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ABSTRACT

Jin Xin Ph.D., Purdue University, May 2020. A Multi-Scale and Multi-Physics Frame-
work for Integrated Electronics Operating in Harsh Environment: A Sensor-to-System
Perspective. Major Professor: Muhammad A. Alam.

In a modern IoT network, the design of edge computing electronics operating in

harsh environment faces great challenges. In this doctoral thesis, we are develop-

ing an end-to-end modeling framework for two IoT-based applications: personalized

medicine and precision agriculture. By coupling the physics of analyte mass transfer,

electrochemical reactions, and electrostatics, the framework paves the way for the

development of the following new generation electrochemical/biosensors: 1) high sen-

sitivity nano-electrode non-enzymatic/enzymatic amperometric glucose sensors, 2)

self-powered enzymatic biofuel cell (EBFC)-based lactate sensors, and 3) roll-to-roll

printed thin-film ion-selective electrode (ISE)-based soil nitrate sensors.

Glucose sensors have transformed diabetes control. Amperometric glucose sensors

with nanoparticle electrodes promise fast and highly sensitive detection of glucose con-

centration in both in vivo and in vitro applications. Unfortunately, the sensitivity

and response of the sensor, as a function of nanoparticle geometry and glucose oxidase

distribution, is not fully understood, making it difficult to optimize the sensor per-

formance. In this work, we derive an analytical relationship that explicitly correlates

sensor performance to the elementary properties of the electrodes and oxidase. The

model facilitates predictive design and optimization of nanoparticle-based ampero-

metric biosensors that can eventually be integrated into the wearable platform.

Most glucose sensors are enzymatic, but a non-enzymatic metal oxide-based glu-

cose sensor on a nanostructured substrate is of considerable interest for future always-

on wearable closed-loop sensing for hypoglycemia management. Recently, various
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research groups have demonstrated that different nanostructured substrates (fabri-

cated by a variety of innovative techniques) boost the sensitivity of non-enzymatic

glucose sensor. In this work, we develop a physics-based model to correlate the ge-

ometrical and chemical design parameters to the non-linear amperometric response

of non-enzymatic glucose sensor on the geometrically complex substrate. Using this

model, we can interpret the scattered results in the literature within a common con-

ceptual framework. Our model will predictably improve the design of non-enzymatic

glucose sensors for integrating into continuous glucose monitoring system (CGMS) in

wearable and implantable platforms.

Enzymatic biofuel (EBFC)-based self-powered sensors represent an interesting

class of biochemical sensors as they obviate the need for external power sources thus

enabling device miniaturization. While recent efforts driven by experimentalists illus-

trate the potential of EBFC-based sensors for real-time monitoring of physiologically

relevant biochemicals, a robust mathematical model that helps understand the con-

tributions of sensor components and empowers experimentalists to pre-dict sensor

performance remains missing. In this work, we provide an elegant yet simple equiv-

alent circuit model that cap-tures the complex, three-dimensional interplay between

coupled catalytic redox reactions occurring in an EBFC-based sensor and predicts

its output signal with high correlations to experimental observations. Systematic

experiments validate the accuracy of the described model. The mathematical model

derived in this work can be easily adapted to understand a wide range of two-electrode

systems, including sensors, fuel cells, and energy storage devices.

To improve farm-to-folk productivity, we develop design guidelines for roll-to-roll

thin-film ion-selective electrode sensors. The sensor detects the local soil nitrate level

on demand. The fabrication process involves roll-to-roll (R2R) nano-manufacturing

facility which enables high throughput at low cost. We developed a fundamental

physics-based model to describe both steady-state response and transient response of

ISE sensor. We discover that the conventional logarithmic Nernst relationship in the

steady-state can be extended in the time domain. For a thin solid-contact ISE, the
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ion-selective membrane thickness plays a significant role due to the accumulation and

depletion of target ions in the entire membrane region. We successfully eliminate the

effect of ion-selective membrane variation on output emf voltage by image analysis

and machine learning methods. We introduce a new graphene-based ISE design to

reduce ISE response time and sensor-to-sensor variations.

In addition to sensor performance, the theoretical framework developed in this the-

sis also focuses on the general reliability issues for the IoT edge-computing electronics

in the system integration level. It includes the physics of the multiple degradation

mechanisms in harsh environments, such as corrosion assisted by moisture diffusion,

device instability due to ion drift, and dissolution of the packaging material in the salty

biochemical environment. Wearable and implantable electronic devices are enabling a

new generation of customized real-time health monitoring systems. Some of the high-

est performance systems involve MOSFET-based sensors as well as MOSFET-based

digital and analog circuits. Protecting these transistors in a harsh fluidic environment

is difficult because the requirement of wearability/flexibility demands ultra-thin en-

capsulation. The charged ions (such as Na+) from the body-fluids can diffuse rapidly

through the thin encapsulation layer and destabilize the transistors, and render the

component nonfunctional. In this paper, we develop an analytical framework and

scaling theory for Na+ penetration into the encapsulation layer of wearable and im-

plantable electronic devices. Coupled with physics of MOSFET degradation, the ion

penetration model predicts lifetime of MOSFET-based electronics encapsulated by

various types of encapsulating materials. The model is easily generalized to include

multiple design parameters, such as stacks of encapsulation layers, encapsulation layer

thicknesses, temperature/field dependent ion drift and rate of dissolution of the en-

capsulation layer, etc. Our simulations and experiments show that 1) a multi-layer

encapsulation is essential to achieve multi-objective passivation. and 2) the encap-

sulation thickness must be optimized by accounting for charged ion penetration and

dissolution of the encapsulation layer. Our results can be used to predict the per-

formance degradation and project the lifetime of electronic devices for implantable
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and autonomous sensors, providing direction to optimize the design of the protective

packaging.
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1. INTRODUCTION

1.1 The trend of IoT network

Looking back at the history of humankind in the past century, the advancement

of science and technology has greatly improved people’s lives: the discovery and

cognition of bacteria and viruses, and the large-scale use of antibiotics have greatly

increased the control of disease and prolonged the average human life expectancy;

breakthroughs in genetic engineering in biology have increased agricultural grain pro-

duction and fed more populations; the booming development of the semiconductor

industry has made it possible for big data processing, computing, and storage to push

humans into the information age.

In the near future, the development of Internet of Things (IoT) will closely con-

nect the physical and digital realms, greatly expanding the coverage of information

technology. The number of connected devices is expected to exceed 50.1 billion in

2020, almost double the number (28.4 billion) in 2017. The driving force behind this

exponential growth comes from two rapidly developing areas: 1) the increasing com-

putation and storage capability at the cloud/server side thanks to Moore’s law, and

2) the expansion of edge electronic devices.

On the IoT edge side, electronic devices such as sensors, transistors, energy har-

vesters, etc. have become increasingly sophisticated and their widespread use is be-

ginning to transform daily life. [1] The trend offers an opportunity to integrate these

individual electronic devices into integrated systems for IoT applications such as self-

driving cars, smart cities, and smart grids. [2,3] The interconnected electronic systems

will be embedded in everyday objects to measure, send, receive, and analyze data.

This inter-connectivity would allow one to program the system to optimize power

vs. performance trade-off. [4, 5] Specifically, there are two potential areas of applica-
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tions (see Fig. 1.1) where tremendous growth will take place in the coming decades:

personalized medicine and precision agriculture.

Personalized Medicine: To combat either chronic physical diseases (e.g., di-

abetes, epilepsy, nephritis, glaucoma, and, cancer) or mental illnesses (e.g., depres-

sion, anxiety disorder, and autism), there is an increasing demand for continuous

health monitoring. [6] For this purpose, researchers have developed wearable and bio-

implantable systems and these systems are considered reliable tools for long-term

health monitoring systems. [7] The application for next-generation bio-implantable

systems will not only be restricted to monitoring health condition in a clinical setting
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but will also include fitness tracking and preventative health care in everyday life. [8]

Furthermore, human body performance evaluation in extreme environments, such as

an airman in the fighter aircraft and an athlete during high-pressure games, have

emerged as important research topics. [9, 10]

Benefiting from the improvement of semiconductor technology, the electronic sen-

sors can now reliability monitor the full range of physiological indices (e.g., blood

pressure, heart beat, blood oxygen saturation). Implementation of the electrochem-

ical biosensors into wearable and bio-implantable systems, however, is still in its

infancy stage. [6] Currently, there are two main trends in the development of next-

generation electronic body monitoring system: 1) liberate the massive monitoring

instruments from the lab into portable lab-on-a-chip system, and 2) introduce the

ability to test for multiple analytes. [11] Both of them require significant advances in

electronic sensor technology.

Monitoring

ControlTreatment

Emergency room / Lab
Wearable and implantable 
devices

Fig. 1.2.: IoT medical care application: liberating the sensors from lab to lab-on-a-

chip wearable electronic devices.
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Precision Agriculture: Nowadays agriculture has evolved into an incredibly

sophisticated industry. A new concept called precision agriculture is the critical com-

ponent in the wave of modern agriculture revolution. [12] The objective of precision

agriculture is to optimize crop returns while preserving resources. [13] To achieve

this objective, people need customized devices to precisely understand and improve

plants for the whole farm management. A modern IoT network can connect all those

customized devices together. This closed-loop IoT network must be completed by

sensors that can continuously monitor and send data to the farmers, chemical ven-

dors, and agronomists. The data include information on plant health status as well

as biophysical parameters indicating the need for inputs, such as soil pH level, ni-

trate level, relative humidity, number of fungus/bacteria, etc. [14,15] In the back end,

the network analyzes the data and then deliver on-demand nutrition/pesticide to the

plant, or precisely control the irrigation systems.

1.2 The evolution of modern electrochemical biosensors

Modern electrochemical biosensors, integrated with nanotechnology, can detect

tiny elements such as chemical molecules, bacteria, and mycotoxin in low concentra-

tion. Therefore, it is particularly attractive for the IoT network. [16] Also, modern

material technologies offer the possibility to implement sensors in an all-organic ap-

proach. Hence, the sensor can be more functional by the integration of environmen-

tally friendly and biocompatible material with specific properties, making the tailor-

made design possible for low-cost, fully-integrated biosensors operating uniquely in

the field of medical care and precision agriculture [17].

Based on the detection mechanism, modern electrochemical biosensors could be

categorized into four groups: amperometric, potentiometric, impedance, and optical.

Amperometric sensors. This type of sensor detects the concentration of a

chemical species by measuring the current. The target analytes for this detection

mechanism are usually charged neutral (glucose, lactate, etc.). The current comes
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from the electrons generated by specific electrochemical oxidation/reduction reactions

of either the initial analyte or the secondary by-products.

A typical amperometric sensor uses the three-electrode setup shown in Fig.4. A

voltage bias is applied between the working and reference electrode during measure-

ment to maintain a constant potential. The current passes through and is measured

between the working electrode and the auxiliary electrode (sometimes referred to the

counter electrode).

The amperometric sensors offer many advantages: the specificity of the electro-

chemical oxidation/reduction reaction makes them more selective compared to other

sensing techniques. Unlike potentiometric sensors, the response of the amperometric

sensor is not limited by charge screening. Amperometric sensors are widely used in

environmental, clinical, and industrial applications.

An important application of amperometric biosensors involves glucose detection.

Commercial glucose sensors depend on the amperometric method to measure the glu-

cose level in a blood sample for diabetes control. As shown in the Fig. 1.5 (a), a
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Fig. 1.4.: The three-electrode measurement setup for amperometric sensors. [18]

chain of redox reactions happens on the working electrode. Enzymatic glucose oxi-

dase (GOx) catalyzes the reaction between glucose and oxygen to produce hydrogen

peroxide (H2O2) as an intermediate product. The applied voltage extracts electrons

from H2O2 and generates the output current signal.

For IoT personalized medicine applications, several design limitations need to

be resolved before the amperometric sensors can be fully integrated: First, GOx

activity depends sensitively on the ambient temperature. The degree of temperature

control needed is incompatible with long-term bio-implantable applications. Second,

the consumption of O2 during glucose oxidation causes the sensor reading to drift,

requiring frequent calibration. Finally, the reaction by-product H2O2 is potentially

harmful to the human body.

In chapter 2, 3, and4 of this thesis, we will introduce three novel amperometric

sensor designs that overcome the drawbacks of conventional amperometric sensor:

nano-particle based enzymatic glucose sensor (Fig. 1.5 (a)), non-enzymatic glucose

sensor(Fig. 1.5 (b)), and enzymatic biofuel cell (EBFC) based amperometric sensor

(Fig. 1.5 (c)).
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glucose sensor. (c) Bio-fuel amperometric enzymatic glucose/lactate sensor.

Potentiometric sensors. In contrast to the amperometric sensor, a potentio-

metric sensor is a type of chemical sensor that used to determine the concentration

of species from the voltage response. For this detection mechanism, the target ana-

lytes are normally charged molecules such as DNA, protein, and ions. These sensors

measure the electrostatic potential (or electromotive force EMF) generated by the

charged species under zero-current conditions.

There are several types of potentiometric sensors. One typical example called ion-

sensitive field effect transistor (ISFET) combines the chemical sensor technology with
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CMOS technology. The structure of ISFET is like conventional MOSFET except that

the metal gate of MOSFET is replaced by a liquid gate. When the charged target

species in the measuring solution combines with the selective molecules (antibody,

enzyme, etc.) on the liquid gate, the equivalent gate bias changes and the source to

drain current ID reveals the analyte concentration accordingly.

Fig. 1.6.: Schematic illustration of the working mechanism of ion-sensitive FET.

Figure has been regenerated from [19]

In chapter 5 and chapter 6 of this thesis, we are going to investigate the sensing

mechanism and performance limit of another type of potentiometric method: ion-

selective electrode (ISE) sensor. Because of the simplicity of the sensor setup, ISE is

more widely used for IoT integrated systems.

Impedance sensors. Electrical impedance-based sensor determines the analyte

concentration from the impedance spectroscopy. The basic idea behind this approach

is to bias the sensor electrode with a small AC signal and to observe electrode re-

sponse. When the analyte is captured by the probe of the impedance sensor, the

impedance of the electrode-solution interface changes. [20, 21] Impedance biosensors

are commonly used to detect larger analytes, such as bacteria, cocaine, etc.
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Optical colorimetric sensors. Another group of modern biosensors relies on

optical detection mechanism. “Traditional in-lab optical detection is based on the

measurement of luminescent, fluorescent, and colorimetric signals produced by the

interaction of microorganisms with the analytes.” [22] The observed optical signal is

related to the concentration of target analyte. Among different optical technologies,

the colorimetric sensing techniques recently have received a lot of attention for IoT

applications for their simple, battery-free, and inexpensive measurement setup. The

conversion of a chromogen substrate into a colorful compound can be either distin-

guished by eye or other quantitative image processing techniques such as smartphone

app that analyzes the captured image of the color change.

1.3 The examples of modern sensor integration for IoT applications

In recent years, a lot of research groups have integrated a wide variety of modern

biosensors into a single electronic system. The system usually contains the following

functional units as showing in Fig. 1.7: multi-spectral sensors adapted from different

biosensing techniques, peripheral circuits for signal processing, power and energy

harvesting systems, wireless data transmission unit, etc.

Stimulation

Fig. 1.7.: Schematic illustration of closed-loop integrated sensor system
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Gao et al. [23] introduced the most influential sensing electrode technology with

the Fully Integrated Sensor Array (FISA) wristband (Fig.1.8 (a)). This device is

able to simultaneously measure the sweat concentration of glucose, lactate, Na+ and

K+ by fitting two amperometric sensors and two potentiometric sensors into a single

wearable system. In addition to the sensing electrodes, the system also includes a

temperature sensor, a power supply unit, an on-board amplifier, an analog-to-digital

converter, and a wireless data transmission unit.

(a) (b)

(c) (d)

Fig. 1.8.: Examples of modern sensor integration for IoT applications. (a) Fully

Integrated Sensor Array (FISA) wristband [23]. (b) A graphene-based electrochemical

device with thermo-responsive microneedles for diabetes monitoring and therapy [24].

(c) Battery-free, skin-interfaced microfluidic/electronic systems [25]. (d) Integrated

point-of-use soil testing system [26].

As shown in Fig. 1.8 (b), Lee et al. [24] introduce a thin-film wearable patch

consisting of a heater; temperature, humidity, glucose, and pH sensors. The patch

also includes polymeric microneedles that can be thermally activated to deliver drugs.

Lee’s group have successfully demonstrated the in vivo test to thermally actuate and
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deliver Metform to reduce the diabetic mice’s blood glucose level in a closed feedback

loop.

Bandodkar et al. have demonstrated a battery-free, wireless electronic sensing

platform that simultaneously monitors sweat rate/loss, pH, lactate, glucose, and chlo-

ride shown in Fig. 1.8 (c). The prototyped device integrates chronometric microfluidic

platforms with embedded colorimetric assays and potentiometric ion-selective sensors.

One highlight of this work is that the potentiometric ion-selective sensors are inspired

by the biofuel cell technology where no external power source is required. “This new

design combines the advantages of electronic and microfluidic functionality in a plat-

form that is significantly lighter, cheaper, and smaller than its alternatives.” [25].

Rosenberg et al. have developed an integrated point-of-use soil testing system,

including a set of disposable solid-state ion-selective electrode strips to detect the

potassium and chloride level in the soil [26]. As shown in Fig. 1.8 (d), a handheld

electrochemical reader is designed to record the measurement data. This system could

be deployed for soil nutrient management in resource-limited environments.

1.4 New challenges facing modern electrochemical biosensors for IoT

system-level integration

Even though many promising integrated IoT sensor systems has been demon-

strated, the design of biosensors for IoT systems must solve the following common

challenges before they can be successfully commercialized:

1. Optimization of sensor performance. Biosensors must continuously sample the

comparatively weak biochemical signals. In contrast, environmental variability

is expected to increase noise. Hence, sensors must be designed to achieve the

following sensor performance requirements:

(a) High sensitivity. The sensitivity of a biosensor is defined as the rela-

tive change of sensor output signal corresponding to the change of target

molecule concentration. Mathematically, the sensitivity can be calculated



12

Limit of 

Detection 

(LOD)

Linear Dynamic Range

Slope: Sensitivity

Limit of 

linearity 

(LOL)

Concentration

Si
gn

al

Fig. 1.9.: Schematic illustration of a typical steady-state response and the perfor-

mance characterization metrics of an electrochemical biosensor

as the slope of the sensor steady-state response. High sensitivity ensures

a strong sensor response to the target analyte signal in the environment.

(b) Good selectivity. Selectivity denotes the ability of a sensor to detect the

desired target in the presence of various other secondary analytes. In a

biofluid or soil, there are many types of unwanted molecules. Selecting

the target analyte and filtering out the other analytes from the operating

environment is critical to guarantee a large signal to noise ratio for IoT

application.

(c) Wide linear dynamic range. Linear dynamic range is the maximum linear

response of a sensor where the sensitivity remains a constant. For any

particular IoT application, the concentration range of the target analyte

should fall within this linear dynamic range.

(d) Limit of detection. The limit of detection is the lowest quantity of the

analyte that can be detect by a sensor. Under certain IoT edge detection

conditions, the analyte concentration could reduce to micromolar or pico-



13

molar. The reduction of the detection limit is another critical design goal

for modern electrochemical biosensors.

2. Reliability. The sensors need to be either implanted in a harsh environment

(e.g., soil, human body) for a long period of time. The stability of the biosensor

is a critical design criterion due to the changing operating environment, such as

considerable temperature variation, different pH, and high relative humanity.

3. System integration. In both personalized medicine and precision agriculture,

it is difficult to integrate all the closed-loop functionalities, such as sensing,

wireless signal transmission, low power operation, and energy harvesting shown

in Fig. 1.7, within a single edge computing electronic device. Moreover, the

sensors must have a quick response time to be integrated with other elements

in the IoT network.

1.5 Outline of thesis

In this thesis, we are going to focus on several novel modern electrochemical

biosensor designs which are considered as promising candidates for IoT personal-

ized medicine and precision agriculture applications. We will develop physics-based

methodologies and predictive modeling framework to model and simulate the perfor-

mance of those new sensors and to overcome the challenges mentioned above. Our

research work will establishes a comprehensive and rigorous framework that covers

from the device level to system level biosensor design. In analogy to how device

physics of transistors is connected to IC design in electronics, the framework devel-

oped in this thesis will link the device level characteristics to the short-term sensor

performance as well as the long-term system-level issues. Specifically, we will focus

on three main topics:

1. Amperometric sensors (chapter 2, 3, and 4): By coupling electrical and mass

transfer simulations, the modeling frameworks will clarify the fundamental
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Fig. 1.10.: New challenges facing modern sensor for IoT system: selectivity, sensitiv-

ity, reliability, and integration issues.

physics of bio-molecule diffusion and reaction process. They will pave the path

for the development of novel micro/nano-structured electrodes to enhance the

sensitivity, the spatial resolution, and temporal resolution of sensors.

2. Potentiometric ion-selective sensor (chapter 5 and chapter 6): We will apply the

physical models of biosensors to establish design guidelines for thin-film based

solid-contact ion-selective electrode (ISE) sensors. Our research work will help

to develop more economical printed thin-film foldable nitrate sensors to improve

the farm-to-folk productivity related to precision agriculture.

3. Reliability of IoT electronics in a harsh environment (chapter 7).
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The detailed outline of each chapter is as follows:

In chapter 2, the goal is to identify and quantify the design parameters and to im-

prove the performance of enzymatic amperometric glucose biosensors with micro/nano-

scale structured electrode. We will develop a new analytical model to capture the

essence of the NPs array electrode structure and to correlate its steady-state current

response explicitly to geometrical, physical and chemical parameters. The conceptual

approach of breaking the complex reaction-diffusion kinetics into a series of elemental

steps, describing each step analytically by concepts such as diffusion capacitance, and

finally integrating the elements into a simple formula will solve the original system

integration problems.

In chapter 3, we will focus on a non-enzymatic amperometric glucose detection

strategy. This detection strategy shows higher sensitivity and better thermal stability,

making it suitable for implantable sensors for long term real-time monitoring. We will

develop a new analytical model to capture the essence of the non-enzymatic glucose

sensors. The model will quantify the effectiveness of various design parameters and

provides guidelines to improve the overall performance of metal oxide-based non-

enzymatic glucose sensor.

In chapter 4, we will investigate self-powered amperometric sensors based on en-

zymatic biofuel cell (EBFC). This type of sensor draws much attention in the biosen-

sor field for their applications in energy-limited settings including wearable and im-

plantable technology. We will apply an equivalent circuit method to self-consistently

include the impact of both anode and cathode reactions. The equivalent circuit model

can be easily adapted to solve the problems in other two-electrode redox amperometric

systems, such as fuel cells, and other energy storage systems.

In chapter 5, we will develop design guidelines for roll-to-roll thin-film ion-selective

sensors to improve farm-to-folk productivity. The sensor detects the local soil nitrate

level on demand and sends the data wirelessly to the server. The thin-film sensor

is fabricated by a unique roll-to-roll (R2R) nano-manufacturing facility which en-

ables high throughput at low cost. The flexible substrate is processed in a series
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of multi-layer manufacturing technologies including roll-to-roll metal inject printing,

ellipsometry, slot die/micro-gravure coating, and pulsed laser processing. To char-

acterize the sensor performance, we will develop a fundamental physics-based model

for this thin-film nitrate sensor. This chapter mainly focuses on the modeling of the

solid-contact ISE sensor.

Chapter 6 will focus on the application of physics-based model developed in chap-

ter 5 to solve for more general ISE integration problems: the transient response,

sensor-to-sensor variations, and other issues that associated with the non-ideal per-

formance of solid contact ISE. Based on our theoretical study, we will also provide

new design strategies to improve both short-term and long-term performances.

In chapter 7, we will design smart encapsulants to precisely control the lifetime of

IoT edge computing electronics in a harsh environment. We will introduce bi-layer or

tri-layer encapsulant designs for multi-target (e.g., ion, humidity) protection. By de-

veloping both numerical and analytical frameworks for the multi-objective transport

process in the encapsulation layer, we can accurately predict the lifetime of encapsu-

lated MOSFET-based electronic devices in a severe environment. The physics-based

transport model helps better understand the performance degradation of edge IoT

electronics in a harsh environment. Our purposed multi-layer encapsulant design

could protect the embedded electronic devices from various failure factors.

Finally, we will conclude in chapter 8 by summarizing the key conclusions and

suggesting opportunities of future works.
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2. NANOPARTICLE-BASED AMPEROMETRIC

GLUCOSE BIOSENSORS

2.1 Motivation

For the 422 million people worldwide who have diabetes, the glucose sensor is a life-

changing technology. [27] After Clark and Lyons developed the first glucose enzyme

electrode in 1953 [28], different research groups and companies have developed related

technologies for numerous applications ranging from diabetes control to food analysis.

In 1973, Guilbault and Lubrano introduced amperometric glucose sensor by measuring

the charge current from the hydrogen peroxide (H2O2) redox reaction [29]. In 1975,

YSI Inc. launched the first commercial glucose sensor system. In 1987, Medisense

Inc. launched the first personal glucose sensor. Cygnus Inc. developed a wearable

non-invasive glucose monitor in 2000 [30]. Most diabetics monitor the glucose in

patient’s blood by pricking their fingers many times each day—a necessity because

the level of glucose fluctuates in response to meals, exercise, and other everyday

activities. Even continuous glucose monitors, which use electrodes that sit under the

skin, require multiple daily finger pricks for calibration. Today, numerous research

groups are working in the direction that integrates the glucose sensors into complex

multi-functional systems that detect glucose concentration in sweat, saliva [23] and

tears [31], with the hope of obviating the need for repeated needle pricks in diabetes.

In 2014, both Google and Swiss pharmaceutical giant Novartis International an-

nounced to design, develop, and commercialize smart contact lens with a microsensor

that continuously measures glucose levels. [32] The smart lenses benefited from new

kinds of flexible electronics that are microscopic or semitransparent. Typical tear

0The content of this chapter is primarily taken from a published paper: X. Jin, T. Fisher, and M.
A. Alam, ”Generalized compact modeling of nanoparticle-based amperometric glucose biosensors.”
IEEE Transactions on Electron Devices, 63, no. 12 (2016): 4924-4932.
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glucose levels are on the order of 0.1 to 0.6 mM, [33] while glucose levels in the blood

range from about 4 to 6 mM. [34,35] Therefore, the glucose sensor in the smart con-

tact lens requires much better performance compared to existing commercial blood

glucose sensor.

Recently, various nanostructures have been utilized to enhance the performance

of glucose sensors. In particular, nanostructured platinum (Pt) nanoparticle (NP)

glucose sensors have shown promising performance [36, 37], especially at detecting

relatively low glucose concentration. Such results are hardly unexpected because

NPs are less susceptible to classical diffusion limits compared to planar sensors [38].

Moreover, the nanostructured substrate such as carbon-nanotube and graphene is

more suitable for the mechanical flexibility implantable requirement. All those fea-

tures enable the NP-based glucose sensor to become a potential candidate for future

sensor integration in a wearable platform such as the smart contact lens.

2.2 Background: enzymatic NP amperometric glucose sensor

As shown in Fig. 2.1 (a), Pt NP glucose sensors utilize an array of Pt NPs as

the working electrode. Glucose oxidase (GOx) enzymes are immobilized on each NP

surface. GOx catalyzes the reaction between glucose and oxygen (Steps 1 and 2 in

Fig. 2.1(c)) to produce hydrogen peroxide (H2O2) as a reaction product, i.e.,

D − glucose+O2 +H2O2
GOx−→ D − gluconic acid+H2O2 (2.1)

A fraction of H2O2 react with the Pt NPs (step 3 in Fig. 2.1 (c)), while the

remainder diffuses into the bulk solution (step 4 in Fig. 2.1(c)).

