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ABSTRACT

Molnar, Thomas W. MS, Purdue University, May 2020. Approaches for Efficient
Autonomous Exploration using Deep Reinforcement Learning. Major Professor:
Eugenio Culurciello.

For autonomous exploration of complex and unknown environments, existing Deep

Reinforcement Learning (Deep RL) approaches struggle to generalize from computer

simulations to real world instances. Deep RL methods typically exhibit low sample

efficiency, requiring a large amount of data to develop an optimal policy function for

governing an agent’s behavior. RL agents expect well-shaped and frequent rewards

to receive feedback for updating policies. Yet in real world instances, rewards and

feedback tend to be infrequent and sparse.

For sparse reward environments, an intrinsic reward generator can be utilized to

facilitate progression towards an optimal policy function. The proposed Augmented

Curiosity Modules (ACMs) extend the Intrinsic Curiosity Module (ICM) by Pathak

et al. These modules utilize depth image and optical flow predictions with intrinsic

rewards to improve sample efficiency. Additionally, the proposed Capsules Explo-

ration Module (Caps-EM) pairs a Capsule Network, rather than a Convolutional

Neural Network, architecture with an A2C algorithm. This provides a more compact

architecture without need for intrinsic rewards, which the ICM and ACMs require.

Tested using ViZDoom for experimentation in visually rich and sparse feature scenar-

ios, both the Depth-Augmented Curiosity Module (D-ACM) and Caps-EM improve

autonomous exploration performance and sample efficiency over the ICM. The Caps-

EM is superior, using 44% and 83% fewer trainable network parameters than the

ICM and D-ACM, respectively. On average across all “My Way Home” scenarios, the
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Caps-EM converges to a policy function with 1141% and 437% time improvements

over the ICM and D-ACM, respectively.
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1. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have grown tremendously in recent years with

their capabilities and range of applications. An accessible technology and equipable

with a range of sensors, UAVs have been utilized to help with tasks such as wildfire

monitoring, target tracking and search and rescue [1–3]. Despite efforts to develop au-

tonomous UAV navigation and exploration abilities, current approaches have difficul-

ties when faced with complex real-world environments and lacking a priori knowledge

of an environment. Modern UAVs have been paired with Global Positioning Software

(GPS) for autonomous outdoor exploration, however this method is not practical for

indoor applications or in GPS-denied outdoor environments [4]. Moreover, a num-

ber of approaches rely on prior awareness of an environment, information which may

not be available or attainable in all real world instances [5, 6]. Some proposed solu-

tions for autonomous navigation have leveraged laser range finders (LIDARs), Red,

Green, Blue and Depth (RGB-D) sensors and stereo vision to implement real-time

Simultaneous Localization and Mapping (SLAM) [7–9]. SLAM involves creating a

3D representation of an environment and using the model to localize one’s self within

the world. However, this approach demands intensive computational operations and

limits performance in real world scenarios.

The objective of this research work is to improve upon the capabilities of cur-

rent Deep Reinforcement Learning (Deep RL) methodologies for autonomous explo-

ration. The improvements proposed in this research are intended to generalize well

in real world applications with robotic and UAV systems and expand autonomous

agents’ abilities. This work proposes two methods utilizing Artificial Neural Net-

works (ANNs) and capable of autonomously controlling an agent and exploring with-

out a priori knowledge of novel environments. Furthermore, the approaches display

high sample efficiency to maintain a low computational overhead cost, generalize per-
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formance well across different environments and lastly utilize standard and readily

available sensor equipment, such as RGB-D cameras. ViZDoom, a Doom-based AI

research platform, is used to evaluate architecture designs in custom-built environ-

ments, thus facilitating rapid design prototyping and performance evaluation [10].

The first method is premised on utilizing an internal reward generator in combina-

tion with depth and optical flow information. These modules are referred to as the

Augmented Curiosity Modules (ACMs). There are three types of these modules, the

Depth-Augmented Curiosity Module (D-ACM), Optical Flow-Augmented Curiosity

Module (OF-ACM) and Depth and Optical Flow Combined-Augmented Curiosity

Module (C-ACM). The second proposed method demonstrates a novel incorporation

of Capsule Networks (CapsNets) with an Advantage Actor Critic (A2C) algorithm.

This module, called the Capsules Exploration Module (Caps-EM), does not use intrin-

sic reward signals. The D-ACM and Caps-EM both present a significant improvement

upon other state-of-the-art Deep RL methods.

1.1 Artificial Neural Networks

ANNs are a set of algorithms that roughly mimic the human brain and are used

to recognize patterns. The human nervous system consists of cells, or neurons, which

are connected by axons and dendrites [11]. Synapses are the areas where axons and

dendrites connect. The strength of synapses vary according to external stimuli and

play a key role in the learning process. In a similar vein, ANNs consist of multiple

neurons, or nodes, that are connected by numerical values, or weights, representing

the strength between neurons. An ANN learns by updating the values of these weights

through a training process in order to provide a correct output. Fig 1.1 illustrates

comparable designs between biological and ANNs.

Functionally, ANNs accept an input and provide an output. Various ANN ap-

proaches utilize different network architectures, or connection patterns. For example,

this research work explores feed-forward networks, wherein unidirectional connections
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Fig. 1.1. Illustration of Biological Neural Network and Artificial Neu-
ral Network [12]. Subfigure A represents a human neuron, while B
shows a corresponding artificial neuron. C and D illustrate compa-
rable biological and artificial synapses, also referred to as weights for
ANNs.

between network layers allow for data to travel from the input to output direction [12].

Alternatively, there are also feedback, or recurrent, networks that incorporate feed-

back loops and network connections flowing either forward or backward rather than

solely unidirectional. Fig 1.2 shows an example network architecture of a feed-forward

ANN with multiple network layers. In the input layer, the ANN receives information,

such as an image, number or audio sample. In the hidden layer or across multiple

hidden layers of a ANN, a myriad of mathematical operations may be performed on

the input data, typically done to identify patterns in the data. The input data is

converted to numerical values to express these patterns through vectors [11]. Lastly

with the output layer, the ANN provides the output of the operations performed by

the hidden layer(s) on the input.

In order to learn, an ANN must be told whether or not its actions and output

are correct through feedback. The feedback process is called back-propagation. In

this procedure, the network’s output for a given input is compared to the desired, or
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Fig. 1.2. Representation of an Artificial Neural Network [13]. Illus-
trating a feed-forward multilayer ANN, this figure shows a generic
architecture composed of an input layer, n hidden layers and an out-
put layer. Circles represent individual neurons, and lines connecting
neurons are connective weights.

known, output for the same input. The difference between the two outputs is used

to update the weights of the neuron connections. Implementing small changes over

time, repeatedly conducting back-propagation allows a network to minimize the error

between its own output and the desired one in order to eventually provide the correct

output and behavior.

The main learning paradigms used with ANNs are Supervised Learning, Unsuper-

vised Learning and Reinforcement Learning. With a Supervised Learning approach, a

network learns using a labeled dataset. In this dataset, training examples are paired

with the correct output, or ground truth, that the network should produce. The

ANN may then be explicitly told whether its output is correct based on the known

ground truth output. Conversely in Unsupervised Learning, labeled data is not used

and a specific output for an associated input is not provided. Therefore the network

instead extrapolates useful information and features from inputs rather than trying to
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return a certain output. Lastly with Reinforcement Learning, an ANN strives to take

actions to complete a task or to accrue the largest possible reward in a scenario. As a

network interacts or controls an agent within an environment by taking actions, the

environment may provide positive or negative rewards. These rewards subsequently

reinforce certain actions and facilitate the network learning various behaviors.

1.2 Reinforcement Learning

Reinforcement Learning (RL) is partly based in psychology, wherein neurological

function motivates reward driven behavior through dopamine release [14, 15]. RL is

a prevalent machine learning approach premised on goal-based learning of behavior.

Modeled around a Markov Decision Process (MDP), a traditional RL scheme usually

consists of the following components:

State: Current condition of an agent

Actions: Discrete set of actions available to an agent

Reward: Feedback from an agent’s environment

Policy: Mapping of an agent’s state to actions

Value: Expected reward factor attainable using a given action in a particular state

Environment: World that an agent engages with [16].

Within RL, an agent receives an input state. With the input, the agent’s governing

policy function maps the input state to an action. The environment receives an

agent’s action and returns the next state of the agent in the world, as well as a

reward signal depending on the quality of the agent’s taken action. Based on the

feedback, the agent’s policy function, or strategy, is updated in such a way as to

maximize the number and amount of rewards that the agent receives and to achieve

an objective. The policy associated with the ideal behavior that an agent uses to

maximize rewards or achieve an objective is regarded as the optimal policy function.

