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ABSTRACT

Bhadauria, Surabhi M.S., Purdue University, May 2020. Association of Too Short
Arcs using Admissible Region. Major Professor: Carolin Frueh.

The near-Earth space is filled with over 300,000 artificial debris objects with a

diameter larger than one cm [1]. For objects in GEO and MEO region, the observa-

tions are made mainly through optical sensors. These sensors take observations over

a short time which cover only a negligible part of the object’s orbit. Two or more

such observations are taken as one single Too Short Arc (TSA). Each set of TSA

from an optical sensor consists of several angles, the angles of right ascension (α),

declination (δ), along with the rate of change of the right ascension angle (α̇) and

the declination angle (δ̇). However, such observational data obtained from one TSA

because it is covering only a very small fraction of the orbit, is not sufficient for the

complete initial determination of an object’s orbit. For a newly detected unknown

object, only TSAs are available with no information about the orbit of the object.

Therefore, two or more such TSAs that belong to the same object are required for its

orbit determination. To solve this correlation problem, the framework of the prob-

abilistic Admissible Region is used, which restricts possible orbits based on a single

TSA. To propagate the Admissible Region to the time of a second TSA, it is repre-

sented in closed-form Gaussian Mixture representation. This way, a propagation with

an Extended Kalman filter is possible. To decide if two TSAs are correlated, that is if

they belong to the same object, respectively, an overlap between the regions is found

in a suitable orbital mechanic’s based coordinate frame. To compute the overlap, the

information measure of Kullback-Leibler divergence is used.
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1. INTRODUCTION

The near-Earth space is filled with over 300,000 artificial debris objects with a diam-

eter larger than one cm [1]. This space containing debris is divided into three main

regions based on the altitude from Earth’s surface: the Low Earth Orbit (LEO), the

Medium Earth Orbit (MEO), and the Geosynchronous Earth Orbit (GEO), which

cover the altitudes below 2,000 km, between 2,000 km and 35,586 km, and between

35,586 km and 35,986 km, respectively. The orbits of certain unclassified space-

crafts/objects in these three regions are publicly made available by US Strategic

Command (USSTRATCOM). This catalogue features objects with sizes above ten

cm in LEO and larger than one meter-sized debris in GEO but is far from complete

even within these size ranges. Currently, about 17,000 objects are being tracked on a

continuous basis. The orbital data corresponding to each of these objects is available

in the two-line element (TLE) format by USSTRATCOM. The TLE format provides

only the orbital element data and gives no information on the uncertainty associated

with it.

In the observation and detection of new objects, the sky is scanned in an organized

manner. For objects in MEO and GEO, observations are usually done using optical

sensors. Each set of observations made on a given object during a short period of time

is called a Too Short Arc (TSA), which is also sometimes referred to as a tracklet or

an uncorrelated observation [2]. These observations consist of angular observations,

which are combined in a TSA, having information on angles and angle-rates. Thus, a

TSA from an optical sensor consists of four quantities: the angles of right ascension

(α) and declination (δ), along with the rate of change of the right ascension angle (α̇)

and the declination angle (δ̇). However, such observational data obtained from one

TSA is not sufficient for the complete initial determination of an object’s orbit because

one TSA covers only a small fraction of an object’s orbit. For a complete initial
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determination of an object’s orbit, one requires six unknown independent quantities

(which are discussed later), whereas as outlined above a single TSA only provides

information on four quantities because of the short time over which the observations

were collected. Thus, to determine each of the six orbital elements, one, therefore,

requires observational data from more than one set of TSA measurements belonging

to the same object.

For known objects, TSAs can be used to update and improve the existing orbits,

e.g. known from the TLEs. However, for a newly detected unknown object, only

TSAs are available. Therefore, it is required to correlate TSAs to find out if they

belong to the same object. As the number of objects increase, it becomes even more

difficult to associate TSAs in order to even start a successful initial orbit determination

procedure. Therefore, the correlation/identification problem associated with TSAs

needs to be solved first before the desired object’s orbit can be determined. The

central goal of the correlation problem is to determine whether two or more sets of

TSAs belong to the same object.

In literature, a couple of approaches have been adopted to address this correla-

tion problem. The TSA problem has been analysed by Milani et al. [3], in which

the authors provide a full algebraic description of an Admissible Region which re-

stricts the possible orbits captured by a central body that can be represented by an

attributable (α, α̇, δ, δ̇) and range range-rate values by putting an energy constraint.

A later work by Milani et al. [4] also provide an algorithm to find a preliminary orbit

which could fit two attributables with small residuals. This is done by using the min-

imum identification penalty for each of the attributables. Another popular approach

for correlation of the two independent too short arc observations is to compare the

covariances and fit the two arcs together [5]. Tommei et al. [2] discuss the definition

of the Admissible Region for space debris, both in the case of optical observations and

radar observations for Earth bound objects. Maruskin et al. [6] introduce mapping

of Admissible Region in Delaunay orbit element space for correlating the second ob-

servation. Farnocchia et al. [7] discuss two methods for solving the linkage problem:
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the first method exploits Admissible Region to generate virtual objects which are

propagated in time to find second observation belonging to the same object, and the

second method leverages the integrals of two-body problem which are constant for a

significant time span and thus should apply to both observed arcs of the same object.

Fujimoto and Scheeres [8] propose a technique of correlating multiple ground-based

optical observations using highly constrained probability distribution in Poincare or-

bit element space. They have also studied the same for space-based observations

in [9]. Milani et al. [10] provide a virtual debris algorithm and Keplerian integrals

method for objects based on sparse optical data. The concept of sampling the Admis-

sible Region using Delaunay triangulation for generating virtual space objects from

two observations for drawing a comparison between them has also been studied by

Khoury and Frueh in [11]. Musci and Schildknecht et al. [12] present the idea of

generating a circular orbit from a single TSA and then further improving that orbit

using follow-up observations for better determination of elliptical orbits. The follow-

up TSAs have been correlated based on the circular orbits with tight restrictions on

the time between TSAs. This approach did not involve the use of an Admissible Re-

gion. Holzinger, Scheeres and Alfriend have demonstrated the utility of using control

efforts for correlating the space objects [13].

The concept of using information measures to find the overlap between two prob-

ability distributions which represent the TSAs is studied for correlating them, an

approach that is not explored in any of the previous works. In this thesis, a repre-

sentation of the Admissible Region via Gaussian Mixture Model (GMM) is chosen.

This can be done by approximating the Admissible Region by a Gaussian Mixture

Model [14]. The GMM presents the Admissible Region in terms of mean and covari-

ance of Gaussian components which can further be propagated to time t2 using the

concept of Extended Kalman filter (EKF) [15]. EKF propagation gives the GMM

obtained from observation one at time t2. The Admissible Region obtained from ob-

servation two at time t2 can also be approximated by GMM. Furthermore, these two

GMMs associated with two different observations can be used to find the overlap be-
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tween two observations. Kullback-Leibler (KL) divergence [16], also known as relative

entropy, is one such tool which gives a measure of the overlap between two probability

distributions. For propagating the Admissible Region to time t2, the GMM has to

be transformed to a suitable coordinate frame, such as Cartesian coordinates or Ke-

plerian orbital elements. Different coordinate frames show different overlap between

two same Admissible Regions. To compute the overlap between two Admissible Re-

gions, a suitable coordinate frame has to be found. The choice of coordinate frame is

dictated by the mandate that, for the true orbit, the state at t1 and t2 are repeated

or are at least very closely correlated. This is true for Keplerian orbital elements,

which are constant for a two-body orbit, or for Delaunay elements, which are action

angles along with their conjugate momenta. This is not expected in range range-rate

space and Cartesian coordinates as the state of the object changes continuously. A

major challenge is that the transformations between the frames are non-linear and

Gaussianity is not preserved. Despite the potential advantages KL divergence offers,

there has only been limited research on utilizing this tool for finding out the overlap

between Gaussians mixture models obtained from the Admissible Region of two ob-

servations. The major focus of this work is to bridge this gap by applying the KL

divergence to solve the correlation problem.

1.1 Objective

The central aim of this research work is to solve the correlation problem associated

with two independent Too Short Arcs. The framework used for this work is based on

the probabilistic interpretation of the Admissible Region. For solving the correlation

problem, the aim is to find answers to the following questions:

• Can a Gaussian Mixture Model (GMM) representation of the Admissible Region

in combination with utilizing the Extended Kalman Filter and Kullback-Leibler

divergence as an information measure be leveraged to address the correlation

problem?
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• Is there a specific orbital element space or coordinate frame preferable for finding

the overlap between two GMMs?

• Can a correlation decision still be made in the presence of linearizations for

various time spans of Too Short Arcs?

1.1.1 Assumptions

• All the objects are bound by earth’s gravity

• Two-body motion of an object without any perturbations is considered for the

propagation of an object

• No process noise is taken into account for the propagation of uncertainty

1.1.2 Chapter Outline

Chapter 2 explains the basic probability concepts used in this thesis. It intro-

duces mean, covariance, normal distribution and Jacobians. Chapter 3 describes the

fundamentals of the Geocentric Equatorial coordinate system, the Topocentric coor-

dinate system and the Topocentric Local Horizon coordinate system in detail. It also

details how to transform mean and covariance from one frame to another. Chapter 4

focuses on the Keplerian orbital elements and Delaunay orbital elements. It further

details the transformations relating the mean and covariance of a GMM from Geo-

centric equatorial system to Keplerian orbital element spaces. Chapter 5 describes

the concept of the Admissible Region and discusses its utility and application to op-

tical observations. Furthermore, this chapter also discusses the application of the

semi-major axis and eccentricity constraint on the Admissible Region. In Chapter

6, the framework of approximating an Admissible Region using a Gaussian Mixture

Model is presented. The process of creating a bivariate Gaussian Mixture Model

from range range-rate values are explained in detail. Chapter 7 includes the basics

of the Kalman filter and Extended Kalman filter. The utility of these computational
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techniques to specific applications is also discussed. This is followed by a discussion

on the initialization, prediction and updating steps associated with the filter. Finally,

the numerical challenges presented by using a numerical integrator are discussed in

detail. Chapter 8 describes the statistical tool: Kullback-Leibler divergence and how

it can be applied to Gaussian Mixture Models. Chapter 9 presents the Monte-Carlo

simulations that have been performed to evaluate the robustness of the implemented

transformations from one space to other. Chapter 10 defines the sensor measurement

model, target motion model used in the simulations. It also describes the various

scenarios associated with the Geosynchronous and Low-Earth orbits. Chapter 11

details the results generated from GEO scenarios, LEO scenarios followed by discus-

sions on them. Chapter 12 summarizes the work done for this thesis and also presents

suggestions for future work.
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2. PROBABILITY PRELIMINARIES

A random variable x is a variable that takes on values at random and realizations of

the random variable may be thought of as the outcomes of some random experiment

[17]. A probability distribution function is the density of probability of the event that

a random variable x takes on in its vicinity.

For a random variable, the expectation is defined as the sum of all values that the

random variable may take, each multiplied by the probability at that value of x.

µ = E{x} =

∫ ∞
−∞

xp(x)dx (2.1)

It is also referred to as the mean distribution of x (denoted by µ) or the first moment

of x. The quantity E{xn}, n ≥ 1 is called the nth moment of x. Although the

expectation of a random variable gives the weighted average of the possible values of

x, it does not give any information about the variation, or spread, of these values.

Two variables can have an equal expectation with varying spread around them. The

variance of x is defined as the mean squared deviation of the random variable from

its mean. It is denoted by σ2.

σ2 =

∫ ∞
−∞

(x− E{x})2p(x)dx (2.2)

= E{(x− E{x})2} (2.3)

It is also referred to as the second moment of x. For two random variables, the

covariance is given by the expectation of the product of the deviations of the random

variables from their respective means.
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E{(x− E{x})(y − E{y})} =

∫ ∞
−∞

∫ ∞
−∞

(x− E{x})(y − E{y})p(x, y)dxdy (2.4)

= E{xy} − E{x}E{y} (2.5)

2.1 Gaussian Distribution

The Gaussian or normal distribution has been introduced by the French mathe-

matician Abraham DeMoivre in 1733 to approximate the binomial random variables

with large n [18]. It is a symmetric distribution having a bell-shaped curve and a

peak at the center of the distribution. A Gaussian distribution can be fully described

by defining its mean and variance or spread as all the higher moments are exactly

zero. For a normal random variable x, the probability density of x is given by

f(x) =
1√
2πσ

e−(x−µ)2/2σ2 −∞ < x <∞ (2.6)

The density function is symmetric about the mean of x. For a Gaussian distribu-

tion, the first two moments i.e mean and variance are sufficient to describe it.
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Fig. 2.1.: Normal density function: (a) µ = 0, σ = 1; (b) arbitrary µ, σ2 [18]

2.1.1 Covariance Transformation Using Jacobian [19]

For the transformation of a probability density function from one system to an-

other, Jacobians can be used. The Jacobian is a linearization and provides the ability

to compute an approximation of the true second moment after the transformation.

The mean can be transformed via point transformation. The Jacobian is derived as

the following, using Taylor series expansion. Consider Taylor expansion of a function

F(x) about x0, with x− x0 = h

F (x) = F (x0) + h
dF (x0)

dx
+
h2

2!

d2F (x0)

dx2
+ ... (2.7)

where

dF (x0)

dx
=
dF

dx

∣∣∣∣
x=x0

,
d2F (x0)

dx2
=
d2F

dx2

∣∣∣∣
x=x0

, (2.8)
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For a function in two variables F(x,y), the Taylor series expansion about a point

(x0, y0) is given as

F (x, y) = F (x0, y0) + h
dF (x0, y0)

dx
+ k

dF (x0, yo)

dy
+ (2.9)

1

2!

{
h2d

2F (x0, y0)

dx2
+ 2hk

d2F (x0, y0)

dxdy
+ k2d

2F (x0, y0)

dy2

}
+ ... (2.10)

where

dF (x0, y0)

dx
=
dF

dx

∣∣∣∣
x=x0,y=y0

,
d2F (x0, y0)

dx2
=
d2F

dx2

∣∣∣∣
x=x0,y=y0

, (2.11)

Now, consider the pair of ODEs in the variables x(t) and y(t)

ẋ = F (x, y) ẏ = G(x, y) (2.12)

To study the behavior near a particular point (x0, y0), take the Taylor expansion

using h(t) = x(t)x0 and k(t) = y(t)y0

ḣ = h
dF (x0, y0)

dx
+ k

dF (x0, y0)

dy
+ ... (2.13)

k̇ = h
dG(x0, y0)

dx
+ k

dG(x0, y0)

dy
+ ... (2.14)

After ignoring the higher-order terms, these can now be written in the matrix form

as

Ẋ = JX (2.15)

where X(t) = (h, k)T and the matrix is called the Jacobian matrix
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J =

dFdx ∣∣(x0,y0)
dF
dy

∣∣
(x0,y0)

dG
dx

∣∣
(x0,y0)

dG
dy

∣∣
(x0,y0)

 (2.16)

The transformation equation for covariance matrix P is

P ′ = JPJT (2.17)

As stated above, this Jacobian is just an approximation by ignoring higher terms

in Taylor series. In a non-linear transformation, Gaussianity is not preserved. Using

the linearization of the Jacobian, an approximation of the second moment of the new

probability density function can be provided. No higher moments are provided, hence

a complete reconstruction of the probability distribution function is not possible.

Often, as only two moments are available, the new probability distribution func-

tion is treated as a Gaussian in the new space, although this is, of course, a crude

approximation even when the true second moment is close to the estimated one, as

higher moments are ignored.
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3. COORDINATE SYSTEMS

A coordinate system is defined by specifying its origin, fundamental plane, sense

(right-handed sense or left-handed sense) and the preferred direction. The coordi-

nate systems covered in this chapter are all Earth-based systems with the origin at

either Earth’s center (geocentric) or Earth’s surface (topocentric). This chapter also

explains how the state of an object and the uncertainty associated with it can be

transformed from one coordinate system to others. During the course of this work,

Geocentric Equatorial coordinate system, Topocentric Equatorial coordinate system

and Topocentric Local Horizon coordinate system ( [20], [21], [17] ) have been used

for different purposes like Extended Kalman filtering [15] and calculating Kullback-

Leibler divergence [16].

3.1 Geocentric Equatorial System

This system originates at the center of the Earth and is one of the most commonly

used systems in astrodynamics. The reference direction, origin, plane associated with

the Geocentric Equatorial system are as follows:

• Origin: centre of the Earth

• Fundamental plane: equator at a fixed equinox

• Reference direction: vernal equinox at a fixed equinox

• Handedness: right-handed system

• Coordinates: right ascension α, declination δ, radial distance r
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The state of the object is defined in terms of its geocentric position and velocity.

The position and velocity in terms of angles and their rate of change with time can

be given as


x

y

z

 =


r cosα cos δ

r sinα cos δ

r sin δ

 , (3.1)


ẋ

ẏ

ż

 =


ṙ cosα cos δ − r cos δ sinαα̇− r sin δ cosαδ̇

ṙ sinα cos δ − r sin δ sinαδ̇ + r cos δ cosαα̇

ṙ sin δ + r cos δδ̇

 , (3.2)

Fig. 3.1.: Right Ascension and Declination. Geocentric right ascension (α) and
declination (δ) use the Earth’s Equatorial plane. Topocentric right ascension (αt)
and declination values (δt) use a plane parallel to the Earth’s equator but located at
a particular site. [22]

α is the in-plane angle and defined to be zero for the direction to the vernal

equinox, δ defines the angle above or below the equator (South pole = −π/2, North

pole = π/2) counted from the equator plane.
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The angles are related to position and velocity using following equations:

r =
√
x2 + y2 + z2

r̃ =
√
x2 + y2

δ = −π
2
, 0,

π

2
for r̃ = 0 and z > 0, z = 0, z < 0

δ = tan−1
(z
r̃

)
for r̃ 6= 0

α = 0 for x = 0 and y = 0

α = φ for x ≥ 0 and y ≥ 0

α = 2π + φ for x ≥ 0 and y ≤ 0

α = 2π + φ for x ≤ 0

φ = 2 tan(−1)

(
y

|x|+ r̃

)

(3.3)

The Geocentric Equatorial system is also a good approximation of an inertial

system. Figure 3.1 shows the coordinates in Geocentric Equatorial system.

3.2 Topocentric Equatorial System

Since most of the observations are performed at the surface of the Earth, Topocen-

tric Equatorial system becomes handier than Geocentric Equatorial system during

such observations. The characteristics associated with this reference system are as

follows:

• Origin: topocenter (position of the observer on the Earth surface, time-dependent)

• Fundamental plane: plane parallel to the equator at a fixed equinox

• Reference direction: vernal equinox at a fixed equinox

• Handedness: right-handed system

• Coordinates: right ascension α′, declination δ′, range ρ, sidereal angle θ



15

The terms right ascension and declination are used for both the Topocentric and

the Geocentric system. The declination of the zenith (the point directly above the

observer) is equal to the geographic latitude of the observer. The right ascension of

the zenith depends on the geographic longitude and the time, not on the latitude.

