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ABSTRACT

Chan, Virgil Ph.D., Purdue University, May 2020. An Explicit Formula for the Loday
Assembly. Major Professor: Daniel A. Ramras.

We give an explicit description of the Loday assembly map on homotopy groups

when restricted to a subgroup coming from the Atiyah-Hirzebruch spectral sequence.

This proves and generalises a formula about the Loday assembly map on the first

homotopy group that originally appeared in work of Waldhausen. Furthermore, we

show that the Loday assembly map is injective on the second homotopy groups for a

large class of integral group rings. Finally, we show that our methods can be used to

compute the universal assembly map on homotopy.
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1. INTRODUCTION

Classically, algebraic K-theory deals with three Abelian groups K0(R), K1(R) and

K2(R) associated to a ring R. See [Ros95] for their definitions. For a topological

space X, topologists have found geometric applications of the groups Ki(Z[π1(X)])

for i = 0, 1, 2, where Z[π1(X)] is the integral group ring of the fundamental group ofX.

For example, an important application of K0 was found by Wall [Wal65]. He defined

an element χ(X) in a quotient group Wh0 (π1(X)) of K0(Z[π1(X)]), known as Wall’s

finiteness obstruction, and showed that a sufficiently nice X is homotopy equivalent to

a finite CW-complex if and only if χ(X) = 0. (See [Ros05, Theorem 1 on page 579] for

the precise statement.) The second example, which is due to Whitehead, is an attempt

to classify manifolds of dimension at least five. In a collection of work [Whi39,Whi41,

Whi50], he defined the Whitehead torsion τ(f) ∈ Wh1 (π1(X)) of a continuous map

f , where Wh1 (π1(X)) is a quotient of K1(Z[π1(X)]). In particular, the vanishing of

the Whitehead torsion allowed Smale to prove the Poincaré Conjecture in dimensions

greater than four [Sma61].

For an ideal I ⊆ R, there is a natural exact sequence

K2(R) K2(R/I) K1(R, I) K1(R)

K1(R/I) K0(R, I) K0(R)

K0(R/I)
(1.1)

(see [Ros95, Theorem 4.3.1 on page 200]), and a lot of effort went into the search

for definitions for Ki(R) with i ≥ 3 to extend this exact sequence to the left. The

first widely accepted definition was due to Quillen [Qui72, Qui73], for which he was
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awarded the Fields Medal in 1978. His idea was that one should try to construct the

groups Ki(R) not one at a time but all at once, as homotopy groups

Ki(R) = πi(K(R)),

of a certain topological space K(R) constructed to reflect structures of the category

of finitely generated projective R-modules. It was later discovered by Gersten and

Wagoner that the spaceK(R) is an infinite loop space [Ger72,Wag72], and hence is the

0-th space of an Ω-spectrum KGW
R (see Definition 2.3.2), making algebraic K-theory

part of stable homotopy theory. Several definitions of algebraic K-theory came out to

account for this property, notably Waldhausen’s S•-construction [Wal78c]. Nowadays,

people understand algebraic K-theory as a machine that takes in nice categorical data

to produce Ω-spectra, or more precisely, a functor

K : SymMonCat→ Ω-Spectra (1.2)

from symmetric monoidal categories to Ω-spectra such that the homotopy groups

πi

(
K
(
ProjfgR

))
of the Ω-spectrum, obtained by evaluating at the category ProjfgR of finitely generated

projective R-modules, recover the classical K-groups of R for i = 0, 1, 2 and the higher

K-groups defined by Quillen.

However, the general consensus is that computing homotopy groups is difficult.

Hence, investigating algebraic K-theory of rings is not an easy task. On the other

hand, homology is more accessible—there are excisions, the Mayer-Vietoris sequence,

and even spectral sequences in homology that are more user-friendly than they would

be in homotopy. This is the story of assembly—to approximate homotopy theory by

a generalised homology theory.
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1.1 History and Motivations

In his dissertation [Lod76], Loday defined a map

αLoday : BG+ ∧KGW
R → KGW

R[G] (1.3)

of spectra, which is now known as the Loday assembly (see Definition 3.1.2), to

unify the classical Whitehead groups Whi (G) for i = 0, 1, 2 studied by Wall [Wal65],

Whitehead [Whi39,Whi41,Whi50], and Hatcher-Wagoner [HW73]. These groups are

isomorphic to the cokernel

Whi (G) ∼= coker
(
πi (αLoday) : πi

(
BG+ ∧KGW

Z
)
→ Ki (Z[G])

)
(1.4)

for i = 0, 1, 2. See [Lod76, page 357–364], or Corollary 3.3.2 for the case i = 1. Before

this work appeared, Wall defined a version of assembly

Ai : Hi(BG;Q)→ Li(Z[G])⊗Q (1.5)

for L-theory. Furthermore, he showed that the injectivity of Ai implies the classical

Novikov Conjecture about homotopy invariance of the higher signature of a closed,

oriented manifold M when G = π1(M) [Wal70, 17H]. The converse is also true

[KM81], and therefore the classical Novikov Conjecture is equivalent to the injectivity

of the map Ai for all i. Motivated by this, Hsiang cast the following conjecture in his

1984 ICM address:

Conjecture 1.1.1 (K-theoretic Novikov Conjecture, [Hsi84]) Let R be a reg-

ular ring, and G be a torsion-free group. Then the map

πi(αLoday)⊗ idQ : πi(BG+ ∧KGW
R )⊗Q→ Ki(R[G])⊗Q (1.6)

is injective for all i.
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Attempts at answering the K-theoretic Novikov Conjecture 1.1.1 often lead to the

creation of new mathematics, most notably the Topological Cyclic Homology, which

allowed Bökstedt-Hsiang-Madsen to prove the following:

Theorem 1.1.1 ([BHM93, Theorem 9.13 on page 535]) The K-theoretic Novikov

Conjecture 1.1.1 is true if the homology groups Hi (BG;Z) are all finitely generated.

A stronger statement is also possible:

Conjecture 1.1.2 (Classical Farrell-Jones Conjecture) Let R be a regular ring,

and G be a torsion-free group. Then the map

πi(αLoday) : πi(BG+ ∧KGW
R )→ Ki(R[G]) (1.7)

is an isomorphism for all i.

This conjecture can be understood as a conceptual approach to computing alge-

braic K-theory of a group ring via a homology theory, but it has important implica-

tions for a range of topics, notably the Borel Conjecture concerning the topological

rigidity of closed spherical manifolds, and the Kaplansky Conjecture about the idem-

potents in a group ring.

The following case has been verified:

Theorem 1.1.2 ([BLR08, Theorem 1.1 (i) on page 58]) The Classical Farrell-

Jones Conjecture 1.1.2 is true if the group G is word-hyperbolic.

The work presented here is motivated by the Classical Farrell-Jones Conjec-

ture 1.1.2.

1.2 What Are We Trying to Do?

The purpose of this dissertation is to help the author to obtain his doctoral degree

by studying the Loday assembly. More precisely, the source of the Loday assembly
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αLoday : BG+ ∧KGW
R → KGW

R[G]

represents a generalised homology theory. Hence, its homotopy groups can be com-

puted by the Atiyah-Hirzebruch spectral sequence

E2
p,q
∼= Hp(BG+;Kq(R))

⇒ πp+q
(
BG+ ∧KGW

R

)
.

From the construction of the spectral sequence, we know there is a subgroup E∞1,i of

the homotopy group πi+1

(
BG+ ∧KGW

R

)
coming from the 1-skeleton of the classifying

space BG. We provide a formula for the restriction πi+1(αLoday)|E∞1,i :

Theorem 1.2.1 (See Theorem 3.3.1 and Corollary 4.1.1 for the formula on

π2) Let R be a ring and G be a group. For i ≥ 0, the filler of the diagram

Gab ⊗Ki(R) Ki+1 (R[G])

E∞1,i πi+1

(
BG ∧KGW

R

)
E2

1,i H1(BG; Ki(R))
Φi+1

πi+1 (αLoday)

∼=∼=

(1.8)

is induced by the bilinear map

G×Ki(R)→ Ki+1(R[G])

(g, [f ]) 7→ {g} ?′ [f ],

for which on the right-hand side, the element g is considered as an element in GL(1, R[G]),

and ?′ is the extended Loday product (see Definition 2.2.1).
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In particular, when R = Z, the map

Φ2 : Gab ⊗K1(Z)→ K2(Z[G]) (1.9)

is induced by the bilinear map

G×K1(Z)→ K2(Z[G])

(g,±1) 7→ {−1, g}St , (1.10)

where {−1, g}St ∈ K2(Z[G]) is the Steinberg symbol of {−1} ∈ K1(Z) and {g} ∈

K1(Z[G]).

The derivation of our formula involves extending the original Loday pairing

γLoday : BGL(R)+ ∧BGL(S)+ → BGL(R⊗ S)+ (1.11)

to the full K-theory space

γ′Loday :
[
K0(R)×BGL(R)+] ∧ [K0(S)×BGL(S)+]→ K0(R⊗ S)×BGL(R⊗ S)+

(1.12)

in a non-obvious way (see Definition 2.2.1). Here, the superscript “+” denotes

Quillen’s plus construction of the classifying space BGL (R) relative to the subgroup

E(R) generated by elementary matrices. In particular,

(i) we relate the product map

?′ : Ki(R)⊗Kj(S)→ Ki+j(R⊗ S)

induced by the extended pairing γ′Loday to the classical product maps defined

by Milnor in [Mil72] (see Theorem 2.3.1).
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(ii) We recover (and generalise) a formula about the Loday assembly on π1 written

down in a survey article [LR05] by Lück-Reich (see Corollary 3.3.1).

(iii) We obtain injectivity results on π2 for a large class of integral group rings (See

Corollary 4.1.2).

(iv) We show that our formula can be used to compute the universal assembly in

the sense of Weiss-Williams

α̂BG : BG+ ∧KPW
R → KPW

R[G]

written in terms of the non-connective Pedersen-Weibel K-theory spectrum

KPW
R of a ring R (see Theorem 5.6.1).

We elaborate more on item (ii). The assembly on fundamental groups

π1 (α̂BG) : π1

(
BG+ ∧KPW

Z
)
→ K1(Z[G]) (1.13)

was first described by Waldhausen. It is induced by the bilinear map

{±1} ×G→ K1(Z[G])

(±1, g) 7→ {±g} (1.14)

under the identification

π1

(
BG+ ∧KGW

Z
) ∼= K1(Z)⊕H1(G;K0(Z))

∼= K1(Z)⊕ [Gab ⊗K0(Z)]

∼= {±1} ⊕Gab (1.15)
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resulting from the vanishing of differentials in the Atiyah-Hirzebruch spectral sequence

[Wal78b, Assertion 15.8 on page 229]. On the left-hand side of Equation (1.14), we

think of {±g} as represented by ±g ∈ GL(1,Z[G]). A formula for arbitrary regular

rings was later written down in the survey article by Lück-Reich [LR05, page 708].

To prove (1.13) is as given by (1.14), Waldhausen reformulates the Loday assem-

bly in terms of Quillen’s Q-construction, and interprets the source of the assembly

as a generalised homology theory for simplicial sets. Then, he verifies the formula

on the simplicial level. The work presented here provides a different approach to

prove Waldhausen’s formula by working in Loday’s original setting—using Quillen’s

plus construction. This new approach allows us to get higher degree results, and in

particular, an elegant formula on π2 (see Corollary 4.1.1).

1.3 Organisation

This dissertation consists of five parts, including the introduction. In Chapter 2,

we review the construction of the original Loday pairing map and extend it to the full

K-theory space using the Gersten-Wagoner delooping. We then relate the induced

product maps on the K-groups with the classical product maps defined by Milnor and

use the extended Loday pairing to construct the non-connective Gersten-Wagoner

Algebraic K-theory spectrum KGW
R of a ring R.

In Chapter 3, we use the extended Loday pairing to define the Loday assembly

and identify the subgroup of the source that we are interested in by studying the

Atiyah-Hirzebruch spectral sequence. It also contains the statement and the proof of

our main result.

Chapter 4 deals with the injectivity problem for the Loday assembly on π2. We

study the extension problem for the second homotopy group of the source of the

Loday assembly coming from the Atiyah-Hirzebruch spectral sequence. Then we

provide injectivity results for a large class of integral group rings.
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Chapter 5 is a quick summary of Sperber’s work on proving the Loday assembly is

the universal assembly [Spe04]. We show that our version of the Loday assembly can

be used to compute the universal assembly on homotopy even with the non-obvious

extension of the original Loday pairing. We begin by discussing a model for the

universal assembly

α̂BG : BG+ ∧KPW
R → KPW

R[G] (1.16)

written in terms of the Pedersen-Weibel K-theory spectrum (see Definition 5.4.5).

Then, we construct two intermediate spectra and their versions of assembly

αproj : BG+ ∧Kproj
R → Kproj

R[G] (1.17)

αfree : BG+ ∧Kfree
R → Kfree

R[G] (1.18)

(see Definition 5.5.1), which allows us to move from a theoretically-friendly model

for the assembly to a computation-friendly model. More specifically, there is zig-zag

diagram

BG+ ∧KPW
R KPW

R[G]

BG+ ∧Kproj
R

Kproj
R[G]

BG+ ∧Kfree
R Kfree

R[G]

α̂BG

αproj

αfree

id ∧ (5.68) (5.68)

id ∧ (5.65) (5.65)

(1.19)

of spectra that commutes up after passing to homotopy groups. We show that our

formula for the restriction πi+1(αLoday)|E∞1,i can be used to compute the restriction

πi+1(αfree)|E∞1,i for i ≥ 2 (see Theorem 5.6.1) and therefore, computes the universal
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assembly on higher homotopy when restricted onto the subgroup coming from the

1-skeleton of BG.

1.4 Notations and Conventions

1.4.1 Groups

For a group G, we write Gab to be its Abelianisation. All groups in this article

are discrete. We write BG to be the classifying space for G, constructed from the bar

construction. Therefore, BG admits a canonical base-point. For n ∈ N, we write Cn

to be the cyclic group of order n. We write 〈t〉 to be the infinite cyclic group with

generator t, while reserving Z to be the ring of integers.

1.4.2 Rings and Modules

All rings in this article are associative and unital, but not necessarily commutative.

A module over a ring will always be understood as a left module.

We define the cone of the integers Z to be the ring cone (Z) of locally finite matrices

over Z, that is,

cone (Z) :=
{
A ∈M(Z)

∣∣∣ Each column and each row of A
has only finitely many non-zero entries

}
. (1.20)

There is an ideal m(Z) of cone (Z) consisting of infinite matrices with only finitely

many non-zero entries. The suspension of Z is defined to be the quotient

ΣZ :=
cone (Z)

m(Z)
. (1.21)

We also define the suspension of a ring to be the tensor product

ΣR := ΣZ⊗R, (1.22)



11

and inductively

Σ0R := R, (1.23)

ΣnR := Σ
(
Σn−1R

)
. (1.24)

Therefore, for any two rings R, S, and for any m, n ∈ N ∪ {0}, we have a natural

isomorphism

ΣmR⊗ ΣnS ∼= Σm+n (R⊗ S) . (1.25)

1.4.3 Topological Spaces and Spectra

In Chapter 2–4, the term topological space (or simply space) will always mean a

pointed topological space that is homotopy equivalent to a (not necessary finite) CW-

complex. Maps between spaces are always pointed and continuous. In Chapter 5,

we will work with un-based topological spaces that are homotopy equivalent to (not

necessary finite) CW-complexes. Maps between them are always continuous but not

necessary pointed.