In Deep RL specifically, ANNs are used to approximate policy functions by mapping

input states to actions.



6

Fig. 1.3. Representation of Actor Critic Algorithm [17]. An actor
residing in a given state uses its current policy function to take an
action in a given environment space. The critic judges the action by
estimating the value function based on the new state and rewards
provided by the environment. Based on the outcome of the agent’s
action, the actor updates its policy function as suggested by the critic
to best optimize its behavior.

1.2.1 Advantage Actor Critic Algorithm

The Advantage Actor Critic (A2C) algorithm is a RL-based algorithm consisting

of an actor and a critic. The critic measures the quality of an actor’s actions, while

the actor controls an agent’s behavior. As the agent takes actions, the critic observes

these actions and provides feedback. From this feedback, the actor updates its policy

function to improve performance. Fig. 1.3 illustrates the flow of how an actor interacts

with an environment through an Actor Critic (AC) algorithm.

Actor-critic methods output a policy function and a value function. Given input

state st and an action a, the policy πθ(a|st), parameterized by network parameters

θ, outputs probabilities for each available action. In the environments used in this

research, the agent has a discrete action space with four possible movements: move
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forward, move left, move right and no action. Sampling an action, at, from the

policy, results in transitioning to next state st+1 and receiving reward rt+1. The critic,

expressed as the value function q̂(st, at, w) with parameters w, returns an estimate

of the expected final total reward obtainable by the agent from the given state. The

value function Vv(st), with network parameters v, also represents a critic to the policy

function and returns the average value of a given state. The critic estimating the value

function can also be based on the action value, referred to the Q value, as used in Q

learning.

A2C methods offer a variant for the value estimate to reduce the problem of

high variability, as shown in Equation 1.1, where the advantage function, with γ the

discount factor, accounts for future rewards losing value. This function estimates how

a specific action is better than other actions at a given state. The gradient of the loss

function is shown in Equation 1.2.

A (st, at) = rt+1 + γVv (st+1)− Vv (st) (1.1)

∇θJ(θ) =
T−1∑
t=0

∇θ log πθ (at|st)A (st, at) (1.2)

The set of network parameters θ and v are updated in the gradient’s direction.

The advantage function indicates how a specific action is better relative to the aver-

age action taken in a given state. This conveys the advantage of taking one action

over another to receive more rewards. The advantage value is considered during the

gradient update, or learning process, for the actor policy.

The actor and critic exist as separate models that are trained and optimized

individually. The policy update for the network parameters, or weights θ, uses the q

value of the critic as shown in Equation 1.3.

∆θ = α∇θ(logπθ(st, at))q̂w(st, at) (1.3)
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The critic updates its value parameters using the actor’s output action at+1 for

the next state st+1 in Equation 1.4. The hyperparameter β controls the strength of

entropy regularization.

∆w = β(r(st, at) + γq̂w(st+1, at+1)− q̂w(st, at))∇wq̂w(st, at) (1.4)

The Asynchronous Advantage Actor Critic (A3C) algorithm operates similarly

but implements multiple agents that interact with different copies of an environment

in parallel [18]. A global network hosts the shared parameters. At each time step,

the agents have copies of the shared network. If an independent agent reaches tmax

time steps or a terminal state, that network copy’s gradient is computed from its own

interaction. Independently of the other agents, the global network’s parameters are

then asynchronously updated by the independent agent’s experience. As agents inde-

pendently update global parameters, agents could potentially operate with different

policy versions such that the aggregated parameter update would not be optimal [18].

In this research work, an A2C implementation is used that applies synchronous up-

dates of global parameters [19]. The global update waits until all agents have finished

their current interaction. Agents then begin new experiences with the same network

parameters, enabling faster network training. This also allows for efficient use of

Graphics Processing Units (GPUs).

1.2.2 Intrinsic Rewards

Traditionally, RL algorithms expect dense and well-shaped reward functions to

continuously update their policy while interacting within an environment. However

in general navigation and exploration tasks, positive feedback is received only when

a target is reached. Exploring novel environments for a specific target poses the chal-

lenge of how to adequately provide positive external rewards to an artificial agent.

In real world scenarios, unlike in traditional simulation environments, reward factors

that an agent can interact with tend to not be well-shaped or common. This phe-

nomenon, referred to as reward sparsity, limits a RL-based ANN by restricting its
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(a) Standard Reinforcement Learning

Interaction

(b) Reinforcement Learning Interaction

with Internal Factor

Fig. 1.4. Agent Interaction with Environment in Reinforcement
Learning [21]. (a) External critic in the environment provides a re-
ward to an agent. (b) Decoupled external and internal environment
components, in which the reward is provided by an internal critic.

ability to learn meaningful behavior and develop an optimal policy function. While

“shaping” dense rewards for each specific environment is a possibility, this is not a

scalable approach [20]. A viable alternative is to generate rewards “intrinsic” to the

agent which complement external rewards. Intrinsic rewards help incentivize an agent

to explore new states and provide feedback for an agent to better predict the out-

comes of its actions [21]. When receiving sensory input, an agent retains an internal

interpretation of the input, whereby an internal critic offers feedback to the agent,

as illustrated with Fig 1.4. Under this premise, an internal critic offers an intrinsic

reward.

This internal reward approach may be effectively implemented to help an agent

acquire knowledge applicable to a range of problems, particularly efficient exploration

in this instance. As a result, internal reward factors can help satisfy the desire for

implementing a highly sample efficient and flexible model that generalizes across a

variety of different environments. This internal component can instill a sense of
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curiosity in an autonomous agent, therein incentivizing exploration of unknown parts

of an environment, even given a lack of explicit external rewards.

As illustrating by [22], intrinsic rewards can be integrated with a Deep RL paradigm

to improve performance. Using the reward signal as a scaled combination of both ex-

trinsic rewards that an agent encounters and reward factors intrinsic to the agent,

behaviors can more readily be encouraged and reinforced. [22] train an A3C agent

using normal external rewards and intrinsic reward to perform navigation for instance.

1.3 Capsule Networks

[23] propose using a Capsule Network (CapNet) architecture to address short-

comings of Convolutional Neural Networks (CNNs). The max pooling operation used

with CNNs reduces the spatial size of data flowing through a network and thus loses

information. This leads to the problem that “[i]nternal data representation of a con-

volutional neural network does not take into account important spatial hierarchies

between simple and complex objects” [23]. A CapNet resolves this by encoding the

probability of detection of a feature as the length of their output vector. The state

of the detected feature is encoded as the direction where that vector points. If de-

tected features move around an image, then the probability, or vector length, remains

constant while the vector orientation changes.

The idea of a capsule resembles the design of an artificial neuron but extends it

to the vector form to enable more powerful representational capabilities. A capsule

may be then understood as a small group of neurons [24]. As [23] note, “[t]he ac-

tivities of the neurons within an active capsule represent the various properties of

a particular entity that is present in the image. These properties can include . .

. pose (position, size, orientation), deformation, velocity and texture.” The use of

capsules strives to bridge the discrepancy between ANNs that use feature detectors to

output scalar values and more complicated highly-tuned computer vision methods,

such as SIFT [25], that provide a vector encapsulating the pose of a feature [24].
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Additionally, some advantages of CapNets over CNNs include viewpoint invariance,

utilization of fewer trainable network parameters and superior generalization to new

and different viewpoints. Viewpoint invariance is ensured by the use of pose matrices

that recognize features irrespective of the viewing perspective. Due to the nature of

capsules grouping together individual neurons, connections between layers need fewer

parameters. Lastly with generalization to new viewpoints, the use of pose matrices

can encode viewing characteristics, such as rotations, as linear transformations.

In an architecture with multiple layers of capsules, an active capsule receives vector

inputs from capsules in a lower level. There are four operations performed on the

input: matrix multiplication of input vectors, scalar weighting of input vectors, sum

of weighted input vectors and lastly a vector-to-vector nonlinearity. These operations

are illustrated in Fig. 1.5.

An approach called dynamic routing is the iterative method used to send lower-

level capsule outputs to higher level capsules with similar outputs. Dynamic routing, a

type of “routing-by-agreement,” enables neurons in a layer to accept the “most active

feature detector in a local pool” in a lower capsule layer [23]. In turn the dynamic

routing method aids with segmenting overlapping objects. As noted by [23] as well,

“[f]or low level capsules, location information is “place-coded” by which capsule is

active. As we ascend the hierarchy, more and more of the positional information

is “rate-coded” in the real-valued components of the output vector of a capsule.

