) we

have

a3(x) =
1
4i
[−2

∫ 0

−∞

∆a2(x+sθ) ds−4
∫ 0

−∞

(θ ·∇)2a2(x+sθ) ds+
∫ 0

−∞

V (x+sθ) ds
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=⇒ a3(x) =
1
4i

∫ 0

−∞

V (x+sθ)−2∆a2(x+sθ) ds+
i
4

θ ·A(x).

Since δu = u− ũ has near-field data up to the error of order O(λ−4) and δA vanishes outside of

the support, δa3 ≡ 0 implies that∫ 0

−∞

2δV (x+sθ)−∆φ (x+sθ) ds = 0,

as δa2(x) = 1
4φ(x). For x ·θ = R, the standard arguments for inverting the X-ray transform implies

that

2δV = 2(V −Ṽ ) = ∆φ = ∇ ·dφ = ∇ ·δA.

This shows that the scattering data up to error of order O(λ−4) recovers V − 1
2∇ ·A.

ii) By part i) we know that δA = dφ and δV = 1
2∆φ . Therefore, point-wise we have δa2(x) = 1

4
∫ 0
−∞

θ ·∇φ (x+sθ) ds = 1
4
∫ 0
−∞

∂sφ (x+sθ) ds =⇒ δa2(x) = 1
4φ(x)

δa3(x) = i
4θ ·∇φ(x),

which shows that the scattering data contains no additional information on A and V up to error of

O(λ−4). To calculate δa4, we have

δa4(x) =
1
4i
[
∫ 0

−∞

−2∆δa3(x+sθ)−4(θ ·∇)2
δa3(x+sθ)+4i(θ ·∇)∆δa2(x+sθ)+ iθ ·δ (Aa2)(x+sθ) ds].

The nonlinear term δa4 can be rewritten as

θ ·δ (Aa2) = (θ ·A)δa2 +(θ ·δA)ã2 =
1
4
(θ ·A)φ +(θ ·∇φ)a2−

1
4
(θ ·∇φ)φ

=
1
4
(θ ·A)φ +(θ ·∇)(φa2)− (θ ·∇a2)φ −

1
4
(θ ·∇φ)φ = (θ ·∇)(φa2)−

1
4
(θ ·∇φ)φ ,

where we used the equations for δa2,δa3, δA, and the fact that 1
4(θ ·A) = (θ ·∇a2). By a simple

calculation
δa4(x) =

1
8
[∆φ(x)−2(θ ·∇)2

φ(x)− 1
4

φ
2(x)+2φ(x)a2(x)],

which shows that due to non-linearity, the Radon and inverse Fourier transform techniques do not

provide any insight in how to show that φ = 0.
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4.6 Proof of Main Result

We first derive the asymptotic expansion of scattering amplitude, known as Born approximation,

see Tyni and Harju (2017).

Theorem 4.6.1 Let V,A ∈Ck(R3) for k large enough. Then

a(ω,θ ,λ ) = iλθ · Â(λ (ω−θ))+V̂ (λ (ω−θ))+O(λ−1) as λ → ∞,

with the remainder uniform in θ , ω .

Proof Let u= eiλx·θ +eiλx·θ (a−1) be the biharmonic solution given by Proposition 4.4.1. Plugging

u into (4.3), we have

a(ω,θ ,λ ) =
∫

e−iλ (ω−θ)·y(iλθ ·A(y)+V (y)
)
dy

+
∫

e−iλ (ω−θ)·y(iλθ ·A(y)+A(y) ·∇+V (y)
)
(a−1)(y)dy

= iλθ · Â(λ (ω−θ))+V̂ (λ (ω−θ))+R(ω,θ ,λ ). (4.8)

Now by Proposition 3.1 we have ‖ a−1 ‖L2(R2), ‖ ∇(a−1) ‖L2(R2)≤Cλ−2 for some constant C.

Therefore, R = O(λ−1) which completes the proof.

Remark 4.6.1 Given A,V ∈ C∞
0 , for λ large enough, the first two terms on the r.h.s of above

amplitude decay faster that the remainder, if ω 6= θ are fixed. In other words, a(ω,θ ,λ )
λ

is bounded

for regular enough A and V . Therefore, sup ω,θ ,λ
0<λ0≤λ

∣∣ 1
λ

a(ω,θ ,λ )
∣∣ is a well-defined norm for a fixed

λ0 > 0.

Theorem 4.6.2 Let A,V ∈Ck(R3) for k large enough and θ ∈ S2 be fixed. Then for any ξ 6= 0 with

ξ ·θ = 0, the scattering amplitude a(ω,θ ,λ ) uniquely determines θ · Â(ξ ) and −iξ · Â(ξ )+2V̂ (ξ ).

Proof Let θ ∈ S2 be a fixed unit vector. For a fixed ξ 6= 0 with ξ ⊥ θ , we show that one can

construct a sequence {(ωµ , ω̃µ ,λµ)}µ such that

ξ = λµ(ωµ − ω̃µ).
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Let ω, ω̃ be two vectors that are symmetric w.r.t the fixed unit vector θ . Choose the parameter

µ ∈ R small enough (see ?) such that

ω
+ = ω

+
µ = θ cos µ +

ξ

|ξ |
sin µ, ω

− = ω
−
µ = θ cos µ− ξ

|ξ |
sin µ.

Clearly for ξ 6= 0,

|ω+|= |ω−|= 1, ω
+−ω

− = 2
ξ

|ξ |
sin µ, µ = sin−1(2

ξ

|ξ |
(ω+−ω

−)).

Setting λ (µ) = |ξ |
2sin µ

yields ξ = λ (ω+−ω−). Note that ω+,ω−→ θ and λ → ∞ as µ → 0. By

Theorem 4.6.1,  a+ = a(ω+,ω−,λ ) = iλω− · Â(ξ )+V̂ (ξ )+O(λ−1)

a− = a(−ω−,−ω+,λ ) =−iλω+ · Â(ξ )+V̂ (ξ )+O(λ−1).

with remainders uniform in ω+,ω−. Therefore, a+−a− = 2iλ cos µ θ · Â(ξ )+O(λ−1)

a++a− =−iξ · Â(ξ )+2V̂ (ξ )+O(λ−1).
(4.9)

The analogous formulae for the Schrödinger operator are presented in Serov (2017); P. D. Stefanov

(1989). The first equation above implies that θ · Â(ξ ) can be recovered and the second equation

implies that one can reconstruct −iξ · Â(ξ )+2V̂ (ξ ) for θ ⊥ ξ . This completes the proof.

Proof of Theorem 4.2.1 By Theorem 4.6.2. we know that θ · Â(ξ ) can be recovered for any

0 6= ξ ⊥ θ . For a non-zero vector α ∈ R3, set θ = α×ξ

|α×ξ | . By Theorem 4.6.2,

(α×ξ ) · Â(ξ ) = α · (ξ × Â(ξ )),

is known as (α × ξ ) ⊥ ξ . The r.h.s of above equation is the Fourier transform of the curl A

projected on an arbitrary non-zero vector α 6= 0. Therefore, one can recover

ξ × Â(ξ ) =
1
i
F (curl A)
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for ξ ⊥ θ . Since θ is arbitrary, F (curl A) can be recovered everywhere. Taking the inverse

Fourier transform yields curl A can be recovered. On the other hand, by Theorem 4.6.2, −iξ ·

Â(ξ )+2V̂ (ξ ) can be recovered for θ ⊥ ξ . Since

−iξ · Â+2V̂ = F (−∇ ·A+2V )

one can recover V − 1
2∇ ·A which completes the proof of the main theorem.