We say two maps f, g : X → Y of spaces are weakly homotopic if the restrictions

f |K , g|K are homotopic for every compact subset K ⊆ X. Weakly homotopic maps

between infinite loop spaces induce the same group homomorphisms on homotopy.

By spectrum, we mean a sequence E = {Ei | i ∈ I} of spaces, where I = N ∪ {0}

or Z, together with maps

fi : S1 ∧ Ei → Ei+1

for each i ∈ I, called the structure maps. An Ω-spectrum is a spectrum for which the

adjoints
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f i : Ei → ΩEi+1

of the structure maps are all homotopy equivalences. A morphism or a map (resp.

weak morphism or a weak map) ϕ : E→ F of spectra is a collection {ϕi : Ei → Fi | i ∈ I}

of maps that commutes with the structure maps (resp. up to weak homotopy).

If E, F, G are spectra, then a pairing (resp. weak pairing) µ : E∧F→ G of spectra

is a collection of maps µm,n : Em∧Fn → Gm+n that commute with the structure maps

up to homotopy (resp. weak homotopy). We abuse notation here to use the smash

product E ∧ F in writing down a pairing of spectra.

1.4.4 Algebraic K-theory

Let R be a ring. We write K0(R) to be projective class group of R, which is

an Abelian group whose generators are isomorphism classes [P ] of finitely generated

projective R-modules P , and whose relations are

[P0] + [P2] = [P1] (1.26)

for every short exact sequence

0→ P0 → P1 → P2 → 0. (1.27)

We write BGL(R)+ to be Quillen’s plus construction for the classifying spaceBGL(R)

for the general linear group GL(R), relative to the subgroup E(R) generated by

elementary matrices. For finite matrices, our convention is that BGL(p,R)+ denotes

BGL (p,R) for p ≤ 2; for p ≥ 3, it denotes the plus construction of BGL (p,R)

relative to the subgroup E(p,R) generated by elementary matrices.

The K-theory space of R is

KR := K0(R)×BGL(R)+ , (1.28)
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where we think of K0(R) as a discrete group. In particular, the homotopy groups

πi(KR) agree with the classical K-groups for i = 0, 1, 2, and with the higher K-groups

defined by Quillen.

If u ∈ GL(n,R), we write {u} ∈ K1(R) to be the class represented by u. If G is

a group and g ∈ G, then we write {g} ∈ K1 (R[G]) to be the class represented by g,

thinking of it as an element in GL(1, R[G]).
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2. LODAY PAIRING

2.1 The Loday Pairing

Let R, S be rings, and fix isomorphisms

ξm,n : Rm ⊗ Sn → (R⊗ S)mn . (2.1)

for every m,n ∈ N∪{0}. In this setting, the tensor product of matrices gives a group

homomorphism

GL (m,R)×GL (n, S)→ GL (mn,R⊗ S) ,

sending elementary matrices to elementary matrices. Hence we have an induced map

fR,Sm,n : BGL(m,R)+ ×BGL(n, S)+ → BGL(mn,R⊗ S)+ . (2.2)

The convention is thatBGL(p,R)+ denotesBGL (p,R) for p ≤ 2; for p ≥ 3, it denotes

the plus construction of BGL (p,R) relative to the subgroup E(p,R) generated by

elementary matrices. Write

imn : BGL(mn,R⊗ S)+ → BGL(R⊗ S)+

to be map induced by the canonical inclusion

GL (mn,R⊗ S)→ GL (R⊗ S) .
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Definition 2.1.1 (The map γm,n, [Lod76, page 332]) The map

γm,n : BGL(m,R)+ ×BGL(n, S)+ → BGL(R⊗ S)+ (2.3)

is defined by the formula:

γm,n(x, y) := imn ◦ fR,Sm,n(x, y)− imn ◦ fR,Sm,n(x, y0)− imn ◦ fR,Sm,n(x0, y) . (2.4)

Here, the minus sign on the right-hand side comes from the H-group structure of

BGL(R⊗ S)+; and x0 (resp. y0) is the base-point in BGL(m,R)+ (resp. BGL(n, S)+).

(I.e., represented by the identity matrices.)

One gets a map

γ : BGL(R)+ ×BGL(S)+ → BGL(R⊗ S)+ (2.5)

by letting m,n→∞. If we choose a different collection

{
ξ′m,n : Rm ⊗ Sn → (R⊗ S)mn

∣∣ m,n ∈ N ∪ {0}
}

of isomorphisms, we get a different collection

{
γ′m,n : BGL(m,R)+ ×BGL(n, S)+ → BGL(R⊗ S)+

∣∣ m,n ∈ N ∪ {0}
}

of continuous maps, and therefore, a different map

γ′ : BGL(R)+ ×BGL(S)+ → BGL(R⊗ S)+

by letting m,n → ∞. It turns out that the maps γ and γ′ are weakly homotopic,

that is, the restrictions γ|K and γ′|K are homotopic for every compact subset K ⊆

BGL(R)+×BGL(S)+ (see [Lod76, Lemma 2.1.6 on page 333]), that is, γ and γ′ are
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weakly homotopic. As a result, the choice of the collection {ξm,n | m,n ∈ N ∪ {0}}

becomes irrelevant after passing to homotopy groups.

The map γ is homotopy trivial on the wedge product BGL(R)+ ∨ BGL(S)+.

Hence, we obtain the following definition.

Definition 2.1.2 (The Loday pairing map γLoday, [Lod76, Section 2.1.7 on

page 333]) The map

γLoday : BGL(R)+ ∧BGL(S)+ → BGL(R⊗ S)+ (2.6)

is defined to be the filler of the following homotopy commutative diagram:

BGL(R)+ ×BGL(S)+ BGL(R⊗ S)+

BGL(R)+ ∧BGL(S)+.

γ

proj
γLoday

(2.7)

This allows us to define a multiplicative structure on algebraic K-theory.

Definition 2.1.3 (Loday product ?, [Lod76, Section 2.1.10 on page 335])

For each integers i, j ≥ 1, we define the product

? : Ki(R)⊗Kj(S)→ Ki+j(R⊗ S) (2.8)

by

[f ] ? [g] := [γLoday ◦ (f ∧ g)] , (2.9)

where f and g are spheroids

f : Si → BGL(R)+ ,

g : Sj → BGL(S)+ .
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Proposition 2.1.1 (Properties of the Loday Product ?) The product map ? is

(i) natural in R and S, associative and bilinear [Lod76, Theorem 2.1.11 on page

335];

(ii) graded commutative: for every [f ] ∈ Ki(R) and [g] ∈ Kj(S),

[f ] ? [g] = (−1)ij ([g] ? [f ]) ∈ Ki+j (R⊗ S) . (2.10)

Here, we think of [g] ? [f ] as represented by the composition

Sj ∧ Si g∧f−−→ BGL(S)+ ∧BGL(R)+ γLoday−−−→ BGL(S ⊗R)+ '−→ BGL (R⊗ S) ,

(2.11)

where the last homotopy equivalence is induced by the natural isomorphism S⊗

R ∼= R⊗ S [Lod76, Theorem 2.1.12 on page 335];

(iii) when i = j = 1, the product {u} ? {v} is the inverse to the Steinberg symbol:

{u} ? {v} = −{u, v}St ∈ K2 (R⊗ S) (2.12)

[Lod76, Proposition 2.2.3 on page 337]. Here, we write the Abelian group

K2(R⊗ S) additively.

2.2 The Extended Loday Pairing

We want to extend the Loday pairing map

γLoday : BGL(R)+ ∧BGL(S)+ → BGL(R⊗ S)+

to a map

γ′Loday : KR ∧KS → KR⊗S,
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where

KR := K0(R)×BGL(R)+ . (2.13)

This will yield an extended external product

Ki(R)⊗Kj(S)→ Ki+j(R⊗ S)

for all i, j ≥ 0. Moreover, this external product should be coherent with the isomor-

phism

Ki(R)
∼=−→ Ki+1(ΣR) (2.14)

promised by the Gersten-Wagoner delooping [Ger72,Wag72]:

KR ' ΩKΣR. (2.15)

At this point, we need the closed form of the isomorphism in Equation (2.14). Define

the element τ ∈ GL (ΣZ) = GL (1,ΣZ) by

τ :=



0 0 0 0 0 · · ·

1 0 0 0 0 · · ·

0 1 0 0 0 · · ·

0 0 1 0 0 · · ·

0 0 0 1 0 · · ·
...

...
...

...
...

. . .


. (2.16)
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The isomorphism in Equation (2.14) is given by

 [f ] ∈ Ki(R) 7→ [f ] ? {τ} if i ≥ 1 ([Lod76, Corollary 2.3.6 on page 345]),

[P ] ∈ K0(R) 7→ [P ]# {τ} := {p⊗ τ + (1− p)⊗ 1} ([Lod76, page 328]),

(2.17)

where p is the projection operator associated to the finitely generated projective R-

module P . Equally important, the extended external product should be related to

the classical products

# : Ki(R)⊗Kj(S)→ Ki+j(R⊗ S) (2.18)

defined by Milnor [Mil72] for i, j ≥ 0, and i+ j ≤ 2.

Definition 2.2.1 (The Extended Loday pairing γ′Loday) The map

γ′Loday : KR ∧KS → KR⊗S

is defined to be the filler of the following homotopy commutative diagram:

KR ∧KS KR⊗S

ΩBGL(ΣR)+ ∧ ΩBGL(ΣS)+ Ω2BGL
(
Σ2 (R⊗ S)

)+
.

γ′Loday

' '

Ω2γLoday (2.19)

The bottom arrow is given by sending the pair

(
f : S1 → BGL(ΣR)+) ∧ (g : S1 → BGL(ΣS)+)
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to the composition

S2 ∼= S1 ∧ S1 f∧g−−→ BGL(ΣR)+ ∧BGL(ΣS)+ γLoday−−−→ BGL
(
Σ2 (R⊗ S)

)+
.

Furthermore, we define a new product map

?′ : Ki(R)⊗Kj(S)→ Ki+j(R⊗ S) (2.20)

for all i, j ≥ 0 by

[f ] ?′ [g] :=
[
γ′Loday ◦ (f ∧ g)

]
. (2.21)

Corollary 2.2.1 Let R and S be rings. The pairing map

γ′Loday : KR ∧KS → KR⊗S

defined in Definition 2.2.1 is

(i) natural in R and S;

(ii) associative;

up to weak homotopy.

The proof follows from the corresponding results for the pairing γLoday as in [Lod76,

Proposition 2.1.8 on page 334]. The two products are related in the following way:

Proposition 2.2.1 For each i, j ≥ 1, if [f ] ∈ Ki(R) and [g] ∈ Kj(S), then

[f ] ?′ [g] = [f ] ?
(
(−1)j[g]

)
= (−1)j ([f ] ? [g]) . (2.22)
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In particular, for {u} ∈ K1(R) and {v} ∈ K1(S), the ?′-product is given by the

Steinberg symbol

{u} ?′ {v} = {u, v}St . (2.23)

Proof. We consider the commutative diagram

Ki(R)⊗Kj(S) Ki+j(R⊗ S)

Ki+1(ΣR)⊗Kj+1(ΣS) Ki+j+2

(
Σ2 (R⊗ S)

)
?′

?

(− ? {τ})⊗ (− ? {τ}) ∼= (− ? {τ}) ? {τ}∼=

(2.24)

induced by Diagram (2.19).

If [f ] ∈ Ki(R) and [g] ∈ Kj(S), then the lower part of the diagram gives

([f ] ? {τ}) ? ([g] ? {τ}) = [f ] ? ({τ} ? [g]) ? {τ} (associativity)

= [f ] ?
(
(−1)j ([g] ? {τ})

)
? {τ} (graded-commutativity)

=
(
[f ] ?

(
(−1)j[g]

)
? {τ}

)
? {τ} . (associativity)

So we must have

[f ] ?′ [g] = [f ] ?
(
(−1)j[g]

)
.

Note that Proposition 2.2.1 says the product ?′ is not graded-commutative in

general.
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2.3 Properties of the Extended Loday Pairing

2.3.1 Relationship With the Classical Pairings in Algebraic K-Theory

Milnor defined multiplicative structures on lower K-groups

# : Ki(R)⊗Kj(S)→ Ki+j(R⊗ S) (2.25)

for i, j ≥ 0, and i+ j ≤ 2 in [Mil72]. Actually, Milnor only defined the multiplication

internally (i.e., when R = S, and is commutative). But one can mimic his definition

to obtain an external product as in Equation (2.25), so that when R = S it becomes

Milnor’s version.

The multiplication in Equation (2.25) is given by the formulas:



[P ]#[Q] = [P ⊗Q] if i = j = 0,

[P ] # {v} = {p⊗ v + (1− p)⊗ 1} if i = 0, and j = 1,

{u}#[P ] = {u⊗ p+ 1⊗ (1− p)} if i = 1, j = 0,

{u}# {v} = {u, v}St if i = j = 1.

(2.26)

Here, p is the idempotent operator associated to the projective module P . We omit

the case i = 0, j = 2 here. The main tool we need is

Proposition 2.3.1 ([Mil72, Lemma 8.9 on page 70]) The multiplication # in

Equation (2.25) is associative and bilinear for i, j ≥ 0, and i+ j ≤ 2.

Note that Milnor’s proofs extend to the external product case. It is also straight

forward to verify that # is graded-commutative. We now relate # and ?′.

Theorem 2.3.1 For every [P ] ∈ K0(R), [Q] ∈ K0(S), {u} ∈ K1(R), and {v} ∈

K1(S), we have

(i) [P ] ?′ [Q] = [P ]#[Q].

(ii) [P ] ?′ {v} = [P ]# (−{v}) = − ([P ]# {v}), and {u} ?′ [Q] = {u}#[Q].
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(iii) {u} ?′ {v} = {u}# {v}.

Proof. (i) When i = j = 0, Diagram (2.19) induces the following commutative

diagram

K0(R)⊗K0(S) K0(R⊗ S)

K1(ΣR)⊗K1(ΣS) K2(Σ2(R⊗ S)).

?′

?

(−# {τ})⊗ (−# {τ}) ∼= ((−# {τ}) ? {τ})∼=

(2.27)

on homotopy. We then compute

= ([P ]# {τ}) ? ([Q]# {τ})

= −{[P ]# {τ} , [Q]# {τ}}St (Equation (2.12))

= {[P ]# {τ} , (−[Q]) # {τ}}St (Bilinearity of {−,−}St)

= ([P ]# {τ}) # ((−[Q]) # {τ}) (Equation (2.26))

= [P ]# ({τ}# (−[Q])) # {τ} (Associativity of #)

= [P ]# (−[Q]# {τ}) # {τ} (Graded-commutativity of #)

= − ([P ]# ([Q]# {τ}) # {τ}) (Bilinearity of #)
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= −{[P ]# ([Q]# {τ}) , τ}St (Equation (2.26))

= ([P ]# ([Q]# {τ})) ? {τ} (Equation (2.12))

= (([P ]#[Q]) # {τ}) ? {τ} , (Associativity of #)

proving

[P ] ?′ [Q] = [P ]#[Q].

(ii) When i = 0, j = 1, Diagram (2.19) induces the following commutative diagram

K0(R)⊗K1(S) K1(R⊗ S)

K1(ΣR)⊗K2(ΣR′) K3(Σ2(R⊗ S)).