This shift from place-coding to rate-coding combined with the fact that higher-level

capsules represent more complex entities with more degrees of freedom suggests that

the dimensionality of capsules should increase as we ascend the hierarchy.”

Dynamic routing addresses how to calculate a network forward pass with capsules.

The method determines the vector ci, which is all the routing weights for a given

lower level capsule i. This is done for all lower level capsules. After this, the routing

algorithm looks at each higher level capsule, such as capsule j, to check each input

and update weights in the formula. A lower level capsule tries to map its output

to the higher level capsule whose output is most similar. A dot product gauges this
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Fig. 1.5. Illustration of Capsule Operations. A capsule receives input
vectors u1 through un. Vector lengths encode probabilities that lower-
level capsules detected an object, while the vectors’ directions encode
the state of detected objects. An affine transformation with weight
matrices W1i through Wni is applied to each vector. The weight matri-
ces encode spatial and other relationships between lower level features
and higher ones. After multiplication, the vectors u′1 through u′n rep-
resent the predicted position of higher level features. These vectors are
multiplied by scalar weights c1 to cn, derived using the routing algo-
rithm, to determine which higher level capsule a lower level capsule’s
output maps to. The k weighted input vectors u′′1 through u′′n that
map to Capsule i are then summed to form one vector. The Squash
nonlinear activation function takes the vector, forces it to length of
max one, while not changing its direction, and then outputs vector
vi [23].

similarity between a capsule input and output. Upper level capsules consist of a

weighted sum of lower level capsules. The algorithm repeats the process of matching

lower level capsule outputs to the appropriate higher level capsule r times, where r

is the number of routing iterations.

1.4 Outline

This section presents this document’s structure. Chapter 2 “Related Work” pro-

vides a survey of the current state of research work relevant to this research. Chapter

3 “Methodology” reviews the procedures used in the experiments to evaluate and
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compare module performance. The Main Body consists of content from published

articles covering the progression of this research work. Based on the research article

“Augmented Curiosity: Depth and Optical Flow Prediction for Efficient Exploration,”

Chapter 4 discusses the Augmented Curiosity Modules architectures and presents ex-

periment results and conclusions. Chapter 5 focuses on the research work from the

article “Applied Capsule Networks for Reinforcement Learning-based Exploration”

and presents the Capsules Exploration Module architecture and module experiment

findings. Lastly, Chapter 6 encapsulates concluding remarks and discussion of this

research and future work.
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2. RELATED WORK

To expand autonomous capabilities with navigation and exploration, several ap-

proaches have been taken in the field of deep learning. [26–28] incorporate SLAM

through use of ANNs to enable real-time use and effective feature detection across

challenging 3D environments. However, their approaches still struggle in real world

cases with higher complexity and variability. Other proposed means include incorpo-

rate environment mapping and leveraging artificial memory structures for improving

autonomous exploration [29–31]. While these methods build upon existing long short-

term memory (LSTM) baselines, they can suffer from difficulty with simultaneously

accessing memory and planning actions as well as handling high dimensional inputs.

Furthermore, these approaches do not scale efficiently beyond 2D environments to

3D simulations or generalize to more realistic and complex situations. Addition-

ally, they tend to exhibit low sample efficiency, requiring well-shaped rewards and a

large amount of interactions to converge to optimal policy functions that govern an

agent’s behavior. While recent approaches for UAV autonomous navigation and item

delivery leverage Global Positioning Software (GPS) or Global Navigation Satellite

System (GLONASS) to provide localization and guidance information for UAV flight

outdoors, leveraging these techniques would not be practical for indoor scenarios or

in GPS-denied environments [32–34].

Intrinsic motivation signals have been used with Deep RL to address sparsity

of well-shaped and frequent rewards through using predictive error as a reward sig-

nal [21, 22, 35–37]. However as discussed by [38], prediction of future states in high

dimensional space presents a challenging task that factors into performance of intrin-

sically motivated learning. Additionally as demonstrated by the “noisy TV” problem,

stochastic dynamics present an obstacle to intrinsic motivation methods [38,39]. An

agent will tend to pursue transitions in environments with high entropy that do not
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facilitate achieving the desired goal, subsequently impairing learning of an effective

policy. [40] propose using imitation learning to resolve the issue of sparse rewards

for RL and to better generalize performance to complex environments, however their

method requires using expert knowledge for pre-training and is untested in dynamic

environments. This research work presents modules capable of effectively predict-

ing future states in complex environments by utilizing improved network embeddings

and addressing the problem of stochastic dynamics in an environment. Moreover, the

proposed methods incorporate high sample efficiency and function well in complex

environments.

CapsNets have been recently proposed as an alternative to traditional CNNs and

appear advantageous for use in Deep RL and exploration despite limited analysis in

research [41, 42]. Given that CapsNets are a recent development, published research

on their applications is limited. [43] integrates CapsNets with Deep-Q Learning algo-

rithms to evaluate performance across several different environments, including one

with a task of exploring a maze. However, discussion of the architecture used by

the author is limited, and the results show that CapsNets underperform traditional

CNNs. Other work by [44] applies CapsNets to recurrent networks, and [44–46] suc-

cessfully use CapsNets for image and object classification tasks. CapsNets have also

been used for problems with autonomous driving in [47] and are effective with pre-

dicting depth for SLAM implementations as in [48]. [49] demonstrate how CapsNets

may result in reduced neural network model training time and offer a lower number

of training parameters relative to similar CNN architectures. [50] additionally high-

light how capsules present more explainable internal operations than CNNs for better

understanding of deep learning models. The Caps-EM offers novel work on utilizing

CapsNets in a Deep RL approach, pairing CapsNets with an A2C algorithm, and

with respect to autonomous exploration of environments.
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3. METHODOLOGY

This chapter discusses the experiment procedures for assessing each of the proposed

modules as well as the various evaluation scenarios used to compare the implemen-

tations. This portion also reviews how curriculum training is used as part of the

evaluation process and to judge how modules’ learned policy functions perform in

different scenarios.

3.1 Experiment Environments

Environments in ViZDoom, a Doom-based AI research platform were set-up to

evaluate each modules’ abilities to explore and search for objectives in environments

with sparse external rewards [51]. In these scenarios, the agent’s goal is to locate a

piece of armor. The simulations restart after the agent reaches its goal and receives

a terminal reward of +1, or after exceeding 2100 time steps without finding the

target. The base scenario used for evaluations are ”MyWayHome-v0” (MWH), a

part of the OpenAIGym [52]. MWH is composed of 8 different rooms, each room

having its own distinct wall texture. To add variability and robustness to the testing

process, two new scenarios were created. The first, ”My Way Home Mirrored” (MWH-

M), is a re-oriented version of MWH. Besides providing an additional testbed for

the various networks, MWH-M tests how well networks’ learned knowledge applies

between scenarios with curriculum training. To evaluate the modules’ limitations in

complex scenarios, the scenario ”My Way Home Giant” (MWH-G), with 19 rooms,

was also constructed. These scenarios are shown in Fig. 3.1.
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(a) My Way Home (b) My Way Home Mirror (c) My Way Home Giant

Fig. 3.1. ViZDoom Scenarios. The target is the green circle at the
rightmost part of each image. In the dense case, an agent may start
at the leftmost green circle or any purple circle. For the sparse case,
an agent spawns at the location indicated by the green circle situated
at the left of each scenario.

For each scenario, variability is incorporated in two more ways through variability

in reward sparsity and variability in visual texture features [53]. For reward sparsity, a

scenario has either a sparse or dense setup to offer different degrees of complexity with

exploration. In both cases, the target location remains constant, while the agent’s

start location may vary. With the dense setting, the agent starts randomly at 1 of 17

uniformly distributed locations to begin exploring from in MWH or MWH-M. There

are 42 possible start locations in MWH-G. Some start locations are far away from the

target, while others are close to the target. These diverse positions allow the agent to

reach the target even by random actions. Conversely with sparse, the start location is

far from the target and does not vary. This requires the agent to take several directed

actions to reach its goal.

For visual features in scenarios, experiments incorporate two variants of the tex-

ture of the maze walls. While the layout of the environment remains the same, the

texture, or pattern, of the walls is modified to either be uniform or vary across ev-

ery room in the environment. The variants are referred to as either uniform texture

scenarios or varied texture scenarios, respectively, as shown in Fig. 3.2. In uniform

scenarios, a model must have a high-level and abstract understanding of the envi-
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(a) Uniform Texture (b) Varied Texture

Fig. 3.2. Variability in Visual Texture Features. (a) Shows a frame
from the agent’s point of view in a uniform texture scenario. (b)
Agent’s view of a varied texture scenario.

ronment to adequately explore and locate the target without information from rich

visual features in the environment. Each scenario then has 4 variations. For exam-

ple, the MWH scenario has the following setups: MWH Dense Texture, MWH Dense

Uniform, MWH Sparse Texture and MWH Sparse Uniform.

