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ABSTRACT

Singleton, William S. M.S.E.C.E., Purdue University, May 2020. Increasing CNN
Representational Power Using Absolute Cosine Value Regularization. Major Profes-
sor: Mohamed El-Sharkawy.

The Convolutional Neural Network (CNN) is a mathematical model designed to

distill input information into a more useful representation. This distillation process

removes information over time through a series of dimensionality reductions, which

ultimately, grant the model the ability to resist noise, and generalize effectively. How-

ever, CNNs often contain elements that are ineffective at contributing towards useful

representations. This Thesis aims at providing a remedy for this problem by introduc-

ing Absolute Cosine Value Regularization (ACVR). This is a regularization technique

hypothesized to increase the representational power of CNNs by using a Gradient De-

scent Orthogonalization algorithm to force the vectors that constitute their filters at

any given convolutional layer to occupy unique positions in Rn. This method should

in theory, lead to a more effective balance between information loss and represen-

tational power, ultimately, increasing network performance. The following Thesis

proposes and examines the mathematics and intuition behind ACVR, and goes on

to propose Dynamic-ACVR (D-ACVR). This Thesis also proposes and examines the

effects of ACVR on the filters of a low-dimensional CNN, as well as the effects of

ACVR and D-ACVR on traditional Convolutional filters in VGG-19. Finally, this

Thesis proposes and examines regularization of the Pointwise filters in MobileNetv1.
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1. BACKGROUND

Before beginning this Thesis, a brief discussion of the fundamentals of Convolutional

Neural Networks, and Filter Weight Matrix Regularization is in order. This discus-

sion, while an inadequate treatment of a topic, which to date, still resides in a realm

beyond the horizon of human knowledge, will provide the background, and continuity

necessary, to confidently propound the Thesis statement offered by this work. This

discussion will reveal itself in the form of a catechism, explicating the prerequisites,

and providing a firm foundation, upon which, the merits of this work shall be made

manifest.

1.1 What is The Convolutional Neural Network?

The Convolutional Neural Network is a mathematical model designed to take

information as an input, process this information through a series of operations, and

finally, provide an output. In this manner, the CNN can be seen simply as a function,

taking an input, and returning an output. While this definition appears very abstract,

this is intentional, as the CNN can take many different forms, and be useful for many

different tasks. However, there are several features that unite all CNN architectures.

Firstly, the CNN must take an input. This can be simply a number, or something

more complex, like an image. This input data is fed to the CNN, in the hope that the

CNN will return a useful representation of the data. This can be as simple as a yes/no

decision corresponding to a 1 or 0, or perhaps, in the case of the image input, a vector

containing the locations and classifications of all interesting objects in the image. It

is immediately apparent that if the CNN would be capable of performing these tasks,
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it would be a tremendously powerful artifact. This artifact however, would only

be useful if there was some way of easily constructing it, and more importantly,

instructing it how to generate these outputs from input data.

Fortunately, both of these questions have solutions. To address the first, The CNN

itself, is canonically comprised of a series of layers which perform specific operations.

From our initial definition of the CNN, this can be understood as a series of nested

functions: an input is passed to the first layer, which then processes it before passing

it to the next. The final layer being an output of the original data distilled into a

more useful representation. This leads us to ask exactly what the layers are, how

they work, and how we decide how many, and in what order to place them.

Traditionally, the CNN will consist of the following layers: Input, Convolutional,

Non-Linear, Pooling, Fully-Connected, and Output [1]. The Input and Output layers

are simply the initial input data, and the output representation, respectively. The

other layers form the core of most CNN architectures. These layers are the functions

that receive, process, and pass forward data.

The first notable layer is the Convolutional Layer, whose operation is seen in

Figure 1.1:

Fig. 1.1. Convolutional Layer with 2-D Filter
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This layer contains a series of filters, which are arrays of numbers that will perform

a Frobenius Inner Product with data received from the proceeding layer, and pass

these values forward. Each filter in the Convolutional Layer will act on all of the data

passed to it, producing an output that is a feature map. The collective filters, will

each produce one feature map, and send all of these values to the next layer. in the

case of Figure 1.1, we can see the Frobenius Inner Product of Filter K, with the Data

I, of the same size. This is a singular example of the convolution process, which is

repeated for every filter, on all Inner Product Locations in I.

After the Convolutional Layer Comes the Non-Linear Layer. This layer is designed

to produce a non-linear mapping between its inputs and outputs. The reason for this,

is that the process of convolution is a linear operation. By stacking only Convolutional

Layers, there would be no benefit in terms of the models representational power. This

process is remedied by Non-Linear Layers such as those seen below in Figure 1.2:

Fig. 1.2. Different Types of Non-Linear Layers

Each of these layers will receive data from the previous function and perform one

of the operations shown in Figure 1.2. This process of introducing non-linearities to

increase representational power is the primary agent in the success of the CNN.

The classical CNNs also consist of a Pooling Layer. This layer will reduce the

dimensionality of the data it receives. The main purpose of this, is that the CNN will

be able to distill the input information into the desired representation. The principal
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theory of operation held by the CNN, is that by performing necessary operations

on our data and procedurally reducing it over time, we are sacrificing data fidelity,

for increased representational power. This is a very worthy and effective trade off.

Shown below in Figure 1.3 is the most common type of Pooling Layer, known as

Max-Pooling.

Fig. 1.3. Max-Pooling Layer

This layer operates by taking only the highest value that exists within a certain

window, and passing that data forward to the following layers. This process is per-

formed several times in a CNN architecture, to reduce data complexity, and yield

increased generalization power.

The Final Layer is the Fully-Connected Layer. This layer takes all of the input

data, flattens it into one vector, and performs a Dot Product with a Weight matrix.

While there are many graphical representations of this process, they are not as ade-

quate as the knowledge that this layer performs a simple dot product, and passes the

resulting data forward.

All the previously mentioned layers are present in the classical CNN architectures.

Unfortunately, the choice of how many of these layers to use is not straightforward.

A popular strategy is to use many of these layers at first, and then slowly scale-back
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until the network accuracy lowers. However, the choice of the number of layers, and

the sizes of each layer, is generally an iterative, and heavily implementation dependent

process.

The ordering of the layers is generally more straightforward. Classically, there is

the input layer, followed by a series of Convolutional Layers interspersed with Pool-

ing Layers. Non-Linear Layers always follow Convolutional layers, but never Pooling

Layers. Finally, after the last Pooling Layer, there is a series of Fully-Connected Lay-

ers, each of which is followed by a Non-Linear Layer. And finally, there is the output

layer. As previously mentioned, the exact number of each layer is implementation

dependent, but the order is largely conserved.

Knowing the core elements of CNNs and their order, we are left with the question

of instructing the Network to take input data and provide useful representations.

This process is surprisingly simple given a well-constructed model, and training data

that properly represents that which is attempting to be represented.

The Output Layer provides us with the final model representation. This repre-

sentation can be compared against its target representation, and we can determine

exactly how correct or incorrect the model is. The method of determining this, is

the Loss Function. This function will return higher values for incorrect model rep-

resentations, and lower values for correct representations. The Loss Functions are

implementation dependent, but a basic Loss Function can be seen below in 1.1:

L(ŷ) =
∑
(ŷ,y)

loss(f(ŷ,W ), y) (1.1)

In this case, ŷ is representative of the input data, W is representative of the

network weights, and y is representative of the target representations. While the

Loss Functions are implementation dependent, their use in the training and testing

process is not. The Loss Function must has a derivative, so that Back-propagation can

occur. Back-propagation is the process of recursively applying the chain rule to the
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Loss Function, in order to determine what the rate of change of the Loss Function is

with respect to different model layer elements. If we know exactly how much changing

a given model element changes the Loss Function, we can update the weights of the

model in order to reduce the error, and get more accurate predictions. This loss

determination and updating process will occur until we are sufficiently satisfied with

the models performance. After the model is satisfactory, we use the Output Layer

representation by itself, without the addition of the Loss Function.

Given an overview of the CNN, its contents, and operation, we can now move

forward to more important questions.

