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ABSTRACT 

Emerging haptic devices have granted individuals who are blind the capabilities to explore 

images in real-time, which has always been a challenge for them. However, when only haptic-

based interaction is available, and no visual feedback is given, image comprehension demands 

time and major cognitive resources. This research developed an approach to improve blind 

people’s exploration performance by providing assisting strategies in various sensory modalities, 

when certain exploratory behavior is performed. There are three fundamental components 

developed in this approach: the user model, the assistance model, and the user interface. The user 

model recognizes users’ image exploration procedures. A learning framework utilizing spike-

timing neural network is developed to classify the frequently applied exploration procedures. The 

assistance model provides different assisting strategies when certain exploration procedure is 

performed. User studies were conducted to understand the goals of each exploration procedure and 

assisting strategies were designed based on the discovered goals. These strategies give users hints 

of objects’ locations and relationships. The user interface then determines the optimal sensory 

modality to deliver each assisting strategy. Within-participants experiments were performed to 

compare three sensory modalities for each assisting strategy, including vibration, sound and virtual 

magnetic force. A complete computer-aided system was developed by integrating all the validated 

assisting strategies. Experiments were conducted to evaluate the complete system with each 

assisting strategy expressed through the optimal modality. Performance metrics including task 

performance and workload assessment were applied for the evaluation. 
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 INTRODUCTION 

Traditional image presentations for the blind or visually impaired (BVI) individuals, such as 

braille and tactile graphics, are printed on physical media (similar to tactile paper and 3-D printouts) 

that cannot convey the complexity of visual information associated with scientific imaging and to 

do so in real-time (Csapó, Wersényi, Nagy, & Stockman, 2015). Tactile graphics require images 

to be simplified as grayscale line drawings first, which omits detailed information and can be 

biased depending on the person generating them. Moreover, tactile image production is time 

consuming and expensive. The whole process to produce one tactile image can take up to several 

hours (Sheppard & Aldrich, 2001). Emerging technologies, such as low cost, compact and precise 

haptics devices, have granted individuals who are blind the capability to explore digital images in 

real-time (Crossan & Brewster, 2006; Iglesias et al., 2004; Zhang, Duerstock, & Wachs, 2017). 

Various interfaces utilizing haptics feedback have been developed and studied substituting visual 

information, with alternative channels of information (Dewhurst, 2009). 

However, when only haptic-based interaction is available and no visual feedback is given, 

image comprehension demands time and major cognitive resources (Zhang et al., 2017). Different 

from viewing images with vision, the understanding of an image through tactile sensation is limited 

to the area of contact and completed by mentally stitching together the fragments.  Users need to 

come up with compensation mechanisms and strategies to overcome this limitation and become 

proficient in image exploration. For example, to distinguish the shapes of objects on a tactile paper, 

people who are blind will repetitively move their finger along the raised lines that indicate the 

contour of objects. 

To facilitate such haptic-based image analysis, there is a need for new computational models 

and techniques that enable the understanding of the underlying user strategies, and provide 

assistance through the process of image exploration. There are three fundamental components to 

design and develop such an intelligent human-machine interaction system: the user model, the 

assistance model, and the user interface. In the context of image exploration for the blind 

community, the user model recognizes the exploratory behavior of a user. User behavior in this 

scenario refers to the exploration procedures (EPs) that users adopt during image exploration 

(Ungar, Blades, & Spencer, 1995; Vinter, Fernandes, Orlandi, & Morgan, 2012). The assistance 

model provides synchronized guidance based on the performed user behavior, and then deliver 
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guidance through the user interface. The user interface determines the way that users receive such 

guidance, such as acoustic cues or haptics feedback. 

1.1 Significance 

Scientific image comprehension has been a roadblock for BVI individuals, in particular 

academically. In instructional settings, images are the major and popular way to illustrate concepts 

for STEM subjects. BVI students are often left behind in class and discouraged to pursue STEM 

related careers, which can potentially provide a higher-paid job that leads to higher quality of life 

(Rothwell, 2013). Real-time systems that allow people who are BVI to explore images are 

currently based on either haptic devices that have one contact points, or touch screens with two or 

three contact points. As for tactile interaction, the understanding of an image is achieved through 

the information covered by the exploration, the efficiency of image exploration is decreased due 

to the limitation of contact points. The developed system with intelligent assistance aims to 

enhance and facilitate the image exploration experience of BVI users. 

Developing such an intelligent assisting mechanism in the scope of image exploration for 

BVI users, also paves the way for other research that aims to enhance the life of BVI people. The 

dissociation occurred in instructional setting, also occurs in virtual interaction. While social 

networks grow, the current technologies have not made it possible for BVI people to participate 

due to the limitation handling visual information, which is a major component of social media (e.g. 

pictures in Facebook). The proposed system could also potentially improve blind people’s social 

status by providing them the equal opportunities to access visual information. This proposed 

intelligent assisting mechanism can also be adapted for real world exploration, such as outdoor 

and indoor navigation systems. 

Whereas is for social, scientific or navigation purposes, the proposed approach has the 

potential to help the BVI users to build a mental map of the visual information more efficiently 

than what has been currently offered to this market. 

1.2 Definitions 

In this section, some important terms used throughout this document are defined. 

1. Image Exploration: People who are BVI explore an image to understand its content. 
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2. Exploration procedures: Repetitive motions of users moving a pointer on a 2D image, 

are classified into several categories and defined as exploration procedures. 

3. Exploratory Adis: Strategies provided by the system to enhance the image exploration 

for the user. 

4. Sensory Substitution: The process of delivering information from a different sensory 

modality than the one that is often used due to preference or lack of availability. 

5. Haptic-based: interfaces using force based control. 

1.3 Research Problem 

The design and implementation of an interaction scheme that provides adaptive assistance 

for haptic-based image exploration for individuals who are BVI includes: (a) developing a user 

model that can recognize user behavior during exploration; (b) developing an assistance model 

that provide exploratory aids based on the user model; and (c) compare and validate different user 

interfaces. 

 Research Question 1 (RQ1) 

How to learn effective exploration procedures for individuals who are BVI? 

User behavior in the context of haptic-based image exploration, refers to the exploration 

procedures commonly adopted by users who are BVI. By answering this question, it sets the 

footstone to develop an intelligent assisting system. 

 Research Question 2 (RQ2) 

What’s the effective mechanism for assistance? 

Having identified effective exploration procedures (RQ1), proper exploratory aids need to 

be designed. Furthermore, various sensory modalities could be used to deliver such strategies. 

However, some modalities may be easier accessed and perceived than others which can lead to an 

overall better experience and performance. This question aims to understand what are the proper 

exploratory aids and what is the optimal sensory modality to express the strategies. Experiments 

and surveys will be conducted to compare different user interfaces. 
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 Research Question 3 (RQ3) 

What are the metrics to measure the performance of the proposed system? 

Once we are able to recognize user behavior (RQ1) and deliver assisting strategies through 

optimal sensory modalities (RQ2), the proposed system needs to be evaluated and compared with 

other approaches to assess its potential benefit. 

1.4 Overview of the Document’s Structure 

This chapter introduced the researched problem and the motivation behind it. Chapter 2 

provides a review of the literature on the topics related to this research. Chapter 3 explains the 

proposed idiosyncrasy used to develop the proposed system. The following chapter discusses the 

experiments and results. Finally, in Chapter 5, conclusion and future work is discussed. 
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 LITERATURE REVIEW 

This chapter gives an overview of the state of art research related to this proposal. First, we 

reviewed current assistive technologies that help individuals who are BVI to understand images, 

including their advantages and limitations in terms of the modality expressiveness and easiness of 

interaction. Another important aspect in our work involves learning and recognizing BVI’s users 

behaviors while they are exploring images. User behaviors are referred as exploration procedures 

(EPs) throughout this proposal. In the second section, various EPs are summarized from the 

literature. Different aspects of the EPs are also discussed, including what the user’s goals are when 

using the EP, their mode of exploration (using fingers or palm), and their applicability in different 

exploration tasks. The third part of this literature review includes different assisting strategies to 

enhance the exploration experience. While enhancing user performance during image exploration 

by providing guidance has not drawn a lot of attention in past studies, studies has been done to 

facilitate BVI individuals exploring real world spaces. Learning from the state of the knowledge 

about strategies applied to 3D exploration task can provide a good starting point to the design of 

assisting strategies for 2D image exploration. Last, sensory substitution is discussed, including 

substituting vision with either audio, touch or a mix of them. 

2.1 Assistive Technologies for Image Exploration 

Ranging from low-tech tactile papers to high-tech real-time sensory substitution systems, 

there has been a substantial amount of work developing assistive technologies to allow images be 

accessible to BVI individuals. The state of the art in image exploration techniques can be 

summarized into two catogories: exploring images physically or digitally. Physcial image 

representation includes traditional tactile graphics and modern 3D-printed models, while digital 

image representation utilizes computer generated virtual graphics with haptics and audio feedback. 

In the following sections, techniques supporting physical image exploration are introduced, 

followed by advanced digital image exploration systems. 
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 Image Exploration Using Physical Media 

Tactile graphics is the most commn approach to deliver two-dimensional visual 

information to individuals who are BVI, such as diagrams, pictures and charts. They are widely 

used in instructional settings to teach students understand visual based concepts, such as geometry, 

physics, chemistry and other STEM related fields (Sheppard & Aldrich, 2001). Tactile graphics 

can be generated in many different ways, including manually created with crafting materials, 

printed on a microcapsule paper, thermoformed with drawing molds, or embossed with braille 

embossers (Gupta, Balakrishnan, & Rao, 2017). Printed on a microcapsule paper is a widely used 

approach as it’s relatively easy to make and cost less than other forms (Yu & Brewster, 2002). The 

microcapsule paper swells when heated, to different height based on the color intensity on the 

image. Darker areas appear higher than lighter areas. Figure 2.1 shows an example of the original 

image and its tactile graphics on a microcapsule paper. 

 

 
 

(a) (b) 

Figure 2.1 Example tactile graphics on a microcapsule paper. (a) Original image; (b) Swelled 

tactile graphics of (a). 

 

As technologies advance, embossers used to print braille were upgraded to print tactile 

graphics with raised dots. Advanced embossers can create dots at different heights, enabling a 

richer content on the image (Kouroupetroglou et al., 2016). Figure 2.2 shows an example of the 

image, and its tactile graphics (Kaneko & Ooduchi, 2010). 
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(a) (b) 

Figure 2.2 Example of embossed tactile graphics. (a) Original line graph; (b) Embossed tactile 

graphics of (a). 

 

Although tactile graphics is the most widely applied image representation for BVI people, 

it can not be used to deliver complex visual information and often requires additional description 

from human assistants. In addition to tactile paper, 3D printing technology becomes an alternative 

as 3D printers becomes more affordable (Stangl, Kim, & Yeh, 2014). Studies investigated different 

factors that could affect the interpretation of 3D printed images, including the height and size of 

3D printed objects compared to the original images, and the printed roughness of material 

(Williams et al., 2014). It was found although 3D printed tactile images can represent more 

complicated visual information than tactile paper, it requires fine adjustment of the 3D-printing 

parameters and additional 3D modeling techniques to convert 2D images into 3D objects.  

 Digital Image Exploration 

With the advance of touchscreen devices, tactile displays became handy, since they can 

provide a tactile sensation to fingers while moving on a touch screen. TeslaTouch (Xu, Israr, 

Poupyrev, Bau, & Harrison, 2011) is an example of tactile displays that generates voltage 

differences between the finger and the touch screen. This inexpensive and easiliy maintained 

device supports various tactile sensations, which facilitates the exploration and interpretation of 

complex images. However, as opposed to tactile graphics, fingers need to actively sliding on the 

touch screen to feel the sensation.  
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Besides touch screens, force feedback devices have draw attention in the field for image 

exploration by BVI individuals (Colwell, Petrie, Kornbrot, Hardwick, & Furner, 1998; Wies, 

O’Modhrain, Hasser, Gardner, & Bulatov, 2001; Zhang et al., 2017). Figure 2.3 shows two 

examples off-the-shelf devices that can provide force feedback, the Logitech WingMan Force 

Feedback Mouse (a) and Force Dimension Omega 6 (b). In this proposal, we utilized a multimodal 

image exploration system that uses Omega 6 as its haptic device (Zhang et al., 2017). The Force 

Dimension Omega 6 has six degrees of freedom and can provide force feedback in a 3D space.  

  

(a) (b) 

Figure 2.3 Examples of off-the-shelf haptic devices. (a) Logitech WingMan Force Feedback 

Mouse; (b) Force Dimension Omega 6. 