Next, we present stability estimate results.

Proposition 4.6.1 For j = 1,2, let a j be the scattering amplitude corresponding to pair of magnetic

and potentials fields (A j,Vj) with ‖ A j ‖Ck< C0 and ‖ Vj ‖Ck< C0 for some constant C0 > 0 and

k� 0. Then there exists C > 0 and λ0 depending a priori on C0 such that for ε = sup ω,θ ,λ
0<λ0≤λ

∣∣ 1
λ
(a1−

a2)(ω,θ ,λ )
∣∣ small enough, the following stability estimates hold

sup
ξ

|(ĉurl A1− ĉurl A2)(ξ )

〈ξ 〉
|< ε, sup

ξ

|(V̂1−V̂2)−
1
2

iξ · (Â1− Â2)|L∞ <Cε
1
2 .

Proof Let u j = eiλx·θ a j, j = 1,2, be the biharmonic solution given by the Proposition 4.4.1 with

corresponding amplitude a j and the pair (A j,Vj). Similarly, by Theorem 4.6.2, for a fixed ξ 6= 0

with ξ ⊥ θ and µ � δ (i.e small enough), one can choose λµ = |ξ |
2sin µ

, ω+
µ , and ω−µ , so that

ξ = λµ(ω
+
µ −ω−µ ). Note that for small enough µ, one has |ξ |2λµ

= sin µ ≤ µ � δ and therefore
|ξ |
2δ
≤ λµ . Set C0 =

1
2δ

and λ0 =
|ξ |
2δ

. Assume now that the pair (A j,Vj) satisfies the priori assumption

in the theorem. For a fixed and large k, by equation (4.9) we have a+j −a−j = 2iλ cos µ θ · Â j(ξ )+(R+
j −R−j )

a+j +a−j =−iξ · Â j(ξ )+2V̂j(ξ )+(R+
j +R−j ),

with |R±j | ≤
C
λ
, j = 1,2, (4.10)

where C depends on the a priori upper bound C0. Indeed, this estimate comes from Agmon’s

lemma and Proposition 4.4.1 where all estimates are uniform, provided that one has control over

differentiations (finitely many times). Using the first equation in (4.10) and setting R± = (R1−

R2)
±, one has

θ ·δ Â(ξ ) =
1

2iλµ cos µ

[
(a1−a2)

+− (a1−a2)
−− (R+−R−)

]
.
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For µ small enough, note that µ ≈ |ξ |
2λµ

and 1
cos µ

= 1+ 1
2 µ2 +O(µ4)≤ 1+µ2. Therefore,

|θ ·δ Â(ξ )| ≤ (1+
|ξ |2

λ 2 )
[
| 1
2λµ

(a1−a2)
+|+| 1

2λµ

(a1−a2)
−|+ 1

2λµ

|R+−R−|
]
≤ (1+

|ξ |2

λ 2
µ

)(ε+
C
λ 2

µ

)

where we used the fact that ε = sup ω,θ ,λ
0<λ0≤λ

∣∣ 1
λ
(a1−a2)

∣∣ and |R±j | ≤
C
λ

.

The r.h.s of above inequality is independent of µ . Therefore, for any fixed ξ , taking the

limit of the above inequality as µ → 0 establishes the following estimate

|θ ·δ Â(ξ )| ≤ ε.

Similar to the proof of Theorem 4.2.1, for any α ∈ R3, set θ = α×ξ

|α×ξ | . One can find cα such that

|α×ξ | ≤ cα(1+ |ξ |) = cα〈ξ 〉. Therefore,

|α · (ξ ×δ Â(ξ ))
〈ξ 〉

| ≤ |(α×ξ ) ·δ Â(ξ )
|α×ξ |

| ≤ ε.

The vector α is arbitrary, so one can stably recover all the components of the curlA with the

following estimate

sup
ξ

|
̂curl(δA)(ξ )

〈ξ 〉
|< ε.

To establish an estimate for (2δV̂ − iξ ·δ Â)(ξ ), we use the second equation of (4.10). One has

|(2δV̂ − iξ ·δ Â)(ξ )| ≤ |(a1−a2)
+|+ |(a1−a2)

−|+ |R++R−| ≤ 2ελµ +
C
λµ

.

The r.h.s of above is minimized when λµ = ε−
1
2 . Therefore, the following estimate holds.

|(2δV̂ − iξ ·δ Â)(ξ )| ≤Cε
1
2 .

Remark 4.6.2 One can use interpolation between norm spaces and the a priori assumptions

‖ A j ‖Ck<C0 and ‖Vj ‖Ck<C0,

to derive stability estimates with different norms for the magnetic field A using different norms of

the scattering amplitude at the expense of getting Hölder estimates.
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REAL-TIME HYBRID SIMULATION

* This chapter concludes my original work: ”Predictive stability indicator: a novel

approach to configuring a real-time hybrid simulation.” Earthquake Engineering and

Structural Dynamics, Engng Struct. Dyn. 2016. https://doi.org/10.1002/eqe.2775.

Real-time hybrid simulation (RTHS) is an effective and versatile tool for the examination of

complex structural systems with rate dependent behaviors. To meet the objectives of such a

test, appropriate consideration must be given to the partitioning of the system into physical and

computational portions (i.e., the configuration of the RTHS). Predictive stability and performance

indicators (PSI and PPI) were initially established for use with only single degree-of-freedom

systems. These indicators allow researchers to plan a RTHS, to quantitatively examine the impact

of partitioning choices on stability and performance, and to assess the sensitivity of an RTHS

configuration to de-synchronization at the interface. In this study, PSI is extended to any linear

multi-degree-of-freedom (MDOF) system. The PSI is obtained analytically and it is independent

of the transfer system and controller dynamics, providing a relatively easy and extremely useful

method to examine many partitioning choices. A novel matrix method is adopted to convert a delay

differential equation to a generalized eigenvalue problem using a set of vectorization mappings,

and then to analytically solve the delay differential equations in a computationally efficient way.

Through two illustrative examples, the PSI is demonstrated and validated. Validation of the MDOF

PSI also includes comparisons to a MDOF dynamic model that includes realistic models of the

hydraulic actuators and the control-structure interaction effects. Results demonstrate that the

proposed PSI can be used as an effective design tool for conducting successful RTHS.
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5.1 Existing Results

Dynamic experimental assessment of structural elements is critical in structural engineering.

It provides structural engineers a better understanding of structural integrity at both component

and system levels. Taking the cost and availability of experimental resources into consideration,

full-scale experimental evaluation of structures is a challenging proposition. The concept of hybrid

simulation (HS) found its way into structural engineering in the late 1960s Hakuno, Shidawara, and

Hara (1969) and has been refined over the past four decades Mahin, Shing, Thewalt, and Hanson

(1989); Shing, Nakashima, and Bursi (1996); Takanashi and Nakashima (1987). HS provides

the capability to isolate and experimentally evaluate critical structural components for which a

reliable analytical model is unavailable (i.e., physical substructure) while the remainder of the

structure (i.e., numerical substructure) is modeled numerically Chen, Ricles, Karavasilis, Chae,

and Sause (2012). Coupling between the two substructures is achieved by enforcing equilibrium

and compatibility at the interface using a transfer system Wallace, Sieber, Neild, Wagg, and

Krauskopf (2005).