H2O2 −→ 2H+ +O2 + 2e− (2.2)

The reaction produces the electrical charges in individual NP, integrated by the

2D and 1D substrates such as graphene, carbon nanotubes, see Fig. 2.2 (a) and

(b). The substrate plays an active role in dictating the geometrical arrangement of
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Fig. 2.1.: Schematic side view of (a) A Pt nanoparticle-based amperometric glucose

biosensor and (b) A planar amperometric glucose biosensor. (c) The Pt nanosphere

electrodes (circles) are located on top of sensor substrate material surface. Glucose

oxidase (black) is immobilized on each electrode surface. (1) Glucose molecules (dia-

monds) diffuse in solution and are captured by the glucose oxidase enzyme. (2) The

reaction of glucose with oxygen generates the intermediate product H2O2, which can

either (3) react on the electrode surface and produce charged species or (4) diffuse

into the solution.

NPs. The NPs can be distributed randomly on 2D substrates such as multilayered

graphene petal nanosheets (MGPN), see Fig. 2.2(b); while in Fig. 2.2(a), they aggre-

gate like ‘pearls on a chain’ along 1D carbon nanotube (CNT) chains. The details

of the fabrication process are discussed in prior work [39,40]. Such sensor structures

offer the advantage of large electrode surface-to-volume ratio, unique molecule cap-

ture geometry, short response time and enhanced mass transport and electrochemical

response [41].
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A Pt NP amperometric sensor differs fundamentally from a classical sensor as

follows:

1. The curvature of classical sensors is large enough and the glucose concentration

is typically high enough to justify the assumption of 1D diffusion of glucose

toward the sensor surface [42]; this approximation does not hold for NP amper-

ometric sensors.

2. Glucose oxidase molecules in classical sensors are embedded within a membrane

so that the reaction is distributed within the membrane volume. For NP sensors,

the oxidation occurs directly on the NP surface. The two processes have very

different kinetic response characteristics.

3. Most models of classical sensors presume that H2O2, once generated, is con-

verted fully into the current. In other words, Eq. 2.2 is 100 percent efficient.

While this may be true for classical sensors, the assumption has not been vali-

dated for NP-sensors.

These geometrical and physical differences suggest that it would be inappropriate

to use classical expressions to describe NP sensors. Moreover, the classical models

are often numerical – making it difficult to extract the exact functional dependencies

among various variables, such as electrode geometry, distribution of enzyme reaction

centers on the NPs and the diffusive cross-talk of the target molecules among the

neighboring NPs. The purpose of this chapter is to develop a new analytical model

that captures the essence of the glucose sensor with NPs array electrode structure and

to correlate its steady-state current response explicitly to geometrical, physical and

chemical parameters. The conceptual approach of breaking the complex reaction-

diffusion kinetics into a series of elemental steps, describing each step analytically

by concepts such as diffusion capacitance, and finally integrating the elements into a

simple formula to solve the original problem, is general and can be used as a template

to solve a broad range of other biophysical problems.
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2.3 Diffusion and reaction of glucose molecules:

2.3.1 Diffusion of glucose molecules to the Pt NPs surface

Mass transportation of glucose in the solution can be described by classical diffu-

sion equation [43]:

dG

dt
= DG∇2G (2.3)

where G is the glucose concentration and DG is the glucose diffusion constant. The

GOx is immobilized only onto the Pt NP surface. Therefore, the enzymatic glucose

oxidation reaction occurs only on the NP surface. The surface reaction rate for

glucose (RG) is directly proportional to the enzyme surface density (E0), glucose

concentration at the sensor surface (GS), and the forward reaction constant kf , so

that:

RG = kf · E0 ·Gs (2.4)

A direct 3D numerical solution of Eqs. 2.3 and 2.4 for the electrode geometries

shown in Fig. 2.2(c) and (e) is possible, but it would not be very useful as a tool for

interpretation and optimization of sensor response. Two approximations simplify the

problem dramatically and make it amenable to analytical solution:

1. First, faithful to the original geometry, the electrodes in Fig. 2.2 can be approx-

imated as a periodic structure shown in Fig. 2.2 (d) and (f). Specifically, with a

low density of NPs on 1D or 2D substrates (case 1), cross diffusion among the

NPs can be neglected because the capture of glucose molecules by one NP is

unaffected by its neighbors. Therefore, we model these Pt NP electrodes as iso-

lated nanoparticles within a unit cell shown in Fig. 2.2 (c). At higher densities,

the NPs on a 2D substrate (case 2) can still be approximated as being arranged

in a periodic array, but cross-diffusion is important and cannot be neglected. At

even higher densities of NPs on a 2D substrate (case 3), the arrangement of the

particles begins to resemble a fractal surface, which is accessible to analytical
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techniques, as described by Nair et al. [44] On the other hand, for high densities

of NPs arranged onto relatively low-density 1D substrate (such as Carbon nan-

otube case 4), the particles are arranged densely along 1D chains, as shown in

Fig. 2.2 (d). Here, the proximity of the NPs encourages cross-diffusion among

the NPs in one Cartesian direction. At very high densities, the configuration is

indistinguishable from case 3 discussed above. Among the four cases, experi-

ments reported in Claussen et al. [39] resemble case 1 and case 4, respectively.

Therefore, we will focus on developing the model for these configurations. Once

the basic model is understood, the generalization to other cases should be intu-

itive.

2. Steady-state diffusion can be solved analytically by recognizing that it is iso-

morphic to the Laplace’s equation for electrostatic problems, thus allowing us

to use the notion of diffusion-equivalent capacitance. Briefly, at steady-state,

the glucose diffusion equation reduces to DG∇2G = 0, which has the same form,

mathematically, as the Laplace’s equation, ε∇2φ = 0 [45]. The solution of one

equation can be mapped to that of the other by recognizing the mathematical

equivalence of the electrostatic potential φ to the glucose concentration G and

the permittivity ε to the diffusion coefficient DG. Similarly, one can define an

analogous parameter to electrostatic capacitance (C) called ‘diffusion equivalent

capacitance’ (CD) related to the solution of the diffusion equation [38]. Note

that CD does not have the same units as electric capacitance, but does have a

similar functional form.

With these two approximations, we are ready to solve the diffusion Eqs. 2.3 and

2.4 for the electrode geometry shown in Fig. 2.3(c) and (d). The glucose diffusion

fluxes J iNPG and J cNPG (in units of mol·m−2 · s−1) towards the sensor electrode surface

in isolated NP (iNP, case1) and chain-NP (cNP, case4) limits can be represented

as:
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Fig. 2.2.: Schematic view of Pt NP on (a) carbon nanotube(CNT) tethered amper-

ometric substrate and (b) multilayered graphene petal nanosheet(MPGN) substrate.

The low-density electrodes in (c) can be modeled as an equivalent nanosphere array

in (d). The high-density electrodes in (e) can be modeled as nanowire arrays in (f).

J iNPG = CiNP ·
(G0 −GiNP

S )

4πr2
Pt

(2.5)

J cNPG = CcNP ·
(G0 −GcNP

S )

2πrPtl
(2.6)

where CiNP and CcNP are the diffusion equivalent capacitances, G0 is the glucose

concentration in the solution far from the sensor surface, GiNP
S and GcNP

S are the

glucose concentrations near the sensor reaction center; rPt is the radius of nanosphere.
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The glucose flux is normalized either by the area of the individual spheres (iNP) or

that of a close-packed nanosphere chain (cNP), behaving as a cylinder of length l.

Because the glucose oxidase enzyme molecules are randomly immobilized on the

Pt sphere surface, a simple absorption sphere/cylinder model does not fully capture

the physics of diffusion. We must instead model the individual spheres (radius rPt)

decorated by N disk-like absorbers (radius rez and thickness tez), where rez << rPt

[43]. We assume that the distance between each enzyme absorber (of the order of tens

nanometers) is larger than their radii (typical value: 4 nm) but is smaller than the

radius of nanosphere/nanowire (typical value: 75nm). As glucose molecules diffuse

in solution from large distances, they resolve the sensor geometry only as a classical

sphere/cylinder. As the molecules diffuse closer to the surface, they can resolve the

disk-like absorbers immobilized onto the NP surface. Over all the diffusion equivalent

capacitance reduces to [43,46]:

CiNP = 4πDG·rPt
1+(π · rpt)/(N · rez)

(2.7)

CcNP = 2πDG·l

ln

 sinh

(
2π(
√

2DGt+rPt)
Wc

)
sinh(π·rPtWc )

 + πl
2N·rez

(2.8)

where N is the number of disk-like absorbers, l is the length of each nanowire and

Wc is the pitch in between. Note that all the parameters are physical and readily

determined from independent experiments. At steady state, the reaction rate balances

the diffusion flux. By equating Eqs. 2.4 and 2.5 or Eqs. 2.4 and 2.6, one obtains the

steady-state glucose concentration at the surface of the NPs:

GiNP
S =

G0

1 + (kf · E0 · 4πr2
Pt)/CiNP

(2.9)

GcNP
S =

G0

1 + (kf · E0 · 2πrPtl)/CcNP
(2.10)

The model neglects second-order effects such as the size distribution and spatial

randomness of NPs and GOx. We have also neglected diffusion distortion by the sub-
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strate and cross-diffusion of glucose among neighboring NPs, which are simplifications

of a complex environment whose reasonableness can be assessed with experimental

validation of the model predictions.

2.3.2 Glucose oxidation and current generation

The H2O2 produced by the glucose reaction on individual nanosphere surfaces

must now diffuse and react with Pt to generate useful signal current. Assuming

sufficient supply of oxygen, we can use Michaelis-Menten kinetics [47] to model the

glucose oxidation process. In steady state, the magnitude of the H2O2 generation

flux can be expressed as:

JH2O2 =
kcE0Gs

KM +GS

(2.11)

where kc is the catalytic rate constant, E0 is the enzyme surface density, Km is the

Michaelis-Menten constant and Gs is glucose concentration at the surface, obtained

from Eqs. 2.9 and 2.10. Eq. 2.11 provides an explicit solution of the H2O2 flux

generated as an explicit function of the sensor parameters.

2.4 Self-,cross-, and bulk diffusion of hydrogen peroxide

Hydrogen peroxide generated in the preceding reaction will now diffuse in three

dimensions into the solution until it reacts with the exposed Pt surface. The reaction

could either take place on the same NP from which peroxide was generated (self-

diffusion) or occur on a neighboring NP (cross- or mutual diffusion). The remaining

fraction will be lost to the bulk solution, unreacted and swept away by the fluid flow.

Although the self- and cross-diffusion problems are complex, the concept of diffusion

equivalent capacitance solves the problem of H2O2 diffusion as efficiently as it did for

glucose diffusion. Specifically, the ratio of H2O2 flux moving toward and reacting on

the sensor surface compared to total flux can be expressed as:
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Jin =
Cin

Cin + Cout
· JH2O2 (2.12)

where Cin is the sensor self-capacitance, and Cout is the diffusion equivalent capaci-

tance in the solution.

Isolated NP Limit. The hypothetical sphere (dashed line shown in Fig. 2.3(b))

with radius of rPt + tez acts as a source of H2O2 within each unit cell. Here, tez is

the average thickness of each GOx enzyme molecule immobilized on the NP surface.

At steady state, the cross-diffusion of H2O2 fluxes from neighboring NPs cancel each

other, so that the net flux at unit cell side boundary is zero. The H2O2 molecules,

however, can escape the system through the unit cell top boundary. Therefore, the

self-capacitance Cin
iNP can be viewed as the capacitance between shell of radius

rPt + tez and the inner sphere; while the bulk diffusion capacitance CiNP
out is defined as

the capacitance between the source shell and the unit cell top absorbing boundary,

succinctly described by Karmalkar et al. Therefore, CiNP
in and CiNP

out are given as:

CiNP
in =

4πDH2O2

r−1
Pt−(rPt+tez)−1 (2.13)

CiNP
out =

r2PtDH2O2

H
· ζ (2.14)

where H is the height of the unit cell, and ζ is a correction factor given by Karmalkar

et al. [48] Combining Eqs. 2.11 through 2.14, the flux of absorbed H2O2 on the

surface of a Pt NP can be expressed as:

−→
J
iNP

in =
4π

4π + rPtt
H(rPt+t)

· ζ
· kc · E0 ·GS

KM +GS

· n̂ (2.15)

Chain NP Limit. Similar to the iNP limit, H2O2 molecules are modeled to be

generated at a distance tez away from the chain. The inward and outward diffusion

equivalent capacitance is given as:
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Fig. 2.3.: Isolated nano-particle (iNP) model and chain nano-particle (cNP) model.

(a) Each Pt NP electrode is modeled as an identical individual nanosphere isolated

in a unit cell. (b) For a single nanosphere electrode with radius rPt, glucose oxidase

enzymes (green) are modeled as disk-like absorbers with radius rez and thickness tez.

GS is the glucose concentration near the sensor surface, and G0 is the glucose con-

centration far into the solution. The dashed circle represents the spherical boundary

of the unit cell. (c) Inward (Jin) and outward (Jout) H2O2 flux inside an iNP unit

cell. The H2O2 molecules are assumed to generate on a sphere surface with radius

rPt+ tez (solid circle) located between a NP and the unit cell boundary. The unit cell

boundary height (H) is much larger than rPt, and rPt is much greater than tez. (d)

Unit cell of cNP array unit cell.
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CcNP
in =

2πDH2O2
·l

ln((rPt+tez)/rPt)
(2.16)

CcNP
out =

2πDH2O2
·l

ln(sinh( 2πH
Wc

)/sinh(
πrPt
Wc

))
(2.17)

where l is the length of each nanoparticle chain shown in Fig. 2.2 (f). Wc is the pitch

between NP chains, and H is the height of the unit cell shown in Fig. 2.3(d). Because

the cNP model is periodic at steady state, the concentration at the top surface may

be presumed to be small, while the H2O2 fluxes among the neighboring cNP cancel

each other. The effect of cNP density is reflected in Wc. A small Wc indicates a

dense nanowire system so that the output diffusion capacitance is small as well. The

corresponding cNP inward flux is therefore expressed as:

−→
J
cNP

in =

ln

(
sinh( 2πH

Wc
)

sinh(πrPtWc
)

)
ln
(

(rPt+tez)
rPt

)
+ ln

(
sinh( 2πH

Wc
)

sinh(πrPtWc
)

) · kcE0GS

KM +GS

· n̂ (2.18)

Eqs. 2.15 and 2.18 are the exact inward H2O2 flux analytical expressions for iNP

and cNP cases, respectively. They depend on reaction parameters such as kc, E0,

Km, and Gs as well as electrode geometry parameters such as rPt, tez, Wc and H.

We emphasize that the parameters are physical, and unlike traditional models, the

functional dependencies are explicit.

2.4.1 Total output current

As a final step, we calculate the total output current by integrating the oxidative

H2O2 flux over the each platinum electrode surface area (S) and sum the contributions

from all NPs as follows:

Itot = M · 2 ·NA · q ·
∫ −→

J in·d
−→
S (2.19)

where NA is Avogadro’s constant, M is the total number of NPs in the iNP limit

and the number of nanowires in the cNP limit. The factor of 2 reflects the fact that

every 1 mole of H2O2 generates 2 moles of electrons (Eq. 2.2).
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2.5 Results and discussion

To validate the accuracy of the compact model, we compare the model prediction

(Eq. 2.19) to experimental data for the sensor structures shown in Fig. 2.2 (a) and (b).

Here, the substrate materials are: i) carbon nanotubes (CNTs) and ii) multilayered

graphene petal nanosheets (MGPNs). The experimental data are reproduced from

Claussen et al. [39,40] Appendix A Table A.1 summarizes the physical constants, and

Table A.2 lists the model parameters used to evaluate Eq. 2.19. The predictive power

of the model is obvious: based on the physical parameters (independently measured

or obtained from literature), Eq. 2.19 captures almost perfectly the magnitude and

the shape of the response curves for these NP sensors. In Appendix B, we also

perform numerical simulation for cNP and iNP systems. The analytical solution and

numerical simulation match well, validating the model.
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Fig. 2.4.: Experimental and compact model glucose amperometric sensor current

response. (a) CNT NP sensor. (b) MPGN NP sensor. The crosses, triangles, and

squares represent the experimental data. The solid lines represent the analytical

model simulation results.
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Fig. 2.2(a) interprets the experimental data for the CNT NP amperometric sensor.

For the low-density NP sensor, we find that the iNP model (red line) captures the

experimental data (red triangles) with high fidelity based on the following model pa-

rameters: distance between NPs Wc= 4rpt and the total number of NPs M= 2.67×107

(obtained directly from image analysis explained by Claussen et al. [39] Here, we find

a Michaelis-Menten constant of Km = 24.9 mol/m3, consistent with typical values

reported in the literature [49,50].

Similarly, in the high-density limit, the cNP model (black line) interprets the

experimental data equally effectively, with the following model parameters: total

length of NP chain l= 10 m (equivalent to 6.67×107 NPs lined up on a chain side

by side) and the distance between chains Wc = 6rPt. For glucose concentration

below 1mM, our compact model slightly underestimates the experimental data. This

reflects our assumption that a 1D cylindrical nanowire can approximate a dense array

NPs arranged in a linear chain. Although the surface area of a chain of closely-

packed nanospheres equals that of a cylinder of equal radius, the curvatures are

different. Therefore, a chain of nano-spheres captures the analyte molecules slightly

more effectively than its equivalent cylindrical counterpart.

The same Michaelis-Menten constant (Km= 24.9 mol/m3) explains both high and

low density cases, as expected. The linear correlation between glucose and output

current holds for glucose concentrationG < Km. At higher glucose concentrations,

the output current begins to saturate to reflect the saturation of H2O2 flux, as in

Eq. 2.11. Indeed, a turn-over point can therefore be used as an indirect measure of

Km.

Fig. 2.4(b) shows how the model interprets one additional set of data on a MGPN

substrate. In the experiment, field emission scanning electron microscopy (FESEM)

images of the sensor surface reveal a ridge line of NPs with rPt values of 86±5 nm,

100±10 nm, 100±10 nm (with smaller inter-NP length) and 300±50 nm that were

varied by changing the Pt electrodeposition current pulses from 0.625 mA to 5 mA

[39]. We use the measured rPt values as inputs to our model in Eq. 2.19. For
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electrodeposition current pulses of 0.312 mA and 0.625 mA, the NPs were reported

to remain isolated. Thus, we use the iNP model to generate the current glucose

concentration response. At 1.25mA and 2.5 mA electrodeposition currents, FESEM

micrographs indicated that the inter-NP length decreases, and the NPs begin to

coalesce. Therefore, we apply the cNP model. At 5mA electrodeposition current, the

ridgeline NP chains were reported to expand in width and start to overlap with each

other. The corresponding sensor output current for the 5mA electrodeposition case

falls between 1.25 mA and 2.5 mA cases. This phenomenon results from a conversion

of sensor geometry form 2D chain structure to 1D plane (case 3). The individual

signature of NPs is now erased, and therefore the current is simply calculated by

the classical (planar sensor) model. We quantitatively discuss this phenomenon in

Appendix B.
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Fig. 2.5.: The impact of Pt on (a) outward diffusion capacitance and (b) H2O2

absorption flux ratio with different unit cell height.

Of the three differences between planar sensors and NP sensors discussed in the

Introduction as the motivation to develop a new compact model, the results above

explained how the shapes/size of the NP and the surface reactions of H2O2 influence

amperometric current. Next, we wish to discuss the validity of the assumption that
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H2O2 is fully converted to amperometric current, even for NP sensors. After all, as

discussed in 2.2, H2O2 generated in one NP can contribute to redox reactions in

neighboring NPs through reaction cross-talk. An important observation is that since

the total current includes the sum of contributions from all NPs, it is irrelevant if

H2O2 generated from a NP returns to the same the NP to generate current locally

(self-diffusion) or diffuses away to generate current in the neighboring NPs (mutual

diffusion) shown in Fig. 2.3 (c) and (d). Instead, the magnitude of the current is

determined by the ratio Cin/(Cin + Cout) (see Eq. 2.12), dictated by H2O2 captured

by the NPs (Cin) vs. those that diffuses away from the NP and are lost into the

solution (Cout). Indeed, if a significant fraction of H2O2 diffuses away from the sensor

surface (i.e., Cout � Cin), the faradic current reduces dramatically. We use the iNP

model to discuss this issue quantitatively.

As shown in Fig. 2.5(a), Cout increases as a function of normalized rPt; however,

compared to Cin, the increase is somewhat smaller. In Fig. 2.5(b), we plot the ratio

of absorbing H2O2 flux to total H2O2 flux as a function of normalized rPt for different

heights of fluid column (H) above the sensor. As the ratio of rPt and Wc approaches

unity (reflecting increasing NP density), the fraction of H2O2 converted to current

increases and eventually saturates to 100%. In addition, the flux saturates quickly

as Hincreases. Intuitively, this phenomenon reflects the fact that the denser NPs

have a higher probability of capturing the H2O2 molecules before they escape to the

solution. Remarkably, even for NPs at relatively low density, more than 90% of H2O2

are converted to current.

In addition, the analytical model developed here offers an opportunity to calculate

the sensitivity of the total current as a function of various sensor parameters. As an

illustrative example, Fig. 2.6 (a) and (b) show that for a given number of NPs,

the sensitivity increases with the square of the rPt. The increasing surface area

improves H2O2 generation and charge collection, as expected. The sensitivity to

other parameters, subject to various technology and physical constraints, can easily

be evaluated as well.
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Fig. 2.6.: (a) Amperometric current response as a function of rPt ranging from 100

nm to 104 nm. The total number of NPs presumed a constant. The sensitivity in (b)

is calculated from the slope of each fitted lines in (a). The slope of fitted line is 2 (in

the log-log plot), indicating that the sensitivity depends quadratically on the radius

of NP.

Finally, even though our model was developed specifically for NP amperometric

glucose sensor, the conceptual approaches we have used (e.g., dividing the problem

into a series of elementary steps, periodic approximation of a random array, use of

diffusion equivalent capacitance, etc.) are general, and can be used as building blocks

to address other geometrically complex nanoscale bio-chemical sensors that rely on

diffusion and reaction of multiple species to achieve their functions.

2.6 Conclusions

In this chapter, we have developed an analytical compact model for amperometric

glucose sensors with NP electrodes. This physics-based analytical model captures

the functional dependence of the parameters of a NP glucose sensor and thereby can

accurately anticipate the experimental trends reported in prior literature. The model
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not only suggests opportunities for further optimization, but also can be used for

design of complex integrated circuits involving different classes of sensors and other

processing elements.
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3. METAL OXIDE-BASED NON-ENZYMATIC GLUCOSE

SENSOR: CONCEPTS, METHODS, AND CHALLENGES

3.1 Motivation

Glucose sensors have transformed diabetes control. As discussed in chapter 2,

most commercial glucose sensors are enzymatic. The first-generation sensors use

glucose oxidase (GOx) enzyme to convert glucose into gluconic acid and hydrogen

peroxide (H2O2). The amperometric response of H2O2 determines the blood glucose

level [51]. Although most glucose meters in the market are still enzyme-based, the

intrinsic instability of GOx makes integration onto wearable and implantable platform

difficult [52]. For example, GOx activity depends sensitively on temperature. The

degree of temperature control needed is incompatible with long-term bio-implantable

applications. Second, the consumption of O2 during glucose oxidation causes the

sensor reading to drift, requiring frequent calibration [53]. Finally, the reaction by-

product H2O2 is potentially harmful to human body. To overcome these problems of

O2 consumption and H2O2 generation, the second-generation mediator-based glucose

biosensor replaces O2 with a non-physiological electron acceptor. It can directly

transfer the electrons from the redox center of the enzyme to the surface of the

electrode, eliminating the generation of H2O2. Unfortunately, the problem of enzyme

degradation persists in the 2nd generation sensors.

The development of non-enzymatic electrode for glucose detection promises a new

(third) generation of glucose sensors. Metal/metal oxide modified electrode for glu-

cose oxidation had been reported in the 1980s [54–56], but the sensitivity variations

due to electrode surface structure prevented its practical application. Over the past

0The content of this chapter is primarily taken from a published paper: X. Jin, and M. A. Alam,
”Generalized modeling framework of metal oxide-based non-enzymatic glucose sensor: concepts,
methods, and challenges.” IEEE Transactions on Biomedical Engineering, (2019)
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Fig. 3.1.: The detection mechanism of metal oxide-based non-enzymatic glucose

sensor. A. Schematic illustration of glucose diffusion in the bulk solution and sur-

face reaction on the NWs. B. Schematic illustration of the intermediate synergistic

reaction between oxidative and reductive metal oxide (Cu (III) and Cu (II))

decade, the development of nanostructured material has enabled metal-oxide based

non-enzymatic glucose sensing with consistently high sensitivity [57]. Since then a

number of groups have developed various platforms integrated with various nanos-

tructured substrates, such as carbon fiber (CF) [58], Cu form [59], carbon coated ZnO

nanorod [60], graphene oxide (GO) [61,62], and CuO-ZnO hierarchical nanocompos-

ites (HNCs) [63], with the objective of enhancing the amperometric response of the

sensor. An illustrative example of such a sensor involving an array of nanowires

(NW) is shown schematically in Fig. 3.1 A. Although many recently-developed high-

performance sensor geometries share the NW-array format, the theory developed in

this chapter can be used to optimize other sensors as well.
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3.2 Background: non-enzymatic glucose detection

Fig. 3.1 B shows the glucose non-enzymatic detection mechanism. The glucose

oxidation process involves the synergistic reactions between the oxidative and reduc-

tive metal oxide (Cu (II) and Cu (III) in the example). Eqs. 3.1 and 3.2 show the

two specific chemical reactions in the half-reaction cycles:

C6H12O6+2CuO (OH)
kF−→ 2CuO+C6H12O7+H2O (3.1)

CuO+OH−
kR−−⇀↽−−
kR′

CuO(OH)+e− (3.2)

Eq. 3.1 describes the forward reaction half cycle where the glucose (C6H12O6)

molecules diffuse towards the electrode surface and are oxidized by the oxidative form

of the metal oxide (Cu (III)) in CuO(OH)). Here, kF denotes the forward oxidation

rate. Since the reaction products (gluconic acid, C6H12O7 and water, H2O) diffuse

back into the bulk solution, we ignore the reverse reaction in Eq. 3.1. In the second

backward reaction half cycle in Eq. 3.2, the reductive form of the metal oxide (Cu

(II)) in CuO is oxidized back to Cu (III) in CuO(OH) by hydroxide ion (OH−). The

nanostructured conducting substrate collects the extra electron in Eq. 3.2. Unlike the

one-way reaction in the first half cycle, Eq. 3.2 is reversible. We use kR and k′R to

denote the forward and reverse reaction constants, respectively.

Phenomenological amperometric glucose reaction models [64–66] often use kF , kR

and k′R as empirical constants. We can briefly explain the physical and chemical

basis of these reaction rate constants. The forward reaction constants kF describe

the ability of the Cu III reaction sites on the nanostructured electrode to capture

glucose molecules from the bulk solution. kF is determined by several factors such as

the morphology of the electrode surface, the pH of the electrolyte [67], etc. Similarly,

kR and k′R describe the ability of the Cu II to gain or lose electrons in the backward

reaction. In general, k′Rand kR follow the Butler Volmer equations [68] shown in

Table A.3.
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Non-enzymatic glucose detection strategy discussed above takes advantage of both

high conductivity and catalytic activity of the metal oxides [69]. Due to the synergistic

reactions between the reductive and oxidative states of metal-oxide adsorption sites,

the non-enzymatic glucose sensor shows persistent glucose oxidation activity [58]. Un-

like the bulk diffusion of H2O2 in the first generation enzymatic glucose sensors, the

metal-oxide electrodes as well as the intermediate products in the third generation

sensors are biocompatible [62, 70, 71]. Similar to the nanoparticle (NP) based enzy-

matic glucose sensors described in [72], the nanostructured substrate maximizes the

active area of the electrode, and thereby improve the output amperometric signal.