?′

?

(−# {τ})⊗ (− ? {τ}) ∼= ((− ? {τ}) ? {τ})∼=

(2.28)

on homotopy groups. We then compute

= ([P ]# {τ}) ? ({v} ? {τ})

= (([P ]# {τ}) ? {v}) ? {τ} (Associativity of ?)

= (−{[P ]# {τ} , v}St) ? {τ} (Proposition 2.1.1)

= (− (([P ]# {τ}) # {v})) ? {τ} (Equation (2.26))
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= (− ([P ]# ({τ}# {v}))) ? {τ} (Associativity of #)

= ([P ]# ({v}# {τ})) ? τ (Graded-commutativity of #)

= (([P ]# {v}) # {τ}) ? {τ} (Associativity of #)

= {[P ]# {v} , {τ}}St ? {τ} (Equation (2.26))

= (− (([P ]# {v}) ? {τ})) ? {τ} (Proposition 2.1.1)

= ((− ([P ]# {v}) ? {τ})) ? {τ} (Bilinearity of ?)

= (([P ]# (−{v})) ? {τ}) ? {τ} (Graded-commutativity of #) ,

proving

[P ] ?′ {v} = [P ]# (−{v}) .

The proof for

{u} ?′ [Q] = {u}#[Q]

is similar.

(iii)

{u} ?′ {v} = {u, v}St (Proposition 2.2.1)
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= {u}# {v} .

The following case is still unknown.

Question 2.3.1 Is the product map

?′ : K0(R)⊗K2(S)→ K2(R⊗ S) (2.29)

compatible with classical product map

# : K0(R)⊗K2(S)→ K2(R⊗ S). (2.30)

defined by Milnor in [Mil72, page 51]?

2.3.2 The Non-Connective Gersten-Wagoner Algebraic K-Theory Spec-

trum KGW
R

We relate our extended Loday pairing

γ′Loday : KR ∧KS → KR⊗S

to the structure map

S1 ∧KR → KΣR

of the Gersten-Wagoner spectrum KGW
R . This will be used later in proving our version

of the Loday assembly is a map of spectra.

In [Lod76, page 341–343], Loday gave an explicit description of the Gersten-

Wagoner delooping
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KR
'−→ ΩKΣR,

so that the induced isomorphisms on homotopy groups in Equation (2.14) are given

as in Equation (2.17). We will use our extended Loday pairing to define a map

S1 ∧KR → KΣR,

whose adjoint

KR → ΩKΣR

will induce isomorphisms on homotopy groups, and hence is a homotopy equivalence

by the Whitehead Theorem. We begin by thinking of the circle S1 as the classifying

space B 〈t〉 of the infinite cyclic group generated by t, and define the following group

homomorphism:

Definition 2.3.1 (The map t+ : B 〈t〉 → KΣZ) Let 〈t〉 be the infinite cyclic group

generated by t, and τ ∈ GL(ΣZ) be the element defined in Equation (2.16). Define

the group homomorphism

〈t〉 → GL(ΣZ)

t 7→ τ−1.

The induced map

B 〈t〉 → KΣZ (2.31)

is denoted by t+.
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Proposition 2.3.2 (Another Gersten-Wagoner Delooping) Let R be a ring,

and 〈t〉 be the infinite cyclic group generated by t. The adjoint of the composition

B 〈t〉 ∧KR
t+∧id−−−→ KΣZ ∧KR

γ′Loday−−−→ KΣR (2.32)

is a weak equivalence, and hence a homotopy equivalence.

Proof. A class [f ] ∈ Ki(R) is represented by a spheroid

f : Si → KR.

Suspending it yields the following composition

S1 ∧ Si id ∧f−−−→ S1 ∧KR
t+∧id−−−→ KΣZ ∧KR

γ′Loday−−−→ KΣR, (2.33)

which represents the element
{
τ−1
}
?′ [f ] ∈ Ki+1(ΣR). In particular, we have

{
τ−1
}
?′ [f ] =

 [f ] ? {τ} if i > 0 (Proposition 2.2.1){
τ−1
}

#[f ] = − ({τ}#[f ]) if i = 0 (Theorem 2.3.1 (ii))
(2.34)

The map on homotopy groups

Ki(R)→ Ki+1(ΣR)

induced by the adjoint of (2.32) sends

[f ] 7→ [f ] ?′
{
τ−1
}
,

which is an isomorphism for i = 0 (resp. i > 0) by [Lod76, after Theorem 1.4.7

on page 328] (resp. [Lod76, Corollary 2.3.6 on page 345]). Therefore, Whitehead

Theorem asserts the homotopy equivalence
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KR ' ΩKΣR.

Consequently, we have the following Ω-spectrum

Definition 2.3.2 (The Non-connective Gersten-Wagoner Algebraic K-the-

ory Spectrum KGW
R ) Let R be a ring. Define the spectrum KGW

R by having n-th

space as

(
KGW
R

)
n

:=

 KΣnR if n ≥ 0,

Ω−nKR if n < 0,
(2.35)

with the convention that Σ0R := R. The structure maps

fn : S1 ∧
(
KGW
R

)
n
→
(
KGW
R

)
n+1

(2.36)

are given by

fn :=

 (2.32) if n ≥ 0,

adjoint of id(KGW
R )

n

if n < 0.
(2.37)

By construction and Proposition 2.3.2, KGW
R is an Ω-spectrum.
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3. THE MAIN THEOREM

3.1 Definition of the Loday Assembly

We use the extended Loday pairing γ′Loday to define a version of the Loday assembly

map:

Definition 3.1.1 (The Loday Assembly Map αLoday in Reduced Case) Let R

be a ring, and G be a group. The Loday assembly map is the weak map of spectra

αLoday : BG ∧KGW
R → KGW

R[G], (3.1)

whose components are given by the compositions of maps of spaces:

BG ∧KΣmR
j+∧id−−−→ KZ[G] ∧KΣmR

γ′Loday−−−→ KZ[G]⊗ΣmR ' KΣmR[G]. (3.2)

Here, the map

j+ : BG→ KZ[G] (3.3)

is induced by the group homomorphism

j : G→ GL (Z[G])

g 7→



g 0 0 0 · · ·

0 1 0 0 · · ·

0 0 1 0 · · ·

0 0 0 1 · · ·
...

...
...

...
. . .


. (3.4)



31

The last homotopy equivalence is induced by the natural isomorphism of rings in

Equation (1.25).

We need to justify our definition.

Proposition 3.1.1 (Cf [Lod76, Proposition 4.1.1 on page 356]) Let R be a

ring, and G be a group. The Loday assembly map

αLoday : BG ∧KGW
R → KGW

R[G]

defined in Definition 3.1.1 is a weak map of spectra.

Proof. We need to show the components of αLoday, as defined in Equation (3.2),

commute with the structure maps of KGW
R as defined in Equation (2.32). Let 〈t〉 be

the infinite cyclic group generated by t. By unwrapping the definitions of αLoday and

the structure maps given in Proposition 2.3.2, the following diagram

S1 ∧ (BG ∧KR) S1 ∧
(
KZ[G] ∧KR

)
S1 ∧KR[G]

BG ∧ B 〈t〉 ∧KR KZ[G] ∧ B 〈t〉 ∧KR B 〈t〉 ∧KZ[G] ∧KR B 〈t〉 ∧KR[G]

BG ∧KΣZ ∧KR KZ[G] ∧KΣZ ∧KR KΣZ ∧KZ[G] ∧KR KΣZ ∧KR[G]

BG ∧KΣR KZ[G] ∧KΣR KΣR[G] KΣR[G]

j
+ ∧ id ∧ id twist

∼=

id ∧γ′Loday

j
+ ∧ id ∧ id twist

∼=

id ∧γ′Loday

j
+ ∧ id γ

′
Loday

id ∧t+ ∧ id id ∧t+ ∧ id t
+ ∧ id ∧ id t

+ ∧ id

id ∧γ′Loday id ∧γ′Loday γ
′
Loday ◦ γ

′
Loday γ

′
Loday

' ' '

id ∧
(
j
+ ∧ id

)
id ∧γ′Loday

id

(3.5)

commutes up to weak homotopy by Corollary 2.2.1. Here, the columns are the struc-

ture maps, and the rows are components of the Loday assembly.
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The homotopy groups πi(BG∧KGW
R ) of the spectrum BG∧KGW

R are the reduced

homology groups of the classifying space BG of G with coefficients in KGW
R . So the

induced map

πi(αLoday) : πi(BG ∧KGW
R )→ Ki(R[G])

approximates the algebraic K-theory of the group ring R[G] by a reduced homology

theory. We want to lift the domain to an unreduced homology theory. Recall for any

(based) topological space X, there is a split cofibre sequence

S0 X+ X (3.6)

of spaces, where X+ := X t point is the space obtained by adding a disjoint point to

X. If E is a spectrum, then we have a split cofibre sequence

S0 ∧ E X+ ∧ E X ∧ E (3.7)

of spectra. Consequently, we have a splitting

X+ ∧ E ' (X ∧ E) ∨
(
S0 ∧ E

)
∼= (X ∧ E) ∨ E (3.8)

of spectra. This allows us to extend the Loday assembly to the unreduced case.

Definition 3.1.2 (The Loday Assembly Map αLoday in Unreduced Case) Let

R be a ring and G be a group. The canonical inclusion R→ R[G] induces a map

i : KGW
R → KGW

R[G] (3.9)
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of spectra. The Loday assembly in unreduced case is defined by

BG+ ∧KGW
R '

(
BG ∧KGW

R

)
∨KGW

R

(Definiton 3.1.1)∨i−−−−−−−−−−→ KGW
R[G]. (3.10)

By abuse of terminology and notation, we call this map the Loday assembly and denote

it by αLoday as well.

3.2 A Subgroup of the Source of Loday Assembly

Fix a ring R, and write AHSS (X)rp,q to be the Er
p,q-term of the Atiyah-Hirzebruch

spectral sequence for the spaceX with coefficients in the spectrum KGW
R . This spectral

sequence is concentrated on the right-half plane. If in addition R is regular, then this

spectral sequence is concentrated on the first quadrant. It follows that the differentials

dr0,q : AHSS (X)r0,q → AHSS (X)r−r,q+r−1

dr1,q : AHSS (X)r1,q → AHSS (X)r1−r,q+r−1

are trivial for all q whenever r > 1. Consequently, the term AHSS (X)∞0,q (resp.

AHSS (X)∞1,q) is a quotient of AHSS (X)2
0,q (resp. AHSS (X)2

1,q).

When X = BG+, Definition 3.1.2 guarantees a natural splitting

AHSS (BG+)rp,q
∼= AHSS

(
S0
)r
p,q
⊕ AHSS (BG)rp,q (3.11)

of spectral sequences, where the left-hand side converges to the homotopy group

πp+q
(
BG+ ∧KGW

R

)
. Because

AHSS
(
S0
)2

p,q
∼=

 Kq(R) if p = 0,

0 if else,
(3.12)

a dimension argument says
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AHSS
(
S0
)∞
p,q

= AHSS
(
S0
)2

p,q
(3.13)

On the other hand, we also have

AHSS (BG)∞0,q = AHSS (BG)2
0,q = 0 (3.14)

because the homology group H̃0 (BG;Z) is trivial due to BG being path-connected.

As a result, the source of the Loday assembly

πi+1 (αLoday) : πi+1(BG+ ∧KGW
R )→ Ki+1(R[G])

contains

AHSS (BG+)∞0,1+i ⊕ AHSS (BG+)∞1,i

∼=
(

AHSS
(
S0
)∞

0,1+i
⊕ AHSS (BG)∞0,1+i

)
⊕
(

AHSS
(
S0
)∞

1,i
⊕ AHSS (BG)∞1,i

)
= AHSS

(
S0
)∞

0,1+i
⊕ AHSS (BG)∞1,i

=Ki+1(R)⊕ AHSS (BG)∞1,i (3.15)

as a subgroup. In fact, we already know what the Loday assembly is doing when

restricted onto the summand Ki+1(R)—it is induced by the inclusion

i : R→ R[G]

of rings by Definition 3.1.2 before. What we want now is to study the Loday assembly

when restricted onto the summand AHSS (BG)∞1,i.
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3.3 Statement of the Main Theorem and the Proof

We have a diagram

Gab ⊗Ki(R) Ki+1 (R[G])

AHSS (BG)∞1,i πi+1

(
BG ∧KGW

R

)
.

AHSS (BG)2
1,i

Φi+1

πi+1 (αLoday)

∼=

(3.16)

We would like to study the filler Φi+1 for i ≥ 0. Let us go back to the E1-page of

the Atiyah-Hirzebruch spectral sequence. Unlike the later pages, the E1-page is not

homotopy invariant—it depends on the choice of cellular structure on BG. For our

purpose, we are using the skeletal filtration on the bar construction for

BG, so that

AHSS (BG)1
1,i
∼= πi+1

((∨
g∈G

S1

)
∧KGW

R

)
. (3.17)

The filler we want to study is then induced by the composition

πi+1

((∨
g∈G

S1

)
∧KGW

R

)
πi+1

(
BG ∧KGW

R

)
Ki+1 (R[G]),

(iG)∗ πi+1 (αLoday)

(3.18)

for which the first arrow is induced by the inclusion

iG :
∨
g∈G

S1 ↪→ BG (3.19)
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of the 1-skeleton intoBG. This follows from the construction of the Atiyah-Hirzebruch

spectral sequence (see [Wic15] for example). When G = 〈t〉 is the infinite cyclic group,

we know the circle S1 is a model for B 〈t〉. Moreover,

Lemma 3.3.1 The inclusion

it : S1 → B 〈t〉 (3.20)

that sends S1 to the 1-cell of B 〈t〉 labelled by the generator t is a weak equivalence.

Proof. It is clear that the induced group homomorphism

(it)∗ : πi
(
S1
)
→ πi (B 〈t〉) (3.21)

is an isomorphism for i 6= 1, because the source and target are both trivial. So we

need to check the map

(it)∗ : π1

(
S1
)
→ π1 (B 〈t〉) (3.22)

is an isomorphism.

The map in Equation (3.22) is just an endomorphism of the infinite cyclic group.

In particular, it is surjective by the definition of it. (The generator is in the image.)

So the First Isomorphism Theorem says the map in Equation (3.22) must have trivial

kernel, and hence an isomorphism.

The Whitehead Theorem then asserts it is a homotopy equivalence. Thus when

G = 〈t〉 is the infinite cyclic group, we have the following commutative diagram

∨
g∈〈t〉

S1

B 〈t〉

S1

i〈t〉

' it
jt

(3.23)
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The map jt sends S1 to the loop in
∨
g∈〈t〉

S1 labelled by the generated t. The upshot is

that we are able to describe the composition in Equation (3.18) when G = 〈t〉.

Proposition 3.3.1 When G = 〈t〉 is the infinite cyclic group and i ≥ 0, the com-

position in Equation (3.18) can be identified as

πi+1

∨
g∈〈t〉

S1

 ∧KGW
R

 πi+1

(
B 〈t〉 ∧KGW

R

)
Ki+1

(
R[t±1]

)

πi+1

(
S1 ∧KGW

R

)
πi+1

(
S1 ∧KGW

R

)
Ki+1

(
R[t±1]

)

Ki(R) Ki(R) Ki+1

(
R[t±1]

)
,

(
i〈t〉
)

πi+1 (αLoday)

id

id

(jt)∗
(it)∗

∼=

=

∼= ∼= =

(3.24)

where the bottom composition sends [f ] ∈ Ki(R) to the element

{t} ?′ [f ] ∈ Ki+1

(
R[t±1]

)
,

(We remind readers the commutativity of the top-left square comes from Diagram (3.23).)