Figure 5.1. A typical real-time hybrid simulation of a civil structure.
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In the field of structural dynamics and control, there is an increasing demand to enhance

the current knowledge, evaluate the performance, and incorporate nonlinear rate-dependent energy

dissipative devices into structural design. Also, structural engineers are currently confronting

more challenging problems such as soil-structure-interaction, accurate estimation of structural

damping Brewick and Smyth (2015), mitigation of blast effects on protective structures, and

nonlinear hysteretic behavior due to significant cycling excitations (e.g., earthquake, wind, and sea

waves) Chatzi, Smyth, and Masri (2010). In most cases, due to rate-dependent nature of the new

challenges, real-time execution of the experiment is necessary when hybrid simulation is adopted

as an experimental method.

Real-time realization of HS (i.e., real-time hybrid simulation) is a powerful and cost-effective

experimental technique to evaluate the dynamic performance of civil structures, especially, when

rate-dependence plays a role. In RTHS, to enforce the interface equilibrium and compatibility

conditions between the numerical and physical substructures, dynamic hydraulic actuators and/or

shake tables are often used as transfer systems. Researchers have proposed control techniques for

transfer systems to satisfy the interface boundary conditions in real-time, see Figure 5.1. Carrion

and Spencer (2007) developed a model-based feedforward compensator for RTHS. Chen et al.,

proposed an adaptive controller using an error tracking indicator Chen and Ricles (2010). Gao et

al., and Ou et al., developed and validated H∞ loop shaping designs for actuator motion control

in RTHS Gao, Castaneda, and Dyke (2012); Ou, Ozdagli, Dyke, and Wu (2015). Phillips et al.,

proposed a model-based feedforward control with the backward-difference method for hydraulic

actuator control in RTHS Phillips, Takada, Spencer, and Fujino (2014).
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RTHS has been successfully conducted to evaluate the seismic performance of structures

and implement new structural control techniques. For example, magneto-rheological (MR) dampers

have been found to be an effective type of semiactive control device Dyke, Spencer, Sain, and

Carlson (1999). In the first large-scale RTHS on a complex frame system using multiple actuators,

Friedman et al., evaluated a control algorithm that utilizes overdriving and backdriving current

control to increase the efficacy of MR control devices Friedman et al. (2015). Christenson et

al., verified the performance of MR fluid dampers for seismic protection of civil structures using

large-scale RTHS Christenson, Lin, Emmons, and Bass (2008). Saouma et al., conducted an

RTHS study on a nonductile reinforced concrete frame and compared the results with shake table

testing, see Saouma, Haussmann, Kang, Ghannoum, and Asce (2013). Cha et al., evaluated

the performances of four semiactive control algorithms for the control of a large-scale realistic

moment-resisting frame using a large-scale 200-kN MR damper Cha et al. (2014). Mercan and

Ricles studied structures with full-scale elastomeric dampers using RTHS Mercan and Ricles

(2009). In the implementation of any RTHS, global stability must be given appropriate attention.

Instability in RTHS stems from numerical and experimental sources. A major source of instability

is incapability of the transfer and sensing systems to realize proper boundary conditions between

the numerical and physical substructures.

Imperfect realization of boundary conditions by transfer system is inevitable because it

is physically impossible for any transfer system to react instantaneously to a change of state as

required by the numerical substructure. Wallace et al., studied the effect of delay errors that are

inherently present in RTHS Wallace et al. (2005). Kyrychko et al., studied local and global stability

analyses of RTHS in a coupled oscillator-pendulum system and identified the delay dependent

stability boundaries for this type of system Kyrychko, Blyuss, Gonzalez-Buelga, Hogan, and Webb

(2006).

Mercan and Ricles conducted a stability analysis for real-time pseudodynamic and hybrid

pseudodynamic testing with multiple sources of delay Mercan and Ricles (2008). Zhu et al.,

adopted a discrete-time root locus technique to investigate the delay-dependent stability in RTHS,

see Zhu, Wang, Jin, Chi, and Gui (2015). In another study, Botelho and Christenson conducted a

robust stability and performance analysis method for multi-actuator RTHS based on robust stability

theory for multiple-input-multiple-output feedback control Botelho and Christenson (2015).
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Predictive stability and performance indicators (PSI and PPI) were initially established for

single-degree-of-freedom systems Maghareh, Dyke, Prakash, and Rhoads (2013, 2014). Prior to

adopting a transfer system controller, the PSI and PPI assess the impact of partitioning choices on

the stability and performance of a global RTHS response and enable RTHS users to quantitatively

examine the sensitivity of an RTHS configuration to any de-synchronization at the interface.

These indicators assist the users to choose an appropriate control/compensation technique

for any configuration choice. Furthermore, Maghareh et al., developed a stability switch criterion

for effective RTHS implementation, specified minimum transfer system performance requirement,

minimum required sampling frequency, and effective methods to stabilize an unstable system due

to the performance of transfer system Maghareh, Dyke, Prakash, and Bunting (2014).

In this study, the PSI is extended to any linear multi-degree-of-freedom system, irrespective

of whether shake table(s) and/or hydraulic actuator(s) serve as the transfer system. Moreover, we

demonstrate how PSI can be used as an effective design tool in implementation of successful

RTHS. The design of partitioning choice is a primary and fundamental step in the implementation

of a successful and safe RTHS. Also, the PSI sets the minimum transfer system performance.

Based on the PSI and available transfer system performance, prior to conducting an experiment,

alternative partitioning choices can be classified, on the basis of system instability as: extremely

sensitive, moderately sensitive, and slightly sensitive choices.

5.2 Real-time hybrid simulation: stability

De-synchronization at the cyber-physical interface is a major source of system instability in

RTHS. A typical real-time hybrid simulation framework, see Figure 5.2, includes: (i) a numerical

model capable of being executed in real-time within the adopted time increment, (ii) a transfer

system control strategy to obtain accurate tracking of desired trajectory at the interface in real-time,

(iii) sensing system, and (iv) physical substructure.
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Figure 5.2. A typical real-time hybrid simulation block diagram.

It has also been demonstrated that the dynamical characteristics of the physical substructure

affect the transfer system performance due to control-structure-interaction (CSI) Dyke, Spencer

Jr., Quast, and Sain (1995). The transfer and sensing systems introduce de-synchronization at the

interface which can be categorized into two groups: frequency-independent time delay (caused by

communication delay, analog-to-digital and digital-to analog conversions, and computation delay)

and frequency-dependent time lag (caused by transfer system dynamics and limitations) into the

system.

