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ABSTRACT

Yau, Calvin Ph.D., Purdue University, May 2020. Three-Component Visual Summary: A
Design to Support Casual Experts in Making Data-Driven Decisions. Major Professor:
David S. Ebert.

Recent advancements in data-collecting technologies have posed new opportunities and

challenges to making data-driven decisions. While visual analytics can be a powerful tool

for exploring large datasets and extracting relevant insights to support data-driven deci-

sions, many decision-makers lack the time or the technical expertise to utilize visual an-

alytics effectively. It is more common for data analysts to explore data through visual

analytics and report their findings to the decision-makers. However, the communication

gap between data analysts and decision-makers limits the decision-maker’s ability to make

optimal data-driven decisions. I present a Three-Component Visual Summary to allow

accurate and efficient extraction of insights relevant to the decisions and provide context

to validate the insights retrieved. The Three-Component Visual Summary design creates

visual summaries by combining visual representations of representative data, analytical

highlights, and the data envelope. This design incorporates a high-level summary, the rel-

evant analytical insights, and detailed explorations into one coherent visual representation

which addresses the potential training gaps and limited available time for visual analytics.

I demonstrate how the design can be applied to four major data types commonly used in

commercial visual analytics tools. The evaluations prove the design allows more accurate

and efficient knowledge retrieval and a more comprehensive understanding of the data and

of the insights generated, making it more accessible to decision-makers that are casual ex-

perts. Finally, I summarize the insights gained from the design process and the feedback

received, and provide a list of recommendations for designing a Three-Component Visual

Summary.
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1. INTRODUCTION

With the convenience of modern data-collecting technology, we are generating data faster

than ever before. As a result, interest in exploring this increasing volume of data has ex-

panded beyond trained data analysts to the average consumer. More everyday technology

users, with expertise in different technical disciplines, are interested in using data gathered

about their subjects of interest to help make data-driven decisions. For example, YouTube

artists can use YouTube Analytics 1 to understand viewer demographics and view dura-

tion to improve their content; farmers bury sensors under their farmland to monitor the

moisture and temperature of the soil at different depths to adjust their irrigation to achieve

optimal yield 2; and small companies embed cameras on their advertisement boards to ex-

amine prospective customers at different locations in order to adjust their advertisement

strategies 3. However, even with data collected and tools developed to navigate through the

data, there remain gaps that prevent many such audiences from effectively and efficiently

generating insights for decision making.

1.1 Challenges in Exploring and Analyzing Data for the Casual-Expert Decision-

Makers

It has been observed from the law enforcement and first responder fields that decision-

makers are interested in making data-driven decisions, but often lack formal training and

expertise in data analysis or visual analytics. This section explores the main challenges that

prevent such decision-makers from utilizing their data effectively.

First, there is too much data to make sense of without having technical support. Exam-

ining data one entry at a time in a spreadsheet or a folder is not only inefficient but also

1https://www.youtube.com/analytics?o=U
2http://www.vinsense.net/
3https://www.admobilize.com/
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ineffective in obtaining a comprehensive view of the dataset and comparing the relation-

ships between the different data entries. Various techniques, including statistics, informa-

tion visualization, and visual analytics, have been introduced to address the challenge of

making sense of large datasets. Statistical metrics, such as mean, median, and mode, de-

scribe the characteristics of a large dataset in an aggregated manner. The drawback to using

only statistical metrics is that they provide little insights into the individual data points and

allow little to no exploration of the original dataset. Information Visualization [1] provides

a more natural way to understand the stories behind the data using visual representations of

data. However, even with the use of visualization techniques, computing devices generally

do not have enough pixels to render and therefore communicate larger datasets properly.

An interactive visual analytics system allows its audience to explore a visualized dataset

at different scales to gain a comprehensive understanding [2]. This practice, however,

requires dedicating time to interactive exploration and training in using visual analytics,

which decision-makers do not always have.

Second, the majority of the solutions described above are intended for data analysts.

Many decision-makers I worked with as a part of my thesis research are casual experts [3]

- people with strong domain knowledge in their corresponding fields who possess an un-

derstanding of basic technologies but have little training in data analysis, information vi-

sualization, or visual analytics. Casual experts with domain specific knowledge can often

provide explanations or suggest the best action to follow when presented with the appropri-

ate information extracted from the data. Many of these decision-makers expressed interest

in supporting their decisions with data in order to form stronger arguments and minimize

the impact of potential personal bias in the matter. Unfortunately, the majority of visual-

ization designs and visual analytics tools require sufficient knowledge of the strengths and

weaknesses of different visualization designs and interactive functionalities. For example,

one can obtain a more precise comparison between two different datasets by adjusting the

scale of the data displayed. But having the axis starting at a different point could confuse

human perceptions of how one dataset compares to the other in the overall scope.



3

Third, data summaries rarely emphasize significant data entries and cannot be explored

backward to understand and compare the original dataset. Casual experts are often in roles

where decisions need to be made within a limited amount of time. They need to be able

to understand the data and its significance to the decisions they need to make efficiently

and effectively, which is why a summary of the data has to be provided. However, the

majority of data summarization methods focus on the aggregation of data [4] and do not

emphasize on specific data entries, which may not be the best practice in the context of

decision making. During the decision-making process, casual experts explore the data with

a specific goal in mind, whether it is to find the company to invest in, to identify which

project to cut, or to understand the strengths and weaknesses of a product. Casual experts

often need to be able to identify and compare specific details contained in the raw data.

Therefore, some data entries or the insights derived from them can be more important than

other data entries, making traditional summarization methods insufficient for casual experts

in decision making.

A common practice that has arisen in response to a lack of time and formal training

in data analysis among casual experts is for trained data analysts to prepare reports and

data visualizations, which are then presented to casual-expert decision-makers. This prac-

tice leads to another challenge. Decision-makers are often presented with unintentionally

biased information due to the differences in training and expertise of the data analysts.

While a data analyst may have the same interests and goals as the decision-maker, the

decision-maker is rarely given the tools or time to examine and identify possible potential

information bias. Not having the opportunity to participate in the interactive exploration

process during the use of visual analytics tools also means that the decision-makers may

not be able to obtain the knowledge of how the data was processed and filtered. It can be

difficult for decision-makers to be certain they are making optimal data-driven decisions

based solely on the information presented to them.

