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ABSTRACT

Gallagher, Steven A. M.S., Purdue University, May 2019. A 4/3-approximation for
Minimum Weight Edge Cover. Major Professor: Alex Pothen.

This paper addresses the minimum weight edge cover problem (MEC), which is stated

as follows: Given a graph G = (V,E), find a set of edges S : S ⊆ E and
∑

e∈S w(e) 6∑
e∈Qw(e) ∀Q : Q is an edge cover. Where an edge cover P is a set of edges such that

∀v ∈ V v is incident to at least one edge in P . An efficient implementation of a 4/3-

approximation for MEC is provided. Empirical results obtained experimentally from

practical data sets are reported and compared against various other approximation

algorithms for MEC.
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1. INTRODUCTION

This paper addresses the minimum weight edge cover problem (MEC), which is stated

as follows: Given a graph G = (V,E), find an edge cover S : S ⊆ E and
∑

e∈S w(e) 6∑
e∈Qw(e) ∀Q : Q is an edge cover. Where an edge cover P is a set of edges such

that ∀v ∈ V v is incident to at least one edge in P .

In [1], the authors present a 2/3-approximation algorithm for the maximum weight edge

matching problem (MWM). MWM is stated as follows: Given a graph G = (V,E),

find a set of edges M ⊆ E such that M is matching, meaning each edge in M is

endpoint disjoint from each other, and
∑

e∈M w(e) >
∑

e∈M ′ ∀M ′ : M ′ is matching.

This algorithm is discussed in more detail in the succeeding section.

This paper extends the work of [1] by utilizing its algorithms to provide an effi-

cient implementation of a 4/3-approximation for MEC and reporting empirical results

obtained experimentally from practical data sets. The experiment compares the 4/3-

approximation with the optimal solution, and two other approximation algorithms:

Nearest Neighbors, which obtains a 2-approximation and Primal Dual, which obtains

a 2/3-approximation.
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2. ALGORITHMS

2.1 A Maximum Matching Approximation

This section discusses the results from [1] as we will be using their 2/3-approximation

for MWM to implement our 4/3-approximation for MEC. The algorithm originated

from [2] as the first 2/3−ε approximation for MWM and later simplified by [3]. Before

we describe the algorithm, it is best for the reader to first understand a few pieces of

terminology.

If the edges of a path P alternate from M and E \M , it is said to be alternating.

P is considered to be an augmentation if the symmetric difference M ⊕ P is also a

matching and w(M \P ) > w(P \M). If P has k edges not matching two vertices, P is

called a k-augmentation. If P is an alternating path, then the gain of P is defined

to be g(P ) = w(P \M)− w(P ∩M). Finally, if P is a 2-augmentation such that all

edges of P that are not included in the matching are incident to either v or its mate,

P is centered at v. Note here that aug(v) denotes a maximum-gain 2-augmentation

centered at v. The algorithm, as described in Algorithm 1, takes a graph G as input

and returns a matching M . It operates by first permuting the vertices. It then goes

through the permuted set, and modifies the matching such that the matched vertices

in aug(v) become unmatched and the unmatched vertices in aug(v) become matched.

This is repeated for k phases. Algorithm 1 runs in O(m log e−1) time and achieves a

2/3− ε approximation [1].
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Algorithm 1: A 2/3-approximation for MWM [1].

Input: G : G is a graph, k is the number of phases

Result: M : M is a matching

1 begin

2 M := any matching;

3 for i = 1; i < k; i+ + do

4 V = permute(V );

5 foreach v ∈ V do

6 M := M ⊕ aug(v);

7 end

8 end

9 Return M;

10 end

2.2 An Approximation Preserving Reduction

It is possible to obtain a minimum weight edge cover of G by transforming the weights

such that ∀e = (u, v) ∈ G,w(u, v) = w(µ(u)) +w(µ(v))−w(u, v), where µ(t) = (s, t)

is the edge incident to t with minimum weight ∀t ∈ V ; finding a maximum weight

matching using the transformed edges; then greedily expanding the matching until

an edge cover is found. This algorithm is described in further detail below [4].
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Algorithm 2: Minimum Weight Edge Cover through Maximum Weight

Matching

Input: G : G is a graph, ALG : ALG is a function that returns a matching M

Result: C : C is an edge cover

1 begin

2 ∀v ∈ V , Let µ(v) = (u, v) be the edge incident to v with minimum weight;

3 ∀v ∈ V , Let w(u, v) be the weight of the edge between vertices u and v;

4 ∀e = (u, v) ∈ G, e = w(µ(u)) + w(µ(v))− w(u, v);

5 M = ALG(G);

6 C := ∅;

7 ∀e = (u, v) ∈M,C = C ∪ e;

8 ∀v ∈ V \M, C = C ∪ {µ(v))};

9 Return C;

10 end

If ALG returns a perfect matching, the above algorithm will result in a minimum

weight edge cover. The correctness of this procedure is proved in [4], details of this

proof are summarized in theorem 2.2.1. This procedure was proven to be approxima-

tion preserving in [5], consequently, we can substitute the exact algorithm for MWM

with [1]’s 2/3-approximation for MWM. This results in a 4/3 + ε approximation for

MEC, which is proved in theorem 2.2.2.