In RTHS, system instability is a significant safety concern and it may damage physical

specimens and/or the transfer system. Also, system instability causes some researchers to avoid

using RTHS due the level of complexity in comparison with other alternatives. In RTHS, there are

many transfer system parameters impacting the stability (and performance) of the system. These

parameters include physical limitations of the available components (actuator speed, servo-valve

speed, oil-column resonance, etc.) and user choices (analog controller’s parameters, digital control

strategy, etc.). To conduct a successful RTHS, it is absolutely necessary for a user to have a good

understanding of these parameters and limitations.
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How to partition a structure into numerical and physical is a significant user controlled

factor which determines the stability of the experiment subject to the existing physical limitations

of the transfers system. Each partitioning choice has a different set of stability requirements. It’s

also important to point out that the set of stability requirements can become extremely narrow as

the partitioning choice gets more complex. This fact explains why conducting a multi-dimensional

complex RTHS is still an existing challenge for researchers. Thus, one (or a set of) stability

indicator(s) is required to assist users in designing a successful experiment. Herein, for a specific

emulated structure, designing an experiment refers to selection of a proper partitioning choice (of

numerical and physical substructures) and control strategy, subject to the existing transfer system

limitations and interaction between the transfer system and the physical substructure (CSI).

5.3 Control-structure interaction in RTHS

In this section, control-structure interaction and its effect on the implementation of RTHS

is discussed while hydraulically actuated systems are considered as the transfer system. In the

case of hydraulic actuators, a significant coupling is present between the transfer system and the

physical specimen. This phenomenon was initially explained by Dyke et al. (1995). Currently,

RTHS is being implemented for complex MDOF systems in which control of multiple actuators

are required. These multiple actuators are intrinsically coupled through the physical substructure.

This phenomenon imposes a certain challenges and considerations in transfer system control for

implementing a successful test. For a better understanding of this phenomenon, herein, we briefly

explain CSI. More detailed explanations are provided in Dyke et al. (1995); Phillips (2012).
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Figure 5.3. Transfer system coupled through the physical substructure.

In displacement control RTHS, an external command (command displacement) drives the

transfer system attached to the physical substructure, see Figure 5.3. The hydraulic actuator is

a part of the transfer system which is driven by valve input command and generates the force

applied to the physical substructure. A block diagram representation of open-loop actuator model

is provided in Figure 5.4. For RTHS and in the case of a hydraulically actuated system attached

to a physical substructure, a velocity feedback exists between the actuated system and the valve

input. In de Silva (2007), the fluid flow rate in an actuator is linearized about the origin to obtain

the input to the actuator. Figure 5.4 is obtained based on the linearized equation of hydraulic flow

rate in an actuator, which is

ḟ =
2β

V
(AKqi−Kc f −A2ẋ) (5.1)

where f , β , V , A, Kq, i, Kc, and x are actuator force, bulk modulus of the fluid, hydraulic

fluid volume of actuator, cross-sectional area of actuator, system constant, valve input, system

constant, and actuator displacement, respectively. Thus, the dynamics of the physical substructure

directly impact the characteristics of the transfer system. Moreover, when the physical substructure

undergoes structural changes or is replaced by a new substructure, the overall dynamics (and

performance) of the transfer system change due to CSI and a new controller is required.

With a simple rearrangement in the block diagram shown in Figure 5.4, Figure 5.5a can be

obtained. In this representation, actuator transfer function can be written as

Ga =
A

V
2β

s+Kc
(5.2)
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Figure 5.4. Actuator dynamics and the physical substructure.

and,

KqGa =
AKq

V
2β

s+Kc
=

AKq
Kc

V
2βKc

s+1
. (5.3)

Next, we lump all the parameters into three new parameters: a1, a2, and a3,

a1 =
2βKqA

V
;a2 =

2βA2

V
;a3 =

2βKc

V
(5.4)

and rewrite Equation 5.3 as

KqGa =

a1
a3

1
a3

s+1
=

a1

s+a3
. (5.5)

Figure 5.5. Equivalent actuator dynamics and the physical substructure.

The fact that a change in the structural properties of the physical substructure will change

the dynamics of the transfer system and, consequently, the global RTHS response, imposes a

challenge for studying the impact of partitioning choice on global stability and performance of

an RTHS system. In the next section, we propose a new virtual framework in which the sensitivity

of a partitioning choice to the interface de-synchronization will be studied prior to adopting a

transfer system control strategy.
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5.4 Predictive Stability Indicator

5.4.1 Framework

As a predictive (or pre-experiment) indicator for conducting successful and safe RTHS,

the PSI was initially developed for single-degree-of-freedom systems Maghareh, Dyke, Prakash,

and Rhoads (2014). In the current PSI framework, a virtual time delay is applied to the feedback

force (interaction force) in order to assess the sensitivity and stability requirement of an RTHS

partitioning choice subject to the interface de-synchronization. The PSI framework is shown in

Figure 5.6. For linear systems, Figure 5.6 can be mathematically represented as either a neutral

or retarded delay differential equation. In order to obtain critical delay of a partitioning choice,

the delay differential equation is analytically solved using a novel computationally inexpensive

method. Critical time delay refers to the time delay associated with occurrence of a stability switch

in Figure 5.6.

Figure 5.6. Predictive stability indicator’s virtual framework.

Transfer system is used to apply the boundary condition and force equilibrium at the

interface. Depending on how the emulated structure is partitioned into numerical and physical

substructures, hydraulic actuator(s) and/or shake table(s) are used as the transfer system. The

general formulation for linear RTHS method and substructuring techniques are provided by Shao et

al., Shao, Reinhorn, and Sivaselvan (2011).
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Herein, to demonstrate the preliminary PSI formulations (obtaining delay differential equations),

two partitioning choices are selected using shake table and hydraulic actuators as transfer system.

It should be mentioned that the PSI formulations also apply to any other partitioning choices in

which hydraulic actuators and/or shake tables are used. Moreover, the PSI formulation can be

used for more challenging RTHS cases in which stability is more critical such as multi-directional

multi-actuator RTHS configurations, multi-rate RTHS (mrRTHS) or geographically distributed

RTHS.

5.4.2 PSI formulation for case I: RTHS using shake table

In this section, a multi-story structure (n+ p stories) is partitioned into n stories as numerical

substructure and p stories as physical substructure shown in Figure 5.7. The numerical substructure

can be modeled as a shear model or a finite element model (as long as Equation 5.6 still applies).

In this partitioning procedure, the top p stories are mounted on a shake table while the bottom

n stories are numerically modeled on a real-time operating system. In this case, the shake table

serves as the transfer system to meet the boundary conditions at interface. Some implementations

of RTHS with similar partitioning approach can be found in Franco, Botelho, and Christenson

(2015); Mueller, Griffith, Shao, and Enyart (2013); Nakata and Stehman (2014); Shao et al.