Proof. The class [f ] ∈ Ki(R) is represented by the spheroid

f : Si → KR,

where

KR := K0(R)×BGL(R)+ .

Taking suspension yields
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S1 ∧ Si S1 ∧KR KZ[t±1] ∧KR KR[t±1].
id ∧f j+ ∧ id γ′Loday

This composition represents the element πi+1 (αLoday) ([f ]) ∈ Ki+1

(
R[t±1]

)
, as well as

the product

{
j+
}
?′ [f ] ∈ Ki+1

(
R[t±1]

)
.

Now, j+ is induced by the group homomorphism

j : 〈t〉 → GL
(
Z[t±1]

)

t 7→



t 0 0 0 · · ·

0 1 0 0 · · ·

0 0 1 0 · · ·

0 0 0 1 · · ·
...

...
...

...
. . .


.

So
{
j+
}

= {t}, and thus

{
j+
}
?′ [f ] = {t} ?′ [f ]

as desired.

For arbitrary group G, we recall the isomorphism

G ∼= Hom (〈t〉, G)

g 7→ (ϕg : t 7→ g) , (3.25)
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allowing us to extend Proposition 3.3.1 to arbitrary G.

Proposition 3.3.2 For an arbitrary group G and i ≥ 0, under the canonical iso-

morphism

πi+1

((∨
g∈G

S1

)
∧KGW

R

)
∼=
⊕
g∈G

Ki(R), (3.26)

the composition in (3.18) can be identified as

πi+1

((∨
g∈G

S1

)
∧KGW

R

)
πi+1

(
BG ∧KGW

R

)
Ki+1 (R[G])

⊕
g∈G

Ki(R) πi+1

(
BG ∧KGW

R

)
Ki+1 (R[G]),

(iG)∗ πi+1 (αLoday)

∼= = =

(3.27)

where the bottom composition sends the element [f ] ∈ Ki(R) in the summand in⊕
g∈G

Ki(R) labelled by g ∈ G to the element

{g} ?′ [f ] ∈ Ki+1 (R[G]) .
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Proof. Fix g ∈ G, and consider the commutative diagram

πi+1

(
S1 ∧KGW

R

)
πi+1

((∨
g∈G

S1

)
∧KGW

R

)

πi+1

(
B 〈t〉 ∧KGW

R

)
πi+1

(
BG ∧KGW

R

)

Ki+1

(
R[t±1]

)
Ki+1 (R[G]).

(ϕg)∗

(ϕg)∗

(ϕg)∗

(it)∗ ∼=

πi+1 (αLoday)

(iG)∗

πi+1 (αLoday)

(3.28)

The top square commutes by chasing the definitions of the arrows. The bottom square

commutes by the naturality of αLoday via the group homomorphism

ϕg : 〈t〉 → G.

Now, Proposition 3.3.1 says the left vertical composition in Diagram (3.28) sends

[f ] ∈ Ki(R) to

{t} ?′ [f ] =∈ Ki+1

(
R[t±1]

)
.

So the commutativity of Diagram (3.28) says the right vertical composition sends

[f ] ∈ Ki(R) in the summand
⊕
g∈G

Ki(R) indexed by g ∈ G to the element

{g} ?′ [f ] ∈ Ki+1 (R[G]) .

Theorem 3.3.1 (An Explicit Formula for the Loday Assembly) For i ≥ 0,

the filler Φi+1 in Diagram (3.16) is induced by the bilinear map
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G×Ki(R)→ Ki+1 (R[G])

(g, [f ]) 7→ {g} ?′ [f ]. (3.29)

Proof. Follows immediately from Proposition 3.3.2.

Corollary 3.3.1 (The Loday Assembly on π1, [Wal78b, Assertion 15.8 on

page 229], [LR05, page 708]) For a regular ring R, and a group G, the Loday

assembly on π1 is given by

K1(i)⊕ Φ1 : K1(R)⊕ [Gab ⊗K0(R)]→ K1 (R[G]) , (3.30)

for which i : R→ R[G] is the inclusion, and Φ1 is induced by the bilinear map

G×K0(R)→ K1 (R[G])

(g, [P ]) 7→ {hg} , (3.31)

for which hg : R[G]⊗R P → R[G]⊗R R is the automorphism given by

hg(u⊗ x) := gu⊗ x.

Proof. If the ring R is regular, then the Atiyah-Hirzebruch spectral sequence for

πi(BG+ ∧KGW
R ) is concentrated in the first quadrant. Hence,

π1(BG+ ∧KGW
R ) ∼= K1(R)⊕ [Gab ⊗K0(R)] .

If g ∈ G, and [P ] ∈ K0(R), then Theorem 3.3.1 says the Loday assembly sends

(g, [P ]) to
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{g} ?′ [P ] = {g}#[P ] (Theorem 2.3.1)

= {g ⊗ p+ 1⊗ (1− p)} . (Equation (2.26))

If u⊗ x ∈ R[G]⊗R P , then

(g ⊗ p+ 1⊗ (1− p)) (u⊗ x) = (g ⊗ p) (u⊗ x) + (1⊗ (1− p)) (u⊗ x)

= (g ⊗ p) (u⊗ x)

(since (1− p)(x) = 0)

= gu⊗ x.

Therefore,

g ⊗ p+ 1⊗ (1− p) = hg.

Corollary 3.3.2 ([Wal78b, Proposition 15.7 (1) on page 229]) Let G be a

group. The cokernel of the Loday assembly

coker
(
π1(αLoday) : π1

(
BG+ ∧KGW

Z
)
→ K1(Z[G])

)
(3.32)

on π1 is isomorphic to the first Whitehead group

Wh1 (G) :=
K1(Z[G])

±G
. (3.33)

Proof. We need to check the image im (π1(αLoday)) of the Loday assembly on π1 is

the subgroup ±G of K1(Z[G]).

Note that the ring Z has no negative K-groups for being regular. Thus, the

vanishing of the differentials of the Atiyah-Hirzebruch spectral sequences says
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π1

(
BG+ ∧KGW

Z
) ∼= K1(Z)⊕ [Gab ⊗K0(Z)] (3.34)

∼= C2 ⊕ [Gab ⊗ Z]

∼= {±1} ⊕Gab (3.35)

We already know, from Definition 3.1.2, the Loday assembly π1 (αLoday) |K1(Z) when

restricted onto the summand K1(Z) of π1

(
BG+ ∧KGW

Z
)

is the group homomorphism

K1(Z)→ K1(Z[G])

induced by the canonical inclusion i : Z→ Z[G]. Therefore, under the identification

K1(Z) ∼= {±1} ,

the restriction π1 (αLoday) |K1(Z) sends ±1 to ±1 ∈ K1(Z[G]).

On the other hand, we observe that the map

Φ1 : Gab ⊗K0(Z)→ K1(Z[G])

from Corollary 3.3.1 sends the simple tensor g ⊗ [Z] ∈ Gab ⊗ K0(Z) to the element

{g} ∈ K1(Z[G]), and therefore, sends the simple tensor g⊗ [Zn] ∈ Gab⊗K0(Z) to the

element {gn} ∈ K1(Z[G]). As a result, under the identification

Gab ⊗K0(Z) ∼= Gab,

the map Φ1 sends g ∈ Gab to {g} ∈ K1(Z[G]).

Combining everything together, we see that, under the identification

π1

(
BG+ ∧KGW

Z
) ∼= {±1} ⊕Gab,
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the Loday assembly π1(αLoday) sends the element (±1)⊕g ∈ {±1}⊕Gab to the element

{±g} ∈ K1(Z[G]). This proves im (π1(αLoday)) is the subgroup ±G of K1(Z[G]) as

desired.
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4. THE INJECTIVITY PROBLEM FOR THE INTEGRAL

LODAY ASSEMBLY

One might ask whether torsion-free is a necessary condition in the Classical Farrell-

Jones Conjecture 1.1.2. Integrally, the cokernel

coker
(
πi (αLoday) : πi

(
BG+ ∧KGW

Z
)
→ Ki(Z[G])

) ∼= Whi (G) (4.1)

can be identified with the classical Whitehead groups Whi (G) for i = 0, 1 and 2.

See [Lod76, page 357–364], or Corollary 3.3.2 for the case i = 1. As a result, non-

vanishing Whi (G) implies the non-surjectivity of πi(αLoday). For example, if p is an

odd prime and Cp is the cyclic group of order p, then Wh1 (Cp) 6= 0 [Coh73, 11.5

on page 45]. Consequently, torsion-free is necessary to guarantee surjectivity. What

about injectivity?

Question 4.0.1 (Non-injectivity Problem for the Loday Assembly) Let R be

a regular ring. Is there a group G with torsion, such that the Loday assembly

πi (αLoday) : πi
(
BG+ ∧KGW

R

)
→ Ki(R[G])

is not injective for some i?

It turns out that under suitable conditions, the Loday assembly is injective in

lower degrees.

Proposition 4.0.1 ([LR05, Lemma 2 on page 709]) Let R be a regular ring and

G be a group.

(i) The Loday assembly
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π0 (αLoday) : π0

(
BG+ ∧KGW

R

)
→ K0(R[G])

on π0 is always injective. In particular, its left inverse is induced by the aug-

mentation map

R[G]→ R.

(ii) If also R is commutative, and the natural map

Z→ K0(R)

1 7→ [R]

is an isomorphism, then the Loday assembly

π1 (αLoday) : π1

(
BG+ ∧KGW

R

)
→ K1(R[G])

on π1 is injective.

Consequently, the first place to look for non-injectivity phenomena for Loday

assembly would be the second homotopy group.

4.1 Second Homotopy Group

Question 4.0.1 was answered by Ullmann-Wu in the case when R is a finite field.

Theorem 4.1.1 ([UW17, Theorem 2 on page 461]) Let G be a finite group such

that H2(G;Z) is non-trivial, and F a finite field with characteristic p which does not

divide the order of G, then the Loday assembly

π2 (αLoday) : π2

(
BG+ ∧KGW

F
)
→ K2(F[G])



47

is not injective.

For example, we can take G = C2 ⊕ C2 and F to be any finite field with charac-

teristic p > 2.

However, no such example is known when R = Z. In this case, the Atiyah-

Hirzebruch spectral sequence for π2

(
BG+ ∧KGW

Z
)

yields the following short exact

sequence

0→ K2(Z)⊕ [Gab ⊗K1(Z)]→ π2

(
BG+ ∧KGW

Z
)
→ H2(BG;K0(Z))→ 0. (4.2)

See [Leh18, Theorem 12.2 on page 29]. The key point is that the differential

d2
3,0 : H3(BG;K0(Z))→ H1(BG;K1(Z)) ∼= Gab ⊗K1(Z) (4.3)

is trivial [Leh18, page 28]. Together with Theorem 3.3.1, we have the following

corollary:

Corollary 4.1.1 (A Formula for the Loday Assembly on π2 of an Integral

Group Ring) Let G be a group. The Loday assembly map

αLoday : BG+ ∧KGW
Z → KGW

Z[G] (4.4)

for the integral group ring Z[G] on π2, when restricted onto the subgroup

K2 (Z)⊕ [Gab ⊗K1(Z)] ≤ π2

(
BG+ ∧KGW

Z
)
,

is given by the formula:

K2(i)⊕ Φ2 : K2 (Z)⊕ [Gab ⊗K1(Z)]→ K2(Z[G]), (4.5)

where i : Z→ Z[G] is the inclusion, and Φ2 is induced by the bilinear map
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G×K1(Z)→ K2(Z[G])

(g,±1) 7→ {±1, g}St , (4.6)

where we have identified K1(Z) ∼= {±1}. In particular, the Steinberg symbol {1, g}St

is always the identity element in K2(Z[G]) for all g ∈ G.

Proof. Only the description of Φ2 needs to be justified. Theorem 3.3.1 says Φ2 is

induced by the bilinear map

G×K1(Z)→ K2(Z[G])

(g,±1) 7→ {g} ?′ {±1} (4.7)

and we have

{g} ?′ {±1} = {g,±1}St (Proposition 2.2.1)

= −{±1, g}St (Skew-symmetric)

=
{

(±1)−1, g
}

St
(Bilinearity)

= {±1, g}St

as desired.

It turns out that injectivity can happen for group with torsion.

Example 4.1.1 (Bijectivity on K2(Z[C2])). Denote by C2 the cyclic group of

order two, with generator g. Dunwoody showed that the second K-group of Z[C2] is

generated by two Steinberg symbols [Dun75, Theorem on page 482]:
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K2 (Z[C2]) = 〈{−1,−1}St , {−1, g}St〉

∼= C2 ⊕ C2. (4.8)

Because

H2(BC2;K0(Z)) ∼= H2(BC2;Z)

= 0,

we have

π2

(
BC2+ ∧KGW

Z
) ∼= K2(Z)⊕ [(C2)ab ⊗K1(Z)] .

Corollary 4.1.1 then says the Loday assembly for C2

π2 (αLoday) = K2(i)⊕ Φ2 (4.9)

is bijective on π2.

The following result was proven in collaboration with Daniel Ramras.

Theorem 4.1.2 (An Injectivity Result for the Loday Assembly on π2) Let

G be a group. The composition

K2 (Z)⊕ [Gab ⊗K1 (Z)]
(4.2)
−−→ π2

(
BG+ ∧KGW

Z
) π2(αLoday)
−−−−−−→ K2 (Z[G]) (4.10)

is injective.
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Proof. By Corollary 4.1.1, the composition in Equation (4.10) is given by the group

homomorphism

K2(i)⊕ Φ2 : K2 (Z)⊕ (Gab ⊗ {±1})→ K2 (Z[G]) , (4.11)

where i : Z→ Z[G] is the canonical inclusion, and

Φ2 : [g]⊗ {±1} 7→ {±1, g}St (4.12)

for [g] ∈ Gab represented by g ∈ G. Here, we have identified

K1(Z) ∼= {±1} .

We know the group homomorphism K2(i) is injective, with left inverse induced by

the augmentation map

Z[G]→ Z.

As a result, we only need to verify injectivity for Φ2.

At this point, we will identify K1(Z) with the additive group of the field with two

elements. We denote by • the field multiplication on K1(Z). We define the group

homomorphism

r : Gab → Gab ⊗K1(Z)

[g] 7→ [g]⊗ (−1). (4.13)

Then, we note that the group homomorphism

r⊗ id : Gab ⊗K1(Z)→ (Gab ⊗K1(Z))⊗K1(Z) (4.14)

is an isomorphism, with inverse given by
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s : (Gab ⊗K1(Z))⊗K1(Z)→ Gab ⊗K1(Z)

([g]⊗ ε1)⊗ ε2 7→ [g]⊗ (ε1 • ε2) . (4.15)

Write V := Gab ⊗ K1(Z). Then we have a group homomorphism given by the

composition

G Gab Gab ⊗K1(Z) V

g [g] [g]⊗ (−1),

v

=:

∈ ∈ ∈

(4.16)

which induces the following commutative diagram

Gab ⊗K1(Z) K2(Z[G])

Vab ⊗K1(Z) K2(Z[V ])V ⊗K1(Z)

ΦG
2

ΦV
2

id

v∗r⊗ id ∼=

(4.17)

by naturality of the Loday assembly. We wish to show the group homomorphism ΦV
2

is injective. Then, it will follow that ΦG
2 is also injective.