 

Instead of using fingers, BVI individuals can feel the virtual graphic rendered by the 

computer, by moving the haptic device across the image. Tactile feedback is provided according 

to the position of the haptic device. Yu and Brewster developed a multimodal system that people 

can use to explore bar graphs using a haptic device, together with auditory feedback (Yu & 

Brewster, 2002). Experimental results indicated significant higher accuracy in understanding the 

bar charts through the haptic interface compared to traditional tactile diagram. Interactive systems 

have been developed using haptic devices and sound to facilitate the learning of visual concept, 

such as astronomy (Tuominen, Kangassalo, Hietala, Raisamo, & Peltola, 2008) and maps 

(Kaklanis, Votis, & Tzovaras, 2013). Students showed a more accurate undersrtanding of the 

concepts and more interests in learning the complex visual concept. Another haptic-based interface 

was developed to test the applicability of haptic devices to represent geometries, such as line 

drawing and curves, and maps and floor plans (Sjöström, Danielsson, Magnusson, & Rassmus-

Gröhn, 2003). In the test for geometric graphs, it was reported that 96% of the participants 
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recognized a particular part of a curve, while the rate of success decreased as the complexity of 

line drawings increased. 

2.2 Tactile Exploration Procedures 

As opposed as to using vision to perceive images, exploring visual information through 

touch sensation is more difficult and complicated. It requires a lot more memory as well as well-

developed procedures (Hatwell, Streri, & Gentaz, 2003). As tactile feedback is received through 

the area of skin that is in contact with the stimulus, the amount of information obtained is limited 

based on the exploration trajectories that they follow. Therefore, blind individuals have developed 

different exploration procedures (EPs) to make more effective their interaction with tactile 

information. It has been observed that these exploration procedures (EPs) are developed with the 

growth of age and experience (Vinter et al., 2012).  

Studies focusing on what type of EPs are adopted by the blind community have been 

conducted in two major groups of visual properties: local and global visual information. Studies 

relying on local visual information consider the internal properties of a visual object, such as the 

shape, size, texture and color to characterize an object. Whereas, global visual information studies 

(also referred as spatial information) relies on representing the relations between objects, and the 

object’s absolute location to characterize it. In the following sections, different EPs are discussed 

in terms of the type of visual information that is been used. 

 EPs for Internal Object Properties 

Visual information by touching real-world objects or elevated 2D tactile images are the 

most common way for individuals who are blind to understand that information. A lot of studies 

have been conducted to understand the procedures that BVI individuals naturally adopt when 

exploring objects’ internal properties using their hands. Lederman & Klatzky (Lederman & 

Klatzky, 1987, 1990, 1993) summarized six exploration procedures including dimensions, texture, 

hardness, weight, and shape. For example, “lateral motion” or “surface sweeping” referred in 

(Davidson, 1972) is a back-and-forth movement across a small area of surface. People use this 

procedure to understand the texture, interior structure of an object. “Contour following” is another 



 

 23 

often-used EP to understand the exact shape of an object. Different from “surface sweeping”, it is 

a motion that focuses on the boundaries of objects.  

Some of these exploration procedures used for 3D objects can be also extended to 2D tactile 

images. Vinter et al. summarized seven EPs from studies with children who are BVI using elevated 

2D tactile images (Vinter et al., 2012). The study’s goal was to understand the relation between 

their applied exploration procedures and task performance. Children were asked to explore a two-

dimensional tactile pattern using theirs hands and later draw the perceived pattern on a sheet of 

paper. Seven exploration procedures were summarized and studied. Procedure “contour following” 

is the most common procedure found in this task, and indicated a higher correlation with the 

recognition of object’s shape and size. “Surface sweeping” is the second most common procedure 

found in this study. 

 EPs to Measure Spatial Relations 

Besides understanding the internal properties of objects, measuring the spatial relations 

between objects is another challenging visual analysis task for BVI individuals. While peripheral 

information is accessible through vision, tactile sensation only provides feedback statically at the 

point of contact. In the experiments conducted by (Ungar et al., 1995) with children who are BVI, 

participants were asked to explore a circular board with different number of objects placed on it, 

and then replicate the setup on another board. Four modes of exploration were found in this 

experiment, including relative exploration, edges exploration, a mix of relative and edges 

exploration, and pointing & touching in turn. Relative exploration is a back-and-forth movement 

between two objects to get the position of one object relative to another. Edge exploration is a 

back-and-forth movement between one object and the boundary of the panel that holds the object. 

Observers use this type of procedure to get the location of an object relative to the boundary of its 

absolute reference frame. In the experiments, some participants used one of the EPs alone, while 

some of them performed both EPs during exploration. Pointing and touching in turn is a movement 

that children pointed and touched each object separately in turn, following an egocentric reference 

frame. Results revealed that by using both EPs, participants finished the task with higher accuracy, 

while the pointing & touching movement gave the least performance (Ungar et al., 1995).  

An experiment conducted by (Gaunet, Martinez, & Thinus-Blanc, 1997) with adults who 

are BVI indicated similar results. Participants were asked to explore a square panel with five 
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objects of different shapes, and memorize the location of all objects. They were later asked if one 

of the objects has been moved. Two modes of exploration were identified in the experiment: a 

“cyclical” exploration and a “back and forth” exploration. Participants visited the objects one by 

one, and ended by returning to the first object visited by following the “cyclical” exploration. 

Conversely, with the “back and forth” exploration, participants repeatedly visited the same two 

objects with a back-and-forth trajectory, then moved to the next two objects. The “back-and-forth” 

exploration procedure resulted in a lower recall error compared with the “cyclical” exploration. 

A more recent study has been conducted to understand the procedures applied by blind 

users when interacting with large touchscreens (Guerreiro et al., 2015). Counting the number of 

objects and locating tasks were performed by the participants to observe commonly used 

procedures. When the user was asked to find an object without prior knowledge, path scan was a 

commonly applied procedure. It consists of the user moving from left to right horizontally scanning 

the image. However, when prior knowledge was available to the user, the “to-the-point” procedure 

was used more often. The latter consists of the user going directly to the memorized location. The 

experimental results also indicated finding objects on a large surface without prior location 

knowledge is a time-consuming task, that would require additional support, such as giving 

instructions to locate nearest object or providing relation information of two neighbors (Kane et 

al., 2011). 

 

Table 2.1 summarizes the EPs that were reported to be commonly used during tactile exploration. 

The table includes a verbal description of the EP, its related visual properties.   
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Table 2.1 Summary of observed exploration procedures from literature. 

Exploration 

Procedure 
Description 

Related Visual 

Property 
Literature 

Contour Following Dynamic edge following using finger movements shape, size 
(Lederman & 

Klatzky, 1987) 

Enclosure of the 

global shape 

Dynamic molding of the palm and/or fingers to the shape’s 

contours 
shape 

(Lederman & 

Klatzky, 1987) 

Enclosure of local 

shapes 
Dynamic molding of the fingers to parts of the pattern. partial shape 

(Lederman & 

Klatzky, 1987) 

Pinch procedure 
Holding edges in a pincer grip between the thumb and one 

or more other fingers 
size (Davidson, 1972) 

Surface sweeping 
Dynamic and usually repetitive movement of one or more 

fingers or of the palm over the model’s surface. 
texture (Davidson, 1972) 

Static contact Stationary contact with the surface without molding. texture 
(Lederman & 

Klatzky, 1987) 

Relative 

exploration 
Back-and-forth movement between two objects. location (Ungar et al., 1995) 

Edge exploration 
Back-and-forth movement between the object and the image 

boundary. 
location (Ungar et al., 1995) 
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2.3 Assisting Strategies for Exploration-based Tasks 

The BVI community often encounters to perform exploration tasks which includes 

searching in the 2D space, over media as diverse as tactile images and webpages, or even as 

complex as explorations in the 3D space, such as indoor/outdoor environments. Strategies used by 

BVI individuals when exploring indoor and outdoor environments is a well-studied research topic, 

compared to exploration of images and webpages, where there is not much substantial work, in 

spite that real-world navigation is a more fundamental need for daily-living activities. What is 

known in terms of assisting strategies for 3D-space explorations provide valuable insights that can 

be extrapolated to image-based explorations, due to the similarities existed between the tasks. For 

example, exploring a room in order to understand its layout is somehow similar to exploring a 

tactile image with several items embedded on it. In this section, we summarize few computer-

aided image exploration systems, and review studies that incorporated assisting strategies for BVI 

individuals. We discuss the requirements in order to adapt those strategies to image-based 

explorations. 

 Computer-aided Image Exploration 

Computer-aided image exploration systems tracks user behavior, and provides guidance or 

exploration tips based on the current user status. For example, by tracking the position of user’s 

finger, and recognizing the object that the user pointed at, the system can deliver information about 

the object to the user through speech (Blenkhorn & Evans, 1998; Fusco & Morash, 2015; Lötzsch, 

1994; Parkes, 1988; Suzuki, Stangl, Gross, & Yeh, 2017). Kurze developed a guidance system for 

tactile images that used eight vibrating elements indicating directional information (Kurze, 1999). 

The user was given a list of objects on the image, and two different guidance strategies were 

developed. The “tourist guide mode” lead users to objects following a sequence based on the 

object’s importance. That system encouraged users to visit important object first. Users could 

follow the guidance provided by the system in order to explore the next object. The “scout mode” 

delivered guidance towards the object that the user specified forehand. In that experiment, Kurze 

also compared guidance with vibration and sound, and found that vibrational guidance was more 

effective than auditory feedback. Later studies have proposed additional strategies to enhance blind 

users’ exploration through large touchscreens. For example, “Edge Projection” is a strategy that 
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projects the location of objects onto the edges of the touchscreen. Users could explore these objects 

by sliding their finders along the horizontal or vertical boundary of the touchscreen (Kane et al., 

2011). Experimental results revealed that “Edge Projection” significantly reduced the task 

exploration time. 

 Assistive Strategies for 3D-space Exploration 

Various navigational strategies have been developed to assist BVI people explore 3D 

spaces. One strategy commonly applied is providing close-by point of interest (POI) information 

along the exploration process (Abowd et al., 1997; Blum, Bouchard, & Cooperstock, 2012; 

Golledge, Klatzky, Loomis, Speigle, & Tietz, 1998; Golledge, Loomis, Klatzky, Flury, & Yang, 

1991). L. Picinali et al. developed a system using acoustic cues to represent the surrounding 

environment to a given location (Picinali, Afonso, Denis, & Katz, 2014). In that system, as users 

were moving along a corridor, sounds simulating events were generated and rendered according 

to the distance between the user and the POI. For example, when the user would be approaching a 

restroom, a toilet flushing sound would played and get louder as the user is getting closer to the 

restroom (Picinali et al., 2014). Another type of exploration systems allowed users to annotate 

their own POI during exploration and received notifications every time that they were approaching 

those POIs, such as the Talking Points (Stewart et al., 2008) system.  

A different line of research focused on virtually generated spaces in order to facilitate the 

design and development of various assisting strategies. For example, users could trigger a “look-

around” mode in a virtual environment navigation task to find out what objects are around them 

(Lahav et al., 2018). Different sound tones and beeps were assigned to represent objects, while 

force feedback was utilized to encode the distance between the user and its surrounding objects.  

2.4 Sensory Substitution 

Blind people cannot see because they lose the ability to transmit the sensory signals to the 

brain (Bach-y-Rita & W. Kercel, 2003). However, it was proposed to replace the ability of a 

defective sensory modality, by other functioning sensory channel that can alternatively convey the 

missing sensory information to the brain. This is called sensory substitution. This concept was first 

introduced in 1969 to describe blind persons perceiving images using tactile images (Bach-Y-Rita, 
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Collins, Saunders, White, & Scadden, 1969). Through the vibrations of four hundred solenoid 

stimulators arranged in a twenty times twenty array on the skin of their back, participants were 

able to distinguish different objects after they went through extensive training, (from 20 to 40 

hours). Tactile and audio sensory substitutions are the two most popular sensory substitution 

approaches currently most studied, which are illustrated in the next section. 

 Tactile-visual Substitution 

Since the introduction of tactile-vision sensory substitution (TVSS) idea by Bach-y-Ritain 

in 1969, there has been ongoing research in that field as part of assistive technologies.  From image 

perception to video understanding, from obstacles detection to way finding, tactile-vision sensory 

substitution has been utilized in various ways helping BVI people succeed not only in performing 

activities of daily living (ADL), but in academic and occupational activities as well(Hsu et al., 

2013; Johnson & Higgins, 2006; Kaneko & Ooduchi, 2010; Way & Barner, 1997). 

Wireless electrotactile devices have been also proposed as an aid to navigate a variety of 

environments (Nguyen et al., 2013). For example, (Kajimoto et al., 2014) takes advantages of 

smartphones to deliver directions through vibrational feedback. The system consists of an 

electrotactile display with 512 electrodes, a smartphone and an LCD. Participants were able to get 

a view of the surroundings by taking photos using the smartphone embedded camera. Images were 

processed by the smartphone and then converted to vibration through each electrode. While TVSS 

enabled BVI people navigate environments through image perception, the low resolution of tactile 

sensors compared to the visual system is the main drawback of this method.  

To improve the capabilities of conventional tactile-vision sensory substitution and decrease 

the drawbacks of low resolution of tactile displays, image processing and trajectory tracking 

algorithms have also been studied to help BVI explore the environment (Hsu et al., 2013). 