For the observations of objects that are at stellar distances, the difference between

the Topocentric and Geocentric Equatorial systems are negligible, for Earth-orbiting

satellites, the difference is crucial, because of the relatively small distance of the

objects relative to the Earth radius.

The sidereal time θ is the right ascension of the zenith at a given time t, the

sidereal time of all observers at the same longitudes is the same. The hour angle

τ is the difference between the sidereal time and the right ascension of an object:

τ = θ − α. The sidereal time is hence the hour angle of the vernal equinox. Hence,

θ, τ, α are measured often in units of time rather than degrees or radians. φ is the

geocentric geographic latitude of the observer (Earth fixed).

The state of an object in the Topocentric Equatorial system is defined by (α′, α̇′, δ′, δ̇′, ρ, ρ̇).

The equations correlating Geocentric Equatorial system to Topocentric Equatorial

system are as follows:


r cosα cos δ

r sinα cos δ

r sin δ

 =


ρ cosα′ cos δ′ +R cosφ cos θ

ρ sinα′ cos δ′ +R cosφ sin θ

ρ sin δ′ +R sinφ

 , (3.4)

Changing mean and covariance from Topocentric Equatorial System (range

and range-rate space) to Geocentric Equatorial system (position and ve-

locity)

This section discusses about the transformation of mean and covariance from the

Geocentric Equatorial system (position and velocity) to the Topocentric Equatorial

system (range and range-rate). It will be used for propagation of the GMM (mean

and covariance) using Extended Kalman filter and for calculating KL divergence.
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Geocentric position and velocity can be found out if the position of topocenter as

well position of the object is known.
x

y

z

 =


Rtopo,x + ρ cosα cos δ

Rtopo,y + ρ sinα cos δ

Rtopo,z + ρ sin δ

 , (3.5)


ẋ

ẏ

ż

 =


Ṙtopo,x + ρ̇ cosα cos δ − ρ cos δ sinαα̇− ρ sin δ cosαδ̇

Ṙtopo,y + ρ̇ sinα cos δ − ρ sin δ sinαδ̇ + ρ cos δ cosαα̇

Ṙtopo,z + ρ̇ sin δ + ρ cos δδ̇

 , (3.6)

For covariance transformation, Jacobian can be calculated using the following

equations:

∂x

∂α
= −ρ cos δ sinα,

∂x

∂α̇
= 0,

∂x

∂δ
= −ρ sin δ cosα,

∂x

∂δ̇
= 0,

∂x

∂ρ
= cos δ cosα,

∂x

∂ρ̇
= 0

∂y

∂α
= ρ cos δ cosα,

∂y

∂α̇
= 0,

∂y

∂δ
= −ρ sin δ sinα,

∂y

∂δ̇
= 0,

∂y

∂ρ
= cos δ sinα,

∂y

∂ρ̇
= 0

∂z

∂α
= 0,

∂z

∂α̇
= 0,

∂z

∂δ
= ρ cos δ,

∂z

∂δ̇
= 0,

∂z

∂ρ
= sin δ,

∂z

∂ρ̇
= 0,

∂ẋ

∂α
= −ρ̇ cos δ sinα− ρ cos δ cosαα̇ + ρ sin δ sinαδ̇,

∂ẋ

∂α̇
= −ρ cos δ sinα,

∂ẋ

∂δ
= −ρ̇ sin δ cosα + ρ sin δ sinαα̇− ρ cos δ cosαδ̇,

∂ẋ

∂δ̇
= −ρ sin δ cosα,

(3.7)
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∂ẋ

∂ρ
= − cos δ sinαα̇− sin δ cosαδ̇,

∂ẋ

∂ρ̇
= cos δ cosα

∂ẏ

∂α
= ρ̇ cos δ cosα− ρ cos δ sinαα̇− ρ sin δ cosαδ̇

∂ẏ

∂α̇
= −ρ cos δ cosα,

∂ẏ

∂δ
= −ρ̇ sin δ sinα− ρ sin δ cosαα̇− ρ cos δ sinαδ̇

∂ẏ

∂δ̇
= −ρ sin δ sinα,

∂ẏ

∂ρ
= − sin δ sinαδ̇ + cos δ cosαα̇,

∂ẏ

∂ρ̇
= cos δ sinα

∂ż

∂α
= 0,

∂ż

∂α̇
= 0,

∂ż

∂δ
= ρ̇ cos δ − ρ sin δδ̇,

∂ż

∂δ̇
= ρ cos δ,

∂ż

∂ρ
= cos δδ̇,

∂ż

∂ρ̇
= sin δ,

(3.8)

Jρρ̇−cart =



∂x
∂α

∂x
∂α̇

∂x
∂δ

∂x
∂δ̇

∂x
∂ρ

∂x
∂ρ̇

∂y
∂α

∂y
∂α̇

∂y
∂δ

∂y

∂δ̇

∂y
∂ρ

∂y
∂ρ̇

∂z
∂α

∂z
∂α̇

∂z
∂δ

∂z
∂δ̇

∂z
∂ρ

∂z
∂ρ̇

∂ẋ
∂α

∂ẋ
∂α̇

∂ẋ
∂δ

∂ẋ
∂δ̇

∂ẋ
∂ρ

∂ẋ
∂ρ̇

∂ẏ
∂α

∂ẏ
∂α̇

∂ẏ
∂δ

∂ẏ

∂δ̇

∂ẏ
∂ρ

∂ẏ
∂ρ̇

∂ż
∂α

∂ż
∂α̇

∂ż
∂δ

∂ż
∂δ̇

∂ż
∂ρ

∂ż
∂ρ̇


(3.9)

Thus, as discussed in chapter 2, the covariance matrix in the Geocentric Equatorial

system is given as

Pcart = Jρρ̇−cart(Pρρ̇)J
T
ρρ̇−cart

(3.10)

3.3 Topocentric Local Horizon Coordinate System

This system is useful in observing satellites or debris and is used extensively with

sensor systems. This reference system rotates along with the rotation of topocenter.

• Origin: Topocenter (position of the observer on the Earth surface, time-dependent)

• Fundamental plane: local horizon
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• Reference direction: South (direction, in which places of the same geographic

latitude but smaller latitude are located)

• Handedness: left-handed system

• Coordinates: elevation h, azimuth a, (normally range ρ is not reported in this

system)

Fig. 3.2.: Topocentric Local Horizon Coordinate System. Azimuth (β) and
elevation (el) use the Earth’s Equatorial plane. Topocentric right ascension (αt) are
measured from the topocenter. [22]

Figure 3.2 shows the coordinates in Topocentric Local Horizon coordinate system.

Elevation angle h is the angle above (positive) or below (below) the local horizon.

For objects to be visible in the sky, the angle of elevation should be greater than zero.

Zenith is defined to be π/2. The azimuth angle is defined from 0 (South) to 2π. The

transformation from the Topocentric Equatorial system to Topocentric Local Horizon

system can be done only using angular measurements.


cosα′ cos δ′

sinα′ cos δ′

sin δ′

 = S2R3(θ)R2

(
−(
π

2
− φ)

)
cos a cosh

sin a cosh

sinh

 , (3.11)
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This equation can also be written as


cos a cosh

sin a cosh

sinh

 =


sinφ cos δ cos τ − cosφ sin δ

sin τ cos δ

sinφ sin δ + cosφ cos δ cos τ

 , (3.12)

For all of these coordinate systems, the state of an object which comprises of six

quantities is continuously changing with time due to the movement of the object.

Therefore, it might be useful to work in orbital element spaces as five of the six

orbital elements remain fixed for an object with time if no perturbation is taken into

account. Only the mean or true anomaly of the object changes with time.
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4. ORBITAL ELEMENT SPACES

This chapter addresses the basics of Keplerian orbital element space and Delaunay

orbital element space. It also describes the transformation of state and uncertainty of

an object from the Keplerian orbital element to Delaunay orbital elements. The main

advantage behind using orbital element spaces is that not all six quantities change

with the movement of the object if only two-body dynamics is considered for the

motion of the object.

4.1 Keplerian Orbital Elements

Keplerian orbital elements space or classical orbital elements space is the most

common elements set used for defining orbits of any space object [22]. The six orbital

elements are defined as follows (refer figure 4.1):

• Semi-major axis: It is the half of the largest axis of an elliptical orbit. It can

be used to derive extreme points in an orbit.

• Eccentricity: It is referred to as the shape of the orbit. It is a non-negative num-

ber which characterizes the shape of a conic section. The value of eccentricity

for an ellipse is bounded between 0.0 and 1.0.

• Inclination angle: It is referred to as the tilt of an orbit plane. The angle is

measured from the unit vector ~K to the angular momentum vector ~h. It ranges

from 0◦ to 180◦. The inclination angle of 0◦ and 180◦ are equatorial orbits,

whereas all others are inclined orbits.

• Right ascension of ascending node: It is the angle in the equatorial plane mea-

sured positive eastward from the I unit vector to the location of the ascending
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node. The ascending node is the point on the equatorial plane at which the

satellite crosses the equator from south to north. Inclined orbits also have a

descending node at which the satellite crosses from north to south across the

equatorial plane. The line joining these two nodes is referred to as the line of

nodes. This angle ranges from 0◦ to 360◦.

• Argument of perigee: It is measured from the ascending node in the direction

of satellite motion until perigee. This angle also ranges from 0◦ to 360◦.

• True anomaly: This determines the satellite’s current position relative to the

location of periapsis. This angle also ranges from 0◦ to 360◦.

Fig. 4.1.: Classical Orbital Elements. The six classical orbital elements are the
semimajor axis, a; eccentricity, e; inclination i; right ascension of ascending node, Ω;
argument of perigee, ω; and true anomaly, ν. [22]
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These orbital elements can be calculated from inertial velocity and position using

the following equations [22]:

~h = ~r × ~v h = |~h|

~n = K̂ × ~h

~e =

(
v2 − µ

r

)
~r − (~r · ~v)~(v)

µ
e = |~e|

ξ =
v2

2
− µ

r

If e 6= 1.0 then a = − µ

2ξ
, p = a(1− e2)

else p =
h2

µ
, and a =∞

(4.1)

cos(i) =
hK

|~h|

cos(Ω) =
nI
|~n|

If (nJ < 0) then Ω = 360◦ − Ω

cos(ω) =
~n · ~e
|~n||~e|

If(eK < 0) then ω = 360◦ − ω

cos(ν) =
~e · ~r
|~e||~r|

If(~r · ~v < 0) then ν = 360◦ − ν

For special cases,

Elliptical Equatorial:

cos(ω̃true) =
eI
|~e|

If(eJ < 0) then ω̃true = 360◦ − ω̃true

Circular Inclined:

cos(u) =
~n · ~r
|~n||~r|

If(rK < 0) then u = 360◦ − u (4.2)

Circular Equatorial:

cos(λtrue) =
rI
|~r|

If(rJ < 0) then λtrue = 360◦ − λtrue
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Here,

~h: Specific angular momentum, ω: Argument of perigee, p: Semi-parameter,

e: Eccentricity, a: Semi major axis, ~n: Node vector, ν: True anomaly,

ξ: Energy, i: Angle of inclination, Ω: Right ascension of ascending node

For a parabolic orbit, the semi-major axis is infinite and therefore can not be

determined from the above equations. Similarly, for circular orbits and equatorial

orbits, the argument of perigee is not defined as eccentricity is zero and magnitude of

~n is zero, respectively. This happens because periapsis and the node do not exist for

these special cases. The true anomaly of an object is also not defined for perfectly

circular orbits. The orbits which approach a circular orbit might cause problems

with computer solutions. Therefore, these orbital elements are defined under the

special case scenario. These singularities can be overcome by using equinoctial orbital

elements which are employed here for transformation from the Geocentric Equatorial

system to Keplerian orbital elements.

Changing mean and covariance from Geocentric Equatorial system (posi-

tion and velocity) to Keplerian orbital elements space

Mean in Geocentric Equatorial system (position ~r and velocity ~v) can be simply

transformed to Keplerian orbital elements using equation 4.1. For finding the covari-

ance in Keplerian orbital elements space, as discussed in chapter 2, one way can be by

finding the Jacobian between Geocentric Equatorial coordinates to Keplerian orbital

elements. Jacobian linearizes the non-linear system of equations which is nothing but

an approximation. The direct differential of Keplerian orbital elements with respect

to geocentric position and velocity is complicated so firstly Jacobian between the

Alternate Equinoctial Orbital Elements (AEOE) and the Geocentric Equatorial sys-

tem is calculated as an intermediate step. Further, the Jacobian between Alternate
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Equinoctial Orbital elements and Keplerian orbital elements is calculated. These two

Jacobians when substituted in the equation below give the final Jacobian.

dxaeoe

dxcart
=
dxaeoe

dxkoe

dxkoe

dxcart
(4.3)

Alternate Equinoctial Orbital elements are used because they are well adapted to

orbits with small eccentricity and inclination [23]. They are defined as follows:

n =
√
µ/a3

h = e sin(ω + Ω)

k = e cos (ω + Ω)

p = tan (i/2) sin Ω

q = tan (i/2) cos Ω

λ = M + ω + Ω

(4.4)

The position and velocity of the object in the equinoctial frame are given by

X = a(cosE − e) and Y = a
√

1− e2 sinE

Ẋ = −na
2 sinE

r
and Ẏ =

na2
√

1− e2 cosE

r

r = a(1− e cosE)

(4.5)

Here, E is the eccentric anomaly.

L =
a2

r
(e cosE − 1− sin2E) (4.6)

M =
a2 sinE

r
√

1− e2
(cosE − e) (4.7)

L̇ =
na4

r3
(e− 2 cosE + e cos2E) sinE and (4.8)

Ṁ =
na4

r3
√

1− e2
(e2 − 1− e cosE + 2 cos2E − e cos3E) (4.9)

(4.10)
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A set of auxiliary vectors are introduced as

β1 = Lp+Mq

β2 =
1

e
[Xq − Y p− 1

n
vcart]

β3 = Xq − Y p

β4 = [X sin(ω + Ω) + Y cos(ω + Ω)]r

β5 = [X cos(ω + Ω)− Y sin(ω + Ω)]r

β6 = [X cos(ω) + Y sin(ω)]r

and

β̇1 = L̇p+ Ṁq

β̇2 =
1

e
[Ẋq − Ẏ p− 1

n
rcart]

β3 = Ẋq − Ẏ p

β4 = [Ẋ sin(ω + Ω) + Ẏ cos(ω + Ω)]r

β5 = [Ẋ cos(ω + Ω)− Ẏ sin(ω + Ω)]r

β6 = [Ẋ cos(ω) + Ẏ sin(ω)]r

(4.11)

p, q, r are defined as the column vectors of the R3(−Ω)R1(−i)R3(−ω) direction cosine

matrix and rcart, vcart are the geocentric position and velocity. The Jacobian from

Cartesian coordinates to AEOE is given as

Jcart-aeoe =



jTn,r jTn,v

jTh,r jTh,v

jTk,r jTk,v

jTp,r jTp,v

jTq,r jTq,v

jTλ,r jTλ,v


(4.12)
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where the position related terms are as follows:

jTn,r = − 3

na2

µ

r3
rcart

jTh,r = sin(ω + Ω)

[
−α1n(a/r)3rcart + β̇2

α3

]
− cos(ω + Ω)

[
β̇1 + (eα5/(1− e2))β̇6

α3

]

jTk,r = sin(ω + Ω)

[
−α1n(a/r)3rcart + β̇2

α3

]
+ sin(ω + Ω)

[
β̇1 + (eα5/(1− e2))β̇6

α3

]

jTp,r = − β̇4

α4(1 + cos i)

jTq,r = − β̇5

α4(1 + cos i)

jTλ,r = − 1

na2

[
vcart + α1α2β̇1

]
−
(
α5

α4

)
β̇6

(4.13)

and the velocity related terms are as follows:

jTn,v = − 3

na2
vcart

jTh,v = − sin(ω + Ω)

[
(α1/n)vcart + β2

α3

]
+ cos(ω + Ω)

[
β1 + (eα5/(1− e2))β6

α3

]
jTk,v = − cos(ω + Ω)

[
(α1/n)vcart + β2

α3

]
− sin(ω + Ω)

[
β1 + (eα5/(1− e2))β6

α3

]
jTp,v =

β4

α4(1 + cos i)

jTq,v =
β5

α4(1 + cos i)

jTλ,v =
1

na2

[
−2rcart + α1α2β1

]
+

(
α5

α4

)
β6

(4.14)

The auxiliary variables are

α1 =
e

1 + α2

, α2 =
√

1− e2, α3 =
na2

α2

, α4 = na2α2

α5 =
sin i

1 + cos i
, and α6 =

sin i

α4(1 + cos i)2

(4.15)
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These equations give the Jacobian from Cartesian coordinates AEOEs. To find

out the Jacobian from Keplerian orbital elements to AEOEs, the following equations

can be employed:

Jkoe- aeoe =



∂n
∂a

∂n
∂e

∂n
∂i

∂n
∂ω

∂n
∂Ω

∂n
∂M

∂h
∂a

∂h
∂e

∂h
∂i

∂h
∂ω

∂h
∂Ω

∂h
∂M

∂k
∂a

∂k
∂e

∂k
∂i

∂k
∂ω

∂k
∂Ω

∂k
∂M

∂p
∂a

∂p
∂e

∂p
∂i

∂p
∂ω

∂q
∂Ω

∂p
∂M

∂q
∂a

∂q
∂e

∂q
∂i

∂q
∂ω

∂q
∂Ω

∂q
∂M

∂λ
∂a

∂λ
∂e

∂λ
∂i

∂λ
∂ω

∂λ
∂Ω

∂λ
∂M


(4.16)

Each of the AEOE is differentiated with respect to Keplerian orbital elements

(KOE) and the terms in the Jkoe-aeoe are as follows:

Jkoe- aeoe =



−3
2

√
µ
a5

0 0 0 0 0

0 sin(ω + Ω) 0 e cos(ω + Ω) e cos(ω + Ω) 0

0 cos(ω + Ω) 0 −e sin(ω + Ω) −e sin(ω + ω) 0

0 0 1
2

sec2( i
2
) sin(Ω) 0 tan i

2
cos(Ω) 0

0 0 1
2

sec2( i
2
) cos(Ω) 0 − tan i

2
sin(Ω) 0

0 0 0 1 1 1


(4.17)

Using Jkoe-aeoe and Jcart-aeoe in equation 4.3, Jcart-koe can be evaluated. Using

Jcart-koe, the covariance matrix in Keplerian orbital elements is given as

Pkoe = Jcart-koe(Pcart)J
T
cart-koe

(4.18)
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4.2 Delaunay Orbital elements

Delaunay orbital elements are action-angle coordinates consisting of the argument

of periapsis, the mean anomaly and the longitude of the ascending node, along with

their conjugate momenta [24]. This element space has singularities at zero eccen-

tricity, zero inclination and critical inclination and therefore they are not defined for

circular, equatorial or radial orbits.