Now, because we can think of K1(Z) as the field with two elements, V is then a

vector space over this field. Therefore for every element x ∈ V , there exists a group

homomorphism

fx : V → C2 (4.18)



52

that sends x to the generator. A non-zero element in V ⊗ K1(Z) is of the form

x⊗ (−1), where x ∈ V is also non-zero. Hence, the group homomorphism fx induces

the following commutative diagram

V ⊗K1(Z) K2 (Z [V ])

C2 ⊗K1(Z) K2 (Z [C2])

x⊗ (−1)

fx(x)⊗ (−1)

ΦV
2

ΦC2
2

fx ⊗ id (fx)∗

∈

∈
(4.19)

by naturality of the Loday assembly. Now, Example 4.1.1 says the element ΦC2
2 (fx(x)⊗ (−1)) ∈

K2 (Z[C2]) is non-zero. Therefore, the commutativity of Diagram (4.19) says the el-

ement ΦV
2 (x⊗ (−1)) ∈ K2 (Z [V ]) is non-zero as well. This proves the injectivity of

ΦV
2 and therefore, the claim holds as desired.

Corollary 4.1.2 (A Bijectivity Result for the Loday Assembly on π2) Let G

be a group such that the second homology group H2(BG;Z) is trivial. Then the Loday

assembly

π2 (αLoday) : π2

(
BG+ ∧KGW

Z
)
→ Ki(Z[G])

on π2 is injective.

Proof. If H2(BG;Z) is trivial, then the short exact sequence in Equation (4.2) says

π2(BG+ ∧KGW
Z ) ∼= K2(Z)⊕ [Gab ⊗K1(Z)] .

Corollary 4.1.1 then tells us that the Loday assembly on π2 is given by

π2 (αLoday) = K2(i)⊕ Φ2.

The claim then follows from Theorem 4.1.2.

We can use our result to give a new proof of
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Corollary 4.1.3 (Cf [Leh18, page 28]) The differential

d2
3,0 : AHSS (BG)2

3,0 → AHSS (BG)2
1,1
∼= Gab ⊗K1(Z) (4.20)

for the Atiyah-Hirzebruch spectral sequence of BG with coefficients in the spectrum

KGW
Z is trivial.

Proof. We have the following commutative diagram

AHSS (BG)2
1,1

AHSS (BG)∞1,1

K2 (Z[G]).
Φ2

coker
(
d2

3,0

)
π2 (αLoday) |AHSS(BG)∞1,1

(4.21)

Since we know Φ2 is injective from Theorem 4.1.2, the arrow coker
(
d2

3,0

)
is also

injective. Therefore, the differential d2
3,0 is trivial.

Example 4.1.2 (Cyclic Groups of Odd Orders). Our formula does not give

any information about the K-theory of the integral group ring Z[Cn] of cyclic group

Cn of odd order n. This is because Cn ⊗ C2 = 0, so the domain of the map Φ2 in

Equation (4.5) is trivial. Because H2 (BCn;Z) = 0 for all odd numbers n, the short

exact sequence in Equation (4.2) gives

π2

(
BCn+ ∧KGW

Z
) ∼= K2(Z), (4.22)

and therefore we learn nothing about structures of K2(Z[Cn]) from this approach,

other than it contains K2(Z) as a subgroup.
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4.1.1 The Steinberg Symbol {−1, g}St

We study the Steinberg symbol {−1, g}St ∈ K2(Z[G]), and obtain an expression

for it in terms of generators of the Steinberg group St (Z[G]).

Theorem 4.1.3 Let G be a group. The Steinberg symbol {−1, g}St ∈ K2(Z[G]) for

g ∈ G is given by

{−1, g}St = w12(−1) w12(−1) w12(g) w12(g), (4.23)

where

wij(u) := xij(u) xji(−u−1) xij(u), (4.24)

and the xij(u)s’ are the generators of the Steinberg group St (Z[G]).

Proof. The proof involves playing with the presentation of the Steinberg group.

We recall from [Ros95, Lemma 4.2.15 on page 195] the identities

wij(u)−1 = wij(−u), (4.25)

wij(u) = wji(−u−1), (4.26)

wk`(u) wij(v) wk`(u)−1 =



wij(v) if i, j, k, ` are all distinct,

w`j(−u−1v) if k = i, and i, j, ` are all distinct,

wi`(−vu) if k = j, and i, j, k are all distinct,

wji(−u−1vu−1) if k = i, and j = `.

(4.27)

In particular, Equation (4.27) gives

w13(u) w12(v) = w23(v−1u) w13(u), (4.28)
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w13(u) w23(v) = w12(−uv−1) w13(u). (4.29)

Put

hij(u) := wij(u) wij(−1), (4.30)

then a long and boring computation shows

{−1, g}St := [h12(−1), h13(g)]

= h12(−1) h13(g) h12(−1)−1 h13(g)−1

= w12(−1) w12(−1) w13(g) w13(−1) w12(−1)−1 w12(−1)−1 w13(−1)−1 w13(g)−1

= w12(−1) w12(−1) w13(g) w13(−1) w12(1) w12(1) w13(1) w13(−g)

(Equation (4.25))

= w12(−1) w12(−1) w13(g) w13(−1) w12(1)︸ ︷︷ ︸
w23(−1) w13(−1)

w12(1) w13(1) w13(−g)

(Equation (4.28))

= w12(−1) w12(−1) w13(g) w23(−1) w13(−1) w12(1)︸ ︷︷ ︸
w23(−1) w13(−1)

w13(1) w13(−g)

(Equation (4.28))

= w12(−1) w12(−1) w13(g) w23(−1) w23(−1) w13(−1) w13(1)︸ ︷︷ ︸
1

w13(−g)
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(Equation (4.25))

= w12(−1) w12(−1) w13(g) w23(−1)︸ ︷︷ ︸
w12(g) w13(g)

w23(−1) w13(−g)

(Equation (4.29))

= w12(−1) w12(−1) w12(g) w13(g) w23(−1) w13(−g)︸ ︷︷ ︸
w31(−g−1) w23(−1) w31(g−1)

(Equation (4.26))

= w12(−1) w12(−1) w12(g) w31(−g−1) w23(−1) w31(g−1)︸ ︷︷ ︸
w21(−g−1)

(Equation (4.27))

= w12(−1) w12(−1) w12(g) w21(−g−1)︸ ︷︷ ︸
w12(g)

(Equation (4.26))

= w12(−1) w12(−1) w12(g) w12(g)

as desired.

Theorem 4.1.3 motivates the following definition:

Definition 4.1.1 (The group W12(G)) Let G be a group. The subgroup W12(G) of

K2(Z[G]) is generated by the Steinberg symbols:

W12(G) := 〈{−1, g}St | g ∈ G〉 . (4.31)

Notice the following:
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(1) The image of the map

Φ2 : G×K1(Z)→ K2(Z[G])

in Equation (4.5) is precisely W12(G).

(2) Readers who are familiar with the classical definition

Wh2 (G) :=
K2(Z[G])

K2(Z[G]) ∩W (G)
(4.32)

of the second Whitehead group proposed by Hatcher-Wagoner in [HW73, page

10] will see our group W12(G) follows their spirit. The group W (G) is generated

by the elements wij(±g) for all g ∈ G, and for all i, j, where

wij(u) := xij(u)xji(−u−1)xij(u), (4.33)

and the xij(u)s’ are the free generators of the Steinberg group. See [Ros05, Defi-

nition 4.2.1 on page 187, and the end of page 192]. Together with Theorem 4.1.3,

we see that W12(G) is a subgroup of W (G).

(3) From the functoriality of the Steinberg group, we get a functor

W12(−) : Groups→ Abelian (4.34)

from groups to Abelian groups. Moreover, for every group G, there is a natural

group homomorphism

ΨG : G→ W12(G)
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g 7→ {−1, g}St , (4.35)

which satisfies

ΨG = Φ2|{−1}×G (4.36)

for Φ2 as in Equation (4.5). Non-injectivity of ΨG will imply the non-injectivity

of the integral Loday assembly on π2.

4.1.2 Kähler Differentials and de Rham Cohomology

Let k be a unital, commutative ring, and A be a unital, commutative k-algebra.

We define the A-module of Kähler differentials to be the free A-module generated

by the symbols da for each a ∈ A, modulo linearity and the Leibniz rule:

Ω1
A|k :=

〈da | a ∈ A〉〈
d(λa+ µb) = λda+ µdb,

d(ab) = a(db) + b(da)

〉 , (4.37)

where λ, µ ∈ k and a, b ∈ A. Let 1k be the multiplicative identity in k. The Leibniz

rule implies d(1k) = 0, and consequently, du = 0 for any u ∈ k.

We then define the module Ωn
A|k of differential n-forms to be the exterior prod-

uct

Ωn
A|k := Λn

AΩ1
A|k , (4.38)

where the exterior product is over A, not k. It is spanned by the elements a0da1 ∧

· · · ∧ dan, for ai ∈ A, that we usually write a0da1 · · · dan.

Let us put Ω0
A|k := A. Then for each n ≥ 0, the exterior differential operator

is defined by
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d : Ωn
A|k → Ωn+1

A|k

a0da1 · · · dan 7→ da0da1 · · · dan. (4.39)

Since d(1k) = 0, it follows that d ◦ d = 0, and the following sequence

A := Ω0
A|k

d−→ Ω1
A|k

d−→ · · · d−→ Ωn
A|k

d−→ · · · (4.40)

is a chain complex, called the de Rham chain complex of A over k. The homology

groups of the de Rham chain complex are denoted by Hn
dR (A|k ), and are the de

Rham cohomology groups of A over k.

Using the theory of cyclic homology and Chern character, Loday constructed a

map

K2(A)→ H2
dR (A|k ) (4.41)

that sends the Steinberg symbol {x, y}St, where x, y ∈ A, to the cohomology class

represented by the differential form x−1y−1dxdy [Lod97, page 275]. One may hope

that this map will be useful for studying the Steinberg symbol {−1, g}St when A =

Z[G] is an integral group ring. However, because

d(−1) = −d(1)

= 0,

the image of the Steinberg symbol {−1, g}St is always trivial in H2
dR (Z[G]|Z). This

means we need other methods to analyse {−1, g}St.



60

5. COMPARING ASSEMBLY MAPS

In this section, we show our definition of Loday assembly can be used to compute the

Weiss-Williams assembly map (i.e., the universal assembly map).

5.1 Two Intermediate Spectra

5.1.1 Symmetric Monoidal Categories and the S−1S-Construction

Definition 5.1.1 (Symmetric Monoidal Category) A symmetric monoidal

category is a category C together with

(SMC 1) a functor

2 : C× C→ C

(A,B) 7→ A2B,

(SMC 2) a distinguished object e ∈ C,

(SMC 3) and four basic natural isomorphisms

e2A ∼= A,

A2e ∼= A,

(A2B)2C ∼= A2(B2C),

A2B ∼= B2A.
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subject to the coherence conditions given in [ML98].

A monoidal functor between symmetric monoidal categories is a functor that re-

spects all the axioms. The category of symmetric monoidal categories and monoidal

functors will be denoted as SymMonCat.

Example 5.1.1 . The category FinSet of finite sets is a symmetric monoidal category

under disjoint union. The distinguished object is the empty set.

Example 5.1.2 . If (C,2) is a symmetric monoidal category, then its category iso (C)

of isomorphisms is also a symmetric monoidal category under 2.

The axioms (SMC 1)–(SMC 3) make the set π0(BC) of the path components of

the classifying space of the symmetric monoidal category C a monoid. The S−1S-

construction is a categorical method to study the group completion of this monoid.

Definition 5.1.2 (The Category S−1S, [Wei13, Definition 4.2 on page 328])

Let (S,2) be a symmetric monoidal category. We define a new category S−1S from

S by the following data:

(SIS 1) Objects in S−1S are pairs (m,n) of objects in S.

(SIS 2) A morphism (m1,m2)→ (n1, n2) in S−1S is an equivalence class of compos-

ites

(m1,m2)
s2−→ (s2m1, s2m2)

(f,g)−−→ (n1, n2).

This composite is equivalent to

(m1,m2)
t2−→ (t2m1, t2m2)

(f ′,g′)−−−→ (n1, n2)
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if and only if there is an isomorphism α : s→ t in S so that the composition

with α2 idmi sends f ′ and g′ to f and g.

We note that a monoidal functor S → T induces a functor

S−1S → T−1T.

Moreover, the category S−1S has a natural symmetric monoidal structure induced

by the symmetric monoidal structure on S (see [Wei13, Remark 4.2.2 on page 329]).

Thus the S−1S-construction gives a functor

SymMonCat→ SymMonCat

S 7→ S−1S,

and π0

(
BS−1S

)
is an Abelian group. Under the conditions as in [Wei13, Theorem

4.8 on page 333], π0

(
BS−1S

)
is the group completion of π0 (BS).

Definition 5.1.3 (The Category SA) Let A be a symmetric monoidal category.

We define the category SA to be the S−1S-construction of the category iso (A) of

isomorphisms in A, as defined in Definition 5.1.2:

SA := iso (A)−1 iso (A) (5.1)

In particular, we write

SR := S
FreefgR

(5.2)

for a ring R.

We say a ring R satisfies the Invariant Basis Property (IBP) when Rn ∼= Rm

if and only if m = n. The importance of IBP is that we have explicit descriptions for

the classifying space B iso
(
Freefg

R

)
and its homotopy group completion BSR.
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Theorem 5.1.1 ([Wei13, Theorem 4.9 on page 334]) Let R be a ring satisfying

the IBP. Then the classifying space of the category iso
(
Freefg

R

)
is given by

B iso
(
Freefg

R

)
=
⊔
p≥1

BGL(p,R). (5.3)

Moreover, the space Z × BGL(R)+ is a model for the classifying space of the S−1S-

construction of the category iso
(
Freefg

R

)
:

BSR ' Z×BGL(R)+ . (5.4)

The natural homotopy group completion map

gcR :
⊔
p≥1

BGL(p,R)→ Z×BGL(R)+ , (5.5)

induced by the maps sending a matrix Ap ∈ GL(p,R) to (p,Ap) ∈ Z×GL(R), makes

the diagram

B iso
(
Freefg

R

)
BSR

⊔
p≥1

BGL(p,R) Z×BGL(R)+

gcR

= �

(5.6)

commute up to homotopy. The lightning bolt in the diagram is a zig-zag of homotopy

equivalences.

5.1.2 A Categorical Description of the Loday Pairing and the Spectrum

Kfree
R

Under Theorem 5.1.1, we give another formalism of the Loday pairing γLoday

defined in Definition 2.1.2 using category theory. This formalism is well-documented

in [Wei81] and we shall review it below.
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Again, let us choose an isomorphism Rm ⊗ Sn ∼= (R ⊗ S)mn. Tensor product of

modules gives a functor

⊗ : iso
(
Freefg

R

)
× iso

(
Freefg

S

)
→ iso

(
Freefg

R⊗S

)
. (5.7)

We then have the following homotopy commutative diagram

B iso
(
Freefg

R

)
∧B iso

(
Freefg

S

)
B iso

(
Freefg

R⊗S

)
( ⊔
p,q≥1

BGL(p,R)×BGL(q, S)

)
+

⊔
r≥0

BGL(r, R⊗ S)

( ⊔
p,q≥1

BGL(p,R)+ ×BGL(q, S)+

)
+

⊔
r≥0

BGL(r, R⊗ S)+

(⊔
p≥0

BGL(p,R)+

)
∧

(⊔
q≥0

BGL(q, S)+

)

(
Z×BGL(R)+) ∧ (Z×BGL(S)+) Z×BGL(R⊗ S)+.