 Auditory-visual Substitution 

The auditory channel was also used to convey image properties. The frequency of auditory 

pitch, binaural intensity and phase differences, sound loudness, and specific sets of tones have 

been mapped to different image properties (Capelle, Trullemans, Arno, & Veraart, 1998). 

Mappings were found to be useful not only between auditory pitch and object location, but between 
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auditory pitch and object size (Evans & Treisman, 2011). In addition to auditory pitch, sound level 

can help convey visual information as well. It was found that loud sounds facilitate the perception 

of large objects, while soft sounds can improve the perception of small ones (Marks, 1987; Smith 

& Sera, 1992). Research has also been conducted to convey live video to an individual through 

auditory pitch and loudness (Meijer, 1992). In most auditory-visual substitution systems, only 

grayscale images were utilized and color information was discarded all together. More recently, a 

sensory substitution system, called “EyeMusic”, was able to convey real-time visual information 

through small computer or smartphone using sound delivered through stereo headphones. 

Furthermore, it would represent color information through different musical instruments as well. 

Due to the difficulty associated with the mapping between different musical instruments and color, 

only five colors were conveyed in a distinctive fashion: white, blue, red, green and yellow (Abboud, 

Hanassy, Levy-Tzedek, Maidenbaum, & Amedi, 2014).  

Early blind participants showed increased performance in localization and object 

recognition (Arno, Capelle, Wanet-Defalque, Catalan-Ahumada, & Veraart, 1999) through 

auditory-visual substitution when they were trained as opposed to those that were not trained. 

Training is key to the success of such systems since auditory-vision substitution involves the 

memorization of audio patterns and their associated visual cues (Arno et al., 1999). In addition, 

when the users focus on auditory feedback, it can decrease their awareness about the environment 

around them, thus leading to potential safety concerns (Meers & Ward, 2004). 

2.5  Summary 

This literature review presented the state-of-art in assistive technologies designed to 

support BVI individuals in image comprehension. Then, the concept of exploration procedures is 

presented together with a discussion of commonly applied exploration procedures. Then, I 

presented an overview of assisting strategies aimed to enhance image exploration performance. In 

this context, I discussed the challenges associated with the design of accessible real-time image 

exploration devices. This review also indicates that the hardware at this point is mature to facilitate 

image exploration, including commodity components and haptics, but there is a need for 

algorithms that can adapt to the cognitive processes and learning stage of the operator without 

significant customization.  
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 METHODOLOGY 

Portions of this Chapter have been published. 

T. Zhang, B. S. Duerstock and J. P. Wachs, "Classification of Blind Users’ Image Exploratory 

Behaviors Using Spiking Neural Networks," in IEEE Transactions on Neural Systems and 

Rehabilitation Engineering. DOI: 10.1109/TNSRE.2019.2959555 

 

In this chapter, several approaches are proposed to address the previously posed research 

questions, and such methods are described in detail. The system architecture is illustrated in Figure 

3.1. To address RQ1, which relates to modeling exploration procedures used by users who are BVI, 

a framework utilizing Spike-timing Neural Network (SNN) is developed. Once we are able to 

understand the user’s behavior by recognizing exploration procedures, RQ2 is addressed. RQ2 

focuses on the discovery of effective assisting mechanism, which is tackled through designing and 

comparing different exploratory aids through user studies. In RQ3, quantitative and qualitative 

analysis will then be conducted to evaluate the proposed assistance system. Our proposed system 

were validated and compared with similar interfaces, including with and without a human assistant. 

 

 

Figure 3.1 System Architecture 

3.1 Modeling Exploration Procedures 

The first step towards the development of a user-adaptive system is the modeling of 

commonly applied exploration procedures by users who are BVI. Table 3.1 summarizes five 
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exploration procedures (EPs) that are used by individuals who are BVI to explore images with 

tactile sensation using a haptic device (Zhang, Zhou, Duerstock, & Wachs, 2018). 

Table 3.1 Classified exploration procedures. 

Exploration 

Procedure 
Description Visualizationa 

Frame 

Following 

(FF) 

Trace the boundary of the image to obtain the image 

size. 

 

Contour 

Following 

(CF) 

Trace the boundary of objects on the image to learn 

the size and shape of objects. 

 

Surface 

Sweeping 

(SS) 

Back-and-forth movement inside objects to learn the 

feature of objects. 

 

Relative 

Positioning 

(RP) 

Back-and-forth movements between objects to obtain 

their relative locations. 

 

Absolute 

Positioning 

(AP) 

Back-and-forth movements between objects and the 

image boundary to obtain their absolute locations on 

the image. 

 
 

Through this thesis, blood smear images are used as an example. Dotted red lines with 

arrows represent the trajectory of a user movement. Red circles represent red blood cells, and 

purple contours represent white blood cells. 

Table 3.1 shows EPs and their associated spatio-temporal patterns. The Spike-timing 

Neural Network with plasticity (SNN) algorithm has proven to be an effective approach for 

modeling spatio-temporal patterns (Rekabdar, Nicolescu, Nicolescu, & Louis, 2017; Rekabdar, 

Nicolescu, Nicolescu, Saffar, & Kelley, 2016). SNN were applied to classify scale- and translation-

invariant spatio-temporal patterns successfully (Rekabdar et al., 2016). It has also been shown that 
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SNN is suitable for early prediction, which is a desired property in intelligent systems (Rekabdar 

et al., 2017). 

Previous work on spatio-temporal modeling using SNN focused on one dimensional 

feature based on trajectory, such as angles of movements or traversed pixels (Rekabdar et al., 2016). 

This does not, however, apply to our scenario since EPs are both characterized by trajectory and 

context. For example, the context indicates whether the trajectory is inside an object (SS) or 

between two objects (RP). Therefore, in our case a multimodal SNN approach is required. In this 

thesis, we developed a framework using multiple SNNs and a classification scheme to recognize 

five EPs shown in Table 3.1. In our framework, a sequence of multidimensional feature vectors is 

extracted from each sample of EP. The features used represent the angles of movements, trajectory 

context and users’ reference during the exploration. The features representing the trajectories’ 

angles and context information are further encoded through the training of SNNs. These features 

are entered to the SNNs for training acting as the stimulus of the network. Once the SNNs are 

trained, the characteristic responses of each EP to the SNNs are encoded as model strings, serving 

as the templates for each EP. Those templates are further used for classification, together with the 

features representing the reference point of interaction. For classification, we adapted a modified 

version of Dynamic Time Warpping (DTW) with Longest Common Subsequence (LCS) as the 

similarity measure between model strings. Dempster-Shafer Theory (DST) was then applied at last 

to fuse the beliefs from multiple features into a final decision (i.e., the predicted type of EP). The 

developed framework is also illustrated in Figure 3.2. 
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Figure 3.2 Proposed framework to learn exploration procedures. 

 Temporal Representation of Data 

The five EPs for image exploration are characterized by spatio-temporal patterns. These 

patterns are obtained from trajectory data collected from a multimodal interface (Zhang et al., 2017) 

during the exploration of histological images by users who are blind. Each sequence of EP has an 

associated sequence of time and the cursor’s x-and y-position on an image (ti, xi, yi), where i ranges 

from 1 to the length of the EP. Translation, rotation, and scale-invariant features are then extracted 

from the spatial-temporal patterns, in the form of three types: angles, contextual information and 

the reference switch. Below is explained how each feature vector is computed. 
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Angles 

For every three consecutive time frames ti-1, ti and ti+1, two vectors vi and vi+1 are obtained 

following (3-1), indicating the moving directions from ti-1 to ti, and from ti to ti+1. 

 
𝑣𝑖 = (𝑥𝑖−1 − 𝑥𝑖, 𝑦𝑖−1 − 𝑦𝑖−1) 

𝑣𝑖+1 = (𝑥𝑖 − 𝑥𝑖+1, 𝑦𝑖 − 𝑦𝑖+1) 
(3-1) 

The angle between these two vectors is then computed following (3-2). 

 𝜃𝑖−1,𝑖,𝑖+1 = cos−1
𝑣𝑖 ∙ 𝑣𝑖+1

‖𝑣𝑖‖‖𝑣𝑖+1‖
 (3-2) 

Contextual Information 

The user will choose EPs according to the content of image, including the object size, 

location and shape. For example, to recognize EP CF (contour following), we need to find whether 

the traversed pixels belong to an object boundary, regardless of the specific shape of the object. 

To achieve shape- and location- invariance feature representation, we assign an index for each 

unique contextual information (CIk) for a given time frame k, following the rules explained in 

Table 3.2. Figure 3.3 shows an example of the image and its index map. 

 

Table 3.2 Rules for contextual information assignment. 

Index Contextual Information 

1 Background 

2 Object contour 

3 Object Inside Area 

4~8 Pixels starting from 1 to 5 away outwards from the object contour 

9 Image boundary 

10~13 Pixels starting from 1 to 4 pixels away from the boundaries of an image 
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(a) (b) 

Figure 3.3 Example image and its index map. (a) Original image; (b) Index map. 

Reference switch 

When people explore a visual landscape, such as an image, using only tactile information, 

features or objects are required as reference points. Algorithmically, this can be resembled by 

applying image processing techniques to segment the different objects, whereas each object gets 

unique IDs assigned (ranging from object 1 to n, where n is the number of objects in the image) -

-- for more details please refer to (Zhang et al., 2017). Once the objects are recognized, a reference 

point is defined as the object that the user is in contact with, including the image boundary and 

object i (i=1…n). The last reference point ri is annotated for each time frame ti. The altering of 

reference point (𝛿𝑟) is computed based on three consecutive time frames, following (3-3). 

 𝛿
𝑟
𝑖−1,𝑖,𝑖+1 = {

0, 𝑟𝑖−1 = 𝑟𝑖 = 𝑟𝑖+1
1, otherwise

 (3-3) 

Given three consecutive time frames ti-1, ti and ti+1, the spatio-temporal information is then 

represented using the feature vector (3-4): 

 f = (i-1,i,i+1, CIi-1, CIi, CIi+1, 𝛿𝑟 i-1,i,i+1) (3-4) 

where, the angle i-1,i,i+1 is computed using (3-2), the context index (CIi) is calculated for each time 

frame ti, reference switch 𝛿𝑟𝑖−1,𝑖,𝑖+1 is obtained following (3-3). 

 Spike-timing Neural Network 

SNNs were trained to encode the extracted features in (3-4), except the last feature 

“reference switch”. As defined in (3-3), it may be unnecessary computational expensive to encode 

δr i-1,i,i+1 using SNN as it is a Boolean variable; alternatively this feature can be used for 
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classification directly. Therefore, four SNNs were trained in this work, with one network for each 

feature. All the networks have the same configuration except the number of neurons, which is 

dependent on the range of the specific feature.  

General Network Configuration. 

In an SNN, neurons are mutually connected through the synapses, and can be configured 

with the number of neurons, the connectivity among neurons, the conduction delay of each synapse, 

and the weights of synapses, as defined in Izhikevich (Izhikevich, 2006). Izhikevich’s model was 

used in this work considering its ability to simulate different neuron dynamics while requiring 

relatively small computational power, compared to other widely used models, such as “Integrate-

and-Fire” and “HodgkinHuxley” (Izhikevich, 2004b). There are two types of neurons in an SNN, 

the excitatory and inhibitory neurons, of which the amount has a ratio of 4:1. The number of 

neurons for each of the four SNNs is then determined based on the range of the feature it is 

encoding and that is discussed in the next section. These neurons are mutually connected and the 

four SNNs developed in this work have a connectivity of 10% among all neurons. The synapses 

can have different conduction delay that partially determines the firing pattern of neurons. The 

differences between firing patterns of input data are then used for representation and further 

classification. The conduction delay is randomized from 1 ms to 20 ms for each synapse. The 

synaptic weights are configured as +6 for excitatory neurons, and −5 for inhibitory neurons 

initially. The weights are then updated using the rule of the spiking dependent plasticity (STDP) 

(Izhikevich, 2006). Based on the time-locked firing patterns of neurons, the STDP rule boosts or 

degrades inter-neuron connections by increasing or decreasing the synaptic weights.  

Figure 3.4 illustrates an example of the trained SNN. The white nodes are excitatory 

neurons and the gray nodes are inhibitory ones. The width of the link indicates the synaptic weight 

where thicker link has larger synaptic weight. The dotted link indicates the synapses with a 

negative weight. The color of the link indicates the conduction delay which is similar to the color 

scheme of a traffic map that green indicates short delay, while red indicates longer delay. Edge 

bundling technique was applied to reduce the complexity of the graphic representation. 
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Figure 3.4 Example Spiking Neural Network. The nodes are neurons and the links are synapses 

that connect the neurons. The width of the link represents the weight, while the color represents 

the conduction delay. 

Number of Neurons 

The number of neurons for an SNN is dependent on the range of the feature value. The 

degree of feature angle i−1,i,i+1 ranging from 0 to 180 inclusive, is divided into 19 sets. Five 

excitatory neurons are allocated for each set, resulting in 95 excitatory neurons (Rekabdar, 

Nicolescu, Kelley, & Nicolescu, 2014). Twenty-three inhibitory neurons are allocated as the ratio 

between excitatory and inhibitory neurons is 4 to 1 as discussed above. The SNN encoding feature 

angle has a total of 118 neurons, with 95 excitatory and 23 inhibitory neurons. 