• l is the mean anomaly of the object

• g is the argument of periapsis of the object

• h is the right ascension of ascending node

• L is related to the two-body orbital energy

• G is the magnitude of orbital angular momentum

• H is the z-component of the orbital angular momentum vector

Changing mean and covariance from Keplerian orbital elements to Delau-

nay orbital elements

Mean from Keplerian orbital elements space to Delaunay orbital elements space

can be calculated using the following equations:

l = M

g = ω

h = Ω

L =
√
µ/a

G = L
√

1− e2

H = G cos i

(4.19)
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For finding the Jacobian from Keplerian orbital elements space to Delaunay orbital

elements space, differential of each Delaunay orbital elements is taken with respect

to Keplerian orbital elements.

Jkoe- dlny =



∂L
∂a

∂L
∂e

∂L
∂i

∂L
∂ω

∂L
∂Ω

∂L
∂M

∂l
∂a

∂l
∂e

∂l
∂i

∂l
∂ω

∂l
∂Ω

∂l
∂M

∂G
∂a

∂G
∂e

∂G
∂i

∂G
∂ω

∂G
∂Ω

∂G
∂M

∂g
∂a

∂g
∂e

∂g
∂i

∂g
∂ω

∂g
∂Ω

∂g
∂M

∂H
∂a

∂H
∂e

∂H
∂i

∂H
∂ω

∂H
∂Ω

∂H
∂M

∂h
∂a

∂h
∂e

∂h
∂i

∂h
∂ω

∂h
∂Ω

∂h
∂M


(4.20)

Value of each differential is as follows:

Jkoe- dlny =



1
2

√
µ
a

0 0 0 0 0

0 0 0 0 0 1

1
2

√
µ(1−e2)

a
−e
√

µa
(1−e2)

0 0 0 0

0 0 0 1 0 0

1
2
√
a

√
µ(1− e2) cos i −

√
µa

1−e2 e cos i −
√
µ(1− e2)a sin i 0 0 0

0 0 0 0 1 0


(4.21)

The covariance matrix thus in Delaunay orbital elements is given as

Pdlny = Jkoe-dlny(Pkoe)J
T
koe-dlny

(4.22)
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5. ADMISSIBLE REGION

To find out the complete orbit for any space debris, it is required to solve a system of

equations with six unknowns. A major challenge arising in finding these unknowns for

orbit determination is to correlate two or more TSAs belonging to the same physical

object. In the case of having just a single TSA (angle and angle rates (α, α̇, δ, δ̇)),

probabilistic method of determining the region of possible ranges and range-rates

(ρ, ρ̇) for an optical attributable can be employed. This region can be obtained by

imposing constraints on range and range-rate under certain premise and is called

Admissible Region (refer [2], [7], [3], [17]). An optical attributable vector (α, δ, α̇, δ̇)

consists of angular coordinates and their rate of change with respect to time. α is the

right ascension, δ is the declination, α̇ is the rate of change of right ascension with

time and δ̇ is the rate of change of declination with time in the Topocentric Equatorial

reference system. The values of range ρ and range-rate ρ̇ are not measured.

Aopt = (α, δ, α̇, δ̇) ∈ [−π, π)× (−π/2, π/2)× R2 [3] (5.1)

5.1 With Energy Constraint

For Earth orbiting objects, the two-body internal energy is given by

ε =
‖ ṙ ‖2

2
− µ

‖ ṙ ‖
(5.2)

where µ is the gravitational parameter of the central body, r is the inertial position

of the object with respect to the Earth center (ECI-Earth centered inertial frame),

and ṙ is the inertial velocity of the object in ECI.
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Since the optical observation is done from a ground station, the position of the

object with respect to the Earth center is given as the sum of the position of the

ground station and the position of the object with respect to the station, and likewise

for the velocities:

r = R+ ρ and ṙ = Ṙ+ ρ̇ (5.3)

where R is the inertial position of the ground station, Ṙ is the inertial velocity of the

ground station, ρ is the topocentric position of the object with respect to the station,

and ρ̇ is the velocity of the object with respect to the station, both in Topocentric

Equatorial system.

The position and the velocity of object with respect to the station given in the

spherical coordinates of range, ρ, right ascension, α, declination, δ, and their rates

with respect to time are

ρ = ρuρ and ρ̇ = ρ̇uρ + ρα̇uα + ρδ̇uδ (5.4)

where the vectors uρ , uα, and uδ are given by

uρ =


cosα cos δ

sinα cos δ

sin δ

 , uα =


− sinα cos δ

cosα cos δ

0

 , uδ =


cosα sin δ

− sinα sin δ

cos δ

 (5.5)

As part of the attributable, the right ascension and the declination are known from the

optical measurement. This means that the vectors uρ, uα and uδ can be computed;

however, the range or the range-rate are still unknown. To proceed further, few scalar

values are defined as

w0 = ‖ R ‖2, w1 = 2(Ṙ.uρ), w2 = α̇2cos2δ + δ̇2

w3 = 2α̇(Ṙ.uα) + 2δ̇(Ṙ.uδ), w4 = ‖ Ṙ ‖2
, w5 = 2(Ṙ.uρ)

(5.6)
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With these scalar values, the squared Euclidean norms of the position and velocity

of the object with respect to the Earth center can be written as

‖ r ‖2 = ρ2 + w5ρ+ w0

‖ ṙ ‖2 = ρ̇2 + w1ρ̇+ w2ρ
2 + w3ρ+ w4

Substituting the squared norms of the position and velocity into the two-body energy

equation, it follows that twice the energy can be expressed as

2ε = ρ̇2 + w1ρ̇+ F (ρ) (5.7)

where

F (ρ) = w2ρ
2 + w3ρ+ w4 −

2µ√
ρ2 + w5ρ+ w0

(5.8)

The energy equation can be rewritten in standard quadratic form by subtracting 2ε

from both sides, such that

ρ̇2 + w1ρ̇+ F (ρ)− 2ε = 0 (5.9)

Therefore, given a value of ρ, the preceding equation for ρ̇ can be solved yielding two

solutions as

ρ̇ = −w1

2
±
√

(
w1

2
)2 − F (ρ) + 2ε (5.10)

If ε = 0 (equation 5.2) is specified, the zero-energy curve can be obtained. Since all

Earth-orbiting objects must have negative orbital energy, the zero-energy curve in

range range-rate space describes the region of all locations of range and range-rate

that, when paired with the measurements of the right ascension, declination, and

their rates, leads to orbits bound to the Earth.
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5.2 With Semimajor Axis And Eccentricity Constraint [14]

It is sometimes desired to add constraints to the Admissible Region in order to

reduce the possible combinations of range range-rate pairs that lead to permissible

orbit solutions. A wide variety of constraints can be considered, such as minimum

periapse altitude or minimum range. Constraints on the semi-major axis of the orbit

and constraints on the eccentricity of the orbit are discussed here.

The first constraint discussed here is the constraint on the semi-major axis, or

equivalently energy since the two are related by

ε = − µ

2a
(5.11)

where a is the semi-major axis. By setting a value for the semi-major axis, an equiv-

alent energy value may be determined. Then, by using this value of energy, the

admissible region procedure may be used to solve for range-rate given range values,

which yields a curve of the constant semi-major axis in the range range-rate space.

To develop the eccentricity constraint, the specific angular momentum is as

h = −r × ṙ (5.12)

Some vector parameters used later are defined as

h1 = R× uρ, h2 = uρ × (α̇uα + δ̇uδ),

h3 = uρ × Ṙ+R× (α̇uα + δ̇uδ), h4 = R× Ṙ
(5.13)

Next, a set of scalar parameters are defined as

c0 = ‖ h1 ‖2, c1 = 2h1.h2, c2 = 2h1.h3, c3 = 2h1.h4, c4 = ‖ h2 ‖2,

c5 = 2h2.h3, c6 = 2h2.h4 + ‖ h3 ‖2, c7 = 2h3.h4, c8 = ‖ h4 ‖2
(5.14)
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With these scalar parameters, it is possible to show that the squared Euclidean norm

of the specific angular momentum is given by

‖ h ‖2 = c0ρ̇
2 + P(ρ)ρ̇+ U (ρ) (5.15)

where

P(ρ) = c1ρ
2 + c2ρ+ c3

U (ρ) = c4ρ
4 + c5ρ

3 + c6ρ
2 + c7ρ+ c8

(5.16)

The eccentricity is related to both the specific angular momentum and specific energy

by

e =

√
1 +

2ε‖ h ‖2

µ2
(5.17)

which may be rearranged as

ε‖ h ‖2 = −µ2 (1 − e2 ) (5.18)

On substituting values of 2ε and ‖ h ‖2, it follows that

(ρ̇2 + w1ρ̇+ F (ρ))(c0 ρ̇
2 + P(ρ)ρ̇+ U (ρ)) = −µ2 (1 − e2 ) (5.19)

which may be rewritten as

a4ρ̇
4 + a3ρ̇

3 + a2ρ̇
2 + a1ρ̇

1 + a0 = 0 (5.20)

where,

a4 = c0, a3 = P(ρ) + c0w1 , a2 = U (ρ) + c0F (ρ) + w1P(ρ),

a1 = F (ρ)P(ρ) + w1U (ρ), and a0 = F (ρ)U (rho) + µ2 (1 − e2 )
(5.21)
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Given a value of eccentricity, a curve of constant eccentricity may be determined by

solving for the roots of the quartic equation that have been developed above, where

the equation is quartic in ρ̇ given a value of ρ. Solving for the roots of a quartic,

four solutions will be obtained. Any imaginary solutions in the result are discarded

and only the real solutions are considered when determining the curve of constant

eccentricity.

5.3 Example Of An Admissible Region

To illustrate the determination of the Admissible Region, the object with following

geocentric position and velocity is considered.

r = 1.0e+ 04


−3.5594

2.2557

0.0716

 km, v =


−1.6466

−2.5981

0.0111

 km/s (5.22)

Given the geocentric position and velocity of the object and of the topocenter,

topocentric angles (α, δ, α̇ and δ̇) can be found out using given equations.

uρ =


cosα cos δ

sinα cos δ

sin δ

 , (5.23)

ρ̇ = ρ̇uρ + ρα̇uα + ρδ̇uδ

ρ̇ =


ρ̇ cosα cos δ − ρ cosα sin δδ̇ − ρ sinα cos δα̇

ρ̇ sinα cos δ + ρ cosα cos δα̇− ρ sinα sin δδ̇

ρ̇ sin δ + ρ cos δδ̇

 (5.24)

In this example, the inertial position of the ground station can be calculated from the

following equations. The geocentric latitude and longitude of the observer are taken
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to be 0.01259◦ North and 127◦ West respectively. To account for the non-spherical

shape of the Earth, both latitude and radius of Earth can be corrected.

φ = φ′ − 0.1924◦ sin(2φ′)

R ≈ 6378.14km− 21.38km sin2(2φ′)
(5.25)

where θ is the sidereal time of the observer and φ is the apparent geographic latitude

of the observer.

Radius and velocity of topocenter can be calculated as

Rtopo =


R cosφ cos θ

R sinφ cos θ

R sinφ

 (5.26)

The Admissible Region is determined by setting ε = 0 and solving for range-rate ρ̇

given values of the range, ρ. Figure 5.1 and 5.2 given below represent the Admissible

Region with and without putting eccentricity constraint, respectively.

Fig. 5.1.: Region of admissible range/range-rate values given angle and angle rate
data
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Fig. 5.2.: Region of admissible range/range-rate values given angle and angle rate
data and eccentricity as 0.8
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6. APPROXIMATING THE ADMISSIBLE REGION

USING GAUSSIAN MIXTURE MODEL

In an Admissible Region, no single combination of range and range-rate is more likely

than any other. Therefore, the Admissible Region can be interpreted probabilistically

as describing a uniform distribution with the support defined by the boundaries of

the (constrained) Admissible Region. To use a closed-form expression, a method for

describing a uniform distribution via a Gaussian Mixture Model is now developed [14].

First, the problem of approximating a univariate uniform distribution is discussed,

followed by generating a bivariate Gaussian mixture approximation of the Admissible

Region.

A uniform distribution is given by

p(x) =


1
b−a , a ≤ x ≤ b

0, otherwise.

(6.1)

and a Gaussian mixture PDF is given by

q(x) =
L∑
l=1

αlpg(x;ml, Pl) (6.2)

where pg(x; a;A) represents a Gaussian PDF for the variable x with mean a and

covariance A; that is,

pg(x; a;A) = |2πA|−1/2 exp−1

2
(x− a)TA−1(x− a) (6.3)
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To approximate a uniform distribution using a Gaussian distribution, the distance

between p(x) and q(x) is taken as the L2 norm via

L2[p ‖ q] =

∫
R

(p(x)− q(x))2dx (6.4)

The minimum distance L2 is considered along with given constraints to determine the

weights, means, and variances of the components in the Gaussian mixture approxi-

mation. The L2 distance between the uniform and Gaussian mixture PDFs [25] can

be simplified to get a closed-form equation

L2[p ‖ q] =
1

b− a
+

L∑
i=1

L∑
j=1

αiαjΓ(mi,mj, Pi, Pj)−

1

b− a

L∑
l=1

[
erf

{
b−ml√

2Pl

}
− erf

{
a−ml√

2Pl

}] (6.5)

where

Γ(mi,mj, Pi, Pj) = |2π(Pi + Pj)
−1
2 | exp

(
−1

2
(mi −mj)

T (Pi + Pj)
−1(mi −mj)

)
(6.6)

where erf is the error function. The optimization problem in the given equation

is ill-conditioned due to a large number of local minima. To help reduce the number

of parameters and create a better-conditioned optimization problem, the following

are assumed:

• The weights are equal for all components.

• The means are evenly distributed across the support of p(x).

• The Gaussian mixture is homoscedastic.
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Taking the preceding assumptions L2 distance reduces to

L2[p ‖ q] =
1

b− a
+

α2

2
√
πσ

L∑
i=1

L∑
j=1

exp

{
−1

4

(
mi −mj

σ

)2
}
−

α

b− a

L∑
l=1

[erf{Bl} − erf{Al}]

where

Al =

(
a−ml√

2σ

)
and Bl =

(
b−ml√

2σ

)
(6.7)

This equation requires optimization over only the standard deviation parameter.

To find the solution, the derivative of L2 distance with respect to the standard devi-

ation parameter is found out. If the second derivative is found to be positive, then

the optimal solution is confirmed. Specifying the number of components L, a library

of solutions (i.e., an optimized value of σ given a number of components L) can be

generated. Without loss of generality, the parameters of the univariate uniform PDF

are taken as a = 0 and b = 1. Therefore, means and weights can be summarized as

follows

α̃l =
1

L
and m̃l =

l

L+ 1
∀ l ∈ {1, 2, ..., L} (6.8)

Using the above equations for mean, weight and L2 norm, the optimal value of σ̃

can be obtained, given the value of L. The following table shows the value of σ̃

corresponding to a particular value of L.

6.1 Application To The Admissible Region

The Admissible Region obtained in the previous section represents a uniform

PDF in two dimensions. To approximate the Admissible Region with a Gaussian

mixture, range and range-rate distributions are approximated separately into two

one-dimensional approximations. Following steps are followed to obtain a univariate
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Gaussian Mixture Model from a uniform distribution and the same steps can be

extended to get a bivariate Gaussian Mixture Model.

• Finding out the range marginal PDF

• Finding out the number of components by defining the maximum value of sigma

for range and range-rate

• Finding out the weights since range values do not give a uniform distribution

with equal weights

• Finding out the mean and covariance corresponding to each component

6.2 Approximating Univariate GMM For Range

If pρ,ρ̇(ρ, ρ̇) represents the total uniform PDF of the Admissible Region, then

pρ(ρ) =

∫ ∞
−∞

pρ,ρ̇(ρ, ν)dν (6.9)

is the range-marginal PDF. To obtain the range marginal PDF, firstly the whole

area under the Admissible Region is calculated using Simpson’s rule. Every alternate

value of range in the range array is used to find the area within those limits which are

then added to get the total area. The formula for the integrated area by Simpson’s

rule is given by

I =
h

3
(f(i) + 4f(i+ 1) + f(i+ 2))

h =
b− a
n

(6.10)

where n= number of intervals. Using the total area, the uniform probability

density can be found out and then multiplied by the difference in range-rates at each

range to get range marginal probability density function. To find out the number of

components from pre-computed libraries, a maximum standard deviation for the range
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direction, σρ,max is specified and the smallest number of components that satisfies this

condition is taken.

The parameters of the GMM approximation after finding out the number of com-

ponents and hence σ̃ are

αl =
1

L
, ml = a+

(b− a)l

L+ 1

Pl = ((b− a)σ̃)2 ∀ l ∈ {1, 2, ...., L}
(6.11)

These parameters produce the Gaussian Mixture Model for a uniform distribution

but range marginal PDF is not represented as a uniform distribution. To account for

the non-uniform nature of range marginal PDF, the weights of GMM PDF are found

by solving the least-squares problem. If the weights are concatenated into a vector

α, the L-component GMM PDF may be expressed as

q(x) = hT (x)α

hl(x) = pg(x;ml, Pl)
(6.12)

where α ∈ RL and h(x) ∈ RL. Taking M values of the range, range marginal PDF

is evaluated at each value of the range. These values are then collected in a vector

p. Then, the weights of GMM PDF are found by solving the following equations

subjected to linear equality/inequality constraints:

min J =‖ p−Hα ‖ subject to α ≥ 0 and 1Tα = 1 (6.13)

where 1 ∈ RL is a vector of ones, and H ∈ RM×L with the element in the ith row and

lth column given by

Hi,l = pg(ρi;ml, Pl) (6.14)

These weights obtained after solving the least-squares problem when combined

along with means and covariances produce a GMM approximation of the range
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marginal PDF. This process of obtaining a GMM approximation to the range marginal

PDF is illustrated in figure 6.1.

(a) Determination of range-marginal pdf. (b) Application of Gaussian mixture along
the support of the range-marginal pdf.

(c) Computation of the gaussian mixture
weights.

Fig. 6.1.: Illustration of the process for computing a Gaussian mixture approximation
of the range-marginal PDF

6.3 Approximating Bivariate GMM For Range-Rate

As discussed earlier, GMM PDF approximation of the Admissible Region involves

approximating range-marginal PDF and range-rate marginal PDF separately. To ap-

proximate in range-rate direction, consider a single component of the range-marginal

GMM approximation. Given a value of range, no associated value of range-rate within

the constrained Admissible Region is more or less likely. Therefore, the idea behind
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extending the range-marginal GMM PDF to the constrained Admissible Region is

to apply the previously discussed GMM approximation of the uniform PDF to the

range-rate direction for each component of the range-marginal GMM approximation

to develop a bivariate GMM PDF that describes the constrained Admissible Region.

A GMM approximation of the range-marginal PDF can be renamed as

pρ(ρ) ≈
Lρ∑
l=1

αρ,lpg(ρ;mρ,l, Pρ,l) (6.15)

For each component in range, the associated range-rate values represent a uniform

distribution. To determine the number of components in range-rate corresponding to

the each component in range, the extremal range-rate values are computed at each

range value that is dictated by the means of the range-marginal GMM.

al = argρ̇ min pρ,ρ̇(mρ,l, ρ̇) (6.16)

and

bl = argρ̇ max pρ,ρ̇(mρ,l, ρ̇) (6.17)

The distance between these extremal values (∆l = (bl−al)) along with predefined

sigma max for range-rate gives the σ̃, σ̃∆l ≤ σρ̇,max, which can be subsequently used

to find out the Lρ̇,l from predefined libraries. Then, the total number of components

of the bivariate GMM approximation of the constrained Admissible Region is given

by L =
∑Lρ

l=1 Lρ̇,l.