1.2 Why is The Convolutional Neural Network Important?

Simply, the Convolutional Neural Network is important because it is a powerful

mathematical model that is capable of processing data and making decisions without

the assistance of human beings. This makes it a prime candidate to automate work

that is unfit, or impractical for human beings. These models potentially save money,

time, and lives. The model is excellent at resisting aberrations in training data, and

has excellent generalization power when faced with new data related to its training

data. It is also capable of matching input data to target representations with little

need for hand engineered features, as the model is capable of training itself given

proper data and training conditions.

1.3 What is a Filter Weight Matrix Regularizer?

A Filter Weight Matrix Regularizer is a function that we add onto the Loss Func-

tion as a means of fine-tuning the training process. We realize that the weights of

the Filters in the Convolutional Layers of a CNN are significant, as ultimately, they

are the values that are used to produce the representations we desire. We have the

intuition, that should the weights do something like grow to immense or minuscule

values during the process of minimizing the Loss Function, this may in the long term,
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cause the network to fail to reach a satisfactory level of accuracy and stability. With

this knowledge, we can perform a balancing act between the loss generated from the

training data, and that which is generated by the Filter Weight Matrix Regularizer. In

other words, this is a balancing act between knowledge generated from data, and our

preferences about how the weights should be updated over time. The Loss Function

with the addition of a regularizer can be seen below in 1.2:

L(ŷ) =
∑
(ŷ,y)

loss(f(ŷ,W ), y) + γ ∗
∑
(l∈L)

R(W l) (1.2)

The left hand side of this equation is maintained from 1.1, with the addition of the

regularizer term on the right hand side. In this term, R represents the Regularizer

function, which is parameterized by the Weight Matrices present at that layer. This

term is summed over the layers in which the Regularizer is added, and multiplied

by the hyper-parameter gamma. This gamma value is the scalar that scales the

addition of the Regularizer to the Loss Function. When attempting to minimize this

Loss Function using Back-Propagation, the manner in which the network weights are

updated will be reflective of both portions of the Loss Function.

Understanding what Filter Weight Matrix Regularization means to CNNs, we can

discuss two common techniques for Filter Weight Matrix Regularization, being L1 and

L2 Regularization [1]. The operation of both of these methods is nearly identical. In

L1 Regularization, the function R is a simple function that takes the weight matrices,

and sums the absolute value of each of the weight elements. In L2 Regularization, the

function R takes the weight matrices, and sums the square of the individual weight

elements. Both of these techniques add to the Loss Function a value that is reflective

of the magnitudes of the weight matrices, meaning that Back-Propagation will be

attempting to cause unnecessary weights to approach zero magnitude. This results

in a network with fewer large weights, corresponding to a network that is intuitively

less complex.
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While L1 and L2 Regularization are common and effective in practice, there are

many more ways to regularize filter weights, and this Thesis will go on to discuss

Absolute Cosine Value Regularization.
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2. INTRODUCTION

The principle of operation of the Convolutional Neural Network (CNN) is that it

distills information through a series of geometric transformations to provide a more

manageable representation of the input data. To the network architect, the primary

concern for this final representation is whether or not it matches the target rep-

resentation. In other words, the concern is how accurate the network’s output is in

reference to the desired output. This desire for greater accuracy has driven the search

for CNN architectures that provide the greatest possible representation of the input

data. However, given an effective CNN architecture, it is often the case that the archi-

tecture contains representational power that is misused or underutilized. This can be

understood through the processes of pruning [2] and network quantization [3].Prun-

ing is a method through which a Neural Network is reduced in size by selectively

removing individual weights, filters, or even entire layers. Quantization on the other

hand, is a process through which weights present in a network are given a reduction

in precision, corresponding to a lower bit representation. In both cases, elements

are entirely removed from the CNN. Rather unexpectedly however, the networks can

retain their effectiveness, and in some cases, improve their ability to provide accurate

outputs [4]. This process provides evidence that any CNN may have elements that are

underutilized, or in extreme cases, entirely useless. While methods such as pruning

and quantization appear to be effective in practice, they lead in the direction of a

conclusion that is challenging and counter-intuitive. By removing elements from a

network, representational power is lost. Given this understanding, there must surely

be some method through which the network architect can wield this underutilized

representational power without excising entire elements.
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Attempting to understand this problem begins with the convolutional filters them-

selves. The hope for every filter at any given layer, is that it will stochastically learn

weights that will propagate useful information throughout the remainder of the net-

work. Since each filter acts on all of the input data from the preceding layer, the

quality of propagated information is determined at each convolutional layer. With

this in mind, the search for greater CNN representational power begins with one sim-

ple idea: if each filter in a layer learns a very similar combination of weights, the

information passed to the following layers will be similar as well. However, if each

filter learns a weight pattern that is significantly different, the following layers will

receive a richer representation, and in turn, be able to produce their own. The goal

then, is to learn filter weights that will preserve the greatest amount of information

throughout the network, and allow the distillation process the greatest probability

of obtaining useful information. This idea can not be taken too literally however, as

learning only unique filter values removes any ability of the network to learn from its

training data. The search for greater representational power is therefore, a search for

an effective balance between filter diversity, and data generated knowledge.

The diversity of any two filters in this case, is given by their respective Absolute

Cosine Value given in 2.1:

∣∣Cos(θ)∣∣ =

∣∣∣∣ x · y
‖x‖‖y‖

∣∣∣∣ (2.1)

This number is mathematically convenient to represent as an addition to the Loss

Function, as well as intuitive in the fact that it is a representation of the similarity of

the vector spaces of each filter. Understanding the problem of underutilized network

elements, and the belief that novel filters provide richer representations, this Thesis

aims at providing evidence that forcing CNN filters to learn weights to position them-

selves into unique spaces in Rn, may improve their ability to generalize well to new

data, and increase their representational power.
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This Thesis will be presented in four discrete stages. Principally, Absolute Cosine

Value Regularization (ACVR) will be given a mathematical definition and implemen-

tation description. Secondly, ACVR will be tested on a low-dimensional CNN whose

filters will be treated as vectors and visualized in R3. Next, the traditional convo-

lutional layers of the VGG-19 [5] architecture will be regularized, and the effects of

AVCR and Dynamic-ACVR (D-ACVR) on the network will be examined. Finally,

the Pointwise layers of MobileNetv1 [6] will be regularized, and the effects ACVR and

D-ACVR on the network will be examined.

2.1 Contribution

This Thesis provides several unique contributions:

• Proposes implementation and mathematics of ACVR algorithm

• Proposes demonstration of proof of concept for ACVR algorithm

in low-dimensional CNN

• Examines effects of ACVR algorithm on traditional convolutional filters in

VGG-19

• Proposes and examines Dynamic-ACVR algorithm

• Proposes and examines use of ACVR and D-ACVR algorithms to regularize

Pointwise filters in MobileNetv1

2.2 Related Work

A well-known method of retaining information throughout a CNN that inspires

this work is ResNet [7]. Furthermore, using the Cosine Formula to improve Neural

Network accuracies is not a recent paradigm. Reference [8] uses the cosine definition

of the Dot Product as a means of propagating information throughout a network in

a bounded manner. The concept of increasing representational power by enforcing
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diversities in Support Vector Machines using the Cosine Formula was discussed in

[9]. In addition, regularizing filter diversities for the purpose of increasing network

accuracy in CNNs is discussed by [10]. However, this publication is chiefly concerned

with constructing smaller architectures through pruning methods, and combined the

activity of diversity regularization in an ensemble with other regularization terms.

A rigorous explanation for the existence of the Regularizer, its proof of concept,

operation on individual layers, and implementation, is not given.

2.3 Proposed Mathematical Description of ACVR

In order to understand the Absolute Cosine Value Regularization algorithm, it

is necessary to define its implementation. Equation 2.2 represents the total network

Loss Function with the addition of the regularization term ACV (Absolute Cosine

Value), which is a function of the weights W , and summed over the layers in which

it is added. This term is returning a value which corresponds to the similarity of

the filter vector spaces at each layer, by minimizing it, the system will be attempting

to generate high-diversity filter vectors. The scalar gamma, represents the hyper-

parameter that adjusts the contribution of the Regularizer, a factor which scales the

ratio of filter diversity to data generated knowledge.