B⊗

B⊗

f

γfree

= =

=

gc+R ∧ gc+S

gc+R⊗S

(5.8)

The convention is thatBGL(p,R)+ denotesBGL (p,R) for p ≤ 2; for p ≥ 3, it denotes

the plus construction of BGL (p,R) relative to the subgroup E(p,R) generated by

elementary matrices. The map f (resp. the maps gc+) is induced by B⊗ (resp. gc) via

the universal property of the +-construction, which is well-defined up to homotopy.

The group completion
(
Z×BGL(R)+ , gcR

)
satisfies the following cofinality

condition:
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Condition 5.1.1 (Cofinality Condition) For every x := (ξ,M) ∈ Z×BGL(R)+,

there exists m ∈ N and x0 ∈ BGL(p,R)+ such that

(ξ,M) + (m, ∗∞) = gcR(x0),

where ∗∞ is the base-point of BGL(R)+, and the addition operation is the H-group

operation of Z×BGL(R)+.

We want to define a map

γfree :
(
Z×BGL(R)+) ∧ (Z×BGL(S)+)→ Z×BGL(R⊗ S)+

so that Diagram (5.8) commutes up to weak homotopy.

Definition 5.1.4 (The map γ̃free) If x ∈ Z×BGL(R)+ (resp. y ∈ Z×BGL(S)+),

let m ∈ N, x0 ∈ BGL(p,R)+ (resp. n ∈ N, y0 ∈ BGL(q, S)+) be as in Cofinality

Condition (5.1.1).

We define a map

γ̃free :
(
Z×BGL(R)+)× (Z×BGL(S)+)→ Z×BGL(R⊗ S)+

by

γ̃free(x, y) := gcR⊗S ◦ f(x0, y0)− gcR⊗S ◦ f(∗m, y0)− gcR⊗S ◦ f(x0, ∗n) + gcR⊗S ◦ f(∗m, ∗n) .

Here, ∗m (resp. ∗n) is the base-point of BGL(m,R)+ (resp. BGL(n, S)+). The plus

and minus are from the H-group structure of Z×BGL(R⊗ S)+.

The choice of isomorphism Rm ⊗ Sn ∼= (R⊗ S)mn implies the pairing γ̃free is

well-defined up to weak homotopy.

Lemma 5.1.1 Under the notations in Diagram (5.8), the following diagram
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(⊔
p≥0

BGL(p,R)+

)
×

(⊔
q≥0

BGL(q, S)+

) ⊔
r≥0

BGL(r, R⊗ S)+

(
Z×BGL(R)+)× (Z×BGL(S)+) Z×BGL(R⊗ S)+.

f

γ̃free

gcR ∧ gcS gcR⊗S

commutes up to homotopy.

Proof. This is just a matter of diagram-chasing. Consider a point x in the image of

gcR. We know

x = (p, [Mp])

where [Mp] is an equivalence class inBGL(R)+, represented by someMp ∈ BGL(p,R)+.

The Cofinality Condition (5.1.1) says there exists m ∈ N such that

(p, [Mp]) + (m, ∗∞) = (p+m, [Mp])

is in the image of gcR. In fact, we have

(p+m, [Mp � ∗m]) = gcR(Mp � ∗m) ,

where the operation “�” is induced by block sum of matrices. Similarly, for y =

(q,Nq) ∈ Z×BGL(S)+, there exists n ∈ N such that

(q + n, [Nq � ∗n]) = gcS(Nq � ∗n) .

We then compute



67

γ̃free(x, y) = γ̃free((p,Mp), (q,Nq))

:= gcR⊗S ◦ f(Mp � ∗m, Nq � ∗n)− gcR⊗S ◦ f(∗m, Nq � ∗n)

− gcR⊗S ◦ f(Mp � ∗m, ∗n) + gcR⊗S ◦ f(∗m, ∗n)

= gcR⊗S ◦ f(Mp � ∗m, Nq � ∗n)− gcR⊗S ◦ f(∗m, Nq � ∗n)

− gcR⊗S ◦ f(Mp � ∗m, ∗n) + gcR⊗S ◦ f(∗m, ∗n)

' gcR⊗S ◦ f(Mp � ∗m, Nq � ∗n)− gcR⊗S ◦ f(Nq � ∗n, ∗m)

− gcR⊗S ◦ f(Mp � ∗m, ∗n) + gcR⊗S ◦ f(∗m, ∗n)

= gcR⊗S
(
Mp ⊗Nq �M�n

p �N�m
q � ∗mn

)
− gcR⊗S

(
N�m
q � ∗mn

)
− gcR⊗S

(
M�n

p � ∗mn
)

+ gcR⊗S(∗mn)

' gcR⊗S(Mp ⊗Nq)

as desired.

From the definition, it is clear that γ̃free is homotopically trivial on the wedge

(
Z×BGL(R)+) ∨ (Z×BGL(S)+) ,

hence γ̃free factors through the smash product to give the map

γfree :
(
Z×BGL(R)+) ∧ (Z×BGL(S)+)→ Z×BGL(R⊗ S)+ , (5.9)
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making Diagram (5.8) commute up to weak homotopy. In particular, when restricting

onto the base-point component
(
{0} ×BGL(R)+) ∧ ({0} ×BGL(S)+), we have

γfree|({0}×BGL(R)+)∧({0}×BGL(S)+) = γLoday (5.10)

We are now able to define an intermediate spectrum that allows us to compare

the Loday assembly and the universal assembly. Let us mimic the construction given

in Proposition 2.3.2 and recall the map

t+ : B 〈t〉 → KΣZ

from in Definition 2.3.1.

Definition 5.1.5 (The Spectrum Kfree
R ) Let R be a ring satisfying the IBP. Define

the spectrum Kfree
R by having

(
Kfree
R

)
n

:= Z×BGL(ΣnR)+ (5.11)

' BSΣnR

for n ≥ 0. Recall our notation that

KR := K0(R)×BGL(R)+ .

We write

K free
R := Z×BGL(R)+ (5.12)

The structure maps are given by the composition

B 〈t〉 ∧K free
ΣnR

t̂+∧id−−−→ K free
ΣZ ∧K free

ΣnR

γfree−−→ K free
Σn+1R, (5.13)
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where t̂+ is induced by the group homomorphism

〈t〉 → GL(ΣZ)

t 7→ τ, (5.14)

and τ ∈ GL(ΣZ) be the element defined in Equation (2.16).

It is worth pointing out that

πi(Kfree
R ) ∼= Ki(R)

for all i ≥ 0. This can be seen from the definition of homotopy groups of a spectrum,

or Theorem 5.1.2 below. However, we do not know if there is a map of spectra

Kfree
R → KGW

R

or in the other direction that induces isomorphisms on homotopy groups. It is worth

pointing out the following. There is a map of spaces

K free
R → KR (5.15)

given by

K free
R := Z×BGL(R)+ → K0(R)×BGL(R)+ =: KR

(m,x) 7→ ([Rm], x).

This map induces the identity maps on πn for n ≥ 1. However, it does not extend to

a map of spectra. Otherwise, we would have a commutative diagram
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B 〈t〉 ∧K free
R K free

ΣZ ∧K free
R K free

ΣR

B 〈t〉 ∧KR KΣZ ∧KR KΣR

t+ ∧ id γfree

t+ ∧ id γ′Loday

of spaces. The right square then induces the following commutative diagram

Ki(ΣZ)⊗Kj(R) Ki+j(ΣR)

Ki(ΣZ)⊗Kj(R) Ki+j(ΣR)

?

?′

on homotopy groups. When i, j ≥ 1, the vertical arrows are identities. The commu-

tativity of this square would imply that

[f ] ? [g] = [f ] ?′ [g] ∈ Ki+j(ΣR)

for all [f ] ∈ Ki(ΣZ) and [g] ∈ Kj(R), which is absurd by Proposition 2.2.1. As a

result, the map in Equation (5.15) does not extend to a map of spectra.

Finally, because of the construction of the structure maps in Equation (5.13), the

pairing γfree constructed in Equation (5.9) extends to a weak pairing of spectra. By

abuse of notation, we shall denote it as

γfree : Kfree
R ∧Kfree

S → Kfree
R⊗S (5.16)

for any two rings R, S satisfying the IBP.

5.1.3 Idempotent Completion and the Spectrum Kproj
R

A quick inspection of the classifying space BSR given in Theorem 5.1.1 says
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π0 (BSR) 6∼= K0(R).

The spectrum Kfree
R defined in Definition 5.1.5 fixes this problem at the spectrum-level,

and we describe a space-level solution to this problem here.

Definition 5.1.6 (Idempotent Completion, [Wei13, page 143]) The idempo-

tent completion of a category C is the category Ĉ whose objects are pairs (C, p) with

p : C → C an idempotent endomorphism of an object C of C.

A morphism (C, p)→ (C ′, p′) in Ĉ is a map f : C → C ′ in C such that the diagram

C C ′

C C ′

f

f

p p
′

(5.17)

commutes.

Example 5.1.3 . Because any projective module is a direct summand of a free

module, the idempotent completion of Freefg
R is a (small) category equivalent to the

category of finitely generated projective R-modules, and we denote this category by

ProjfgR := F̂reefg
R (5.18)

and call it the category of finitely generated projective R-modules by abuse of termi-

nology.

If A is a symmetric monoidal category, then so is Â. Thus, we define:
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Definition 5.1.7 (The Category PA) Let A be a symmetric monoidal category.

We define the category PA to be the S−1S-construction of the category iso
(
Â
)

of

isomorphisms in the idempotent completion Â, as defined in Definition 5.1.2:

PA := iso
(
Â
)−1

iso
(
Â
)

(5.19)

In other words, PA := S
Â

.

In particular, we write

PR := P
FreefgR

(5.20)

for a ring R.

The following theorem tells us how SR and PR are related.

Theorem 5.1.2 ([CP97]) If C is a category, then there is a canonical embedding

C→ Ĉ

C 7→ (C, id). (5.21)

Therefore, we have an induced functor

SC → PC (5.22)

between the categories defined in Definition 5.1.3 and Definition 5.1.7.

When C = Freefg
R is the category of finitely generated free modules over the ring

R, the induced group homomorphism

πn (BSR)→ πn (BPR) (5.23)

is an isomorphism for n ≥ 1.
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Definition 5.1.8 (Pairing of Symmetric Monoidal Categories, [May80, page

308]) Let A, B, and C be symmetric monoidal categories. A pairing of symmetric

monoidal categories is a functor

⊗ : A×B→ C (5.24)

(A,B) 7→ A⊗B

satisfying the following condition:

(PSMC 1) For any objects A ∈ A, B ∈ B, we have

0A ⊗B = 0C = A⊗ 0B (5.25)

(PSMC 2) For any objects A, A′ ∈ A and B, B′ ∈ B, there is a coherent natural

bi-distributivity isomorphism:

(A2AA
′)⊗ (B2BB

′) ∼= (A⊗B)2C (A⊗B′)2C (A′ ⊗B)2C (A′ ⊗B′) .

(5.26)

Example 5.1.4 . The standard example of a pairing of symmetric monoidal cate-

gories is the tensor product of modules.

Theorem 5.1.3 ([May80, Theorem 1.6 on page 307, and Theorem 2.1 on

page 310]) A pairing A × B → C of symmetric monoidal categories determines a

pairing

BSA ∧BSB → BSC (5.27)
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of homotopy group completions. Moreover, this map fits into the following homotopy

commutative diagram:

B iso (A) ∧B iso (B) B iso (C)

BSA ∧BSA BSC,
(5.28)

where the vertical arrows are the homotopy group completion maps.

Example 5.1.5 . According to [Wei81, Diagram 3.1 on page 500], the map

γfree : K free
R ∧K free

S → K free
R⊗S

is the pairing of homotopy group completions determined by the tensor product

⊗ : iso
(
Freefg

R

)
× iso

(
Freefg

S

)
→ iso

(
Freefg

R⊗S

)
of modules.

Definition 5.1.9 (The Pairing γproj) Let R, S be rings.

We define the pairing

γproj : BPR ∧BPS → BPR⊗S (5.29)

to be the pairing that is functorially determined by the tensor product

⊗ : iso
(
ProjfgR

)
× iso

(
ProjfgS

)
→ iso

(
ProjfgR⊗S

)
of modules in the sense of Theorem 5.1.3.

Because
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BPR ' K0(R)×BGL(R)+ (5.30)

=: KR

by [Wei13, Corollary 4.11.1 on page 337], the pairing γproj induces a map

γproj : KR ∧KS → KR⊗S. (5.31)

If in addition that the rings R, S both satisfy the IBP, then functoriality of the

pairings says the following diagram

B iso
(
Freefg

R

)
∧B iso

(
Freefg

S

)
B iso

(
Freefg

R⊗S

)

B iso
(
ProjfgR

)
∧B iso

(
ProjfgS

)
B iso

(
ProjfgR⊗S

)

BSR ∧BSS BSR⊗S

BPR ∧BPS BPR⊗S

B⊗

B⊗

B (inclusion) B (inclusion)

B(5.22) B(5.22)

γproj

γfree

(5.32)

commutes up to weak homotopy, where the vertical arrows are the homotopy group

completion maps. However, Proposition 2.2.1 says the induced product maps are

different on homotopy groups. Therefore, the pairings γ′Loday and γproj are not homo-

topic.

Definition 5.1.10 (The Spectrum Kproj
R ) Let R be a ring. Define the spectrum

Kproj
R by setting
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(
Kproj
R

)
n

:= KΣnR (5.33)

' BPΣnR

for n ≥ 0. The structure maps are given by the composition

B 〈t〉 ∧KR
t̂+∧id−−−→ KΣZ ∧KR

γproj−−→ KΣR, (5.34)

where t̂ is induced by the group homomorphism in Equation (5.14).

Again, the pairing γproj constructed in Equation (5.29) extends to a weak pairing

of spectra. By abuse of notation, we shall denote it as

γproj : Kproj
R ∧Kproj

S → Kproj
R⊗S (5.35)

for any two rings R, S.

The following result is an immediate consequence of Theorem 5.1.3, Definition 5.1.5

and Definition 5.1.10.

Theorem 5.1.4 Let R, S be rings satisfying the IBP.

The inclusion functor

Freefg
R → ProjfgR

induces the following diagram

Kfree
R ∧Kfree

S Kfree
R⊗S

Kproj
R ∧Kproj

S Kproj
R⊗S

γfree

γproj (5.36)
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of weak pairings of spectra. More precisely, for each pair (m,n) of non-negative

integers, the diagram

K free
ΣmR ∧K free

ΣnS
K free

Σm+n(R⊗S)

KΣmR ∧KΣnS KΣm+n(R⊗S)

γfree

γproj (5.37)

commutes up to weak homotopy.