After finding the number of components for range-rate direction, the GMM pa-

rameters for range-rate are as follows

αρ̇,k =
1

Lρ̇,l
, mρ̇,k = al +

∆lk

Lρ̇,l + 1

Pl = (∆lσ̃)2 ∀ k ∈ {1, 2, ...., Lρ̇,l}
(6.18)
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Given the parameters of the lth component of the range-marginal GMM approxima-

tion and the k-associated components of the range-rate GMM approximation, the

corresponding components of the bivariate GMM approximation of the constrained

Admissible Region are

αρ,ρ̇,il+k = αρ,lαρ̇,k, mρ,ρ̇,il+k =

mρ,l

mρ̇,k



Pρ,ρ̇,il+k =

Pρ,l 0

0 Pρ̇,k

 where k ∈ {1, 2, ...., Lρ̇,l}

(6.19)

To approximate the whole of the Admissible Region, this procedure can be repeated

for each of the component in the range marginal PDF and this can summarized by

the following equation.

pρ,ρ̇(ρ, ρ̇) ≈
L∑
l=1

αρ,ρ̇,ipg(ρ, ρ̇;mρρ̇,i,P ρρ̇,i) (6.20)

The GMM approximation of the Admissible Region is illustrated in figure 6.2 for

energy = 0 constraint. Figure (a) shows the location of mean associated with each

component in range range-rate space. Y axis denotes the range-rate values and x axis

denotes range values. Figure (b) shows the probability distribution of Gaussian Mix-

ture Model. The GMM is a bivariate distribution with x axis showing range values,

y axis showing range range-rate values and z axis showing Gaussian probability. On

comparing this plot with figure 5.1, it is clear that the approximation is not uniform.

More number of components can be taken to get a better approximation. In this

thesis, about 800 components are used for creating the GMM.
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The GMM approximation of the Admissible Region is illustrated in the figure 6.3

for eccentricity less than 0.8 constraint. The components more than 0.8 eccentricity

have been eliminated and is demonstrated in figure (a) and (b).

(a) Location of Gaussian mixture compo-
nents.

(b) Surface plot of the Gaussian mixture.

Fig. 6.2.: Gaussian mixture representation of the constrained Admissible Region with
206 components

The GMM approximation of the Admissible Region with eccentricity less than 0.8

constraint is illustrated in the figure 6.3. Figure 6.4 shows the plot with 807 no of

components with eccentricity constraint.

(a) Location of Gaussian mixture compo-
nents.

(b) Surface plot of the Gaussian mixture.

Fig. 6.3.: Gaussian mixture representation of the constrained Admissible Region with
97 components
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(a) Location of Gaussian mixture compo-
nents.

(b) Surface plot of the Gaussian mixture.

Fig. 6.4.: Gaussian mixture representation of the constrained Admissible Region with
807 components
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7. FILTERING TECHNIQUES

Filtering technique is used for the propagation of state and uncertainty of the target

to get the GMM at time t2. The filtering techniques discussed here are Kalman filter

and Extended Kalman filter. They work on the principle of minimizing the mean

square error estimation [17].

7.1 Kalman Filter

A Kalman filter [15] is a computer algorithm that is used to process error corrupted

measurement data. The purpose of the processing is to better determine the param-

eters or variables associated with the process that generates the measurements [17].

Using the Kalman filter, one can determine the state vector of the target and also

find out the uncertainty associated with that state. These filters have a wide range

of application, for example, in navigation, in determining the irregularities in Earth’s

gravity field, and in determining the state of a chemical process.

While using the Kalman filter, the aim is to determine two things based on ob-

servations and a prior:

• An estimate xk|k of the state vector of the target

• An estimate of the likely error associated with xk|k

The state vector contains the information about the target (e.g position and ve-

locity) and the measure of the error in state vector is the error covariance matrix

Pk|k [26]. There are three main steps for Kalman filter:
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7.1.1 Kalman Filter Initialization

This step is basically to choose a good initial guess for the Kalman filter. An

initial guess includes an initial state vector and an uncertainty (covariance matrix)

associated with the target. If x0 and P0 are chosen poorly then the Kalman filter will

not be able to acquire the target and will diverge. Initial conditions can be given as

m0 = E{x(t0)}

P 0 = E{(x(t0)−m0)(x(t0)−m0)T}
(7.1)

Here, m0 = m(t0) is mean of the initial state and P 0 = P (t0) is the covariance

matrix at initial time.

7.1.2 Kalman Filter Prediction

This step means predicting the state of the target at a given time. The deter-

ministic model states that the target will have state xk+1 at time step k+1 if it

had state x at time step k, where matrix F (t) is called the state transition matrix.

Since actual target motion is also perturbed, there is another quantity added to the

equation which is nothing but the white noise providing stochastic excitation to the

deterministic dynamics. The system and the measurement model dynamics is thus

given by

ẋ(t) = F (t)x(t) +M(t)w(t)

zk = Hkxk +Lkvk

(7.2)

Here, w(t) is white noise and M(t) is a shape matrix that maps the noise into the

dynamics. The measurement noise is represented by vk, which is assumed to be a

zero-mean white-noise sequence with covariance Rk.
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Mean and covariance can be propagated using the following equations

ṁ(t) = F (t)m(t)

Ṗ (t) = F (t)P (t) + P (t)F T (t) +M(t)Qs(t)M
T (t)

(7.3)

Here, Qs(t) is power spectral density and is constant for white-noise processes.

7.1.3 Kalman Filter Update

After getting the state at time step k+1, correction of this predicted state is

performed by using the actual observation at time k+1 which is given in the following

equations

ẑk = Hkm
−
k

W k = HkP
−
kH

T
k +LkRkL

T
k

Ck = P−kHk

Kk = CkW
−1
k

m+
k = m−k +Kk(zk − ẑk)

P+
k = P−k −CkK

T
k −KkC

T
k +KkW kK

T
k

(7.4)

Here, Kk is the gain matrix, Ck is the cross-covariance (with the measurement)

and W k is the measurement covariance.

Some assumptions and properties associated with the Kalman filter are

• The state is not correlated with the measurement noise

• It makes no requirement that the distribution be Gaussian

• It makes no requirement that the measurement function be linear

• It works with first and second-moment statistics
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• It employs a linear update law, i.e. a linear gain

• It forces an unbiased posterior estimate (can be relaxed)

• It minimizes the posterior mean square error (minimum variance)

7.2 Extended Kalman Filter

The main difference between the Kalman filter and the Extended Kalman filter is

that the Kalman filter operates on linear dynamical systems and Extended Kalman

filter operates on non-linear system dynamics, non linear measurements, or both.

Examples of such non-linear system dynamics are - an object under the influence

of two-body dynamics, and all objects in orbits. Often, the actual state of the ob-

ject cannot be observed but quantities which are a non-linear function of state like

range can be observed. Therefore, the Kalman filter is modified to handle these non-

linearities. The Extended Kalman filter (EKF) handles non-linearities through the

use of linearization. Similar to the Kalman filter, this filter is comprised of three

steps: initiation, prediction and update.

7.2.1 Extended Kalman Filter Initialization

This step is the same as the Kalman filter and requires to choose a good initial

guess for the Extended Kalman filter. An initial guess includes an initial state vector

and an uncertainty (covariance matrix) associated with the target. If x0 and P0 are

chosen poorly then the Extended Kalman filter will not be able to acquire the target

and will diverge. Initial conditions can be given as

m0 = E{x(t0)}

P 0 = E{(x(t0)−m0)(x(t0)−m0)T}
(7.5)

Here, m0 = m(t0) is mean of the initial state and P 0 = P (t0) is the covariance

matrix at initial time.
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7.2.2 Extended Kalman Filter Prediction

This step means predicting/propagating the state of the target at a given time.

In this case, the state follows a non-linear dynamical system model. The system and

the measurement model dynamics is thus given by

ẋ(t) = f(x(t)) +M (t)w(t)

zk = h(xk) +Lkvk

(7.6)

Here, w(t) is white noise and M(t) is a shape matrix that maps the noise into the

dynamics. The measurement noise is represented by vk, which is assumed to be a

zero-mean white-noise sequence with covariance Rk.

Mean and covariance can be propagated using following equations

ṁ(t) = f(m(t))

Ṗ (t) = F (m(t))P (t) + P (t)F T (m(t)) +M(t)Qs(t)M
T (t)

(7.7)

Here, Qs(t) is the power spectral density and is constant for white-noise processes.

7.2.3 Extended Kalman Filter Update

After getting the state at time step k+1, correction of this predicted state is

performed by taking the actual observation at time k+1 which is given in the following

equations
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ẑk = h(m−k )

W k = H(m−k )P−kH
T (m−k ) +LkRkL

T
k

Ck = P−kH
T (m−k )

Kk = CkW
−1
k

m+
k = m−k +Kk(zk − ẑk)

P+
k = P−k −CkK

T
k −KkC

T
k +KkW kK

T
k

(7.8)

where the dynamics jacobian, F (m(t)) is defined as

F (m(t)) = [
∂f(x(t))

∂x(t)
|x(t)=m(t)] (7.9)

Here, Kk is the gain matrix, Ck is the cross-covariance (with the measurement)

and W k is the measurement covariance.

Some assumptions and properties associated with the Kalman filter are

• The state is not correlated with the measurement noise

• It makes no requirement that the distribution be Gaussian

• It makes no requirement that the measurement function be linear

• The state is not correlated with the measurement noise

• It propagates and updates only the first and second moment statistics

• It employs a linear update law, i.e. a linear gain

• It forces an unbiased posterior estimate (can be relaxed)

• It minimizes the posterior mean square error (minimum variance)
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Extended Kalman Filtering For GMM Generated From The Admissible

Region

As discussed in chapter 6, the Admissible Region can be approximated by Gaus-

sian Mixture Model. Now for propagating the mean and covariance associated with

the Gaussian Mixture Model, one can use the Extended Kalman filter as the system

has non-linear dynamics. For propagation, two-body dynamics is assumed without

any perturbation or process noise. The state of the object is propagated in Carte-

sian coordinates (Geocentric Equatorial system) therefore the mean and covariance in

range range-rate is approximated to geocentric coordinates. This is discussed in de-

tail in section 3.2. After the transformation, the mean and covariance are propagated

using Extended Kalman filter to a given time. The propagated mean and covariance

is back-transformed to range range-rate for getting the GMM in measurement space.

Figure 7.1 shows the GMM obtained from the propagated mean and covariance

and the respective position of these propagated means. It can be observed that the

Admissible Region has changed shape after the propagation. This is because the

orbits from the initial Admissible Region land in a different range range-rate region

at a later time due to orbital evolution. An additional, undesired, effect are errors

introduced by linearization.

(a) Location of Gaussian mixture compo-
nents.

(b) Surface plot of the Gaussian mixture.

Fig. 7.1.: Gaussian mixture representation of the constrained Admissible Region
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In all the previous chapters, the discussion has been centred on how to approximate

Admissible Region using Gaussian Mixture Model and further about the propagation

of these Gaussian Mixture Models (state and uncertainty) using Extended Kalman

filter. The question which now arises is how to capture the information contained

in these Gaussian Mixture Models for finding the overlap between two TSAs. The

concepts developed in information theory can be used to find such information which

is discussed in the next chapter.

7.2.4 Numerical Error Build-up During EKF

The limitation of using numerical integration is the build-up of numerical errors.

One way to check numerical error is by checking the volume of covariance matrix

before and after propagation without any process noise. The volume (determinant)

of the covariance matrix before and after propagation remains the same if no process

noise is taken into account. This happens because the shape of the matrix changes

but the total volume remains the same so if the numerical error is building up then

that will be reflected in the determinant of the covariance matrix.

|P 0| = |P (t)| (7.10)

To minimize the numerical error, two ways of covariance propagation can be tested.

One is the classical approach mentioned above.

Ṗ (t) = F (m(t))P (t) + P (t)F T (m(t)) +M(t)Qs(t)M
T (t) (7.11)
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The other method uses the propagation of state transition matrix.

Φ(tk−1, tk−1) = I

Φ̇(t, tk−1) = F (m(t))Φ(t, tk−1)

Q̇c(t) = F (m(t))Qc(t) +Qc(t)F
T (m(t)) +M (t)Qs(t)M

T (t)

P (t) = Φ(tk−1, tk−1)P (tk−1)ΦT (tk−1, tk−1) +Qc(t)

(7.12)

During the EKF propagation, there is an accumulation of numerical errors, which

eventually affects the rank of the covariance matrix. For finding the overlap using

Kullback-Leibler divergence, the inverse of the covariance is needed to be well defined

but due to numerical error, the covariance matrices become rank deficient. Therefore,

different ways of covariance propagation have been tested to get less numerical error.

Choosing between these two formulations of covariance propagation can play a major

role in numerical integration as numerical errors propagate differently in both of

these methods for a longer time duration. If one has a better-scaled initial state

transition matrix and badly scaled initial covariance matrix then it would be better

to use the latter method because numerical error will be less in state transition matrix

propagation whereas if one has better scaled covariance matrix and a badly scaled

state transition matrix then it would be better to use direct covariance propagation

to minimize numerical errors.

To demonstrate this, the table below shows the error build using both methods of

covariance propagation. Determinant of covariance matrix of one component of the

GMM before EKF is 8.1742e-11.
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Table 7.1.: Comparison of volume of uncertainty between classical and state transition
matrix method for covariance propagation

Propagation
time

Difference in deter-
minants of covariance
before and after
EKF using classical
method

Difference in deter-
minants of covariance
before and after EKF
using state transition
matrix method

100 minutes 1.2960e-12 1.0000e-15
500 minutes 7.6601e-08 1.1620e-12
1000 minutes 7.6601e-08 2.6780e-12

These numerical errors can also play a role in making the covariance matrix rank

deficient. The rank of a matrix is defined as the maximum number of linearly inde-

pendent column or row vectors in a matrix. The concept of rank, though clear in

the exact arithmetic context, is tricky in the presence of round-off error. If a matrix

is rank deficient, then the inverse of the matrix is not defined as the determinant is

zero. Therefore, to solve the problem of rank deficiency for finding the matrix inverse,

different methods can be employed:

• Singular value decomposition (SVD) [27]: SVD helps in handling the

matrix rank problem. It introduces the practical notion of numerical rank. In

SVD, an m by n matrix G is factored into

G = USV T (7.13)

where, U is an m by n orthogonal matrix with columns that are unit basis

vectors spanning the data space, Rm, V is an n by n orthogonal matrix with

columns that are basis vectors spanning the model space, Rn and S is an m by

n diagonal matrix with non-negative diagonal elements called singular values.

The SVD can be used to compute a generalized inverse of G, called the Moore–

Penrose pseudo inverse because it has desirable inverse properties originally

identified by Moore and Penrose.
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G† = VpS
−1
p UT

p (7.14)

Numerical rank deficiency are nicely characterized in terms of SVD because the

singular values indicate how near a given matrix is to the matrix of lower rank.

• Cholesky decomposition [27]: It is a decomposition of a positive definite

matrix into the product of a lower triangular matrix and its conjugate transpose.

Matrix inversion based on the Cholesky decomposition is numerically stable for

well-conditioned matrices.

A = LLT (7.15)

The inverse using Cholesky decomposition can be defined as

A−1 = [LT ]−1L−1 (7.16)

The Cholesky decomposition is unique when A is positive definite; there is only

one lower triangular matrix L with strictly positive diagonal entries such that

A = LLT

In this thesis, Cholesky decomposition has been used to find the inverse of rank

deficient matrices because inverse using Cholesky decomposition when multiplied with

the matrix itself gave the resultant matrix close to the identity matrix.
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8. INFORMATION MEASURES

This chapter introduces the basic definitions required for the development of informa-

tion theory [28]. For any probability distribution, there are multiple ways in which

information can be obtained from it. Entropy is one such quantity which is the self-

information of a random variable. The entropy N(X) of a discrete random variable

X is defined as

N(X) = −
∑
x∈X

p(x) log p(x) (8.1)

Here, the log is to the base two. This entropy is similar to the definition of

entropy in thermodynamics. Some important properties associated with entropy are

as follows: (1) it is always greater than or equal to zero; (2) the base of the logarithm

in the definition can be changed which can also change the entropy of a random

variable. The joint entropy N(X,Y) of a pair of discrete random variables (X,Y) with

a joint distribution p(x,y) is defined as

N(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y) (8.2)

Similar to entropy, mutual information is a measure of the amount of information

one random variable contains about another. It is a special case of relative entropy,

which is a measure of the distance between two probability distributions. The mutual

information I(X;Y) is the relative entropy between the joint distribution and the

product distribution p(x)p(y).
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I(X;Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(8.3)

Relationship between entropy and mutual information is defined as:

I(X;Y ) = N(X)−N(X|Y ) (8.4)

It is the reduction in uncertainty of X due to knowledge of Y. The mutual in-

formation of a random variable with itself is the entropy of a random variable, also

sometimes referred to as self-information.

The relative entropy is also referred to as the Kullback-Leibler divergence. The

Kullback-Leibler (KL) [16] divergence is a widely used tool in statistics and pattern

recognition. It is not a true distance between distributions since it is not symmetric

and does not satisfy the triangular inequality.

The KL-divergence or the relative entropy, between two probability density func-

tions f(x) and g(x) is given as,

D(f ||g) =

∫
f(x) log

f(x)

g(x)
dx (8.5)

For two Gaussians f and g, the KL divergence has a closed formed expression,

D(f̂ ||ĝ) =
1

2
[log
|Σĝ|
|Σf̂ |

+ Tr[|Σĝ|−1|Σf̂ |]− d+ (µf̂ − µĝ)
T |Σĝ|−1|(µf̂ − µĝ)] (8.6)

where, mean is defined as

µf = E{x} =

∫ ∞
−∞

xf(x)dx (8.7)



61

and σ2 is defined as

σ2
f =

∫ ∞
−∞

(x− E{x})2f(x)dx (8.8)

= E{(x− E{x})2} (8.9)

The divergence satisfies three properties which are as follows:

• Self similarity: D(f ‖ f) = 0

This means that the KL divergence of a normal distribution with itself is zero.

• Self identification: D(f ‖ g) = 0 only if f = g

This means that if KL divergence of one distribution with other distribution is

zero then it means that the other distribution is simply the same distribution.

• Positivity: D(f ‖ g) ≥ 0 for all f, g

This means that the KL divergence between any two distributions is always

zero or positive.

8.1 KL Divergence Between Gaussian Mixture Models

The KL divergence between two Gaussian Mixture Models (GMMs) is frequently

needed in the fields of speech and image recognition. Unfortunately, no such closed-

form exists for the KL divergence between two GMMs, nor does any efficient com-

putational algorithm exist. In that case, to calculate the KL divergence between

two Gaussian Mixture Models different strategies can be employed. For example,

KL divergence can be calculated by taking all component from one GMM with all

component from the other GMM or by correlating one component from one GMM to

any one of the components in the other GMM.