Finally, the non-enzymatic glucose sensors show thermal stability [73, 74], making

them suitable for implantable sensors for chronic diseases.

The chemical reactions of the metal-oxide-based non-enzymatic amperometric glu-

cose sensor are well known [57], however a quantitative model (which includes the

physical, chemical, and geometrical design properties) is missing. For example, ex-

perimental groups often use a linear relationship between glucose concentration and

output current to fit the experimental data [70]. We find that the linear approxima-

tion does hold at low glucose detection range (usually up to ∼ 2mM). For effective

diabetic monitoring, however, the blood glucose concentration ranges from 4.9 - 6.9

mM for healthy individuals and 2 - 40 mM for the diabetic patient [37,62]. Over this

extended range, the amperometric response of the metal-oxide-based non-enzymatic

glucose sensor is nonlinear which saturates at high glucose concentration. The limit

of linearity where the linear to nonlinear transition occurs depends on the geometri-

cal and chemical features of the sensor design. Thus, an accurate nonlinear model is

necessary to describe the sensitivity of the non-enzymatic glucose sensors.

To develop a generalized model for non-enzymatic sensors, one cannot directly

apply the model of classical enzymatic glucose sensors for the following reasons: 1)

classical glucose sensors typically use planar electrode so that the glucose diffusion

towards the electrode is essentially one dimensional (1D). For the nanostructured

electrode, the electrode geometry alters the geometry of glucose diffusion in a way
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that cannot be described by the 1D approximation. 2) The chemical reactions shown

in Fig. 3.1 B are very different from those of the enzymatic glucose reaction. Moreover,

all the reactions occur at the surface. Therefore IHOAM (Incipient Hydrous Oxide-

Adatom Mediator) model developed by Burke et al. does not apply because the

model uses Michaelis-Menten kinetics in bulk solution to calculate the amperometric

response [75]. For the new non-enzymatic sensor, the glucose reaction occurs on

the surface of the nanostructured electrode, thus we cannot ignore the effect of the

sensor electrode geometry. A model which quantitatively establishes the impact of the

different geometrical and chemical parameters on the overall sensor output response

is significant but is not available in the literature.

In this chapter, we develop a new analytical model to capture the essence of the

non-enzymatic glucose sensors. As shown in Fig. 3.1 A, the NW electrodes reported

in the literature (carbon nanotube, carbon fiber, nanorod, etc.) can be approximated

as an array of nanowires by the following assumptions:

1. Glucose oxidation reaction occurs primarily at the top surface of the outermost

layer of NWs. This NW layer absorbs most of the glucose molecules, making

it difficult for the glucose molecules to diffuse and react within the bulk of the

electrode.

2. The effectiveness of random arranged NWs is equivalent to a periodically aligned

array of NWs with the same effective density [76].

Although we focus on NW array substrate to interpret experiments, our approach

based on equivalent diffusion capacitance model applies to any electrode geometry.

We analytically calculate the coupled surface reactions of the metal oxides by solving

mass transfer flux balance equations. We also numerically simulate the diffusion-

reaction processes and validate the accuracy of the analytical model. We calibrate

the design parameters such as different reaction constant and the electrode geometry

factors by fitting the measurement data from several experimental groups. The model
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quantifies the effectiveness of various design parameters and provides guidelines to

improve the overall performance of metal oxide-based non-enzymatic glucose sensor.

3.3 Modeling

As described in 3.1, we model the non-enzymatic glucose detection mechanism as

a two-step process: 1) diffusion and oxidation of glucose molecules assisted by metal

oxide, and 2) subsequent metal oxide reaction and generation of the amperometric

signal.

The classical diffusion Eq. 3.3 describes the mass transport of glucose in the bulk

solution before they reach the electrode surface. In a bulk solution, the transport of

glucose molecules is a diffusion-limited (or diffusion controlled) process [77, 78]. Any

secondary transport phenomena such as natural convection is neglected in our model.

This assumption will ultimately be test by the ability of the model to anticipate

experimental results.

The oxidation reaction occurs only when the glucose molecules diffuse near the

electrodes, described by Eq. 3.4 since the metal oxide molecules are immobilized

on the nanostructured electrode surface. Therefore, the solutions of the following

equations describe the surface glucose absorption flux:

dG
dt

= D∇2G (3.3)

Jrec = kF ·NIII ·Gs (3.4)

where G is the glucose concentration, D is the glucose diffusion coefficient, NIII

represent the surface density of metal oxide in the oxidative state (Cu III), and GS

is the bulk glucose concentration near the NW surface. The occurrence of chemical

reactions as a source term is included in Eq. 3.4 where the reaction flux Jrex associated

with Eq. 3.1 at the electrode surface is proportional to kF , Gs and NIII .
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Similarly, a detailed description of the solution of Eq. 3.2 is included in Eq. 3.5

and Eq. 3.6. The changing rate of the surface density of Cu (II) can be expressed as

the sum of forward and reverse reaction flux:

dN II

dt
= kFNIIIGS − (kRNII − k′RNIII) (3.5)

where NIII and NII follow the total metal element conservation relation:

NIII +NII = N0 (3.6)

As reported by many experimental groups [62,63,79], the selectivity of the metal

oxide to glucose is orders of magnitude higher than other biomolecules such as dopamine,

ascorbic acid, uric acid, fructose, lactose, and sucrose. The impact of the compet-

ing species on the Cu active sites is negligible. Therefore, we need not include the

additional reaction terms for the competing species in Eq. 3.5.

It is also worth noticing that the effect of pH is very important. Therefore, the

sensor characterization experiments in the literature are conducted in an electrolyte

with a constant pH value of 9-13 [70, 71, 79]. The high pH solution ensures that

there are sufficient OH− supply for the chemical reaction in Eq. 3.2. As a result, the

reaction rate-limiting factor is Cu (II) surface density NII , not the concentration of

OH−. Thus, the pH-dependence term is not included in our current model.

The coupled diffusion and surface reaction equations (Eq. 3.3 to 3.6) can be solved

both numerically and analytically. In the analytical solution, we apply the concept of

‘diffusion equivalent capacitance’ [80]. Note that glucose diffusion equation reduces

to D∇2G = 0 in the steady state, which has the same form mathematically, as the

Laplace’s equation, ε∇2φ = 0 [81]. The solution of one equation can be mapped to

that of the other by recognizing the mathematical equivalence of the electrostatic

potential φ to the glucose concentration G and the permittivity ε to the diffusion

coefficient D. Similarly, one can define an analogous parameter to the electrostatic

capacitance (C) called ‘diffusion equivalent capacitance’ (CD).
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The steady-state diffusion flux of glucose molecule in the bulk solution can be

written as:

Jdiff = CD ·
G0 −GS

Ae
(3.7)

where CD is the equivalent diffusion capacitance for the nanostructured electrode

of any geometry (the expression for nanowire array as an illustrative example can

be found in Table A.3). Here, G0 and Gs are the bulk glucose concentration and

glucose concentration near the electrode surface respectively. Ae denotes one single

nanoelectrode surface area.

To calculate the sensor response by solving Eq. 3.3 to 3.7, we rewrite the equations

in the normalized form with the unitless variables: N∗III = NIII
N0

, N∗II = NII
N0

, G∗s = Gs
G0

,

γ = CD
Ae·kFN0

, α = kR
kFG0

, and β =
k′R
kFG0

. We can then solve for the three unknown

variables: N∗III , N
∗
II , and G∗s. The exact solution can be found in Table A.3. We also

derive an approximate expression for N∗III and N∗II :

N∗III = α
(α+β+1)−α/γ (3.8)

N∗II = 1−N∗III
G0+

(
k′R
kF
−AekRN0

CD

)
G0+

(
kR+k′

R
kF

−AekRN0
CD

) (3.9)

The analytical expression forN∗II is similar to the analytical model in the Michaelis-

Menten kinetics. Michaelis-Menten constant (KM) only accounts for the chemical

reaction, however, the extra terms in both the numerator and the denominator of

Eq. 3.9 include the diffusion capacitance CD to capture the effect of the nanostruc-

tured sensor electrodes.

The final amperometric response of the glucose sensor can be expressed as a

function of NII :

i = q ·NA · Aeff · (kRNII − k′RNIII)

= q ·NA · Aeff · (kR + k′R) ·N0 · (N∗II −
k′R

kR+k′R
) (3.10)
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Eq. 3.8 to Eq. 3.10 are general expressions that describe the response of any metal-

oxide based non-enzymatic glucose sensor with an arbitrarily complex nanostructured

electrode. To interpret specific experiment, we need to use the appropriate expressions

for the diffusion capacitance CD and the effective electrode surface area Aeff . The

effective electrode surface area can be written as Aeff = η · Ae. Here Ae is the real

sensor surface area, η is the current transfer efficiency coefficient which account for

the electron loss. The electron loss is due to some secondary reactions associated with

glucose or metal oxide. η describes the fraction of electrons from glucose molecules

that follow the electrochemical reactions in Eq. 3.1 and Eq. 3.2 and contribute to the

amperometric response of the sensor.

To summarize, we have derived an analytical model describing the steady-state

amperometric response of non-enzymatic glucose sensor. We have used CuO/CuO(OH)

glucose sensor as an example to illustrate the physical meaning of the modeling pa-

rameters. Our general modeling framework can describe a variety of non-enzymatic

glucose sensors such as metal-based glucose sensor [82,83]. Taking the Platinum non-

enzymatic glucose sensor in [84] as an example, we could change NII and NIII to be

the surface density of Pt[OH]ads and Pt. Next, we are going to validate our model

by numerical simulation and experimental data.

3.4 Model validation

In this section, we will validate our analytical model Eq. 3.8 to Eq. 3.10 against

the numerical and experimental results. Since NW-array is the most commonly used

substrate material reported in the literature, we will focus on this specific class of

sensors to demonstrate the validity of the model. We will first compare the numerical

simulation results with the analytical expression in Table A.3 and Eq. 3.10. This

comparison will explain the origin of the nonlinear response of these sensors from the

reaction-diffusion perspective. Then, we will use our model to explain the experimen-

tal observations reported in the literature.
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3.4.1 Validation by Numerical simulation

In the numerical simulation, we set up a simplified 3D NW geometrical structure

shown in Fig. 3.1 A. The NW sensor is decorated with numerous CuO(OH)/CuO

reaction-sites. We solve Eq. 3.3 to Eq. 3.7 by finite element method (FEM) for the

single unit cell of the NW array. The length of the unit cell equals the length of a

single NW (l ). The width of the unit cell WC represent the pitch between each NW.

The bulk glucose concentration G0 is held fixed at the top surface of the unit cell. We

use reflective boundary condition on the side surface to interpret the cross diffusion

of glucose from the neighboring unit cells.

The FEM solution in Fig. 3.2 B shows that the surface reaction reduces the glu-

cose concentration near the NW surface (Gs). By Eq. 3.7, we can then numerically

calculate the total output current by directly integrating the current flux over all the

NW surface. The FEM transient current fluxes in Fig. 3.2 C show that the current is

initially negative due to the initial condition: NIII = N0. After the transient phase

spanning several hundred seconds, the fluxes saturate to levels defined by the glucose

concentration.

3.4.2 Experimental validation

For the experimental validation, we use different types of non-enzymatic glucose

sensors reported in the literature. The substrate NW electrode are: 1) nanostruc-

tured graphene foam (GF). 2) carbon fiber (CF) [71] and 3) ZnO-CuO hierarchical

nanocomposite (HNC) NW [63]. Nanocrystalline CuO (Cu II) molecules with imper-

fect crystallinity or special morphology are immobilized onto the surface of different

NW electrode substrates.

As mentioned in the Introduction, the reaction constants in Eq. 3.1 and Eq. 3.2

have physicochemical interpretation. Since we focus on the steady-state response in

our model, we calibrate kF , kR and k′R as constants based on the following assump-

tions:



45

0 100 200 300 400
-20

-10

0

10

20

30

40

50

60

 1 mM

 2 mM

 3 mM

 4 mM

 5 mM

C
u

rr
e

n
t 

(p
A

)

Time (s)

0 1 2 3 4 5

0

10

20

30

40

50

60

C
u

rr
e

n
t 

(p
A

)

G0 (mM)

 Ana

 1 mM

 2 mM

 3 mM

 4 mM

 5 mM

(A) (B)

(C)

𝐺0

𝐺𝑆

𝑟𝑁𝑊

𝑊𝑐
𝑙

(D)

𝐺/𝐺0

Fig. 3.2.: Numerical validation. A. 3D NW electrode structure in the numerical

simulation. B. Bulk glucose concentration profile. C. The non-enzymatic glucose

sensor transient response from the numerical simulation. D. Steady-state response

from numerical simulation vs. analytical solution.

1. In the steady state, the applied voltage bias E is a constant. The voltage

dependences have been included in kR and k′R.

2. The chemical property of Cu III does not change during the characterization

experiment so that the prefactor k0 in the Butler-Volmer equation is a constant.

A detailed discussion regarding the physical origin of the parameters kF, kR and

k′R on the overall sensor output response can be found in 3.5.2
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Fig. 3.3.: The steady-state amperometric response of different types of non-enzymatic

glucose sensors. (A) metal-oxide-based non-enzymatic glucose sensor on graphene

foam substrate with different CuO deposition voltages (400mV and 450mV) and

different deposition time (16 min and 30 min). The inset SEM figure shows the CuO

form has NW morphology. The figure on the top illustrate an increase of surface

density of CuO/CuO(OH) N0 due to increasing deposition voltage and deposition

time. (B) ultrasensitive non-enzymatic glucose sensors based on different copper

oxide nanostructures by in-situ growth. Schematic illustration of three different CuO

morphology appear in the top figure. (the inset SEM figure and top figures come

from Zhong et al.) (C) ultrasensitive non-enzymatic glucose sensor based on a three-

dimensional network of ZnO-CuO hierarchical nanocomposites by electrospinning.

SEM image of CuO/ZnO NW structure appears in the top figure (come from Zhou

et al.). The symbols in all the figures represent the measurement data and the solid

lines indicate the simulation results from our model.

Fig. 3.3 A shows the experimental data for the GF substrate non-enzymatic glu-

cose sensor. The low-noise character of GF substrate allows one to detect small

amperometric signal induced by glucose redox reactions [62]. The CuO (Cu II) is

deposited on the GF by the electrophoretic deposition (EPD). The CuO particles

exhibit a fluffy morphology. The size and surface density of the CuO is controlled

by deposition voltage and deposition time in the fabrication process. In this work,
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Park [44] used two deposition potentials (400mV and 450 mV) and two deposition

times (16 min and 30 min). The microscopy images show that the CuO particles

are mostly deposited on the outside surface of graphene foam. The inset figure in

Fig. 3.2 A show that this layer of graphene foam trunk resembles a nanowire mor-

phology. Hence the nanowire model is appropriate for the geometrical approximation

of the sensing electrode

The higher deposition voltage and longer deposition time increase the surface

density of CuO on the GF surface (N0 ), with a corresponding increase in the output.

With the copper oxide surface density N0 as the only fitting parameter, the results

show that our model captures the experimental data with high fidelity. Table A.4

summarizes the value of N0 for each electrophoretic deposition case. The table shows

that the deposition voltage have a larger impact on N0 than deposition time, as

expected.

In Fig. 3.3 B, we compare the model prediction to another set of experimental

data on carbon cloth (CC) substrate. The FESEM image shows that the CC is

weaved by bunches of carbon fibers (CF) with an average radius of ∼5µm. The sensor

electrode micro-morphology can be interpreted by an equivalent layer of periodic NW

array [76]. In the detailed fabrication process, Zhong et al. in-situ growth CuO on the

CF surface. Under different fabrication conditions, the CuO nanoparticles themselves

show three distinct morphologies: nanoparticle (NP), nanowire (NW) and nanosheets

(NSs). Fig. 3.3 B shows that the CuO NSs generate the strongest amperometric

response while the CuO NP electrode exhibits the weakest. To model different CuO

morphologies, we calibrate the forward chemical reaction constant kF . The current

response of NSs CuO morphology reveal highest kF value, which indicates that NSs

CuO intercepts the glucose molecules more effectively than NW CuO and NP CuO.

Finally, Fig. 3.3 C shows how the model interprets one additional set of data on

3D ZnO-CuO HNC. Zhou et al. fabricated ZnO-CuO NW trunk as the non-enzymatic

glucose sensor electrode by electrospinning method. Additional CuO nanoparticles

were attached to the NW outer surface. In this experiment, the amperometric re-
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sponse of the glucose sensor alters much more complicated since it is affected by a

combination of changing variables at the same time. Fig. 3.3 C shows that by adding

ZnO to the CuO NW trunk (black curve and magenta curve), the sensor electrode

amperometric response is slightly improved. Adding a small amount of ZnO could

have the potential to boost the electron exchange rate from the glucose molecule,

which is revealed in the increase of kF . As the electrospinning time increases, more

ZnO molecules are getting mixed with the CuO NW trunk. To account for this

phenomenon, we increase the reverse reaction constant (kR and k′R). Larger kR and

k′R values reveal the observation in [63] that additional Zn element shift the Cu 2p

orbital X-ray photoelectron spectroscopy (XPS) peak to higher binding energy, there-

fore making it easier to transfer electrons from the CuO particles to the CuO/ZnO

NW electrode. In addition, for the first two cases (CuO only and CuO/ZnO NW)

where the electrospinning time is relatively short, the amperometric response satu-

rates at high glucose concentration. It is perfectly caught by our analytical model.

By sweeping the coeletrospinning time to 10 min - 20 min, the surface density of

CuO on the electrode as well as the density of ZnO-CuO HNCs NW array electrodes

themselves were reported to be higher which further enhance the output current.

3.5 Discussions: Parametric Response, Design Guidelines and Compar-

ison with Enzymatic Sensors

In the previous section, we have successfully interpreted the amperometric re-

sponse of various non-enzymatic metal-oxide-based glucose sensor within a common

theoretical framework. In this section, we will explore the effect of some critical pa-

rameters on the overall nonlinear response of the sensor. We will compare glucose

detection performance of non-enzymatic sensor to classical glucose oxidase (GOx)-

based sensors. Finally, we will summarize the design guidelines for improving the

sensor performance.
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Fig. 3.4.: The simulated parametric response of non-enzymatic glucose sensors. A.

Amperometric current response of non-enzymatic glucose sensor with rNW ranging

from 1 µm to 5 µm. B. Amperometric current response of non-enzymatic glucose

sensor with G0 ranging from 1 mM to 5 mM. C. Amperometric current response of

non-enzymatic glucose sensor with different forward reaction constant kF . D. Am-

perometric current response of non-enzymatic glucose sensor with different backward

reaction constant kR and k′R.

3.5.1 Effect of the radius of NWs and surface metal-oxide density

Fig 3.4 A shows that for a given number of NWs, the output current increases

linearly with rNW (WC is the pitch between NWs). It indicates that the total electronic
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charge collected by the NWs scales proportionally to the total surface area of the

NW electrodes. Also, the sensitivity in the linear range scales with rNW . Similarly,

Fig. 3.4 B shows that the CuO density on the NW electrodes surface also scales

the amperometric response linearly (for a fixed NW surface area.) However, the

amperometric response in Fig. 3.4 A and Fig. 3.4 B both saturate around glucose

concentration at 1 mM . In other words, the linear dynamic range does not scale with

rNW and N0.

In Fig. 3.4 A, it is worth noting that the amperometric response of a planar elec-

trode with the same unit cell footprint area (dashed line) occurs between rNW =

0.1 WC and rNW = 0.2 WC . It means that when the effective NW surface area

(2πrNW l) surpass the planar sensor (WC · l), the overall sensor output current of the

NW electrode will be larger than the equivalent planar sensor. NW electrode with

larger radius (or equivalently a larger density) would increase the overall amperomet-

ric response compared to the classical planar sensor.

The effect of N0 on sensor response is best explained by the experimental obser-

vation in Fig. 3.3 A which shows that the deposition voltage have a larger impact on

N0 than deposition time. Therefore, we conclude that higher electrophoretic depo-

sition voltage and longer deposition time increase N0 substantially. As a result, the

amperometric response for a given glucose concentration scales with total effective

electrode surface area and the area density of CuO. The limits of linearity (LOL)

and the corresponding dynamic range, however, does not scale with either of these

variables.

3.5.2 Effect of chemical reaction constants

Zhong et al. reported the nonlinear amperometric response for surfaces with

various types of copper oxide nanostructure [71]. The effect of local nanostructures

is reflected in the forward reaction constant kF as shown in Eq. 3.1. To study how

the surface morphology (and local nanostructure) affect sensor performance, we plot
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in Fig. 3.4 C the sensor current as a function of kF with all other parameters held

constant. We find that an increase of kF increases the sensitivity (up to LOL, the

limit of linearity), but the nonlinear curve saturates at a lower glucose concentration.

This simulation result is consistent with Zhong’s experimental observation in [71]

(Fig. 3.3 B). The current response of nanosheet CuO morphology shows the effect of

high kF value. This indicates that nanosheet CuO morphology intercepts the glucose

molecules more effectively than NW CuO and NP CuO.

In Fig. 3.4 D, we analyze the relative importance of the backward reaction con-

stants: kR and k′R (the ratio of kR and k′R remains a constant due to the well-known

Bulter-Volmer kinetics). Physically, kR and k′R describe the ability of the CuO to

gain or lose electrons in the backward reaction in Eq. 3.2. We find that the increase

of kR and k′R not only enhance the magnitude of the amperometric current response,

but also expand the linear dynamic range.

The ZnO-CuO HNC non-enzymatic glucose sensor reported in [63] (Fig. 3.3 C)

confirm our assertion. We conclude that adding a different type of metal oxide (such

as ZnO) will improve the chemical reaction rates. We can manually increase the

dynamic range by changing the chemical composition of the metal oxide.

3.5.3 A comparison between different glucose sensing techniques

Finally, it is important to compare the relative performances of the first generation

(widely used) enzymatic glucose sensor, the third-generation non-enzymatic glucose

sensor discussed in this chapter, and other newly reported glucose sensor. Table 3.1

compares the performance of several nanoelectrode glucose sensors in terms of their

linear range, detection limit, and sensitivity. Specifically, let us focus on two non-

enzymatic metal oxide-based cases (CuO and CuO/ZnO) studied in this chapter, as

well as two metal-based cases(Pt) [84,85], and two classical enzymatic glucose sensors

reported in the literature [86, 87]. The enzymatic sensors use Pt nanoparticle (NP)

as the sensing electrode and glucose oxidase as the enzyme catalysis. Multilayer
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graphene petal nanosheet (MGPNs) or single wall carbon nanotubes (SWCNT) are

used as the substrate material to collect the output current.

In general, the limits of detection for all the glucose detection techniques range

within the same order of magnitude (i.e. a few µM.) However, the linear dynamic

range for non-enzymatic metal oxide-based sensors is much smaller than that of other

types of glucose sensors (metal-based, enzymatic, and optical). The sensitivity of non-

enzymatic metal oxide-based sensors, on the other hand, is orders of magnitude larger.

It appears that these different types of sensors make very different linearity-sensitivity

tradeoff with important implications for their practical applications.

First, our analytical model summarized in Eq. 3.8 to Eq. 3.10 attributes the dif-

ference in linear range to the intrinsic property of different reaction mechanisms.

Quantitatively, if we ignore the effect of nanoelectrode geometry on glucose molecule

diffusion in Eq. 3.9, the ratio of forward and backward reaction rate (
kR+k′R
kF

) deter-

mines the linear dynamic range. This ratio for a non-enzymatic metal oxide-based

glucose sensor is smaller than that of metal-based sensors or the equivalent Michaelis-

Menten constant KM for glucose oxidase in an enzymatic glucose sensor. Second, the

huge gap between the sensitivities arise from a combination of different geometrical

factors and reaction rates. In Eq. 3.10, the factor Ae ·(kR + k′R)·N0 for non-enzymatic

metal oxide-based case is much larger than either the metal-based sensors or the equiv-

alent Ae ·kcat ·E0 for enzymatic glucose sensors, where kcat denote the glucose oxidase

catalysis rate and E0 stands for the surface density of glucose oxidase. Ae is the

effective surface area of the NW/NP electrode per sensor footprint area.
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Table 3.2.: Summary of glucose concentrations measure in physiological fluids of

healthy and diabetic patients

Physiological fluid
Healthy concentration

(mM)

Concentration for

Diabetic Patients (mM)
Ref.

Blood 4.9 - 6.9 2 - 40 [90–92]

Interstitial fluid 3.9 - 6.6 1.99 - 22.2 [53,93]

Urine 2.78 - 5.55 > 5.55 [94]

Sweat 0.06 - 0.11 0.01 - 5 [95]

Saliva 0.23 - 0.38 0.55 - 1.77 [96]

Ocular fluid 0.05 - 0.5 0.5 - 5 [90,97]

Table 3.2 shows the range of glucose concentration for healthy and diabetic pa-

tients in various physiological fluid [98]. We find that blood, interstitial fluid, or

urine glucose measurement require a large detection range, therefore the classical

GOx enzymatic sensors as well as the metal-based glucose sensors are the best op-

tions. The optical glucose sensors also match the detection range. They might be

another interesting alternative option for diabetes control since it overcome some dis-

advantages of amperometric glucose sensors such as susceptible to electromagnetic

interference[51]. On the other hand, for wearable closed-loop glucose control systems

such as ocular fluid sensor in the contact lens or flexible skin-mounted sweat sensor,

the non-enzymatic metal oxide-based glucose sensor discussed in this chapter might

be a better option since it has extremely high sensitivity in the lower concentration

range.

3.6 Conclusions

The non-enzymatic metal oxide-based glucose sensor is a promising candidate

for future wearable and implantable closed-loop diabetes control systems. In this
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chapter, we have derived a generalized mathematical model which captures the critical

design parameters for this new non-enzymatic glucose sensors. We calibrate those

parameters such as different reaction constant, electrode geometry factors by fitting

the experimental data from experimental data reported in the literature. Based on

our model, we explore the effectiveness of various design parameters. We conclude

that:

1. The geometrical factors (such as the radius of NWs and surface metal oxide

density) linearly scale the magnitude of output current response.

2. Changing the metal oxide morphology or adding different types of metal oxide

alter the chemical reaction constants, thereby increasing the dynamic range.

3. The Non-enzymatic metal oxide-based glucose sensor appears particularly suited

for low concentration glucose monitoring systems.