(2011). To assess the sensitivity of possible partitioning choices, the virtual PSI framework shown

in Figure 5.6 is adopted. Thus the PSI equation of motion for the numerical substructure is

MnẌn +CnẊn +KnXn = F(xg, ẋg)−Fp(τ) (5.6)

where Mn, Cn, Kn, F(xg, ẋg), τ and Fp are numerical mass, damping, stiffness, input force, virtual

time delay and interface force from the physical substructure, respectively. In this section, all

states are absolute (or total) values. Because for linear systems, stability is an internal system

characteristic and independent of the input, without loss of generality, the ground motion force in

Equation 5.6 is dropped. The equation of motion for the numerical substructure becomes

MnẌn +CnẊn +KnXn =−Fp(τ). (5.7)
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For this type of partitioning choice, the interface force becomes

Fp = kn+1(xn+1− xn)+ cn+1(ẋn+1− ẋn). (5.8)

Equation 5.8 can be written in the state space form as follows

Ẋn

Ẍn

=

An︷ ︸︸ ︷ 0n×n In×n

−M−1
n Kn −M−1

n Cn


Yn︷ ︸︸ ︷Xn

Ẋn

+
Bn︷ ︸︸ ︷ 0n×1

−M−1
n RT

Fp(τ) (5.9)

Yi︷ ︸︸ ︷xn

ẋn

=

Cn︷ ︸︸ ︷ R 01×n

01×n R

Xn

Ẋn

 (5.10)

Figure 5.7. A typical real-time hybrid simulation using shake table as transfer system.
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where R is interface vector [01×n−11]T . The equation of motion for the physical substructure is

MpẌp +CpẊp +KpXp = KpΓxn +CpΓẋn. (5.11)

Equation 5.11 can also be written in the state space form as follows

Ẋp

Ẍp

=

Ap︷ ︸︸ ︷ 0p×p Ip×p

−M−1
p Kp −M−1

p Cp


Yp︷ ︸︸ ︷Xp

Ẋp

+
Bp︷ ︸︸ ︷ 0p×1 0p×1

−M−1
p KpΓ −M−1

p CpΓ

xn

ẋn

 (5.12)

Fp =

Cp︷ ︸︸ ︷(
kn+1 01×p−1 kn+1 01×p−1

)Xp

Ẋp

+
Dp︷ ︸︸ ︷(

−kn+1 −cn+1

)xn

ẋn

 . (5.13)

Subject to virtual time-delay, Equation 5.13 becomes

Fp(τ) =CpYp(τ)+DpYi(τ). (5.14)

Using Equation 5.10, Fp(τ) can be written as

Fp(τ) =CpY p(τ)+DpCnY n(τ). (5.15)

By substituting Equation 5.15 into Equation 5.9 and Equation 5.10 into Equation 5.12, respectively,

dynamics of the numerical and physical substructures can be expressed as

Ẏn = AnYn +BnDpCnYn(τ)+BnCpYp(τ) (5.16)

Ẏp = BpCnYn +ApYp. (5.17)
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Equations 5.16 and 5.17 can be expressed in the following retarded delay differential equation

(RDDE) format

Ẏn

Ẏp

=

A0︷ ︸︸ ︷ An 0n×p

BpCn Ap

Yn

Yp

+
A1︷ ︸︸ ︷BnDpCn BnCp

0n×n 0n×p

Yn(τ)

Yp(τ)

 . (5.18)

5.4.3 PSI formulation for case II: RTHS using hydraulic actuator(s)

In this section, a multi-story structure (n stories) is divided into n−m stories as numerical

substructure and m partitioned stories shown in Figure 5.8. The numerical substructure can be

modeled as shear model or finite element model (as long as Equation 5.19 still applies). In this

partitioning procedure, the bottom m partitioned stories are physically constructed and attached

to hydraulic actuators as transfer system while the numerical substructure is being executed on a

real-time operating system. Some implementations of RTHS with similar partitioning approach

can be found in Cha et al. (2014); Chae, Ricles, and Sause (2012); Dong, Sause, and Ricles

(2015); Friedman et al. (2015); Phillips and Spencer (2013). In this case, all states are relative

values (relative to ground motion) and it is assumed that all the degrees of freedom has a non-zero

numerical mass. To assess the sensitivity of possible partitioning choices, the virtual PSI framework

shown in Figure 5.6 is applied. The PSI equation of motion for the system shown in Figure 5.8 is

MnẌ +CnẊ +KnX = F(ẍg)−Fp(τ). (5.19)

As mentioned earlier, because for linear systems, stability is an internal system characteristic and

independent of the input, without loss of generality, the ground motion force in Equation 5.19 is

dropped and it becomes

MnẌ +CnẊ +KnX =−Fp(τ). (5.20)
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Figure 5.8. A typical real-time hybrid simulation using hydraulic actuator(s) as transfer
system.

Equation 5.20 can also be written asẊ

Ẍ

=

 0n×n In×n

−M−1
n Kn −M−1

n Cn

X

Ẋ

+
 0n×n

−M−1
n

Fp(τ), (5.21)

where Fp is

Fp = MpẌ +CpẊ +KpX . (5.22)

The interface force can also be expressed as

Fp =
(

Kp ρCp

)X

Ẋ

+((1−ρ)Cp Mp

)Ẋ

Ẍ

 (5.23)
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where ρ can take any value between 0 to 1. Substituting Equation 5.23 into Equation 5.21, it

becomes

Ẋ

Ẍ

=

 0n×n In×n

−M−1
n Kn −M−1

n Cn

X

Ẋ

+
 0n×n 0n×n

−M−1
n Kp −ρM−1

n Cp

X(τ)

Ẋ(τ)

+
 0n×n 0n×n

−M−1
n (1−ρ)Cp −M−1

n Mp

Ẋ(τ)

Ẍ(τ)

 . (5.24)

Finally, Equation 5.24 can be rearranged and written in the following neutral delay differential

equation (NDDE) format

Ẋ

Ẍ

+
B︷ ︸︸ ︷ 0n×n 0n×n

−M−1
n (1−ρ)Cp −M−1

n Mp

Ẋ(τ)

Ẍ(τ)

=

A0︷ ︸︸ ︷ 0n×n In×n

−M−1
n Kn −M−1

n Cn

X

Ẋ

+
A1︷ ︸︸ ︷ 0n×n 0n×n

−M−1
n Kp −ρM−1

n Cp

X(τ)

Ẋ(τ)

 . (5.25)

In the next section, we demonstrate how to solve these delay differential equations.
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5.4.4 Conversion of delay differential equation to a generalized eigenvalue problem

In this section, we adopt a novel method to solve the delay differential equations obtained

in the previous section in a computationally efficient way. To derive the PSI, we convert the delay

differential equation to a generalized eigenvalue problem using a set of vectorization mappings.

After obtaining the critical time delay for the neutral and retarded delay differential equations, we

compute the PSI value to assess the sensitivity of the partitioning choice to de-synchronization of

interface. First, note that RDDE (obtained for Case I) is a special case of NDDE in which the B

matrix in Equation 5.26 becomes 0. Thus, without loss of generality, hereinafter, all the equations

are based on the NDDE format. In general, a neutral delay differential equation takes the form of

Ẋ(t)+BẊ(t− τ) = A0X(t)+A1X(t− τ). (5.26)

The characteristic equation of Equation 5.26 is

|s(I +Be−τs)−A0−A1e−τs|= 0 (5.27)

where |.| denotes the determinant, I refers to identity matrix and s ∈ C. For a linear dynamic

system to be asymptotically stable about its fixed points, all roots of the characteristic equation

(i.e., eigenvalues) must lie in the left half of the complex plane. Therefore, stability switching

occurs when the rightmost eigenvalue goes from the left complex half-plane into the right complex

half-plane by crossing the imaginary axis. So the appearance of an eigenvalue on the imaginary

axis is the critical condition. Equation 5.27 can be rearranged as

|sI−A0 + e−τs(sB−A1)|= 0. (5.28)