In this work, KL divergence is calculated in the range range-rate space, Geocentric

Equatorial frame, Keplerian orbital elements space and Delaunay orbital elements

space to draw a comparison in different spaces. The difference in KL divergence can
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arise from the fact that in different element spaces, the mean and covariance differ

because of non-linear dynamics employed for transformation.

For finding out the Kullback-Leibler divergence between two Gaussian Mixture

Models, two strategies have been developed which are given below.

8.1.1 All Components

In this approach, each mean from one Gaussian Mixture Model is correlated with

all the means in another Gaussian Mixture Model taken one at a time (refer 8.1). This

way total value of divergence is taken as the sum of KL divergence calculated using

all of these combinations. For example, if a GMM has two components and another

has three components, then two components from GMM one are correlated with all

the three components of GMM two. Therefore, there are a total of six combinations

possible and all of these are taken for finding KL divergence which is then divided

by the number of such combinations. The KL divergence value of a component with

itself is zero as it is the same distribution. But in this case, all the combinations of

components are taken which results in non-zero value of KL divergence even for the

GMM with itself. This happens because even for the same GMM, the components

are separated from each other and therefore KL divergence gives us an average of how

far each component is from other components in the same GMM.

8.1.2 Using Optimized Matching

This approach is based on the principle of the linear assignment problem. The

linear assignment problem is a way of assigning rows to columns such that each

row is assigned to a column and the total cost of the assignments is minimized (or

maximized). The cost of assigning each row to each column is captured in a cost

matrix. The entry cost(i,j) is the cost of assigning row i to column j. Therefore, each

mean from one GMM distribution is matched with one mean from the other GMM

such that the total of the distance between all matched means is minimized (refer 8.2.
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This implementation is done using matchpairs function in Matlab. If KL divergence

is calculated for a GMM with itself, then matchpairs associates the component with

itself because it is closest to itself. Therefore, each component is associated with itself.

This gives KL divergence value as zero because it is calculating the average of KL

divergence between two same distributions. Whereas when two different GMMs are

selected, for example before and after the EKF propagation, the position of mean has

shifted and also the shape of the uncertainty has changed, therefore KL divergence

gives a non-zero value.

Fig. 8.1.: All components with all components for two GMMs

Fig. 8.2.: Optimized matching of components for two GMMs
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9. MONTE-CARLO SIMULATIONS

In a non-linear transformation, Gaussianity is not preserved. For such transforma-

tions, the linearization using Jacobians is employed for approximating the probability

distributions and in turn, the new obtained distribution is not Gaussian in nature.

Since state and uncertainty associated with an object are transformed within several

coordinate systems and orbital element spaces, Monte-Carlo simulation is performed

to check if the transformation between these spaces/coordinate systems can be ap-

proximated as linear. A random number generator is used to generate measurements

(range, range-rate) around each mean in the Topocentric Equatorial system. These

measurements are then transformed to the Geocentric Equatorial coordinate system

using the equations in section 3.2. The corresponding mean and covariance are also

transformed from Topocentric Equatorial coordinate system to Geocentric Equatorial

coordinate system. The location of the state vector of these points with respect to the

corresponding mean will provide a true representation of uncertainty transformation

from measurement to state space.

If this transformation is well approximated as linear, then state vector associated

with generated points will be well aligned with the standard deviation intervals of

transformed covariance.

Mathematically, this can be illustrated by calculating Mahalanobis distance (MD)

[29], which is the measure of the distance between a point and a distribution in terms

of standard deviations of that distribution.

MD = (X − X̃).(PX).(X − X̃)T (9.1)

If the transformation from one space to another is linear then the average MD of

all the points will be equal to the dimension of the state:
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M̃D =
1

Np

Np∑
j=1

MDj = 6 (9.2)

where, Np denotes the number of Monte-Carlo points.

Geocentric Equatorial Coordinate System To Keplerian Orbital Element

Space

Mean, covariance and Monte-Carlo points are transformed from Geocentric Equa-

torial Coordinate system to Keplerian orbital element space using the equations from

section 4.1. Mahalanobis distance is then calculated using these transformed points,

means and covariances.

Keplerian Orbital Element Space to Delaunay Orbital Element Space

Mean, covariance and Monte-Carlo points are transformed from Keplerian orbital

element space to Delaunay orbital element space using the equations from section 4.2.

Mahalanobis distance is then calculated using these transformed points, means and

covariances.

To check how well does the linearization work, a GEO object with given angular

measurements is taken

α = 1.6542 α̇ = 7.3055e− 05 (9.3)

δ = 0.0240 δ̇ = −4.6598e− 06 (9.4)

These measurements are then used to create the admissible region which is further

approximated as GMM. The mean and covariance associated with GMM are in the

Topocentric Equatorial coordinate system. As shown in this chapter, Np = 10000

points are generated around these means which are further transformed to Cartesian

coordinates, Keplerian orbital elements and Delaunay orbital elements subsequently.
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Further, Mahalanobis distance is calculated using these points and the associated

mean to see how far these points are located from the distribution in terms of its

standard deviation. Figure 9.1 shows the distribution of points in range and range-

rate space generated using random number generator. Figure 9.2 shows the position

of Monte-Carlo points and mean transformed to Keplerian orbital elements. Figure

9.3 shows the position of Monte-Carlo points and mean transformed to Delaunay

orbital elements.

Fig. 9.1.: Position of Monte-Carlo points and mean in range range-rate space



67

(a) RAAN vs argument of periapsis (b) Argument of periapsis vs semimajor axis

Fig. 9.2.: Position of Monte-Carlo points and mean transformed to Keplerian orbital
elements

(a) h vs H (b) g vs G

Fig. 9.3.: Position of Monte-Carlo points and mean transformed to Delaunay orbital
elements

Table 9.1.: Mahalanobis distance in different frames

Coordinate frame/Orbital element space Mahalanobis distance
Range range-rate 1.9971

Cartesian coordinates 1.9971
Keplerian orbital element space 2.1487e+21
Delaunay orbital element space 6.2982e+11
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The Mahalanobis distance in range range-rate frame comes out to be 1.9971 which

is approximately equal to the dimension of covariance matrices in range range-rate

space. This is because no transformation is done for calculating MH distance here.

The value of MH distance in Cartesian coordinates is 1.9971, in Keplerian orbital

elements is 2.1487e+21 and in Delaunay orbits elements is 6.2982e+11. These values

are not close to dimension six of covariance matrices in the respective frames. This

happens because the transformation is non-linear and Jacobians is just a way of

linearizing the non-linear transformation.
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10. SIMULATION MODEL

All the previous chapters have provided the necessary background to implement our

method for solving the linkage problem. This chapter discusses the overall flow of

simulations done for this work. It includes a sensor measurement model, target motion

model and simulation procedure.

10.1 Sensor Measurement Model

Sensor measurements are observed using optical sensors in the Topocentric Equa-

torial system. The measurements consist of right ascension (α), declination (δ), rate

of change of right ascension with time (α̇) and rate of change of declination angle

(δ̇). The error in the measurements angles is taken to be 2.5 arc second in α, 2.3 arc

second in δ, 0.5 arc second per second in α̇ and 0.4 arc second per second in δ̇. Using

Topocentric Equatorial position and velocity, α, δ, α̇ and δ̇ can be found out using

equation 3.3 and the ones given below.

α̇ =
xẏ − yẋ
r̃2

(10.1)

δ̇ =
r̃

r2

(
ż − z(xẋ+ yẏ)

r̃2

)
(10.2)

Therefore, z = [α, α̇, δ, δ̇] (10.3)
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10.2 Target Motion Model

The target motion model is assumed to be the Two-body motion model where the

central body is the Earth and the other body is the object. The equation of motion

of the object with respect to Earth can be given as

~̈r = − µ~r

|r|3

where, ~r = xêx + yêy + zêz |r| =
√
x2 + y2 + z2

(10.4)

where ~r is the position vector of the object in the Geocentric Equatorial coordinate

system (section 3.1), µ is the Gravitational parameter of Earth.

For finding the dynamics Jacobian (refer equation 7.9), let the state of the object

be denoted by X = [x, y, z, ẋ, ẏ, ż] which is nothing but the geocentric position and

velocity of the object. Therefore, the dimension of the state nx = 6. Then, the

dynamic state equation can be given by:

Ẋ = F (X)X (10.5)

F (X) =
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∂ẋ

∂ẋ
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∂ẍ
∂ẋ
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˙
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ẏ
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0 0 0 0 0 1

− µx
|r|3 0 0 0 0 0

0 − µy
|r|3 0 0 0 0

0 0 − µz
|r|3 0 0 0
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ẏ
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(10.7)

10.3 Simulation Procedure

Given a set of TSAs, these simulations aim to solve the correlation problem. These

TSAs are generated from the TLE set of the catalogued GEO and LEO objects from

space-track.org. The TLE, when propagated through SGP4 propagator, gives the

geocentric position and velocity at a given epoch. This position and velocity is used

to generate the measurement angles z = [α, α̇, δ, δ̇] or the TSA. These measurement

angles when combined with the range and range-rate values, give all the possible or-

bits related to these angles and the region obtained is called the Admissible Region.

Consider a set of measurement angles belonging to object one obtained at time t1.

This measurement is used to generate the Admissible Region, which in turn is ap-

proximated using a Gaussian Mixture Model. The output of this process is a GMM

obtained from object one at time t1. The measurement from object one is tested

against measurement taken from object two at time t2. Therefore, the same process

is followed to get GMM from object two at time t2. To bring both the measurements

at the same time, GMM from the measurement of object one is propagated to time

t2 using the Extended Kalman filter. This step brings the GMM of both objects

at the same time t2. Thereafter, the overlap between two GMMs can be calculated

using KL divergence. To test which coordinate frame or orbital elemental space work

better, KL divergence can be calculated by range range-rate space, Cartesian coordi-

nates, Keplerian orbital elements and Delaunay elements by transforming the GMMs

to these spaces. The state of an object changes continuously in range range-rate and
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Cartesian coordinates so it is expected that the KL divergence values may not show

less overlap even if it is the same object. In the case of Keplerian orbital elements, five

out of six orbital elements remain fixed for the same object even after propagation

using two-body dynamics and therefore it is expected that the KL divergence will

be able to distinguish better in this frame. The same is true for Delaunay orbital

elements as only the mean anomaly of an object changes with time.

10.3.1 GEO Objects

In this model, Geocentric Equatorial positions and velocities are used to obtain

a set of measurements, z = [α, α̇, δ, δ̇]. These positions and velocities are generated

from SGP4 propagator by using Two-line element data. The Two-line data is publicly

available at space-track.org. The TLE set of the catalogued GEO and LEO objects

are taken.

Admissible Region

Once the angular measurement data is obtained, an Admissible Region can be

created if the position and velocity of topocenter are known. These measurements

along with a set of range values are used to create an Admissible Region. The range

of range values is taken from 20000 km to 47000 km for Geostationary orbits.

The epoch for generating all these measurements is taken to be 8th April, 2019.

The geographical latitude and latitude of the observer is taken to be 0.01259◦ North

and 127◦ West, respectively. The radius of Earth is taken to be 6378.14 km and the

angular velocity of Earth is taken to be 7.2921159e-5. Refer section 5.1 for more

details.



73

Creating Bivariate GMM From Admissible Region

The created Admissible Region can be approximated using bivariate GMM for its

probabilistic analysis. Given values for σρ,max and σρ̇,max, number of components in

both range and range-rate direction can be found out. Each set of measurement will

produce different Admissible Region, which in turn will give a different number of

components with fixed σρ,max and σρ̇,max. To maintain the uniformity for all cases,

the number of components is fixed for each object. Here, each Admissible Region

is approximated using 800 components. Finally, GMM will comprise of mean and

covariances associated with these 800 components. Refer chapter 6 for more details.

Propagation Mean and Covariance Using Extended Kalman Filter

The mean and covariance obtained in the previous step are in the Topocentric

Equatorial coordinate system. So, firstly these mean and covariances are transformed

into the state vector and the covariance matrix in the Geocentric Equatorial coor-

dinate system (refer 3.2). These transformed mean and covariance are propagated

through Runge-Kutta of order 45 numerical integrator using Extended Kalman filter

(refer 7.2). The time of propagation is varied for testing the KL divergence with time.

For this propagation, the model is taken without any process noise. These propa-

gated mean and covariance is then transformed to various orbital element spaces for

evaluating KL divergence.

Calculating Kullback-Leibler Divergence

The propagated mean and covariance in the Geocentric Equatorial coordinate

system are transformed back to the Topocentric Equatorial system. They are also

transformed to Keplerian orbital element (refer 4.1) space and Delaunay orbital ele-

ment space (refer 4.2). The KL divergence is calculated in the following spaces using

(1) all components (refer 8.1.1) and (2) optimized pair matching (refer 8.1.2).
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• Topocentric Equatorial coordinate system

• Geocentric Equatorial coordinate system

• Keplerian Orbital element space

• Delaunay Orbital element space

The flow chart given below show how KL divergence is calculated

Fig. 10.1.: Flowchart for finding KL divergence of object 1 with itself after EKF

Fig. 10.2.: Flowchart for finding KL divergence of object 1 with object 2

10.3.2 LEO Objects

For LEO objects, the same procedure is followed for finding the overlap between

two TSAs. The range of range values is taken from 100 km to 3000 km for Low earth
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orbits. The geographical latitude and latitude of the observer is taken to be 40.4237◦

North and 86.9212◦ West, respectively. All the other parameters are taken the same

as for GEO objects.
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11. RESULTS

Simulations for GEO object are divided into three scenarios: (1) visible GEO objects

are taken from TLE data and these are then propagated in Cartesian coordinates

during Extended Kalman filter; (2) visible GEO are sorted with respect to one single

object so as the behaviour of KL divergence can be studied if the orbits are close

together; (3) visible GEO objects are taken from TLE data and these are then prop-

agated in Keplerian orbital elements during Extended Kalman filter. This is done

because for a two-body dynamics, the propagation in Keplerian orbital elements will

only change mean anomaly keeping other quantities as constant and also the trans-

formation from Cartesian coordinates to Keplerian orbital elements after EKF can

be eliminated. All of these three scenarios are propagated for 10 minutes, 30 minutes

and 500 minutes to see the change in behavior of KL divergence with respect to time.

For the LEO orbits, the visibility of an object from a topocenter keeps changing

because the position of LEO objects with respect to the position of the topocenter

doesn’t remain fixed. This is because both of them move at different rates. The LEO

objects are also propagated for two scenarios: (1) visible GEO objects are taken from

TLE data and these are then propagated in Cartesian coordinates during Extended

Kalman filter; (2) objects are taken irrespective of their visibility but those objects

which have magnitude of position less than the radius of the Earth after Extended

Kalman filter are eliminated. Scenario 1 is propagated for 3 minutes and 10 minutes.

Scenario 2 is propagated for 3 minutes and 10 minutes.

11.1 GEO Unsorted And Propagated In Cartesian Coordinates

This section presents results for variation of KL divergence when 50 objects are

taken at random and then these 50 objects are paired to make 25 cases. The only
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criteria used for selecting these 50 objects is that they are visible from the topocenter

for the whole duration of propagation. These 25 cases are propagated for 10 minutes,

30 minutes and 500 minutes each to see how KL divergence changes with time. The

KL values are also calculated in different frames to draw more information about its

behaviour. The main difference in this section and section 11.3 is the way Extended

Kalman filter is being initiated and propagated. In this section, the propagation

in EKF takes place in Cartesian coordinates i.e geocentric position and velocity. For

section 11.3, the propagation in EKF takes place in Keplerian orbital elements. Figure

11.1 shows the orbits of the objects taken for finding the overlap.

Fig. 11.1.: Plot of GEO objects
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GEO scenario 1: Propagation Time-10 minutes

(a) in range range-rate space (b) in Cartesian coordinates

(c) in Keplerian orbital elements (d) in Delaunay orbital elements

Fig. 11.2.: Plot for KL divergence vs case number. a) in range range-rate space b) in
Cartesian coordinates c) in Keplerian orbital elements d) in Delaunay orbital elements
for 10 minutes propagation time using optimized matching of components

Figure 11.2 shows the plot for KL divergence (y-axis) for different frames with

respect to each case (x-axis) for 10 minutes propagation time. For each case, optimized

matching of components is used for calculation of KL divergence as discussed in

section 8.1.2. Here, the green line represents KL divergence between GMM of object

1 with itself obtained from TSA at time t2. The red line represents KL divergence

between two GMMs of object 1 obtained from TSA at time t2 and GMM propagation

from time t1 to t2 using Extended Kalman filter. The red line, hence, represents a

correct or true correlation, when both TSAs stem indeed from the same object. For
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the correlation in range-rate, one can see that nevertheless, the KL divergence is not

exactly zero (compare with green, when the AR is correlated with itself directly).

The reason for this is that the shape of the Admissible Region, even over short time

intervals is not constant. The orbits that fall into the Admissible Region at time t1

are different ones than at time t2 even for the very same object. This is because the

Admissible Region is an observer to orbit geometry dependent. Lastly, the blue line

represents the KL divergence between GMM of object 2 obtained from TSA at time

t2 and GMM of object 1 obtained from uncertainty propagation from time t1 to t2

using Extended Kalman filter. In 11.2 part b), the red line represents again the KL

between the TSAs of object 1. Here, it can be seen that the line is right on top of the

green line. For a two-body orbit, the Cartesian coordinates are indeed reproducing

from time t1 propagated to time t2. Linearization effects are negligible over this very

short propagation time. In c), the same TSA correlation is shown in Keplerian orbital

elements. Here, it can be seen that except in two cases the red line is right on top of

the green line. The low KL divergence is expected as orbital elements are constant for

the same orbit. The two cases, case 6 and 18 may be attributed to linearization errors.