L(ŷ) =
∑
(ŷ,y)

loss(f(ŷ,W ), y) + γ ∗
∑
(l∈L)

ACV (W l) (2.2)

This formula appears simple to implement, however care must be given to its

implementation, as the Regularizer must compare all filters against one-another at

each layer. This results in a N2 matrix for every regularized layer. However, since

this comparison matrix is symmetric, and the filters need not be compared against



13

themselves, the portion of the ACV matrix containing relevant information is upper-

triangular. This leaves the number of ACV calculations done at each layer to be given

by 2.3:

comparisonsl =
N2

l −Nl

2
(2.3)

This formula states that this algorithm will become increasingly time consuming

with large values of N , necessitating an efficient vectorized computation method.

2.3.1 Calculating Regularizer’s Contribution to Loss Function

Each convolutional layer contains N convolutional filters parameterized by their

height, width, and number of channels. This leaves a 4-Dimensional Tensor that can

be unrolled for each filter into a 2-Dimensional tensor for efficient computation as

follows in 2.4:

Unrolled 4-Dimensional Tensor ≡ X, eachfilter ≡ fi

X ·XT

‖X‖ · ‖X‖T
≡


− f1 −

− f2 −

− ... −

− fN −



| | | |

f1 f2 · · · fN

| | | |



‖f1‖

‖f2‖
...

‖fN‖


[
‖f1‖ ‖f2‖ · · · ‖fN‖

]
(2.4)
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
f1f1 · · · f1fN

...
. . .

...

f1fN · · · fNfN



‖f1‖‖f1‖ · · · ‖f1‖‖fN‖

...
. . .

...

‖f1‖‖fN‖ · · · ‖fN‖‖fN‖


(2.5)


f1f1
‖f1‖‖f1‖ · · ·

f1f1
‖f1‖‖fN‖

...
. . .

...

f1fN
‖f1‖‖fN‖

· · · fNfN
‖fN‖‖fN‖

 (2.6)

Cos(θ) =
x · y
‖x‖‖y‖

(2.7)

After element-wise division in 2.5 each cell in 2.6 is identical to the Cosine For-

mula 2.7, for respective vectors. It is important to note that the Cosine Formula for

two identical vectors does not provide any information, as it always yields a value of

one. This means all values along the main diagonal are unimportant. Values below

the main diagonal are also unimportant, as they provide the same information as

the values above the main diagonal. The only useful information in matrix 2.6 is

contained above the main diagonal, as such, all values below are set to zero in 2.8:


0 · · · f1f1

‖f1‖‖fN‖
...

. . .
...

0 · · · 0

 (2.8)

This leaves a final Tensor containing useful information which is summed and

multiplied by the hyper parameter gamma as shown in 2.9:
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ACV (W l) = γ ∗
N−1∑
j=1

N∑
i=j+1

∣∣∣∣∣ fjfi
‖fj‖‖fi‖

∣∣∣∣∣ (2.9)

Equation 2.9 represents the loss returned for each regularized layer, and is a sin-

gular instance of the ACV function from 2.2.

2.3.2 Expansion of Partial Derivative for Back-Propagation

The following steps demonstrate the Calculus involved in determining a closed

form solution to the partial derivative of the Loss Function with respect to a given

weight in f1, from the perspective of the ACV Regularizer:

ACV (W l) = γ ∗
N−1∑
j=1

N∑
i=j+1

√( fjfi
‖fj‖‖fi‖

)2
(2.10)

Definition of Absolute Value

∂ACV (W l)

∂f1k
= γ ∗ ∂

∂f1k

N∑
i=2

√( f1fi
‖f1‖‖fi‖

)2
(2.11)

Partial Derivative of Loss Function With Respect to kth Element of Vector f1

∂ACV (W l)

∂f1k
= γ ∗ ∂

∂f1k

N∑
i=2

√(∑ f1fi
∑
f1fi∑

f 2
1

∑
f 2
i

)
(2.12)

Expanding Definition of ACV

∂ACV (W l)

∂f1k
= γ∗

N∑
i=2

[
fik
∑
f1fi√(∑

f1fi
∑
f1fi

)√(∑
f21
∑
f2i

)− f1k
∑
f2i

√(∑
f1fi

∑
f1fi

)
√(∑

f21
∑
f2i

)3
]

(2.13)
Final Analytic Expression
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2.3.3 Discussion of Analytic Solution

Equation 2.13 is representative of the rate of change of the Loss Function from

the perspective of the ACV Regularizer, with respect to the vector element f1k. In

Equation 2.13 any index of f1 can be substituted for, and the complete contribution

of the Regularizer to the Loss Function for f1 can be found by solving 2.13, for

all elements k. Equation 2.13 by itself is a large multi-variable expression, however

its form yields insight into potential operation of the Regularizer. All values under

radicals can not be negative, and neither can the square of fi on the right hand side

of 2.13. Only f1k, fik, and
∑
f1fi can have negative values. We have no insight into

the sign of fik
∑
f1fi, however, the sign of f1k is extremely significant. The sign of

the right hand side of the equation is given solely by the sign of f1k, and in particular,

it is opposite to the sign of f1k. This signifies that the right hand side of the equation

is actively producing a value that is attempting to minimize the value of f1k, and

will make this value N − 1 times for each instance in 2.13. The significance of this is

that in addition to attempting to explicitly push all vectors into unique positions, the

ACV Regularizer may be implicitly working to suppress their L1 Magnitudes, further

stabilizing the network.
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3. PROPOSED ACVR ALGORITHM PROOF OF

CONCEPT IN LOW-DIMENSIONAL CNN

The ACV Regularizer aims at forcing filter vectors into unique positions in Rn. The

success of this objective can be easily visualized in R2 or R3. Therefore, in order to

verify the effectiveness of this Regularizer, a trial CNN is constructed that excluding

the fully connected base, consists of two convolutional layers. The purpose of this

CNN is not to achieve competitive accuracies, but to demonstrate that by applying

ACVR at high gamma values, the filter vectors within the network will spread apart

from each other in a manner that is near maximal, a result of minimizing the Loss

Function 2.2. In this case, the differences between vectors is given by 2.7. Two Ex-

periments are conducted to examine the proposed algorithm: one with the purpose of

visualizing the movements of the CNN’s filter vectors with, and without regulariza-

tion. The second, to determine the Regularizer’s effect on the network when trained

to validation set convergence. The filters of the network consist of only three elements

and therefore exist in R3, rendering visualization of the Regularizer’s activity trivial.

3.1 Network Architecture and Training Conditions

The architecture of the network devised to test the ACV Regularizer consists of

two convolutional layers, consisting of three and five filters respectively, and one fully-

connected layer. The data set used is the CIFAR-10 small images data set [11], with

a batch size of 32, and data set augmentation consisting of horizontal transfer and

random width and height shifting. The model is constructed using the Keras API [12],

and the Regularizer is developed from the TensorFlow API [13]. Post processing is

done using SciPy [14] and MatLab [15].
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3.2 Visualizing Effects of Regularization

To determine the effectiveness of the ACV Regularizer, the network is run for

8 epochs with, and without its presence. The gamma value for the Regularizer is

found empirically, and is determined to be 5.0 ∗ 10−1. From the network, the initial

filter vectors are saved, along with the vectors from the network after training in

both training instances. To determine vector similarity, the Cosine Formula 2.7 is

employed, and six sets of similarity matrices are produced. The following six tables

display the data provided by both sets of convolutional filters. In addition, two

images are displayed to provide a simple graphical representation of the filter vectors

of Convolutional Layer Two before, and after training with ACVR.