Associated eigenvector (v) can be added to Equation 5.28

(sI−A0)v =−e−τs(sB−A1)v, (5.29)
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conjugating and transposing Equation 5.29 yield

v∗(−sI−AT
0 ) =−eτsv∗(−sBT −AT

1 ). (5.30)

Multiplying both sides of Equation 5.29 by minus Equation 5.30, we obtain

O︷ ︸︸ ︷
(sI−A0)

P︷︸︸︷
vv∗

Q︷ ︸︸ ︷
(sI +AT

0 ) = (sB−A1)vv∗(sBT +AT
1 ). (5.31)

To solve Equation 5.31, we adopt the matrix method proposed by Louisell Louisell (2001). A brief

overview of this matrix method is provided here. Let a vectorization operator ξ : Cn×n −→Cn2
be

defined as follows

ξ M =


mT

1

mT
2

...

mT
n

 (5.32)

for any M =


m1

m2

...

mn

. We particularly use an important identity of this operator which is

ξ (OPQ) = (O⊗QT )ξ P (5.33)

where O,P, and Q∈Cn×n and⊗ refers to the Kronecker product. Using Equation 5.33, Equation 5.31

becomes

[(sI−A0)⊗ (sI +A0)− (sB−A1)⊗ (sB+A1)]V = 0 (5.34)

or simply

Λ(s)V = 0 (5.35)
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where V and Λ(s) are ξ vv∗ and (sI−A0)⊗ (sI +A0)− (sB−A1)⊗ (sB+A1). Next, consider the

following two ordinary differential equations

Ẋ(t)+BẎ (t) = A0X(t)+A1Y (t) (5.36)

Ẋ(t)BT + Ẏ (t) =−X(t)AT
1 −Y (t)AT

0 (5.37)

where A0,A1,B,X , and Y ∈Cn×n. Herein, we define two new operators E and F by

E

X

Y

=

 X +BY

XBT +Y

 (5.38)

F

X

Y

=

 A0X +A1Y

−XAT
1 −YAT

0

 . (5.39)

If Z(t) =

X

Y

, then Equations 5.36 and 5.37 can be written in the matrix differential equation as

EŻ(t) = FZ(t). (5.40)

Next, we write E and F in vector coordinates and apply the vectorization operator ξ to Z

E0 =

 I⊗ I B⊗ I

I⊗B I⊗ I

 ,F0 =

 A0⊗ I A1⊗ I

−I⊗A1 −I⊗A0

 ,z = ξ Z =

ξ X

ξY

=

x

y

 . (5.41)

Thus Equation 5.40 becomes

E0ż(t) = F0z(t) (5.42)

and the corresponding characteristic equation becomes

(sE0−F0)z = 0. (5.43)
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In the Laplace domain, Equations 5.36 and 5.37 become

(sI−A0)X +(sB−A1)Y = 0 (5.44)

X(sBT −AT
1 )+Y (sI +AT

0 )Y = 0. (5.45)

Defining a new operator as T = sE−F

T

X

Y

=

 (sI−A0)X +(sB−A1)Y

X(sBT +AT
1 )+Y (sI +AT

0 )

 , (5.46)

Equations 5.44 and 5.45 become

T

X

Y

= T Z = 0. (5.47)

To understand the behavior of operator T , we attempt to solve

T

X

Y

=

X0

Y0

 . (5.48)

By multiplying the upper equation by sI+AT
0 , and the lower on the left by sB−A1, then subtracting,

we obtain

(sI−A0)X(sI +AT
0 )− (sB−A1)X(sBT +AT

1 ) = X0(sI +AT
0 )− (sB−A1)Y0. (5.49)

Similarly, by multiplying the upper equation by sBT +AT
1 , and the lower on the left by sI−A0,

then subtracting, we obtain

(sI−A0)Y (sI +AT
0 )− (sB−A1)Y (sBT +AT

1 ) = (sI−A0)Y0−X0(sBT −AT
1 ). (5.50)

Here, we define another operator T+ as

T+

X

Y

=

 X(sI +AT
0 )− (sB−A1)Y

−X(sBT +AT
1 )+(sI−A0)Y

 . (5.51)
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Applying both operators T+ and T on

X

Y

, we obtain

T+T

X

Y

=

λX

λY

 (5.52)

where

λX = (sI−A0)X(sI +AT
0 )− (sB−A1)X(sBT +AT

1 ) (5.53)

λY = (sI−A0)Y (sI +AT
0 )− (sB−A1)Y (sBT +AT

1 ). (5.54)

Next, we vectorize all the operators using the vectorization operator ξ . Therefore, T

X

Y

, T+

X

Y

,

λX and λY map to K

x

y

, K+

x

y

, Λx and Λy, accordingly, where

K =

(sI−A0)⊗ I (sB−A1)⊗ I

I⊗ (sB+A1) I⊗ (sI +A0)

= sE0−F0 (5.55)

K+ =

 I⊗ (sI +A0) −(sB−A1)⊗ I

−I⊗ (sB+A1) (sI−A0)⊗ I

 (5.56)

Λ(s) = (sI−A0)⊗ (sI +A0)− (sB−A1)⊗ (sB+A1). (5.57)

Notice, in Equations 5.57 and 5.34, Λ(s) is identical. Applying the vectorization operation (ξ ) on

Equation 5.52, we obtain

K+K

x

y

=

Λx

Λy

=

Λ 0

0 Λ

x

y

 (5.58)

which means

K+K =

Λ 0

0 Λ

 (5.59)
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and therefore,

|K+K|=

∣∣∣∣∣∣ Λ 0

0 Λ

∣∣∣∣∣∣= |Λ|2 . (5.60)

In a lemma, Louisell proved that |K|= |K+|, see Louisell (2001). Thus we know

|K|= |Λ|. (5.61)

To obtain the solution to Equation 5.26, we need to solve Equation 5.34. The solution to Equation 5.34

is

|Λ|= 0. (5.62)

Using Equations 5.55 and 5.61, we know

|Λ|= |K|= |sE0−F0|= 0. (5.63)

Notice, Equation 5.63 is a generalized eigenvalue problem which can be simply solved. To find the

corresponding critical time delay(s), we adopt the method proposed by Marshal et al., Marshall,

Gorecki, Korytowski, and Walton (1992). For the imaginary eigenvalues found from Equation 5.63

(s = iω), Equation 5.29 becomes singular

|(iωI−A0)+ e−τiω(iωB−A1)|= 0. (5.64)

The solutions of Equation 5.64 are the solutions of the generalized eigenvalue of the pair matrix

A0− iωI and iωB−A1 if and only if the magnitude of the eigenvalue solution is 1 as |eτiω |= 1.
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5.4.5 Predictive stability indicator: PSI value and stability categories

Designing an RTHS configuration becomes more meaningful if we realize that designing

a transfer system controller is inherently characterized by a balance between tracking accuracy

(performance) and robustness (stability). To conduct an accurate RTHS, while system stability is

reliably held, a researcher needs to know the sensitivity of the partitioning choice to the interface

de-synchronization from stability and performance perspectives. In the proposed PSI framework,

by solving the neutral (or retarded) delay differential equations, we obtain a set of critical time

delays. For a particular partitioning choice, the critical time delays correspond to the time delays at

which stability switch occurs in the virtual PSI framework. In order to develop a stability indicator,

the first occurrence of a stability switch (from a stable system to an unstable system) is the most

meaningful one. Thus, hereinafter, the critical time delay (τcr) refers to the smallest critical time

delay obtained by solving the delay differential equation. The PSI value can be computed as

PSI = log10 [τcr(msec)]. (5.65)
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Equation 5.65 maps τcr ∈ (0,∞) to PSI ∈ (−∞,∞). Figure 5.9 shows the relationship between

critical time delay, predictive stability indicator and global stability for any partitioning choice.