For feature contextual information (CIi), the index ranges from 1 to 13 as defined in Table 

3.2. Similarly to the configuration for feature angle, each index is allocated with 5 excitatory 

neurons, thus leading to a network of 81 neurons with 65 excitatory and 16 inhibitory neurons. 
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Network Training 

To train an SNN using STDP rule, we stimulate the neurons based on the sequence of 

feature vectors (as in (3-3)) generated by each EP sample, with an interval of 1ms. For example, if 

the angle 1 in the first frame of EP FF is associated with neurons 1 to 5, neuron 1 is activated with 

a 20mA current, followed by neuron 2 to 5, at 1ms intervals. For an EP with n time frames, a pattern 

of 5n ms is transmitted into the network. Figure 3.5 shows an example of how neurons were fired 

given the input sequence of feature angle. The raster plot on the top indicates the firing patterns of 

neurons, while the bottom plot shows the input values of the angle feature over time. 

 

Figure 3.5 Firing pattern of neurons. The top raster plot shows the fired neurons at each time 

stamp and the bottom plot shows the value of input data at each time stamp. 

 

To train the SNN for the 5 EPs, we provide m training samples for each EP. One round of 

training involves stimulating the network with 5m training samples one by one. This follows the 

order of sample 1 of EP FF, sample 1 of EP CF, till sample 1 of EP AB, continued from sample 2 

of EP FF. The STDP rule is used during the training process to update the synaptic weights for all 

neurons. During each round of training, the summation of the synaptic weights of all neurons is 

calculated. For two consecutive rounds of training, the differences between the synaptic weights, 

∆𝑊, are computed following (3-5), where 𝑤𝑝
𝑖  is the weight of synapse p at training round i, and 
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the SNN has a total number of n synapses. The training is completed when synaptic weights remain 

stable. Figure 3.6 shows an example of the fluctuation of synaptic weights over different rounds 

of training. The training of the network is completed around 30 rounds. 

 ∆𝑊 = ∑‖𝑤𝑝
𝑖 −𝑤𝑝

𝑖+1‖
2

𝑛

𝑝=1

 (3-5) 

 

Figure 3.6 Examples of synapse weights fluctuation. 

 Classification 

The features encoded by SNNs, including the angle and CI are used together with feature 

“reference switch” 𝛿𝑟 to classify the various EPs. A distance-based metric is used to measure the 

similarities between samples. For SNN-encoded features, a modified dynamic time warping (DTW) 

is used to compute the distance, while for feature 𝛿𝑟, the distance is computed as the difference 

between 𝛿𝑟 over time. Then, Dempster-Shafer Theory (DST) is applied to determine the type of 

EP by combining the distances obtained from all the features. 

Representation of SNN-Encoded Features 

For SNN-encoded features, we record the indices of fired neurons (voltage >= 30mV) at 

each time stamp of the training stimulus. If no neurons are fired at a certain time, that time frame 

is skipped. A stimulus pattern is then represented as a string of fired neurons, which is defined as 

a model string (Rekabdar et al., 2017). The neurons that are fired at the same time is defined as a 
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character. The following is an example of a model string: {(1,2,5), (4,6), (3,5), (1,7,8)}. It 

indicates that neuron 1, 2 and 5 initially fired at the same time, followed together by neuron 4 and 

6. Then, neuron 3 and 5 fired simultaneously. At last, neuron 1, 7 and 8 are fired at the same time. 

To build the model string for each sample, we stimulate the associated neuron in the trained 

network for each time stamp, same as the training phase. Different from training, the synapse 

weights stay constant and the fired neurons for each time step are recorded. 

For each feature k (k=1,2,3,4), a modification of DTW with LCS as the distance function is applied 

to compute the distance dk between a testing sample and a training sample. We compute the 

distance of one testing sample with all 5m training samples, where m is the number of training 

samples for each EP. 

Distance Metrics 

To compute distance between model strings generated from SNNs, LCS is applied as the 

distance function for DTW to compute the similarity between two characters. We use DTW to 

align model strings of different lengths and compute the distance between two model strings. For 

DTW, smaller distance indicates higher similarity. However, for LCS, a larger value indicates 

higher similarity. Therefore, we invert the sign of similarity value between two characters and use 

it as the distance in DTW. To align strings with different length, a sliding window of size 15 is 

used in this work. If the string length is less than 15, the string length is used instead. 

To calculate the distance between two samples a and b in the logic feature 𝛿𝑟 dimension, 

we use the difference of summation over time, following (3-6), where sample a has p time frames 

and sample b has q time frames. 

 𝑑
𝑟
𝑎,𝑏 =

{
 
 

 
 0.0, ∑ 𝛿𝑎,𝑡

𝑟 = 0
𝑝

𝑡=1
 𝑎𝑛𝑑 ∑ 𝛿𝑏,𝑡

𝑟 = 0
𝑞

𝑡=1
 

0.0, ∑ 𝛿𝑎,𝑡
𝑟 > 0

𝑝

𝑡=1
 𝑎𝑛𝑑 ∑ 𝛿𝑏,𝑡

𝑟 > 0
𝑞

𝑡=1

1.0, otherwise

 (3-6) 

In (3-6), condition 1 indicates there is no reference switch in both sample a and b, while 

condition 2 means that user’s reference was switched in both samples a and b. The distance 

between sample a and b is 0 in these two cases.  
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3.1.3.1 Decision Fusion using Dempster-Shafer Theory (DST) 

Each sample of EP is characterized by multidimensional feature vectors. The DST fusion 

approach was used here to combine the degree of beliefs derived from multiple evidences (given 

by the individual features within the vector) into a final decision. DST is a form of decision-level 

fusion (e.g. early or late fusion) with low computational cost and robust to noise (Arif, Brouard, 

& Vincent, 2006). It is also easily extendable, that allows for incremental addition and/or 

subtraction of features. Due to such flexibility, it has been used for decision fusion in visual 

tracking (Li et al., 2013) and human activity recognition (Rottensteiner, Trinder, Clode, Kubik, & 

Lovell, 2004). 

Each feature contributes to determine the EPs’ class. The contribution for each feature is 

characterized by the Basic Belief Assignment (BBA) function mk(y), which is the belief for EP of 

type y, where y {FF, CF, SS, RE, AB}. Since there are five features in f defined in (3-4), we 

have four BBA functions, k=1,2,3,4,5. To compute the belief of each feature for each type of EP, 

the average DTW distance is used between the unknown sample and all the training templates of 

a certain EP class. Smaller DTW distance d indicates greater similarity, while greater value shows 

larger belief. Therefore, the negative value of the average distance represents the belief amount 

(greater similarity -> smaller d -> larger negative d -> larger BBA).  

To combine belief from different sources, the Dempster’s Rule of Combination (DRC) 

calculates a joint BBA m1,2() from two independent beliefs m1() and m2(), according to: 

 𝑚1,2(𝑦) =
1

1 − 𝐾
∑ 𝑚1(𝑦1)

𝑦1⋂𝑦2=𝑦
𝑚2(𝑦2) (3-7) 

where y1, y2, y{FF, CF, SS, RP, AP}. K=y1y2= m1(y1)m2(y2) is a measure of disagreement 

between the two beliefs m1() and m2(). A large K value implies strong disagreement between the 

two beliefs regarding the EP’s class. The DRC process combines two BBA at a time, and the 

resultant joint BBA is combined with the remaining BBAs repeatedly, one at a time, to reach the 

final belief. In this study, five BBA functions through DTW comparisons of each feature (i.e., 

initializing m1~m5) were created, and then DRC is used to combine all voting weights to reach a 

single final decision. Algorithm 3.1 shows the classification procedure.  
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Algorithm 3.1 Classification with modified DTW and DST. 

Input: Testing model string t of length nt (c1,c2,…cn) 

Output: label --- predicted type of EP 

1 for each training sample x of length nx 

2        for each feature channel k=1,2,3,4 

3               for each character ci in tk 

4                     for character cj’ in xk between the window 

5                           similarity = - LCS(ci,cj’) 

6                           cost(i,j) = similarity + min( cost{(i,j), (i+1,j), (i,j+1)} ) 

7                     end for  

8               end for 

9               distance(t,x,k) = cost(nt+1,nx+1) 

10       end for 

       k=5 

       if (∑𝑥𝑘==0 and ∑ 𝑡𝑘==0) or (∑𝑥𝑘>0 and ∑ 𝑡𝑘>0) 

             distance(t,x,k) =0.0 

       else  

             distance(t,x,k) =1.0 

       end if 

11 end for 

12 for each feature channel k 

13       for all training templates x of label y in S 

14 
              ( , , )k

x S

m y mean distance t x k


   

15       end for 

16 end for 

17 label for t  DRC(m1, m2, m3, m4, m5) 

3.2 Designing an Assistance Model 

After the commonly-applied exploration procedures (EPs) are learned, designing different 

exploratory aids based on the learned procedures is the next step to develop an intelligent assisting 

system. It is defined as the Assistance Model, that can provide appropriate exploratory aids based 

on the applied EP. To design such a model, understanding the goal behind the detected user 

behavior, is a crucial aspect. For example, people who are BVI use procedure AP (absolute 

positioning shown in Table 3.1) to measure the distance between an object and the image boundary. 
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Different from vision, using haptic-based interaction, distance can only be estimated by the elapse 

of time, from the point the user left a place till the user reached another place (Hatwell et al., 2003). 

Due to the lack of sensibility for distance, usually users perform this procedure couple of times 

between the same object and the same image boundary repetitively, to get a more accurate 

measurement. To make this process faster, the assistant model can provide users the shortest path 

between the object and the image boundary. Besides understanding the goal, knowing the 

limitations of human users is another design criterion that is considered in this work. For example, 

memorizing the positions of explored objects on an image can be cognitively heavy without vision, 

and thus lead to unnecessary movements to relocate and repeat the procedures that have been 

performed on an explored object (Hatwell et al., 2003).  

In this section, goals behind each EP was firstly revealed through a “think-out-loud” 

experiment. Then, exploratory aids were developed based on the two design criteria discussed 

above. 

 The goals of exploration procedures 

When individuals who are blind explore images, their two main goals are to discriminate 

what objects are on the image and where these objects are located relative to each other and within 

the whole picture for understanding image content. These two goals can be formally defined as - 

identifying objects and locating objects. To understand the relationship between performing each 

exploration procedure and the ultimate goal of understanding the image, experiments were 

conducted with users doing a think-out-loud image analysis, requiring users to explain why they 

were performing a certain exploration procedure using our multimodal image perception system 

while they were actively exploring parts of the image. The details of the experiment are explained 

in 4.2. It is observed from experiments that the two major goals are broken into specific pieces. 

For example, users identify an object by measuring its shape, size and texture. “Contour following” 

is applied to understand the shape and size, while “surface sweeping” is used to obtain the texture. 

Therefore, two final goals are broken into smaller goals, that are defined as intermediate goals and 

summarized in Table 3.3.   
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Table 3.3 Goals of exploration procedures. 

EP Goals 

FF 

 Measure the size of the whole image 

 Identify the side of the image 

 Locate explored objects 

CF 

 Understand the shape and size of an object 

 Locate the compass points on an object 

 Locate explored neighbors 

SS  Understand the texture of an object 

RP 
 Measure the location (distance/direction) of an object relative to its 

neighbors 

AP  Measure the distance of an object relative to one image boundary 

 

From Table 3.3, we can observe that participants used the same EP for different goals. For 

example, there are three goals for CF. Besides understanding the shape and size of an object, CF 

was also performed to locate the compass points on an object or locate the explored neighbors. 

The compass points of an object are defined as the most outreached positions on its boundary in 

the four directions, North, South, East, and West. While the neighbors of an object are the objects 

surrounding it. 

Among these goals, some of them were pursued frequently, while others were less frequent. 

A normalized histogram was computed to show the frequency of each goal during the exploration 

of one image. To identify whether the distribution of used goals is common among different users, 

Bhattacharyya coefficient is then calculated to measure the similarities between the histograms, 

following (3-8). P and Q are the two histograms with n partitions. pi and qi are the frequencies of 

the ith partition in P and Q. 

 𝐵𝐶(𝐏,𝐐) =∑ √𝑝𝑖𝑞𝑖
𝑛

𝑖=1
 (3-8) 

The data collected from experiment 4.2 shows a coefficient of 0.954 among 6 participants, 

which indicates a shared behavior among users. The histogram containing the data of all the 

participants are shown in Figure 3.7. 
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Figure 3.7 Histogram of the goals for exploration procedures. 