Table 3.1.
Cosine Comparison of Layer One Filters before Training

Filters K2 K3

K1 0.136855 0.582584

K2 - 0.364344

Table 3.2.
Cosine Comparison of Layer Two Filters before Training

Filters K2 K3 K4 K5

K1 0.749633 -0.524069 0.501112 -0.985155

K2 - -0.951118 -0.191307 -0.8513

K3 - - 0.445442 0.657606

K4 - - - -0.345152
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Table 3.3.
Cosine Comparison of Layer One Filters after Training without ACVR

Filters K2 K3

K1 -0.866503 -0.635898

K2 - 0.724771

Table 3.4.
Cosine Comparison of Layer Two Filters after Training without ACVR

Filters K2 K3 K4 K5

K1 -0.780891 -0.989761 -0.121355 0.789708

K2 - 0.743862 0.70981 -0.989937

K3 - - 0.0573636 -0.772605

K4 - - - -0.666673

Table 3.5.
Cosine Comparison of Layer One Filters after Training with ACVR

Filters K2 K3

K1 -0.000126887 -3.77776e-05

K2 - -0.00032148

Table 3.6.
Cosine Comparison of Layer Two Filters after Training with ACVR

Filters K2 K3 K4 K5

K1 -0.000174307 0.000104767 -1.35988e-05 -1

K2 - -1 -0.000178602 0.000214833

K3 - - 0.000311102 -0.000145298

K4 - - - -0.000135528
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Fig. 3.1. Convolutional Layer Two Filters before Training

Fig. 3.2. Convolutional Layer Two Filters after Training with ACVR
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3.2.1 Discussion of Experiment One for Proposed Algorithm

The goal of the first experiment is to demonstrate that when the activity of the

Regularizer dominates the Loss Function, it is capable of spreading the filter vectors

out in a manner which is near maximal as given by Equation 2.2. The matrix of cosine

values is displayed to provide a numerical representation of the diversity among filter

vectors. The filter vectors as they are initialized in Convolutional Layer Two can be

seen in Figure 3.1, along with the cosine matrices of Convolutional Layers One and

Two in Tables 3.1 and 3.2. In the case of the non-regularized model, the filter vectors

numerically maintain a large degree of similarity after training as seen in Tables 3.3

and 3.4. In the case of the regularized model whose Layer Two Convolutional vectors

after training can be seen in Figure 3.2, the filters of the convolutional layer visually

spread apart in a near maximal manner, which is confirmed by the cosine value matri-

ces in Tables 3.5 and 3.6. It is clear from the experiments that the ACV Regularizer

is capable of providing immense vector diversity, whereas the non-regularized model

does not. The behavior exhibited by the Regularizer is exactly that which was hoped,

lending substantial evidence to its correct theory and implementation.

3.3 Long-Term Behavior of Regularization

The second experiment is run under the same conditions as the first, for 150

epochs, with the purpose of determining the long term behavior of the ACV Regular-

izer on the model. From these trials, the training and validation set accuracies and

losses of both models are obtained, as well as the L1 Magnitudes and net sum of the

ACV values from each of the two convolutional layers.
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(a) L1 Magnitude (b) Sum of ACV Matrix

Fig. 3.3. Convolutional Layer One without ACVR

(a) L1 Magnitude (b) Sum of ACV Matrix

Fig. 3.4. Convolutional Layer Two without ACVR
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(a) Validation Set Weighted Accuracy: 0.63%,

Standard Deviation: 0.0087

(b) Loss

Fig. 3.5. Loss and Accuracy Plots without ACVR

(a) L1 Magnitude (b) Sum of ACV Matrix

Fig. 3.6. Convolutional Layer One with ACVR
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(a) L1 Magnitude (b) Sum of ACV Matrix

Fig. 3.7. Convolutional Layer Two with ACVR

(a) Validation Set Weighted Accuracy:

0.629%, Standard Deviation: 0.0093

(b) Loss

Fig. 3.8. Loss and Accuracy Plots with ACVR
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3.3.1 Discussion of Experiment Two for Proposed Algorithm

The second experiment is designed to evaluate the behavior of the model when

trained to validation set convergence. While the ACV Regularizer was hypothesized

to provide an L1 Regularization effect, the evidence provided from Figures 3.3(a),

3.4(a), 3.6(a), and 3.7(a), is inconclusive. This can be clarified from Equation 2.13: it

is understood that the right ratio is attempting to provide an L1 Regularization effect,

but little can be predicted regarding the left ratio. Given this mathematical definition,

and the inconclusive nature of the evidence provided, it can be said that ACVR can

not be guaranteed to provide any L1 Regularization effect. The graphs in Figures

3.3(b), 3.4(b), 3.6(b), and 3.7(b), demonstrating the sum of ACV values, align exactly

with that which was determined from Experiment One, as the regularized model

approaches the minimum possible ACV values given the number of filters in each

layer. Whereas, the non-regularized model maintains a significantly higher degree of

vector similarity. Both models display signs of diverging loss, as seen in Figure 3.5(b)

and Figure 3.8(b). Finally, both models in Figure 3.5(a) and Figure 3.8(a) suffer from

a high degree of training set overfitting, but the non-regularized model maintains a

slightly higher validation set accuracy. This does not indicate that the Regularizer is

ineffective, as its vectors have spread out in a near maximal manner, a configuration

which is not guaranteed to be optimal. It is important to remember that the goal

of these experiments is to prove the practicality of the concept of the Regularizer,

and not determine the most efficient ratio between filter diversity and data generated

knowledge.
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3.4 Summary of Proposed ACVR Algorithm Proof of Concept in Low-

Dimensional CNN

Absolute Cosine Value Regularization is a method designed to employ the under-

utilized elements in a CNN, and promote optimal information distillation. So far in

Chapter 2.3, this Thesis has discussed the mathematics behind this regularization

technique, and described its practical implementation. Furthermore, in Chapter 3,

the first experiment conducted on a low-dimensional CNN has provided evidence that

this Regularizer is capable of generating high diversity filter vectors. The second ex-

periment confirmed this result, but also produced evidence that the ability of ACV

Regularization to act as an L1 Regularizer is not guaranteed. The evidence gath-

ered concerning filter diversity is promising, as it provides visual and numerical data

demonstrating the effectiveness of the implementation, and reinforces the veracity

of the theory. It is hypothesized that at optimum values of gamma, the inclusion

of this Regularizer in a full-scale CNN with many layers, and filters per-layer, such

as VGG-19, will increase its representational power. In addition, this Regularizer is

hypothesized to be of even greater benefit to CNNs that are targeted towards mobile

applications, such as MobileNet. Overall, the evidence gathered is an excellent proof

of concept, and the effect of the Regularizer on a full-scale CNN will be examined in

the following chapters.
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4. HYPER-PARAMETER SEARCH AND MODEL

CONFIGURATION CONSIDERATION

The Absolute Cosine Value Regularizer is a weight matrix regularizer. This means

that it may be placed on any convolutional layer, or any combination of layers. This

is significant in that it means the search for an optimum configuration is factorial

in the number of convolutional layers in a network. For example, the VGG-19 ar-

chitecture has 2.092279e+13 potential regularizer combinations, considering only the

convolutional layers. This problem is compounded by the fact that the search for the

optimum value of gamma exists in a continuous space. This signifies that finding the

optimal regularizer configuration and gamma value is extremely implausible. This re-

alization does not however, signify that finding a regularizer combination and gamma

value that improves network performance is implausible. Therefore, the proposition

of a search for an optimal ratio between filter diversity and data generated knowl-

edge, is a proposition that is ill-posed given the constraints imposed by nature of the

task. The correct proposition, is to examine the effects of ACV Regularization, and

to demonstrate there exists a regularization combination and gamma value, that can

be of benefit to a specific CNN architecture.
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5. PROPOSED ACVR ALGORITHM EXPERIMENTS

AND RESULTS FOR VGG-19

The VGG-19 architecture as seen in category E of Figure 5.1 [5], is a large, well-

established model, that has been extensively referenced in literature. It is for these

reasons that it is chosen as a means of testing ACVR for Image Classification. The

data set used for testing is the CIFAR-10 small images data set, with data set aug-

mentation consisting of horizontal transfer, and random width and height shifting.

The optimizer used is RMSprop with a learning rate of 1e-4 and decay of 1e-6. The

model is constructed using the Keras API, and the Regularizer is developed from the

TensorFlow API. Post processing is done using SciPy and MatLab.