This research work aims to address the challenges in supporting casual experts with

visual analytics and guiding casual experts to generate the insights needed to make data-

driven decisions without the expertise in visual analytics. Six decision-makers were sur-



4

veyed to obtain a more in-depth understanding of the challenges. Based on the survey, I

extracted a list of design requirements that are used to derive the solution proposed in this

dissertation. Chapter 3 will provide more detail of the survey, the design requirements, and

the solution proposed.

1.2 Designing Visual Summaries for Casual Experts

Based on the insights learned from the decision-maker survey, this research work pro-

poses that it is important for a solution to consider large amounts of data, allow efficient

insight generation, accommodate the skill level of casual experts, and provide context to the

analysis results to support casual experts in making data-driven decisions. To satisfy these

characteristics, this work draws inspiration from communication-minded visualization [5],

casual information visualization [6], narrative visualization [7], and context-preserving vi-

sualization techniques [8–12].

In this work, I propose a visual summarization design called the Three-Component

Visual Summary to support casual experts in making data-driven decisions more effectively

and efficiently. Three-Component Visual Summaries reduce a large and detailed dataset

into (1) representative data that provides a quick takeaway of the full dataset at first glance,

(2) analytical highlights/comparisons that distinguish specific analyses of interest such as

outliers, and (3) a data envelope that summarizes the remaining aggregated data to provide

context to the analysis results. Through the three components, casual experts can quickly

obtain an overview of the dataset, gain the insights required for the decision, and explore

the reasoning behind the analysis results and the remaining data if so desired.

To validate the design, I applied it to the four data types most commonly used in visual

analytics – numerical data, contextual data, geospatial data, and network data [13] – and

evaluated the resulting products. Note that while contextual data can be any data that gives

context to an entity or an event, the scope of this work focuses primarily on text data and a

small amount of multi-media data.
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1.3 Thesis Statement

In this work, I present the challenges in designing visual analytics that aid casual ex-

perts in accurately and efficiently understanding the relevant analysis results and context of

the collected data to support data-driven decision making. I propose a Three-Component

Visual Summary design as the solution to address the challenges in the volume of data,

the time limitations, the potential bias in the knowledge transfer process, and the lack of

training in visual analytics. The Three-Component Visual Summary hypothesizes that:

Domain experts with limited training in information retrieval and visual ana-

lytics can generate context-preserved insights to support decision making more

accurately and efficiently through visual presentations of information by simul-

taneously displaying and connecting high-level overview, comparative analy-

sis, and low-level exploration context with constrained interaction functional-

ities.

This dissertation presents the design process of the Three-Component Visual Summary

– the motivation, the design requirements, and the guidelines for encoding the represen-

tative data, the analytical highlights/comparisons, and the data envelope component – and

discusses how this design can aid casual experts in making data-driven decisions. This dis-

sertation then presents a set of Three-Component Visual Summary designs for numerical

data, contextual data, geospatial data, and network data and evaluates the effectiveness of

the designs. From the evaluations and discussions of the designs, the dissertation compiles

a set of recommendations to using the Three-Component Visual Summary design.

The main contributions of this work include:

• A proposed design guideline to create a Three-Component Visual Summary utilizing

the representative data, analytical highlights/comparisons, and the data envelope to

allow a more effective data exploration and insight generation while reducing the

dependency on interactive exploration.
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• A Three-Component Visual Summary design for numerical data, contextual data,

geospatial data, and network data and their corresponding evaluations in supporting

data-driven decisions. The evaluations found the designs to allow a more accurate,

efficient, and accessible understanding of the data and the relevant insights.

• A set of recommendations for designing and using Three-Component Visual Sum-

maries.

1.4 Outline

This thesis has been organized into the following chapters. Chapter 2 discusses the

background and related work in data communication and the four data types. Chapter 3

describes the design of the Three-Component Visual Summary. Chapter 4 presents Sum-

marized Line Graph, a numerical Three-Component Visual Summary design that focuses

on time-series data, and a quantitative study that evaluates the design against other time-

series visualization techniques. Chapter 5 presents and evaluates SuccessVis, a contextual

Three-Component Visual Summary design that visualizes a combination of text and multi-

media data to communicate the academic impact of a research center. Chapter 6 presents

and evaluates a geospatial Three-Component Visual Summary design that visualizes crime

reports from Tippecanoe County, Indiana. Chapter 7 presents and evaluates a network

Three-Component Visual Summary design that is built on top of the NodeTrix design [14]

to visualize directed, non-weighted, ground-truth community information flow data such

as Twitter following networks. Chapter 8 evaluates the four designs in conjunction and

provides recommendations for applying the Three-Component Visual Summary designs.

Finally, Chapter 9 provides a summary of this thesis and outlines the future work.



7

2. BACKGROUND AND RELATED WORK

In this chapter, I first discuss the different approaches to data abstraction/summarization. I

then examine data communication approaches that may benefit casual experts [3] in under-

standing their data. Finally, I discuss visualization techniques for different data types and

compare work relevant to the Three-Component Visual Summary designs proposed in this

dissertation.

2.1 Data Abstraction

As mentioned in Chapter 1, a summary has to be provided to communicate larger

datasets to the decision-makers efficiently and effectively. When summarizing scalar data,

descriptive statistics (or summary statistics) is a common and well-developed approach to

describe the features of a collection of information quantitatively [15]. Mean and standard

deviation (sometimes with the addition of skewness and kurtosis) are commonly used to

describe a snapshot of the entire dataset providing a representative value and a basis for

interpreting the data through probability. However, descriptive statistics limit the ability of

users to examine details of the original data sources and events that only happened to a few

data sources within the group could easily be overlooked when averaged out by the other

data contributors. In contrast, this work aims to allow a more detailed exploration of the

subsets of the data as well as the change over time.

Sampling is also often applied to summarize large data [16]. However, when used in

temporal data, sampling typically focuses on summarizing the time-axis rather than the data

sources, which is different from the focus of this work. Another issue with applying data

sampling to solve the research problem presented in this work, which also holds to other

data abstraction techniques such as segmentation, dimension reduction, and clustering and

when applied to data types different than numerical data [17], is that it treats all the data
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equally and does not evaluate what information is removed in the process, whereas this

work focuses on including the crucial pieces that are often overlooked.