Theorem 2.2.1 If ALG is an optimal MWM algorithm, then Algorithm 2 obtains a

minimum weight edge cover.

Proof: Lines 1-3 transform the weights of the input graph. There are three cases to

consider under this transformation.

Case 1: w(µ(u)) = w(µ(v)) = w(u, v) ⇐⇒ w′(u, v) = w(u, v)

Case 2: w(µ(u)) = w(u, v) > w(µ(v)) ⇐⇒ w′(u, v) = w(µ(v)) < w(u, v)
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Case 3: w(u, v) > w(µ(v)) > w(µ(u)) ⇐⇒ w′(u, v) < w(µ(u)) < w(u, v)

There are also three additional symmetric cases.

Line 7 appends the matching to the edge cover. Line 8 greedily expands the matching

to find a complete edge cover.

∴ If ALG is an optimal MWM algorithm, then Algorithm 2 obtains a minimum weight

edge cover [4] �

Theorem 2.2.2 If ALG is a 2/3 − ε approximation for MWM, then Algorithm 2

obtains a 4/3 + ε approximation for MEC.

Proof: The correctness of Algorithm 2 is proved in Theorem 3.1. We now prove the

approximation ratio it will obtain with ALG = 2/3− ε approximation.

It has been proved in [4] that if ALG is a 1− ε approximation for MWM, then Algo-

rithm 2 would obtain a 1 + ε approximation for MEC.

If ALG obtains a 2/3-approximation, it follows,

1− ε = 2/3− δ

⇐⇒ −ε = −1/3− δ

⇐⇒ ε = 1/3 + δ

We have, 1 + ε = 1 + 1/3 + δ = 4/3 + δ

∴ If ALG is a 2/3 − ε approximation for MWM, then Algorithm 2 obtains a 4/3 + ε

approximation for MEC �
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2.3 Redundant Edges

The 4/3-approximation, along with Nearest Neighbors and Primal Dual, suffers from

cases in which edges that are not required for an edge cover are included in the so-

lution. These are referred to as redundant edges. An edge is redundant in an edge

cover if we can remove the edge and maintain an edge cover.

The succeeding algorithm operates by iteratively removing edges induced by the

subgraph created from over-saturated vertices. A vertex is considered to be over-

saturated if it is covered by more than one edge. The algorithm iterates over each

edge in the subgraph and removes the edge if both endpoints are over-saturated. This

process repeats until no over-saturated vertices remain. The procedure obtains a per-

fect matching [4].
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Algorithm 3: Removing Redundant Edges

Input: G : G is an edge cover

Result: rWeight : rWeight is the weight of the redundant edges in G

1 begin

2 continue := true;

3 rWeight := 0;

4 degrees := array of length n where the ithentry refers to the degree of ith

vertex;

5 while continue do

6 continue = false;

7 foreach v in G do

8 foreach u adjacent to v do

9 if degrees[u] > 1 and degrees[v] > 1 then

10 rWeight+ = w(u, v);

11 degrees[u]− = 1;

12 degrees[v]− = 1;

13 continue := true;

14 end

15 end

16 end

17 Return rWeight;

18 end
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3. EXPERIMENTS

3.1 Preparing The Experiment

Through a reduction to MWM, we compute a minimum weight edge cover, which

employs [1]’s 2/3-approximation for MWM using one phase. We compare these results

to those obtained by Nearest Neighbors (N.N.), and Primal Dual (P.D.) [6]. We draw

these comparisons using LEDA’s optimal implementation [7]. Table 3.1 summarizes

each algorithm’s approximation ratio and complexity [4]. It can be observed that the

4/3-approximation (4/3) should obtain the most accurate results, while consuming the

most time. It is also worth noting Nearest Neighbors should obtain the least accurate

results, while consuming the least time.

Table 3.1.: Approximation ratio and complexity of each algorithm used in the exper-

iment [4].

Algorithm Approx. Ratio Complexity

4/3 4/3+ε O(m log ε−1)

N.N. 2 O(m)

P.D. 3/2 O(m log n)

The data used for this experiment consists of a set of sparse symmetric graphs col-

lected from SuiteSparse: a suite of sparse matrix software. Table 3.2 shows the graphs

and their associated count of vertices and edges.
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Table 3.2.: Structural properties of graphs sorted in increasing order of edges.