The presence of the pairing map γfree allows one to define a multiplication map

?free : Ki(R)⊗Kj(S)→ Ki+j(R⊗ S)

[f ]⊗ [g] 7→ [γfree ◦ (f ∧ g)] (5.38)

It is clear from Diagram (5.8) that ?free recovers tensor product of modules when

i = j = 0, and coincides with Loday’s multiplication ? by Equation (5.10) when

i, j ≥ 1. However, the following cases are still open:

Question 5.1.1 What is the product map

?free : K0(R)⊗Kj(S)→ Kj(R⊗ S)? (5.39)

In particular, can we relate this product map with the classical product map

# : K0(R)⊗K1(S)→ Kj(R⊗ S)

defined by Milnor as in Equation (2.26) when j = 1, 2?
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5.2 Categories Over Metric Spaces and the Non-Connective Pedersen-

Weibel Algebraic K-Theory Spectrum

Recall the definition of an additive category.

Definition 5.2.1 (Additive Category) A category A is additive if all of the

following are satisfied:

(A1) The collection of morphisms Hom (A,B) from A to B is an Abelian group for

each object A, B ∈ A.

(A2) The composition of morphisms

Hom (A,B)× Hom (B,C)→ Hom (A,C)

is a bilinear map.

(A3) There is a distinguished object 0A ∈ A such that

Hom (A, 0A) = 0 = Hom (0A, A)

for all objects A ∈ A.

(A4) There is a binary operation

⊕ : A×A→ A

which is both the categorical product and categorical coproduct.

Example 5.2.1 . Our standard example is the category Freefg
R of finitely generated

free modules over the ring R. The binary operation in (A4) is the direct sum of

modules. Note that the ring R does not have to satisfy the IBP for Freefg
R being

additive.
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Definition 5.2.2 (Filtered Additive Category, [PW85, Definition 1.1 on

page 168]) An additive category A is said to be filtered if there is an increasing

filtration

F0(A,B) ⊆ · · · ⊆ Fn(A,B) ⊆ · · · ⊆ Hom (A,B)

on Hom (A,B) for every pair of objects A, B ∈ A, satisfying the following properties:

(F1) Each Fi(A,B) is a subgroup of Hom (A,B).

(F2)
⋃
i

Fi(A,B) = Hom (A,B).

(F3) The identity map idA and the zero map 0A are in F0(A,A).

(F4) The canonical maps

A⊕B → A,

A→ A⊕B

and all coherence isomorphisms are in F0(A,B).

(F5) The composition law in A respects the filtration, meaning that if f ∈ Fi(A,B)

and g ∈ Fj(B,C), then g ◦ f ∈ Fi+j(A,C).

Definition 5.2.3 (The Category CM (A), [Spe04, Definition 4.2 on page 14])

Let A be a category and (M,d) be a metric space. We definition the category CM (A)

as follows

(i) objects are sets {Ax}x∈M of objects Ax ∈ A, with the condition that the collec-

tion {x ∈M | Ax 6= 0} is locally finite.

(ii) A morphism ϕ : A→ B in CM (A) is a collection of morphisms
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ϕxy : Ax → By

in A with a bound R ≥ 0, so that ϕxy = 0 whenever d(x, y) > R. In this case,

we say the morphism ϕ : A→ B is bounded by R.

Note that if A is an additive category, then so is CM (A). Secondly, the bounded-

ness condition on morphisms gives a natural filtration on the Hom-sets of CM (A)—for

each pair of objects A, B ∈ CM (A), the collection Fi(A,B) consists of morphisms

A → B in CM (A) that are bounded by i. Thus the category CM (A) is filtered ad-

ditive in the sense of Definition 5.2.2. Thirdly, if the category A we start with is

already filtered, we require all components ϕxy : Ax → By of the morphism ϕ : A→ B

have filtration degree i as well.

Example 5.2.2 (Ci (A)). Our standard example for CM (A) is the case when M = Zi.

Let us equip Zi with the metric induced by the `∞-norm, so that

d(~x, ~y) := ‖~x− ~y‖`∞

:= max
1≤j≤i

|xj − yj|

for ~x = (x1, · · · , xi), ~y = (y1, · · · , yi) ∈ Zi. In this case, we write

Ci (A) :=

 A if i = 0,

CZi (A) if i > 0
(5.40)

and we get a sequence {Ci (A)}∞i=0 of categories. Note that the categories Ci (Cj (A))

and Ci+j (A) are isomorphic. The sequence {Ci (A)}∞i=0 was first constructed by

Pedersen-Weibel to produce non-connective spectra from additive categories [PW85].

In particular, when A is the category of finitely generated free modules, the resulting

spectrum has homotopy groups isomorphic to algebraic K-groups of the underlying
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ring. The categories CM (A) were also studied by Carlsson-Pedersen to prove the

K-theoretic Novikov Conjecture for a large class of groups [CP95].

Finally, we give Ci (A) the split exact structure as in [PW85, page 171]. More

precisely, We say a chain

A→ C → B

of morphisms in C1 (A) is an exact sequence if there is an isomorphism A⊕ B
∼=−→ C

in C1 (A) such that the diagram

A A⊕B B

A C B

id ∼= id

(5.41)

commutes. Because Ci (Cj (A)) ∼= Ci+j (A), this gives an exact category structure on

Ci (A) inductively.

Definition 5.2.4 (The Category PA,i) Let A be a split exact, additive category.

For each integer i ≥ 0, we define

PA,i := PCi(A) (5.42)

as in Definition 5.1.7. In particular, we write:

PR,i := P
Ci(FreefgR) (5.43)

for a ring R.

Pedersen-Weibel proved the following:

Theorem 5.2.1 ([PW85, Theorem B on page 167]) Let A be a split exact,

additive category.
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For each i ≥ 0, we define

(
KPW

A

)
i

:= BPA,i. (5.44)

Then for each i ≥ 0, we have the delooping

(
KPW

A

)
i
' Ω

[(
KPW

A

)
i+1

]
. (5.45)

Thus the sequence
{(

KPW
A

)
i

}∞
i=0

of spaces forms an Ω-spectrum.

Theorem 5.2.2 (The Non-connective Pedersen-Weibel K-theory Spectrum

of Rings, [PW85, Theorem A on page 166]) Let R be a ring.

The spectrum

KPW
R := KPW

FreefgR
(5.46)

is an Ω-spectrum, the so-called non-connective Pedersen-Weibel algebraic K-

theory spectrum of R, whose homotopy groups are

πi
(
KPW
R

) ∼=


Ki(R) if i ≥ 0,

negative K-groups of R
defined by Bass in [Bas68] if i < 0.

(5.47)

5.3 The Universal Assembly Map

Definition 5.3.1 (Homotopy invariant, excisive, and strongly excisive func-

tors) Let Spaces be the category of (un-based) topological spaces homotopy equivalent

to (not necessary finite) CW-complexes and continuous maps. We say a functor

F : Spaces→ Spectra

is homotopy invariant if it takes homotopy equivalences to homotopy equivalences.

A homotopy invariant functor F is
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(1) excisive if it is excisive and preserves homotopy push-out squares, and F(∅) is

contractible;

(2) strongly excisive if it preserves arbitrary coproducts, up to homotopy equiva-

lence.

Theorem 5.3.1 (Weiss-Williams/Universal Assembly, [WW95, Theorem

1.1. on page 333]) For any homotopy invariant functor

F : Spaces→ Spectra,

there exists a strongly excisive functor

F% : Spaces→ Spectra

and a homotopy natural transformation

αWW : F% ⇒ F, (5.48)

the so-called Weiss-Williams assembly, or the universal assembly, such that the

component

αWW : F% (point)→ F (point)

of the homotopy natural transformation is a homotopy equivalence. Moreover, F%

and αWW can be made to depend functorially on F.

Proof. (Outline)

The point is that the functor

X 7→ X+ ∧ F (point) (5.49)

is a model for F%; and the homotopy natural transformation
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αWW : F% ⇒ F

is induced by the constant map X → point.

Theorem 5.3.2 ([WW95, Observation 1.3 on page 336]) If the homotopy in-

variant functor

F : Spaces→ Spectra

is already excisive, then the component

(αWW)X : F% (X)→ F (X)

of the homotopy natural transformation

αWW : F% ⇒ F

is a homotopy equivalence for every compact X.

If F is strongly excisive, then (αWW)X is a homotopy equivalence for all X.

Theorem 5.3.3 (Universal Property of the Weiss-Williams Assembly, [WW95,

page 336]) Suppose the homotopy invariant functor

F : Spaces→ Spectra

admits another homotopy natural transformation

β : E⇒ F



85

from a strongly excisive functor E. Then the diagram

E% E

F% F

αE
WW

αF
WW

β% β

(5.50)

commutes.

We conclude by the following remark. In Diagram (5.50), if the component

βpoint : E(point)→ F(point)

of the homotopy natural transformation β is a homotopy equivalence, then

β%
X : E%(X)→ F%(X)

is a homotopy equivalence for all X by the Eilenberg-Steenrod Uniqueness Theorem

([ES52, Theorem 10.1 on page 100–101]). So β is homotopic to αF
WW after identifying

the source and target.

5.4 A Model for the Universal Assembly

We recall the notions of ringoids and modules over them as in [WW95, page

337–338].

Definition 5.4.1 (Ringoid, [WW95, page 337]) A ringoid is a small category

in which

(1) all morphism sets come equipped with an Abelian group structure,

(2) composition of morphisms is bilinear.
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Example 5.4.1 (The Ringoid R[C] of the Category C Over the Ring R). Let

R be a ring, and C be a small category. We define the ringoid R[C] to be the category

having the same objects as C, and the morphism set

morR[C] (x, y) := R 〈morC (x, y)〉

is the free left R-module generated by the set morC (x, y). When C = G is a group,

considered as a category with one object, then the ringoid R[C] is the group ring

R[G], considered as a category with one object, hence justifying the notation.

The category R[C] is also referred as the R-category associated to C in [DL98,

page 212].

Definition 5.4.2 (Modules over Ringoids, [WW95, page 338]) Let R be a

ringoid.

A left R-module is a functor

f : R→ Abelian

from R to the category of Abelian groups, such that the induced map

f : morR (x, y)→ morAbelian (f(x), f(y))

is a group homomorphism. A right R-module is a left Rop-module.

A left R-module f is

(1) free on one generator if it is representable:

f(−) ∼= morR (x,−)

for some x ∈ R;
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(2) finitely generated free if it is isomorphic to a finite direct sum of representable

ones;

(3) finitely generated projective if it is a direct summand of a finitely generated

free one.

The category ModuleR of left R-modules and natural transformations forms an

Abelian category. The subcategory Freefg
R of finitely generated free left R-modules is

a split exact, additive category. We can then use the Pedersen-Weibel construction

as in Theorem 5.2.1 to get an Ω-spectrum

KPW
R := KPW

Freefg
R

. (5.51)

Now, when R = R is a ring, considered as a category with one object, there is a

natural equivalence

Freefg
R ' Freefg

R

of categories. In this case, the spectra KPW
R and KPW

R are weakly equivalent.

Let us construct a functor Y : Spaces → Spectra. Let Π(X) be the fundamental

groupoid of the topological space X. Given a ring R, we can form the ringoid R[Π(X)]

as in Example 5.4.1. Our functor is then given by:

Definition 5.4.3 (The Functor Y) Let R be a ring. We define the functor Y by

Y : Spaces→ Spectra (5.52)

X 7→ KPW
R[Π(X)]

Clearly, the functor Y is homotopy invariant, so Theorem 5.3.2 asserts the exis-

tence of the universal assembly map

αWW : Y% → Y.
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We will construct this assembly map explicitly following [Spe04]. The key ingredient

is an analogue of the Loday pairing for the Pedersen-Weibel spectrum.

Lemma 5.4.1 ([Spe04, Lemma 4.6 on page 16 and Lemma 4.7 on page 17])

Let A, B, and C be split exact, additive categories, considered as symmetric monoidal

categories in the canonical way.

Suppose ⊗ : A×B→ C is a pairing of symmetric monoidal categories. Then

(i) for all i, j ≥ 0, there is an induced pairing

⊗ij : Ci (A)× Cj (B)→ Ci+j (C) (5.53)

of symmetric monoidal categories.

(ii) Moreover, the collection {⊗}∞i,j=0 of pairings assemble to give a pairing

⊗̂ : KPW
A ∧KPW

B → KPW
C

of spectra.

Let us apply this result to ringoids.

Definition 5.4.4 (Tensor Product of Ringoids) Let R, S be ringoids. The tensor

product of R and S is the ringoid R⊗S whose objects are given by pairs (r, s) of objects

in R and S, and the collection of morphisms is given by

HomR⊗S ((r1, s1), (r2, s2)) := HomR (r1, r2)⊗Z HomS (s1, s2) . (5.54)

Composition is given by

(f1 ⊗ f2) ◦ (g1 ⊗ g2) := (f1 ◦ g1)⊗ (f2 ◦ g2), (5.55)

and then extended linearly.
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When the ringoids are rings considered as categories with one object, this tensor

product becomes tensor product of rings in the usual sense. Furthermore, the tensor

product of ringoids extends to a tensor product of modules over ringoids as defined

in Definition 5.4.2.

Example 5.4.2 . Let R be a ring, and C be a small category. We can then form

the ringoids Z[C], R[C] as in Example 5.4.1. Tensor product of ringoids then gives

R⊗ Z[C] ∼= R[C]. (5.56)

Moreover, it also gives a pairing

⊗ : Freefg
R ×Freefg

Z[C] → Freefg
R[C] (5.57)

of symmetric monoidal categories as in Definition 5.1.8. Note that in this case, we

are considering modules over ringoids as in Definition 5.4.2.

We are now ready to construct a model for the universal assembly map associated

to the functor Y. Let us recall from the proof of Theorem 5.3.1 that the functor

X 7→ X+ ∧ Y (point)

is a model for the functor Y% : Spaces→ Spectra.

Definition 5.4.5 (The Assembly α̂) Write Π(X) to be the fundamental groupoid

for the topological space X. Let R be a ring.

Define a map of spectra

α̂X : X+ ∧KPW
R → KPW

R[Π(X)]
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having components

X+ ∧
(
KPW
R

)
n

BΠ(X)+ ∧
(
KPW
R

)
n

(
KPW

Z[Π(X)]

)
0+
∧
(
KPW
R

)
n

(
KPW
R[Π(X)]

)
n
.

c+ ∧ id J ∧ id

⊗̂
(α̂X )n

(5.58)

Here,

(i) the map c : X → BΠ(X) is the classifying map of the universal cover of X;

(ii) the map J : BΠ(X)+ →
(
KPW

Z[Π(X)]

)
0+

is induced by the inclusion functor

Π(X)→ iso (Z[Π(X)]) ;

(iii) and the map ⊕̂ is the pairing map constructed in Lemma 5.4.1. In particular, it

is induced by the tensor product of ringoids as constructed in Definition 5.4.4.

The collection of maps {α̂X | X ∈ Spaces} then gives a homotopy natural transfor-

mation

α̂ : Y% ⇒ Y (5.59)

of the functor Y : Spaces→ Spectra constructed in Definition 5.4.3.

Theorem 5.4.1 ([HP04, Theorem 4.3 on page 39], [Spe04, Theorem 4.9 on

page 18]) The homotopy natural transformation α̂ : Y% ⇒ Y in Definition 5.4.5 is

(homotopic to) the universal assembly map in the sense of Theorem 5.3.1.

5.5 The Comparison

We mimic Definition 3.1.1 to create two Loday-like assemblies.
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Definition 5.5.1 (The Assembly Maps αfree and αproj) Let R be a ring and G

be a group.