Visual analytics has been an effective tool for exploring large volumes of data [18], and

naturally, visualization designs have been developed to summarize data [19]. The majority

of these designs summarize a dataset through the use of aggregation, subsampling, filtering,

and projection [4]. Classic examples include bar charts [20], pie charts [21], treemaps [22],

etc. Some additional techniques that allow the audience to better perceive the data through

visualization designs include hierarchical aggregation [23] and aspect ratio adjustment [1,

24]. Many visual analytics systems also allow the analysts to, through some form of zoom,

pan, and filter, interactively navigate through different granularities of the original dataset

to examine both the high-level pattern and specific details of the dataset [25].

Sharing a similar goal to extract crucial characteristics and summarize a dataset using

visual analytics, Kocherlkota et al. [26] reduce multidimensional data to its important and

relevant characteristics and generate summary visualizations of the data using the extracted

important characteristics. Patterns and outliers, as the important characteristics which can

provide key insights for decision-making, are extracted during an interactively guided sum-

marization process. This technique, however, has the following limitations. First, this

technique relies heavily on an interactive process. Second, this technique could acciden-

tally omit important data entries during the interactive process. Finally, this technique uses

visualization techniques explicit tailored to multivariate data.

While the majority of scalar data summarization techniques can be applied to handle

numerical data directly, these techniques often summarize the scalar characteristics instead

of the content when applied to contextual, geospatial, or network data. For example, text-

based data summarizations often focus on the frequency of unique words [27] and geospa-

tial data summarizations often focus on the count of data points [28]; these can be useful,

but may not be enough to support the casual experts in decision making as they are miss-

ing the focus points of these data types, which are the stories behind the words and the

geographical locations. Therefore, preserving the context is another important aspect of

data summarization to be considered in this work. Various visual analytics designs uti-
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lize distortion [29, 30], multiple connected views [10–12], or overlaid annotations [8, 9] in

their designs to ensure the audiences can connect back to the overview when examining the

zoomed-in or filtered detail. This work follows the same approach to provide an overview

and analytical highlights that are connected to the low-level details.

2.2 Data Communication

The current work falls in between the traditional use of visual analytics and that of

casual information visualization [6]. Pousman and Stasko proposed the idea of casual in-

formation visualization as a complement to a more traditional information visualization

domain and focus on depicting information that is more personal to casual audiences for

both everyday work and non-work uses. This work shares some of the characteristics of

casual information visualization, such as targeting audiences who may not be experts at

reading visualizations and the design challenge of modifying the design for different users,

data, and insights needed. However, this work also targets more toward specific work tasks

rather than everyday tasks. Many of the decision-makers may not be trained in understand-

ing visualization, but have domain expertise in the data presented as well as the problem to

be solved.

Viegas and Wattenberg [5] introduced the concept of communication-minded visual-

ization to support communication and collaborative analysis through visualization designs

emphasizing the design of the user experiences. Inspired by their work, this work fo-

cuses on solving the specific communication gap between data analysts and their audiences

through novel visualization techniques.

Segel and Heer [7] suggested design strategies for narrative visualization to tell data

stories. Their work discussed the importance of balancing author-driven and reader-driven

stories; my solution presented in this dissertation shares characteristics of both. Segal and

Heer also suggested that storytelling of data is most effective when there is constrained

interaction, which is a powerful tool to identify the important and relevant characteristics



10

of large, multidimensional datasets [31]. This work supports designs with constrained

interaction that is limited to hover and click.

Hullman and Diakopoulos [32] presented a narrative visualization framework that uses

rhetoric visualizations to tell the data stories more effectively, by using a combination of

visual representations, annotations, and interactivity layers in the design. This work follows

a similar strategy in the storytelling by overlaying the overview and analysis result on top

of the remaining aggregated data.

IBM developed a free online data visualization tool, Many Eyes [33]. Similar to Mi-

crosoft Excel and Tableau, Many Eyes targets mass users with structured data but no pro-

gramming or technical expertise, which includes casual experts. Unfortunately, the system

focuses mainly on numerical data and provides its list of visualization techniques based on

the data entered. Users will need to have enough knowledge of the strength and possible

confusion of each technique, and will be limited to only the techniques the system can

provide.

Some visualization techniques also present multiple data types to complement the sto-

rytelling. A common combination used to tell stories with more context utilizes numerical

and textual data. Textual data are often overlaid on traditional numeric visualization tech-

niques as (interactive) annotations [34, 35] to give reasons behind the numeric data behav-

ior. This approach is more effective when displaying a comparatively smaller amount of

contextual data, as it can suffer from scalability issues.

2.3 Visualizing Different Data Types

Zhang et al. classified the state-of-the-art commercial visual analytics systems into four

groups by the type of data the systems support visualizing: numerical data, text/web data,

geo-related data, and network data [13]. To evaluate how this work can aid the design of

visual analytics in general, I apply the design to each of the data types.

Numerical data, likely the most common data type employed in visual analytics, has

long been supported by different visualization techniques such as line graphs [20], scat-
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terplots [36], bar charts [20], pie charts [21], etc. Many visualization techniques such as

stacked graphs [37], parallel coordinates [38], box plots [39], etc. also build on these tra-

ditional techniques. Through these visualization techniques, numerical data encodes many

variables of interest: financial values, weather measurements, temporal evolution, etc., and

even geographical data are comprised of a combination of multiple numeric values.

Although geographical data is comprised of numerical values, geospatial visualization

as a specific data type is gaining more interest in the visualization research field as more

data are now geo-tagged. Geospatial visual analytics provide insights into clusters and

movements and often encodes data of other types such as time [40] and text [41–43]. Such

insights help first responders better analyze and predict crime reports [44], boating acci-

dents [45], and so on.

Text-based visualization is relatively new, with the majority of the modern techniques

published post-2000. Despite being a less popular visualization area (comparing to numerical-

based visualization), research in text visualization has generated some power techniques

such as the word cloud visualization [27]. The result from text analysis on entities, senti-

ments, topics, temporal evolutions, etc. can be visualized in systems such as Jigsaw [46],

which is designed specifically for analyzing collections of small text documents. Visual-

ization designs for text-based data mainly focus on displaying the trend and/or temporal

evolution of entities [27, 42, 47–49], whether that is individual keywords frequently used,

or topics extracted from the text collection. Through text visualization and analysis, people

can better understand the trending topics on social media posts [50] or the connections be-

tween separately generated reports, etc. Asides from textual data, visualization techniques

have also been developed for other contextual multimedia data such as audio and video.