(a) “Noisy TV” Wall Loca-

tion

(b) “Noisy TV” Wall

Fig. 3.3. “Noisy TV” Wall. (a) Shows the location of the “noisy TV”
wall in the MWH scenario. (b) Agent’s view of the “noisy TV” wall.

In order to study the effect of stochastic dynamics on the modules’ performance,

the “noisy TV” problem is also simulated in an evaluation environment. Using a

custom-made “noisy TV” wall in ViZDoom, as shown in Fig. 3.3b, the wall models

a source of high entropy. The wall displays one of fifteen unique static noise images
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and cycles through the images at a rate of 0.1 game ticks per image. While this wall

animation of simulated noise is not purely stochastic in nature, it suffices to produce

a source of perceived randomness from the perspective of an agent. This wall is

located in one location in the MWH Dense, Texture scenario, as highlighted in Fig.

3.3a. This particular location is used, because the agent will view this wall prior to

reaching the goal objective. In experiments, this “noisy TV” problem is evaluated

using the “noisy TV” wall in the MWH Dense Texture scenario.

3.2 Curriculum Training

To evaluate how each of the proposed approaches transfer and generalize knowl-

edge between different scenarios, curriculum training, or curriculum learning, is used

with the MWH-M and MWH-G environments as discussed in Section 3.1 [54]. For this

procedure, a module is trained until having converged to an optimal policy in each

of the MWH Dense Varied Texture, Dense Uniform Texture, Sparse Varied Texture

and Sparse Uniform Texture scenarios. The learned network parameter values asso-

ciated with these respective scenarios are then pre-loaded into the same module prior

to beginning training again in the respective MWH-M and MWH-G Dense Varied

Texture, Dense Uniform Texture, Sparse Varied Texture and Sparse Uniform Texture

scenarios. In this way, the module begins training in the MWH-M and MWH-G en-

vironments with the prior knowledge learned from the MWH scenarios. The various

modules are also allowed to train in MWH-M and MWH-G as well without use of

curriculum training, and the results of the two different approaches are compared.

Applying this method illustrates how the ANN training process network can be made

more efficient and enable quicker convergence to an optimal policy function than

without curriculum training.
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4. AUGMENTED CURIOSITY MODULES (ACMS)

4.1 Overview

This chapter discusses the proposed Augmented Curiosity Modules including the

rationale behind their design as well as an analysis of their performance in testing

scenarios. The ACM are based on the Intrinsic Curiosity Module (ICM) by [53], who

propose an intrinsic reward generator that supplements external rewards found in an

environment. The ICM receives three inputs, an agent’s current state, its next state

and the action taken by the agent to move from the current state to the next state.

In the inverse model, the ICM uses the current state feature embedding and the next

state feature embedding to predict the agent’s sampled action. The embeddings are

outputs from shared weight neural networks which transform the original input state

space into a feature space. Given that the labels for training are the actions sampled

from the policy function at each step, this process falls under the self-supervision

paradigm. As the only incentive for the inverse model is to predict the action leading

to the next state, the training process ensures that the feature space only encodes

information influencing the specific actions.

Provided the current state embedding and an agent’s sampled action as inputs,

the ICM trains a forward dynamics model to predict a feature space embedding of

the next state. An intrinsic reward is generated from the error between the forward

model’s prediction of the next state embedding and the actual next state ground truth

embedding. The intrinsic reward factor for example then grows large whenever the

agent explores previously unvisited areas and makes inaccurate predictions. In turn,

an agent experiences a rewarding sense of “curiosity” by visiting new and unfamiliar

areas. An A3C algorithm strives to maximize the sum of an extrinsic reward provided

by the environment and the intrinsic reward signal provided by the ICM [18].
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With this proposed research approach to reward sparsity, the notion of intrinsic

reward signals are leveraged. Additionally, the ACMs, named the Optical Flow-

Augmented Curiosity Module (OF-ACM), Depth-Augmented Curiosity Module (D-

ACM) and Depth and Optical Flow Combined-Augmented Curiosity Module (C-

ACM) utilize optical flow data, depth data and a combination of the two, respectively,

to develop superior embeddings for exploration. Optical flow describes the motion

of elements in a visual scene caused by the relative motion between an observer

and the given scene. Optical flow offers knowledge on how pixels change position

in subsequent frames. In static scenarios, optical flow gives information on how the

agent’s position changes. Depth images also provide a better sense of relationships

between objects than standard RGB images [55]. By using optical flow and depth

information rather than only pixels from RGB images, the OF-ACM and D-ACM

incorporate localization information and higher level representations of a given scene.

Whereas the ICM inverse model predicts the action relating two consecutive states,

the ACMs have modified inverse models predicting either a depth image or the optical

flow between two states. In the C-ACM, two different curiosity-based predictive

modules are initialized to separately generate depth and optical flow predictions.

This chapter demonstrates how the combined use of intrinsic rewards systems and

supplementary input data results in a capable exploration system, even in scenarios

with sparse external rewards. Through utilizing readily available information in depth

and optical flow in addition to standard RGB image data, a more efficient approach

is achieved.

4.2 Augmented Curiosity Modules Architectures

The ICM generates a feature representation of the input states by predicting

the action that connects two subsequent states. The ACM approaches extend this

framework to support prediction of depth, optical flow and a combination of the two
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(a) ICM (b) OF-ACM (c) D-ACM

Fig. 4.1. (a) The ICM encodes 42x42 RGB frames from the agent’s
point of view at states st and st+1 into φt and φt+1 by a Convolutional
Layer block. Embeddings are concatenated and passed to linear lay-
ers block to predict action a′t. Through a linear block, φt and label a′t
are used to predict φ′t+1. The difference between φ′t+1 and φt+1 is used
as intrinsic reward rit [22]. (b) OF-ACM leverages latent space in an
encoder-decoder as φt and φt+1 embeddings. (c) D-ACM predicts a
depth image from each input frame. Convolutional Layer blocks con-
sist of four convolutional layers, each with 32 filters and kernel size
3x3. Each layer is followed by batch normalization and an Exponen-
tial Linear Unit (ELU) as an activation function. Linear Model blocks
are defined as two fully connected layers with an ELU activation be-
tween them. Encoder and Decoder blocks consist of four layers of 32
filters with 3x3 kernels followed by equal numbers of filters and kernel
size deconvolutions. Dashed lines represent shared weights between
networks.

when creating feature embedding representations. These network architectures are

described in Fig. 4.1.

The original ICM assumes two key arguments with regards to the curiosity reward.

First, predictions of a future state in the forward model using a feature space instead

of pixel space is more advantageous than previous approaches. When the dimension of

predictions is lower, the predictions are simpler. More importantly, changes in pixels

themselves might not be the real objective, as these changes may or may not be

influenced by an agent’s actions. Secondly, to model only changes in an environment

that are direct outcomes of an agent’s actions, the inverse model prediction must
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provide a proper embedding in the feature space. The ICM’s embeddings of the

current and next state, φt and φt+1, are obtained from predicting an action when

given the successive states, st and st+1, as inputs. This encodes information from the

input state to the embeddings that is related to an agent’s actions in the environment.

As a result, the quality of the curiosity reward depends on the embeddings. Pre-

dicting only actions a′t with the inverse model does provide an adequate embedding

for a curious agent. However by using additional information in the prediction, the

embeddings can better summarize changes in pixels and interpret textural and struc-

tural aspects of an environment.

The A2C component for the ACMs consists of four layers of a 3x3 convolution

kernels with stride 2 and padding 1 following by a batch normalization operation

and ReLU activation function. The output of the fourth layer is passed through

an LSTM then through two separate linear layers that output the policy function or

value function. Similarly as the ACMs, the input is a 42x42 RGB frame of the agent’s

point of view for a given state.

4.2.1 Optical Flow-Augmented Curiosity Module (OF-ACM)

The first proposed variant of the ACMs uses the inverse model to predict optical

flow instead of the action between frame inputs. This method uses the OpenCV li-

brary’s implementation of dense optical flow with Gunnar Farneback’s algorithm [56].