Our work will help integrate the new generation of non-enzymatic glucose sen-

sor into continuous glucose monitoring system (CGMS) in wearable and implantable

platforms.
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4. MODELING, DESIGN GUIDELINES, AND

DETECTION LIMITS OF SELF-POWERED ENZYMATIC

BIOFUEL CELL (EBFC) AMPEROMETRIC SENSOR

4.1 Motivation

Advances in materials engineering, biotechnology, and electronics lay the founda-

tions for the development of new classes of miniaturized biochemical sensors [72, 99–

102] that offer performance similar to conventional, laboratory-based, benchtop ana-

lytical instruments. Of particular interest is the rise of enzymatic biofuel cell (EBFC)-

based biochemical sensors as self-powered systems [103, 104] for their applications in

energy-limited settings including wearable technology [105–107]. In contrast to tradi-

tional amperometric sensors introduced in chapter 2 and chapter3 [52,63,72,86,87,108]

(Fig. 4.3 (a) and (b)) that require bulky external power sources and complex elec-

trical designs and components, their EBFC-based counterparts [109–114] (Fig. 4.1

(c)) rely on spontaneous redox reactions thus circumventing the need for external

energy source and complex electronics. These attributes allow several orders of de-

vice miniaturization essential for the realization of new sensor platforms, for example,

tissue-integrated biochemical sensors in the form of epidermal [107, 115] and ocular

systems [90,116–118].

The recent increasing interest in wearable and field-deployable miniaturized sen-

sors indicate imminent widespread exploration of EBFC-based sensors as self-powered

alternatives [119–121] to conventional approaches. While the literature points to ex-

tensive experimental research in developing these sensors, the field of analytical mod-

eling of these unconventional sensors remain understudied. Such analytical models are

0At the time of the thesis deposition, this chapter is reproduced from the submitted paper with the
permission of ACS Publishing.



57

crucial for the success of the EBFC-based sensors as these can help researchers fathom

complex inter-related redox reactions occurring within the EBFC-based sensors and

provide valuable guidelines to develop systems with desired performance. Unfortu-

nately, traditional theoretical papers in the field of EBFCs focus on optimizing the

performance of EBFC as an energy source [122–124] (e.g. increase output power den-

sity, reduce charging time, suppress self-heating and parasitic reaction, etc.). Song

et al. illustrate a Michaelis-Menten kinetics derived 3-D modeling and numerical

simulation framework for EBFC interdigitated microelectrode arrays with the goal of

improving energy density and output power [125]. To assess charging time and self-

heating, Chan et al. introduce a dynamic model of anode function in EBFC [126]. The

model includes sophisticated anode reactions and analyze their impact on the battery

charging potential, power density and, dynamic response. However, the performance

metrics of an EBFC biosensor differs significantly from an EBFC battery [127, 128]

and hence cannot be directly applied to EBFC-based sensors. For example, unlike

an energy source, a biosensor must be: (a) as small as possible for ease of integra-

tion, (b) the cell must always operate at physiologically relevant and time-variable

analyte concentrations, (c) the linearity of response is a critical factor for calibration

and any long-term drift in the conversion efficiency can mislead clinical diagnosis,

(d) the cathode-reaction due to oxygen starvation is often a concern that is seldom

encountered in EBFC batteries, (e) signal-to-noise ratio is a critical parameter to

define selectivity and the limits of detection, and (f) the quasi-static evolution of

signal need not be described by fast charge-discharge models and self-heating is not

a concern. The goal of this chapter is to develop a comprehensive theoretical model

(based on physical, chemical, and geometrical parameters) to transparently correlate

the analyte concentration to the amperometric current so that one can optimize for

the specific metric of EBFC-based biosensor [129].

In this chapter, we describe a new model for the EBFC-based self-powered biosen-

sor. In section 4.2.1, 4.2.1, and 4.2.3 , we use sophisticated numerical modeling plus

simple analytical formulas to capture the essential physics, which agree closely with
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Fig. 4.1.: Schematic illustrations of the working mechanism of (a)

(i)Planar/(ii)Nanoparticle-based enzymatic glucose/lactate sensor. GOx/LOx works

as enzyme and H2O2 works as electron mediator (b) Metal oxide-based non-enzymatic

glucose sensor. (c) Bio-fuel amperometric enzymatic glucose/lactate sensor.

the sensor experimental measurements. In section. 4.2.4, we apply an equivalent

circuit method to self-consistently include the impact of both anode and cathode.

In section 4.3, we validate our model by in-vitro experimental measurement results.

In section 4.4, we discuss the fundamental impact of different design parameters of

EBFC-based sensors on their detection performance. We show that the surface den-

sities of oxidoreductase enzyme and electron transfer mediators have very different

influences on the features of sensor output signal such as the sensitivity and the linear

dynamic region. Furthermore, the cathodic reaction limits the magnitude of the sen-
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sor output signal. In general, our equivalent circuit model can be easily adapted to

solve the problems in other two-electrode redox amperometric systems, such as fuel

cells [130], and other energy storage systems.

4.2 Model for EBFC-based Biosensors

4.2.1 Working Principle of EBFC-based Biosensors

We build our model based on a typical EBFC-based lactate biosensor as recently

described in Bandodkar et, al [25]. Fig. 4.3 (a) summarizes the working mechanism

of such a system wherein a lactate concentration dependent EBFC current output is

transformed into a voltage signal using an external resistor for wireless data acqui-

sition. Here the lactate present in the sample initiates a two-cycle synergistic redox

reaction at the anode which includes first the enzymatic oxidation of lactate by the

enzyme lactate oxidase (LOx) followed by an electron transfer reaction mediated by

tetrathiafulvalene (TTF). The anode reaction is summarized as follows:

Lactate + LOx (FAD)
kF−→ Pyruvate + LOx (FADH2) (4.1)

LOx(FADH2) + 2TTF+ kR−→ 2TTF + LOx (FAD) (4.2)

2TTF
kTTF,F−−−−⇀↽−−−−
kTTF,R

2TTF++2e− (4.3)

Initially, the lactate molecules diffuse from the bulk solution towards the anode.

Once they are captured by the LOx(FAD) enzyme, the enzymatic reaction in Eq. 4.1

occurs. Electrons are transferred from the lactate molecule through the two redox

pairs (LOx and TTF in Eq. 4.1 and 4.2, respectively). Subsequently, the electrons are

extracted from the TTF by the voltage dependent reaction in Eq. 4.3 and collected

by the CNT electrode substrate.

The cross-coupling and complexity of enzymatic and mediator reactions at the

anode influences the linearity, detection limit, and time-dependent evolution of sensor

performance. Unlike traditional glucose sensors, however, the EBFC cathodic reaction
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is also important. The electrons generated at the anode transfer through an external

resistance and reach the cathode where dissolved O2 gains the electrons and reduces

to O2− as the following:

O2+4e−
kO2,F−−−⇀↽−−−
kO2,R

2O2− (4.4)

Unlike a battery, the oxygen starvation in the cathode reaction plays an important

role in dictating the linearity and limits of detection of EBFC sensors. Moreover,

Eq. 4.3 and 4.4 are voltage dependent reactions, and we will see later in this chapter

that their reactant-dependent voltage-partitioning have a dramatic effect on sensor

response. In the next section, we are going to introduce mathematical models to

describe the anodic and cathodic reactions.

4.2.2 3D Transient Modeling of EBFC-based Biosensor

As described in the previous section, the lactate molecules diffuse in the bulk

biofluid solution and react with the enzyme immobilized onto the anode. The diffusion

and reaction of lactate molecules subject to differential equation as:

d[C3H6O3]

dt
=DL∇2[C3H6O3]− kF [C3H6O3][LOx (FAD)] (4.5)

where DL is the diffusivity of the lactate molecule in the bulk solution. kF is the

forward oxidation reaction constant in Eq. 4.1, and Eq. 4.6 to 4.9 describe the

reaction fluxes for the analytes in the following two-cycle redox reactions:
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d[LOx (FADH2)]
dt

=DQ∇2 [LOx (FADH2)] + kF [C3H6O3] [LOx (FAD)]

−kR[LOx (FADH2)][TTF+] (4.6)

d[LOx (FAD)]
dt

=DP∇2 [LOx (FAD)]− kF [C3H6O3] [LOx (FAD)]

+kR[LOx (FADH2)][TTF+] (4.7)

d[TTF]
dt

=DM∇2 [TTF] + kR [LOx (FADH2)]
[
TTF+

]
−kTTF, F [TTF ] + kTTF, R[TTF+] (4.8)

d[TTF+]
dt

=DN∇2
[
TTF+

]
− kR [LOx (FADH2)]

[
TTF+

]
+kTTF, F [TTF ]− kTTF, R[TTF+] (4.9)

DQ, DP , DM , and DQ are the diffusion coefficient for enzyme LOx (LOx (FAD)-

LOx(FADH2)), and the electron transfer mediator TTF -TTF+ respectively. The

two paired reactants (i) LOx (FAD) and LOx (FADH2) and (ii) TTF and TTF+

follow the mass conservation relation as:

[LOxFADH2]+[LOx(FAD)] =R0 (4.10)

[TTF]+[TTF+] =K0 (4.11)

where R0 and K0 are the total concentrations of LOx and TTF on the anode surface.

On the cathode side, the oxygen reduction reaction follows similar flux and mass

conservation equations:

d[O2]
dt

=DH∇2[O2] + kO2,R[O2−]− kO2,F[O2] (4.12)

d[O2−]
dt

=DF∇2[O2−] + kO2,F[O2]− kO2,R[O2−] (4.13)

[O2] + [O2−] = O0 (4.14)

where DH and DF are the diffusivity of O2 and O2−, kO2,F and kO2,R are the voltage

dependent reaction constants from Eq. 4.4. O0 is the total dissolved oxygen concen-

tration near the cathode. Generation of one 1 mol of O2− from the cathode consume
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2 moles of electrons, which requires a consumption of 2 moles of TTF from the an-

ode. Therefore, an additional electron balance equation between the anode and the

cathode should be included as:

2 [TTF] = [O2−] (4.15)

Note that the reaction constants from Eq. 4.5 to 4.9 and Eq. 4.12, 4.13 depend

on the electrode potential that follow the exponential relationship defined by the

Butler-Volmer equations as:

kTTF,F = k0,A · exp((EA − E0,A)/βOx,A) (4.16)

kTTF,R = k0,A · exp(−(EA − E0,A)/βRed,A) (4.17)

kO2,F = k0,C · exp((EC − E0,C)/βOx,C) (4.18)

kO2,R
= k0,C · exp(−(EC − E0,C)/βRed,C) (4.19)

where k0,A/ k0,C are the reaction constant prefactor, EA/EC are the anode/cathode

potential. E0,A/E0,C are the anode/cathode equilibrium potential, while βOx,A , βRed,A,

βOx, C , βRed,C are the Tafel slopes of the oxidation/reduction reactions on the anode

and cathode respectively. Next, we will solve for Eq. 4.5 to 4.19 both numerically

and analytically.

Based on the specific lactate sensor design parameters reported in Bandodkar et

al. [25], Eq. 4.5 to 4.19 are solved numerically in a 3D coupled diffusion-reaction

Finite Element Method (FEM) solver in COMSOL. The numerical simulation of the

geometrical structure is shown in Fig. 4.2 (a) (i). The planar disk anode and cathode

are located at the bottom of the unit cell. The anode is coated with two layers of

redox reactants (LOx layer on top of the TTF layer). The reaction flux on the circular

electrode surface is set to be Jrec = kF [C3H6O3] [LOx (FAD)] . The size of the unit

cell (w: 4mm, l: 8mm, h: 1mm) represents a droplet of 0.032 mL biofuel sample

solution. The bulk lactate concentration L0 is held fixed at the top surface of the
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unit cell. We chose reflective boundary condition on the side surface of the unit cell.

Preliminary studies reveal that increasing the size of the unit cell does not affect the

results significantly.
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Fig. 4.2.: 3D Finite Element Numerical simulation. (a) (i) Simulation setup: disk

planar cathode/anode at the bottom of the simulation system. (ii). Steady-state

lactate concentration profile. (b). The transient re-sponse of EBFC sensor (i) Time

sequence plot of lactate concentration. (ii) Surface density of interme-diate reactants.

(iii) The transient output voltage from numerical simulation.

The numerical solution in Fig. 4.2 (a) (ii) shows the lactate concentration profile

in the bulk cell in steady state. The lactate concentration depletes near the anode due

to the lactate redox reaction. For the transient response, a time sequence of lactate

bulk concentration is shown in Fig. 4.2 (b) (i). The time dependent surface density

ratio of LOx (FAD), Lox (FADH2), TTF , and TTF+ are shown in Fig. 4.2 (b) (ii).

After the transient phase lasting several tenth of seconds, the surface density of each

species saturates to a constant value determined by the lactate concentration. The
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total anode current generated from lactate reactions can be calculated by integrating

the electron flux over the entire anode as follows:

Ianode = qNA

∫
Je−dS (4.20)

where NA is the Avogadro constant and Je− is the electron generation flux. In Fig. 4.2

(b) (iii), we sweep the lactate bulk concentration L and record the anode current Ianode.

The corresponding steady state response (current vs. concentration) shows that Ianode

saturates to a constant value at high lactate concentration. The 3-D numerical model

is an important contribution of this research because it can serve as a design tool for

EBFC of arbitrary geometrical configuration and reaction rate constants.

4.2.3 Quasi-Steady State Analytical Model: Anodic Reaction Limited

EBFC-based Sensor Response

A key insight from the numerical simulation is that diffusion limits do not play

an important role in the range of analyte concentration of interest and the ultra-fast

time-response itself is not of significant interest for relatively slow varying physiologi-

cal signals (e.g. lactate concentration in blood). We can therefore neglect the diffusion

delay terms from Eq.Eq. 4.5 to 4.19. In addition, we approximate the Butler-Volmer

reaction constant in Eq. 4.17 and 4.18 as kTTF, F = kP and kTTF,R = 0 since the

exponential voltage-dependence makes kTTF, F � kTTF,R. Remarkably, with these

modest simplifications, Eq. 4.6 to 4.9 transforms into a coupled system of rate equa-

tion amenable to analytical simulation. The goal is to write simple but generalized

equations suitable for EBFC-based biosensors to assist in design optimization and to

identify system limits. The model results are validated against numerical simulation

and experimental results to ensure that approach is justified.
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dQ
dt

= kFLP − kRQN (4.21)

dP
dt

= kRQN − kFLP (4.22)

dM
dt

=kRQN − kPM (4.23)

dN
dt

= kPM − kRQN (4.24)

Here, P, Q, N, and M represent the surface density of LOx (FAD), LOx (FADH2)

, TTF , and TTF+ since the diffusion of the chemicals across different layers on

the electrode is ignored. R0 and K0 from Eq. 4.10 and 4.11 also reduce to the total

surface density of LOx(FAD), LOx (FADH2) , TTF , and TTF+ respectively. We can

solve Eq. 4.21 to 4.24 analytically in a normalized form by rewriting the parameters:

L∗ = L/L0 (L0 is chosen to be the upper limit of the lactate detection concentration),

P ∗ = P/R0 , Q∗ = Q/R0, M∗ = M/K0 , N∗ = N/K0, t = t
t0

= t
1/kRK0

. In the steady

state, we can set the reaction flux in Eq. 4.21 to 4.24 equal to zero. Including the

mass conservation Eq. 4.10 to 4.11, the normalized form of the system of equations

can be simplified as the following:

dQ∗

dt∗
= −dP ∗

dt∗
= αL∗P ∗ −Q∗N∗ = 0 (4.25)

dN∗

dt∗
= α

β
QN − βM∗ = 0 (4.26)

P ∗ +Q∗ = 1 (4.27)

M∗ +N∗ = 1 (4.28)

where α = kFL0

kRK0
and β = kP

kRR0
are unitless parameters derived from the combination

of different sensor parameters.

By solving for Eq. 4.25 to 4.28 analytically, we can express the anodic current in

steady state as the following:

Ianode = AqNA · kPK0 ·M∗ = AqNA · kPK0
1

2

(
∆−

√
∆2 − 4σ

)
(4.29)
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where ∆=1 + α
β
L∗ + αL∗, σ = α

β
L∗. With 4σ

∆2 � 1 , Eq. 4.29 can be further approxi-

mated as the following:

Ianode ≈ AqNA ·
kPK0

1 + β
· L∗

L∗ + β
(β+1)α

(4.30)

This expression for EBFC-based sensor response has the same form as the Michaels-

Menten equation where the term β
(β+1)α

in the denominator determines the output

linear dynamic range while the pre-factor AqNA · kPK0

1+β
dictates the sensitivity of the

EBFC sensor.

Next, we calculate the output voltage signal measured across the external resistor.

In an ideal case where the cathode can accept any number of electrons generated by

the anode, i.e. there is enough dissolved O2 at the cathode in the system, the overall

EBFC output current is only limited by the anode reaction. The output voltage can

be simply expressed as:

ψtotal = R · Ianode + ψ0 (4.31)

where R is the external resistance, ψ0 is the constant background signal generated by

the parallel secondary reaction. Eq. 4.30 and 4.31 define the ultimate performance

limit of EBFC-based biosensors.

4.2.4 Cathode-reaction Limited (Self-Consistent) Response

In practice, however, the anode-limited performance limit is seldom achieved:

Fig. 4.3 (d) shows a cyclic-voltammetry experimental measurement result. In this

measurement, we isolate the anode reaction by switching the cathode to a commercial

Ag/AgCl reference electrode. We found that the linear dynamic range extends up to

50 mM which is higher than the original oxygen reaction cathode. This interesting

phenomenon is due to the oxygen redox reaction at the cathode becomes the rate

limiting factor due to the small amount of dissolved oxygen in the biofluid. In this
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Fig. 4.3.: (a) Detection mechanism of bio-fuel lactate sensor. (b) Illustration of

the equivalent circuit model. (c) The steady-state response of the equivalent circuit

model (solid lines) calibrated against the experimental data (open circles). (d) CV

measurement of anode against commercial Ag/AgCl reference electrode reactants.

section, we include the contributions from the coupled anodic and cathodic reactions

shown in Fig. 4.3 (a) to generate a more accurate analytical model that resembles the

real-life scenarios.

To include the effect of oxygen starvation, we solve the voltage dependent Butler-

Volmer equations self-consistently as an equivalent circuit shown in Fig. 4.1 (b).

Since the redox reaction current I is proportional to the reaction constants, the IV

characteristics of the voltage dependent redox reactions at both anode and cathode

can be viewed as an ideal diode in series with a constant voltage source (the value

equals to the redox equilibrium potential E0). The forward oxidation and reverse

reduction reactions on both electrodes is then equivalent to two of such diode pairs
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connected in parallel but in opposite direction. By applying this model to solve for

the circuit equilibrium point where Ianode = Icathode, we take care of all the voltage

dependent reaction constants for both anode and cathode in a self-consistent way. No

approximations (e.g. kTTF, F = kP , kTTF,R = 0 in the previous section) are made in

this condition. The sensor output voltage would be the exact solution of the voltage

drop across the external resistor R in the equivalent circuit.

The voltage-drops driving anode and cathode reactions must be solved self-consistently.

There is no explicit analytical expression for the self-consistent Butler-Volmer equiva-

lent circuit in equilibrium. Here, we use MATLAB equation solver to find the implicit

solution of the following system of equations plus the mass conservation Eq. 4.14 and

4.15:

IAnode = IOx,A − IRed,A

= qNAk0,A

[
exp

(
−ψSol+EA,0

βOx,A

)
M − exp

(
ψSol+EA,0
βRed,A

)
N
]

(4.32)

ICathode = IRed,C − IOx,C

= qNAk0,C

[
exp

(
ψSol+EC,0−Itotal·RMetal

βRed,C

)
H − exp

(
Itotal·RMetal−ψSol−EC,0

βox,C

)
F
]
(4.33)

Itotal = IAnode = ICathode = qNA · kFLP = qNA · kRQN (4.34)

where IOx,A, IRed,A, IOx,C , IRed,C are the oxidation and reaction current at anode and

cathode respectively. ψSol is the electrical potential in the solution. M and N are the

surface density of TTF and TTF+ on the anode. H and F are the concentration of

O2 and O2− near the cathode. They follow the mass balance and the electron balance

equations from Eq. 4.11, 4.14 and 4.15 as: M +N = R0, H+F = O0, and 2N = F .

Fig. 4.3 (c) shows the implicit solution of output voltage ψc of the Eq. 4.14, 4.15,

4.32 to 4.34 at different lactate concentration. It also shows the non-linear property

of the output signal where the ψC saturate at higher lactate concentration.
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4.3 Experimental validation of the Analytical Results

Next, we are going to validate our model against both the steady-state and tran-

sient response of the experimental measurement data from Bandodkar et al. [25] .The

biofuel cell-based lactate sensor design consists of circularly cut carbon nanotube

(CNT) paper as the anode. The CNT paper provides a conductive and high-surface

area substrate to immobilize the oxidase enzyme and TTF for shuttling electrons

from enzyme to CNT conducting paper.
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Fig. 4.4.: (a) Steady-state response from Exp. vs. analytical solu-tion vs. linear

fitting. (b) Transient response of biofuel lactate sensor: exp. (blue dots) vs. model

(red line: finite source setup, yellow line: infinite source setup).

4.3.1 Steady-state response

Fig. 4.4 (a) shows how our model interprets the steady-state lactate experimental

data. Since the average concentration of lactate in sweat is around 14 mM, the

in-vitro measurement take place in phosphate buffer (pH 7.0) solution with lactate

concentration ranges from 0 mM to 20 mM with a 5 mM increment. By fitting the
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unknown parameters (α, β, kp, K0.) summarized in Table 4.1, our simple single

anode analytical model as described in section 4.2.4 captures the experimental data

with high fidelity when there is enough oxygen supply at the cathode. At cL = 0 mM,

we find the constant background signal ψ0 generated by the parallel reaction to be 22

mV. Our analytical model perfectly captures the non-linear response of the EBFC-

based lactate sensor. Fig. 4.4 (a) shows a comparison between the traditional linear

fitting vs. our model. The adjusted R2 value increases from 0.97 to 0.99 and the

root-mean square error reduce from 3.36 to 1.25.

Table 4.1.: Fitting parameters for analytical model

Fitting parameters Known parameters

α 1.378 r 1 mm

β 4.91 R 50 kΩ

kp ·K0 6.22× 10−5mol/s/m2 A πr2

4.3.2 Transient response

Fig. 4.4 (b) shows the transient measurement data of the EBFC-based lactate

sensor. The measurement starts from 0 mM lactate solution with a sequential 5mM

lactate concentration increment up to 20 mM. For each concentration, the measure-

ment lasts ∼300 s until the output voltage signal is stabilized. Here, we apply our

numerical model to describe the sensor transient behavior. We keep fitting parameter

(α, β, and γ) the same as the steady state model and increase the lactate concentra-

tion every 5 mM at t=45, 365, 706, and 1043 s. For the infinite source case (yellow

solid line in Fig. 4.4 (b)), we use a constant lactate concentration at the top bound-

ary as described in the numerical simulation section. When the sample concentration

increases by 5 mM, transient voltage response jumps up and saturates to the steady-

state value. In the experimental data, however, the voltage signal initially jumps up
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to a larger value, and then decays slowly to a stable value. This interesting phe-

nomenon is due to the finite lactate source in the sampling solution. The initial large

jump corresponds to a large amount of lactate molecules instantly being introduced

and mixed in the sample solution. The mixing adds additional convection causing

the signal overshoot. Then the mixed solution reaches the steady state slowly with

consumption of the lactate molecules by the EBFC-based lactate redox reactions in

Eq, 4.28 and 4.6. In a new numerical simulation setup, we include the effects of finite

lactate source by setting a constant initial lactate concentration in bulk solution. The

simulation result in Fig. 4.4 (b) (red solid line) follows the trend of the signal decay.

4.4 Design Principles for EBFC

In the previous section, we have interpreted the experimental results of the steady-

state and transient response of a BFC-based lactate sensor. In this section, we are

going to explore the effect of some critical design parameters of the sensor. Based

on our model prediction, we will provide design guidelines for improving the sensor

performance.

For the biofuel-based sensor experimentalist, there are two important parameters

that can be easily tuned during the sensor fabrication process: LOx surface density

R0 and TTF surface density K0 on the working electrode. In addition, the dissolved

oxygen level O0 near the cathode is another important limiting factor for the biofuel

sensor system.

4.4.1 Effect of enzyme surface density

Fig. 4.5 (a) shows the effect of enzyme (LOx) surface density R0 on the enzyme-

functionalized electrode of the biofuel cell-based sensor. In our analytical model, we

increase R0 from 5×10−7mol/m2 to 3×10−6mol/m2 while keeping the other param-

eters the same. We find that an increase in the enzyme concentration R0 increases

the sensitivity in the linear dynamic region, but the non-linear curve saturates at a
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Fig. 4.5.: (a) The simulated parametric response of biofuel sensors. Potentiometric

response of biofuel lactate sensor with different TTF surface density. (b) Experimen-

tal validation of the effect of surface density of LOx. (LOx layer is prepared by 1

mg/ml, 10mg/ml, 20mg/ml of LOx load solution) (c). Potentiometric response of

EBFC lactate sensor with sweeping LOx surface density. (d)The impact of reactant

concentration (dissolve ox-ygen) at the cathode of EBFC.

lower lactate concentration. Therefore, there is a trade-off between the linear dynamic

range and sensitivity when tuning the enzyme surface density.

This interesting phenomenon has been validated by control experiment. Fig. 4.5

(b) shows the characterization results of three different EBFC-based lactate sensors
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(dots) prepared by immobilizing 4 ng, 40 ng, and 80 ng of LOx. We calibrate our

model to fit the experimental data by choosing LOx surface density R0 the corelates

to the amount of the immobilized LOx enzyme. Despite some small discrepancy at

relatively low quantities (4 ng) of LOx loading, the results from the model correlates

well with that from the experiments, thus illustrating the capabilities of the model to

predict sensor performance.

4.4.2 Effect of electron transfer mediator surface density

In Fig 4.5 (c), we analyze the importance of TTF surface density K0 in Eq. 4.11.

We find that unlike the effect of R0, increasing K0 does not control the sensitivity

of the EBFC output signal in the linear dynamic range. Instead, it increases the

width of this linear dynamic range. Hence, experimentalists can manipulate this

electron transfer mediator (TTF) density on their EBFC anode design to tune the

linear dynamic range of the output signal without affecting the sensitivity.

4.4.3 Limiting effect of the cathode reaction

In section 4.4.1, we study the effect of enzyme surface density and electron transfer

mediator surface density of the EBFC output response by assuming infinite oxygen

supply from the cathode side from the self-consistent equivalent circuit model. Our

model could also illustrate the effect of O2 starvation on the cathode. The dashed

lines in Fig. 4.5 (d) shows that when dissolved oxygen is insufficient, an increase in

the dissolved O2 near the cathode scales up the output signal at all lactate concentra-

tions. The model predicts that the limiting effect of the cathodic reaction vanishes at

dissolved O2 concentrations above ∼10−5 mM . Therefore, the dashed lines calculated

from our equivalent circuit model approach the red solid line calculated from the sim-

ple single-anode analytical model where we assume that the redox reaction on the

cathode is not the rate limiting factor. This is a unique feature of the EBFC-based

sensor wherein the type of cathode redox reactions as well as the reactants should be
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carefully chosen in order to reduce the impact of the cathode. Our equivalent circuit

model provides a quantitative option for inspecting this interesting cathodic reaction.

To eliminate this oxygen-deficit limitation, several novel cathode designs have been

reported in the literature. Jeerapan et al. use polychlorotrifluoroethylene (PCTFE),

an oxygen-rich cathode material, to provide internal oxygen supply for EBFC cathode

reduction reaction [131]. Yu et al. demonstrate a new solid-state Ag2O/Ag cathode

design which makes it possible for EBFC to operate under anaerobic condition [132].

Our model can easily adapt to quantitatively characterize the performance of such

innovative EBFC cathode by calibrating the cathodic reaction constants as well as

the concentration of different reactants in Eq. 4.7, 4.8, 4.24, and 4.27.