For example, Shibata at el. [51] visualizes the sound signals measured to diagnose faults

in rotating machinery. Record the Earth [52] visualizes the locations and characteristics

of sounds collected through crowd-sourcing to allow soundscape ecologists to study the

correlations between the different characteristics of sound and their effect on people. Static

pictorial storyboard [53] is often used to summarize the content of video files by present-

ing a collection of chronological keyframes [54] captured from the video. The contextual
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visual summary design included in this dissertation summarizes and visualizes multimedia

data through a combination of data cleaning/extraction and external links.

Network data can be visualized to present the connections and directions between dif-

ferent entities. The visualization itself is often a variation on the combination of matrix vi-

sualization and node-link diagrams [14]. It is also gaining more attention as people started

exploring connection built through the Internet such as social media networks.

Many topics of interest can be presented and explored through some combination of

the four groups of visualization techniques discussed above. For example, a collection

of geotagged Twitter posts can be visualized by placing word clouds on top of heatmap

hotspots to allow users to understand the major topics of conversation among different

densely populated areas [55]. Most fields of interest that deal with a large amount of data

and benefit from the use of visual analytics can be encoded with some combination of

these four types of data. A typical combination used to tell data stories with more context

utilizes numerical and textual data. Textual data are often overlaid on traditional numerical

visualization techniques as (interactive) annotations [34, 35] to give reasons behind the

numeric data’s behavior. This approach is more effective when displaying a comparatively

smaller amount of contextual data and can suffer from scalability issues.

This dissertation focuses on creating visual summaries for the four main data types

in visual analytics, with the contextual data visual summary covering mainly textual data

and a small portion of multimedia data. While the visual summary designs for each data

type serve as an evaluation of the Three-Component Visual Summary designs, they also

contribute as unique and function designs. The sections below review work relevant to the

four applications.

2.4 Visualizing Time-Series Data

For the numerical data design, I applied the Three-Component Visual Summary to the

most frequently used graphic design: the time-series plot [56]. In this section, I compare

and contrast several time-series visualization techniques relevant to my design.
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Familiar to most casual users, the line graph designed by William Playfair [20] is one

of the most common statistical graphics [1] for time-series data. It displays the raw data in

a simple and straightforward manner most can understand, meaning no additional training

is required. It is measurable and easily comparable when the number of lines is small and

the range of their values are close. However, as the number of lines and the range of their

values increase, the graph becomes more complex and precise tasks become difficult as

users start to experience cognitive overload [57].

Stack zooming [11] allows users to examine and compare focus points while retaining

the overview context and provides visual clues to connect the two. My work also provides

the ability to examine the details while keeping the overview in context, but as a visual

display rather than an interaction function.

There exist more systems [58–62] that communicate large scale time-series data ef-

fectively through interactive exploration. My work, though not as effective as the systems,

supports the exploration of time-series data when the interactive functions are not available.

Tree maps [22] are often used to display financial data [63], which is the primary time-

series data examined in this use case. While it is powerful for displaying the hierarchical

structure and trend of both the combined group and the individual commodities, it is not

capable of displaying detailed changes over time which my work aims to also summarize.

The simple design of the band graph enables it to be a powerful tool in describing the

overview of a dataset its audiences have no prior knowledge to [64]. The band graph is

intuitive, with most of its components sharing the same appearance and functions with a

traditional line graph. However, the band graph does not encode any information on the

individual data sources. This means users will not be able to know the number of lines or

the distribution of the lines, nor to identify any outliers. I learned from its design and utilize

boundaries and a central value to communicate the overview of the data, while supporting

the audience with additional analytical details of the dataset. Similar to the band graph,

Fua et al. [65] introduced multi-dimensional graduated bands that encode the extent and the

mean of polyline clusters in hierarchical parallel coordinates. This visualization technique
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also allows, to a certain degree, comparison between different clusters. However, their

work focuses on multivariate datasets, which are beyond the scope of this paper.

The stream graph [37] utilizes the ThemeRiver [66] layout to visualize the overall theme

and its changes over time while preserving limited measurability on the individual lines.

However, measuring the value of a data source now requires reading the height of its stream,

rather than the y-value of the graph, which is slightly more difficult and confusing com-

pared to a traditional line graph. Depending on the number of data sources, following the

changes of a single data source can also be difficult as it does not have a stable baseline.

Comparison between different data sources can also be difficult because of the increased

difficulty in reading its value, and for having to compare between streams that may not be

aligned closely. Though sharing a similar appearance, my work plots the lines using their

true y-axis values, providing easier measurement and comparison.

The horizon graph [67] utilizes two-tone pseudo coloring [68] and separate charts for

each time-series data to provide efficient comparison across a larger visual span [69] while

preserving the movement of the individual commodities. This visual technique is capable

of presenting a large amount of data and remaining readable. With each of the original lines

normalized, the behavior of each line is clear and not affected by the overall scale, allowing

users to compare the different data sources closely. By comparing all the individual data

sources, which are now encoded by color, users can easily retrieve the overall trend, the

overall correlation, and identify the outliers. As Javed et al. [69] stated, techniques such as

this that create separate charts for each time series data provide more efficient comparison

across a larger visual span than graphs that shares the same space such as line graph and

band graph. Cloudlines [70] shares a similar design strategy to the horizon graph, utilizing

separate and normalized space-saving design with the additional lens magnification interac-

tive function to support a closer examination of the details. However, neither graphs’ visual

design provides value measurement, which is important to applications such as analyzing

stock market data. My work, on the other hand, provides a simplified comparison between

individual commodities on the important factors while retaining enough measurability.
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Many charts precisely communicate one aspect of data but leave out the context that

casual experts need to identify potential biases. For example, while treemaps communicate

price and trend effectively, a user cannot determine how the comparison between differ-

ent stocks changes over time and whether the trend is likely to continue through treemaps

alone. Commercial tools, such as Tableau, allow trained analysts to explore datasets effec-

tively by providing multiple instances of such charts, but are not designed to communicate

the knowledge gained throughout exploration to casual experts efficiently. For example,

online trading platforms often utilize visualizations such as the line graph (moving av-