5.1 Search Process and Benchmarks

Given the considerations from Chapter 4, the process of finding effective regu-

larizer configurations and gamma values is largely empirical, and one of many pos-

sibilities. To reduce the complexity of the search space, the process of finding an

effective configuration begins with two strategies: test configurations that are inher-

ently simple, such as those which are highly symmetric, and, regularize layers that

have the largest number of filters in order to receive the greatest benefit of filter di-

versity. Upon discovering an effective regularizer configuration, a hyper-parameter

search will be done to fine-tune the effectiveness of that configuration. This process

while attempting to pursue only a subset of the regularizer configurations and gamma

values, produces a substantial quantity of data, only some of which is necessary for

reproduction here. Table 5.1 displays the benchmarked accuracies at 250 epochs of

the VGG-19 architecture at different batch sizes, and the previously given training

conditions:



29

Fig. 5.1. List of VGG Architectures, Model E Is Chosen for Experiments

Table 5.1.
VGG-19 Benchmarks without ACVR

Batch Size BASE

32 0.7188± 0.0141

64 0.8118± 0.0064

128 0.8439± 0.0061

256 0.8478± 0.0052

These benchmarks reveal that the accuracy value of 0.8478 is the target, and a

regularizer configuration and gamma value must be found to surpass this metric.
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5.2 ACVR Layer Configuration Search

Table 5.2 represents the configurations which are generated to test ACVR, and

their associated accuracies at fixed hyper-parameter values. The batch size, gamma

value, and number of epochs are fixed at 128, 3.0 ∗ 10−1, and 100, respectively.

Table 5.2.
ACVR Layer Configuration Search with Fixed Batch Size and Gamma

Layer Configuration Accuracy

1 0.8122± 0.0024

16 0.8283± 0.0088

Even Layers 0.8149± 0.0032

Odd Layers 0.8094± 0.0036

After Maxpool and Input 0.8046± 0.0056

Before Maxpool 0.8327± 0.0019

Before Maxpool And 9-12 0.8191± 0.0033

Before Maxpool And 9-16 0.8174± 0.0023

Before Maxpool And 13-16 0.8337± 0.0031

1-2 0.7532± 0.0209

3-4 0.7643± 0.0135

5-8 0.7302± 0.0335

9-12 0.8465± 0.0029

3-16 0.7544± 0.0025

5-16 0.7952± 0.0022

9-16 0.8428± 0.0043

13-16 0.8516± 0.0039

All 0.7188± 0.0020
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5.2.1 Refined ACVR Layer Configuration Search

Table 5.3 represents the configurations which are generated from knowledge acquired by the

initial search to test ACVR, and their associated accuracies at fixed hyper-parameter values. The

batch size, gamma value, and number of epochs are fixed at 32, 3.0 ∗ 10−1, and 250, respectively.

Table 5.3.
Refined ACVR Layer Configuration Search with Fixed Batch Size and Gamma

Layer Configuration Accuracy

Before Maxpool 0.7594± 0.0152

Before Maxpool And 9-16 0.8554± 0.0055

Before Maxpool And 13-16 0.8275± 0.0052

9-12 0.6863± 0.0158

9-16 0.8504± 0.0084

13-16 0.7552± 0.0092

5.2.2 ACVR and Benchmark Graphical Data

(a) Raw Accuracy (b) Raw Loss

Fig. 5.2. ACVR Raw Accuracy and Loss at Batch Size 32 and Con-
figuration: Before Maxpool and 9-16
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(a) Convolutional Layer 2 (b) Convolutional Layer 4

Fig. 5.3. ACVR Convolutional Layers 2 and 4 at Batch Size 32 and
Configuration: Before Maxpool and 9-16

(a) Convolutional Layer 8 (b) Convolutional Layer 9

Fig. 5.4. ACVR Convolutional Layers 8 and 9 at Batch Size 32 and
Configuration: Before Maxpool and 9-16
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(a) Raw Accuracy (b) Raw Loss

Fig. 5.5. Raw Accuracy and Loss of Benchmark Model, Batch Size 64

(a) Raw Accuracy (b) Raw Loss

Fig. 5.6. Raw Accuracy and Loss of Benchmark Model, Batch Size 256
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(a) Convolutional Layer 2 (b) Convolutional Layer 4

Fig. 5.7. Benchmark Model Convolutional Layers 2 and 4, Batch Size 256

(a) Convolutional Layer 8 (b) Convolutional Layer 9

Fig. 5.8. Benchmark Model Convolutional Layers 8 and 9, Batch Size 256
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5.3 Discussion of ACVR Results for VGG-19

The purpose of ACVR is to produce diverse filters at each convolutional layer in

a CNN, a process which is hypothesized to increase the representational power of the

network, ultimately increasing its accuracy. From the initial experiments conducted

in Tables 5.2 and 5.3, this increase in representational power is achieved in three

instances. Table 5.3 contains the highest accuracy achieved at 0.8554. While this

does qualify as successful in that the baseline accuracy has been exceeded by 0.0076

(0.76%), this is a very limited demonstration of the benefits of ACVR. The raw

accuracies and losses of the top scoring ACVR model can be seen in Figure 5.2. In

addition, the raw accuracies and losses of the benchmark models at batch sizes of 64

and 256 can be seen from Figures 5.5 and 5.6 respectively. It is immediately apparent

that the ACVR model produces values that contain significantly less variance than the

benchmark model at batch size of 64, and is competitive with the benchmark model

at batch size 256. This reduction in aberrations despite small batch size is a positive

quality in a regularizer, and gives us more faith in the abilities of the model to properly

classify images. Figures 5.3 and 5.4 display the ACV values for convolutional layers

2 and 4, and 8 and 9 respectively, for the top scoring ACVR model. Initially, these

figures reinforce the knowledge that as training continues, filter diversity will continue

to increase, ultimately producing high diversity filters. This can be contrasted with

Figures 5.7 and 5.8, which demonstrate that the top scoring benchmark model has

filters of lower diversity, and on each epoch the ACV values increase.

The fact that a competitive accuracy has been achieved, and high diversity filters

are being generated is good news for the Regularizer. However, the advantage is only

minor, and more consideration must be made to produce an even greater benefit. In

order to receive this benefit, Figures 5.3 and 5.4 must be examined carefully. It is

true that the purpose of ACVR is to produce high diversity filters, but this process

is the mechanism of our intended success, and not the object. The initial intuition of

the Regularizer is to create a means of optimal information distillation in a network.
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Therefore, it is possible that by forcing the filters in layer 2, 4, and 8, to into

positions of extreme diversity as shown, is reducing the models ability to learn from

its training data, and information is being lost too early in the model. It also appears

that all configurations that perform well do so by regularizing at least layers 13-16.

Based on this data and intuition, the process of optimizing ACVR leads us in the

direction of some system in which later layers receive a higher gamma coefficient, but

earlier layers receive a lower gamma coefficient, creating a better ratio of diversity to

data generated knowledge, and allowing for optimal information distillation.

5.4 Proposed Dynamic-ACVR Algorithm

The layer configuration and hyper-parameter search space is already immense.

Optimizing ACVR by altering gamma values for each layer adds yet another layer

of complexity to this issue, making an effective search nearly impractical. In order

to work around this problem, a method is defined that is both simple, and retains

all of the benefits previously known to ACVR. This method is Dynamic-ACVR (D-

ACVR). This is an alteration to the previously defined regularizer architecture that is

a simple function of the number of filters present in a given layer. Equation 2.3 yields

the number of elements in the upper triangular portion of a matrix as a function of

the diagonal, which in this case is the number of filters in a given layer. Knowing that

Equation 2.1 can have a maximum value of one, the largest magnitude that can be

returned by the ACV function from Equation 2.9 is equal to Equation 2.3 evaluated

at the number of filters for that layer multiplied by gamma. Knowing that a gamma

value of 3.0∗10−1 has been shown to be effective in layers 13-16 which have 512 filters

each, the gamma value at any regularized layer in the network is scaled by the ratio

between Equation 2.3 evaluated using the current layer’s number of filters, divided

by 2.3 evaluated using 512 as the number of filters. This Equation can be seen as 5.1:

γl(Nl) = γ ∗ N2
l −Nl

N2
max −Nmax

(5.1)
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Armed with this new Dynamic Regularization strategy, the previous experiments

are run again to determine if a greater network accuracy can be found.

5.5 D-ACVR Layer Configuration Search

Table 5.4 represents the configurations which are generated to test D-ACVR, and

their associated accuracies at fixed hyper-parameter values. The batch size, gamma

value, and number of epochs are fixed at 128, 3.0 ∗ 10−1, and 100, respectively.