 Exploratory Aids 

External assistance is necessary when current techniques are not adequate. Therefore, 

exploratory aids are designed for challenging goals. From Figure 3.7, it is observed that “get 

distance to image boundary”, “get neighbor location” and “locate object compass” are the top three 

goals found from experiments. Exploratory aids were firstly designed for these goals, including 

Contour Compass (CC) and Path Shortcut (PS). Another observation from this study is that  users 

are required to memorize or create a detailed mental picture while exploring images. “Locate 

explored objects” and “Locate explored neighbors” were the two goals requiring the most 

memorization. To alleviate the requirement on memory/cognitive load, two other exploratory aids 

were designed: Border Projection (BP) and Contour Neighbors (CN). The design of these 

exploratory aids is explained in the following sections. 

Contour Compass 

Observed from Figure 3.7, the participants trace the contour of the object (CF) to locate 

the compass points of an object, so that they can more accurately measure the absolute location of 

the object. Contour Compass (CC) is designed to facilitate this procedure. The locations of an 

object’s compass points are provided when the user is moving along the contour of an object. The 



 

 

46 

compass points of an object are defined as the most outreached positions on its boundary in the 

four directions, North, South, East, and West. The visualization for CC in Table 3.4 shows an 

example, where the gray dotted lines indicate the bounding box and the black dots indicate the 

four compass points. To calculate these positions, the pixels on the contour are firstly identified. 

The pixels that have the smallest or largest x- or y-positions are annotated as the four compass 

points. 

Path Shortcut 

Path Shortcut (PS) is developed to facilitate the measurement of distance and direction 

between an object and its surroundings, addressing the other two most common goals observed 

from Figure 3.7 last two columns. When RP is detected, the path connecting the centers of the two 

neighboring objects are calculated and rendered to the users. Neighbors of an object are defined as 

the objects that can be reached following a straight line without interfering with another object. To 

automatically extract the straight paths between every pair of neighbors, lines connecting the 

centroids of every two objects are created. Edge detection (Bowyer, Kranenburg, & Dougherty, 

2001) was used to extract the contour of an object. The intersection point of the line and the object 

contour was utilized as the correspondence points (shown in Figure 3.8(a)) for object 1 and 2. The 

path shortcut is then defined as the straight line connecting the pair of correspondence points. 

When obstacles were located over any part of the line, the two objects were not considered as 

neighbors, thus no cues were created (shown in Figure 3.8(b) for object 1 and 3). 

When AP is detected, the shortest path between an object and the related image border was 

provided to expedite the acquisition of distance. The shortest path between an object and an image 

border is defined as the projected line from the compass points to the image borders. Similarly to 

the shortcut of neighboring objects, no hints were created if there are obstacles between the object 

and the image border (Figure 3.8(c)).  
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(a) (b) (c) 

Figure 3.8 Examples of path shortcut. (a) Shortcut between two neighbors; (b) No shortcut for 

object 1 and 3; (c) Shortcut from object 2 to the top, right and bottom image border and no 

shortcut from object 2 to the left image border. 

Border Projection 

Limited memory resource is another shared problem among BVI users. To alleviate the 

memory load, Border Projection (BP) was provided by indicating the projected position of objects 

when the user was moving along the image borders (FF). It’s also the most popular goal for FF, 

observed from Figure 3.7. To construct the aids BP, the bounding box for each object on the image 

were extracted by applying blob detection techniques (Danker & Rosenfeld, 1981). The regions to 

the left, right, top and bottom of the object were examined. If obstacles were detected in a region, 

no aids would be generated for the border associated with the region. In Figure 3.9(a), the right 

and bottom region of the object 1 has obstacles, therefore, no aids were generated on the right and 

bottom image border for the object. Among the remaining regions, the distance between the 

bounding box and the image border, dk(i), was calculated, where k ∈{left, right, top, bottom}, 

indicates the image border, and i is the unique id of an object (i=1). The aid is then generated on 

the border with shortest distance. If an object was not directly adjacent to any image border, no 

aids were provided as shown in Figure 3.9 (b) for object 2.  

2
1

3
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(a) (b) 

Figure 3.9 Examples of border projection. (a) Aids on the nearest image border; (b) No aids for 

blocked objects. 

Contour Neighbors 

Contour Neighbors (CN) helped to decrease the load on memorization indicating the 

neighbors when the user was doing CF. It is also the second popular goal for CF. The pair of 

correspondence points obtained from strategy PS was used to indicate the approximate locations 

of neighbors. 

Table 3.4 summarizes the exploratory aids discussed above, with their related exploration 

procedures and visualizations. These aids were further compared through user studies along with 

the selection of proper user interfaces, and explained in section 4.3.  

  
 

  
 

1

2
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Table 3.4 Summary of exploratory aids. 

Exploratory 

Aids 
Description 

Related 

Exploration 

Procedure 

Visualization 

Border 

Projection 

(BP) 

Projects the location of the objects 

onto the image boundaries. 

Frame 

Following 
 

Contour 

Compass 

(CC) 

Indicate the locations of the 

compass points. 

Contour 

Following 

 

Contour 

Neighbor 

(CN) 

Indicate the locations of explored 

neighbors. 
 

Path 

Shortcut 

(PS) 

Calculate the shortest path 

between the object and 

 its neighbor (RP) 

 the image boundary (AP) 

Relative 

Positioning 

 

Absolute 

Positioning 

 

3.3 Sensory-substituted User Interface 

Different sensory modalities were utilized to deliver the exploratory aids,. Tactile and 

auditory sensory substitution are the most commonly used approaches to replace vision. Several 

studies and applications were reviewed focusing on the performance of sensory substitution. It was 

found that the optimal feedback modality is rather case-specific than universal. Experiments were 

conducted in this research to measure the performance of each exploratory aid with vibration, 

sound and magnetic attraction. The optimal modality for each exploratory aid was determined 

based on the performance, which included the task completion time and accuracy. 
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The multimodal interface tested in this study consists of a computer, a haptic controller, 

and two “Tactors” that generates vibrational feedback (shown in Figure 3.10). The computer runs 

a program that extracted image features using image processing techniques (Zhang et al., 2017). 

Then, these features were rendered as other sensory modalities and delivered to the user through 

the computer speaker, the haptic controller, and the vibrational Tactor. In this study, the 

multimodal image interface rendered the contour of objects through haptics feedback and 

expressed color intensity through vibration. One Tactor was attached to the user’s non-dominant 

hand to receive vibrational feedback inside the object. Besides feedback rendering, the haptic 

controller works as the input device that is similar to a computer mouse. That is, a user can hold it 

as a stylus to explore an image. 

 

 

Figure 3.10 Sensory substituted interface. 

 

To render the exploratory aids, vibrational feedback was delivered through a Tactor 

attached to the dominant hand of the user, magnetic feedback was provided through the haptic 

controller and sound feedback was delivered through the computer speaker. The users would feel 

the vibrational or auditory feedback during the time that they were in the aids operational area, 

while they would feel the magnetic attraction if they were getting close or moving away from the 

area of the hints.  

Section 4.3 explains the design of experiments and the performance metrics to evaluate 

each exploratory aid delivered through different modalities.  
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3.4 Performance measurement 

After the validated exploratory aids were integrated into the multimodal image exploration 

system, an evaluation of the system was performed. To evaluate the image exploration system with 

exploratory aids, the system was compared with two other interfaces, including the system without 

intelligent assistants and the system with human assistants. Multiple evaluation metrics were 

utilized to measure the system in different aspects, including task performance, and workload. 

 Task performance 

For an image exploration system, the time spent to complete the task and the accuracy of 

image understanding are two crucial aspects to assess user performance. The intelligent assistant 

was developed to enhance the understanding of an image in a timely manner. 

Task completion time 

A maximum of m minutes was set to limit the time for the exploration of one image. m 

equals 10 in this experiment. 

Accuracy of image understanding 

To understand the mental image built by the users after their explorations, a common 

practice requires asking them to replicate the image using real-world objects and measuring the 

similarities between the original image and the replicated image. To measure the similarities, both 

images are converted to binary images eliminating the differences introduced by the material of 

replicated image. For example, the 3D-printed objects on the replicated image has a different color 

and texture than the objects digitally. Figure 3.11 illustrates the processing pipeline including the 

replicated and original image, so that they can be compared. As the copy of the replicated image 

was acquired by taking a photo of it using a camera, the picture would exhibit projective distortions. 

Therefore, distortion correction was applied first. The image was then cropped to remove the 

unrelated background. At last, the image was converted to a binary format.  
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(a) 

 

(b) 

Figure 3.11 Pipeline for image processing (a) replicated image, and (b) original image. 

 

Similarities 𝒮(𝐴, 𝐵) between the two binary images, A and B, were calculated following 

(3-9) and used as the accuracy measurement.  

 𝒫𝐴 = 𝒮(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 (3-9) 

 Workload Assessment 

Upon literature review, it was found that several studies reported that workload is to be 

related to performance. Workload is often measured using multiple techniques to develop a 

coherent and complete understanding of workload. In this research, two approaches were used to 

measure the workload, including subjective rating scales and objective physiological 

measurements. 

Rating scales 

NASA-Task Load Index (NASA-TLX) is a widely used approach to give multidimensional 

ratings to workload (Hart & Wickens, 1990). A questionnaire containing six ratings was answered 
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by the participants after each trial, including, mental demand, physical demand, temporal demand, 

performance, effort and frustration. 21 Scales ranging from 0 to 20 were given for each 

measurement, with a five-point step. After the participants answered the questionnaire, they were 

asked to make pairwise comparisons to choose the measurement that is more related to workload 

for themselves. The number of times a measurement was selected was considered as the weight wi 

for measurement i. Then the overall work load index 𝒫𝑊
𝑅  was computed following (3-10), where 

si is the scale score for measurement i and n equals the number of ratings in the questionnaire 

(n=6). The weighted score was further divided by m (m=15) to get the workload index ranging 

from 0 to 100. 

 𝒫𝑊
𝑅 =

1

𝑚
∑ 𝑤𝑖𝑠𝑖

𝑛

𝑖=1
 (3-10) 

Physiological measurements 

Physiological measurements including heart rate (HR), hear rate variability (HRV), skin 

conductance response (SCR), pupil size, and brain activities are commonly used signals to evaluate 

workload. While pupil size is not applicable in the study for BVI users and brain activities are 

difficult to measure, HR, HRV and SCR are good measurements. They are sensitive to mental 

workload (Nourbakhsh, Chen, Wang, & Calvo, 2017). Average heart rate was applied as the metric 

of HR, average R-R intervals was used for HRV analysis while the frequency of SCR was used as 

the indicator for workload. Literature indicated that workload can lead to an increasing of average 

heart rate, decreasing of R-R intervals and increasing of SCR frequency.  

3.5 Summary 

This chapter explains in detail the framework developed to learn and classify the 

exploration procedures applied by users who are BVI. A spike-timing neural network based 

approach was used to encode the collected temporal-spatio data. Classification was then achieved 

based on distance metrics and Dempster-Shafer decision fusion technique. Being able to 

understand the exploratory behavior of BVI users, multiple assisting strategies were designed to 

facilitate their explorations of images. Multiple sensory modalities were then tested to deliver the 

assisting strategies. At last, performance metrics, including task performance and workload 

assessment were applied to evaluate the system.  
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 EXPERIMENTS AND RESULTS 

This chapter explains the experimental design and results based on the developed 

methodology. Regarding RQ1 to learn exploration procedures, experiments were conducted to 

evaluate its performance. The results obtained from the experiments formed the foundation of this 

research, as the system is capable of understanding the user behavior. The success of a user model 

is the key point for further development of the assistant model and the user interface (RQ2). 

Experiments were then conducted to develop the user model. The results helped the development 

of exploratory aids discussed in Error! Reference source not found.. Further experiments were 

conducted to answer RQ2 that discovered the optimal sensory modalities to deliver each 

exploratory aid. Final experiments were performed to validate the developed image exploration 

system with exploratory aids. 

4.1 Learning Exploration Procedures 

To evaluate the proposed framework for EPs learning and classification, our scenario was 

set to explore blood smear images. Experiments were conducted to collect users’ data of observed 

EPs. These data were then annotated and used for training and testing of the proposed EP learning 

framework. The results discussed here includes the performance of the proposed learning 

framework. 

 Data collection 

Participants were asked to explore blood smear images blind-folded using a haptic-based 

image exploration system (Figure 4.1) and replicate the image by placing 3D printed objects on a 

board after the exploration. Trajectory data from 10 participants exploring 12 images were 

collected, including 5 females and 5 males, with age from 18 to 30. Each individual EP was then 

annotated from the whole exploration, resulting 168 samples for FF, 803 for CF, 207 for SS, 238 

for RE and 483 for AB. Figure 4.2 shows an example of captured procedure AP in red. Color 

intensity indicates the elapsed time of trajectory, where lighter shades occurred earlier than darker 

shades. Twenty samples per EP were taken out from the dataset for training, and the rest were used 

as testing samples. 
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Figure 4.1 A haptic-based image exploration system. 

 

 

Figure 4.2 Examples of captured EP AP performed by participants. 