The output
−→
F t+1 consists of a 2D matrix measuring the displacement of each pixel

in a frame when compared to its predecessor. OpenCV’s implementation provides a

real-time optical flow output that is used as the ground-truth for training the modified

inverse model’s prediction. The network architecture changes considerably given that

this approach reconstructs a 2D pixel displacement matrix from image inputs. The

inverse model uses an autoencoder architecture. States st and st+1 are input frames

and are transformed through convolutional layers into features in a latent space. Af-

ter concatenating these features, the result is passed through deconvolution layers to
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generate the desired output matrix. During training, the autoencoder’s latent space

learns to encode the key information relevant to reconstructing the optical flow pre-

diction
−→
F ′t+1 from input images. This is due to how network loss only depends on

creating an accurate optical flow reconstruction. This latent space serves as the new

feature space for embeddings φt and φt+1. The action at and embedding φt are inputs

to the forward model, which outputs the predicted next state’s embedding φ′t+1.

While the ICM’s action prediction process accounts for pixel information, the

OF-ACM enables embeddings to contain information on the displacement of tracked

pixels. Even if pixels are redundant in predictions, the constraint of predicting dense

sets of pixels provides embeddings a better awareness of the changes in the perceived

environment correlated to the agent’s movement.

4.2.2 Depth-Augmented Curiosity Module (D-ACM)

The D-ACM extends the principles from the OF-ACM but rather with depth im-

ages. The inverse model uses an autoencoder to obtain embeddings from the latent

space features. The autoencoder predicts the depth images D′t and D′t+1 correspond-

ing to the RGB inputs. The ViZDoom platform provides ground-truth depth images

that are used as labels. These depth images present pixels in gray scale, and the

pixel intensity is varied dependent on how near or far an object is from the agent.

While this approach does not necessarily encode the influence of an agent’s actions in

embeddings, it provides embeddings with structural information of the environment.

From previous work on localization and navigation tasks by [57, 58], 3D information

appears to provide a better representation of environments than 2D texture informa-

tion. These depth-based embeddings contain important information regarding how

agents’ movement affects its perceived 3D environment. Therefore, they offer advan-

tageous representations and more efficiently inform the agent when venturing to a

new area.
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4.2.3 Depth + Optical Flow Combined-Augmented Curiosity Module (C-

ACM)

With the C-ACM approach, the D-ACM and OF-ACM, as shown in Fig. 4.1, are

setup and operate independently to each contribute towards a single intrinsic reward

factor. Each module still receives the same input, an RGB frame of the agent’s

view. In this approach however, the D-ACM and OF-ACM prediction error outputs

are both considered. The C-ACM intrinsic reward signal is an equally weighted

value of the intrinsic reward from each the D-ACM and OF-ACM. The singular

intrinsic reward factor is then used in the same manner as previously discussed to

supplement the overall reward signal. The motivation behind this approach is to

leverage the strengths of both the D-ACM and OF-ACM. Each module handles and

forms predictions of different information, depth and optical flow data respectively, of

a given scene and context. As a result, each module maintains separate embeddings of

the environments for formulating different predictions of the next scene. Ultimately

by pooling together each prediction error, the C-ACM could provide a better intrinsic

reward signal for improving autonomous exploration.

4.3 Results

Table 4.1 below illustrates differences in the size and performance of each module.

The percent difference columns compare the proposed ACM variants to the ICM,

which serves as the baseline for performance. The ICM consists of fewer trainable

parameters than the other variants, however the discrepancy is marginal. Also noted

is the comparison in module performance with respect to timing, where the ICM

completes a single training step fastest. The D-ACM and OF-ACM are comparable

with respect to timing and parameters. These standardized timing parameters were

obtained from testing each module type individually in MWH Varied Texture while

utilizing twenty parallel workers on the GeForce GTX 1080 GPU with 8114 MiB of
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memory. With this information, the test results are standardized in terms of relative

time.

Table 4.1.
Module Size and Timing Comparisons.

Module Type # of Trainable % Difference Time to Complete % Difference

Parameters 1 Step (ms)

ICM 915,945 Baseline 1.13 Baseline

D-ACM 944,170 +3% 1.36 +18.5%

OF-ACM 953,675 +4.1% 1.63 +36.2%

C-ACM 1,308,560 +35.3% 2.46 +74.1%

Table 4.2.
My Way Home Scenario Time Performance Results. Time required
to converge to an optimal policy function is in seconds.

Module Type Scenario

Dense, Dense, Sparse, Sparse,

Varied Uniform Varied Uniform

ICM (s) 1.24E+04 6.78E+04 4.52E+03 5.14E+04

D-ACM (s) 1.02E+04 3.06E+04 3.74E+03 2.72E+04

% Difference -21.9% -121.6% -20.9% -89.0%

OF-ACM (s) 2.14E+04 4.89E+04 1.32E+04 5.05E+04

% Difference +41.8% -38.7% +65.8% -1.8%

C-ACM (s) 2.10E+04 6.64E+04 1.13E+04 6.27E+04

% Difference +40.9% -2.1% +60.1% +18.0%

Fig. 4.2(a-d) shows the performance of the ICM relative to the predictive modules

in the MWH dense and sparse scenarios. The results of Fig. 4.2 are summarized in

Table 4.2. The ICM performance lags behind that of the D-ACM but is comparable to
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(a) MWH Sparse Uniform. (b) MWH Sparse Texture.

(c) MWH Dense Uniform. (d) MWH Dense Texture.

Fig. 4.2. My Way Home Results. Across evaluation scenarios, a
minimum of five instances of each module variant are averaged for the
score trend line. The shaded area around each trend line indicates the
one standard error range. The ovals roughly indicate where a module
has completely converged to an optimal policy function.

the OF-ACM. The uniformity in maze texture proves to be significantly challenging

to the different modules, as they converge to optimal policies faster in the varied

texture scenarios. These evaluations demonstrate the superior performance of the

D-ACM over the others. In initial tests, the C-ACM fails to outperform the D-ACM,

typically matching the OF-ACM or ICM performance. Thus, the C-ACM is omitted

in the subsequent evaluations.

Figs. 4.3(a-d) and 4.4(a-d) show results from testing in the MWH-M scenarios,

with and without use of curriculum training. Results for these plots are summarized

below in Table 4.3. From the results, one is able to gauge how well the ICM, D-ACM

and OF-ACM are able to apply previously learned knowledge.
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(a) MWH-M Sparse Uniform. (b) MWH-M Sparse Texture.

(c) MWH-M Dense Uniform. (d) MWH-M Dense Texture.

Fig. 4.3. My Way Home Mirrored Results.

(a) MWH-M Sparse Uniform. (b) MWH-M Sparse Texture.

(c) MWH-M Dense Uniform. (d) MWH-M Dense Texture.

Fig. 4.4. My Way Home Mirrored with Curriculum Training Results.
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As Table 4.3 depicts, each of the modules is able to leverage curriculum training

to obtain time improvements with converging to an optimal policy. The OF-ACM

variant benefited the most from using curriculum training, followed by the D-ACM

and lastly ICM. The ICM and D-ACM prove fairly comparable overall in the scenarios.

The ICM performs slightly better in sparse scenarios, whereas the D-ACM moreso in

the dense cases.

Table 4.3.
My Way Home Mirrored Scenario Time Performance Results, with
and without Curriculum (Curr.) Training.

Module Type Scenario

Dense, Dense, Sparse, Sparse,

Varied Uniform Varied Uniform

ICM (s) w/ Curr. Training 1.24E+04 3.96E+04 1.41E+03 3.96E+04

ICM (s) w/o Curr. Training 2.03E+04 4.52E+04 1.70E+03 4.29E+04

% Difference +38.9% +12.4% +17.1% +7.7%

D-ACM (s) w/ Curr. Training 1.02E+04 1.50E+04 4.22E+03 1.70E+04

D-ACM (s) w/o Curr. Training 8.84E+03 2.04E+04 4.83E+03 5.78E+04

% Difference -15.4% +26.5% +12.6% +70.6%

OF-ACM (s) w/ Curr. Training 3.26E+04 2.69E+04 1.32E+05 3.26E+04

OF-ACM (s) w/o Curr. Training 3.23E+04 3.42E+04 1.11E+05 1.06E+05

% Difference -0.9% +21.3% -18.9% +69.2%

Following evaluations in the MWH-M scenarios, the modules were tested in the

MWH-G to determine their ability to perform in larger and more complex environ-

ments. Shown below in Fig. 4.5(a-b) and Fig. 4.6(a-b) are the results for performance

in MWH-G, without and with use of curriculum training respectively.
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(a) MWH-G Dense Texture. (b) MWH-G Dense Uniform.

Fig. 4.5. My Way Home Giant Results.

(a) MWH-G Dense Texture. (b) MWH-G Dense Uniform.

Fig. 4.6. My Way Home Giant with Curriculum Training Results.