Table 5.4.
D-ACVR Layer Configuration Search with Fixed Batch Size and Gamma

Layer Configuration Accuracy

1 0.8329± 0.0081

Even Layers 0.8415± 0.0030

Odd Layers 0.8325± 0.0027

After Maxpool and Input 0.8323± 0.0055

Before Maxpool 0.8432± 0.0041

Before Maxpool And 9-12 0.8448± 0.0043

Before Maxpool And 9-16 0.8395± 0.0042

Before Maxpool And 13-16 0.8498± 0.0027

1-2 0.8292± 0.0087

3-4 0.8229± 0.0076

5-8 0.7952± 0.0216

3-16 0.8126± 0.0048

5-16 0.8189± 0.0024

All 0.8032± 0.0031
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5.5.1 Refined D-ACVR Layer Configuration Search

Table 5.5 represents the configurations which are generated from knowledge ac-

quired by the initial search to test D-ACVR, and their associated accuracies at fixed

hyper-parameter values. The batch size, gamma value, and number of epochs are

fixed at 32, 3.0 ∗ 10−1, and 250, respectively.

Table 5.5.
Refined D-ACVR Layer Configuration Search with Fixed Batch Size and Gamma

Layer Configuration Accuracy

Even Layers 0.8502± 0.0040

Before Maxpool 0.8201± 0.0149

Before Maxpool And 9-12 0.8488± 0.0040

Before Maxpool And 9-16 0.8790± 0.0024

Before Maxpool And 13-16 0.8524± 0.0050
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5.5.2 D-ACVR Optimal Gamma Search

Table 5.6 represents search process for an optimal gamma value for Configuration:

Before Maxpool and 9-16. The batch size, and number of epochs are fixed at 32, and

250, respectively.

Table 5.6.
Gamma Value Search on Best D-ACVR Model

Gamma Accuracy

0.02 0.8577± 0.0060

0.04 0.8664± 0.0065

0.06 0.8753± 0.0044

0.08 0.8725± 0.0034

0.10 0.8653± 0.0053

0.12 0.8760± 0.0037

0.14 0.8711± 0.0050

0.16 0.8732± 0.0036

0.18 0.8768± 0.0020

0.20 0.8742± 0.0034

0.22 0.8724± 0.0032

0.24 0.8712± 0.0042

0.26 0.8681± 0.0053

0.28 0.8697± 0.0032

0.30 0.8790± 0.0024

0.32 0.8702± 0.0041

0.34 0.8730± 0.0041

0.36 0.8687± 0.0050

0.38 0.8667± 0.0053

0.4 0.8655± 0.0058
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5.5.3 Comparison of Best D-ACVR and Benchmark Models

Table 5.7 represents the best D-ACVR configuration found through experimentation, contrasted

with the benchmark models. The optimal value of gamma is found to be 3.0 ∗ 10−1, and the most

effective convolutional layers to regularize are layers 9 through 16, as well as 8, 4, and 2. Models

have been run for 250 epochs.

Table 5.7.
Accuracy Comparison on Benchmark Model and Best D-ACVR Model

Batch Size BASE D-ACVR

32 0.7188± 0.0141 0.8790± 0.0024

64 0.8118± 0.0064 0.8642± 0.0022

128 0.8439± 0.0061 0.8679± 0.0037

256 0.8478± 0.0052 0.8605± 0.0026

5.5.4 D-ACVR Graphical Data

(a) Raw Accuracy (b) Raw Loss

Fig. 5.9. D-ACVR Raw Accuracy and Loss at Batch Size 32 and
Configuration: Before Maxpool and 9-16
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(a) Convolutional Layer 2 (b) Convolutional Layer 4

Fig. 5.10. D-ACVR Convolutional Layers 2 and 4 at Batch Size 32
and Configuration: Before Maxpool and 9-16

(a) Convolutional Layer 8 (b) Convolutional Layer 9

Fig. 5.11. D-ACVR Convolutional Layers 8 and 9 at Batch Size 32
and Configuration: Before Maxpool and 9-16
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5.6 Discussion of Proposed D-ACVR Algorithm Results for VGG-19

It was hoped that D-ACVR would further increase the accuracies of the regularized

models and outperform the baseline models by a margin which is less negligible. As

visible in Tables 5.2 and 5.4, it is immediately clear that D-ACVR outperforms ACVR

on all accounts on the initial layer configuration search. It is also clear that D-ACVR

outperforms ACVR on all accounts on the Refined search process as visible in Tables

5.3 and 5.5. Ultimately, as visible in Table 5.7, the optimal configuration of D-

ACVR found by regularizing all layers before Maxpooling in addition to layers 9-16,

outperforms the most accurate benchmark model by a margin of 3.12%. This is not

an aberrant increase in accuracy, as the gamma hyper-parameter search shown in

Table 5.6 shows that this configuration at batch size of 32 produces values that are

highly stable and nearly agnostic to the gamma value between a wide range. This

value is therefore representative of extremely stable long term trends in the acquired

data, and is significantly more trustworthy and indicative of the Regularizer’s value

and success than the 0.76% increase in accuracy due to ACVR. Figure 5.9 shows that

D-ACVR also provides a more stable accuracy evaluation than ACVR, in addition

to a higher convergent accuracy. Finally, one of the main inspirations for D-ACVR

is to reduce the effects of ACVR on the earlier layers, and maximize it on the later

layers. Figures 5.10 and 5.11 display the ACV values for the Best D-ACVR model

found. It is clear that convolutional layers 2, 4, and 8, have ACV values that oscillate

significantly less than their ACVR equivalents in Figures 5.3 and 5.4. Convolutional

Layer 9 in both models features nearly identical behavior, which is expected as these

layers have the same level of regularization. Despite this lack of oscillations in layers

2, 4, and 8, in the earlier epochs, the final ACV values of both models is largely

identical. This realization defies the intended purpose of D-ACVR, but the increase

in regularity of the ACV values may be the factor which is of benefit to the network.
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Ultimately, D-ACVR is successful in that it has outperformed ACVR on all ac-

counts, provided a more stable evaluation of the held out data-set, and demonstrated

long term superiority over the benchmark models.

5.7 Summary of Proposed ACVR Algorithm Experiments and Results

for VGG-19

Chapter 4 clarified that the purpose of the experiments in Chapter 5 is to ex-

amine the effects of ACVR, and to demonstrate that there exists a regularization

combination and gamma value, that can be of benefit to the VGG-19 architecture.

This process began by performing a layer configuration search with ACVR, a process

which held the batch size and gamma value of the network constant and searched for

the most effective combination of layers to regularize. After discovering an effective

combination, a refined search was done to determine the configuration which was

indeed, the best. The data generated by this search led to the need for a less brittle

way to regularize the network and provide a means of optimal information distillation.

This lead to the genesis of D-ACVR which dynamically regularized different layers

based on the ratio of their ACV upper triangular matrix size to that of the largest

ACV upper triangular matrix size present in the network. By performing the same

layer configuration search with D-ACVR as done with ACVR, a layer configuration

and gamma value was found that provided a 3.12% improvement over the highest

scoring benchmark model. This data demonstrates that D-ACVR is capable of pro-

viding a stabilizing effect on the testing accuracies in a CNN, as well as a consistent

improvement in overall network accuracy for image classification, lending credibility

to its utility as a filter weight matrix regularizer.
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6. PROPOSED ACVR AND D-ACVR ALGORITHM

EXPERIMENTS AND RESULTS FOR MOBILENETV1

Hitherto, the effects of ACVR and D-ACVR have been examined on the traditional

convolutional filters of a low-dimensional CNN, and the VGG-19 network. This is

in contrast with the current chapter, which is focused on regularizing Pointwise fil-

ters. The intuition behind this idea is simple, Pointwise filters interact with the

entire feature map tensor present in a given convolutional layer, just as traditional

convolutional filters do. In addition, Pointwise filters operate exactly as traditional

convolutional filters, except they have a width and height of one. Given this under-

standing of Pointwise convolution and the data generated from previous experiments,

determining the effects of ACVR and D-ACVR on these Pointwise convolutional lay-

ers is a natural extension of the previous work.