 Evaluation 

A 10-fold cross-validation was performed to evaluate the proposed framework, where in 

each fold, a leave-n-subject-out practice was utilized. The value of n depends on the number of 

training samples. For example, when one sample was used for training, the user of the training 

sample was eliminated from the testing set which resulted in n = 9. Otherwise, when there were 9 

training samples, 9 participants’ samples were used for training, so the remaining one subject’s 

data was used for testing (n = 1). The proposed framework has an average classification accuracy 

of 95.89% with 18 training samples for each exploration procedure type. Figure 4.3 shows the 

confusion matrix, where rows represent ground truth and columns represent predicted labels. The 

precision rate, recall rate and F1 score were also computed for each class of exploration procedure 

according to the one-vs-rest basis (Error! Reference source not found.). 
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Figure 4.3 Confusion matrix of classification accuracy for the proposed framework with 95.89% 

accuracy. 

 

Table 4.1 The precision rate, recall rate and f1 score of the results. 

 FF CF SS RP AP 

Precision 1.00 0.97 1.00 0.83 0.99 

Recall 1.00 1.00 0.88 0.97 0.90 

F1 score 1.00 0.98 0.94 0.90 0.94 

 

Further analysis was conducted to understand the effect on classification accuracy when 

the SNNs were trained with different number of samples. Figure 4.4 shows the average 

classification accuracy with variance over different number of training samples. The accuracy 

reaches 94% with 5 training samples. 
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Figure 4.4 Classification accuracy over different number of training samples. 

Time complexity analysis 

One limitation of the proposed approach is that it takes longer for classification when the 

number of training samples increases because the testing sample needs to be compared with all 

training templates. Such an instance-based classification scheme requires O(N) time for testing, 

where N is the number of templates in training set. A different SNN-based classification scheme 

would tackle this challenge by training Support Vector Machines (SVM) with Normalized 

Histogram of Neuron Firings (NHNF) as features (Zhou & Wachs, 2018). The NHNF descriptor 

summarizes the SNN firing patterns over a time window and the SVM training creates 

discriminative features for classification purposes. As the number of training examples increase, 

the testing time is held constant as O(1), thus making it more suitable for large datasets.  

Adapting this approach with the features encoded with/without SNNs, the normalized 

histogram of feature 𝛿𝑟 was also computed and concatenated with the NHNFs of the three SNN-

encoded features. Classification was then performed by training this concatenated histogram using 

a SVM. The 10-fold leave-one-subject-out cross-validation was performed for this comparison. 

Compared with the proposed approach with 95.89% accuracy, faster classification was achieved 

by sacrificing the accuracy to 88.68% with the NHNF approach. Figure 4.5 shows its confusion 

matrix. 
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Figure 4.5 Confusion matrix of recognition accuracy for SNN with NHNF descriptor, with 

accuracy 88.68%. 

Comparisons with DTW and HMM 

The proposed approach was also compared with popular recognition algorithms for time-

series data, including DTW (“Dynamic Time Warping,” 2007) and HMM (Rabiner, 1989). An 

overall accuracy of 52.14% was obtained by using the modified DTW proposed in this research, 

but without the encoding using SNNs. In these comparisons, 18 training samples were used for 

each type of procedure. The leave-one-subject-out cross-validation was also performed. The 

confusion matrix is shown in Figure 4.6.  

uclidean distance was used to calculated the differences between samples in terms of 

feature angle since it is a continuous value, while the LCS used in this framework was used as the 

distance function for feature context index and reference switch. Each testing sample was 

compared with 18 training samples for each type of procedure. The DTW confusion matrix shows 

an accuracy of 61.30% (Figure 4.6). It was observed that Frame Following (FF), Contour 

Following (CF) and Surface Sweeping (SS) were mostly recognized, while DTW failed with the 

other two types of procedures. Relative Positioning (RP) were likely recognized as CF because 

both procedures were related to the objects on an image. In contrast, Absolute Positioning (AP) 

were recognized mostly as FF as both trajectories had contact with the boundary of the image. 
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Figure 4.6 Confusion matrix of recognition accuracy for DTW, with accuracy 61.30%. 

 

In terms of HMM, one model was trained for each type of exploration procedure. Therefore, 

in this experiment, five models were trained for classification. During classification, the testing 

sample was fed into all five models and the probability that this sample belongs to each model was 

calculated. The label of model with the highest probability was determined as the predicted label. 

In this study, every model had five hidden states and k-means clustering was applied to categorize 

the observations into discrete values as the features contain continuous values. The value of k was 

determined empirically as 10 in this experiment. An accuracy of 28.70% was obtained with the 

confusion matrix shown in Figure 4.7. Except Frame Following (FF), HMM has difficulties 

distinguishing the rest procedures. 
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Figure 4.7 Confusion matrix of recognition accuracy for HMM, with accuracy 28.70%. 

Recognition of partial EPs 

Our proposed approach can recognize incomplete EPs. The collected data contained a 

several incomplete EPs. For example, Figure 4.8(a) is a completed CF, while Figure 4.8 (b) – (d) 

shows several forms of incomplete CF. Similar as Figure 4.2, lighter shade indicates earlier 

movement. It is a common practice for users to trace only partial contour when they are trying to 

locate the objects. For instance, to understand the object’s location relative to the top of the image, 

users would trace the partial contour of the object to determine its top, then leave from there to 

reach the top of the image. The degree of incompletion of an EP can vary significantly. Thereby it 

was unreasonable and time-consuming to collect and train all forms of incomplete EPs. Using this 

proposed approach, the system would recognize various incomplete EPs while it being trained only 

with completed EPs. 

Recognizing incomplete trajectories also allows early predictions. Having only the first 

several time frames of an EP is another example of incomplete trajectories. With such an early 

prediction capability, the system can provide instant assistance to the user, improving efficiency 

and decreasing the chances of critical errors. For example, the haptic-based system can provide 

magnetic force feedback to the boundaries of objects, once it detects the CF procedure, and 

deactivate this effect once the user is leaving the object’s boundary for AP or RP. 
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(a) (b) 

  
(c) (d) 

Figure 4.8 Examples of complete and incomplete EPs. 

Training SNNs with different properties of neurons 

The spiking neurons used to build the network are model following the approach proposed 

by Izhikevich (Izhikevich, 2004a). The membrane potential v and recovery variable u is updated 

following (4-1) and (4-2), when the neuron is stimulated with an input current I. 

 𝑣′ = 0.04𝑣 + 5𝑣 + 140 − 𝑢+ 𝐼 (4-1) 

 𝑢′ = 𝑎(𝑏𝑣− 𝑢) (4-2) 
 

If the neuron spikes (v>= 30mA), v and u are reset according to (4-3). 

 {
𝑣 ← 𝑐

𝑢 ← 𝑢+ 𝑑 (4-3) 

The four parameters a, b, c and d determines the property of the neuron thus affect the 

neuron firing activities. Parameter a describes how fast the neuron recovers, where smaller values 

leads to slower recovery. Parameter b indicates the sensitivity of the recovery variable to 

fluctuations of membrane’s potential. c is the reset value of a neuron’s membrane potential and d 

is the reset value of the recovery variable after it is fired. 

Fourteen primary types of neurons (Izhikevich, 2004b) that are applicable in this study are 

examined. Their parameters and properties are explained in Table 4.2, together with the 

classification accuracy achieved by training SNNs with these types of neurons. Their responses to 
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different input current are also illustrated in Figure 4.9. The responses over time are shown above 

the line indicating input current, and the length of bolded horizontal refers 20ms. 

 

Table 4.2 Classification accuracies with different type of neurons. 

Type of Neuron Description a b c d Accuracy 

(a) Tonic Spiking 
Fire trains of spikes with 

continues input 
0.02 0.2 -65 6 94.39% 

(b) Phasic Spiking 
Fire a single spike at the onset 

of stimulus 
0.02 0.25 -65 6 72.76% 

(c) Tonic Bursting 
Fire periodic bursts of spikes 

when stimulated 
0.02 0.2 -50 2 82.99% 

(d) Phasic Bursting 
Fire bursts of spikes when 

stimulated 
0.02 0.25 -55 0.05 75.76% 

(e) Mixed Mode 

Fire phasic bursts at the onset 

of stimulus and then fire trains 

of spikes 

0.02 0.2 -55 4 85.55% 

(f) Freqency 

Adaption 

Fire trains of spikes with 

decreasing frequencies 
0.01 0.2 -65 8 93.72% 

(g) Subthreshold 

Oscillations 

Neurons exhibiting oscillatory 

potentials 
0.05 0.26 -60 0 69.21% 

(h) Resonator 

respond only to the doublet 

whose frequency resonates 

with the fre- quency of 

subthreshold oscillations. 

0.1 0.26 -60 -1 56.03% 

(i) Rebound Spike 

Fire a post-inhibitory spike at 

the onset of an inhibitory 

input 

0.03 0.25 -60 4 61.15% 

(j) Rebound Burst 

Fire post-inhibitory bursts at 

the onset of an inhibitory 

input 

0.03 0.25 -52 0 73.21% 

(k) Threshold 

Variability 
Variable firing threshold 0.03 0.25 -60 4 46.75% 

(l) Bistability 
Switching between resting and 

spiking with a stimulus 
1 1.5 -60 0 71.65% 

(m) DAP Depolarizing After-Potentials 1 0.2 -60 -21 76.26% 

(n) Accomodation 
Less excitable to strong but 

slowly increasing input 
0.02 1 -55 4 18.51% 
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(a) (b) (c) (d) 

   
 

(e) (f) (g) (h) 

  
 

 
(i) (j) (k) (l) 

 
 

  

(m) (n)   

Figure 4.9 The responses to stimulus of different types of neurons. 

 

It was observed that the type of neuron that fired a train of spikes and adapted its spiking 

frequency over time exhibited the highest the accuracy of 94.39% and 93.72%. These were very 

close to the higher accuracy of 94.55% achieved by using the regular spiking neurons (a=0.02, 

b=0.2, c=-65, d=8). 

4.2 Developing an Assistance Model 

To develop assisting strategies, experiments were conducted with blind and blind-folded 

subjects, understanding their goals of performing a particular EP. 
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 Data collection 

Participants were asked to explore a blood smear image using the same setup illustrated in 

Figure 4.1. Six blind-folded participants were recruited for this experiment, including 3 females 

and 3 males, with age ranging from 20 to 30. As opposed to the data collection procedure in the 

first experiment, this time, participants were doing a think-out-loud image exploration. After they 

performed one EP, they would need to say loud why they did it. The goals are then summarized 

by the observer. The number of times a goal appears were recorded for further analysis.  

 Results 

The normalized histogram is computed for each user to understand the distribution of goals 

(Figure 4.10), where each color of bars represent the data of one subject. 

 

Figure 4.10 Normalized histograms of goals for image exploration. 

4.3 Sensory Substituted User Interface 

Experiments were designed for each assisting strategy to determine the optimal sensory 

modalities to deliver each exploratory aid. A within-participants experiment setup was utilized to 
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eliminate the differences introduced by the variations of subjects. Four interfaces were compared 

in these experiments, including the interface with exploratory aids delivered through vibration, 

sound, magnetic attraction and the interface without exploratory aids. As a baseline, the interface 

was compared with versions of the system not providing assistance in order to determine whether 

a certain aid was necessary.  

 Participants 

Twenty participants aged from 20 to 50, were recruited for this study, including 2 blind 

users and 18 blind-folded individuals. This study was approved by Purdue IRB. 

 Tasks and Measurements 

Participants performed two tasks in this study, that task 1 was used to evaluate Border 

Projection (BP) and Contour Neighbors (CN), while users performed task 2 to evaluate Contour 

Compass (CC) and Path Shortcut (PS). In Task 1, participants were required to explore an image 

using the multisensory interface and confirm their positions by touching them one by one using 

the haptic controller; while in Task 2, the users would explore an image using the multisensory 

interface and replicate the image with 3D printed pieces.  

Task 1: Evaluation of BP and CN 

In each trial of this experiment, the participants explored the whole image using the 

multisensory interface and build a mental image of their exploration. After they felt confident 

about their comprehension about the image content, the participants would confirm the positions 

of the objects by pointing at the object one by one using the haptic controller. Five types of blood 

smear images were used as examples in this study, with the number of cells on the image ranged 

from 3 to 7. To eliminate learning effect, different images were used for each testing condition and 

the sequence of exploring these images were randomized for each participant. Table 4.3 shows all 

the explored images. The time taken for the whole task and the accuracy of confirmed locations 

were recorded. The accuracy in this task is defined as the percentage of correctly located objects.  
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Table 4.3 Testing Images for Task 1. 

Number of Objects 

on the Image 
Image 

3 

    

4 

    

5 

    

6 

    

7 
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Task 2: Evaluation of CC and PS 

To understand how CC and PS can help users comprehend image content, participants were 

asked to explore an image using the multisensory interface and then replicate it using 3D printed 

blocks. Similarly to task 1, learning effect was eliminated by using different images for testing and 

the order of these images were randomized for all participants. The testing images were shown in 

Table 4.4. This task also measured the time used for each trial and how accurate the image was 

replicated. The accuracy of this task is defined as the similarity between the replicated image and 

the original image, which was defined in (3-9). Table 4.4 also shows an example of the replicated 

image for each testing image. 