Graph Vertices Edges

Fault 639 638 802 2 097 150

mouse gene 45 101 14 461 095

Serena 1 391 349 31 570 176

bone010 986 703 35 339 811

dielFilterV3real 1 102 824 44 101 598

Flan 1565 1 564 794 57 920 625

kron g500-logn21 2 097 152 91 040 932

hollywood-2011 2 180 759 114 492 816

G500 21 2 097 150 118 594 475

SSA 21 2 097 152 123 097 397

The experiment was conducted using Purdue University’s Rice Community Cluster.

Each job was submitted using 20 computing nodes. Each computing node utilizes

two 10 core, 2.60GHz, Haswell CPUs and 64GB of memory. The data is collected

by randomizing each graph, submitting a new job for each algorithm to run on each

graph and repeating this for five iterations. Random weights assigned are strictly

positive, integer values between 1 and 100. The means of these five iterations are

reported in the succeeding section.

3.2 Experimental Results

Table 3.3 and Figure 1 present a calculated gap with respect to the weight obtained

from the exact algorithm. This gap is calculated as (approx − exact)/exact ∗ 100.

The 4/3-approximation out performs the other algorithms on each graph in our exper-

imental data set. It is notable that on larger graphs, the 4/3-approximation is able to

obtain a near exact minimal weight edge cover.



10

Table 3.3.: Gap from optimal weight.

Graph Opt. Weight Gap

4/3 P.D. N.N.

Fault 639 1 233 199.60 0.67 3.37 5.86

mouse gene 191 847.60 0.60 1.99 3.75

Serena 2 690 749.20 0.49 3.19 5.73

bone010 1 395 886.40 0.74 3.35 5.74

dielFilterV3real 1 552 988.20 0.67 3.37 5.86

Flan 1565 2 031 408.40 0.83 6.05 3.39

kron g500-logn21 26 557 937.20 0.00 0.12 0.18

hollywood-2011 9 403 471.80 0.11 1.88 3.68

G500 21 25 880 291.80 0.00 0.17 0.11

SSA21 8 323 301.00 0.26 2.87 4.06

Geo. Mean 0.13 1.66 2.31
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Fig. 3.1.: Gap from optimal weight.

Table 3.4 and Figure 3.2 present relative time with respect to the exact algorithm.

Relative time is calculated as approx/exact. Nearest Neighbors achieves the best

running times, but not significantly better than Primal Dual. The 4/3-approximation

is the slowest.

Fig. 3.2.: Relative time w.r.t exact algorithm.
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Table 3.4.: Relative time w.r.t. exact algorithm.

Graph Exact(s) Rel. Time

N.N. P.D. 4/3

Fault 639 12.22 0.05 0.07 0.34

mouse gene 13.94 0.03 0.05 0.36

Serena 28.05 0.05 0.06 0.38

bone010 28.75 0.05 0.06 0.34

dielFilterV3real 38.79 0.04 0.06 0.40

Flan 1565 45.25 0.05 0.07 0.38

kron g500-logn21 140.33 0.03 0.05 0.44

hollywood-2011 116.88 0.03 0.06 0.37

G500 21 176.84 0.03 0.05 0.46

SSA21 216.46 0.03 0.04 0.55

Geo. Mean 0.04 0.06 0.40
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Table 3.5 presents the weight retained after redundant edges are removed. This

is calculated by dividing the weight with redundant edges excluded by the weight

with redundant edges included. The results are reported as a percentage. Nearest

Neighbors suffers from the most redundant edges. The 4/3-approximation encounters

the least redundant edges; obtaining almost none in some cases.

Table 3.5.: Percentage of weight retained after removing redundant edges.

Graph Weight Retained

N.N. P.D. 4/3

Fault 639 92.18 96.62 99.99

mouse gene 96.02 97.25 99.91

Serena 92.14 95.51 99.91

bone010 90.92 95.26 99.91

dielFilterV3real 91.26 94.70 99.92

Flan 1565 92.18 95.62 99.91

kron g500-logn21 99.43 99.16 100.00

hollywood-2011 95.86 96.79 99.97

G500 21 99.45 99.21 100.00

SSA21 95.20 95.20 99.95

Geo. Mean 94.42 96.42 99.95
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4. CONCLUSION

Employing the MWM algorithm of [1] and the approximation preserving results of [5],

this paper has presented a 4/3-approximation algorithm for the minimum weight

edge cover problem. We provide a practical implementation and empirically com-

pare the results of this implementation against various other MEC approximations.

The results suggest that the 4/3-approximation obtains edge covers with significantly

smaller weights than the others, however, it also runs significantly slower. The 4/3-

approximation finds the fewest redundant edges among the algorithms compared.

Nonetheless, it is able to find slightly better solutions at the cost of efficiency by re-

moving these edges. If accuracy is of greater priority than efficiency, the data collected

supports the application of the 4/3-approximation as a practical algorithm.
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