In Delaunay orbital elements, part d) of the figure, as the elements are reproducing

for the same orbit in the two-body assumption, the expected correlation is shown:

the red line is right on top of the green one. The numeric difference between them is

not zero but of the order 10e+11.
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(a) in range range-rate space (b) in Cartesian coordinates

(c) in Keplerian orbital elements (d) in Delaunay orbital elements

Fig. 11.3.: Plot for KL divergence vs case number. a) in range range-rate space b) in
Cartesian coordinates c) in Keplerian orbital elements d) in Delaunay orbital elements
for 10 minutes propagation time using all components

Figure 11.3 shows the plot for KL divergence for different frames with respect

to each case for 10 of minutes propagation time. For each case, all components are

used for the calculation of KL divergence as discussed in section 8.1.1. Here, the

green line represents KL divergence between GMM of object 1 with itself obtained

from TSA at time t2. Here, the KL divergence of an object with itself is not zero

because a combination of all the components is used for calculation of KL divergence

(green line). The red line represents KL divergence between two GMMs of object

1 obtained from TSA at time t2 and GMM propagation from time t1 to t2 using

Extended Kalman filter. In the figure (a), (c) and (d), green line and red line are

still closely following each other in the pattern but the overall value of KL divergence
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has increased since all the components are used for evaluation. Lastly, the blue line

represents the KL divergence between GMM of object 2 obtained from TSA at time t2

and GMM of object 1 obtained from uncertainty propagation from time t1 to t2 using

Extended Kalman filter. As the value of KL divergence has increased, the blue line

also lies in the same range of KL divergence values as the green and red line do for the

figure (a),(c) and (d). This means that the differences are exacerbated rather than

the similarities. No clear criterion of KL level can be found to discriminate the correct

and the wrong correlation. Whereas, for the figure (b) in Cartesian coordinates, the

red and the green lie close to each other and are easily distinguishable from the blue

line. This is because the GMM after EKF has not undergone any linearization for

transformation to other space and therefore shows the expected trend.
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GEO scenario 1: Propagation time-30 minutes

(a) in range range-rate space (b) in Cartesian coordinates

(c) in Keplerian orbital elements (d) in Delaunay orbital elements

Fig. 11.4.: Plot for KL divergence vs case number. a) in range range-rate space b) in
Cartesian coordinates c) in Keplerian orbital elements d) in Delaunay orbital elements
for 30 minutes propagation time using optimized matching of components

Figure 11.4 shows the plot for KL divergence for different frames with respect to

each case for 30 minutes of propagation time. For each case, optimized matching

of components is used for calculation of KL divergence as discussed in section 8.1.2.

Here, the green line represents KL divergence between GMM of object 1 with itself

obtained from TSA at time t2. Each point on the green line is zero because opti-

mized matching between the same GMM associates the same component with itself,

therefore, there is no divergence for all 4 cases. The red line represents KL divergence

between two GMMs of object 1 obtained from TSA at time t2 and GMM propagation
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from time t1 to t2 using Extended Kalman filter. For 30 minutes, there is an increase

in the level of KL as compared to 10 minutes propagation time. This happens because

the Admissible Region has changed even more for 30 minutes duration as compared

to 10 minutes duration in the previous case because of an observer to orbit geometry

change with time. Therefore, the Admissible Region at time t2 now encompasses

more different orbits. In figure (a), the green and red line show more difference in KL

values in the range range-rate frame because the Admissible Region changes its shape

with the observer to orbit geometry. In figure (c) and (d), the red line is much closer

to the green line because most of the orbital elements in the Keplerian and Delaunay

orbital element space remain fixed with time for a two-body motion. In the figure

(d), it is clear that the KL values of points on the red line which are farther than the

green line in Keplerian orbital element have further increased. This is due to the lin-

earization arising due to the transformation from frame to another. In figure (b), the

green line still is closely followed by the red line because for 30 minutes propagation

in GEO the object hasn’t travelled too far.

Lastly, the blue line represents the KL divergence between GMM of object 2

obtained from TSA at time t2 and GMM of object 1 obtained from uncertainty

propagation from time t1 to t2 using Extended Kalman filter. For figure (a), there is

a significant difference in blue and green line but due to increased level of KL values

for the red line, it is difficult to comment on correlation based on KL values for some

cases like 5 and 15. The same happens with case 13 of figure (c). In figure (d), as

KL values on red line have increased further, more cases with KL values are higher

for the red line as compared with blue line can be found. However, in figure (b), the

blue line has a higher level of KL values as compared with the red and green line.

Therefore, the correlation can be easily done for all cases except 5, 13, 15, 19 and 25.



84

(a) in range range-rate space (b) in Cartesian coordinates

(c) in Keplerian orbital elements (d) in Delaunay orbital elements

Fig. 11.5.: Plot for KL divergence vs case number. a) in range range-rate space b) in
Cartesian coordinates c) in Keplerian orbital elements d) in Delaunay orbital elements
for 30 minutes propagation time using all components

Figure 11.5 shows the plot for KL divergence for different frames with respect to

each case for 30 minutes propagation of time. For each case, all components are used

for the calculation of KL divergence as discussed in section 8.1.1. Here, the green line

represents KL divergence between GMM of object 1 with itself obtained from TSA

at time t2. As seen previously, the KL values on the green line are not zero because a

combination of all the components is used for the calculation of KL divergence. The

red line represents KL divergence between two GMMs of object 1 obtained from TSA

at time t2 and GMM propagation from time t1 to t2 using Extended Kalman filter.

For part (a), as the Admissible Region has changed more for 30 minutes propagation

time with respect to the Admissible Region for 10 minutes propagation time, the
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difference in KL values of green and red line has increased. For part (b), the green

line is still closely followed by the red line. For part (c) and (d), the KL values for

some cases on green line become higher than the red line. This might be because of

a combination of two things: the object has travelled for a longer time as compared

to 10 minutes, and transformation to other spaces has affected the KL values due to

linearization.

Lastly, the blue line represents the KL divergence between GMM of object 2

obtained from TSA at time t2 and GMM of object 1 obtained from uncertainty

propagation from time t1 to t2 using Extended Kalman filter. Using all components

has increased the level of KL values. In part (a), the KL values for the blue line are

still higher than the red and green line for more than half the cases. In part (b),

the KL values on the blue line can be easily distinguished from the green and red

line. This is because KL divergence is calculated in Cartesian coordinates which is

the same frame used for EKF propagation. In part (c) and (d), the KL values for

green, red and blue line lie close to each other, therefore, making it hard to comment

on the correlation.
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GEO scenario 1: Propagation Time-500 minutes

(a) in range range-rate space (b) in Cartesian coordinates

(c) in Keplerian orbital elements (d) in Delaunay orbital elements

Fig. 11.6.: Plot for KL divergence vs case number. a) in range range-rate space b) in
Cartesian coordinates c) in Keplerian orbital elements d) in Delaunay orbital elements
for 500 minutes propagation time using optimized matching of components

Figure 11.6 shows the plot for KL divergence for different frames with respect to

each case for 500 minutes of propagation time. For each case, optimized matching

of components is used for calculation of KL divergence as discussed in section 8.1.2.

Here, the green line represents KL divergence between GMM of object 1 with itself

obtained from TSA at time t2. For all parts, the KL values for all cases are equal to

zero as matchpairs function maps the component with itself if the same GMM is given.

The red line represents KL divergence between two GMMs of object 1 obtained from

TSA at time t2 and GMM propagation from time t1 to t2 using Extended Kalman
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filter. For part (a), the red line is far apart from the green line as the Admissible

Region has changed a lot for 500 minutes propagation time due to observer to orbit

geometry. For part (b), a similar trend is seen for the red curve as the object has

moved too far in Cartesian coordinates as well. For part (c) and (d), the red line is far

from the green line as mean anomaly has changed significantly in these orbital element

spaces. Lastly, the blue line represents the KL divergence between GMM of object

2 obtained from TSA at time t2 and GMM of object 1 obtained from uncertainty

propagation from time t1 to t2 using Extended Kalman filter. For part (a) and (b),

the blue line is closely followed by the red line. For part (c) and (d), the KL values

for less than half cases show higher for the blue line as compared to the red line. This

is again due to two reasons: linearization of the non-linear system of equations for

transformation; longer time for propagation.
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(a) in range range-rate space (b) in Cartesian coordinates

(c) in Keplerian orbital elements (d) in Delaunay orbital elements

Fig. 11.7.: Plot for KL divergence vs case number. a) in range range-rate space b) in
Cartesian coordinates c) in Keplerian orbital elements d) in Delaunay orbital elements
for 500 minutes propagation time using all components

Figure 11.7 shows the plot for KL divergence for different frames with respect to

each case for 500 minutes of propagation time. For each case, all components are used

for the calculation of KL divergence as discussed in section 8.1.1. Here, the green line

represents KL divergence between GMM of object 1 with itself obtained from TSA at

time t2. For all parts, the KL values on the green line are non zero as all components

are used. In part (b), the green line looks close to x-axis because the green line is of

order 107 whereas the KL values on the red and blue line are of order 1015. The red

line represents KL divergence between two GMMs of object 1 obtained from TSA at

time t2 and GMM propagation from time t1 to t2 using Extended Kalman filter. For

500 minutes, the Admissible Region has much more different orbits as compared to
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the original Admissible Region. Therefore, the gap between green and red line has

increased much more for part (a) and (b). For part (c) and (d), the green and red

line are close to each other because the orbital elements in Keplerian and Delaunay

orbital elements remain fixed except for mean anomaly. So, there is more overlap in

GMMs of the same object. Lastly, the blue line represents the KL divergence between

GMM of object 2 obtained from TSA at time t2 and GMM of object 1 obtained from

uncertainty propagation from time t1 to t2 using Extended Kalman filter. For part

(a), the blue line is close to the red line for all cases. For part (b), the red line

is farther from the green line as compared to the blue line for most cases. This is

because, for a longer duration, the Gaussian components have moved far for the same

object after EKF. For part (c) and (d), KL values on green, red and blue line do not

show any correlation trend for the majority of cases because the propagation over

longer periods, worsens the linearization errors that are accumulated.

11.2 GEO Sorted And Propagated In Cartesian Coordinates

In the previous section, the GEO objects visible from the topocenter have been

taken at random for each case. For this section, the objects are sorted such that all the

cases have object 1 as common and it is linked with other objects after selecting the

closest objects from the Two-line element data. The first 5 cases have objects which

lie in the following tolerances of first object’s Keplerian orbital elements: semi-major

axis-10 km, eccentricity-0.1, angle of inclination-1◦, the argument of periapsis-15◦

and right ascension of ascending node-10◦. Similarly, the rest 15 objects lie within

tolerances as follows: semi major axis-400 km, eccentricity-0.2, angle of inclination-

15◦, the argument of periapsis-40◦ and right ascension of ascending node-40◦. These

results can give an estimate of how KL divergence behaves if the objects are close to

each other for 10 minutes, 30 minutes and 500 minutes. Figure 11.8 shows the plot

for 21 GEO objects which are taken with orbits close to each other.
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Fig. 11.8.: Plot of GEO objects with orbits close to each other
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GEO Scenario 2: Propagation Time-10 minutes

(a) in range range-rate space (b) in Cartesian coordinates

(c) in Keplerian orbital elements (d) Delaunay orbital elements d)

Fig. 11.9.: Plot for KL divergence vs case number. a) in range range-rate space b) in
Cartesian coordinates c) in Keplerian orbital elements d) in Delaunay orbital elements
for 10 minutes propagation time using optimized matching of components

Figure 11.9 shows the plot for KL divergence for different frames with respect to

each case for 10 minutes of propagation time. For each case, optimized matching

of components is used for calculation of KL divergence as discussed in section 8.1.2.

Here, the green line represents KL divergence between GMM of object 1 with itself

obtained from TSA at time t2. In all parts, the green line has zero KL values because

matchpairs associates the component with itself for the same GMM. The red line

represents KL divergence between two GMMs of object 1 obtained from TSA at time

t2 and GMM propagation from time t1 to t2 using Extended Kalman filter. For all
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parts, the value of KL divergence for the red line is equal for all cases because, for

all the cases, object 1 is fixed. In part (a), the red line is located at close to green

line because the object hasn’t moved too far, therefore, the Admissible Region hasn’t

changed much in range range-rate space. In part (b) also the same trend is followed

for red and green curve because the object has travelled less for 10 minutes. Along

with this, the linearization error accumulated is also less here for part (c) and (d),

so green and red line lie close to each other. Lastly, the blue line represents the KL

divergence between GMM of object 2 obtained from TSA at time t2 and GMM of

object 1 obtained from uncertainty propagation from time t1 to t2 using Extended

Kalman filter. In parts (a) and (b), the KL values for the blue line are much higher

than red line except for 3, 10 and 11. This is because for these cases the objects lie

very close to each other. For part (c) and (d), the blue line is still very higher than the

red line. This is because all orbital elements are constant for the same object except

mean anomaly and errors accumulated due to linearization are less too. Therefore,

correlating the same object is possible in all spaces.
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(a) in range range-rate space (b) in Cartesian coordinates

(c) in Keplerian orbital elements (d) in Delaunay orbital elements

Fig. 11.10.: Plot for KL divergence vs case number. a) in range range-rate space
b) in Cartesian coordinates c) in Keplerian orbital elements d) in Delaunay orbital
elements for 10 minutes propagation time using all components

Figure 11.10 shows the plot for KL divergence for different frames with respect to

each case for 10 minutes of propagation time. For each case, all components are used

for the calculation of KL divergence as discussed in section 8.1.1. Here, the green

line represents KL divergence between GMM of object 1 with itself obtained from

TSA at time t2. For all components, the green line has non-zero KL values as each

component is associated with all the other components for calculating KL divergence.

The red line represents KL divergence between two GMMs of object 1 obtained from

TSA at time t2 and GMM propagation from time t1 to t2 using Extended Kalman

filter. In part (a), the KL values for the red line are higher than the green line

because even for a small duration of time the Admissible Region has changed after
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EKF. For part (b), the value of KL divergence for green and red line differ by order

of magnitude one, therefore, these two lines are fall close to each other. For part (c)

and (d), as the object has just travelled 10 minutes, the mean anomaly has changed

very little (nearly 2.5◦ for a circular orbit). Therefore, both red and green line nearly

overlap the green line. Lastly, the blue line represents the KL divergence between

GMM of object 2 obtained from TSA at time t2 and GMM of object 1 obtained from

uncertainty propagation from time t1 to t2 using Extended Kalman filter. For part

(a), the KL values for the blue line are smaller than the KL values on the red line for

all cases. This is because as the objects are very close to each, the overlap between

Admissible Regions of object 1 with object 2 using all components is more than with

object 1 itself after EKF propagation. Therefore, correlation using KL values will

lead to the wrong correlation of second TSA of with object 2 with object 1. For part

(b), the blue line is well above the green and red line for all cases except 3, 10 and

11. This is because these cases have objects very close to each other. For part (c)

and (d), the KL values of blue lines are still higher than the green and red line for all

cases except 3, 10 and 11 because of orbits being very close to each other.
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GEO Scenario 2: Propagation Time-30 minutes

(a) in range range-rate space (b) in Cartesian coordinates

(c) in Keplerian orbital elements (d) in Delaunay orbital elements

Fig. 11.11.: Plot for KL divergence vs case number. a) in range range-rate space
b) in Cartesian coordinates c) in Keplerian orbital elements d) in Delaunay orbital
elements for 30 minutes propagation time using optimized matching of components

Figure 11.11 shows the plot for KL divergence for different frames with respect

to each case for 30 minutes of propagation time. For each case, optimized matching

of components is used for calculation of KL divergence as discussed in section 8.1.2.

Here, the green line represents KL divergence between GMM of object 1 with itself

obtained from TSA at time t2. For all parts, the KL values on the green line are

zero as each component in the GMM of the Admissible Region is associated with

itself by matchpairs. The red line represents KL divergence between two GMMs of

object 1 obtained from TSA at time t2 and GMM propagation from time t1 to t2
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using Extended Kalman filter. The value of KL divergence on the red line and green

line are of the same order with an increased gap in between them as compared to

figure 11.9 part (a). This is because the Admissible Region has changed more for 30

minutes of propagation time as compared to 10 minutes propagation time. In part

(b), the trend is similar to figure 11.9 part (b) with an increased value of KL on the

red line. For part (c) and (d), the KL value on the red line has increased by an order

of magnitude one compared to figure 11.9 part (c) and part (d). Lastly, the blue line

represents the KL divergence between GMM of object 2 obtained from TSA at time

t2 and GMM of object 1 obtained from uncertainty propagation from time t1 to t2

using Extended Kalman filter. For part (a), the KL values on the blue line are higher

for all cases except for cases 3, 5, 11, 12 and 15. This is because of more change in

observer to orbit geometry which leads to some points on the red line giving higher

value than the blue line. For part (b), the blue line shows higher KL divergence as

compared to the red line. This is because in Cartesian coordinates, the object has

moved less even for 30 minutes and thereby causing less change in GMM in Cartesian

coordinates. For part (c) and (d), the KL values for the blue line is still higher than

red line even after the transformation to these spaces which is because the errors

accumulated due to linearization is less.
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(a) in range range-rate space (b) in Cartesian coordinates

(c) in Keplerian orbital elements (d) in Delaunay orbital elements

Fig. 11.12.: Plot for KL divergence vs case number. a) in range range-rate space
b) in Cartesian coordinates c) in Keplerian orbital elements d) in Delaunay orbital
elements for 30 minutes propagation time using all components

Figure 11.12 shows the plot for KL divergence for different frames with respect

to each case for 30 minutes of propagation time. For each case, all components are

used for the calculation of KL divergence as discussed in section 8.1.1. Here, the

green line represents KL divergence between GMM of object 1 with itself obtained

from TSA at time t2. For all parts, the KL values on the green line are non-zero as

all components are used. The red line represents KL divergence between two GMMs

of object 1 obtained from TSA at time t2 and GMM propagation from time t1 to t2

using Extended Kalman filter. For part (a), the gap between red and green line has

increased even more compared to the figure 11.10 part (a), because the Admissible

Region has changed more for 30 minutes as compared to 10 minutes due to observer
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to orbit geometry change. For part (b), the KL values for the red line are higher

than the green line by order of magnitude two. For part (c) and (d), the value of KL

on green and red line are of the same order of magnitude with KL values on green

being higher than the ones on the red line. This is because orbital elements in these

space do not change much for a short duration of time and this is accompanied by

linearization errors adding up due to transformation to these spaces. Lastly, the blue

line represents the KL divergence between GMM of object 2 obtained from TSA at

time t2 and GMM of object 1 obtained from uncertainty propagation from time t1

to t2 using Extended Kalman filter. For part (a), the KL divergence for blue line

lies in between green and red line for 12 cases. This happens because the Admissible

Region has changed more for 30 minute propagation time. As these cases have objects

which are close to each other in orbits, it is not easily distinguishable by KL values

to determine the correlation between two same objects. For part (b), the KL values

on the blue line are still higher than KL values on red line by at least an order

of magnitude two. This is because the object has not travelled far for 30 minutes

duration time in Cartesian coordinates. For part (c) and (d), the KL values on the

red, green and blue line are nearly the same order. The blue line still has higher KL

values and therefore can easily determine correlation in these spaces except for case

3, 15 and 15.
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GEO Scenario 2: Propagation Time-500 minutes

(a) in range range-rate space (b) in Cartesian coordinates

(c) in Keplerian orbital elements (d) in Delaunay orbital elements

Fig. 11.13.: Plot for KL divergence vs case number. a) in range range-rate space
b) in Cartesian coordinates c) in Keplerian orbital elements d) in Delaunay orbital
elements for 500 minutes propagation time using optimized matching of components

Figure 11.13 shows the plot for KL divergence for different frames with respect to

each case for 500 minutes of propagation time. For each case, optimized matching of

components is used for the calculation of KL divergence as discussed in section 8.1.2.