Table 4.4 Testing Images for Task 2. 

Testing 

Image 

    

Replicated 

Image 

    

Subjective Measurements 

Subjective measurements about the usability were also collected through a Likert-scale 

questionnaire. Participants were asked to rate the amount of helpfulness and intrusiveness 

(expressed through interruptions) when the exploratory aids were delivered in different types of 

sensory feedback. 
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 Procedure 

Practice trials were conducted in order to get the participants familiar with the different 

interfaces ad modalities. After the participants felt comfortable with the system, they performed 

the task with a random order of experiment conditions. A post-experiment usability survey was 

filled after all the trials of an exploratory aid were completed. 

 Experimental Results 

Border Projection 

Task 1 was used to evaluate BP and it involved two experimental factors, including the 

number of objects on an image and the type of the sensory feedback to deliver the aid. Therefore, 

a two-way ANOVA was conducted to analyze the time taken to complete the task. Significant 

difference was found in both factors: the comparisons between types of sensory feedback has a p-

value of 2e-16, and the differences between number of cells has a p-value of 1.6e-13. However, 

the interaction between the two factors is not significant. Figure 4.11 shows the average time taken 

for the task using BP. 

 

 

Figure 4.11 Average task completion time for Task 1 with Border Projection. 

 

Post-hoc analysis was performed in terms of the types of sensory feedback. Figure 4.11 

shows that Border Projection (BP) helped the participants completing the task significantly faster 
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than the baseline study. Vibrational and auditory BP has the shortest task completion time of  

91.24s and 100.59s without significant difference between themselves. Magnetic feedback has a 

significant longer task completion time when compared to vibration and sound feedback, with an 

average of 151.87s, followed by the baseline study with an average of 194.66s. In terms of 

accuracy, participants correctly confirmed all the locations with the help of BP, while the accuracy 

for trials without any aids is 87.84%. 

Figure 4.12 and Figure 4.13 show the distribution of users’ ratings of helpfulness and 

interruption when BP is provided. It was observed that users’ ratings are in accordance with their 

performance. Sound and vibration were more helpful than magnetic attraction for BP. In terms of 

interruption, vibration and sound was found to be the least interruptive, while some participants 

found magnetic attraction was interrupting with their explorations. 

 

 

Figure 4.12 Level of helpfulness of Border Projection. 
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Figure 4.13 Level of interruption of Border Projection. 

Contour Neighbors 

A two-way ANOVA was conducted to analyze the time taken with Contour Neighbors 

(CN), similarly to the analysis performed with BP, including factors: the number of objects on an 

image and the type of the sensory feedback to deliver the aid. Significant difference was found in 

both factors: p-value of type of sensory feedback is 2.66e-15 and p-value of number of cells is 

1.81e-14. However, the interaction between the two factors was not significant (p-value=0.474). 

Figure 4.14 shows the average time taken for the task using CN. 

 

 

Figure 4.14 Average task completion time for Task 1 with Contour Neighbors. 
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To understand the difference between different types of sensory feedback, post-hoc 

analysis was performed. From Figure 4.14 one can see that CN helped the participants completing 

the task significantly faster than the baseline study. The average task completion time of the 

baseline study is 193.12s, while the average task completion time of magnetic, auditory and 

vibrational feedback is 123.72s, 95.42s and 125.03s, respectively, which is 35.95%, 50.60% and 

35.27% faster than the trials without CN. However, there was no significance among these three 

types of sensory feedback. In terms of accuracy, participants also correctly confirmed all the 

locations with the help of CN.  

The distributions of users’ ratings of helpfulness and interruption when CN was provided 

are shown in Figure 4.15 and Figure 4.16. Participants found sound and vibration were more 

helpful than magnetic attraction. While in terms of interruption, participants didn’t indicate strong 

preference over a certain type of feedback. 

 

Figure 4.15 Level of helpfulness of Contour Neighbors. 
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Figure 4.16 Level of interruption of Contour Neighbors. 

Contour Compass 

Contour Compass (CC) was evaluated in Task 2 when only one factor was involved, which 

is the type of the sensory feedback that delivered the aid. Therefore, a one-way ANOVA was 

conducted to analyze the time taken for the task and the accuracy of image understanding. Figure 

4.17 shows the average task completion time and accuracy of image replication comparing the 

baseline and three types of CC. Significant difference was found among the four testing conditions 

in both task completion time (p-value=3.94e-05) and replication accuracy (p-value=6.68e-04). 

Post-hoc analysis indicated that CC delivered through the three types of feedback had significant 

shorter task completion time compared to the baseline. The average task completion time for 

baseline, magnetic feedback, auditory feedback and vibrational feedback is 189.23s, 152.03s, 

126.94s and 146.16s respectively. Similarly, CC delivered through the three types of feedback had 

significant higher replication accuracy compared to the baseline. The average replication accuracy 

is 87.47%, 89.73%, 88.88% and 89.63% for the baseline, magnetic, auditory and vibrational CC. 

However, there was no significant difference among these three types of sensory feedback in terms 

of both task completion time and replication accuracy.  
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(a) (b) 

Figure 4.17 Performance comparisons among the baseline and Contour Compass via three types 

of sensory feedback: (a) Average task completion time; (b) Replication accuracy. 

 

The distributions of users’ ratings of helpfulness and interruption are shown in Figure 4.18 

and Figure 4.19. Participants found sound and vibration more helpful and less disruptive than 

magnetic attraction. 

 

Figure 4.18 Level of helpfulness of Contour Compass. 
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Figure 4.19 Level of interruption of Contour Compass. 

Path Shortcut 

Task 2 was also performed to assess the Path Shortcut (PS) procedure. One-way ANOVA 

was conducted to analyze the difference among different types of sensory feedback considering 

the time taken for the task and the replication accuracy. Figure 4.20 shows the average task 

completion time and replication accuracy comparing the baseline and the aid PS delivered through 

magnetic attraction, sound and vibration. 

0

2

4

6

8

10

12

Very
Low

Low Moderate High Very
High

N
u

m
b
er

 o
f 

R
es

p
o

n
se

s

Magnet Attraction Sound Vibration



 

 

75 

  
(a) (b) 

Figure 4.20 Performance comparisons among the baseline and Path Shortcut via three types of 

sensory feedback: (a) Average task completion time; (b) Replication accuracy. 

 

Significant difference was found among the four testing conditions in both task completion 

time (p-value=1.09e-10) and replication accuracy (p-value=2.61e-05). Post-hoc analysis indicated 

that PS delivered through the three types of feedback had significant shorter task completion time 

compared to the baseline. Among the three types of sensory feedback, magnetic PS has the shortest 

task competition time (tmean=105.08s), which is significant different than the auditory and 

vibrational PS. However, there was no significant difference between sound and vibration. 

Exploration using magnetic PS was 44.35% faster than the one without any exploratory aids. 

Moreover, PS delivered through the three types of feedback had significant higher replication 

accuracy compared to the baseline. The average replication accuracy was 87.47%, 90.79%, 90.00% 

and 89.53% for the baseline, magnetic, auditory and vibrational PS. However, there was no 

significant difference among these three types of sensory feedback in terms of replication accuracy.  

The distributions of users’ ratings of helpfulness and interruption when PS was provided 

are shown in Figure 4.21 and Figure 4.22. It was observed that magnetic PS is more helpful than 

sound and vibration, while the level of interruption is similar among magnetic attraction, sound 

and vibration. 
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Figure 4.21 Level of helpfulness of Path Shortcut delivered through magnet attraction, sound and 

vibration. 

 

Figure 4.22 Level of interruption with Path Shortcut delivered through magnet attraction, sound 

and vibration. 

 Discussion 

The above experimental results validated that the use of four exploratory aids improved 

user performance and interaction experience in multimodal image exploration. The results also 

indicated the differences between vibrational, auditory and haptics feedback for aids rendering. In 
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this section, we discussed the differences between the three types of sensory feedback, as well as 

the differences between the two exploratory aids in terms of task performance and user experience. 

Comparisons of feedback 

Auditory feedback was found to be helpful when using Border Projection, Contour 

Neighbors and Contour Compass strategies. Users found it clear and easy to interpret as opposed 

to the tactual feedback received from the image exploration interface. Vibration feedback was also 

found to be helpful for Border Projection; however, this is not the case for the aid Contour 

Neighbors and Contour Compass. The reason mostly reported was the confusion between different 

sources of vibration delivered to the users. Besides the vibrational feedback from the dominant 

hand that indicated the cues for neighbors, participants also perceived vibration from the Tactor 

on the non-dominant hand that represented color brightness level. This confusion between two 

sources of vibration did not happen with the aid Border Projection because there was no other 

vibrational feedback provided at the image borders. 

Magnetic attraction was found to be mostly effective to deliver Path Shortcut. Participants 

found it easy to follow straight lines when the path was delivered through the magnetic modality. 

Moving along a straight path is essential during exploration when vision is not available to 

maintain the sense of direction. However, for Border Protection, participants didn’t find this type 

of feedback helpful. As participants moving along the image borders, they could follow straight 

lines without the help of magnetic attraction.  

Comparisons of exploratory aids 

Participants reported that incorporating Border Projection into the image exploration 

process helped them build more clear and global understanding of the image, as compared to 

Contour Neighbors. It was also observed from the experiments that Border Projection helped the 

participants to find all of the unexplored objects faster. However, to relocate the objects, 

participants took less time with the help of Contour Neighbors because the total distance of moving 

from object to object was shorter than the distance of moving along the image borders in order to 

locate objects. Participants had more accurate measurements of the spatial relations between 

objects when Contour Compass and Path Shortcut were activated.  
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Exploratory aids integration 

Since all four exploratory aids indicated significant better performance than the interface 

without any aids, they were integrated into one system. For BP, vibration and sound indicated best 

performance. Although there is no statistical difference between these two sensory modalities, 

participants spent least time when BP was delivered through vibration. CN and CC should be 

delivered through different sensory modalities since they are activated with the same exploration 

procedure, i.e. when users are following the contour of an object. There was no statistical 

difference between the three types of sensory feedback for these two exploratory aids. However, 

vibration was not considered for these two aids because most participants found it confusing. In 

this case, magnetic attraction was selected for CN, while sound was determined for CC. For PS, 

participants had best performance when PS was delivered through magnetic attraction with 

significant advantage over the other sensory modalities. In conclusion, the system integrated with 

computer assistance had BP delivered through vibration, CC delivered through sound, and CN and 

PS delivered through magnetic attraction. 

4.4 Evaluation of the computer-aided image exploration system 

Experiments were designed and performed by blind and blind-folded subjects to evaluate 

Task 2. Three conditions were compared in these experiments, including image exploration with 

human assistance, computer assistance and no assistance. Human assistance is the current gold 

standard helping people who has visual impairments to explore tactile images, while comparisons 

with a system that does not provide assistance served as the baseline of this study. A within-

participants experiment setup was utilized to eliminate the differences introduced by the variations 

of subjects.  

 Participants 

Twenty participants aged from 20 to 50, were recruited for this study, including 2 blind 

users and 18 blind-folded individuals. This study was approved by Purdue IRB. 
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 Tasks and Measurements 

Participants explored an image using the multisensory interface and replicate the image 

with 3D printed pieces. The performance metrics mentioned in 3.4 were applied to evaluate and 

compare the developed systems with the other two conditions mentioned above, including task 

completion time, replication accuracy and workload. 

 Experiment Apparatus 

The computer-assisted multimodal interface developed in this study consisted of a 

computer, a haptic controller, and two Tactors that generates vibrational feedback (shown in Figure 

4.23). The computer ran a program that extracted image features using image processing 

techniques (Zhang et al., 2017) and provided exploratory aids according to the actions performed 

by the user. In this study, the haptic controller acted as the input device that is similar to a computer 

mouse. The user would hold it as a stylus to explore an image. The multimodal image interface 

delivered the shape of objects through force feedback and rendered color intensity through 

vibration. One Tactor was attached to the user’s non-dominant hand to receive vibrational 

feedback for color intensity. To deliver exploratory aids, magnetic attraction was delivered through 

the haptic controller for CN and PS, sound was delivered by the computer speaker for CC and BP 

was expressed by vibrational feedback, which was sent to users by the Tactor attached on their 

dominant hand. 

 

Figure 4.23 Multimodal image exploration system with four exploratory aids. 
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Participants wore devices to collect physiological data. Shown in Figure 4.24, Consensys 

Shimmer was used to measure heart rate and skin conductance. The ear clip was used to collect 

photoplethysmography (PPG) data, which was converted to heart rate. Skin conductivity was 

measured by two electrodes placed underneath the index and middle finger. Both sensors were 

placed on the non-dominant side of the participant and connected to the Shimmer, while the 

Shimmer was worn by the participant on an elastic wrist band on their non-dominant arm. 

 

  
(a) (b) 

Figure 4.24 Setup for physiological data collection. (a) The participant is wearing a ear clip to 

collect heart rate data and sensors under the index and middle finger to measure skin 

conductance; (b) a close-up view of the sensors. 