erage, advance/decline indexes, etc.) and candlestick chart (high, low, open and closing

prices) to allow their users to examine stocks and market indicators closely, generally one

at a time using separate views. The sector or market summary is primarily visualized

using graphs (treemaps, candlestick graphs, etc.) where users cannot identify detailed in-

formation for individual stock under the group. This requires users to obtain and compare

the information between different views during different steps of interactive exploration to

generate the insights desired with context and explanation. The research work presented

in this dissertation focuses on efficiently communicating that knowledge to the casual ex-

perts by highlighting the important analyses while preserving and linking the analyses to

the context in one single visualization. In the example of stock data presented in Chapter 4,

for instance, the compact three-component visualization enables decision-makers to gain

quick insight on the long term trends/highs/lows, indicators for short-term investment (e.g.,

sector increasing, but one or two stocks at low over a six month period) and for long-term

investment (e.g., multiple sector stocks reaching all time high but showing downward trend

indicating time to divest).

Aside from treemaps which do not encode time and techniques that rely heavily on

interactive functions for exploration, I will compare visualization techniques utilizing the

linear time structure [71] alongside my summarized line graph in their capability to com-

plete different tasks in Chapter 4.
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2.5 Presenting Academic Impact

For the contextual data design, I applied the Three-Component Visual Summary to

a collection of documents, figures, and videos to visualize the impact of an academic-

based research center. The dataset consists of primarily textual data and a small portion of

multimedia data, as described in Section 2.3. In this section, I walk through research work

on academic impact – a less defined field of interest for casual-expert decision-makers that

often deals with unstructured textual data collections – and explore how academic impact

has been visualized.

Eugene Garfield first introduced the idea of impact factor [72] in 1955 from the study

on Citation Indexes for Science. It eventually became a tool many use to evaluate scientific

achievements. Scientists and published papers within certain fields of study were ranked

and compared using the impact factor. The impact factor is, however, often misused [73],

and is more useful in comparing researchers or research works rather than understanding

the impact and its dynamics. It is also limited to achievements related to publications, and

academic impact should consider more than just publications.

Borner and Scharnhorst [74] reviewed different science conceptualizations used for

comparing existing datasets and models. These visualizations, however, mostly focus on

the relations and the connections between different topics or specific works and are not

fitting for visualizing the development of impact from a specific center.

CoE-Explorer [75] was created to help DHS program managers analyze and present the

research works within DHS’ network of Centers of Excellence, led by multiple universities,

to external policy makers. The system visualizes details of individual centers, projects, and

investigators. Its primary output, however, provides the general themes as an overview of

the different works within the research organization, rather than a better understanding of

the research works and their impact.

STAR Metrics [76] is a repository of data and tools that allows users to examine the

funding and impact of federal investments across the United States. It allows users to

drill down into the data by location, organization, topic, project, etc. The visualization
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tools serve more as filters and the data remains to be displayed in a spreadsheet and text

description format. The impact unfortunately only considers the final list of publications

and patents.

Similarly, Madhavan et al. [77] created DIA2 to help casual experts, specifically pro-

gram managers and academic staff at the National Science Foundation, explore research

funding portfolios. The system also uses a combination of structured and unstructured

NSF-related data and focuses on organizational structures, collaboration networks, fund-

ings and awards received. Users can get a glimpse of the impact of a particular portfolio

over the years through simple statistical graphs such as a bar graph on the number of awards

received, the amount of funding received, or the number of collaborators per year. How-

ever, DIA2 focuses mainly on the final result and presents minimal contextual data in the

storytelling of the temporal evolution. DIA2 also has less support for the analysis and

comparison of different impact variables within a portfolio or between different portfolios.

2.6 Geospatial Visual Analytics

For the geospatial data design, I applied the Three-Component Visual Summary to vi-

sualize crime reports from Tippecanoe County, Indiana, to support decision making in the

law enforcement field. Multiple geospatial visualization techniques were implemented into

the design. This section first covers the background, the challenge, and the opportuni-

ties with geospatial visualization, then discusses the different geospatial visual analytics

designs relevant to my application.

The history of geospatial visualization can likely be traced back to the early data maps

such as the Yu Chi Thu from the eleventh century [56]. Markers and annotations were

added to maps to help people better understand the physical characteristics and noteworthy

knowledge of the environment. There were even three-dimensional geospatial visualization

tools such as a tactical sand table that help military leaders strategically place or move their

resources.
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However, the more modern geospatial visual analytics that combine cartographic and

statistical methods to create data maps started around the seventeenth century [56]. Some

of the more significant early works include Edmond Halley’s chart for trade wind and

monsoons [78], John Snow’s map on Cholera [79], and Charles Joseph Minard’s maps

on French wines and Napoleon’s army in Russia [80]. The majority of these visualiza-

tion techniques encode a variable directly on top of a map to help the audiences identify

location-related patterns. Halley’s chart overlays magnitudes and directions above the area

that represents the sea, Snow’s map aligns bar charts on the count of death along the streets,

and Minard’s map added lines with various width or pie charts on top of different locations

on the map. Instead of showing accurate geo-coordinates on a map, some geospatial visu-

alizations also distort the distance or the final location to allow a more understandable com-

munication while maintaining a basic understanding of the relative location [30,81]. Some

geospatial visualizations, on the other hand, utilize a three-dimensional space and the addi-

tional z-axis to encode the additional variable [82, 83]. However, these three-dimensional

visualizations can often be difficult to use and require more effort to change the viewing

angles for use.

Nowadays, geospatial visual analytics are often used to provide insights into clusters

and movements. Rather than simply encoding the location of one contextual variable onto

a map, geospatial visual analytics today often encodes data of other types such as time [83]

and text [41–43]. Such insights can help first responder analysts better analyze and predict

the locations of events such as crimes [44], boating accidents [45], and so on. Different

spatial correlation or clustering calculation methods such as Moran’s I [84], Geary’s C [85],

Getis-Ord General G or Getis-Ord Gi* [86] were also developed to measure the different

spatial characteristics and are supported by tools like GeoDa [87] or ArcMap 1. However,

these tools often require many input variables and can be overwhelming or confusing for

those who are not familiar with the methods.