Here, the green line represents KL divergence between GMM of object 1 with itself

obtained from TSA at time t2. For all parts, the KL values on the green line are

zero as the matchpairs matches the component with itself. The red line represents

KL divergence between two GMMs of object 1 obtained from TSA at time t2 and

GMM propagation from time t1 to t2 using Extended Kalman filter. For part (a), the
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gap between KL values of green and red line has increased even more as compared

to figure 11.11 part (a). This is because the Admissible Region has changed and

now has more new orbits for 500 minutes of propagation time as compared to the 30

minutes propagation time due to changes in observation geometry. In part (b), as

the propagation time has significantly increased, the KL level has also gone up for

the red line. There is a difference of 8 in the order of magnitude of the green and

red line. This is because the Cartesian coordinates of the objects are way far from

the original coordinates. For part (c) and (d), the same trend is observed for the red

line as compared to the green line. Lastly, the blue line represents the KL divergence

between GMM of object 2 obtained from TSA at time t2 and GMM of object 1

obtained from uncertainty propagation from time t1 to t2 using Extended Kalman

filter. For part (a), the blue line is closely followed by the red line in range range-

rate space. In part (b), the KL values on blue line have higher values as compared

to the red line except for case 11. Therefore, KL values can still be used to show

the correlation with the same object. In part (c) and (d), there is still a significant

difference in KL values of the blue line and red line for about half the cases. Although,

there are more cases for which KL divergence does not show the right correlation.

This is because of the accumulation of more numerical error during transformation

over the period of time.
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(a) in range range-rate space (b) in Cartesian coordinates

(c) in Keplerian orbital elements (d) in Delaunay orbital elements

Fig. 11.14.: Plot for KL divergence vs case number. a) in range range-rate space
b) in Cartesian coordinates c) in Keplerian orbital elements d) in Delaunay orbital
elements for 500 minutes propagation time using all components

Figure 11.14 shows the plot for KL divergence for different frames with respect

to each case for 500 minutes of propagation time. For each case, all components are

used for the calculation of KL divergence as discussed in section 8.1.1. Here, the

green line represents KL divergence between GMM of object 1 with itself obtained

from TSA at time t2. For all plots, the KL values on the green line are non-zero as

all the components are used for finding the KL divergence. The red line represents

KL divergence between two GMMs of object 1 obtained from TSA at time t2 and

GMM propagation from time t1 to t2 using Extended Kalman filter. For part (a), the

difference between KL values on the red line and the green line is of order one. For

part (b), the difference in the order of magnitude of green and red line is two for figure
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11.12 part (b) but for this case, it has increased to the order of eight. This happens

because the object has moved far in the orbit and therefore, the corresponding GMM

in Cartesian coordinates has changed too. For part (c) and (d), the same trend is

followed but both the green and red line are of the same order. This is because, in the

orbital element space, all the orbital elements except mean anomaly do not change

for two-body dynamics therefore the GMMs are close to each other. Lastly, the blue

line represents the KL divergence between GMM of object 2 obtained from TSA at

time t2 and GMM of object 1 obtained from uncertainty propagation from time t1

to t2 using Extended Kalman filter. For part (a), the blue line closely follows the

red line with higher values of KL for red line in most cases. This happens because,

for a longer duration, the object 1’s GMM has more overlap with object 2’s GMM

due to non-linear propagation of GMM during EKF. For part (b), the KL values on

the blue line are higher than the red line except for case 11 and therefore making

it easy to correlate two TSAs from object 1 for most cases. This happens because

the KL divergence is calculated in the same frame as used for EKF propagation so

no transformation to other spaces is taking place. For part (c) and (d), the KL

divergence for the blue line is higher than the KL values on the red line for all cases

except 3 and 11. These exceptions are arising as orbits are very close to each other.

11.3 GEO Unsorted And Propagated In Keplerian Orbital Elements

As mentioned previously, this section shows results for variation of KL divergence

values when the propagation is done in Keplerian orbital elements. The propagation

has been done for 10 minutes, 30 minutes and 500 minutes. The geocentric position

and velocity of an object changes continuously whereas, in the Keplerian orbital el-

ements, only the mean anomaly of an object change continuously and all the other

elements remain fixed. Therefore, it is expected that KL divergence values between

two objects should give higher values as compared to the object itself. The transfor-
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mation to Keplerian orbital elements from Cartesian coordinates after EKF is also

eliminated and this will be reflected by a change in KL divergence values.

GEO Scenario 3: Propagation Time-10 minutes

(a) in range range-rate space (b) in Cartesian coordinates

(c) in Keplerian orbital elements (d) in Delaunay orbital elements

Fig. 11.15.: Plot for KL divergence vs case number. a) in range range-rate space
b) in Cartesian coordinates c) in Keplerian orbital elements d) in Delaunay orbital
elements for 10 minutes propagation (in Keplerian orbital elements) time using opti-
mized matching of components

Figure 11.15 shows the plot for KL divergence for different frames with respect

to each case for 10 minutes of propagation time. For each case, optimized matching

of components is used for calculation of KL divergence as discussed in section 8.1.2.

Here, the green line represents KL divergence between GMM of object 1 with itself
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obtained from TSA at time t2. For all parts, KL values on the green line are zero

as matchpairs associates the component with itself for the same GMM. The red line

represents KL divergence between two GMMs of object 1 obtained from TSA at

time t2 and GMM propagation from time t1 to t2 using Extended Kalman filter in

Keplerian orbital elements. For part (a), the red and green line are separated by

an order of magnitude at least four for all cases. The reason for this is because the

Admissible Region changes even for a short duration and therefore, the association

by matchpairs also changes. For part (b), the KL divergence for the red and green

line has a difference of about 107. This is because the GMM in Cartesian coordinates

has changed its shape even for a small duration of time. For part (c) and (d), the

KL values for red and green line show a similar trend as part (a) and (b). Lastly,

the blue line represents the KL divergence between GMM of object 2 obtained from

TSA at time t2 and GMM of object 1 obtained from uncertainty propagation from

time t1 to t2 using Extended Kalman filter Keplerian orbital elements. For part (a),

the KL values for blue and red line are very close to each other therefore making it

difficult to correlate TSAs. For part (b), the KL values for the blue line are higher

than the red line for all cases except 5, 11, 18 and 24. The same is true for part

(d) in Delaunay elements. This is because the propagation time is less and both the

Cartesian coordinates and Delaunay orbital elements have not changed much in this

duration of time. For part (c), all the cases have higher KL values of the blue line

as compared to the red line. This is because there is no transformation done after

propagation as the EKF is propagated in Keplerian orbital elements.
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(a) in range range-rate space (b) in Cartesian coordinates

(c) in Keplerian orbital elements (d) in Delaunay orbital elements

Fig. 11.16.: Plot for KL divergence vs case number. a) in range range-rate space
b) in Cartesian coordinates c) in Keplerian orbital elements d) in Delaunay orbital
elements for 10 minutes propagation (in Keplerian orbital elements) time using all
components

Figure 11.16 shows the plot for KL divergence for different frames with respect to

each case for 10 minutes of propagation time. For each case, all components are used

for the calculation of KL divergence as discussed in section 8.1.1. Here, the green line

represents KL divergence between GMM of object 1 with itself obtained from TSA

at time t2. In all parts, the KL value on the green line is non-zero as all components

are used for finding the KL divergence.

The red line represents KL divergence between two GMMs of object 1 obtained

from TSA at time t2 and GMM propagation from time t1 to t2 using Extended Kalman

filter in Keplerian orbital elements. For part (a), the KL values on the red line are
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more than green line as the Admissible Region has shifted for 10 minutes propagation

time. For part (b), in Cartesian coordinates, the red line still lies close to the green

line because for two-body dynamics, the GMM in Cartesian coordinates has shifted

but not too much. For part (c) and (d), the KL divergence values using all the

components for the green and red line are close to each other because only mean

anomaly is changing a little for two-body dynamics. Lastly, the blue line represents

the KL divergence between GMM of object 2 obtained from TSA at time t2 and

GMM of object 1 obtained from uncertainty propagation from time t1 to t2 using

Extended Kalman filter Keplerian orbital elements. For part (a), the KL value on the

blue line is higher than the red line for 19 cases. But these KL values lie very close to

each other because the linearization takes place twice in this case for all components,

hence, the errors also increase. For part (b), the KL values for blue line show a clear

difference and hence can be used to correlate TSAs. In part (c) and (d), no such

trend is followed by KL values on blue line because of using all components.
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GEO Scenario 3: Propagation Time-30 minutes

(a) in range range-rate space (b) in Cartesian coordinates

(c) in Keplerian orbital elements (d) in Delaunay orbital elements

Fig. 11.17.: Plot for KL divergence vs case number. a) in range range-rate space
b) in Cartesian coordinates c) in Keplerian orbital elements d) in Delaunay orbital
elements for 30 minutes propagation (in Keplerian orbital elements) time using opti-
mized matching of components

Figure 11.17 shows the plot for KL divergence for different frames with respect

to each case for 30 minutes of propagation time. For each case, optimized match-

ing of components is used for calculation of KL divergence as discussed in section

8.1.2. Here, the green line represents KL divergence between GMM of object 1 with

itself obtained from TSA at time t2. For all parts, the green line shows zero value as

matchpairs associates component with itself for the same GMM. The red line repre-

sents KL divergence between two GMMs of object 1 obtained from TSA at time t2
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and GMM propagation from time t1 to t2 using Extended Kalman filter in Keplerian

orbital elements. For part (a), the red line is higher than the green line by order of

magnitude five at least. This happens because matchpairs associates with the nearest

component for GMM which is not the same component anymore because the GMM

has been propagated. For part (b), green line and red line are separated by an order

of eight. For part (c) and (d), the KL values for the red line are more than green line

because the GMM has changed even for a shorter period time. Lastly, the blue line

represents the KL divergence between GMM of object 2 obtained from TSA at time

t2 and GMM of object 1 obtained from uncertainty propagation from time t1 to t2

using Extended Kalman filter Keplerian orbital elements. In part (a), the KL values

on the blue line are close to the red line because the Admissible Regions of both the

objects lie close to each other. This could be because of the transformation from

Keplerian orbital elements. For part (b), the blue line shows a higher value of KL

divergence as compared to the red line because for 30 minutes the GMM in Cartesian

coordinates still hasn’t changed much. For part (c), all cases except for case 11 show

higher values for the blue line as compared to the red line. Therefore, a correlation

between two TSAs from the same object is still possible. For part (d), more points

on the red line have a higher value than blue line as compared to part (c) because of

numerical errors due to linearization encountered in this case.



109

(a) in range range-rate space (b) in Cartesian coordinates

(c) in Keplerian orbital elements (d) in Delaunay orbital elements

Fig. 11.18.: Plot for KL divergence vs case number. a) in range range-rate space
b) in Cartesian coordinates c) in Keplerian orbital elements d) in Delaunay orbital
elements for 30 minutes propagation (in Keplerian orbital elements) time using all
components

Figure 11.18 shows the plot for KL divergence in different frames with respect to

each case for 30 minutes of propagation time. For each case, all components are used

for the calculation of KL divergence as discussed in section 8.1.1. Here, the green line

represents KL divergence between GMM of object 1 with itself obtained from TSA at

time t2. The KL values for the green line are non-zero for all parts as all components

are used to find the KL divergence. The red line represents KL divergence between

two GMMs of object 1 obtained from TSA at time t2 and GMM propagation from

time t1 to t2 using Extended Kalman filter in Keplerian orbital elements. For part

(a), KL values are nearly the same order for the green and red line as the Admissible
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Region hasn’t changed for 30 minutes. For part (b), the trend is the same as seen in

figure 11.16 part (b). For part (c) and (d), the KL values on red and green line are

of the same order. The GMMs in both these spaces are very close to each other as

orbital elements have not changed much for 30 minutes propagation time.

Lastly, the blue line represents the KL divergence between GMM of object 2

obtained from TSA at time t2 and GMM of object 1 obtained from uncertainty prop-

agation from time t1 to t2 using Extended Kalman filter Keplerian orbital elements.

For part (a), the blue and red line closely follow each other. This is because of the ob-

server to orbit changing in this space along with numerical errors due to linearization.

For part (b), the blue line still has KL values which are much higher than the red

line and therefore, a correlation between two TSAs from the same object can be seen

easily. For part (c) and (d), using all components is bringing all the lines together

and therefore, correlation is not possible here.
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GEO Scenario 3: Propagation Time-500 minutes

(a) in range range-rate space (b) in Cartesian coordinates

(c) in Keplerian orbital elements (d) in Delaunay orbital elements

Fig. 11.19.: Plot for KL divergence vs case number. a) in range range-rate space b) in
Cartesian coordinates c) in Keplerian orbital elements d) in Delaunay orbital elements
for 500 minutes propagation (in Keplerian orbital elements) time using optimized
matching of components

Figure 11.19 shows the plot for KL divergence in different frames with respect to

each case for 500 minutes of propagation time. For each case, optimized matching

of components is used for the calculation of KL divergence as discussed in section

8.1.2. Here, the green line represents KL divergence between GMM of object 1 with

itself obtained from TSA at time t2. The KL value on the green line for all parts

are zero because optimized matching of components is used. The red line represents

KL divergence between two GMMs of object 1 obtained from TSA at time t2 and
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GMM propagation from time t1 to t2 using Extended Kalman filter in Keplerian

orbital elements. For part (a), the red and green line have a difference of an order of

magnitude 7 in them. This arises due to a change in the Admissible Region after EKF

propagation. The same happens in part (b), (c) and (d) where red and green lines are

separated by order of magnitude 14 for KL values. Lastly, the blue line represents the

KL divergence between GMM of object 2 obtained from TSA at time t2 and GMM

of object 1 obtained from uncertainty propagation from time t1 to t2 using Extended

Kalman filter Keplerian orbital elements. For part (a), there is not much difference

in KL values of blue and red line, therefore, making this space a difficult choice for

finding correlation. For part (b), the object has travelled significantly for 500 minutes

thereby changing the GMM after EKF such that the red line has higher points as

compared to the blue line for about more than half of the cases. For part (c), as the

propagation is done in Keplerian orbital elements in which the orbital elements of

the same object should remain same only except mean anomaly, the KL values for

the blue line has higher values since it is a different object except for case 3 and 18.

The same is true for part (d), as Delaunay elements too are constant for a two-body

dynamics of the same object except for mean anomaly. Therefore, even for a longer

duration, Keplerian and Delaunay element space give a better correlation between

TSAs of the same object.
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(a) in range range-rate space (b) in Cartesian coordinates

(c) in Keplerian orbital elements (d) in Delaunay orbital elements

Fig. 11.20.: Plot for KL divergence vs case number. a) in range range-rate space
b) in Cartesian coordinates c) in Keplerian orbital elements d) in Delaunay orbital
elements for 500 minutes propagation (in Keplerian orbital elements) time using all
components

Figure 11.20 shows the plot for KL divergence in different frames with respect to

each case for 500 minutes of propagation time. For each case, all components are used

for the calculation of KL divergence as discussed in section 8.1.1. Here, the green line

represents KL divergence between GMM of object 1 with itself obtained from TSA

at time t2. For all parts, KL values on green line are non-zero as all components are

used for finding KL divergence. The red line represents KL divergence between two

GMMs of object 1 obtained from TSA at time t2 and GMM propagation from time t1

to t2 using Extended Kalman filter in Keplerian orbital elements. In part (a), the KL

values on the red line are of the two orders of magnitude higher than the green line
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because of change in the Admissible Regions. In part (b), the KL values for the red

line are an order of magnitude six higher than the green line because for 500 minutes,

the GMM has changed significantly in Cartesian coordinates. In part (c) and (d), the

red and green line are of the same order in both the frames as these orbital elements do

not change much with time except for mean anomaly in two-body dynamics regime.

Lastly, the blue line represents the KL divergence between GMM of object 2 obtained

from TSA at time t2 and GMM of object 1 obtained from uncertainty propagation

from time t1 to t2 using Extended Kalman filter Keplerian orbital elements. For part

(a), the KL values on green and red line are close to each other and therefore making

it hard to distinguish if the TSAs are from the same object. In part (b), due to longer

duration of propagation, the GMM in Cartesian coordinate has changed considerably

and therefore, for some cases, the red line has a higher value of KL as compared to

the blue line. For part (c) and (d), more than half the points on the blue line show a

lower value than the red line using all components. This worsens the correlation by

making it hard to distinguish whether the TSAs are from the same object.

11.4 LEO Scenario 1

As mentioned previously, there are two ways in which objects in LEO have been

propagated. In LEO scenario 1, only those objects are taken which are visible before

and after the time of propagation i.e angle of elevation is greater than zero at both

times. The time of propagation is taken to be 3 minutes and 10 minutes. The EKF

propagation is done in Cartesian coordinates for all the cases. Figure 11.21 shows the

orbits of the objects taken for finding the overlap.
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Fig. 11.21.: Plot of LEO objects for scenario 1
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LEO Scenario 1: Propagation Time-3 minutes

(a) in range range-rate space (b) in Cartesian coordinates

(c) in Keplerian orbital elements (d) in Delaunay orbital elements

Fig. 11.22.: Plot for KL divergence vs case number. a) in range range-rate space
b) in Cartesian coordinates c) in Keplerian orbital elements d) in Delaunay orbital
elements for 3 minutes propagation time using optimized matching of components

Figure 11.22 shows the plot for KL divergence in different frames with respect to

each case for 3 minutes of propagation time. For each case, optimized matching of

components is used for the calculation of KL divergence as discussed in section 8.1.2.

Here, the green line represents KL divergence between GMM of object 1 with itself

obtained from TSA at time t2. For all parts, the KL value associated with the green

line is zero as optimized matching of components is used. The red line represents KL

divergence between two GMMs of object 1 obtained from TSA at time t2 and GMM

propagation from time t1 to t2 using Extended Kalman filter. For part (a), the red
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and green lines are separated by the order of magnitude six. This happens because

the Admissible Region changes its shape after EKF in range range-rate space due to

observer to orbit geometry change. For part (b), the green and red lines differ by an

order of magnitude 12 but still lie close to each other since the object hasn’t moved

too far in 3 minutes. For part (c) and (d), the green and red line differ by an order of

14 because of change in GMM after EKF propagation for 3 minutes. The numerical

error due to linearization also creep in here and make few points on the red line very

high. Lastly, the blue line represents the KL divergence between GMM of object

2 obtained from TSA at time t2 and GMM of object 1 obtained from uncertainty

propagation from time t1 to t2 using Extended Kalman filter. For part (a), the KL

divergence values on the blue line are higher in most cases because the propagation

time is very less. For part (b), the KL values on the blue line are higher than the

ones on the red line and can be easily distinguished from the red line as compared

to the range range-rate part. For part (c) and (d), the blue and red line are close to

each other and the value of the red line is higher for more cases due to linearization

effect. Therefore, no correlation criteria can be defined here.
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(a) in range range-rate space (b) in Cartesian coordinates

(c) in Keplerian orbital elements (d) in Delaunay orbital elements

Fig. 11.23.: Plot for KL divergence vs case number. a) in range range-rate space
b) in Cartesian coordinates c) in Keplerian orbital elements d) in Delaunay orbital
elements for 3 minutes propagation time using all components

Figure 11.23 shows the plot for KL divergence in different frames with respect

to each case for 3 minutes of propagation time. For each case, all components are

used for the calculation of KL divergence as discussed in section 8.1.1. Here, the

green line represents KL divergence between GMM of object 1 with itself obtained

from TSA at time t2. For all plots, the KL value on the green line is non-zero as all

the components are used for calculating KL divergence. The red line represents KL

divergence between two GMMs of object 1 obtained from TSA at time t2 and GMM

propagation from time t1 to t2 using Extended Kalman filter. For part (a), the red

line now has a higher value than green because of the shift in the Admissible Region

and using all components with all components. For part (b), the red and green lie
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close to each other as the GMM in Cartesian coordinates for 3 minutes still has more

overlap with the same TSA. For part (c) and (d), the KL values for the green and

red line are close to each other but due to linearization, some points on the green

line have even lesser values than the red line. Lastly, the blue line represents the KL

divergence between GMM of object 2 obtained from TSA at time t2 and GMM of

object 1 obtained from uncertainty propagation from time t1 to t2 using Extended

Kalman filter. For part (a), the blue and red line have KL values close to each other

due to change in the Admissible Regions. For part (b), the blue line has a higher

value of KL as compared with KL values on the red line. This is because the duration

of propagation is very less. For part (c) and (d), there is an increase in the KL value

of green line due to using all components. The blue line shows KL values higher than

red and green line only for about 12 cases because of the higher level of KL values

for the green and red line. Therefore, correlation in these two spaces is difficult for

associating two TSAs.
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LEO Scenario 1: Propagation Time-10 minutes

(a) in range range-rate space (b) in Cartesian coordinates

(c) in Keplerian orbital elements (d) in Delaunay orbital elements

Fig. 11.24.: Plot for KL divergence vs case number. a) in range range-rate space
b) in Cartesian coordinates c) in Keplerian orbital elements d) in Delaunay orbital
elements for 10 minutes propagation time using optimized matching of components

Figure 11.24 shows the plot for KL divergence in different frames with respect to

each case for 3 minutes of propagation time. For each case, optimized matching of

components is used for the calculation of KL divergence as discussed in section 8.1.2.