4.5 Conclusions

To summarize, we address the fundamental impact of different design parameters

of EBFC-based sensors with sophisticated numerical modeling plus simple analytical

formulas capturing the essential physics. We apply a self-consistent equivalent circuit

method to couple the reactions for both the anode and cathode. Our model agrees

closely with the experimental measurement data. We show that:

1. The sensitivity of the EBFC sensor could be enhanced by increasing the surface

density of enzymatic layer (LOx). The electron mediator (TTF) does not affect

the sensitivity.

2. The linear dynamic range of the steady state response is controlled by both

the enzyme and the electron mediator, but in an opposite way. Increasing

the surface density of oxidoreductase enzyme would shrink the width of linear

region while an increase in the surface density of the electron mediator layer

would enlarge it.

3. The redox reaction on the cathode is another limiting factor for the sensitivity of

EBFC-based biosensor. In the specific case of lactate EBFC sensor, the oxygen
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starvation effect is critical and should be carefully handled for the application

of real-time wearable sweat lactate sensors.

Our self-consistent equivalent circuit method for Butler-Volmer relationship could

applied to help optimize other two-electrode amperometric redox reaction systems

such as battery design, metal corrosion problems, etc.
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5. FUNDAMENTAL CHALLENGES, ESSENTIAL

PHYSICS, SYSTEMATIC CHARACTERIZATION, AND

DESIGN IMPROVEMENT OF ISE: PART I MODEL

DESCRIPTION

5.1 Motivation

In chapters 2, 3, and 4, we have introduced new amperometric sensors that enhance

sensitivity, increase stability, and reduce power consumption. The target analytes for

amperometric sensors are usually charge-neutral such as glucose and lactate. Amper-

ometric sensors detect the target analyte concentration by measuring the magnitude

of the flow of electrons (current) generated by specialized redox reactions. For the

detection of charged particles, however, we can use a simple approach based on po-

tentiometric sensing by taking advantage of the electrostatic properties of the charge.

ISFET sensors described in chapter 1 use antibody-antigen reactions to fix the

charged analyte such as protein and DNA on the liquid gate. The happed change are

measured by the change in the drain current of the MOSFET. Still, this method relies

on the specialized binding reactions which requires a sophisticated sensor structure.

In this chapter, we will introduce and analyze another widely used potentiometric

method that detects smaller charged particles: ions.

Potentiometric ion sensors use ion-selective electrode (ISE) to convert the activ-

ity of a target ion into measurable electrical potential signals. Conventional ISE

sensor working electrode contain liquid contact (inner filling solution) between the

ion-selective membrane(ISM) and the conducting metal electrode. Two-electrode

measurement setup as shown in Fig. 5.1 (a) measures the chemical potential differ-

ence between the a working electrode and a reference electrode. The ion-selective

0At the time of the thesis deposition, this chapter is reproduced from a manuscript in draft.
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membrane allows the target ion easily penetrate while blocking the other interfer-

ing ions, resulting in a capacitive interface. This capacitive interface generates a

measurable potentiometric signal which reveals the activity of target ion.

Fig. 5.1 (b) shows a collection of in-lab steady-state measurement from a nitrate

ISE sensor. We plot the steady-state response over four orders of magnitude of the

sample nitrate ion concentration from 10−4 mM to 0.1 mM . Analytically, the Nernst

equation determines this steady-state relationship between the target ion concentra-

tion and the sample-dependent potential:

ψ=E0 +
kT

zq
ln

(
n

n0

)
(5.1)

where E0 is the standard potential, k is the Boltzmann’s constant, T is the temper-

ature, z is the ion charge number, n is the target ion concentration, and n0 is the

standard ion concentration associated with E0. According to the Nernst equation, the

sensitivity of an ideal ISE at room temperature T = 25◦C should be kT
q
∼ 60 mV/dec

(for ion charge number: z = 1).

5.2 The detection mechanism of ISE

The key component of ISE is the ion-selective membrane (ISM). The chemical

component of ISM is specially designed so that the target ion can easily penetrate

or leach out from the membrane. A dipole forms at the sample-ISM phase bound-

ary. Based on the material of the ISM, two main categories of polymer ISM are

primary used for solid-contact ISE: ion-exchange ISM (Fig. 5.1 (a)-I) and ionophore

ISM (Fig. 5.1 (a)-II). Ion-exchange ISM is based on special organic polymer mem-

brane which contains specific ion-exchange substrate (e.g., TOA+ being used in the

design of soil nitrate sensor) accounting for the selectivity to certain ion. On the

other hand, ionophore ISM uses large molecules called ionophore to bind with target

ions (e.g., Na+, K+ sweat sensor). The selectivity come from the specialized target

binding reaction between the ionophore and the ion. The target ion can either hop
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Fig. 5.1.: (a) Schematic illustration of the potential distribution profile within two-

electrode cell. [133] The sample-dependent potential occurs at the sample-ISM in-

terface. Two types of ISM: ion-exchanger and ionophore-based. (b) Steady-state

response of nitrate ISE sensors

through different ionophore sites (immobile ionophore) or the bonded ion-ionophore

pairs which are free to move in the polymer ISM (mobile ionophore) shown in Fig. 5.1

(a).

From our theoretical study, ISE has two different modes of operation:

1. Depletion mode. Most ion exchange ISM operates in this mode. The mem-

brane is preloaded with a high level of ions. When sensing in a low concentration

sample solution, the preloaded ion release from the ISM into the sample which

forms a diploe at the phase boundary.

2. Accumulation mode. Most ionophore-based ISMs operate in this mode. Ions

from the sample react with the ionophore embedded in the membrane and

accumulate at the membrane side of the phase boundary.
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The physics behind of those two modes are similar. The difference is that the

dipole at the phase boundary form in the opposite direction.

5.3 Solid-contact ISE

The performance of conventional ISE is highly sensitive to the sensor operation

conditions (such as temperature and air pressure) since the evaporation of the in-

ner filling solution would affect the accuracy of the measurement. Therefore, the

conventional liquid-contact ISE sensors are commonly used for in-lab measurements.

To implement ISE into portable integrated devices, several limits of conventional

ISE need to be overcome: 1) poor sensitivity with small sample solution volume, 2)

solution-induced instability of transduced signal, 3) inadequate selectivity to the tar-

get ion over a wide variety of interfering ions, and 4) low throughput manufacturing

capability. Solid-contact ISEs and reference electrodes are good candidates for IoT ap-

plications such as wearable personalized healthcare systems (sweat sodium/potassium

ion sensors), precision agriculture soil monitoring systems (nitrate/chloride ion sen-

sor). The first generation of the solid-contact ISE is called coated-wire ISE [134].

The ISM is directly coated on top of the metal wire electrode, generating a purely

capacitive interface. However, it has been widely reported in the literature that the

coated-wire ISE pick up noise easily, show large output voltage drift, and exhibit

significant sensor-to-sensor variations.

With the help of nanotechnology, the creation of new flexible material, and the

development of new printing technology enable engineering of low-cost, easily foldable

thin-film, lightweight, thin-film flexible ISE to overcome the challenges of the coated-

wire ISE.

Fig. 5.2 (a) shows an example of a thin-film nitrate ISE sensor that consists of both

solid-contact working and reference electrodes. The working and reference electrodes

are fabricated by roll-to-roll (R2R) printing technology in a layer-by-layer manner on

a thin-film flexible substrate. A nitrate ion-selective membrane layer is coated on the
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active area of the silver working electrode. The target nitrate ions form a capaci-

tive interface inside the membrane which determines the sample-dependent potential.

Similarly, a gel membrane with a constant chloride level is coated on the active area

of the reference electrode. This constant chloride ion concentration guarantees a con-

stant interface potential at the reference electrode achieved by the reversible redox

reaction: AgCl (s) +e−
Ag(s)+Cl− . Details about the R2R fabrication process can

be found in Appendix C.

The solid-contact thin-film ISEs shows the following advantages:

1. Due to the near-zero current operating conditions, thin-film solid-contact ISE

potentiometric sensors have the advantage of low power consumption which

meets the long lifetime requirements for portable integrated electronic devices.

2. Roll-to-roll (R2R) scalable nanomanufacturing technology enables thin-film solid-

state ISEs to be created with high throughput and low cost. The design pa-

rameters of the thin-film electrode (ISM thickness, ISM chemical components,

etc.) can be easily tuned by the R2R manufacturing process (e.g., rolling speed,

membrane coating, solvent drying)

For an in-lab measurement, the ISEs are normally preconditioned and calibrated

in a high concentration known target ion solution for several hours until a stable

output signal has been achieved. The transient process before the initial steady-

state have not been discussed extensively in the literature. Fig. 5.2 (b) shows the

transient response of 12 thin-film nitrate ISE in a constant nitrate solution in the

preconditioning phase. Each ISE takes > 10 hrs to reach a stable output voltage

value. Therefore, several new challenges need to be overcome before the solid-contact

ISE could be implemented into IoT applications:

1. Response time. Current theoretical studies focus on the steady-state re-

sponse, but transient response including preconditioning step before the mea-

surement is equally important. Understanding this transient response (response
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Fig. 5.2.: (a) Roll-to-roll printed thin-film nitrate ISE sensor that consists of both

solid-contact working and reference. (b) Transient response of multiple R2R printed

ISE nitrate sensors.

time, the pattern that the signal follows as a function of time) is critical for

closed-loop continuous monitoring applications.

2. Trade-off between low cost and sensor performance. There are sig-

nificant sensor-to-sensor variations for both steady-state and transient output

response. The nitrate sensors are fabricated by the R2R technology, there-

fore the variations during the fabrication process (nonuniform coating of ion-

selective membrane, silver electrode roughness and resistance variation, etc.)

are reflected in the variations of potentiometric output signals among sensors.

Reducing the variability and retaining a stable output signal with high precision

remains a problem.

3. Signal to noise ratio. Since the ISE sensors are operating in a harsh en-

vironment for IoT applications, there is a wide variety of noise source that
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could potentially superimpose fluctuations on the original sensor output signal.

The the noise signal strength should be orders of magnitude smaller than the

resolution of the sensing signal.

In this chapter and the next chapter, we will ask and answer the following ques-

tions derived from our in-lab experimental observations: i) Even though the Nernst

equation well-explain the steady-state response with the sensitivity of 60mV/dec, the

systematic theory for the transient response of ISE is missing. What pattern should

the transient response follow? ii) What is the physics behind this pattern? How

long should one wait until the potentiometric signal get stabilized? Which design

factors control the time constant of the transient response? iii) In the long-term

measurement, there are variations (noise and drift) despite the change of ion concen-

tration. What is the source (non-ideal effects) of those variations? How to reduce the

variation?

5.4 Kinetic modeling framework

Traditional theoretical work of ISE focus on improving the steady-state response

of ISE. The models reported in the literature [135] simplifies the microscopic ion

penetration process in the ISM with the following assumptions:

1. Charge neutrality. Morf et al. [135] assumes that the cations and anions in all

the regions are well balanced. This requests counter-ions are locally available

to balance the charge associated with the target ion. Net charge is ignored

everywhere at the sample-ISM phase boundary. A detailed systematic physics-

based model is needed to explain this dipole formation.

2. Step function approximation of phase boundary potential. As shown

in Fig. 5.1 (a), experimentalists in the literature usually approximate the emf

potential profile at the phase boundary as a discrete step function. The step

function is determined by the concentration difference between the two phases.
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This approximation holds in the macroscopic scale. But in the microscopic scale

(a few nanometers near the phase boundary interface), the phase boundary po-

tential profile should be continuously distributed across two different materials

due to the unbalanced charges from the dipole.

3. Ignore ion drift Molf’s model only includes the diffusion flux due to the

gradient of ion concentration. This assumption is based on the charge neutral

approximation in 1). Here, one assumes that the driving force for target ion

transport only arises from the concentration gradient generated inside different

phases. If a dipole forms at the phase boundary, however, the unbalanced

charge is going to interfere the local emf voltage according to Poisson’s equation.

Therefore, this unbalanced charge will lead to an electrostatic drift force for

different charged ions.

In this section, we are going to introduce a new kinetic model which includes the

contribution of detailed transportation process of all the ions near ISM boundary.

Modeling of ion transport processes near the sample to the ion-selective membrane

region is shown in Fig. 5.3 (a). We coupled the drift-diffusion equation, Poisson’s

equation, and the charge balance equation in a simplified one-dimensional domain.

∂ni(x,t)
∂t

= ∂
∂x

(µi(x) ni(x, t)
∂ψ(x.t)
∂x

+Di(x)∂ni(x,t)
∂x

) (5.2)

∂2ψ(x,t)
∂x2

= − q·n(x,t)
κε0

(5.3)

ρ = qNA ·
∑

i zini (5.4)

where ni(x, t) is the concentration of ith ion, µi(x) and Di(x) are the location de-

pendent mobility and diffusivity of the ith ion, ψ is the local potential, and κ is the

relative dielectric constant, NA is the Avogadro constant, zi is the charge number of

the ith ion.
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boundary. (f) The distribution of the phase-boundary potential near the sample/ISM
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5.4.1 Numerical steady-state solution

We numerically solve the ion transport Eqs. 5.2 to 5.4 by COMSOL FEM simu-

lator. In Fig. 5.3 (a), x = h0 and x = h0 + h, correspond to the sample/membrane

and the membrane/metal electrode interfaces, respectively, where h0 is the thickness

of the ISM. At the sample domain 0 < x < h0, we set constant ion concentration

ni,0 for each ion. Because ions cannot further penetrate the metal electrode, we ap-

ply reflective boundary condition and floating potential at the membrane/conductive

electrode boundary. In this simulation, we focus on three different ions: 1) A+ the

sensing target ion, 2) B− the counter ion in the sample, and 3) R− the counter

ion in the ISM. A+, B− and R− are free to move in the sample solution with
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Daq,A = Daq,B = 10−9m2/s. Indeed, A+ can penetrate into the membrane with

DM,A = 10−11m2/s while B− cannot with DM,B = 0 m2/s

In this numerical simulation, the voltage distribution profile within the two-region

system as well as the ion concentration profile are recorded in each simulation time

step. Fig. 5.3 (b)-(d) shows the spatially distributed ion concentrations for A+, B−

and R− respectively. The primary ion A+ travel from the solution into the membrane,

causing the depletion of A+in the solution outside the membrane and the accumula-

tion of A+ at the inner boundary. Similarly, R− ions deplete from the membrane side

and are released into the solution as shown in Fig. 5.3 (c). There is an accumulation

of B− in the solution near the boundary because if Daq,B � DM,B so that B− could

quickly be dissolved in the solution. Fig. 5.3 (d) shows an accumulation peak of B−

counter ion in the solution phase near the sample-ISM. Because of this non-uniform

distribution of A+, B− and R−, the net charge nnet = nA+−nB−−nR− form a dipole

at the phase boundary shown in Fig. 5.3 (e), resulting in a phase boundary poten-

tial. As shown in Fig. 5.3 (f), the microscopic scale of the phase boundary potential

distribution is asymmetric due to the diffusivity difference of the ions, with a major

potential drop in the membrane phase and minor potential drop in the sample solu-

tion phase. But on the macroscopic scale, this potential destitution looks like a step

function. The step-function approximation for the phase boundary potential [135]

has been widely adopted by the literature from the ISE community.

Our numerical simulation also shows that when the ion concentration (both A+

and B−) increases by one order of magnitude, the phase boundary potential increases

by 60mV . This observation is well aligned with the steady-state Nernst equation.

Interestingly, the physics behind the phase boundary potential vs. ion concentration

is the same as the physics of the built-in potential of a PN junction. (e.g., PN

junction built-in potential has a kT
q

= 60mV/dec relation with the semiconductor

doping density.)
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5.4.2 Numerical transient response

In the previous section, we have successfully applied our numerical simulation

framework to solve for the steady-state response of the ISE. The accuracy of the

numerical model has been validated by the Nernst equation. From our model, we

have gained a good physical insight into the microscopic ion distribution and how the

phase boundary potential is generated. Next, we are going to apply our numerical

simulation framework to explore the transient response of ISE before it reaches the

steady-state output voltage.
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Fig. 5.4.: Time series plot of (a) the primary ion A+ and (b) the corresponding

potential distribution within the sample-ISM simulation region. (c) Semilog x plot

of the total phase boundary potential ∆ψ across the sample-membrane region as a

function of time.

In Fig. 5.4 (a) and (b), we plot the concentration of the primary ion A+ and

the phase boundary potential at different time steps of the numerical simulation

before the system reaches the steady-state. Fig. 5.4 (a) shows that in a semi-log
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y plot, the “diffusion tail” of the primary ion gradually penetrates the membrane.

Although the absolute value of the diffusion tail concentration is orders of magnitude

smaller than that of the concentration at the interface, the space-integrated charge

is significant. It gives rise to an evolution of the phase boundary potential increase.

In Fig. 5.4 (c), we plot the total phase boundary potential ∆ψ across the sample-

membrane region as a function of time. We found that in a semi-log x plot before

saturation, ∆ψ increases linearly as a function of time, which indicates a logarithmic

relationship between ∆ψ and t. Surprisingly, the slopes of ∆ψ vs. log(t) is also

60 mV/dec. This interesting observation suggests that the coefficient before the log(t)

in the analytical expression might be kT
q

. Furthermore, this constant transient slope

in the time scope is universal, independent on the targe ion concentration and other

sensor design parameters. Why does the Nernst-like relationship still hold for the

relationship between the phase boundary potential and time? We are going to answer

this question in the next section by analytically solving Eqs. 5.2 to 5.4 and derive a

new physics-based analytical model.

5.4.3 Approximate analytical solution

We solve the coupled drift-diffusion and poison’s equation analytically with the

same boundary conditions from the numerical simulation setup. At the beginning of

the transient phase, the built-in potential ψ inside the membrane is relatively small.

Therefore, we can ignore the drift term in Eq.5.2. The ion flux becomes:

J = q ·Ddn
dx

= q ·D∆n

∆x
=q ·Dn0 − n∗

∆x
(5.5)

where n∗ is the number of ions just transferred into the membrane following the Arrhe-

nius equation: n∗ = n0 · e−
qψ
kT . ∆x is the diffusion width. The electrical conductivity

of the membrane can be calculated from the ion flux as:
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σ =
dJ

dE
=
dJ

dψ

dψ

dE
=qD · n0

( q

kT

)
· e−

qψ
kT (5.6)

Here the approximation is that dψ
dE

equals to the diffusion length x0. The length

of time to reach this conductivity value would be:

t = C · κε0
σ

=
kT

q
· κε0
qDn0

· e
qψ
kT (5.7)

We can rewrite the Eq. 5.7 and find out the built-in potential as a function of

time as:

Vtrans(t) = ψ =
kT

q
ln

(
C · t

t0

)
(5.8)

where t0 = kT
q
· κε0
qDn0

is a time scaling factor. Eq. 5.8 shows that by scaling the

time with t0, all the transient response of ISE output potential signal (with different

membrane dielectric constant ε, different diffusivity D) would converge to a universal

curve. In the semi-log x-axis plot, the slope of this universal curve is kT
q

= 60mV/dec

at the room temperature.

Similarly, we can solve Eq. 5.2 and 5.3 in the steady-state by setting ∂n(x,t)
∂t

= 0.

The final expression for the saturation voltage is:

Vsat =
kT

q
ln

(
C1
n0h

2

κ

)
+ C2 (5.9)

Eq. 5.9 is a more general form of Nernst equation (Eq. 5.1). It also includes the

impact of membrane thickness h and dielectric constant κ of the membrane material.

The saturated steady-state value of measured emf is proportional to the logarithm of

h2(120 mV/dec) and inversely proportional to the logarithm of κ (−60mV/dec).

We can estimate the critical time for ISE to reach saturation by equating Eq. 5.8

and Eq. 5.9:
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tc = C0 ·
kT

q
· ε0h

2

qD
· e

qC2
kT (5.10)

This critical time depends on the thickness h of ISM and ion diffusivity D inside the

membrane material but independent of ion concentration and the relative dielectric

constant.

To derive a compact analytical model for both transient and steady-state phase,

we use the following mathematical expression to connect Eq. 5.8 and Eq. 5.9. We

calibrate our compact model against the numerical model/experimental measurement

by tuning the fitting parameter β:

Vana(t) =
Vtrans (t)(

1 +
(
Vtrans(t)
Vsat

)β) 1
β

(5.11)

5.4.4 Analytical model for ISM with pre-loaded constant ion concentra-

tion

In the previous approximate analytical solution, we ignored the drift term in

Eq. 5.2 since the initial voltage ψ0 is small. If we change the concentration of ions after

the preconditioning phase, however, there is an initial voltage build-up ψ0. Therefore,

the drift term in Eq. 5.2 should also be included as the following:

Jdrift ∼ qµn0
−ψ
x0

(5.12)

where ψ is the local phase boundary potential, x0 is the spread distance of ψ. For

approximation, we treat this spread distance as a constant.

For the diffusion flux, we made the following approximation:

Jdiff ∼
qD

x0

· (n1 − n0) · e−
q(ψ−ψ0)

kT (5.13)
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where n0 and ψ0 are the initial preconditioning ion concentration and the correspond-

ing saturated phase boundary voltage respectively.

The total flux can be written as the sum of the diffusion flux and drift flux as the

following:

J =qµn0
−ψ
x0

− qD

x0

· (n1 − n0) · e−
q(ψ−ψ0)

kT (5.14)

Similar to the approximate solution, the electrical conductivity of the membrane

can be calculated from the ion flux as:

σ =
dJ

dE
=
dJ

dψ

dψ

dE
= −qµn0 − qD

(
− q

kT

)
(n1 − n0)e−

q(ψ−ψ0)
kT (5.15)

where dψ
dE

= x0 which cancel the x0 in Eq. 5.14. The time to reach a constant potential

would be:

t = C · κε0
σ

(5.16)

If we rearrange the terms of Eq. 5.16, the final expression for the phase boundary

potential would be:

ψ =
kT

q
ln

(
tqµ (n− n0)

C · κε0 + tqµn0

+ 1

)
+ ψ0 (5.17)

We can check the two limits of Eq. 5.17. When t = 0 the logarithmic term dimin-

ished, ψ=ψ0. When t→∞, ψ = kT
q

ln
(

(n1−n0)
n0

+ 1
)

+ ψ0 = kT
q
· ln
(
n1h2

κ

)
+ C0= ψ1.

The two limits well align with the approximation result from Eq. 5.9.

5.5 Model validations

5.5.1 Numerical validation

In Fig. 5.5 (a), we plot the potential difference across the ion-selective membrane

∆ψ as a function of simulation time. We normalize the time by the scaling factor
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Fig. 5.5.: (a), Numerical simulation of potential difference across the ion-selective

membrane ∆ψ as a function of simulation time. (b) Normalization of transient nu-

merical simulation result by scaling factor t0. (c) and (d) numerical(dots) validation

of analytical model (solid lines).

t0 = kT
q
· κε0
qDn0

as suggested by the analytical model, the transient response of ISE

with different diffusivity values collapse into a single universal curve in Fig. 5.5 (b).

In the semi-log x axis plot, ∆ψ increases linearly with the normalized time, which

indicate a logarithmic relation between ∆ψ and t. After the critical time tc, all the

curves began to saturate to a constant potential Vsat. This constant Vsat value is the

steady-state response of ISE reported in the literature by Eq. 5.1 (Nernst equation).

Fig. 5.5 (c) and (d) shows that our analytical model form Eq. 5.11 and Eq. 5.17

(solid lines) follows the numerical simulation results (dots) well.
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Fig. 5.6.: (a) logarithmic fitting for 15 preconditioning transient experimental mea-

surements. (b) transient slope distribution of the 15 transient measurements. (c)

Transient response of 15 ISE in a single plot.

5.5.2 Experimental validation

In Fig. 5.6 (a), we apply the logarithmic fitting for 15 preconditioning transient

experimental results. The experimental results are taken from 15 thin-film roll-to-roll

printed ISE sensors measured against a commercial reference electrode for ∼24 hours.

We record the transient slope (the coefficient before the log) and plot the distribution

in as a histogram in Fig. 5.6 (b). We find the transient slope is distributed near

60 mV/dec with a small variance. This observation confirms the generalized Nernst

relationship in time as predicted by our new model.

In Fig. 5.6 (c), we plot all the transient measurement results in the same plot.

We found that even within the same measurement dataset, the absolute value of the

ISE output emf voltages shows large offsets in the vertical direction. We are going to

discuss those non-ideal effects and the possible explanations in the next chapter 6.
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5.6 Conclusions

Validated by both numerical simulation and experimental data, we offer a new

physics-based modeling framework that captures the essential microscopic ion trans-

portation process as well as the macroscopic steady-state and transient potentiometric

output of ISE. In the next chapter, we are going to use our model to provide useful

design guidelines to optimize sensor performance.
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6. FUNDAMENTAL CHALLENGES, ESSENTIAL

PHYSICS, SYSTEMATIC CHARACTERIZATION, AND

DESIGN IMPROVEMENT OF ISE: PART II NON-DEAL

RESPONSE

6.1 Introduction

In chapter 5, we developed a new physics-based modeling framework to capture the

essential microscopic ion transportation process as well as the macroscopic steady-

state and transient potentiometric responses of thin-film solid contact ISE. In this

chapter, we are going to discuss the challenges for ISE IoT applications and the cor-

responding strategies that overcome the problems in the following topics: selectivity

of ISE, statistical study of the noise signal, ISE membrane degradation, ISM thickness

variations and non-uniform coating, super-Nernst transient response, and strategies

to predict and reduce ISE sensor-to-sensor variations and response time.

6.2 Selectivity of ISE

In this section, we are going to explore the physical mechanism behind the selec-

tivity of ISE. As mentioned in chapter 5, there are two basic types of ion-selective

membrane: i) ion-exchange ISM and ii) ionophore-based ISM. The selectivity mech-

anism is slightly different for the two cases.

6.2.1 Ion-exchange ISM

For the ion-exchange ISM shown, the selectivity of the ion-selective membrane

comes from the different diffusivity among various ions in the ISM. The membrane

0At the time of the thesis deposition, this chapter is reproduced from a manuscript in draft.
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Fig. 6.1.: Selectivity of ISE (a) Numerical simulation for ion-exchange ISM case

with the interference from a secondary ion. (b) ionophore-based ISM with selective

reaction.

material has been carefully chosen so that the target ion has much higher diffusivity

D than the other interfering ions. Therefore, the electrical potential drop across the

membrane ∆ψ is primarily controlled by the target ions.

As shown in in Fig. 6.1 (a), we modify the 1-dimensional simulation setup by

adding a secondary ion with a different diffusivity D2. The coupled drift-diffusion

and Poison’s equation become:

∂n1 (x, t)

∂t
=

∂

∂x
(µ1n1 (x, t)

∂ψ (x.t)

∂x
+D1

∂n1 (x, t)

∂x
) (6.1)

∂n1 (x, t)

∂t
=

∂

∂x
(µ1n2 (x, t)

∂ψ (x.t)

∂x
+D2

∂n2 (x, t)

∂x
) (6.2)

∂2ψ (x, t)

∂x2
= −q · (n1 (x, t) + n1 (x, t))

κε0
(6.3)
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where the subscript index 1 represents the primary target ion while the subscript index

2 represents the secondary ion. All the boundary conditions and physic parameters

for the secondary ion is set to be the same as the primary ion except the diffusivity.