On the other hand, VisMaster urged designers of geospatial visualizations to support

a broader community of potential audiences that may not be trained in data analysis with

1http://desktop.arcgis.com/en/arcmap/
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”lightweight, easily deployable and usable software that allows flexible customization and

combination of tools” [88]. This work attempts to focus on that challenge and opportunity.

Djavaherpour et al. [89] presented a physical 3D model of earth to support geospatial

analysis. Users are given a selection of attachable styling and analysis layers to explore

different datasets and characteristics of geographical regions. This approach provides flex-

ibility in an environment that is intuitive and requires no technical expertise to operate.

Further, this approach allows detailed analysis while keeping the overview in sight. While

it can be challenging to explore either a scale or an analysis that is not printed, generating

and printing new layers to add to the model is straightforward. However, the physical model

limits users in transporting and sharing the tool. It also does not utilize the computational

power of the machine once the model is printed. This work utilizes a similar approach

in providing pre-generated layers of analysis results while retaining certain aspects of the

overview but allows users to update the attribute of the stacking layers to achieve a bal-

anced visual outcome. The ability to easily capture and share the visual summary is also

important to this dissertation.

Similar to the physical 3D model, Wagner Filho et al. [90] brought the navigation of

geospatial trajectory data into a 3D environment to address the lack of depth cues and

reduce the learning curve of examining 3D data in a 2D space. Immersing users in a 3D

space opens more design space to encode variables and attributes. However, the set up

requires specific hardware that is not yet commonly owned. This dissertation shares the

same goal as both Wagner Filho and Djavaherpour in reducing the learning curve required

to explore the geospatial data, but focuses on using mediums that are accessible to most.

Van Ho et al. [91] introduced a framework to shorten the time and effort in developing

customized web applications for geospatial visual analytics. The framework allows users

to interactively explore and analyze geospatial data and publish vislets to communicate

the finding. However, the published storytelling is heavily author-driven and can lack the

necessary components for context or additional analysis. This dissertation shares the goal

of minimizing the effort to communicate the data using a customized visualization, but tries

to balance more evenly between author-driven and reader-driven stories.
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Godwin et al. [92] introduced TypoTweet Map, which replaces map features with texts

of different colors and sizes to relate the collection of texts from social media to spatial

locations. This design brings the opportunity to provide more context in the base map,

which can be beneficial to the data envelope component in my geospatial design. However,

the amount of text displayed could be overwhelming to a user when a substantial amount of

geographical region is covered. This can make the design inaccessible to a casual expert.

Godwin et al. [93] also used path KDE (Kernel Density Estimation) to visualize geospa-

tial data in urban spaces. By drawing paths with different thickness and saturation along

streets, the spatial distribution of data can be visualized in a manner similar to heatmaps

without compromising the clarity of the street map. Maintaining the clarity of the base map

while encoding geospatial attributes can be useful to the layering approach in my proposed

geospatial design. However, this technique relies on the presence of streets and could be

more limited for rural areas.

Slingsby et al. [94] worked closely with animal movement ecologists and introduced a

set of requirements for designing interactive visualization systems with the targeted audi-

ence of domain experts. The design requirements include providing access to the original

data, allowing exploration at different scales, requiring as few user-interface interactions

as possible, and including contextual geographical data (such as landscape) to help inter-

pret spatial data. This dissertation shares a similar strategy in designing visualizations for

casual experts, specifically in the provision of raw statistics and additional spatial context.

However, this dissertation also focuses on creating a presentable coherent visual summary

to address time limitation.

MacEachren et al. [95] introduced a map-based interactive application to support crisis

management with Twitter data utilizing a multi-view interface which includes a map view,

a tweet list, a time-plot/control, a query window, and task list that was still under imple-

mentation at the time the paper was published. The map view provides an overview of the

dataset using a gridded density surface and the individual data entries with selectable points

simultaneously. The specific content of the Tweets is placed on the side with the selected

post highlighted. Users can filter the data displayed through a time bar (that also serves as
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a frequency plot) or text-based queries. However, the system only provides basic query-

based analysis. It focuses more on identifying interesting data entries while my geospatial

design focuses more on analyzing and comparing the spatial characteristics of data subsets.

The rest of the section discusses specific geospatial visualization techniques that can

visualize large amounts of geo-tagged data over a map view, making them appropriate for

my application.

Scatter plot [36] that uses the geo-coordinates as x- and y-axis can faithfully represent

the entire dataset with the option to use color, radius, or shapes to encode additional vari-

ables. However, labeling or displaying overlapping data points can be challenging in the

scalability aspect.

Density function visualization [28], or sometimes referred to as a heat map, can sum-

marize the density of the data points on top of geospatial regions. This is especially suitable

for use cases focusing on whether or not a location has a data point present, contrasting use

cases that focus on the content of the geo-tagged data. Density function visualization also

handles the overlapping points and provide users with a more accurate visual representation

of the data distribution. Contour maps can also serve as an alternative visual representation

option of the density function visualization. While contour maps can require more effort to

precisely understand the data, it occupies less space and allows more additional information

to be displayed on the map.

Choropleth maps [96] focus more on the patterns and the changes of data content

throughout the different geographical boundaries rather than the actual data distribution.

The sub-regions are usually colored based on the content and the count of the data within.

A common practice is to select the hues based on the content and the saturation based on

the normalized count. While this approach cannot reflect the distributions of data within the

sub-regions, it does shorten the time to digest the visual representation, and users can of-

ten adjust the scale of the sub-region to examine finer details. A quadtree-based approach

introduced by Thom et al. [97] with a user-defined threshold can define sub-regions that

present the distribution of the data better but may interfere with geography-based bound-

aries, which could encode additional context important to users. Instead of coloring the
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sub-regions, some visualization techniques overlay different simple statistical visualization

techniques on the different sub-regions such as pie charts or bar charts for data that encode

more variables. Such techniques, however, can block the map tile information and may

be difficult to be co-presented with other visual components and are not considered in this

design.

The methods described above, while having different strengths and limitations, share

the same geospatial space in a more compatible manner, and thus can theoretically be

combined in the same visualization. Finding the balance and the designs that accommodate

each other will be the key to effective information transfer and insight generation.

2.7 Network Visual Analytics

For the network data design, I applied the Three-Component Visual Summary to visu-

alize data flow between different entities and communities to support first responders in the

understanding of information source and influence. The design focused on directed, non-

weighted, (ground-truth) community datasets such as a Twitter following network. This

section discusses network visualization approaches relevant to my application.