Here, the green line represents KL divergence between GMM of object 1 with itself

obtained from TSA at time t2. For all parts, the KL value associated with the green

line is zero as optimized matching of components is used. The red line represents

KL divergence between two GMMs of object 1 obtained from TSA at time t2 and

GMM propagation from time t1 to t2 using Extended Kalman filter. For part (a),
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the red and green line lie close to each other except for few cases with more gap

between them. This happens because the Admissible Region changes its shape more

for 10 minutes after EKF in range range-rate space due to observer to orbit geometry

change. For part (b), the green and red line differ by an order of magnitude 13 but

still lie close to each other since the object hasn’t moved too far in 3 minutes. For part

(c) and (d), the green and red line differ by an order of 15 because of change in GMM

after EKF propagation for 10 minutes. The numerical error due to linearization also

creep in here and make few points on the red line very high. Lastly, the blue line

represents the KL divergence between GMM of object 2 obtained from TSA at time

t2 and GMM of object 1 obtained from uncertainty propagation from time t1 to t2

using Extended Kalman filter. For part (a), the KL divergence values on the blue

line have fewer points higher than the red line as compared to 3 minutes case because

of more shift in Admissible Region. For part (b), (c)and (d), the KL values on the

blue line are very close to points on the red line, therefore, it is difficult to comment

on correlation based on KL values.
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(a) in range range-rate space (b) in Cartesian coordinates

(c) in Keplerian orbital elements (d) in Delaunay orbital elements

Fig. 11.25.: Plot for KL divergence vs case number. a) in range range-rate space
b) in Cartesian coordinates c) in Keplerian orbital elements d) in Delaunay orbital
elements for 10 minutes propagation time using all components

Figure 11.25 shows the plot for KL divergence in different frames with respect

to each case for 3 minutes of propagation time. For each case, all components are

used for the calculation of KL divergence as discussed in section 8.1.1. Here, the

green line represents KL divergence between GMM of object 1 with itself obtained

from TSA at time t2. For all plots, the KL value on the green line is non-zero as all

the components are used for calculating KL divergence. The red line represents KL

divergence between two GMMs of object 1 obtained from TSA at time t2 and GMM

propagation from time t1 to t2 using Extended Kalman filter. For part (a), the red

line now has a higher value than green because of the shift in the Admissible Region

and using all components with all components. For part (b), the red and green lie
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close to each other as the GMM in Cartesian coordinates for 10 minutes still has more

overlap with the same TSA except for case 5, 14 and 22. For part (c) and (d), the

KL values for the green and red line are close to each other but due to linearization,

some points on the green line have even lesser values than the red line. Lastly, the

blue line represents the KL divergence between GMM of object 2 obtained from TSA

at time t2 and GMM of object 1 obtained from uncertainty propagation from time

t1 to t2 using Extended Kalman filter. For part (a), the blue and red line have KL

values close to each other due to change in the Admissible Regions. For part (b),

the blue line has KL values very close to the red line or much smaller for case 5, 14

and 22. For part (c) and (d), there is an increase in the KL value of green line due

to using all components. The blue line shows KL values very close to red line and

in some cases even smaller than the green line. This is because of the linearization

effect along with using all components. Therefore, correlation in these three spaces

is difficult for associating two TSAs.

11.5 LEO Scenario 2

For LEO scenario 2, objects are taken without taking visibility in the account.

The state and uncertainty related to these objects are propagated using Extended

Kalman filter in Cartesian coordinates. After the propagation, components having a

position of object less than the radius of the Earth are eliminated and the remaining

ones are used for finding the KL divergence analysis. Figure 11.26 shows the orbits

of the objects taken for finding the overlap.
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Fig. 11.26.: Plot of LEO objects for scenario 2
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LEO Scenario 2: Propagation Time-3 minutes

(a) in range range-rate space (b) in Cartesian coordinates

(c) in Keplerian orbital elements (d) in Delaunay orbital elements

Fig. 11.27.: Plot for KL divergence vs case number. a) in range range-rate space
b) in Cartesian coordinates c) in Keplerian orbital elements d) in Delaunay orbital
elements for 3 minutes propagation time using optimized matching of components

Figure 11.27 shows the plot for KL divergence in different frames with respect to

each case for 3 minutes of propagation time. For each case, optimized matching of

components is used for the calculation of KL divergence as discussed in section 8.1.2.

Here, the green line represents KL divergence between GMM of object 1 with itself

obtained from TSA at time t2. For all parts, the KL values for green lines are zero

as optimized matching of components is used. The red line represents KL divergence

between two GMMs of object 1 obtained from TSA at time t2 and GMM propagation

from time t1 to t2 using Extended Kalman filter. For part (a), the red line is closely
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aligned with the green line as the Admissible Region has not changed much for 3

minutes propagation time. For part (b), (c) and (d), the red line is close to green line

except for case 19 in part (c) and (d). This is because the GMM in these spaces too

hasn’t changed much over the propagation time. Lastly, the blue line represents the

KL divergence between GMM of object 2 obtained from TSA at time t2 and GMM

of object 1 obtained from uncertainty propagation from time t1 to t2 using Extended

Kalman filter. For part (a), the KL values for the blue line are higher but are very

close to red line except for cases 2 and 16. This is because the Admissible Region

of second TSA is close to the Admissible Region of first TSA. For part (b), the blue

line gives a higher value of KL as compared to the red line for all cases. For part (c)

and (d), the blue line shows a similar trend with higher KL values for all cases except

case 19 and 25. Even though KL values are higher than the red and green line, it is

difficult to comment on the correlation criteria as they are very close to each other.
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(a) in range range-rate space (b) in Cartesian coordinates

(c) in Keplerian orbital elements (d) in Delaunay orbital elements

Fig. 11.28.: Plot for KL divergence vs case number. a) in range range-rate space
b) in Cartesian coordinates c) in Keplerian orbital elements d) in Delaunay orbital
elements for 3 minutes propagation time using all components

Figure 11.28 shows the plot for KL divergence in different frames with respect

to each case for 3 minutes of propagation time. For each case, all components are

used for the calculation of KL divergence as discussed in section 8.1.1. Here, the

green line represents KL divergence between GMM of object 1 with itself obtained

from TSA at time t2. The KL value of the green line for all parts is non-zero as all

the components are used for finding the KL divergence. The red line represents KL

divergence between two GMMs of object 1 obtained from TSA at time t2 and GMM

propagation from time t1 to t2 using Extended Kalman filter. For part (a) and (b),

the green line still is close to the red line even after using all components. For part

(c) and (d), the KL values for green line go even higher than the red line and this can
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be attributed to the numerical errors accumulated due to linearization. Lastly, the

blue line represents the KL divergence between GMM of object 2 obtained from TSA

at time t2 and GMM of object 1 obtained from uncertainty propagation from time

t1 to t2 using Extended Kalman filter. For part (a), only a few points on the blue

line have a higher value as compared to the red and green line because of using all

components. For part (b), the KL values for the blue line are much higher using all

components and can be used to associate TSAs. For part (c) and (d), the KL value

for the blue line is either too close or are smaller than the green and red line. This is

because of using all components along with linearization for transformation to these

spaces.
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LEO Scenario 2: Propagation Time-10 minutes

(a) in range range-rate space (b) in Cartesian coordinates

(c) in Keplerian orbital elements (d) in Delaunay orbital elements

Fig. 11.29.: Plot for KL divergence vs case number. a) in range range-rate space
b) in Cartesian coordinates c) in Keplerian orbital elements d) in Delaunay orbital
elements for 10 minutes propagation time using optimized matching of components

Figure 11.29 shows the plot for KL divergence in different frames with respect to

each case for 10 minutes of propagation time. For each case, optimized matching of

components is used for the calculation of KL divergence as discussed in section 8.1.2.

Here, the green line represents KL divergence between GMM of object 1 with itself

obtained from TSA at time t2. For all parts, the KL values for the green line are zero

as optimized matching of components is used which associated the component with

itself for the same GMM. The red line represents KL divergence between two GMMs

of object 1 obtained from TSA at time t2 and GMM propagation from time t1 to t2
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using Extended Kalman filter. For part (a), there is an increase in the gap between

the red and green line because the Admissible Region has changed even more for 10

minutes. Similarly, for part (b), the GMM after EKF has changed thereby increasing

the gap between red and green line. For part (c) and (d), the red line is still higher

than the green line due to change in GMMs. Lastly, the blue line represents the KL

divergence between GMM of object 2 obtained from TSA at time t2 and GMM of

object 1 obtained from uncertainty propagation from time t1 to t2 using Extended

Kalman filter. For part (a), the blue line has KL values which are close to KL values

for the red line for more than half the cases. For part (b), the KL value for blue line

are higher than red line except for 4 cases. For part (c) and (d), no such trend exists

for KL values on blue which can be generalized to correlate two TSAs. This happens

because of the transformation to the orbital element spaces.
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(a) in range range-rate space (b) in Cartesian coordinates

(c) in Keplerian orbital elements (d) in Delaunay orbital elements

Fig. 11.30.: Plot for KL divergence vs case number. a) in range range-rate space
b) in Cartesian coordinates c) in Keplerian orbital elements d) in Delaunay orbital
elements for 10 minutes propagation time using all components

Figure 11.30 shows the plot for KL divergence in different frames with respect to

each case for 10 minutes of propagation time. For each case, all components are used

for the calculation of KL divergence as discussed in section 8.1.1. Here, the green

line represents KL divergence between GMM of object 1 with itself obtained from

TSA at time t2. The KL values for the green line are non-zero for all parts as all the

components are used for finding KL divergence. The red line represents KL divergence

between two GMMs of object 1 obtained from TSA at time t2 and GMM propagation

from time t1 to t2 using Extended Kalman filter. For part (a), the KL values red

line is higher than the green line as the Admissible Region has changed EKF due to

change in observation geometry. For part (b), a similar trend is observed for the red
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and green line. For (c) and (d), the green line shows KL values higher than KL values

for the red line because of numerical errors accumulated due to linearization. Lastly,

the blue line represents the KL divergence between GMM of object 2 obtained from

TSA at time t2 and GMM of object 1 obtained from uncertainty propagation from

time t1 to t2 using Extended Kalman filter. For part (a) and (b), the blue line shows

KL values higher than the red and green line for most cases. For part (c) and (d),

the KL values for the green line is highest due to the numerical errors accumulated

along with the use of all components for finding KL divergence.
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12. SUMMARY

12.1 Conclusions

For the detection of new objects, the sky is scanned in an organized manner. These

observations are made mostly with optical sensors for Medium Earth Orbits (MEO)

and Geosynchronous Earth Orbits region (GEO). Each set of observation consists of

two angles and several of these observations together form a Too Short Arc (TSA). For

a newly detected unknown object, one TSA, which cover negligible part of an object’s

orbit, is not sufficient for the initial orbit determination as it only has information on

one set of angles and angle rates. Therefore, it is required to correlate TSAs to find

out if they belong to the same object in order to be able to determine an initial orbit.

For this thesis, the framework of using the Gaussian Mixture Model representation

of the Admissible Region in combination with the Extended Kalman filter is used

for propagating the TSAs to the same epoch. These TSAs are then correlated using

the concept of Kullback-Leibler divergence. The Kullback-Leibler divergence is cal-

culated in different coordinates frames/orbital element spaces to find the best suited

one for finding the overlap between two TSAs most reliably. The different coordinate

frames/ orbital element spaces that are used are range range-rate space, Cartesian

coordinates, Keplerian orbital elements and Delaunay orbital elements. Since there

is no closed-form equation for finding the Kullback-Leibler divergence between two

Gaussian Mixtures, two strategies have been developed and tested, namely, optimized

matching of components and using all components. Numerical error build-up is ob-

served during the Extended Kalman filter propagation. This is due to the fact of

a Gaussian Mixture obtained from the Admissible Region, which is large in range

and range-rate and small in angles and angular rate space. Two ways of covariance

propagation have been tested. The covariance propagation using state transition ma-
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trix has been adopted as least numerical errors accumulated for this method during

Extended Kalman filter propagation. Furthermore, two methods for dealing with the

rank deficient matrices have been tested, namely, Singular Value Decomposition and

Cholesky decomposition. It is seen that the Cholesky decomposition better approx-

imated the inverse of a covariance matrix in the presence of numerical errors and,

therefore, has been used for this thesis. For selecting the objects, Low-Earth (LEO)

and Geosynchronous Earth orbits have been used for different scenarios using dif-

ferent time duration. In GEO scenario one, visible GEO objects are selected from

TLE data and the TSAs generated from them are correlated using Kullback-Leibler

divergence for 10 minutes, 30 minutes and 500 minutes. In GEO scenario two, visible

GEO objects are selected from TLE data and are sorted in Keplerian orbital elements

space and the TSAs generated from them are correlated using Kullback-Leibler diver-

gence for 10 minutes, 30 minutes and 500 minutes. The propagation in the Extended

Kalman filter is done using Cartesian coordinates for GEO scenario one and two. For

GEO scenario three, the same procedure is followed as GEO scenario one except that

the Extended Kalman filter is propagated in Keplerian orbital elements.

For LEO objects, two scenarios have been developed. For LEO scenario one,

visible LEO objects are taken for finding the overlap between the TSAs generated

by them. For LEO scenario two, LEO objects are taken without taking visibility

into account and after Extended Kalman filter propagation, the components with

position less than the radius of the Earth are eliminated. For both of these scenarios,

the Extended Kalman Filter is propagated in Cartesian coordinates space.

When matching all components with all components, the Kullback-Leibler diver-

gence is not able to differentiate even when matching the same TSA or two TSAs

of the same object. For GEO objects, Kullback-Leibler divergence using optimized

matching of components and using all components with all components is able to dis-

tinguish between TSAs from two different objects as compared with TSAs from the

same object up to 30 minutes of propagation time in Cartesian coordinates. This does

not hold when the propagation time increases. For LEO objects, Kullback-Leibler di-
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vergence using both the optimized matching of components and all components with

all components is able to give a correlation between TSAs in Cartesian coordinates.

In all, LEO and GEO cases do not show a clear distinction between correct cor-

relations (when TSAs are indeed from the same object) when all components have

been matched with all components in the Kullback-Leibler divergence computation

independent of the coordinate frame in which the comparison has been made for

propagation times more than 3 minutes and 30 minutes, respectively.

In range range-rate space, the Admissible Region changes considerably even for a

30 minutes of propagation time for GEO objects due to the change in observer to orbit

geometry, which affects the shape of the Admissible Region and hence, the Kullback-

Leibler divergence between two TSAs belonging to the same object. Therefore, as

expected range range-rate frame cannot be exploited to indicate a clear overlap be-

tween two TSAs from the same object. In the Cartesian coordinates, the correlation

using Kullback-Leibler divergence depends on the propagation time. For a duration

up to 10 minutes, the Kullback-Leibler divergence between two TSAs coming from

different objects is able to show correlation for both GEO and LEO cases. As the

propagation time increases, the Kullback-Leibler divergence is not able to correlate

the TSAs because of a larger shift in GMM of the TSA in Cartesian coordinates and

numerical errors accumulation during the Extended Kalman Filter. In Keplerian and

Delaunay orbital elements, Kullback-Leibler divergence is expected to give a higher

value between two TSAs from the different object because all the orbital elements

except for mean anomaly remain fixed in both the frames. However, it has been

shown via Monte Carlo simulations, that the linearization used for transforming from

one space to another has a tremendous impact on the Kullback-Leibler divergence.

As a result, Kullback-Leibler divergence in these orbital element spaces is not able

to correlate TSAs from the same object, especially for a duration longer than ten

minutes. However, this is overcome by propagating the Extended Kalman filter in

Keplerian orbital elements. Thus, the errors accumulated due to linearization after



136

Extended Kalman Filter have been reduced. This resulted in better correlation by

Kullback-Leibler divergence even for 500 minutes of propagation time.

As the propagation time of object increases more than 30 minutes, the mean

associated with each component shifts along with the shape of the uncertainty around

that mean. This makes it difficult for Kullback-Leibler divergence to associate an

object with itself because, due to the shift, it is possible that the GMM obtained

from object one after Extended Kalman Filter has moved farther from the object

itself as compared to the GMM of object two.

12.2 Recommendations

For time durations up to 30 minutes in GEO, Cartesian coordinates are best

suited for finding the overlap between two TSAs to solve the correlation problem.

However, for a longer time duration in GEO region, as the state of the object changes

significanlty, KL divergence is not able to distinguish between two TSAs of the same or

of different objects. For longer propagation times of 500 minutes, Extended Kalman

Filter propagation in Keplerian orbital elements gives more overlap with the same

object. Therefore, depending upon length of time, different setups can be used for

finding the overlap. For LEO objects, Kullback-Leibler divergence can differentiate

between TSAs from different objects in Cartesian coordinate frame with up to three

minutes of propagation time. Therefore, this frame can be used for a shorter time

difference between two TSAs in LEO region. In the real world, two-body dynamics for

the motion of the object does not hold. Therefore, the effects of perturbations should

also be taken into account before applying the procedure followed in this thesis. For

longer propagation time, the numerical errors accumulated have a significant impact

on the Kullback-Leibler divergence, therefore the application of Unscented Kalman

filter might be useful as it uses point transformation for transforming from one space

to another.
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