As shown in Fig. 6.1 (a), we swept the diffusivity for the secondary ion D2 from

D2 = 0.01D1 to D2 = D2. We find that the transient profile of ∆ψ is bounded by the

upper and lower limit of D2: when D1 � D2, ∆ψ temporal profile act as if only the

primary ion is penetrating through the membrane; As D2 become larger, ∆ψ jump

up quickly in the early stage due to the fast diffusing primary ion but then slowly

drift because of the secondary ion; When D2 = D1, the temporal profile of ∆ψ acts

as if the concentration of the target primary ion has been doubled: n0 = 2n0,1

Analytical solution for multiple ions We can repeat the same analytical ap-

proach used in chapter 5 to derive the analytical approximate solution for multiple

ions. Let us consider a two-ion case as an illustrative example. Here, the analytical

formula for the transient response is the same as Eq. 5.8 in chapter 5 except the time

scaling factor depends on transport property of both primary and secondary ions:

V (t) =
kT

q
ln

(
C · t

t0

)
(6.4)

t0 =
kT

q
· κε0
q (D1n1 +D2n2)

(6.5)

The final steady-state emf expression has a similar form as Eq.5.9 in chapter 5:

Vsat =
kT

q
ln

(
C1

(n1 + n2)h2

κ

)
+ C2 (6.6)

Eq. 6.6 tells us that if secondary ions can travel into the ISM, the final steady-

state output is related to the sum of all the ion concentrations in the sample. But

the length of time needed to reach the steady-state potential is limited by the ions

with smaller membrane diffusivity. Therefore, the output signal would quickly jump

to the steady-state value determined by the primary ion, but would slowly drift in

due to the secondary ion afterward.
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6.2.2 Ionophore-based ISM

For the ionophore-based membrane, the selectivity comes from the chemically

specialized ionophore embedded in the substrate material of the membrane. The

target detection ion would bind with the ionophore molecules and penetrate the ISM

by hopping through various ionophore reaction sites. The selective reaction between

the target ion A+ and charge neutral ionophore L can be expressed as:

A++L
kf−−⇀↽−−
kr

AL+ (6.7)

The continuity equation for ion penetration in the membrane would be modified as:

∂nA(x,t)
∂t

= ∂
∂x

(
µAnA (x, t) ∂ψ(x.t)

∂x
+DA

∂nA(x,t)
∂x

)
−kf · nA · nL + krnAL+ (6.8)

∂nAL(x,t)
∂t

= ∂
∂x

(
µALnAL (x, t) ∂ψ(x.t)

∂x
+DAL

∂nAL(x,t)
∂x

)
+kf · nA · n L − krnAL+ (6.9)

where kf and kr are the forward and reverse selectivity reaction constants. Fig. 6.1

(b) illustrate this hopping process from the energy point of view. The ionophore

molecules chemically provide the local reaction energy valleys. In an ideal case, any

ions on their own are not able to travel into the membrane with DA= 0 and µA = 0.

The only ionophore bonded target ion in the form of AL+ would be able to penetrate

and form the dipole at the phase boundary. It is worth noticing that the reaction

constants kf and kr, which describe the ability of the binding ability of the specialized

ionophore to the target ion, play an important role in the output performance of ISM.

We are going to discuss the effect of selectivity reaction constants in the section 6.6

of this chapter.

6.3 Statistical analysis and variability study of ISE experimental mea-

surement data

Now that we have understood the physics behind ISE, let’s move on to the ex-

perimental ISE measurement results. We apply a series of statistical analysis on the
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Fig. 6.2.: Statistical analysis of 16 ISE output potentiometric signal. (a) isolated

noise signal (variations within each measurement). (b), (c), and (d) histogram, sta-

tistical distribution, and q-plot of the isolated noise signal. (e) Histogram of all the

noise signal of the 16-measurement data in a single plot. (f) Equivalent circuit for

noise analysis.

output potentiometric signal for 16 electrodes measuring in the 0.1mM nitrate so-

lution. First, we pass the ISE output emf signal through a moving averaging filter

with a width of 100 sampling points. Then we calculate the noise signals by sub-

tracting the filtered signal from the original signal shown in Fig. 6.2 (a). Second, we

did ANOVA test for all the 16 isolated noise signals. We calculate the F value from

the ANOVA test to be 0.37 which implies that we have more than 98.6% confidence

to say there are no statistically significant differences among the noise signals. We

draw a histogram of the isolated noise and compare the histogram against the stan-

dard Gaussian distribution by quantile-quantile (q-q) test. We found the q-q plot

for all 16 sensor electrodes well match the Gaussian distribution which implies the

emf variations within each sensor electrode measurement is Johnson-Nyquist noise.
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The average standard derivation (STD) of the Johnson-Nyquist noise from 16 sensor

electrodes is calculated to be ∼ 1mV . This value matches the theoretical calculation

for Johnson-Nyquist noise: Vrms =
√

4kTR∆f ∼ 1.36mV (R calculated from the

resistivity of 0.1mM nitrate solution). We conclude that the noise signal within each

ISE sensor output is Johnson-Nyquist noise. Physically, the source of the noise signal

is the thermal agitation of water molecules and nitrate ions in the testing solution.

Also, we apply ANOVA test on the original measurement signal without isolating

the noise. The statistical analysis shows that the original signal fails to pass the

ANOVA test with F value = 958. We conclude that there is a statistically signifi-

cant difference among the 16 sensor electrodes. It comes from the sensor-to-sensor

variations such as different/non-uniform ion-selective membrane thickness, bubbles

forming inside the membrane, and other membrane material property variations. We

are going to discuss the effect of ion-selective membrane thickness variations in detail

in section 6.5.

6.4 ISM degradation

In this section, we are going to explore one of the reliability issues regarding

ISE. Because of the ion-selective membrane is directly exposed to the sample solu-

tion/soil, the membrane degradation caused by moisture becomes significant. The

water molecules may react with the membrane material at the interface, corrode the

membrane, and cut down the thickness of the membrane h. The water molecules may

also travel inside the membrane, break the membrane microstructure, and alter the

diffusivity of the target ion (D) and the relative dielectric constant of the membrane

(κ). At last, the water molecules may finally penetrate through the membrane, accu-

mulate at the membrane/conducting electrode interface, form an aqueous layer, and

delaminate the ion-selective membrane from the conductive electrode.

Here, we demonstrate a simple model describing the corrosion of the ion-selective

membrane by moisture. The assumption is that water molecules diffuse inside the
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membrane and react with the membrane material locally. We solve the following

diffusion-reaction equation in a 1-Dimensional domain:

∂w

∂t
= D

∂2w

∂y2
− kw (6.10)

where w stand for the moisture concentration, D is the moisture diffusivity, k is the

reaction constant, and h0 is the initial membrane thickness. By solving this partial

differential equation with some boundary conditions, we found that the membrane

thickness h can be expressed as a time dependent variable:

h (t) = h0 − rdis · t (6.11)

where rdis is the corrosion rate of the membrane in unit of nm/day. In Fig. 6.3,

we show the corrosion rate of one example membrane at different temperatures. An

increase in temperature accelerates both the moisture diffusion and reaction process,

thus enlarge the overall reaction rate.
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Fig. 6.3.: Ion-selective membrane corrosion rate as a function of temperature.
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6.5 Effect of thickness variation and equivalent effective thickness model

for non-uniform ISM

From the statistical analysis discussed in the previous section, we find that there

are large variations among different sensor electrode output signals. In this section, we

are going to focus on exploring one critical issue associated with the sensor-to-sensor

variation: the thickness variations of ion-selective membrane. We are going to use

detailed numerical simulation results to compare the effect of ISM thickness. We use

experimental data to validate the thickness dependence from our model prediction.

Finally, we are going to modify our model to include the effect of non-uniform ISM

thickness distribution.

6.5.1 Insights of ISM thickness dependence from numerical simulation

In Fig. 6.4, we numerically compare the ion penetration process in 50µm vs.

100µm ion-selective membrane. We plot a time sequence of ion concentration profiles

as well as electrical potential profiles side by side. It is clear to see that the diffusion

tail of the target ion penetrates further into the ISM region for the thicker ISM case

(100µm), generating a larger phase boundary potential at the sample/ISM interface.

Therefore, the overall output voltage of the 100 µm ISE saturates to a higher steady-

state value. From our analytical derivations in chapter 5, Vsat ∼ kT
zq

ln(h2).

6.5.2 Experimental validation of thickness dependence

We validate the membrane thickness dependence of the ISE by experimental mea-

surement results from our R2R fabricated nitrate sensor. In Fig. 6.5 (a), we plot the

measured steady-state response of 3 batches of thin-film nitrate ISE with different

average membrane thickness: 50µm, 70µm, and 160 µm. The concentration of the

sample nitrate solution is sweeping from 10−4 to 0.1 M with an increment of 1 order

of magnitude. The experimental data (dots) shows that an increase of the ISM thick-
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Fig. 6.4.: Detailed numerical simulation results of (a) 100µm vs (b) 50µm ISM. The

top row shows the time series plot of the target ion concentration. The bottom row

shows the time series plot of the potential distribution profile. (c) a comparison of

the transient response of 100µm vs. 50µm ISM.

ness shifts down the value of the steady-state emf output, which is predicted by our

model due to the further spread of the negatively charged nitrate ion in the ISM. To

quantitatively evaluate the effect of thickness dependency, we calibrate our model to

fit the experimental data. The fitting results (solid lines) captures the relative value

of the experimental data with high fidelity. We plot the calibration result in Fig. 6.5

(b) in a slightly different way by switching the x-axis to ISM thickness. We can use

Fig. 6.5 (b) as a guideline to map the absolute value of the ISE output voltage with

any arbitrary ISE membrane thickness.



103

10 100
-200

-150

-100

-50

0

50

100

150

200
 1e-4 M

 1e-3 M

 1e-2 M

 1e-1 M

y
 (

m
V

)

h-h0 [um]

(a) (b)

10-4 10-3 10-2 10-1
-200

-150

-100

-50

0

50

100

150

200

 50 mm

 70 mm

 160 mm

y
 (

m
V

)

Concentration [M]

Fig. 6.5.: Experimental validation of the membrane thickness dependency. (a) ISE

output emf vs. concentration for different membrane thickness. (b) ISE output

emf.vs. membrane thickness for different nitrate solution concentration.

6.5.3 A model for non-uniform ISM

For any roll-to-roll printed thin-film ISE, it is impossible to guarantee a single

membrane thickness across electrode active area over all the fabricated sensors. The

non-uniform membrane could either come from the variations in the fabrication pro-

cess or the membrane degradation discussed in the previous section. Next, we are

going to explore: 1) How to modify our model to include this non-uniform mem-

brane thickness effects? and 2) How does the membrane non-uniformity affect the

steady-state response of the ISE sensor?

Fig. 6.6 shows schematic illustrations for a non-uniform membrane. Starting from

the simplest case in Fig. 6.6 (a), we approximate this non-uniform membrane by

dividing it into two different regions of thickness: h1 and h2. From our derivation

in chapter 5, we know that the steady-state ISE response depends on the logarithm
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Fig. 6.6.: Schematic illustration for the model of non-uniform membrane

of h2. Electrostatically, the total voltage drop over different thickness region should

be remain the same. Therefore, the phase boundary dipoles for different membrane

thickness regions should be redistributed in order to maintain the same phase bound-

ary potential. The analytical expression for the steady-state phase boundary voltage

due to two different thickness regions can be written as the following:

∆Vsat =
kT

q
ln

(
n0

κ
· 2h2

1h
2
2

h2
1 + h

2
2

)
+ C (6.12)

In a more general case where there is n thickness segments (h1, h2, . . . , hn),

Eq. 6.12 can be further generalized as:

∆Vsat =
kT

q
ln

(
n0h

2
eff

κ

)
+ C (6.13)

where h2
eff =

(
n
∑

n
1
h2n

)−1

is the harmonic mean of all the distributed non-uniform

membrane segments. The physical meaning of Eq. 6.12 is clear. It shows that the

phase boundary potential in the steady-state is limited by the thinnest place on the
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non-uniform ion-selective membrane. In other words, any non-ideal pin holes on the

ISM would constrain the steady-state response of the ISE.

6.6 Super-Nernst transient response

Another non-ideal feature observed from the ISE transient response measurement

is that the transient slope sometimes becomes larger than the ideal 60mV/dec value

predicted by our model. We name this interesting effect as “Super-Nernst transient

response”. Here, we provide two possible explanations based on the assumptions that

we made for our ideal model.

6.6.1 Reaction delay

As discussed in the ISE selectivity section, the chemical reaction between the

target ion and the ionophore plays an important role in the ion detection process

for the ionophore-based ISE. In our ideal model, we assume that the ion binding

reaction is ultra-fast so that it does not limit the whole dipole forming process near

the ISE phase boundary. In practice, however, this reaction process might be slow.

Therefore, ionophore chemical reaction could be the rate-limiting step that determines

the pattern for the transient response to follows.

Fig. 6.7 (a) and (b) quantitatively explain the effect of reaction delay by a set of

numerical simulation results. In the simulation, we choose very small values for the

selectivity reaction constant kf and kr. Fig. 6.7 (a) shows that it takes time for the

target ion to react with ionophore. The bounded compound AL+ gradually build up

at boundary on the membrane side. As a result, the potentiometric response of the

ISE would be delayed before output voltage jumps up to the steady-state value with

transient slope > 60mV/dec. The effect of reaction delay could be reduced when we

increase kf and kr. In Fig. 6.7 (b), the transient slope converge to the 60mV/dec

prediction from the ideal model with large selective reaction constant (100kf and

100kr).
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Fig. 6.7.: Numerical simulation for super-Nernst transient response. (a) and (b):

reaction delay due to slower ion-ionophore reaction rate. (c) and (d): diffusion delay

due to extra ion traveling time in the sample region.

6.6.2 Diffusion delay

Just like the reaction delay, the diffusion of the ions in the sample solution/soil

may also account for the super-Nernst transient response. In the ideal modeling

framework, we assume the ions quickly diffuse through the sample region and reach

the ISE phase boundary immediately. In the numerical simulation, we choose a large

value of ion diffusivity in the sample solution (in the order of 10−8 m2/s ). For a

non-ideal case such as detecting nitrate ion in a soil sample, the diffusivity of the

target ion in the soil sample might be orders of magnitude smaller than the solution.



107

As a result, it may take much time for the ions to travel through the soil sample

before reaching the ISE sensor electrode.

In Fig. 6.7 (c), we simulate an extreme case with a diffusivity in the sample region

Daq = 10−10 m2/s. Initially, the concentration of the target ion A+ in the 100 µm

sample region is zero. In the time sequence plot, A+ penetrate and accumulate in

the sample region before travel into the membrane region. Fig. 6.7 (d) shows that as

the ion diffusivity in the sample increases 2 orders of magnitudes from 10−10m2/s to

10−8m2/s , the transient response unites with the case (black line) without diffusion

delay.

For both diffusion delay and reaction delay, the ISE output finally reaches the

same steady-state voltage. Therefore, those two non-ideal phenomena can be ignored

for the steady-state in-lab measurements. But for real-time in-vivo field applications

where the transient response is significant, the effect of diffusion delay and reaction

delay needs to be considered carefully.

6.7 The strategies to improve the ISE sensor performance

6.7.1 The strategy to reduce sensor-to-sensor variations

Eliminate the thickness variation from the correlation between image anal-

ysis and measurement variability

In the ISM thickness variation section, we have introduced an equivalent thickness

analytical model to account for the non-uniformity of the membrane coating. Our

model shows that different equivalent membrane thickness as well as other design

parameters of membrane material properties (dielectric constant κ, ion diffusivity

D ) would shift the entire output voltage response in the vertical direction. In the

real ISE sensor characterization experiments, however, it requires complicated lab

instruments (e.g. white light interferometry) to measure an accurate ISM thickness

distribution over the entire active area of the working electrode. It is even more
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Fig. 6.8.: Scalable image processing and machine learning method to predict the

output voltage shift caused by sensor-to-sensor membrane thickness variations.

difficult to measure the variations in dielectric constant and ion diffusivities of the

membrane. The time-consuming process makes it impossible to calibrate the ISM

thickness across all the scalable manufactured ISE sensor electrodes to reduce the

variations in the sensor-to-sensor output signal.

Here, we introduce a simple but scalable image processing method to predict the

output voltage shift caused by sensor-to-sensor membrane variations. As shown in

Fig. 6.8 (a), we take the pictures of a batch of working electrodes of a roll-to-roll

printed ISE sensors (for the demonstration:123 sensors in total). We apply an edge

detection image processing technique [136] to isolate the working electrode active area.

Different texture information shown in the image represent the thickness variations

and dielectric constant variations of the ISM coating. According to our physics-based

model, the membrane thickness as well as other parameters of membrane material

properties (dielectric constant κ, ion diffusivity D ) determines the absolute value of

the output voltage shift b:



109

ψ (t) =
kBT

zq
ln(t) + b (h, κ,D) (6.14)

The image of the active area of the sensor is highly correlated to the shift of each

measurement curve shown in Fig. 6.8 (b). The goal is to quantify the correlation and

use it to predict the value of voltage shift b from the picture of the sensor electrode.

We apply traditional machine learning approach, including Local Binary Pattern

(LBP) [137] (an illumination-invariant texturing descriptor) and non-linear regression

model, to predict voltage shift b based on images of the ISE sensor active areas. Before

the training process, we use LBP to extract texturing representation as 1D arrays from

each image. Then we apply the 1D array as our input to the non-linear regression

model. We use support vector regression (SVR) [138] to realize the regression model.

Our dataset includes the images of 123 sensors with the corresponding voltage

shift b. In our implementation, we randomly select 23 sensors to be the training

dataset and 100 sensors to be the testing dataset. To prevent the problem of over-

fitting, we shuffle the training and testing dataset within the whole dataset and repeat

the the procedure 10 times. Comparing to the measurement ground truth (orange

line) shown in Fig. 6.8 (c), the predicted average voltage shift b̂ (blue line) achieves

a prediction error of : εprediction =
∑ |b̂−b|

|b|
N

< 11%.

This physics-based image processing machine learning method can be easily ap-

plied to calibrate and predict the sensor performance for large scale manufacturing

processes where sensor-to-sensor fabrication variation is unavoidable.

6.7.2 The strategy to reduce ISE response time

Another big issue that prevents the solid-contact ISE sensor from its IoT ap-

plications is associated with the response time. As mentioned in Chapter 5, the

solid-contact ISE sensors require several hours of preconditioning time in the tar-

get ion solution with known concentration to be stabilized before they are ready to

take measurements. In this section, we are going to use our modeling framework to
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make a comparison between the fast response classical liquid-contact ISE and the

solid-contact ISE. We are going to introduce a new solid-contact ISE design that

borrows ideas from the conventional-liquid contact design that largely reduces the

preconditioning response time.

A comparison between liquid-contact and solid-contact ISE: one-sided ion

penetration vs. two-side ion penetration
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Fig. 6.9.: Detailed numerical simulation for liquid-contact ISE. (a) and (b): a com-

parison between 100µm vs. 50µm ISM. (c): the total output transient response from

the two-phase boundary potential.

To describe the behavior of a conventional liquid contact ISE, we modified our

two-region numerical simulation set up for the solid-contact ISE by adding the third

inner-filling solution region between the ISM and the metal electrode. The inner fill-

ing solution region contains the target ion A+ solution with a constant concentration

of 0.1mM. As shown in Fig. 6.9, we compare the time sequence profile of ion con-
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centration and potential distribution for 50µm vs. 100µm ISM. The target ions from

both the sample solution and the inner filling solution could penetrate the ISM from

both sides, forming two phase boundary potentials ∆ψ1 and ∆ψ2 face to face. The

total potential drop across the ISM membrane region would be the difference between

the two-phase boundary potentials: ψtotal = ψ1−ψ2. In Fig. 6.9 (c), we plot ψ1, ψ2,

and ψtotal as a function of time in a semi-log-x plot. Although the individual phase

boundary potential (ψ1 or ψ2, black and red curves) follows the 60mV/dec transient

function in time, the total voltage drop ψtotal become stabilized quickly. Another

interesting observation is that the blue dashed line (50µm ISM) nearly align with the

blue solid line (100µm ISM), indicating ψtotal is less sensitive to ISM thickness.

From the numerical simulation for liquid contact ISE, we conclude that the inner-

filling solution helps reduce the response time by forming another dipole at the ISM-

inner filling solution interface. Also, the thickness of the ISM does not have a big

impact on the potentiometric response of liquid contact ISE.

A new solid-contact ISE design with graphene as an inner conducting layer

As mentioned in the previous chapter, the purpose of designing all solid-contact

ISE is to avoid the drawbacks of an inner-filling solution for IoT applications. From

our experimental measurement data and the theoretical analysis, however, we find

that the response time and sensor-to-sensor variations become two main challenges.

To overcome the two challenges, we propose a new solid-contact ISE design by adding

a graphene layer between the ISM and metal electrode. This design takes advantage

of the liquid-contact ISE with graphene serving as the inner conducting layer. An

additional electron-hole pair form a dipole at the ISM-graphene interface, compensat-

ing the large voltage jump in the pre-conditioning phase. As shown in Fig. 6.10, the

transient potentiometric response for the new design reaches its steady-state value

much faster. Also, the impact of the ISM thickness has been reduced dramatically.

As a result, we observe less sensor-to-sensor variations of the output voltage.
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Fig. 6.10.: Schematic illustration of a new solid-contact ISE design with graphene as

an inner conducting layer.

6.8 Conclusions

In this chapter, we have discussed the challenges for ISE IoT applications and

the corresponding strategies that overcome the problems based on our physics-based

modeling framework. The Poisson coupled ion drift-diffusion transport process is

universal. Our physics-based model is transferable to other designs of electrical,

mechanical, and chemical applications such as reducing ion-induced degradation for

photo-voltaic systems, understanding ion migration from the metal contact pad in

the high-power electronics.
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7. STABILITY OF MOSFET-BASED ELECTRONIC

COMPONENTS IN WEARABLE AND IMPLANTABLE

SYSTEMS

7.1 Motivation

Wearable and implantable electronic (WIE) devices, such as a digital wristband,

smart watch, and implantable cardioverter defibrillator, etc. have found widespread

usage in healthcare and fitness applications [139]. The next generation wearable elec-

tronic devices (ultra-thin film electronics [140,141], for instance) must be lightweight

and have smaller form factor. Numerous groups have experimentally demonstrated

functional prototypes. For example, Kim et al. have introduced “skin-like” membrane-

based approach that integrates electrodes, electronics, sensors, power supply and

communication components [115]. Kaltenbrunner et al. fabricated ultrathin active-

matrix array with resistive tactile sensors [142]. Gao et al. have developed wearable

sensor array platform for multiplexed in situ perspiration analysis [99]. Lee et al.

have introduced a ‘patch-like’ electrochemical device for diabetes monitoring and

therapy [24].

Long-term electromechanical stability and reliability are critical challenges for the

next generation WIE systems. Comparing to the electronic components in traditional

devices such as a mobile phone, the electronic components in WIE systems need

to operate in an electrochemical fluid, such as sweat, saliva, and blood [143, 144].

Temperature, pH, moisture, ion concentration, etc. in the electrochemical fluid offer

a non-traditional operating environment for traditional electronics, hence reliability

issues of those electronic components are essential. For some devices such as bio-

0The content of this chapter is primarily taken from a published paper: Jin, X., Jiang, C., Song, E.,
Fang, H., Rogers, J. A. ,and Alam, M. A. ”Stability of MOSFET-based electronic components in
wearable and implantable systems. ” IEEE Transactions on Electron Devices, 2017 64(8), 3443-3451
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implantable sensors in cardiology applications, the electronic system should have a

long-term stability. For other applications such as transient electronics for brain

monitoring, a precise predictable degradation lifetime is of great interest [145–147].

Due to the small physical dimension, light weight, mechanical flexibility [148] and

other requirements, proper design of packaging encapsulant without compromising

electronic functionalities becomes an important design challenge for these electronic

components.

Among various degradation mechanisms, charged ions penetrating into the en-

capsulation layer of wearable electronic devices directly disturb the electric field and

lead to functional-failure the electronic components. The family of MOSFE-based

electronic device [149] is one of the most widely used electronic components in WIE

system, because they allow highly complex integration of multiple sensing and sig-

nal processing functions. Unfortunately, the performance and electrostatic integrity

of MOSFETs is very sensitive to charged ions. This chapter focuses on the perfor-

mance degradation of MOSFET-based electronic components, more specifically, the

threshold voltage shift: ∆Vth, of WIE systems.

The WIE components can be divided into four groups, as shown in Fig. 7.1:

1. Chemical biosensors such as classical Ion-Sensitive Field-Effect Tansistor (IS-

FET) potentiometric sensor [150, 151]. They consist of an ion selective mem-

brane layer on top of an insulated gate FET. The gate insulator plays an impor-

tant role in protecting the channel of the ISFET from bio-fluid. Nevertheless,

the charged ions penetrating into the gate insulation layer will eventually de-

grade the ISFET electronic performance.

2. MEMS-based physical biosensors [152–154] feature a microstructured dielectric

gate oxide. The external pressure deforms the Micro-Electro-Mechanical Sys-

tems (MEMS) gate oxide, changes the gate capacitance, and modulates the

drain current of the underlying MOSFET. Regarding its reliability, the charged
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Fig. 7.1.: A. Schematic illustration of four categories of electronic components in

WIE systems. 1) Chemical biosensor. 2) MEMS-based physical biosensor. 3) Im-

plantable MOSFET for signal processing. 4) Amperometric biosensor electrode. B.

Measured Ids−Vgs curves for signal processing MOSFET from accelerated salt soaking

experiments at the end of 0-5 days.

ions from the human body can penetrate into the gate oxide layer and destabi-

lize the MOSFET Ids − VG response.

3. Implantable MOSFET for signal processing [155]. Unlike chemical or MEMS

sensors, the signal processing circuitry does not involve sensing the surrounding,

and may thus be entirely isolated. However, due to the ultra-thin encapsulation

in flexible WIE systems, the charged ions may nonetheless penetrate through in

the back encapsulation layer and shift the threshold voltage of the MOSFET.

4. Amperometric biosensor electrode for implantable applications. For these sen-

sors, only the tip of the electrode must be exposed to the desired location,

while the rest of the electrode must be isolated from the surrounding environ-

ment. As charged ions penetrate the encapsulant, the electrode inactive area
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could generate large parasitic amperometric currently, and rapidly degrade the

signal-to-noise ratio of these sensors.

In this chapter, we concentrate on MOSFET-based electronic device degrada-

tion mechanisms, cases (1), (2) and (3). To illustrate the importance of the stabil-

ity/reliability of the devices, we conduct accelerated soaking experiments at 96◦C

in standard phosphate-buffered saline solution (PBS), consisting of Na2HPO4 and

NaCl dissolved in water. We apply an external voltage V0 = 3V across the test

structure, with a back-gated NMOS device packaged inside (case 3). Details of the

soaking test have been reported in [156,157]. Fig. 7.1 B shows the measured Ids−Vgs
curves of the NMOS at the end of 0-5 days. There are two key observations: 1) the

NMOS threshold voltage becomes more negative over time, consistent with the hy-

pothesis that positively charged Na+ is gradually penetrating the encapsulation layer

and distorting the electrostatics of the transistor channel, and 2) the absolute value

of ∆Vth increases non-linearly and accelerates over time.

To explain the experimental observations, this chapter is divided into the following

sections. In section 7.2, we offer both a numerical framework and an analytical

model for Na+ transport through the encapsulation layer. In section 7.3, we provide

two basic MOSFET degradation models(front gate and back gate cases) including

the influence from the penetrated Na+. The coupled model can be used to predict

the overall device lifetime for arbitrary WIE systems. The measurement data from

accelerated reliability experiments confirm our model to be precise and scalale. In

section 7.4, the model is used to develop design guidelines for encapsulation layers

for WIE systems. Finally, we note that the problem of ion penetration is general,

thus our model will be useful for design of broad range of electronic, mechanical

and chemical systems such as eliminating undesiable Potential Induced Degradation

(PID) in photovoltaic(PV) systems [158], contact-pad induced ion drift in high power

electronics [159], and so on.
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7.2 Model System Part A: ion penetration

In this section, we will numerically simulate Na+ penetration process through

the encapsulation layer from the PBS solution. From the results of the numerical

framework, we will then derive analytical models and scaling principles to describe

this physical mechanism and offer design guidelines.