It should be noted that the proposed boundaries in Figure 5.9 are based on experience and the

values may change based on transfer system controller design procedure and reasonableness of

assumptions of transfer system linearity. It can be seen in Figure 5.9 that higher values of PSI

refers to a partitioning choice with a greater stability margin.

Figure 5.9. Relationship between PSI, critical time delay and RTHS stability due to
interface de-synchronization.

The proposed predictive stability indicator can be applied to more complicated systems,

such as multi-directional multi-actuator RTHS, multi-rate RTHS, distributed RTHS, and piecewise

linear (PL) dynamical systems. From a stability point of view, researchers have shown that

linear RTHS is more susceptible to interface de-synchronization than a partitioning choice with

strain-softening nonlinearities or energy dissipating systems in the physical substructure.

With the recent scientific and engineering advances that extend the connectivity of cyber-physical

systems, distributed RTHS can optimize the use of distributed computational and experimental

resources and leverage multiple computational and experimental resources. However, the existence

of substantial deterministic and random communication delays poses stability challenges which

can be effectively addressed by the proposed stability framework.
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5.5 Illustrative Examples

In this section, the objective is to demonstrate the effectiveness of using the PSI in designing

a successful experiment. The term partitioning choice refers to various choices of partitioning a

specific emulated structure into numerical and physical substructures. An alternative to the PSI

is stability analysis of various detailed components of RTHS including transfer system dynamics,

transfer system controller and control-structure-interaction.

In this alternative method, due to the presence of control-structure-interaction, any change

in the physical substructure (new partitioning choice) yields change in transfer system performance

which requires redesigning the control/compensation system. To conduct stability (or performance)

analysis of many partitioning choices, it is unfeasible to design a new transfer system controller

every time a change is made in the physical substructure. However, since PSI is obtained analytically

and it is independent of transfer system and controller dynamics, generating a PSI plot for many

partitioning choices is extremely easy, quick, and useful. Thus, to demonstrate the technique, and

still make it possible to verify that PSI yields the same results as other techniques that include

CSI and transfer system dynamics, the physical substructure is kept unchanged and the numerical

substructure is varied.

5.5.1 MDOF RTHS with a single actuator

In the first illustrative example, we conduct a stability analysis of 2,500,000 simulated

RTHS cases and compare the results with the corresponding PSI values. Consider a linear three

story shear building subjected to a one-dimensional seismic excitation partitioned in Figure 5.10.

The physical substructure is a portion of the first story, and the remaining is the numerical part.

In this example, to avoid redesigning a control/compensation system for each case study,

the physical substructure remains unchanged: Mp = 2,924 kg, Cp = 15.8 N.s/cm, Kp = 13,895

N/cm. However, to study various partitioning choices, the numerical substructure changes for

each simulated case. Mass, stiffness, and damping of the numerical substructure are computed as

follows
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Figure 5.10. A typical real-time hybrid simulation using shake table as transfer system.

Mn =


M1

n 0 0

0 M2
n 0

0 0 M3
n

 (5.66)

Cn =


C1

n +C2
n −C2

n 0

−C2
n C2

n +C3
n C3

n

0 −C3
n C3

n

 (5.67)

Kn =


K1

n +K2
n −K2

n 0

−K2
n K2

n +K3
n K3

n

0 −K3
n K3

n

 (5.68)

where, M1
n and K1

n are computed using partitioning parameters α1 and γ1

α1 =
M1

n
M1

n +Mp
,γ1 =

K1
n

K1
n +Kp

(5.69)

and

C1
n =Cp. (5.70)
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Mass, damping, and stiffness of the second and third floors are assigned as

M2
n = M3

n = M1
n +Mp (5.71)

C2
n =C3

n =C1
n +Cp (5.72)

K2
n = K3

n = K1
n +Kp. (5.73)

For the simulated RTHS cases, a hydraulic actuator is modeled according to the block

diagrams shown in Figures 5.3 and 5.5. The model parameters are selected using an identified

actuator in Carrion and Spencer (2007) where a1 = 5.17×105 kN/(m.s), a2 = 7.77×104 kN/m, and

a3 = 21.52 1/s. In Carrion and Spencer (2007), Carrion and Spencer also modeled the associated

servo-valve dynamics as a first order transfer function

Gs =
Kp

τs+1
, (5.74)

where Kp = 4.6 and τ = 3.32 ms are proportional gain and servo-valve time constant, respectively.
Figure 5.12 depicts the block diagram of the simulated RTHS cases.
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Figure 5.11. Frequency response functions demonstrating control-structure-interaction
in RTHS.
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Figure 5.12. Block diagram of simulated RTHS.

In the simulated RTHS cases, control-structure interaction is also modeled. In Figure 5.11,

the magnitude of frequency response functions of the physical substructure (force to displacement)

and coupled actuator with the physical substructure (desired displacement to measured force)

are demonstrated. This figure shows that because the physical substructure is lowly-damped

(damping ratio: ζ = 1.24%), the actuator has a greatly limited ability to apply forces at the

physical substructure’s natural frequency. Next, five different compensation/control systems with

various levels of performance are designed and stability of a total of 2,500,000 (= 5 control

systems×500,000 partitioning choices) simulated cases are determined and showed in Figure 5.13.

Simulated RTHS results in Figure 5.13 are categorized in 6 different stability cases: (i) 5 controllers

stable - 0 controller unstable (0U/5S); (ii) 4 controllers stable - 1 controller unstable (1U/4S);

(ii) 3 controllers stable - 2 controllers unstable (2U/3S); (ii) 2 controllers stable - 3 controllers

unstable (3U/2S); (ii) 1 controller stable - 4 controllers unstable (4U/1S); (ii) 0 controller stable -

5 controllers unstable (5U/0S).

Figure 5.13. Stability of simulated cases (α1 and γ1 are defined as: Equation 5.69).
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In the next step, the PSI values associated with each partitioning choice are computed using

Equation 5.65 and depicted in Figure 5.14. By comparing Figures 5.13 and 5.14, we can see that

Figure 5.14. Predictive stability indicator (α1 and γ1 are defined as: Equation 5.69).

the PSI plot is able to capture the essential results of the global stability in RTHS. In other words,

prior to conducting an experiment, the PSI value provides a researcher with relative measures

associated with the sensitivity of alternative partitioning choices to interface de-synchronization.

This information (the PSI plot) is extremely valuable for the design and configuration of RTHS

experiment.
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Figure 5.15. Large scale multi-actuator RTHS (NEES project ID: 648).