While modern social network analysis can be traced back to the late 1920s [98], the

advancement of the internet widely expanded the possibilities of social networks [99] and

sparked more interest in the insights that can be discovered through social networks anal-

yses [100]. Since every network can be represented as a graph [101], visualizing and

analyzing networks using graph theory became a common practice [102, 103]. A network,

therefore, is often visualized as a node-link diagram and occasionally as an adjacency ma-

trix [104, 105] or some combination of the two [14].

Additional graph visualization layouts that can represent a complex graph include Hive

Plots [106], ARC Diagrams [107], Sankey Diagrams [108], Chord Diagrams [109], and

Pivot Graphs [110]. Out of these visualization techniques, Hive Plots, Chord Diagrams,

and Pivot Graphs require additional domain-specific data to visualize [103]. Arc Diagrams

visualize the data over a one-dimensional layout, which can suffer in conveying the overall
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structure of the graph and using space effectively. Sankey Diagrams focus on the flow

quantity and mainly support energy, material, or cost transfer visualizations.

While the majority of the designs utilize node-link diagrams for the more straightfor-

ward visual representation and easy-to-follow connections, the scalability decreases signif-

icantly as the connectivity/number of edges increases and creates visual cluttering [111].

Interactive functionalities and layout designs were introduced to address the challenge of

scalability [112–114]. These solutions focus on giving readers access to the information of

interest, but do not solve the remaining visual clutter, and may require the audience to know

the nodes or edges of interest before modifying the layout. These solutions also require the

position of the nodes not to encode data that cannot be altered, such as relative geospatial

coordinates or schematic overlays. While this work focuses on network data with flexible

node positions and is not constrained by such limitations, it aims to give its audiences the

flexibility to alter the layout as desired to highlight the audiences’ interest without depend-

ing on extensive interactive exploration to extract and understand the remaining data, which

is difficult to satisfy concurrently by the solutions mentioned above.

An adjacency matrix, on the other hand, is an effective way to visualize a dense net-

work [115] as it removes the potential overlapping of the nodes and the edges. However,

path-related tasks, which could be crucial for network analysis, become less intuitive com-

pared to the node-link visualization [116]. Adjacency matrices can also be confusing when

encoding directional connections to those unfamiliar with the visual representation, which

can be a problem as this work focuses on directed network data, meaning it is important

to be able to present the direction of the data flow to our target audiences who may not be

knowledgeable with the visualization techniques. Finally, the overall global structure of

the dataset can be hard to identify with the adjacency matrix representation. On the other

hand, a node-link diagram has the potential to encode more variables with its flexible node

positions and potentially varied style, length, and width of the edges than the matrix repre-

sentation. This work tries to combine the strength of both designs and overlay additional

visual elements to include additional information.
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Side-by-side use of the node-link diagram and adjacency matrix can allow users to uti-

lize both designs effectively switching between the two based on the task [117]. However,

this strategy uses additional space to display the same information twice, and often require

users to create the mental connection of the two displays through synchronized changes

when one design is being updated, which means a heavy reliance on interactive functional-

ities which this work tries to reduce.

Clustering entities of similar properties and display them in close proximity visually can

also help users navigate through a node-link diagram more easily by reducing the number

of crossing edges [118] which also improves the aesthetics of the drawing [119]. Different

algorithms were created to automatically identify clusters of nodes or edges that can be

visualized with less crossing edges [120–122]. However, with the goal to better preserve

context, I chose to work with ground-truth communities that are pre-defined based on real-

world context rather than the connections of the entities. This work reduces the number of

crossing edges by replacing the node-link visualization within each community with the ad-

jacency matrices instead and only preserving the edges that connect different communities.

Rather than aggregating the cross-community edges with the same source and destination

communities to create a cleaner appearance similar to Auber et al.’s multiscale visualiza-

tion of small world networks [123], my network design retains the underlying links to allow

users to trace the paths more fluently and preserve node-level context.

Nodetrix [14] is a hybrid visualization for large social networks designed by Henry

et al. How the design uses a combination of the node-link diagram and adjacency ma-

trix to present simultaneously the global structure and the community detail echos with

the direction of the Three-Component Visual Summary design. However, Nodetrix targets

weighted, non-directional, community network data and does not support direct extractions

of more complicated network analysis results in its visual design. I decided to build my net-

work application on top of the NodeTrix design with the addition of overlaying analytical

highlights, contextual supports, and adjustments for the different data characteristics. Sim-

ilarly to Nodetrix, this work uses force-based layout [124] to calculate the initial positions

of the matrices but allows users to adjust the position manually.
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The rest of the section discusses and compares relevant visual analytics work for net-

work data.

Frishman et al. [125] presented an algorithm for visualizing dynamic clustered graphs

which maintains and separates the communities within the network dataset. This design

provides an overall structure similar to NodeTrix by highlighting each community with

colors and boundaries but retains the node-link diagram within each community. While

path-based analysis within the community may be more straightforward, the intersecting

edges can create additional visual clutter. While both approaches are capable of incorpo-

rating the overall structure and the detailed connections in the visualization, my network

design builds on the NodeTrix layout for a cleaner visualization and utilizes machine com-

putation to reduce the effort needed for path-related tasks.

Chen et al. [126] introduced a web-based system to support their structure-based sug-

gestive exploration approach. The system utilizes multiple views to present the overview,

detailed network structures, and the exploration history simultaneously. Users can see the

selected area for the detailed node-link diagram in the heatmap that represents the overview

to maintain the perspective. The exploration history attempts to capture the interactive ex-

ploration in a static presentation and also serves a selection tool. The majority of the queries

can be accomplished through click and drag, reducing the learning curve of the system.

However, the exploration history presents each historical moment with a representative

high-level structure and does not capture the “why” between the moments. The system

also focuses on finding structures and has little support for path analysis. My network de-

sign also keeps users informed of both the overall structure and the detailed connections

and focuses more on analyzing the data flow.

Major et al. [127] introduced Graphicle to address the analysis opportunities and in-

sights that are potentially missed when focusing primarily on either the underlying net-

work structure or the individual data units. This dissertation also focuses on ensuring data

entries relevant to decisions are not unintentionally left out. However, Graphicle is inter-

action heavy, and the packed unit visualization method can be challenging to understand

and explore without the proper training. In the study presented, participants were given



26

20 minutes of training and 30 minutes of free exploration before being tasked. This dis-

sertation wishes to present tools that are less dependent on interactive explorations for the

decision-makers.