The results of MWH-G are summarized in Table 4.4. In this scenario, all modules

failed to achieve any form of an ideal policy when operating in the sparse scenario

variants. Although the instances were allowed to run for 20E+7 training steps, they

never reached the target in the training phase, regardless of the use of curriculum

training. The D-ACM significantly outperformed the ICM and OF-ACM in the giant

scenario as well, while the ICM benefits the most from use of curriculum training in

this high complexity scenario. The modules did successfully manage to develop an

optimal policy in the dense scenario variants, even given uniform textures.
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Table 4.4.
My Way Home Giant Scenario Time Performance Results, with and
without Curriculum (Curr.) Training.

Module Type Scenario

Dense, Dense,

Varied Uniform

ICM (s) w/ Curr. Training 6.55E+04 9.15E+04

ICM (s) w/o Curr. Training 1.02E+05 1.07E+05

% Difference +35.8% +14.5%

D-ACM (s) w/ Curr. Training 5.10E+04 5.17E+04

D-ACM (s) w/o Curr. Training 5.92E+04 7.55E+04

% Difference +13.9% +31.5%

OF-ACM (s) w/ Curr. Training 7.12E+04 7.82E+04

OF-ACM (s) w/o Curr. Training 7.82E+04 1.02E+05

% Difference +9.0% +23.3%

4.4 Conclusions

Given the results, the D-ACM improves upon the ICM with an average 63.3%

time improvement in MWH scenarios, 40.3% in MWH-M and 57.1% in MWH-G.

This approach develops more generalized network embeddings across different sce-

narios and converges faster to an optimal policy function in environments with sparse

external rewards. OF-ACM seems promising in larger scenarios, as shown in MWH-

G. The D-ACM and OF-ACM perform similar to the ICM in MWH and MWH-M

but drastically outperform the ICM in the more complex MWH-G. This highlights

how depth and optical flow information enable better environment representations

for exploration. However, when dealing with simpler scenarios, the representations

do not offer a significantly discernible advantage. The C-ACM did not appear ad-
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vantageous in any of the scenarios, primarily due to its relatively larger number of

network parameters and subsequently longer training process.

This work illustrates how by leveraging additional information, rather than solely

pixels from RGB images, a Deep RL agent can improve performance and scalability

across scenarios to better handle the issue of reward sparsity. Additionally, perfor-

mance may be improved by refining the combination of depth and optical flow data,

such as with a combined loss function. While efforts on combining OF-ACM and

D-ACM has not produced a module more effective than depth alone, this subject still

presents an area of interest. Lastly while module performance given added stochastic

dynamics is evaluated in the following chapter, future work could potentially further

focus on evaluations in dynamic scenarios with moving elements independent of an

agent.
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5. CAPSULES EXPLORATION MODULE (CAPS-EM)

5.1 Overview

This chapter demonstrates how CapsNets perform well for approximating policy

functions when paired with an A2C algorithm to improve autonomous agent naviga-

tion performance in sparse reward environments. Across a variety of test scenarios,

the proposed Caps-EM uses a relatively small network size to improve upon the ICM

and D-ACM capabilities, which are presented as performance baselines. Critically rel-

evant is the fact that Caps-EM does not incorporate the use of intrinsic rewards, which

the ICM and D-ACM approaches both use to converge to adequate policy functions.

This research work highlights how strictly using external reward factors, Caps-EM

achieves a more encompassing comprehension of image inputs and abstract world rep-

resentation to achieve more meaningful action in given scenarios. Traditional CNNs

fail to replicate these same advantages of CapsNets. While the Caps-EM struggles

in certain test environments modeling extremely sparse external rewards, the module

generalizes well across various scenarios with use of curriculum training and shows

the capabilities of CapsNets in instances of realistic scenarios. Applied within a Deep

RL framework, CapsNets advance autonomous system capabilities for navigation and

exploration in challenging environments that can potentially be applied to robotics

and UAVs for example.

5.2 Capsules Exploration Module Architecture

CapsNets initially appeared advantageous for the task of exploration even prior

to experimentation. They can discern both the probability of detection of a feature,

stored in an output vector’s magnitude, and the state of the detected feature, stored
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in a vector’s direction [23]. Conversely, traditional CNNs are only able to handle the

probability of detection of a feature. This difference proves vital as CapsNets can

then maintain spatial relationships of observed items in environment. This distinc-

tion hypothetically enables creation of more sophisticated network embeddings of the

environment space. This work demonstrates experimentation with combining Cap-

sNets and A2C components as not previously explored in other published literature.

Importantly, Caps-EM does not use intrinsic rewards like the approaches discussed in

Fig. 4.1. The architecture implementation of the Caps-EM is illustrated in Fig. 5.1.

It is important to note as well that strictly using an A2C network design exclusively

with CNNs and no use of intrinsic reward signals cannot explore effectively. Such an

approach failed to learn effectively and converge to a policy function in any of the

evaluation scenarios unless paired extensively with imitation or curriculum learning.

As done by [23], the network proposed in Fig. 5.1 uses a convolutional layer before

the capsule layers to detect basic features in the 2D RGB image inputs. The subse-

quent capsule layer then uses the detected basic features to produce combinations of

the features. In addition to using RGB images as inputs to the network, other inputs

were experimented with to analyze the impact on performance. Depth images and

concatenated depth and RGB images were also used with CapsNet. As illustrated

by the D-ACM, depth images can convey superior structural information of an envi-

ronment than RGB images alone. Additionally then by concatenating together RGB

and depth images of the same scene to generate a tensor input with 4 channels, these

experiments can discern any significant advantages or disadvantages to the varied

inputs.

From experimentation with various CapsNets architecture designs, using more

than one convolution before the capsule layers masks the benefits of the capsule lay-

ers by lowering the data resolution and degrading performance. Additionally, using

a larger network architecture with more trainable network parameters was not found

to increase the module’s performance in converging to an optimal policy function or

with being generalizable. In fact, using a larger network architecture degrades over-
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Fig. 5.1. Caps-EM A2C Network Architecture. In the Caps-EM, the
input st, a 42x42 RGB image, first passes through a series of a 3x3 con-
volution, batch normalization function and ELU. ELU offers a faster
learning rate than ReLU [59]. The remaining layer blocks consist of
Capsule Network layers. The first lower level Primary Capsule layer
consists of a 9x9 convolution, with stride of two and padding of zero,
followed by a Squash activation function. This layer has 32 input and
output channels with capsule dimension of eight. The outputs are
dynamically routed to the second higher level Dense Capsule layer
consisting of 196 input capsules of dimension eight and four output
capsules of dimension 16. Three routing iterations are used in the
routing algorithm. Outputs of the Dense Capsule layer are passed to
an LSTM and linear layers to provide the policy function π(st, at, θ)
and state value function Vv(st).

all performance due to the network needing longer to train to converge to a policy.

Three routing iterations are used between capsule layers as recommended by [23] to

help prevent overfitting with training data and optimize the loss faster than using

one routing iteration. However in experiments, the capsule layers still displayed a
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tendency for overfitting between the training and testing phases. In these instances,

the early stopping method was used to handle overfitting once the network successful

achieved an adequate policy function [60]. Neither did incorporating dropout signifi-

cantly improve the problem of network overfitting [61]. Dropout with p values of 0.25

as well as 0.5 were applied to various layers of the Caps-EM module, with the main

effect only being a slowed training rate. The architecture described for Caps-EM

was found to be one that balanced the desire for a generalizable network across all

evaluation scenarios with a minimal number of network parameters.

5.3 Results

For analyzing the Caps-EM performance, the ICM and the D-ACM are used as

baselines for comparison. Table 5.1 compares these three approaches, where the

percent difference rows indicate a module’s improved or degraded metrics relative to

the ICM. The number of trainable parameters of each module are used as a comparison

metric to account for the differences in module size and scaling. The size, or number

of trainable parameters, of each module has a direct impact on the efficiency and

required time to complete the neural network model training process. The Caps-EM

architecture has substantially fewer trainable network parameters, in turn completing

a single training step more efficiently as well. The times to complete one training step

as shown are standardized values obtained from running each module variation with

one worker on a GeForce GTX 1080 GPU with 8114 MiB memory on the MWH Dense

Varied Texture scenario. Result tables displayed further on showing timing analysis

are based on these standardized times to present an equivalent metric of comparison.

Plots are presented with the mean testing score of a module relative to the number

of training steps taken.

As shown in Fig. 5.2 and Table 5.2, the Caps-EM performs exceptionally well

in the dense setup scenarios. The Caps-EM completes the MWH Sparse Uniform

scenario in roughly the same number of training steps as D-ACM. However, the
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Table 5.1.
Module Size and Timing Comparisons.