 Procedure 

Participants were firstly asked to wear the Shimmer and the two Tactors were placed on 

their hands. Practice trials were then conducted to get them familiar with the different testing 

conditions. After participants feel comfortable with the system, they were asked to rest for three 

minutes to collect the baseline data for workload assessment. Participants would then start the 

trials of the experiment. Through one trial of the experiment, Shimmer was firstly turned on to 

start streaming the physiological data. Then participants had to explore one blood smear image 

using one of the testing conditions, and replicate the image using 3D printed objects throughout 

the exploration. After the participants finished the trial of each image and the Shimmer was turned 

off, they were asked to answer the NASA LTX workload questionnaire. Two different images with 

four or five blood cells were tested for each type of system. Table 4.5 shows the testing images. 

Therefore, each participants performed six trials in total. The order of these trials were randomized 
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for each participant. Participants were allowed to take a break if they felt tired and another resting 

session data were collected after each break. 

Table 4.5 Test images to evaluate the system with exploratory aids. 

Number 

of Cells 
Image 

4 

    

5 

    

 

 Experimental Results 

The developed computer-aided image exploration system was evaluated by task 

performance and mental workload. There were two factors involved in this study: types of interface 

and number of objects on the image, therefore, two-way ANOVA tests were performed on all the 

experimental data collected. 

Task performance 

In this study, task performance measured task completion time and the accuracy of image 

replication. For task completion time, the two-way ANOVA analysis indicated no significant 

differences in terms of number of objects on the image, but the type of image exploration system 

indicated significant difference (p-value=0.00778). Also, there was no significant interaction 

between these two factors. Post-hoc analysis indicated the task completion time of human assisted 
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system and computer assisted system was significantly shorter than the time of the baseline system, 

but there was no significant difference between the interface with human and computer assistant. 

Figure 4.25 shows the average task completion time for these three types of image exploration 

system with four and five objects on the image. The average task completion time of the baseline, 

human assisted and computer assisted system was 266.775s, 211.375s, and 196.325s, respectively.  

 

Figure 4.25 Comparisons of average task completion time among the three interfaces: baseline, 

human assistant and proposed computer assistant. 

 

For replication accuracy, the two-way ANOVA analysis indicated significant differences 

in terms of both number of objects on the image (p-value=5.75e-08) and the type of image 

exploration system (p-value=0.0145). But there was no significant interaction between this two 

factors. Post-hoc analysis of the difference among the three types of system indicated significance 

between the accuracy of baseline and the system with human assistance, and between the accuracy 

of baseline and the system with computer assistance. However, there was no significant difference 

between the interface with human and computer assistant. Figure 4.26 shows the average image 

replication accuracy for these three types of system. The average accuracy of the baseline, human 

assisted and computer assisted system is 83.32%, 85.46%, and 85.30%, respectively.  
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Figure 4.26 Comparisons of average replication accuracy among the three interfaces: baseline, 

human assistant and proposed computer assistant. 

Workload Assessment 

Workload was measured through both subjective self-rating questionnaires and objective 

physiological metrics. Figure 4.27 shows the results of the NASA TLX workload questionnaire. 

Significant difference was found among these three types of image exploration system (p-

value=0.00126), but the difference in terms of the number of objects on the image was not 

significant (p-value=0.32542). Also, there was no interaction between these two factors (p-

value=0.65914). Post-hoc analysis indicated participants had significant lower workload using the 

system with human assistant and computer assistant compared to the baseline where tasks were 

performed without any assistant. However, the difference between the human and computer 

assistant was not significant. Ranging from 0 to 100, the average workload for the baseline, human 

assistant and computer assistant was 45.01, 31.79, and 36.32. 
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Figure 4.27 Comparisons of average mental workload measured by NASA TLX questionnaire 

among the three interfaces: baseline, human assistant and proposed computer assistant. 

 

The physiological measurements applied in this study include heart rate, heart rate 

variability and Skin Conductance Responses (SCR). Average heart rate and average R-R intervals 

were computed from the PPG data through the software Kubios HRV Premium, while the 

frequency of SCR was calculated using Ledalab. Physiological data was then normalized in terms 

of each individual. Previous literature indicated mental workload can cause the elevation of heart 

rate and SCR frequency, while lead to a decrease of R-R intervals (Haarmann, Boucsein, & 

Schaefer, 2009; Hjortskov et al., 2004; Novak, Mihelj, & Munih, 2011; Weinger, Reddy, & Slagle, 

2004). Therefore, the average heart rate and SCR frequency was normalized by the maximum 

value of the trials in one testing session. The average R-R intervals were normalized by the 

minimum value of all the trials performed in one session. Two-way ANOVA didn’t show 

significant difference between these three types of interfaces.  Figure 4.28 shows the normalized 

average heart rate and R-R intervals. Although statistical analysis didn’t show significant 

difference between these three interfaces, participants had higher workload exploring images with 

five blood cells on it using the baseline interface, compared to the interface with human/computer 

assistant.  
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(a) (b) 

Figure 4.28 Comparisons among the three interfaces: baseline, human assistant and proposed 

computer assistant in terms of (a) normalized average heart rate and (b) normalized average R-R 

intervals. 

 

Observed from Figure 4.29, participants had the lowest workload using the system with 

computer assistant, followed by human assistant, while the baseline system has the highest value.  

 

 

Figure 4.29 Comparisons among the three interfaces: baseline, human assistant and proposed 

computer assistant in terms of normalized average SCR frequency. 
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 Discussion 

The experimental results indicated that the proposed system with exploratory aids 

improved users’ efficiency for multimodal image exploration. The comparisons with the baseline 

and human assistant are discussed below.  

Comparisons with the baseline 

Participants spent an average of 26.41% less time compared to the exploration without any 

exploratory aids, while maintained slightly higher accuracy of image understanding. Subjective 

ratings also indicated that exploratory aids decreased the workload of understanding images by 

19.31%. Although physiological measurements didn’t show statistical significance, the average 

workload of using system with exploratory aids was lower than the baseline. The benefits of 

exploratory aids are more crucial when the task becomes more difficult. It is observed that the 

advantage over the baseline is larger when there are more cells on the image, especially for 

physiological measurements.  From Figure 4.28 it can be seen that the workload index is a lot 

higher for the baseline with five objects on the image, while it is similar between the two different 

number of cells for the interface with exploratory aids.  

Comparisons with human assistant 

Human assistant is the current gold standard to help users with visual impairments 

understand images. The experimental results indicated comparable performance between human 

assistance and computer assistance. Although there was no significant difference between these 

two interface, participants spent slightly longer time with the human assistant. It is observed from 

the experiments that participants may spend less time to understand the image but getting 

instructions and verbal communication from the human assistant can take longer, compared to 

computer assistant. Participants all found human assistant more helpful when they got lost during 

the exploration. However, some participants also found the human assistant frustrating and 

interfering when they prefer to explore the image independently. In real life scenarios, having a 

human assistant by the side is not always possible, the exploratory aids can be used as a supplement 

to the human assistant. 
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4.5 Summary 

This chapter presented the experiments conducted to validate the proposed approaches. 

Regarding RQ1, learning exploration procedures applied by BVI users, preliminary results 

indicated the potential of the proposed research problem, towards an image exploration system 

with intelligent assistance. RQ2 is answered with the “think-out-loud” experiments to design 

exploratory aids. The optimal modalities for the exploratory aids were determined by experiments 

with blind and blindfolded participants. Experiments were also conducted to answer RQ3 that 

validated the performance of the developed system.  
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 CONCLUSIONS AND FUTURE WORK 

This research led to the development of an intelligent assistant system to help individuals 

who are BVI explore images in real-time. The system consists of three components: the user model, 

the assistance model and the user interface. For the user model, a computational framework was 

developed that classifies different exploratory behaviors of blind users. The exploratory behaviors 

are summarized as five different exploration procedures. These procedures consist of various 

spatio-temporal patterns that are uniquely characterized by rotational, translational and scale 

invariant features. Numerical features representing the angle of movements and context related to 

the image features were further encoded through the training of multiple SNNs. The logic feature, 

referred as “reference switch”, was used later for classification without the encoding of a SNN. A 

distance-based classification scheme was applied in this work to the output of the SNN and the 

reference switch. We modified the DTW algorithm with a distance function using the length of 

LCS to compute the differences between model strings. To make the final decision of the predicted 

label for a sample, DST was integrated in the framework that combined the knowledge obtained 

from multiple features.  

The assistance model was then developed with four exploratory aids. These aids were 

developed from the investigation on users’ goals during image exploration, including Border 

Projection, Contour Neighbors, Contour Compass and Path Shortcut. Three types of sensory 

feedback were compared to render the exploratory aids including vibration, sound and magnetic 

attraction. The user interface was then constructed with all four aids delivered through the optimal 

sensory modality. This proposed system improved the efficiency of digital image exploration for 

users who are BVI to understand images in shorter time and more accurately. Moreover, 

comparisons with human assistants indicated the developed system can provide almost human-

level assistance throughout the exploration. 

Nonetheless, the findings of this study have to be seen in light of some limitations. The 

first limitation concerns the experimental materials. The developed system was tested using blood 

smear images that are composed of distinct objects. To understand the image, the goal of the user 

was to find all the objects and investigate the relations between the objects. However, for images 

like human portraits, users would prefer to identify the person and possibly differentiate between 

various portraits. Subtle details including size and shape of eyes, face contour and positions of the 
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facial features are challenging to identity without visual feedback. The exploration behavior would 

also be different than the exploration of other types of images. Another limitation of this study is 

related to the computational bottleneck of the classification framework. The exploration procedure 

performed by participants couldn’t be classified in real-time, therefore, the exploratory aids were 

provided based on users’ position on the image, rather than what they were doing. Engineering 

techniques were developed to minimize the interference between different aids. The findings of 

this research also lead to insights for better sensory-substituted human-computer interaction.  

5.1 Adaptive Human Computer Interface 

To provide effective assistance, understanding when the user needs help is another crucial 

aspect. To improve the current system, it is beneficial to develop an image exploration system that 

provides assistance adaptively based on users’ real-time requirements. Throughout the 

experiments, participants expressed their frustration when they didn’t need help while the human 

or computer assistant was constantly giving exploratory cues. Computer assistant can be ignored 

by not following the cues, however, human assistants would insist on giving the same cue if the 

user was not following their instructions. Therefore, a module that detects when the user needs 

help can give the user necessary support and at the same time not interfering with the exploration. 

Understanding when the user needs help is a challenging task that can’t be determined by simply 

recognizing what the user is currently doing, but also needs to considering the actions the user has 

done and the user’s current knowledge of the task. Spiking neural network was applied in this 

research to recognize user behavior. It can be extended to detect user status by integrating user’s 

knowledge of the image and analyzing the sequence of performed actions. 

Another insight from the experiments with human subjects is that users prefer getting real-

time feedback on their understanding of the image. Participants not only felt more confident about 

their exploration, but also spent less time repetitively confirming the same information, which in 

other words, understood the image more efficiently. Users were placing 3D-printed objects on an 

attachable pad to present their understanding of the image. Human assistants can give feedback by 

visually comparing the difference between the replicated and original image. In this case, computer 

vision techniques can be utilized to provide the information. Depth cameras have been used to 

monitor the actions of users exploring tactile images by tracking and extracting the positions of 

the fingertips on the image (Brock et al., 2012). Similar concepts can be applied to extend the 
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current system. A video camera can be set up looking down at the replicated image and streaming 

the video data to be processed in real-time. Distortion correction and image processing techniques 

can be applied to extract the positions of objects places on the pad and compare with the original 

image.  

5.2 Virtual Reality for Individuals with Visual Impairments 

As opposed to conventional virtual reality techniques that build virtual scenarios visually, 

auditory and tactual sensations are used to build a virtual world for individuals who have visual 

impairments. In this study, tactual sensation including haptics and vibrational feedback served as 

the major source to render the virtual world, while sound was used to provide exploratory aids. 

There are also studies investigating how to build a virtual world using different properties of sound. 

Spatial audio, such as simulated echolocation and distance-dependent hum volume modulation has 

been utilized to encode the environment around the user that helps with environment exploration 

(Massiceti, Hicks, & van Rheede, 2018). To extend this study, soundscape can be further explored 

to deliver the location information to the user more intuitively. 

5.3 Exploratory Aids for Outdoor Exploration 

Exploring outdoor environments is another application for intelligent user interface with 

exploratory aids for individuals who are BVI. The system developed in this research could be 

adapted and extended to help people with visual impairments explore outdoor environment 

independently. Users who are BVI often rely on audio maps to explore an unknown environment. 

However, current audio maps can only provide sequential instructions on navigation or points of 

interests around the user without location information. The haptics-based interface utilized in this 

research can be adapted to work on mobile devices that helps the user build a mental image of their 

surrounding environment. Before heading over to the next location, the user could virtually 

navigate to the destination following the haptic cues. Compared to sequential verbal instructions, 

participants indicated better sense of orientation and mobility when they reviewed the route 

following haptic cues (Papadopoulos et al., 2017).  
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