7.2.1 Numerical Framework

The transport of Na+ through the ion barrier layer can be described by the

well-known space-charge-limited process [160]. We solve the corresponding transport

equations (Eq. 7.1 and Eq. 7.2 below) using COMSOL Multiphysics simulator. Fig 7.2

A shows the schematic illustration of the structure where x = 0 and x = h correspond

to the PBS/ion barrier and ion barrier/Si interface. We determine the density of Na+

(n) by solving the coupled Poisson’s equation and continuity equation:

∂2ψ(x.t)
∂x2

= − q·n
κε0

(7.1)

∂n
∂t

= − ∂
∂x

(µ n∂ψ(x.t)
∂x
−D ∂n

∂x
) (7.2)

where ψ(x.t) is the electrical potential, κ is the relative dielectric permittivity, ε0 is the

vacuum permittivity constant, and µ and D are the mobility and diffusivity of Na+

in the encapsulation layer material (thermal SiO2 for this illustrative example). Ein-

stein’s relation: D
µ

= kT
q

connects these quantities. The analysis makes the following

assumptions, none of which should have significant effect on the key conclusions.

1. The area of the ion barrier in the y-z direction is much larger than its thickness

in the x direction. Therefore a simplified 1-D simulation is appropriate.

2. Na+ incorporation in the oxide is fast enough so that it does not limit the

total drift-diffusion process. This allows us to define a constant Na+ density

(n0) at the PBS/encapsulant interface. This interfacial concentration equals the
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Fig. 7.2.: Numerical framework of space-charge-limited Na+ penetration process.

A. Schematic illustration of sodium ion penetration in 1-D single layer ion barrier

domain with external applied voltage V0. B-D. Na+ density, electrical field and

potential distribution within h = 1000nm thermal SiO2 layer at the end of t =

t0 = (kT · h2)/DqV simulation. Potential bias V0 is swept from 1 to 5 V with an

increment of 1 V. E. Schematic illustration of time dependent Na+ concentration

profile. Region I: accumulated Na+ near the PBS/encapsulant interface. Region II:

approximate constant low Na+ concentration middle region. Region III: accumulated

Na+ region near the encapsulant/Si interface. F. Normalized surface density of Na+

near the encapsulant/Si interface as a function of normalized time under different

external biases.
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solubility limit of Na+ inside the encapsulant (i.e., 33 mmol/L (2 × 1025m−3)

in thermal SiO2) [161].

3. The physics of moisture diffusion is not included and any coupled transport

effect is ignored. Therefore, the Na+diffusion coefficient D is uniform across

the encapsulant.

4. D of Na+inside thermal SiO2 is much smaller than that of crystalline silicon

it protects [162–164]. Therefore, a reflective boundary condition defines the

thermal SiO2/Si interface.

5. The externally applied voltage V0 across the whole structure drops primar-

ily across the encapsulation layer, and the capacitive drop over the ultrathin

double-layer screening ions [165] may be ignored.

Fig. 7.2 B shows the spatially distributed Na+ density profile at the end of t = t0

where t0 is defined as the drift dominated transport time:

t0 =
h

µE
=
kTh2

DqV0

(7.3)

where h is the thickness of the encapsulation layer, E is the electric field, k is the

Boltzmann constant, and T is the temperature. We swept the electrostatic potential

V0 from 1V to 5V with an increment of 1V. The Na+ density decreases significantly

near x=0 and accumulates at x = h. According to Poisson’s equation (Eq. 7.1), the

accumulated Na+ near the two boundaries contribute to the significant jump of the

electric field, as shown in Fig. 7.2 C.

Fig. 7.2 D shows the potential distribution across the encapsulant. Interestingly,

a self-induced potential barrier (with peak value higher than V0) occurs inside the

encapsulation layer. The additional accumulated Na+ charges lead to a negative

electric field near the interface of PBS solution and the encapsulant layer. From a

transient prospective, this potential barrier gradually builds up and slows down the
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ion transport until Na+ influx from the PBS solution is balanced by the negative in-

terfacial electric field that is trying to push the ions back into the solution. In fact, we

can model this internal potential barrier as an ion density dependent virtual voltage

source [166]. As V0 increases, the location of this virtual voltage source (x0 where the

electrical field reaches zero) consistently moves towards the left boundary. Moreover,

the normalized potential barrier vr ≡ (Vpeak − V0)/V0 decreases with increasing V0.

This virtual voltage source model explains the trend of the Na+ density profiles

under different external bias, shown in Fig. 7.2 B. If the ion drift is the dominate

transport mechanism, all the five density profiles should have scaled to a universal

curve at t = t0. However, Fig. 7.2 B shows that there is an excess Na+ built-up inside

the encapsulation layer with increasing V0. The location of the virtual source shifts to

the left and the relative magnitude of the virtual voltage source decreases, implying

the relative ineffectiveness of the potential barrier in preventing Na+ penetration into

the encapsulant.

7.2.2 Analytical Model and Scaling Principles

Intrigued by the essential simplicity of the density profiles obtained numerically,

in this section we derive the time-dependent density distribution for a single encap-

sulation layer analytically. We solve the continuity equation and Poisson’s equation

self-consistently. An exact analytical solution is impossible, but a few simple, numer-

ically validated assumptions allow insightful approximate solution of this complex

space-charge-limited ion transport problem.

Fig. 7.2 E shows the schematic illustration of Na+profile before the critical time

t1at which Na+ front flow line reaches the right boundary. This critical transition

time t1 is calculated from [160] as:

t1 = 2
(

1− e−
1
2

)
· t0 = 0.787t0 (7.4)

The position of the front xI(t) is given by:
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xI (t) = −2 · ln(1− 1

2
t/t0) · h (7.5)

In region II, the total current flux (J = qµnE+κε0
∂E
∂t

, the sum of conduction and

displacement currents) is independent of position (x), so that ∂J
∂x

= 0. By taking the

partial derivatives with respect to x for both conduction current and displacement

current,following the carrier flow line: dx(t)
dt

= µE suggested by [160], and canceling

and rearranging terms, the density of Na+ (before t1) can be shown to follow a simple

relationship:

dn

dt
= − µq

κε0
· n2 (7.6)

By integrating both side of Eq. 7.6, Na+ density in region II can be expressed as

a time dependent variable as:

nII (t) =
n0

1 + µq
κε0
n

0
· t

(7.7)

In region I, however, there’s no exact analytical solution for nI(t). Fortunately,

the numerical simulation in Fig. 7.2 B shows that the width of region I is negligibly

small and the Na+ density drops nearly 4 order of magnitude within this region.

Therefore, the delta-function shaped contribution of Na+ from this region to the

overall MOSFET device performance can be approximated by a constant. We will

discuss this point further in section 7.3. a) when we calculate the threshold voltage

shift of a transistor.

After the critical transition time t1, xI(t) reach the encapsulation layer/Si bound-

ary. Na+ ions begin to pile up and form region III, as shown in Fig. 7.2 E. During

this time interval, the Na+ influx gradually reach a steady-state value as first derived

by Mott and Gurney [167]:

J =
9

8
κε0µ

V 2
0

h3
(7.8)
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Therefore, we can approximate the surface charge density of Na+ in region III

from the steady-state flux as:

Qs = J · (t− t1) =
9

8
qκε0µ

V 2
0

h3
· (t− t1) (7.9)

Fig. 7.2 F shows the normalized surface charge density in region III Qs/Q0 (Q0 =

9
8
κε0µ

V 2
0

h3
t0) as a function of normalized time t/t0 for both numerical simulation result

with different V0 and analytical result from Eq. 7.9. After t > t1, all the numerical re-

sults as well as the analytical solutions can be scaled to the same universal curve. This

universality verifies the assumptions and approximations in our analytical derivation.

Also, QS scales linearly with time, as in Eq. 7.9. The upper-limit for Eq. 7.9 is defined

by the requirement that Na+ density n = Qs
q·∆h cannot exceed the dissolution limit

for the chosen encapsulant material.

The encapsulation layer sometimes dissolves in the harsh salty environment. To

account for this effective thinning of the encapsulant through hydrolysis, we make the

encapsulant thickness h (Fig. 7.2 E (3)) a time-dependent variable, namely,

h (t) = h0 − rdis · t (7.10)

where rdis is the encapsulation layer dissolution rate (in units of nm/day) measured

from the soaking experiments conducted at different temperatures. As we will see in

section 7.3 the physical thinning of the encapsulation layer is essential to understand

the nonlinear voltage shift reported in the experiments. Now that we have developed

both numerical and analytical models describing time-dependent Na+ density profile,

in the next section, we are going to explore the impact of the charged ions on the

overall performance of the MOSFET-based devices.
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7.3 Model System Part B: MOSFET-based Electronic Component Per-

formance Degradation

In this section, we will establish how ∆Vth of a MOSFET is affected by the amount

of charged ion distribution within the encapsulant. We will focus on two types of

MOSFET-based components: a) Front-gated MOSFET for biosensor applications

(Type 1 and Type 2 devices described in section 7.1, and b) Back-gate MOSFET for

signal processing (Type 3 device in section 7.1). Eventually, we will use the ∆Vth

model to design encapsulant layers for specific WIE systems.

7.3.1 WIE System containing front-gated MOSFET

Similar to the effect of mobile charges in the traditional MOSFET device gate

oxide [168], the charged Na+ in the encapsulation layer will shift the effective gate

voltage seen by the transistor. The failure threshold ∆Vth can be expressed as a

function of spatial distributed Na+ density, as follows:

∆Vth (t) =
q

C0

[
1

h

∫ h

0

x · n(x, t)dx] (7.11)

where C0 is the initial gate capacitance, h is the thickness of the coating layer. The

1-D spatial coordinate is defined as x = 0 at the gate/oxide interface shown in Fig. 7.3

A.

As discussed in section 7.2, we derive the time dependent analytical expression

for Na+density profile n(x, t) in region II (Eq. 7.7) and region III (Eq. 7.9). Inserting

n(x, t) in Eq. 7.11, we find:

∆Vth = κε0V0
2h·C0

·
[
−2ln

(
1− t/t0

2

) ]2

· nII(t) + Vth,I (t < t1) (7.12)

∆Vth = κε0V0
h·C0
·
[
nII(t1)

2
+ 9

8

(
t−t1
t0

)(
1− kT

2qV0

)]
+ Vth,I (t > t1) (7.13)

where Vth,I is the threshold voltage shift contributed by in region I, see Fig. 7.2. Recall

that we can treat nI(t) as a time-independent delta-function (once t>t1), therefore
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Fig. 7.3.: Implantable electronic device performance degradation. A. Schematic illus-

tration of front gate ISFET potentiometric sensor. B. Schematic illustration of back

gate signal processing MOSFET. C. Back-gate MOSFET Id-Vg curve with various

back-gate charge surface density Qs. Numerical(symbols) simulation vs. analytical

(lines) result. D. Back-gate MOSFET ∆Vth as a function of QS E. Front gate MOS-

FET implantable device ∆Vt has a function of normalized time for different ion barrier

thickness. Numerical (dashed lines) vs. analytical (solid lines) results. F. Back-gate

MOSFET implantable device threshold voltage shift within five days soaking test

under different V0. Experimental (symbols) vs. analytical (lines) results.
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the corresponding Vth shift is also a time-independent constant. Our numerical simu-

lations conclusively prove that this assumption is justified for the range of thicknesses

typical of WIE systems. Fig. 7.3 E shows the product of threshold voltage shift and

encapsulation layer thickness (∆Vt · h) as a function of normalized time (t/t0). Re-

markably, all 6 curves scales to form a universal curve with two characteristic phases.

The first phase correspond to t/t0<t1/t0 when the Na+ front is yet to reach the

other boundary of the ion barrier. Both numerical and analytical results (Eq. 7.12)

show a non-linear ∆Vth increase. During the second phase where t/t0>t1/t0, ∆Vth is

contributed by the accumulated surface charges in region III (at the encapsulant/Si

interface.) Eq. 7.13 shows ∆Vth increases approximately linearly with time. This

linear relationship is also confirmed by the COMSOL numerical simulation.

Similar to the concept of equivalent oxide thickness (EOT) for classical MOSFET

where different gate oxide materials share the same gate capacitance, we can also

define an equivalent ion barrier effective thickness (EIBT) for various encapsulation

layer materials. Two materials with the same EIBT will be equally effective in pro-

tecting the MOSFET from ion-induced instability in a fluidic environment. From

Eq. 7.13, we can derive an approximate compact expression at t > t1 as:

h ∝ 3
√
D · κ (7.14)

The appearance of dielectric constant and mobility in Eq. 7.14 (as well as the

cube-root dependence) reflects the space-charge-limited ion transport that defines

the functional lifetime of MOSFETs. We will use this EIBT concept in section 7.4 to

compare the performance of two candidate encapsulation layer materials.

7.3.2 Back-gated MOSFET for Signal Processing.

Eq. 7.9 defines the dependence of the surface charge density Qs on V0 and the PBS

soak time. In this subsection, we will relate QS to ∆Vth for a back-gated MOSFET

within a WIE system.
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Fig. 7.3 B shows the 2D cross section of embedded NMOS device underneath

the ion protection encapsulation layer. For simplicity, we will focus on long channel

transistors. Since the channel length (L = 20µm) is much larger than the Si substrate

thickness (tSi = 100 nm), we can simply solve for Vth in 1D as indicated in the x

direction. The assumption is easily removed, if needed [169].

We solve the simplified Poisson’s equation in intrinsic Si channel MOSFET:

∂2ψ(x)

∂x2
=

q

κSiε0
· ni · exp[

q · ψ(x)

kT
] (7.15)

where ψ(x) is the local potential at position x, ni is the electron density in intrinsic Si.

By integrating both side with x and applying the corresponding boundary conditions,

the overall charge density inside the channel Qtotal and the potential at the back-gate

oxide/channel interface ψS1 can be expressed as a function of Qs:

Qtotal = εSi ·
√

2kTni
κSiε0

·
(
exp( q·ψ(x)

kT
) − exp( q·ψS2

kT
)
)

+
(

QS
κSiε0

)2

(7.16)

ψS1 (QS) = kT
q
ln
[(

QS ·Qch
kT ·κSiε0·ni

)
− ln

(
exp

(
QS

kT ·CSi

)
− 1
) ]

(7.17)

where Qch is defined as the charge density inside the Si channel when the Vg reach

the threshold voltage.

By inserting Eq. 7.16 and 7.17 back to the general expression for gate voltage:VG =

ψS1 + ψfb − Qtotal
Cox

, the overall front gate threshold voltage shift can be calculated as:

∆Vth (QS) = Vth (QS)− Vth (0)

=− QS
Cox

+ kT
q

ln
[(

QS ·Qch
kT ·κSiε0·ni

)
− ln

(
exp

(
QS

kT ·CSi

)
− 1
) ]
− kT

q
ln
(

Qch
tSi·ni

)
(7.18)

The physical meaning of Eq. 7.18 is clear, the first three terms containing Qs

correspond to the additional back-gate surface charge Na+ that have penetrated the

encapsulant. Both gate oxide capacitance Cox and Si capacitance Csi play important

role in this expression. The last term relates to the ∆Vthunder standard MOSFET

operation.
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We can also express the Ids − Vgs relation under the influence of QS as [168]:

Ids = µW
L

∫ Vds
0

QchdVch

= µW
L

(kT )2·ni·κSiε0
QS

·exp
[
q
kT

(
Vgs −ΨFB + QS

Cox

)]
·
[
exp

(
qQS
kTCSi

)
− 1
]
·
[
1− exp(−Vdsq

kT
)
]

(7.19)

Fig.. 7.3 C shows the Ids−Vgs curves with differentQS. In the sub-threshold region,

the analytical solutions (solid lines) match perfectly with the Sentaurus numerical

device simulation results (symbols). Fig. 7.3 D shows the corresponding ∆Vth as a

function of QS, with good match between the numerical and analytical simulations.

Fig. 7.3 F shows the experimental data for the overall back-gated MOSFET thresh-

old voltage shift for a soaking period of 5 days. To accelerate the ion penetration, the

soaking test was conducted at 96◦C. For simplicity, we assume that Na+ diffusion co-

efficient follows an Arrhenius relationship [170]. The externally applied voltage ranges

from 0V to 4.5V, with an increment of 1.5V. The drift-diffusion process is acceler-

ated with increasing V0, which leads to an increasing ∆Vth. As we have mentioned in

section 7.2, another interesting observation is that ∆Vth increases non-linearly as a

function of time. This phenomenon is caused by the dissolution of ion barrier (thermal

SiO2 in the experiment) at extreme high temperature (96◦C). As the encapsulation

layer shrinks, the average electric field across the encapsulant rises, which further

accelerates the ion penetration process. Thus, we apply the dissolution model from

section 7.2 with the experimentally calibrated dissolution rate ∼90 nm/ day at 96

oC. The analytical results predicted by this model (solid lines) perfectly reproduce

the experimental data (solid dots).

With the validated model both for front-gated and back-gated MOSFETs, we are

now ready to develop design principles for application-specific robust encapsulation

of the WIE systems.
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7.4 Results and Discussions

In this section, we will use both the numerical and analytical models to develop

guidelines for the design of ion encapsulation layer. We will compare the performance

of two widely used encapsulation layer materials (SiO2 and SiNx) along with their

coupled bi-layer structure. Finally, we will provide a phase plot for mapping the

failure time for back-gated MOSFET at various bias and temperature.

We apply the EIBT relationship derived in section 7.3 for thermal SiO2 and SiNx.

Comparing to a 200 nm SiNx encapsulation layer, the EIBT for SiO2 is ∼ 4500 nm

by Eq. 7.14. In Fig. 7.4 D, we plot the front-gate MOSFET ∆Vth vs. t for both

designs. Except for slight initial difference, the two curves are essentially identical

for t>t1. Therefore, a 200 nm SiNx layer has the same ion blocking capability as a

4500 nm SiO2 layer. Obviously, materials with low ion diffusion coefficient is a good

encapsulation layer candidate material especially for thin-film front-gate MOSFET

based WIE systems, but the additional effect of the dielectric constant (κ) is equally

important and must be accounted for.

If SiNx is so effective in preventing ion-diffusion, then why not design encapsula-

tion layers based exclusively on SiNx? Recall that in the analysis above, we focused

exclusively on ion-induced instability of MOSFETs. Moisture penetration and corre-

sponding corrosion/delamination, however, could be equally important degradation

mechanisms for WIE system. In our previous work [156], we experimentally demon-

strated that while thermal SiO2 is a good moisture barrier material, SiNx is not.

Therefore, the requirement for multi-objective encapsulation against moisture, ion

presentation, and hydrolysis requires a stacked encapsulation approach, as follows.

As an illustrative example, let us consider a bi-layer SiO2/SiNx encapsulation

where the top thermal SiO2 layer (h1=300nm) prevents moisture ingress, while the

bottom SiNx layer (h2=200nm) suppresses Na+ penetration, see Fig. 7.2 A. As be-

fore, we solve the coupled drift-diffusion equation and Poisson’s equation (Eq. 7.1

and 7.2) for a 1-D domain, with a V0= 3V . The diffusion coefficients at 37 ◦C are:
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Fig. 7.4.: A comparison of single layer/bi-layer encapsulant for front-gate MOSFET

case. A. Schematic illustration of sodium ion penetration in 1-D bi-layer ion barrier

domain with external applied voltage V0. B-C. Na+ concentration, electrical field

and potential distribution within h1 = 300nm thermal SiO2 and h2 = 200nm SiNx

bi-layer ion barrier structure at the end various simulation time. The external bias is

fixed at 3 V. D. Comparison of front gate MOSFET ∆Vth for 200 nm SiNx and 4500

nm SiO2. E. Comparison of front gate MOSFET ∆Vth under 1) 300 nm single layer

SiO2 ion barrier. 2) 100/200 nm SiO2/SiNx bi-layer ion barrier. F. Comparison

of front gate MOSFET implantable device ∆Vtunder SiO2/SiNx bi-layer structure

with (100⁄200)⁄300 nm SiO2 and 200 nm SiNx .
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6.53×10−21m2/s for thermal SiO2 and 4.94×10−25m2/s for SiNx . Due to the four

orders of magnitude difference in the diffusion coefficients, Na+ penetrates the top

SiO2 layer at a much faster rate than the SiNx layer. Fig. 7.4 B shows that within

the first 10 days, Na+ build up inside the SiO2 layer and reach a quasi-static profile.

At the SiO2/SiNx interface, Na+ accumulates because of the Na+ influx coming

from the thermal SiO2 side is much larger than the outflow into the SiNx side. After

this initial transient, Na+ begins to slowly penetrate into the SiNx layer. From 1

year up to 10 years, the drift-front of Na+ slowly approaches the SiNx layer. During

this period, the accumulated Na+ peak at SiO2/SiNx interface gradually reduces in

order to balance the amount of Na+ injected into the SiNx layer.

Fig.. 7.4 C shows the potential distribution inside SiO2/SiNx bi-layer structure.

Initially, there is no free charge in the dielectrics, therefore the potential drops lin-

early over the two layers, with the ratio defined by their respective dielectric con-

stants. Once Na+ penetrates and saturates within SiO2 layer, the potential at the

SiO2/SiNx interface rises quickly and approaches V0. At the end of first month, most

of potential drop distributes linearly over the SiNx layer. After 1 year, a self-induced

potential barrier with Vmax > V0 builds up inside the SiO2 layer. The potential distri-

bution across the SiNx layer gradually shows a non-linear profile reflecting the slow

penetration of Na+ ions.

To compare the performance of the bi-layer ion barrier design to the single layer

SiO2 structure, we plot ∆Vth vs. t for front gate case from our numerical simulation

in Fig. 7.4 E. For the bi-layer layer structure (red line), ∆Vth increases within 0 to 20

hours, then saturates to a constant value. The initial ∆Vth jump is due to the large

amount of Na+penetrating into the SiO2 layer where the ion diffusivity is relatively

large. The saturation happens when Na+ reach the second SiNx layer and penetrates

at a much slower rate. For a single layer SiO2(black line), however, there is no second

ion barrier. As a result, ∆Vth increase and the implanted MOSFET device degrades

at a much faster rate.
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Fig. 7.4 F explores the influence of the thickness of the top thermal SiO2 layer

(h1) on the overall MOSFET degradation. We numerically simulate three bi-layer

structures with 100, 200 and 300 nm top layer SiO2 thickness and keep the same

200nm thickness of SiNx. Counter-intuitively, the thickner SiO2 top layer produces

higher initial ∆Vth jump; although one expects thicker oxides to reduce degradation.

This counter-intuitive result can be explained as follows. As illustrated by Eq. 7.11,

it is not the density, but the density moment of the spatially distributed Na+ ions in

the encapsulant that define to the threshold voltage shift of a front-gated MOSFET.

Fig. 7.4 B shows that Na+ ions penetrate through the top SiO2 layer and reach

a saturated density profile in a relatively short period of time, however in a thicker

oxide, the density moment of the charge profile, especially the peak at the SiO2/SiNx

interface, resides further away from the MOSFET top gate interface compared to a

thinner oxide. This larger moment of Na+ in SiO2 layer in thicker oxides accounts for

the higher initial ∆Vth jump in Fig. 7.4 F. After the initial jump, all three lines become

parallel to each other and increase at a much slower rate reflecting Na+ diffusion into

the second SiNx layer. From the pure ion penetration point of view, thinner top

moisture layer can effectively slow down the front gate MOSFET device degradation

process. But if we consider the dissolution of the barrier material, there is a trade

off in the design of the moisture barrier layer thickness. We can select an optimal

thickness of moisture barrier layer by considering both the material dissolution as

well as Na+ penetration.

Next, we are going to utilize our model to map the back-gate implantable MOS-

FET failure time from the high-temperature soaking test back to their normal op-

eration temperature. Fig. 7.5 shows a phase plot of V0andT dependent failure-time

(tfailure) of back gate MOSFET implantable device. The symbols are from our nu-

merical simulation, while the lines are calculated from our analytical model, derived

by combining Eq. 7.9 and Arrhenius equation to relate tfailure, T and V0,

ln (tfailure) =
EA
kT
−ln

(
κε0D0

kTqh
· V0

2

)
+Constant (7.20)
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where D0 is the pre-exponential factor and EA is the activation energy.
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Fig. 7.5.: Phase plot of back-gate MOSFET failure time as a function of temperature

with sweeping V0.

In this particular case, we choose tfailure to correspond to ∆Vth = 1V , related to

the surface Na+density of, Qs,th/q ∼ 3×1015m−2, see Fig. 7.3 C. Several observations

can be made from the phase plot. First, the numerical and analytical results both

support the trend that lifetime is reduced at higher temperature due to the enhanced

Na+mobility. Second, high external bias V0 accelerate the Na+ drift process and

shortens the MOSFET failure time. We note that the while the match between ana-

lytical and numerical results are good, they are not exact, especially at low V0. This

is because our analytical model presumed ion diffusion to be unimportant compared

to ion drift. This is a poor approximation at very low V0. As a result, the failure time

from the numerical simulation is slightly shorter than the analytical one at low bias

(V0 = 1V ). At higher bias, drift dominates diffusion, and the difference disappears.
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From the failure time phase plot, we can simply map the failure time in high-

temperature soaking test back to the normal operation temperature device failure

time under different external bias voltage profiles.

7.5 Conclusions

The stability of MOSFET-based electronic components in WIE systems is of great

interest. Ion penetration is one of the most significant problems that degrade the de-

vice performance. The design of proper encapsulation layer requires systematic the-

oretical analysis. In this chapter, we have developed numerical and analytical frame-

works for lifetime prediction of MOSFET-based components in WIE systems. More

generally, the modeling framework can be used for solving ion penetration problems

in a broad range of electrochemical applications. The predictions are validated by

accelerated soaking experiment. The model suggests optimum design given multiple

design parameters (such as encapsulation thickness, ion diffusivity in an encapsulation

material, temperature, and external voltage bias and encapsulation layer dissolution).

Our analysis suggests that a bi-layer or tri-layer encapsulation may be essential for

multi-objective protection. Since this chapter focuses on the design of encapsulants

as ion/moisture barrier, we have compared the blocking effectiveness of inorganic en-

capsulants. For in vivo applications, however, a layer of organic material (such as

parylene C) must be added to the encapsulant stack to satisfy the bio-compatibility

requirements between body tissue and the WIE systems.
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8. SUMMARY AND FUTURE WORK

8.1 Summary of thesis

In this thesis, we have developed end-to-end physics-based modeling frameworks

for two IoT-based applications: personalized medicine and precision agriculture. By

coupling the physics of analyte mass transfer, electrochemical reactions, and electro-

statics, the frameworks have explored the geometrical and electrochemical limits of

electrochemical biosensors and has provided guidelines for improving the sensitivity,

enhancing the selectivity, reducing the response time, and increasing the signal-to-

noise ratio for the next generations of electrochemical biosensors. The innovations

include: 1) high sensitivity nano-electrode non-enzymatic/enzymatic amperometric

glucose sensors, 2) self-powered enzymatic biofuel cell (EBFC)-based lactate sensors,

and 3) roll-to-roll printed thin-film ion-selective electrode (ISE)-based soil nitrate

sensors. The frameworks have also included quantitative modeling of the general re-

liability issues for the IoT edge-computing electronics in the system integration level.