Module Type # of Trainable % Difference Time to Complete % Difference

Parameters 1 Step (ms)

ICM 915,945 Baseline 13.6 Baseline

D-ACM 944,170 +3% 17.6 +30%

Caps-EM 515,301 -44% 6.21 -54%

(a) MWH Sparse Uniform Texture. (b) MWH Sparse Varied Texture.

(c) MWH Dense Uniform Texture. (d) MWH Dense Varied Texture.

Fig. 5.2. My Way Home Results. A minimum of five instances of
each module variant are averaged for the score trend line. The shaded
area around trend lines indicates the one standard error range. Ovals
approximate where a module has converged to a policy function.

Caps-EM performance is superior when considering the actual time to converge to

an optimal policy and how Caps-EM does not use intrinsic rewards. Conversely in
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Table 5.2.
My Way Home Scenario Time Performance Results. Time required
to converge to an optimal policy function is in seconds.

Module Type Scenario

Dense, Dense, Sparse, Sparse,

Varied Uniform Varied Uniform

ICM (s) 1.46E+05 8.15E+05 5.44E+04 6.18E+05

D-ACM (s) 9.69E+04 2.64E+05 4.85E+04 3.52E+05

% Difference -51% -209% -12% -75%

Caps-EM (s) 1.24E+04 2.48E+04 1.07E+05 1.37E+05

% Difference -1076% -3182% +49% -353%

the Sparse Varied Texture scenario, the Caps-EM performs worse than both the ICM

and D-ACM.

In order to assess how integrated intrinsic rewards with Caps-EM affects the mod-

ule’s performance with exploration, Fig. 5.3 shows a direct comparison of Caps-EM

with and without intrinsic rewards in the same scenarios. The Caps-EM with 515,301

trainable parameters is 42% smaller than Caps-EM with intrinsic rewards, referred

to as Caps-EM (IR), which has 733,705 trainable parameters. Caps-EM (IR) incor-

porates the approach discussed in Fig. 4.1a to generate an intrinsic reward based on

the accuracy of next state predictions. Caps-EM requires 6.21E-03 seconds to com-

plete one training step, whereas Caps-EM (IR) takes 2.09E-2 seconds and is 236%

slower. Table 5.3 shows a comparison of performance with respect to time across the

MWH scenarios and illustrates that Caps-EM (IR) exhibits poorer performance in

each setup. In this analysis, intrinsic reward do not necessarily improve performance

in the Sparse Varied Texture scenario.

Table 5.4 illustrates the use of different inputs to the Caps-EM. While the standard

variant of Caps-EM receives 2D RGB inputs, a modified module, denoted as Caps-

EM (RGB + Depth), receives an input of a concatenated 2D RGB and depth image
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of the same scene. With this table, one can see how this varied input improves

Caps-EM performance. While the Caps-EM with only the RGB input managed

1076%, 3182% and 353% percent improvement across the MWH Dense Varied, Dense

Uniform and Sparse Uniform scenarios, respectively, the Caps-EM with RGB and

depth inputs has an improvement of 1453%, 5967% and 400% difference across the

same scenarios. In the case of the sparse varied scenario also, performance is improved

as the Caps-EM with RGB and depth inputs lowered from a +49% difference to

+24%. Experiments strictly using only depth images as inputs to Caps-EM did

not display model convergence to a policy function in either of the sparse scenarios.

However as shown, the combination of depth and RGB inputs ultimately improves

module performance across all test scenarios and reduces module overfitting in texture

scenarios.

(a) MWH Sparse Uniform Texture. (b) MWH Sparse Varied Texture.

(c) MWH Dense Uniform Texture. (d) MWH-M Dense Varied Texture.

Fig. 5.3. My Way Home Scenario Caps-EM Results, with and without
Intrinsic Rewards (IR).
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Table 5.3.
My Way Home Scenario Caps-EM Time Performance Results, with
and without Intrinsic Rewards (IR).

Module Type Scenario

Dense, Dense, Sparse, Sparse,

Varied Uniform Varied Uniform

Caps-EM (s) 1.24E+04 2.48E+04 1.07E+05 1.37E+05

Caps-EM (IR) (s) 5.74E+04 5.22E+04 1.78E+05 2.09E+05

% Difference +78% +52% +40% +35%

Table 5.4.
My Way Home Scenario Caps-EM Time Performance Results, with
RGB and RGB + Depth Inputs.

Module Type Scenario

Dense, Dense, Sparse, Sparse,

Varied Uniform Varied Uniform

ICM (s) 1.46E+05 8.15E+05 5.44E+04 6.18E+05

Caps-EM (RGB) (s) 1.24E+04 2.48E+04 1.07E+05 1.37E+05

% Difference -1076% -3182% +49% -353%

Caps-EM (RGB + Depth) (s) 9.41E+03 1.34E+04 7.12E+04 1.24E+05

% Difference -1453% -5967% +24% -400%

Fig. 5.4 and Table 5.5 show how well each module applies learned network param-

eter weights from the MWH scenarios to the MWH-M scenarios. The expectation is

that the knowledge should generalize well and enable the modules to converge to a

successful policy faster than without using curriculum training. The Caps-EM fails

to converge to a policy function in the MWH-M Sparse Varied Texture and Sparse

Uniform Texture scenarios within 1.0E+8 training steps when not using curriculum

training. This may due to the how extremely sparse these respective scenarios are in
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design, combined with how the Caps-EM lacks an intrinsic reward signal to motivate

exploration. Experiments showed that Caps-EM (IR) was able to converge to a policy

in roughly 2.5E+7 training steps in MWH-M Sparse Uniform Texture and in 3.0E+7

steps in MWH-M Sparse Varied Texture with no curriculum training. Moreover, us-

ing Caps-EM (RGB + Depth) without curriculum training did not converge to an

optimal policy function in the Sparse, Uniform or Sparse, Varied scenarios and did

not improve performance over standard Caps-EM. However when using curriculum

training in these same scenarios, the Caps-EM without intrinsic rewards performs

exceptionally well.

(a) MWH-M Sparse Uniform Texture. (b) MWH-M Sparse Varied Texture.

(c) MWH-M Dense Uniform Texture. (d) MWH-M Dense Varied Texture.

Fig. 5.4. My Way Home Mirrored with Curriculum Training Results.

Figure 5.5 and Table 5.6 demonstrate each module’s performance in MWH-G.

None of the modules converge to a successful policy function in the MWH-G Sparse

Uniform or Sparse Varied scenario variants, regardless of the use of curriculum train-

ing. The Caps-EM for example reached in excess of 12.6E+7 training steps without
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learning a useful policy function. MWH-G results illustrate how the Caps-EM per-

forms well in dense and high complexity scenario variants and significantly outper-

forms the ICM and D-ACM. Applying Caps-EM (RGB + Depth) to MWH-G Sparse

Uniform and Sparse Varied did not result in improved performance to achieve an

effective policy function in the scenarios.

Table 5.5.
My Way Home Mirrored Scenario Time Performance Results, with
and without Curriculum (Curr.) Training.

Module Type Scenario

Dense, Dense, Sparse, Sparse,

Varied Uniform Varied Uniform

ICM (s) w/ Curr. Training 1.49E+05 4.76E+05 1.70E+05 4.76E+05

ICM (s) w/o Curr. Training 2.45E+05 5.44E+05 2.04E+05 5.10E+05

% Difference +39% +13% +17% +7%

D-ACM (s) w/ Curr. Training 7.93E+04 1.94E+05 5.46E+05 2.20E+05

D-ACM (s) w/o Curr. Training 1.15E+05 2.64E+05 6.26E+05 7.49E+05

% Difference +31% +27% +13% +71%

Caps-EM (s) w/ Curr. Training 1.71E+03 6.21E+03 2.48E+03 1.24E+03

Caps-EM (s) w/o Curr. Traning 1.86E+03 8.07E+03 – –

% Difference +8% +23% – –

Fig 5.6 presents the performance of each module in the My Way Home “Noisy

TV” scenario, while Table 5.7 compares module performance in the MWH “Noisy

TV” scenario and the MWH Dense, Texture scenario. A significant difference in

module performance between the two scenarios is that the ICM, D-ACM and Caps-

EM demonstrate policy overfitting in the training phase in the “noisy TV” scenario.

The same behavior is not present with these modules in MWH Dense, Texture where

the modules apply knowledge from training to perform well in the testing phase.

While the ICM and D-ACM appear to converge quicker to an adequate policy function
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(a) MWH-G Dense Uniform Texture. (b) MWH-G Dense Varied Texture.

Fig. 5.5. My Way Home Giant Results.