Pointwise filters, which together with Depthwise filters, form the basis of the

Depthwise-Seperable filters present in the well-established model MobileNetv1 [6]

seen in Figure 6.1. Much like VGG-19, MobileNetv1 has been extensively referenced

in literature, and more importantly, is mainly composed of Depthwise-Seperable con-

volutional layers. It is for these reasons that it is chosen as a means of testing ACVR

and D-ACVR on Pointwise filters for Image Classification. The data set used for

testing is the CIFAR-10 small images data set, with data set augmentation consisting

of horizontal transfer, and random width and height shifting. The optimizer used is

Adam, with a learning rate of 1e-3, and beta 1 and beta 2 value of 0.9, and 0.999,

respectively. The MobileNetv1 architecture is tested at full width, with an alpha

multiplier of one. The model is constructed using the Keras API, and the Regular-

izer is developed from the TensorFlow API. Post processing is done using SciPy and

MatLab.
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Fig. 6.1. MobileNetv1 Architecture
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6.1 Search Process and Benchmarks

Given the considerations from Chapter 4, the process of finding effective regu-

larizer configurations and gamma values is largely empirical, and one of many pos-

sibilities. To reduce the complexity of the search space, the process of finding an

effective configuration begins with two strategies: test configurations that are inher-

ently simple, such as those which are highly symmetric, and, regularize layers that

have the largest number of filters in order to receive the greatest benefit of filter di-

versity. Upon discovering an effective regularizer configuration, a hyper-parameter

search will be done to fine-tune the effectiveness of that configuration. This process

while attempting to pursue only a subset of the regularizer configurations and gamma

values, produces a substantial quantity of data, only some of which is necessary for re-

production here. Table 6.1 displays the benchmarked accuracies at 220 epochs of the

MobileNetV1 architecture at different batch sizes, and the previously given training

conditions:

Table 6.1.
Accuracy Comparison on Base Model

Batch Size BASE

32 0.8455± 0.0031

64 0.8370± 0.0026

128 0.8274± 0.0029

256 0.8091± 0.0044

These benchmarks reveal that the accuracy value of 0.8455 is the target, and a

regularizer configuration and gamma value must be found to surpass this metric.
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6.2 ACVR Layer Configuration Search

Table 6.2 represents the configurations which are generated to test ACVR, and their

associated accuracies at fixed hyper-parameter values. The batch size, gamma value, and

number of epochs are fixed at 32, 0.1 ∗ 10−1, and 220, respectively.

Table 6.2.
ACVR Layer Configuration Search with Fixed Batch Size and Gamma

Layer Configuration Accuracy

All 0.7877± 0.0027

Conv2D 0.8420± 0.0026

Pointwise 1 0.8373± 0.0035

Pointwise 13 0.8266± 0.0030

Pointwise 2 0.8359± 0.0027

Pointwise 2-3 0.8234± 0.0032

Pointwise 4-5 0.8358± 0.0035

Pointwise 6-11 0.8482± 0.0048

Pointwise 12-13 0.8396± 0.0029

Pointwise 2-13 0.8071± 0.0029

Pointwise 4-13 0.8330± 0.0035

Pointwise 6-13 0.8497± 0.0022

Even Pointwise Layers 0.8274± 0.0028

Odd Pointwise Layers 0.8273± 0.0027

Before Stride 2 0.8190± 0.0031

After Stride 2 0.8274± 0.0032

Before Stride 2 and 6-13 0.8216± 0.0026

After Stride 2 and 6-13 0.8328± 0.0031

Before Stride 2 and 12-13 0.8191± 0.0032

After Stride 2 and 12-13 0.8228± 0.0031
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6.3 D-ACVR Layer Configuration Search

Table 6.3 represents the configurations which are generated to test D-ACVR, and

their associated accuracies at fixed hyper-parameter values. The batch size, gamma

value, and number of epochs are fixed at 32, 0.1 ∗ 10−1, and 220, respectively.

Table 6.3.
D-ACVR Layer Configuration Search with Fixed Batch Size and Gamma

Layer Configuration Accuracy

All 0.8124± 0.0036

Conv2D 0.8446± 0.0028

Pointwise 1 0.8361± 0.0026

Pointwise 13 0.8361± 0.0029

Pointwise 2 0.8427± 0.0026

Pointwise 2-3 0.8298± 0.0024

Pointwise 4-5 0.8371± 0.0030

Pointwise 6-11 0.8554± 0.0024

Pointwise 12-13 0.8313± 0.0035

Pointwise 2-13 0.8191± 0.0024

Pointwise 4-13 0.8400± 0.0029

Pointwise 6-13 0.8460± 0.0027

Even Pointwise Layers 0.8312± 0.0025

Odd Pointwise Layers 0.8347± 0.0035

Before Stride 2 0.8320± 0.0030

After Stride 2 0.8391± 0.0027

Before Stride 2 and 6-13 0.8312± 0.0026

After Stride 2 and 6-13 0.8371± 0.0024

Before Stride 2 and 12-13 0.8294± 0.0035

After Stride 2 and 12-13 0.8238± 0.0040
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6.3.1 D-ACVR Optimal Gamma Search

Table 6.4 represents the configuration which regularizes Pointwise layers 6-11 at

different gamma values. This configuration achieved the maximum accuracy during

the layer configuration search. The batch size, and number of epochs are fixed at 32,

and 220, respectively.

Table 6.4.
Gamma Value Search of Best D-ACVR Model

Gamma Accuracy

0.02 0.8488± 0.0023

0.04 0.8499± 0.0026

0.06 0.8495± 0.0020

0.08 0.8471± 0.0061

0.10 0.8554± 0.0024

0.12 0.8523± 0.0032

0.14 0.8504± 0.0031

0.16 0.8491± 0.0036

0.18 0.8480± 0.0037

0.20 0.8462± 0.0025
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6.4 D-ACVR and Benchmark Graphical Data

(a) Accuracies (b) Loss

Fig. 6.2. Smooth Accuracy and Loss of Benchmark Model at Batch Size 32

(a) Pointwise Convolutional Layer 6 (b) Pointwise Convolutional Layer 7

Fig. 6.3. ACV of Benchmark Pointwise Convolutional Layers 6 and 7
at Batch Size 32.
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(a) Pointwise Convolutional Layer 8 (b) Pointwise Convolutional Layer 9

Fig. 6.4. ACV of Benchmark Pointwise Convolutional Layers 8 and 9
at Batch Size 32.

(a) Pointwise Convolutional Layer 10 (b) Pointwise Convolutional Layer 11

Fig. 6.5. ACV of Benchmark Pointwise Convolutional Layers 10 and
11 at Batch Size 32
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(a) Accuracies (b) Loss

Fig. 6.6. Smooth Accuracy and Loss of D-ACVR Model with Point-
wise Layers 6-11 Regularized at Batch Size 32

(a) Pointwise Convolutional Layer 6 (b) Pointwise Convolutional Layer 7

Fig. 6.7. ACV of D-ACVR Model with Pointwise Layers 6-11 Regu-
larized. Pointwise Convolutional Layers 6 and 7 are shown at Batch
Size 32
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(a) Pointwise Convolutional Layer 8 (b) Pointwise Convolutional Layer 9

Fig. 6.8. ACV of D-ACVR Model with Pointwise Layers 6-11 Regu-
larized. Pointwise Convolutional Layers 8 and 9 are shown at Batch
Size 32

(a) Pointwise Convolutional Layer 10 (b) Pointwise Convolutional Layer 11

Fig. 6.9. ACV of D-ACVR Model with Pointwise Layers 6-11 Regular-
ized. Pointwise Convolutional Pointwise Layers 10 and 11 are shown
at Batch Size 32
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6.5 Discussion of Proposed ACVR and D-ACVR Algorithm Experiments

for MobileNetv1

This chapter is designed to test the effects of ACVR and D-ACVR on the Pointwise

convolutional layers of the MobileNetv1 architecture. Originally, it was determined

that the benchmark accuracy to beat from Table 6.1 is 0.8455. Ultimately, the highest

accuracy value found from the D-ACVR and ACVR networks from Tables 6.2 and

6.3 is 0.8554. This corresponds to a 0.99% increase in convergent accuracy. This

maximum convergent accuracy is reconfirmed by Table 6.4, which demonstrates that

the D-ACVR regularizer configuration 6-11 is capable of surpassing the Benchmark

model at ten separate gamma values. Given the definition of the problem from

Chapter 4, this constitutes as a success, as the Regularizer provides the network with

a very limited, but still consistent and detectable increase in accuracy.