The specific contributions are summarized below:

8.1.1 Summary and conclusions from chapter 2 : nanoparticle-based am-

perometric glucose biosensors

Nanoparticle-based amperometric glucose sensors (on CNT, graphene, and liquid

crystal polymer(LCP) substrate) have demonstrated exceptionally fast and highly

sensitive detection of glucose concentration in both in vivo and in vitro applications.

Those sensors are potential candidates for being integrated into sophisticated multi-

functional wearable systems that detect glucose concentration in sweat, saliva, and
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tears, with the hope of obviating the need for repeated needle pricks, for example, in

diabetes. We have made the following contributions:

1. We have provided a compact analytic model that describes the steady-state

current response of nanoparticle-based amperometric glucose sensor.

2. We have generalized the theory to include the impact of geometrical, physi-

cal and chemical parameters that are uniquely correlated to its nanoparticle

structure.

3. We have modeled the nanoparticle sensor structure in two density limits: iso-

lated nanoparticle limit and chain nanoparticle limit. Those two limits dis-

tinguish the glucose diffusion and hydrogen peroxide recapture processes by

different geometrical considerations.

4. We have illustrated the implications of the model regarding the scaling of the

nanoparticles and optimization of nanoparticle distribution which could enhance

the overall output current response and sensitivity.

We conclude that the sensitivity of the NP amperometric sensor is enhanced by the

nanoparticle electrodes in two ways: 1) the geometric properties of the nanoparticles

increase the total electrode active area within the same electrode footprint. 2) The

neighboring nanoparticles help recapture more H2O2 and generate larger current.

Our modeling frameworks are ideally suited to interpret and optimize nanoparticle-

based amperometric glucose sensors. This would help researchers in nanostructured

biosensor design for complex integrated systems.

8.1.2 Summary and conclusions from chapter 3 : metal oxide-based non-

enzymatic glucose sensor

In chapter 3, we have provided the first systematic theoretical study of perfor-

mance limits, dynamic range, and parametric dependencies of a non-enzymatic glu-
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cose sensor and consistently interpret the amperometric response associated with ex-

periments involving a variety of nanostructured substrates. Our theoretical approach

based on the equivalent diffusion capacitance can be easily generalized to other nanos-

tructured electrode geometries. The model has been used to explore the effectiveness

of various design parameters and provide guidelines to improve the overall steady-

state performance of this non-enzymatic glucose sensor. The key contributions from

chapter 3 are as follows:

1. We have provided a compact analytical model that describes the steady-state

current response of non-enzymatic metal oxide-based amperometric glucose sen-

sors.

2. We have generalized the theory to include the impact of geometrical, physical

and chemical parameters that uniquely characterize the non-enzymatic reac-

tions and the nanostructured electrode. We found the quantitative correlation

between the characteristics of the analytical signal of the sensor (sensitivity,

limit of linearity, etc.) and the properties of different metal oxide and nanoelec-

trode materials.

3. We have both numerically and analytically simulated the diffusion-reaction pro-

cesses and validate the accuracy of our model by multiple experimental results

published by a variety of groups worldwide. The theoretical model unifies the

seemingly disparate (or even contradictory) results associated with these sen-

sors.

4. We have illustrated the implications of the model regarding scaling of the nanos-

tructured electrode geometry (such as radius and density of the nanowire elec-

trode, the surface density of the metal oxide on the electrode) and different

reaction constants by changing the metal oxide morphology or chemical com-

ponent.
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5. From our model, we have demonstrated the advantages of nanowire material

over the traditional planar electrode. We have also compared the performance

of non-enzymatic glucose vs. widely used enzymatic glucose sensor and have

indicated their scope of applications.

We conclude that while non-enzymatic glucose sensor still does not have sufficient

dynamic range to replace the classical blood glucose sensors, these sensors could be

useful for low concentration glucose sensing applications involving sweat, saliva, and

ocular fluid.

8.1.3 Summary and conclusions from chapter 4 : Self-powered Enzymatic

Biofuel Cell (EBFC) Amperometric Sensor

Chapter 4 has provided the first systematic theoretical study of performance lim-

its, dynamic range, and parametric dependencies of an EBFC-based biosensor and

consistently interpreted the output response associated with experiments involving a

variety of operating conditions. The model has been used to explore the effectiveness

of various design parameters and to provide guidelines to improve the overall steady-

state performance of EBFC-based biosensors. The key contributions of chapter 4 are

as follows:

1. We have provided an elegant yet simple equivalent circuit model that captures

the complex, three-dimensional interplay between coupled catalytic redox reac-

tions occurring in an EBFC-based sensor.

2. We have used sophisticated numerical modeling plus simple analytical formulas

to capture the essential physics, which agrees closely with the sensor experi-

mental measurements.

3. We have generalized the theory to include the fundamental impact of different

design parameters of EBFC-based sensors on their detection performance. We

have showed that the surface densities of oxidoreductase enzyme and electron
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transfer mediators had very different influences on the various features of the

response, such as the sensitivity and the linear dynamic region.

4. We found that redox reaction at the cathode can potentially become the rate-

limiting factor. Our equivalent circuit model has provided a quantitative option

for inspecting the role of cathode reactions. In the specific case of the lactate

EBFC sensor, the oxygen starvation effect is critical and should be carefully

handled for the application of real-time wearable biosensors.

Based on our model, we conclude that the linear dynamic range and sensitivity of

the EBFC-based sensor can be fine-tuned by changing the surface density of enzymes

and electron mediators at the anode and by enhancing reductant concentrations at

the cathode. But there are the trade-offs among chemical design parameters such

as various reaction constants as well as electrical parameters in the Butler-Volmer

relationship.

Our theoretical approach based on a self-consistent equivalent circuit model can

be easily adapted to understand a wide range of two-electrode systems, including

sensors, fuel cells, and energy storage devices.

8.1.4 Summary and conclusions from chapter 5 and chapter 6 : ion-

selective electrode (ISE) sensors

In chapter 5 and chapter 6, we developed design guidelines for thin-film solid-

contact ion-selective electrode (ISE) sensors. Specifically, we fabricated ISE nitrate

sensors for soil fertilizer level detection to improve farm-to-folk productivity. The fab-

rication process involves roll-to-roll (R2R) nano-manufacturing facility which enables

high throughput at low cost. We developed a fundamental physics-based model to

describe both the steady-state response and the transient response of ISE sensor.

The key contributions of chapter 5 are as follows:
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1. Our detailed numerical simulation has provided physics-based insights regarding

the ISE emf output generated by the electrostatic redistribution of different ions

at the ion-selective membrane phase boundary.

2. Our model has quantified the correlation between the ISE response time and

different R2R ISE manufacturing parameters (e.g., membrane thickness, mem-

brane dielectric constant)

3. We have discovered a new universal scaling phenomenon in the transient re-

sponse of ISE. Validated by the experimental measurement data, we have de-

rived a simple analytical model where the universal transient slope shows an

interesting 60mV/dec Nernst relationship in time.

In chapter 6, we deployed the theory from chapter 5 to engineer and optimize the

general solid-contact ISE design:

1. We have statistically analyzed the variability of ISE experimental measurement

data and identified the noise signal within each sensor electrode measurement

as Johnson-Nyquist noise generated by thermal agitation of different molecules.

2. We have successfully predicted and reduced the effect of ion-selective mem-

brane variation on output emf voltage by image analysis and machine learning

methods.

3. We have suggested the development of a new graphene-based ISE design to

reduce ISE response time and sensor-to-sensor variations.

Based on our theoretical analysis, we conclude that the conventional logarithmic

Nernst relationship in the steady-state can be extended in the time domain. For a

thin solid-contact ISE, the ion-selective membrane thickness plays a significant role

due to the accumulation and depletion of target ions in the entire membrane region.
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8.1.5 Summary and conclusion from chapter 7 : Stability of MOSFET-

based Electronic Components in Wearable and Implantable Sys-

tems

Long-term electromechanical stability and reliability are critical challenges for the

next generation of Wearable and Implantable Electronic (WIE) systems. Protect-

ing the built-in electronic components (such as MOSFET-based sensors) in a harsh

fluidic environment is difficult because the requirement of wearability/flexibility de-

mands ultra-thin encapsulation. The charged ions (such as Na+) from the body-fluids

can diffuse rapidly through the thin encapsulation layer and destabilize the entire sys-

tem. However, a theory predicting degradation lifetime and relating multiple design

parameters is lacking, which we have provided in our work as follows:

1. We have offered both a numerical framework and an analytical model for Na+

transport through the encapsulation layer. Coupled with the physics of MOS-

FET degradation, the ion diffusion model has predicted the lifetime of MOSFET-

based wearable electronics encapsulated by various types of coating materials.

2. We have utilized our model to include multiple design parameters, such as stacks

of encapsulation layers, encapsulation layer thicknesses, temperature/field de-

pendent ion drift and rate of dissolution of the encapsulation layer, etc.

3. Our analysis suggested that a bi-layer or tri-layer encapsulation may be essential

for multi-objective protection. However, the thickness needs to be optimized by

considering both charged ion penetration and dissolution of the encapsulation

layer.

In conclusion, our work have suggested optimum design given multiple design

parameters such as encapsulation thickness, ion diffusivity in an encapsulation mate-

rial, temperature, and external voltage bias and encapsulation layer dissolution. We

inspected different encapsulant material properties and found that: thermal SiO2 pre-
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vents moisture diffusion, SiNxcan be used for design of ion barrier layer, and HfO2

is a good candidate for anti-corrosion.

To summarize, this thesis has provided generalized physics-based modeling frame-

works exploring the geometrical and electrochemical limitations of of novel electro-

chemical biosensors for IoT integration. It provides guidelines for improving the sen-

sitivity, enhancing the selectivity, reducing the response time, increasing the signal-

to-noise ratio, and improving the lifetime. While these works address challenges

in amperometric and potentiometric sensing systems, future works are warranted to

achieve better component-level performance and successful system integration. Below

are some interesting research directions worth exploring:

8.2 Future research directions

8.2.1 Paper-based smart bandage

Paper-based smart bandage integrated systems have become a hot topic recently

for the advantage of low-cost, easy accessibility, and low power consumption [171].

Paper-based sensors detect signs of an infection in a simple and convenient way.

For example, samples placed on a paper chip contain beads of colorimetric chemical

components. Clumps around the bead could be formed around the target particle,

changing the color of the paper chip [172]. Smartphone camera could analyzes the

image and determine the target analyte concentration. Drugs or antibodies embed-

ded in the nanofiber of the paper-based smart bandage could be actively triggered to

release. Paper-based smart bandage system is highly foldable, allowing a series of di-

agnostic experiments extended in the time dimension [173]. The chemical compounds

in the paper-based bandage carries their own energy, greatly reducing the need for

external high-density power source.

Traditional modern electrochemical sensors could also be integrated into the paper-

based bandage system (e.g., the thin-film ISE introduced in this thesis could be

combined with Organic Electrochemical Transistor (OECT) technology [174] on a
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paper-based flexible platform). To design and optimize the performance of smart

bandages, a systematic theoretical understanding of various microscopic processes

(diffusion of analytes of different sizes, virus, biomolecules, bacteria, etc. within the

paper nanofiber, optical and colorimetric properties of the paper, and the device

physics of organic transistor that correlate the sensor electrochemical response) and

physics-based modeling frameworks of paper-based sensing and drug-releasing compo-

nents would be a worthy topic of research. Scalable manufacturing process involving

roll-to-roll printing technology, for instance, could also be adapted to enhance the

large-scale fabrication and reduce the cost of paper-based bandage systems.

8.2.2 Improvement of the solid-state reference electrode

Another key component of both amperometric and potentiometric sensors is the

reference electrode. Maintaining a stable electrochemical potential for a long period

of time while miniaturizing the size of the reference electrodes are the two main chal-

lenges that facing the design of electrochemical biosensors for systematic integration.

The solid-state reference electrode (S.S. Ref.) is considered as a good candidate for

next-generation IoT sensor applications. A comprehensive model for solid-state ref-

erence electrode is highly desirable for identifying the factors in S.S Ref. electrode

response time and Nernstian condition such as the ionic mobility and position between

ISE and S.S. Ref.

8.2.3 Programmable encapsulant

A smart encapsulant design for implantable electronics that protect the system

for a desired period of time. The smart encapsulant can be thermally or optically

triggered to either partially destroyed or completely resorbed by the body or self-

dissolved in the environment. The programmable encapsulant will have broad appli-

cation prospects such as drug release in the application of medical care and deposition

of electronics in the soil for precision agriculture. The smart encapsulant would be
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highly desirable for thin-film skin-mounted wearable system or paper-based bandage

systems.

8.3 Epilogue

Looking into the future, human beings are standing at the next development front:

the starting point of the Internet of Things (IoT) discussed in this thesis. Human

history will once again take a big step forward. While looking forward to a better

future, however, we cannot ignore the challenges we are facing: Ebola virus and novel

coronavirus are spreading on the land of Africa and Asia; Non-renewable resources

such as cultivated land and oil on the earth are constantly decreasing; Forest fires

caused by global warming and climatic anomalies are raging in Australia and the

American continent; the rapid rise of artificial intelligence is like a double-edged sword,

while benefiting human beings, there is still a potential threat to human information

security. Faced with unknown dangers and challenges, human beings are still scared

by their own weakness and vulnerability. The research results presented in this thesis

only make a modest contribution to address the grand challenges. But with many

small contributions like this, we will be able to ultimately solve the problems facing

humanity.
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A. SUMMARY OF ANALYTICAL EQUATIONS AND

FITTING PARAMETERS

A.1 Chapter 2: Nanoparticle-based Amperometric Glucose Biosensors

Table A.1.: List of physical constants for Nanoparticle-based Amperometric Glucose

Biosensors

Symbol Definition Value Units Reference

DG Glucose diffusion coefficient 6× 10−10 m2/s [175]

NA Avogadro constant 6.02× 1023 1/mol [176]

kf Forward reaction constant 16000 m3/mol/s [49]

kc Catalytic rate constant 1350 1/s [177]

E0 Surface enzyme(GOx) density 4.38× 10−9 mol/m2 [39]

rPt Average Pt nanosphere radius 75 nm [39]

rez Average Enzyme radius 4 nm [178]

tez Average Enzyme thickness 3 nm [178]

H Height of unit cell 2 µm [39]
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Table A.2.: List of fitting parameters for match of analytical expressions to experi-

mental data for Nanoparticle-based Amperometric Glucose Biosensors

Fig. Plot Fitting Parameters

Fig.2.4 (a), CNT NP sensor

current response

Km = 24.9mol/m2, M = 2.67× 107,

d = 4rPt, Wc = 6rPt

Fig.2.4(b),MPGN NP sensor

current response

Km = 50mol/m2,

iNP : d0.625mA = 1.2rPt, d1.25mA = 0.5rPt.

cNP: Wc = 6rPt

Fig.2.6, Current response and

sensitivity with varying rPt

Km = 24.9mol/m2, M = 2.67× 107,

d = 4rPt
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A.2 Chapter 3: Metal oxide-based non-enzymatic glucose sensor

Table A.3.: List of analytical equations for metal oxide-based non-enzymatic glucose

sensor

Description Equation

The normalized

form of Eq. 3.3

to 3.7

N∗III ·G
∗
s

(1−G∗S)
= γ, (Equating Eq.3.4 and Eq.

3.7 in the steady state)

N∗IIIG
∗
S − (αN∗II − βN∗III) = 0 (Eq.3.5)

N∗III +N∗II = 1 (Eq. 3.6)

The surface density

of metal oxide

in the reductive

state (exactsolution)

N∗III =
(−(γ(α+β)+γ−α)+

√
(γ(α+β)+γ−α)2+4αγ·(α+β)

2(α+β)

Glucose concentration

near the NW

electrode arrays

Gs = CD·G0

(Ae·kF ·(N0−NII)+CD)

Diffusion capacitance

of NW electrode arrays

with metal oxide

deposited on the surface

CD,NW = 2πD·l

log

 sinh(
2π(
√

2Dt+rNW )
WC

)
sinh(

πrNW
WC

)

 + πl
2N0·rM

where rM is the average radius of CuO NPs.

Ae = 2πrNW l (per unit cell)

Butler-Volmer

equation

kR = k0 · exp(−αf(E − E0))

k′R = k0 · exp((1− α)f(E − E0))

where E is the voltage bias applied

on the working electrode and k0

is a prefactor determined by

the property of Cu II and the pH

of the electrolyte (the concentration

of OH− in Eq. 3.2).
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Table A.4.: List of key fitting parameters for metal oxide-based non-enzymatic glu-

cose sensor

Fig.
Key Calibration parameters

Deposition voltage

/morphology

N0

(mol/m2)

kF

(m3/(s ·mol))

kR

(s−1)

k′R

(s−1)

rNW

(µm)

3.3, A

400 mV 16 min 1.55× 10−9 76 300 30 50

400 mV 30 min 2× 10−9 same same same same

450 mV 16 min 2.6× 10−9 same same same same

450 mV 30 min 2.7× 10−9 same same same same

3.3, B

CuO, NP 3.2× 10−9 8 51 5 5

CuO, NW same 31 same same same

CuO, NSs same 75 same same same

3.3, C

CuO NW 6.8× 10−10 90 210 42 0.2

CuO/ZnO NW same 220 same same same

CuO/ZnO HNC 10min same same 1600 320 same

CuO/ZnO HNC 15min 1.2× 10−9 same same same same

CuO/ZnO HNC 20min 2× 10−9 same same same same
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A.3 Chapter 7: Stability of MOSFET-based Electronic Components in

Wearable and Implantable Systems

Table A.5.: List of fitting parameters for MOSFET-based electronic components in

wearable and implantable systems

Fig. Plot Parameters

7.2 B to D D = 6.53× 10−21m2/s , T = 37◦C

7.3, B
L = 20µm,W = 300µm, tox = 40nm, tSi = 100nm, Vds = 1V,

ND,Source/Drain = 1019cm−3

7.3, C to D Qch = 7.8× 108m−3

7.3, E D = 6.53× 10−21m2/s, T = 37◦C

7.3, F D = 1.05× 10−19m2/s, rdis = 90nm/day, T = 96◦C

7.4, B to F
SiO2 : D = 6.53× 10−21m2/s, T = 37◦C

SiNx : D = 4.94× 10−25m2/s, T = 37◦C

7.5 D0 = 2.29× 10−12m2/s, EA = 7.43× 10−20J
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B. NANOPARTICLE-BASED AMPEROMETRIC

GLUCOSE BIOSENSORS: ISOLATED NP VS. CHAIN NP

SYSTEMS

B.1 Numerical Simulation of isolated NP and chain NP systems

In order to validate the analytical formula developed in this paper, we simulate the

isolated NP and chain NP systems numerically with the aid of COMSOL Multiphysics

r. Fig.B.1(a) and (b) compare the faradic current predicted by the analytical and

the numerical in a single unit cell for both iNP and cNP cases. Specifically, we sweep

G0 from 10 mM to 60 mM and calculate the output current. It is satisfying to see that

the analytical solution and numerical simulation solutions match very well, thereby

validating the model developed in this paper.

B.2 A Comparison between Chain NP Electrode and Planar Electrode

To illustrate the claim that NP chains at very high density act like a planar

electrode, we compare the responses of a cNP sensor and a planar sensor by using

COMSOL simulation. As shown in the Fig.B.2 (a) and (b) below, the 2D unit cells of

those two systems have the same width and height. Our goal would be to vary size of

the NP (rpt) with respect to the periodicity of the cell (Wc) to establish the transition

density at which the Faradic current of a chain of a NP (IcNP ) is indistinguishable

from that of a planar sensor (Iplanar). The top surface has a glucose concentration

of G0 = 50mM and the rest of the boundaries are reflective. We assume the glucose

molecules are completely absorbed by the electrode, and then calculate the Faradic

current by integrating the flux over the electrode surface. The ratio of the current is

plotted in Fig.B.2 (c). The results show that the transition to planar response occurs
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Fig. B.1.: A comparison between the analytical and numerical faradic response in a

unit cell for (a) iNP and (b) cNP.

at 2πrpt
WC
≥ 0.5 as IcNP

Iplanar
> 90%. The surface of the chain of the NP, if unrolled,

covers approximately half the periodicity.
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Fig. B.2.: A comparison of faradic response in a 2D unit cell between (a) cNP and

(b) Planar electrode. (c) Plot of normalized current as a function of 2πrpt/Wc.

B.3 Additional Discussion on Parametric Sensitivity of iNP and cNP

sensors

(i) For the cNP case, let us calculate the sensitively of the Faradic current on the

average radius of the NPs, rpt (without changing the total length l and inter-particle

distance d). Fig.B.3 (a) below plots the current as a function of glucose concentration,

with rpt as a sweeping parameter. The sensitivity (dI/dG0) at high concentration vs.

rpt is characterized by a slope of ∼1 (Fig.B.3 (b)), demonstrating that the current

scales linearly with rPt, or more generally, with the effective surface area of the sensor.

(ii) For the iNP case, we may similarly calculate the sensitivity as a function of

the radius of the NPs, while keeping the total surface area of all the NPs a constant.

We find that the sensitivity increase slightly for small NP (rpt < 10−7), flattens out

at the intermediate thicknesses, but then drops dramatically beyond a critical size

(10−6 m in this example). The optimal point occurs at rPt ∼ 2× 10−7m. The initial
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Fig. B.3.: Amperometric current response as a function of rPt ranging from 100nm

to 104nm in cNP case. The total chain length l presumed a constant. The sensitivity

in (b) is calculated from the slope of each fitted lines in (a). The slope of fitted line is

1 (in the log-log plot), indicating that the sensitivity depends linearly on the radius

of NP.

increase is due to the H2O2 generation and recapture step dominates. As rPt increase,

there’s larger probability for the NP electrode to capture H2O2. However, when rPt

become very large, the glucose diffusion and reaction steps begin to dominate current

generation. Surface glucose concentration Gs decreases with increasing rPt, which in

turn, reduces the output faradic response.
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Fig. B.4.: Sensitivity as a function of rPt with constant total sensor surface area.
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C. METHOD AND MATERIAL: R2R PRINTED

THIN-FILM-BASED ISE NITRATE SENSOR

C.1 Printed conductive electrodes

Rolls of DuPont Teijin Films poly( ethylene terephthalate) (PET) film, grade

ST-505, 0.005 inch thick x 6 inch wide x 500 foot long, were used as substrates. Semi-

continuous, roll-to-roll screen printing was used to define conductive electrodes on the

PET substrate. In the case of reference electrodes, DuPont 5880 silver/silver-chloride

paste was used, and in the case of working electrodes, DuPont 5025 silver paste

was used. A diagram of the screen-print pattern used to define electrodes is shown

in Fig. C.1. Pastes were dried after printing by following the paste manufacturer’s

recommendations. The rolls of electrodes were subsequently coated with various

coatings to enhance selectivity (in the case of working electrodes) or stability (in the

case of reference electrodes).

C.2 Working electrodes

The silver electrodes were coated using the same Yasui Seiki-MIRWEC Mini-Labo

DeluxeTM coating machine and a similar slot die coating process. In this case, the

0.7 inch wide die was used to apply an ion selective coating aligned with one end of

the electrode array. The material used for this coating comprised a solution of PVC,

di-n-butylphthalate, and tetraoctylammonium bromide (TOA-Br) in tetrahydrofuran

(THF). The ratio of PVC:di-n-butylphthalate:TOA-Br:THF was 15:30:1:X by weight,

where X was between 135 and 160. This suspension was supplied to the slot die at

a flow rate of 0.3 to 1.4 mL/min via a tapped hole on one side of the die that was

connected to a syringe pump via flexible tubing. After the coating was applied, an
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passivation coating

functional coating exposed metal (for 

electronics connection)

Fig. C.1.: The as-printed repeating electrode geometry is shown in black, with

dimensions shown in inches on the top electrode. The passivation coating provides

electrical insulation and protects the printed metal from exposure to water. The

functional coating enhances selectivity (in the case of working electrodes) or stability

(in the case of reference electrodes). Coatings are deposited on top of the printed

and dried electrodes via a continuous, roll-to-roll slot-die coating method in which

the machine direction is vertical in this diagram.

in-line 1 m long convection oven with air heated to 55◦C flowing on top and bottom

of the film was used to dry off the solvent.

The same material and process was used to apply the silicone passivation coating

to the working electrodes as was used for the reference electrodes. After all coatings

were completed, individual working and reference electrodes were cut from the re-

spective rolls via scissors. The uncoated printed metal ends (see Fig. C.1) were used

as connection points to electronic measurement systems.
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C.3 Reference electrodes

The silver/silver chloride electrodes were coated via a continuous, roll-to-roll slot

die coating method using a Yasui Seiki-MIRWEC Mini-Labo DeluxeTM coating ma-

chine. While the printed PET film was unwound and rewound at a line speed of 100

mm/min, a slot die was placed at either 45◦ or 90◦ relative to the film as it passed

over a flat, rigid platform. The aluminum slot die was custom designed and consisted

of two flat faces that were set apart by an adjustable shim. The shim design defines

the geometry of the opening of the slot die. All shims were 0.005 inch thick and had

either 0.7 inch or 2 inch wide opening.

The 0.7 inch wide die was used to apply a stabilizing coating aligned with one

end of the electrode array. The material used for this coating comprised potassium

chloride particles suspended in a solution of poly(vinyl chloride) (PVC) in tetrahy-

drofuran (THF). The KCl particles were milled via mortar and pestle and passed

through a series of sieves, the finest of which was 635 mesh (20 micrometer opening).

The ratio of KCl:PVC:THF was 10:10:100 by weight. This suspension was supplied

to the slot die at a flow rate of 0.6 to 1.0 mL/min via a tapped hole on one side of

the die that was connected to a syringe pump via flexible tubing. After the coating

was applied, an in-line 1 m long convection oven with air heated to 55◦C flowing on

top and bottom of the film was used to dry off the solvent.

After rewinding the film, the 2-inch wide die was used to apply a passivation

coating, the purpose of which is to provide electrical insulation and to protect the

printed metal from exposure to water. The material used for passivation was Silicone

Solutions SS-6002S. It was supplied to the slot die at a flow rate of 1.5 mL/min via a

tapped hole on one side of the die that was connected to a syringe pump via flexible

tubing. After the coating was applied, an in-line 1 m long convection oven with air

heated to 55◦C flowing on top and bottom of the film was used to cure the silicone.
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D. EXPERIMENTAL VARIATION OF CONCENTRATION

OF SODIUM ION IN THE ENCAPSULATION
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Fig. D.1.: SIMS measurement result for the samples from the soaking test.
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Fig.D.1 (a) shows that the test structure has a 200nm thermal SiO2 layer grown

on top of the Si substrate. We prepared two samples from the same wafer. We

soaked one sample in 70°C PBS solution for 48 hours (salt-soaked sample) and left

the other sample untreated (control sample) for comparison. Next, we conducted the

SIMS profiling of the two samples. As shown in Fig. D.1 (b) and (c), the Si line

identifies the sample structure. From 0 to 200nm, the Si count remains at a relative

high value, identifying the region as the SiO2 layer. After 200nm, the Si line drops

down and remains a constant value in the Si substrate. The larger signal in SiO2 is

due to the enhancement of positive ion yield by the presence of oxygen. Therefore,

we can directly locate the thermal SiO2 layer from the Si element line. The vertical

dashed line in Fig. D.1 (b) and (c) indicates the Si/SiO2 interface.
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