Table 5.6.
My Way Home Giant Scenario Time Performance Results.

Module Type Scenario

Dense, Dense,

Varied Uniform

ICM (s) 1.26E+06 1.29E+06

D-ACM (s) 6.70E+05 9.16E+05

% Difference -88% -41%

Caps-EM (s) 8.07E+04 1.18E+05

% Difference -1457% -994%

than in MWH Dense, Texture, early stopping is used with training in the “noisy TV”

scenario for the ICM, D-ACM and Caps-EM. Additionally, all modules except the

Caps-EM (RGB + Depth) do not converge to a policy function that successfully

completes the scenario in 100% of test simulations.

The best performance that the ICM, D-ACM and Caps-EM achieve are with policy

functions that are successful 98%, 95% and 84% of simulations, respectively. Given

this, the ICM, D-ACM and Caps-EM do not converge to an optimal policy function

that achieve a mean test score of 1 within testing, whereas the Caps-EM (RGB +

Depth) does. Of all modules, the Caps-EM most significantly underperforms relative
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Fig. 5.6. My Way Home “Noisy TV” Results.

Table 5.7.
My Way Home “Noisy TV” Time Performance Results.

Module Type Scenario

“Noisy TV” Dense, Varied % Difference

ICM (s) 7.61E+04 1.46E+05 -48%

D-ACM (s) 8.81E+04 9.69E+04 -9%

Caps-EM (s) 4.97E+04 1.24E+04 +301%

Caps-EM (RGB + Depth) (s) 9.32E+03 9.41E+03 -1%

to its performance in MWH Dense, Texture with being unable to converge to an

adequate policy scoring a mean test score above 90%. While not truly a stochastic

source of noise, the “noisy TV” wall still introduces a source of entropy to the scenario

and significantly affects the modules’ performances. However the Caps-EM (RGB +

Depth) proves to be resilient to this type of stochastic variability and distraction

while navigating through the scenarios.
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5.4 Conclusions

The Caps-EM architecture leverages the A2C algorithm to perform well with au-

tonomous navigation and exploration in sparse reward environments. More compact

and efficient with 44% and 83% fewer parameters than the ICM and D-ACM, respec-

tively, the Caps-EM on average outperforms both the ICM and D-ACM across the

MWH, MWH-M and MWH-G scenarios. The Caps-EM converges to a policy function

in MWH, on average across all four scenario variants, 437% and 1141% quicker than

the D-ACM and ICM, respectively, without the use of intrinsic rewards. Similarly in

MWH-M scenarios when using curriculum training, the Caps-EM has a 10,726% and

13,317% time improvement on average over the D-ACM and ICM, respectively. Lastly

with MWH-G variants, the Caps-EM has a 703% and 1226% time improvement on

average over the D-ACM and ICM, respectively.

Experiments with varied inputs demonstrate how a combination of RGB and depth

images enable improved performance across all MWH scenarios. Pairing CapsNets

with the concatenated input results in improved performance in each MWH scenario.

Relative to Caps-EM with only RGB inputs, Caps-EM (RGB + Depth) achieves a

377% improvement in policy convergence in the MWH Dense Varied scenario, 2785%

improvement in Dense Uniform, 25% improvement in Sparse Varied, and 47% im-

provement in Sparse Uniform. Furthermore, this variation of the Caps-EM proves

resilient to stochastic noise as demonstrated with the MWH “Noisy TV” scenario,

in part by avoiding the use of intrinsic rewards. Conversely, the ICM and D-ACM

suffer from overfitting and decreased performance in this scenario as hypothesized

and shown in prior research on intrinsically motivated agents.

While the Caps-EM struggles to converge effectively in certain sparse scenarios,

such as with MWH-M Sparse Uniform Texture and Sparse Varied Texture, the mod-

ule readily applies learned knowledge using curriculum training to generalize well

across these scenarios. The intrinsic reward factor used by the D-ACM and ICM

likely enables these modules to better handle these specific sparse reward scenarios.
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However simply combining intrinsic rewards with the Caps-EM does not significantly

improve performance in these scenarios as shown. The ICM and D-ACM do exhibit

larger architectures with more network parameters and lower relative performance in

other scenarios though. Caps-EM offers a more lightweight yet still capable design

overall.

The results additionally confirm the hypothesis of Caps-EM’s ability to maintain

better spatial relationships and hierarchies than CNNs for improved performance on

average. This finding is evident in dense scenarios where the Caps-EM maintains

relationships between the Varied Texture rooms well. Future work could explore how

to improve the Caps-EM performance in the extremely sparse environments, such

as MWH-M Sparse Uniform Texture, to address this weakness. Experimentation

with Caps-EM variants that did incorporate intrinsic reward factors did improve

effectiveness in these edge cases to a degree. However, this module variant does not

appear to be a viable solution as its performance on average in other scenarios is

significantly worse. Another area of interest is how modules would perform with

added dynamics and moving objects beyond only the stochastic noise of only the

“noisy TV” wall.
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6. CONCLUSIONS AND FUTURE WORK

6.1 Future Work

A key factor to achieving proficient autonomous exploration is ensuring that an

agent has an adequate understanding of its surrounding environment. This research

explores how different sets of data, such as RGB images, depth images and optical

flow data, may be leveraged to obtain improved network embeddings for quicker

convergence to an optimal policy function. Considering which modalities may provide

richer information of an environment as an agent moves, 3D structure and mapping

appear to be advantageous to achieve improved network embeddings. Point clouds

have been increasingly used in computer vision, robotics and autonomous driving for

the advantages of 3D data for resolving 2D problems. 3D information can convey

superior geometric, shape and scale data [62,63]. 3D data is usually represented as a

point cloud which “preserves the original geometric information in 3D space without

discretization” [64]. For example while a depth image only provides information from

a particular point of view, a 3D point cloud can capture every point in a scene in 3D.

Software for AI research, such as Airsim [65], allows for utilization of 3D point

cloud information through the projection of 2D image points to the 3D world plane

using only RGB and depth images. Future work could explore pairing 3D point

cloud data with either an intrinsic reward-based network or capsule network model to

analyze the performance relative to the findings shown in this research and other state-

of-the-art work. While 3D point clouds are inherently unstructured and without order,

standard CNNs cannot not be directly applied to point clouds. Thus approaches

such as PointNet and PointNet++ could be utilized to learn local features from

3D data [66, 67]. One potential method could be to incorporate self-supervised 3D

prediction of a scene using only RGB and depth images as inputs. Using CNN
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encoders to generate embeddings of the input scenes, a PointNet-based decoder may

be used to output the corresponding point cloud label of the same scene to use for

training the predictive model.

6.2 Conclusions

This research work highlights how autonomous exploration capabilities may be

improved through the incorporation of depth image prediction in junction with in-

trinsic reward factors. In practical applications, this methodology is accessible and

does not require hardware or equipment beyond a standard RGB-D camera to obtain

the ground truth depth images. Furthermore as shown, the D-ACM is a relatively

compact module, not having a significantly larger number of trainable parameters

than the ICM. This allows for the D-ACM policy function to be trained fairly quickly

and deployed using minimal hardware. This process is also shown to be expedited

through the incorporation of curriculum training.

Through novel experiments with the application of CapsNets, the proposed Caps-

EM module presents a further compact module than the D-ACM. Similarly the Caps-

EM does not require complex hardware systems, merely a RGB-D camera as well.

In line with other state of the art work applying CapsNets, the experiments here

demonstrate how incorporating CapsNets enabled use of fewer trainable parame-

ters than the other comparable CNN-based approaches and subsequently resulted

in more efficient module training time. With the minor modification of providing

a combined RGB and depth input to the Caps-EM, the Caps-EM (RGB + Depth)

notably improves Caps-EM performance across several scenarios. This module fur-

thermore addresses shortcomings with navigating through scenarios with high entropy

like MWH “Noisy TV.” With the significant improvements in autonomous exploration

performance shown with Caps-EM, this research highlights how CapsNets maintain

superior representations and relationships of an environment and objects than other

approaches, such as the D-ACM and ICM.
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As previously mentioned, future work with the ACMs and Caps-EM could explore

performance given added dynamic and moving elements in an environment indepen-

dent of the agent. Additionally while having performed successfully in ViZDoom,

these modules could be deployed in more advanced simulators, such as Airsim, to

further evaluate abilities with handling and navigating through higher complexity

environments. While the modules controlled an agent with a limited action space

in ViZDoom, performance may be impacted when having to operate an agent with

a larger action space, such as that associated with a UAV. Ultimately the methods

proposed with this research explore novel avenues within deep reinforcement learning

and present ideas progressing autonomous systems’ capabilities.
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