The Figures 6.2 and 6.6 display the exponentially averaged accuracies and losses

of the highest scoring benchmark model and the highest scoring D-ACVR model. The

D-ACVR model has a higher loss value, as well as convergent accuracy, as expected. In

addition, looking at Figures 6.3 - 6.5, and 6.7 - 6.9, the ACV graphs of the benchmark

models contain values that are significantly higher than those of the D-ACVR model.

The Benchmark model has ACV values that either strictly increase or converge to

large values, while the D-ACVR model features a smooth decrease in ACV over time,

which once again is as expected.

Given this success, there are still several points that need to be discussed. Initially,

much like with the VGG-19 model, D-ACVR outperformed ACVR on MobileNetv1.

However, D-ACVR does not outperform ACVR in all instances. More importantly,

both ACVR and D-ACVR reach their maximum accuracies, exceeding that of the

baseline model, by regularizing Pointwise layers 6-11 and 6-13. This is troubling

for D-ACVR, as it achieves its maximum accuracy by regularizing Pointwise layers

6-11, a series which all contain the same number of Pointwise filters. In this con-

figuration, D-ACVR is simply ACVR with a reduced value of gamma, ultimately
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defying its intended purpose. Despite this realization, D-ACVR has still managed

to outperform the baseline architecture. Combining the success of Regularization on

the MobileNetv1 architecture, with that of the VGG-19, D-ACVR once again, has

demonstrated its potential value as a weight matrix regularizer.

6.6 Summary of Proposed ACVR and D-ACVR Algorithm Experiments

for MobileNetv1

Chapter 4 clarified that the purpose of the experiments in Chapter 6 is to ex-

amine the effects of ACVR, and to demonstrate that there exists a regularization

combination and gamma value, that can be of benefit to the MobileNetv1 architec-

ture. This process began by performing a layer configuration search with ACVR,

a process which held the batch size and gamma value of the network constant and

searched for the most effective combination of layers to regularize. This process was

repeated for D-ACVR. Ultimately, several layer configurations were found to sur-

pass the benchmark metric of 0.8455. However, the D-ACVR configuration of 6-11

at batch size 32, and gamma value of 0.1 ∗ 10−1, was found to be the best config-

uration discovered. A gamma value search was then done at this configuration by

holding the batch size and and number of epochs constant and constantly changing

the value of gamma within a small window. This search ultimately demonstrated

that at gamma value 0.1 ∗ 10−1, the D-ACVR configuration was able to outperform

the benchmark accuracy by 0.99% , with a total convergent accuracy of 0.8554. By

viewing the graphical data produced by this automated search process, the results

are exactly those which were desired, as the D-ACVR model converged to a higher

accuracy, as well as continuously decreased the ACV of all regularized layers. This is

in contrast with the benchmark model, which converged to a lower accuracy, and had

significantly larger ACV throughout training. Overall, while the increase in accuracy

is somewhat limited, this data demonstrates that D-ACVR is capable of providing a
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consistent and measurable improvement in MobileNetv1 network accuracy for image

classification, once again lending credibility to its utility as a Filter Weight Matrix

Regularizer.
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7. CONCLUSION

This Thesis principally discussed the relevant background necessary for the develop-

ment of this work in Chapter 1. Next, we discussed the intuition for developing ACVR

in Chapter 2 as a means of employing underutilized network elements, and achieving

the full representational power of a given CNN architecture. The method of this

intended success is to use a Gradient Descent Orthogonalization algorithm parame-

terized by gamma, to vary the ratio of filter diversity, to data generated knowledge.

Following this introduction, we briefly discussed the major contributions of this work

in Section 2.1, and its inspirations in Section 2.2. This led to the discussion of the im-

plementation and mathematics of ACVR in Section 2.3. This chapter provided both

an efficient vectorized computation method, as well as an analytic solution to the

Back-propagation Calculus from the perspective of the ACV Regularizer using a spe-

cific vector element. Knowing both the reason for our efforts, and our intended goal,

we tested the effects of ACVR on the filters of a low-dimensional CNN in Chapter 3.

These tests provided both graphical and numerical evidence that ACVR is capable of

providing immense vector diversity, whereas regular training implementations do not.

This gave credibility to the notion that ACVR has been both properly implemented,

and is theoretically sound. This led to the problem description of regularization in

Chapter 4: stating that our goal is to discover a regularization configuration, and

gamma value, that is capable of consistently improving the network accuracy. Next,

the effects of ACVR was tested on the traditional convolutional filters of VGG-19 in

Chapter 5, which led to the creation of D-ACVR. From these experiments, we deter-

mined that there exists a regularization configuration and gamma value of D-ACVR

that is capable of improving the network accuracy by up to 3.12%. Finally, in Chap-
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ter 6, the effects of ACVR and D-ACVR was tested on the Pointwise convolutional

filters in MobileNetv1. These experiments yielded a smaller, but still consistent and

detectable, increase in convergent accuracy of 0.99%, with D-ACVR.

Overall, the process of training and testing models for the purpose of determining

the effects of ACVR and D-ACVR has been a long and arduous endeavor. In order

to facilitate the effective acquisition of the data necessary to make this work feasible,

an automated training and testing suite was developed, and the work was distributed

across multiple GPUs. Simply put, this hyper-parameter and layer configuration

search takes a great deal of time and effort. Given that Deep Learning has since

its inception been a balancing act between practicality, and optimal performance, it

is important to discuss whether the accuracy increases due to ACVR and D-ACVR

are relevant given these prerequisites. Unfortunately, the answer to this question

is implementation dependent. In low-risk models, an accuracy increase of 3.12%

can be highly negligible, and the increased accuracy may not be worth the time and

resources required to obtain it. However, in CNN models targeted towards medical or

flight control industries, an accuracy increase of 3.12% can have extreme significance.

Luckily, there is one thing that can be claimed without conjecture or implementation

dependencies: this Thesis has gathered evidence that D-ACVR has been able to

provide tangible and consistent improvements to model performance, being tested in

both traditional convolutional filters, and Pointwise convolutional filters. And finally,

this evidence lends substantial credibility to D-ACVR’s utility as a Filter Weight

Matrix Regularizer. However, given the nature of the Regularization problem, it is

likely that D-ACVR may have yet to reach its true potential, and merits further

investigation.



59

7.0.1 Future Directions

Looking forward, this investigation can take the form of several open questions.

Firstly, ACVR and D-ACVR have been examined on only three CNN architectures.

There are many CNN architectures that may benefit from Regularization of this

kind, both novel, and classical. Next, since a vector has two qualities, direction and

magnitude, ACVR and D-ACVR may be enhanced by adding an additional com-

ponent that accounts not only for vector similarity, but also, vector magnitude. In

addition, ACVR and D-ACVR have yet to be fully examined alongside other regular-

ization techniques. Combination with techniques such as L1 and L2 Regularization,

or Dropout [1], may substantially increase model performance. Finally, It is hy-

pothesized that ACVR and D-ACVR may be useful in creating model ensembles, by

enforcing different architectures of the same type to form entirely separate methods of

arriving at the same conclusion. This parallel training, culminating in an ensemble,

may increase generalization power, and provide a more stable, and accurate model.
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R. Kern, E. Larson, C. Carey, İ. Polat, Y. Feng, E. W. Moore, J. Vand erPlas,
D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Har-
ris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and S. . .
Contributors, “SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python,” Nature Methods, 2020.

[15] MATLAB, 9.6.0.1072779 (R2019a). Natick, Massachusetts: The MathWorks
Inc., 2019.



VITA



62

VITA

William Singleton received a BS in Bio-Medical Engineering from the Purdue

School of Engineering and Technology in 2018. Currently, he is pursuing a MS in

Electrical and Computer Engineering at the Purdue School of Engineering and Tech-

nology in the field of artificial intelligence. His research interests include: Applied

Mathematics, Embedded Systems, and Machine Learning Algorithms.