We define two maps of spectra

BG ∧Kfree
R → Kfree

R[G] (5.60)

BG ∧Kproj
R → Kproj

R[G] (5.61)

having components

BG ∧
(
Kfree
R

)
n

(
Kfree

Z[G]
)

0
∧
(
Kfree
R

)
n

(
Kfree
R[G]

)
n
,

j
free ∧ id

γfree

(αfree)n

BG ∧
(
Kproj
R

)
n

(
Kproj

Z[G ]
)

0
∧
(
Kproj
R

)
n

(
Kproj
R[G]

)
n

j
+ ∧ id

γproj(
αproj

)
n

(5.62)

respectively. Here, the map j+ is defined in Equation (3.3), and the map jfree is

defined analogously. We then use the construction in Definition 3.1.2 to extend these

two maps and get:

αfree : BG+ ∧Kfree
R → Kfree

R[G], (5.63)

αproj : BG+ ∧Kproj
R → Kproj

R[G]. (5.64)

In light of their definitions and Proposition 3.1.1, the maps αfree and αproj are maps

of spectra, well-defined up to weak-homotopy. The following result is an immediate

consequence of the definitions.

Proposition 5.5.1 Let R be a ring satisfying the IBP, and let G be a group.

The canonical map
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SR → PR

given in Equation (5.22) gives a weak equivalence

µ : Kfree
R → Kproj

R (5.65)

of spectra. Moreover, this weak equivalence fits into the following diagram

BG+ ∧Kfree
R Kfree

R[G]

BG+ ∧Kproj
R

Kproj
R[G]

αfree

µ µ

αproj (5.66)

of spectra, which commutes up to weak homotopy.

The proof of the following result was outlined in [HP04], and later completed in

[Spe04].

Theorem 5.5.1 Let R be a ring satisfying the IBP.

For each i ≥ 0, there is a functor

Gi : Ci

(
Freefg

R

)
→ Freefg

ΣiR
, (5.67)

such that

(a) the collection {Gi}∞i=0 of functors gives a homotopy equivalence

g : KPW
R → Kproj

R (5.68)

of spectra [Spe04, Theorem 5.14 on page 26 and Proposition 5.15 on page 28].
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(b) Moreover, the map g is compatible with the pairings of spectra. More precisely,

for each pair of non-negative integers m, n, there is a diagram

(
KPW
R

)
m
∧
(
KPW
R

)
n

(
KPW
R

)
m+n

(
Kproj
R

)
m
∧
(
Kproj
R

)
n

(
Kproj
R

)
m+n

⊗̂

γproj

gm ∧ gn gm+n

(5.69)

that commutes up to weak homotopy [Spe04, Corollary 6.3 on page 40].

Proof. (Outline) We outline the construction of the functors Gn here since this the-

orem is the main result of [Spe04]. We begin by constructing the functors

Gn : Cn

(
Freefg

R

)
→ Freefg

ΣnR

inductively.

Step 1: When n = 0, we have

C0

(
Freefg

R

)
= Freefg

R .

Thus, we define

G0 := id
FreefgR

. (5.70)

Step 2: Secondly, let FreeNR be the category of countably generated free R-modules

and locally finite matrices over R. It is proven that the categories

FreeNR

Freefg
R

' Freefg
ΣR

are equivalent [PW89, Proposition 6.1 on page 359].
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The idea is as follows: choose an infinitely based R-module R∞ in FreeNR,

and observe that

EndFreeNR
(R∞) ∼= cone (R) .

Now, the category FreeNR is Karoubi-filtered by its subcategory Freefg
R , and

the completely continuous endomorphisms of R∞ form the ideal m(R) of

cone (R). Thus, we have

End FreeN
R

Free
fg
R

(R∞) ∼= ΣR.

The canonical additive functor

Freefg
ΣR →

FreeNR

Freefg
R

(5.71)

ΣR 7→ R∞

is therefore full and faithful. But every object of
FreeNR

Freefg
R

is either isomorphic

to the zero module or to R∞, so this functor is also an equivalence.

We denote by

α :
FreeNR

Freefg
R

→ Freefg
ΣR (5.72)

the inverse equivalence functor of Equation (5.71).

Step 3: Thirdly, we define the functor

β : C+

(
Freefg

R

)
→ FreeNR
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{Ai}∞i=0 7→
∞⊕
i=0

Ai,

for which C+

(
Freefg

R

)
is the subcategory of C1

(
Freefg

R

)
consisting objects

{Ai}∞i=−∞ with Ai = 0 whenever i < 0.

Note that each Ai is finitely generated, so the direct sum
∞⊕
i=0

Ai is an object

in FreeNR. Moreover, this functor induces a functor

β̂ :
C+

(
Freefg

R

)
Freefg

R

→ FreeNR

Freefg
R

. (5.73)

We comment that Freefg
R is regarded as a subcategory of C+

(
Freefg

R

)
via the

embedding

A 7→ (A, 0, 0, · · ·) .

Step 4: Next, for a filtered additive category A in the sense of Definition 5.2.2, we

define the functor

τ : C1 (A)→ C+ (A)

A
(5.74)

{Ai}∞i=−∞ 7→ {Ai}
∞
i=0 .

Recall that a morphism φ in C1 (A) is an infinite matrix (φi,j)
∞
i,j=−∞. We

define τ (φ) to be the sub-matrix (φi,j)
∞
i,j=1.

Step 5: We now define the functor

Gn : Cn

(
Freefg

R

)
→ Freefg

ΣnR



96

for n ≥ 1 inductively. When n = 1, we define G1 to be the composition

C1

(
Freefg

R

) C+

(
Freefg

R

)
Freefg

R

FreeNR

Freefg
R

Freefg
ΣR.

τ β̂ α

G1 (5.75)

Now suppose the functor

Gn : Cn

(
Freefg

R

)
→ Freefg

ΣnR

is defined. As pointed out in Example 5.2.2, the categories Ci

(
Cj

(
Freefg

R

))
and Ci+j

(
Freefg

R

)
are isomorphic. We define the functor Gn+1 to be the

composition:

Cn+1

(
Freefg

R

)
C1

(
Cn

(
Freefg

R

))
C1

(
Freefg

ΣnR

)

C+

(
Freefg

ΣnR

)
Freefg

ΣnR

FreeNΣnR

Freefg
ΣnR

Freefg
Σn+1R.

∼= C1 (Gn)

τ

β̂

α

Gn+1

(5.76)

This completes the construction of the functors
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Gi : Ci

(
Freefg

R

)
→ Freefg

ΣiR
,

and we refer readers to [Spe04, Theorem 5.14 on page 26, Proposition 5.15 on page

28 and Corollary 6.3 on page 40] for checking the remaining properties.

A consequence of Theorem 5.5.1 is the following corollary:

Corollary 5.5.1 Let R be a ring satisfying IBP, and G be a group.

Consider G as a groupoid in the canonical way. Then the component

α̂BG : BG+ ∧KPW
R → KPW

R[G] (5.77)

of the universal assembly map α̂, as constructed in Definition 5.4.5, is weakly homo-

topic to the assembly map

αproj : BG+ ∧Kproj
R → Kproj

R[G] (5.78)

constructed in Definition 5.5.1.

Proof. We need to check the diagram

BG+ ∧
(
KPW
R

)
n

BG+ ∧
(
KPW
R

)
n

(
KPW

Z[G]

)
0
∧
(
KPW
R

)
n

(
KPW
R[G]

)
n

BG+ ∧
(
Kproj
R

)
n

BG+ ∧
(
Kproj
R

)
n

(
Kproj

Z[G]

)
0
∧
(
Kproj
R

)
n

(
Kproj
R[G]

)
n

c+ ∧ id J ∧ id ⊗̂

c+ ∧ id j
+ ∧ id

γproj

id ∧gn id ∧gn id ∧gn gn

(5.79)

commutes up to weak homotopy for all n ≥ 0. Here,

(1) the classifying maps

c+ : BG+ → BG+
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for the universal cover of BG+ is just the identity, so the left square commutes

up to homotopy automatically.

(2) The middle square commutes up to homotopy by the definitions of J and j+.

(3) The right square commutes up to weak homotopy by part (b) of Theorem 5.5.1.

Finally, the map gn is a homotopy equivalence by Theorem 5.5.1 (a). So the claim

holds as desired.

Corollary 5.5.2 (Corollary of Corollary 5.5.1) Let R be a ring satisfying IBP,

and G be a group.

Consider G as a groupoid in the canonical way, then the component

α̂BG : BG+ ∧KPW
R → KPW

R[G] (5.80)

of the universal assembly map α̂, as constructed in Definition 5.4.5, is weakly homo-

topic to the assembly map

αfree : BG+ ∧Kfree
R → Kfree

R[G] (5.81)

constructed in Definition 5.5.1.

5.6 An Explicit Formula for the Universal Assembly

We now relate Theorem 3.3.1 to the universal assembly map.

Theorem 5.6.1 Let R be a ring and G be a group.

There is a subgroup AHSS (BG)∞1,i of πi+1

(
BG+ ∧KPW

R

)
which is a quotient of

the E2-term

AHSS (BG)2
1,i
∼= Gab ⊗Ki(R)

from the Atiyah-Hirzebruch spectral sequence of the classifying space BG of G with

coefficients in the Pedersen-Weibel K-theory spectrum KPW
R of R.



99

For i > 0, the filler of the diagram

Gab ⊗Ki(R) Ki+1 (R[G])

AHSS (BG)∞1,i πi+1

(
BG ∧KPW

R

)
AHSS (BG)2

1,i

Φ̂i+1

πi+1 (α̂BG)

∼=

(5.82)

is induced by

G×Ki(R)→ Ki+1 (R[G]) (5.83)

(g, [f ]) 7→ {g} ? [f ].

This provides an explicit formula for the universal assembly map when restricted onto

the subgroup AHSS (BG)∞1,i.

Proof. From Corollary 5.5.2, we know the universal assembly α̂BG induces the same

map on homotopy groups as the assembly map αfree. So we need to verify the formula

for αfree.

As pointed out in Equation (5.10), the pairing map γfree used in constructing

the assembly αfree is homotopic to the original Loday pairing γLoday. Therefore, by
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repeating the same proofs as in Proposition 3.3.1 and Proposition 3.3.2, we see that

the bottom composition of

πi+1

((∨
g∈G

S1

)
∧Kfree

R

)
πi+1

(
BG ∧Kfree

R

)
Ki+1 (R[G])

⊕
g∈G

Ki(R) πi+1

(
BG ∧Kfree

R

)
Ki+1 (R[G])

(iG)∗ αfree

∼= = =

(5.84)

sends the element [f ] ∈ Ki(R) in the summand in
⊕
g∈G

Ki(R) labelled by g ∈ G to the

element

{g} ? [f ] ∈ Ki+1 (R[G]) .

This completes the proof.

The universal assembly then admits the following version of Corollary 4.1.1.

Corollary 5.6.1 (The Universal Assembly on π2 of an Integral Group Ring)

Let G be a group. The universal assembly map

α̂BG : BG+ ∧KPW
Z → KPW

Z[G] (5.85)

for the integral group ring Z[G] on π2, when restricted onto the subgroup

K2 (Z)⊕ [Gab ⊕K1(Z)] ,

is given by the formula:

K2(i)⊕ Φ̂2 : K2 (Z)⊕ [Gab ⊕K1(Z)]→ K2(Z[G]), (5.86)

for which i : Z→ Z[G] is the inclusion, and Φ̂2 is induced by the map
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G×K1(Z)→ K2(Z[G])

(g,±1) 7→ −{±1, g}St . (5.87)

Proof. We have −{±1, g}St instead of {±1, g}St because of Proposition 2.1.1 (iii).

Our proof for Theorem 4.1.2 applies to the following result.

Theorem 5.6.2 (An Injectivity Result for the Universal Assembly on π2)

Let G be a group. The composition

K2 (Z)⊕ [Gab ⊗K1 (Z)]
(4.2)
−−→ π2

(
BG+ ∧KPW

Z
) π2(α̂BG)−−−−−→ K2 (Z[G]) (5.88)

is injective. Moreover, if H2(BG;Z) is trivial, then the universal assembly α̂BG is

injective on π2.

Because of Question 5.1.1, it is unclear if Corollary 3.3.1 (or its variants) holds

for the universal assembly. However, Waldhausen showed that when R = Z, the

assembly

π1(αfree) : π1(BG+ ∧Kfree
Z )→ K1(Z[G])

on π1 is the usual map

{1,−1} ⊕Gab → K1(Z[G])

(±1)⊕ g 7→ {±g}

under the identification

π1

(
BG+ ∧Kfree

Z
) ∼= {1,−1} ⊕Gab.
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See [Wal78b, Assertion 15.8 on page 229]. His proof involves rewriting the assembly

map in terms of Quillen’s Q-construction and then verifying the formula at the sim-

plicial level. Therefore, it seems likely that the following conjecture is true. But a

rigorous proof is not known to the author.

Conjecture 5.6.1 (The Universal Assembly on Fundamental Group) Let R

be a regular ring, and G be a group. The universal assembly map on π1 is given by

the formula

K1(i)⊕ Φ1 : K1(R)⊕ [Gab ⊗K0(R)]→ K1 (R[G]) , (5.89)

where i : R→ R[G] is the inclusion, and the map Φ1 is induced by the map

G×K0(R)→ K1(R[G])

(g, [P ]) 7→

 hg : P ⊗R R[G] → P ⊗R R[G]

x⊗ u 7→ x⊗ ug

 . (5.90)

5.7 A Final Remark on Extending the Loday Pairing

One might ask why we use the Gersten-Wagoner delooping to extend the Loday

pairing

γLoday : BGL(R)+ ∧BGL(S)+ → BGL(R⊗ S)+

to

γ′Loday :
[
K0(R)×BGL(R)+]∧ [K0(S)×BGL(S)+]→ K0(R⊗S)×BGL(R⊗ S)+ ,

instead of using the “naive approach”:
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γnaive :
[
K0(R)×BGL(R)+] ∧ [K0(S)×BGL(S)+]→ K0(R⊗ S)×BGL(R⊗ S)+

([P ], x) ∧ ([Q], y) 7→ ([P ⊗Q], γLoday(x, y)) .

(5.91)

However, if we look at the induced product map

?naive : Ki(R)⊗Kj(S)→ Ki+j(R⊗ S)

[f ]⊗ [g] 7→ [γnaive ◦ (f ∧ g)] , (5.92)

we immediately see that it is the zero map when i = 0 and j > 0. Therefore,

algebraically the naive pairing gives the wrong thing.

Secondly, if the naive pairing extends to a pairing (or weak pairing)

γnaive : KGW
R ∧KGW

S → KGW
R⊗S (5.93)

of spectra, then one can define an assembly map

αnaive : BG+ ∧KGW
R → KGW

R[G] (5.94)

by mimicking Definition 3.1.2. However, the cokernel coker (π1(αnaive)) of this assem-

bly on π1 will not be isomorphic to the classical Whitehead group Wh1 (G) when

R = Z. Since Waldhausen’s work shows the cokernel of the universal assembly map

on π1 is isomorphic to Wh1 (G) when R = Z [Wal78b, Assertion 15.8 on page 229],

the assembly map αnaive is not the correct one. Therefore, topologically the naive

pairing gives the wrong thing.
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prefaces, Astérisque, No. 6.



105

[KM81] Jerome Kaminker and John G. Miller. A comment on the Novikov conjec-
ture. Proc. Amer. Math. Soc., 83(3):656–658, 1981.

[Leh18] Georg Lehner. The atiyah-hirzebruch spectral sequence and k-theory of
group rings, 2018.
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