5.5.2 MDOF RTHS with multiple actuators

As discussed earlier, currently RTHS is being implemented for complex MDOF systems

in which control of multiple actuators is required. The multiple actuators are inherently coupled

through the physical substructure. This phenomenon imposes certain challenges and considerations

in transfer system control for implementing a successful test. Here, the objective is to evaluate

the effectiveness of the PSI for stability analysis of MDOF RTHS with multiple actuators while

control-structure interaction is considered. In this study, stability of 9,000,000 simulated RTHS

are determined and the results are compared with the PSI plot to evaluate how effectively the

PSI can capture the sensitivity of a partitioning choice to interface de-synchronization for MDOF

RTHS with multiple actuators.

Here, to avoid redesigning a control/compensation system for each case study, the physical

substructure is identified and kept unchanged for all simulations.

Mp =


3.147 0 0

0 3.147 0

0 0 3.147

 kN.s2/m (5.75)
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Cp =


74.21 −32.73 4.29

−32.73 59.87 −23.20

4.29 −23.20 26.10

 kN.s/m (5.76)

Kp =


5.49 −3.35 0.76

−3.35 4.32 −1.83

0.76 −1.83 1.21

×104 kN/m. (5.77)
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Figure 5.16. Validation of the actuator model.

The original numerical substructure is identified as

Mn =


98.9 0 0

0 98.9 0

0 0 70.8

 kN.s2/m (5.78)

Cn =


391.0 −156.4 2.7

−156.4 295.2 −122.2

2.7 −122.2 101.6

 kN.s/m (5.79)
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Kn =


1.17 −0.73 0.16

−0.73 0.89 −0.34

0.16 −0.34 0.20

×105 kN/m. (5.80)

which leads to F1 = 1.04 Hz, F2 = 3.29 Hz, F3 = 6.93 Hz, ζ1 = 2.71%, ζ2 = 6.45%, and ζ3 =

6.15% where Fi and ζi are the ith natural frequency and damping ratio, respectively. To investigate

the stability of various partitioning choices, three sets of simulations were performed: Case I in

which the first mode’s natural frequency and damping between [0.52 − 1.56]Hz and [0.54 − 3.25]%

while the second and third modes are kept unchanged; Case II in which the second mode’s natural

frequency and damping between [1.65 − 4.94]Hz and [1.29 − 7.74]% while the first and third

modes are kept unchanged; Case III in which the third mode’s natural frequency and damping

between [3.46 − 10.39]Hz and [1.23 − 7.38]% while the first and second modes are kept

unchanged. These varying parameters are provided in Table 5.1. It should be mentioned that

in all the simulated cases, the modal mass and mode shapes remain unchanged.
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Table 5.1. Simulated case studies.
F1 (Hz) F2 (Hz) F3 (Hz) ζ1 (%) ζ2 (%) ζ3 (%)

Case I ∈ [0.52 1.56] 3.29 6.93 ∈ [0.54 3.25] 6.45 6.15

Case II 1.04 ∈ [1.65 4.94] 6.93 2.71 ∈ [1.29 7.74] 6.15

Case III 1.04 3.29 ∈ [3.46 10.39] 2.71 6.45 ∈ [1.23 7.38]

To capture the stability trend, three different compensation/control systems with various

levels of performance are designed. Thus, in total, stability of 9,000,000 (= 3 control systems ×3

variation cases ×1,000,000 partitioning choices) simulated cases are determined.

In Figures 5.17-5.19, simulated RTHS results are categorized in four different stability

groups: (i) 3 controllers stable - 0 controller unstable (0U/3S); (ii) 2 controllers stable - 1 controller

unstable (1U/2S); (ii) 1 controller stable - 2 controllers unstable (2U/1S); (ii) 3 controllers stable

- 0 controllers unstable (3U/0S). Next, the PSI plots corresponding to cases I-III are generated.

Figures 5.17-5.19 provide comparisons between the stability results of all the simulated cases and

the predictive stability analysis based on the PSI values.
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Figure 5.17. Sensitivity study of RTHS stability to the first mode of the numerical
substructure.

142



2 3 4

2

3

4

5

6

7

 

Second natural frequency[Hz]

 

D
am

pi
ng

[%
]

PSI = 0.23

PSI = 0.35

PSI = 0.47

PSI = 0.59

PSI = 0.71

PSI = 0.83

PSI = 0.95

PSI = 1.07

Figure 5.18. Sensitivity study of RTHS stability to the second mode of the numerical
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Figure 5.19. Sensitivity study of RTHS stability to the third mode of the numerical
substructure.

The x and y axes in Figures 5.17-5.19 correspond to variations in the natural frequency and

damping of the numerical substructure. Figures 5.17-5.19 show that there is significant agreement

between the stability results and the PSI plots. Therefore, PSI plots are effective for designing

a successful experiment. For this particular experiment, some observations can be made prior to

conducting the experiment based on the PSI plots. There are some partitioning choices in which an

almost perfect controller is required for the system to hold its stability. These partitioning choices

are not always clear to a researcher. For instance, it’s more likely that a numerical substructure

with F3 = 5 Hz and ζ3 = 5% causes instability than the same numerical substructure with F3 = 10

Hz and ζ3 = 5%.
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Global stability is highly sensitive to the higher modes of the numerical substructure and

relatively insensitive to the lower modes of the numerical substructure. However, an effective

control strategy might still be needed for certain partitioning choices. Adding damping in the

numerical substructure can always improve stability in the system.

5.6 Conclusion

Currently, RTHS is being implemented to evaluate the performance of complex MDOF

systems with rate dependent behaviors. For more complex experiments in this class, multiple

actuators are required to enforce the boundary conditions at the interfaces, and with the need

for more accuracy in RTHS, the challenges involved in configuring the test and designing highly

accurate and robust controllers will increase. The particular RTHS configuration chosen for an

experiment largely dictates the capabilities and accuracy requirements of the controller used. An

RTHS can become unstable if de-synchronization at the boundaries occurs. Stability analysis with

simulated RTHS requires that transfer system modeling and control be performed in advance. And

due to control-structure interaction, any change in the physical substructure (a new partitioning

choice) yields an associated change in the transfer system performance which requires redesign of

the controller/compensator.

As the complexity of the test grows, such models require significant amounts of time to

consider the large number of partitioning choices, and to search for a configuration with controller

needs that are less sensitive to the partitioning choices. With large number of configurations, a

pure simulation based approach is practically infeasible. Here the PSI has been extended to be

applicable to any linear MDOF system. The PSI provides a quantitative tool to compare and

contrast the configuration choices in terms of the challenge that will be involved in design of the

actuator controller. Designing a transfer system controller is inherently characterized by a balance

between tracking accuracy (performance) and robustness (stability).
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For a partitioning choice with a non-sensitive interface, designing a more robust controller

(which leads to larger stability margins for the transfer system) is more likely to ensure global

stability in RTHS. However, for a partitioning choice with a sensitive interface, designing a transfer

system controller with accurate tracking performance within the bandwidth of interest is an absolute

requirement. To establish the PSI for MDOF systems, a delay differential equation is converted

to a generalized eigenvalue problem using a set of vectorization mappings. This approach results

in a computationally efficient method to solve the delay differential equations, thus yielding PSI

values for a range of RTHS cases. Because it is independent of the transfer system and controller

dynamics, the PSI is quite powerful for exploiting different configurations as well as designing a

successful RTHS experiment.
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