Wong et al. [128] presented a graph analytics model that explores a network starting at

the middle-ground information that is often overlooked by the top-down and the bottom-up

approaches. This approach separates a network into hierarchical node-link diagram layers,

each with a different level of detail displayed. By starting in a middle layer, users are given

the overall structure of the network and enough details to identify areas of interest. Users

are then given the option to expand or collapse parts of the network to examine entries of

interest while retaining the overall structure of the dataset for context. This approach al-

lows users to examine a specific detail of interest while keeping the structure of the dataset

in perspective. Similarly, my network design also provides an overview and the details in

one visual presentation. However, my network design displays the connections of the “col-

lapsed” nodes in the adjacency matrix representation and incorporates a set of analyses into

the visual design. In comparison, Wong’s approach focuses on examining and traversing

large datasets. Wong et al. [129] further explored web-scale graphs through a peek-and-

filter strategy with data preprocessed using GEM. To be able to output manageable static

visual summaries, my network design focuses on datasets at a smaller scale. However,

my design also pre-compute various analyses to allow a smoother experience under the

processing power of web browsers.

Perer et al. [130] developed MatrixFlow to visualize the temporal flow of network data.

MatrixFlow visualizes temporal evolutions of network data through a series of aligned

adjacent matrices. This approach visualizes information traditionally gained through inter-

actions or animations over multiple visual components to present the story behind the data

in a coherent visualization. However, this design focuses mainly on aggregated change

over time and offers little support for path-based analysis. This dissertation also utilizes

multiple visual components to present information traditionally gained in different stages

of interactive explorations. However, the proposed network design utilizes the Nodetrix

layout, which is capable of incorporating more layers of visual analysis representations.
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Srinivasan et al. [131] introduced Orko, which allows both natural language input and

touch-based direct manipulation input. This approach could potentially reduce the technical

expertise required for casual experts to operate visual analytics systems. Orko also fades

out (rather than removing) the filtered data entries and provides a summary container of the

selected nodes. Similarly, my network design provides community-level summaries and

moves the details to the background. However, Orko focuses on interactive exploration,

while this dissertation focuses on communicating knowledge through a coherent visual

summary.
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3. THREE-COMPONENT VISUAL SUMMARY

A version of this chapter has been previously published in Computer Graphics Forum.

Citation: C. Yau, M. Karimzadeh, C. Surakitbanharn, N. Elmqvist, and D. S. Ebert, “Bridg-

ing the Data Analysis Communication Gap Utilizing a Three-Component Summarized Line

Graph,” Computer Graphics Forum, vol. 38, no. 3, pp. 375—386, 2019.

Doi: 10.1111/cgf.13696

The large volume of data we are able to collect and generate with modern technology

can be both a blessing and a burden. On the one hand, the more data we have, the more

likely it is to embed patterns valuable for new insights and predictions. On the other hand, it

requires more effort for the analysts to obtain a comprehensive understanding of the dataset.

This is a greater challenge for the targeted audience of this research work – domain experts

who have little training in information retrieval or visualizations – even with the aid of

tools like visual analytics. In this chapter, I propose Three-Component Visual Summary, a

visual summarization design that infuses that exploration process into the visual design to

support casual experts in making data-driven decisions while minimizing the dependency

in interactive explorations.

3.1 Design Requirements

The reliance on interaction, animation, and multiple/larger displays during data ex-

ploration has been increasing in visual analytics practice. Because of the complexity of

the data collected, understanding and analyzing data typically involves several interactive

steps, such as overview, zoom, and filter [2]. This kind of visual exploration process can

be an effective way for analysts to gain first-hand understanding and insight into the data.

However, the tools and techniques designed for use by analysts do not preserve informa-
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tion pertaining to how the analysts reached their conclusions. An individual who did not

participate in the data analysis process only views the final results without the explanation

of the process. Consider a stock market analyst trying to make a recommendation for the

“air freight/delivery service” subsector of the Nasdaq transportation industry. In order to

satisfy the goal of picking the best stock to invest in, the analyst may progressively filter

out competing stocks based on the analyst’s acquisition guidelines until the analyst has

isolated two specific stocks that the analyst sends to the manager to approve. Without the

context of the full analysis session, including the possible hypotheses tested and discarded,

the manager has limited understanding of the overall findings, no way to detect potential

information bias, and no recourse to check the work. This gap in the understanding of the

data could prevent the manager from making optimal decisions.

Therefore, I draw on the concept of communication-minded visualization [5] to bridge

and minimize this gap between data analysts and their final audience (e.g., managers,

decision-makers, the general public) by incorporating the previously missing but impor-

tant contextual knowledge into the design of novel visual summaries. To achieve this, I

first have to understand how data analysts transfer the obtained knowledge to the decision-

makers. To gain this insight, I surveyed decision-makers from the first responder commu-

nity (e.g., public safety, police, rescue) on the way data is prepared and presented to them

by data analysts. Through the understanding of these current practices and the needs of this

audience, I compiled a list of requirements for communicating data that focuses on increas-

ing efficiency, improving understanding, and reducing the impact of potential information

bias:

R1 Comprehensibility: Decision-makers must be able to quickly acquire a basic under-

standing of the overall behavior.

R2 Accuracy: Decision-makers must be able to efficiently and accurately identify in-

sights that are important to a decision.

R3 Fidelity: Decision-makers must be given the ability to explore and understand the

original dataset and the reasoning leading to the analytical highlights.
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R4 Precision: Decision-makers must be able to obtain actual data values.

R5 Comparison: Decision-makers must be able to compare significant aspects of the

subsets of data.

Based on these requirements, I designed the Three-Component Visual Summary which

visually summarizes datasets using : (1) representative data, (2) analytical highlights/comparisons,

and (3) a data envelope. The representative data provides the audience with a quick overview

of the entire dataset, the analytical highlights/comparisons allow the audience to generate

insights of interest with ease, and the data envelope summarizes the remaining aggregated

data to enable simple exploration of the raw statistics. The Three-Component Visual Sum-

mary is designed to be a method that can be applied to different data types and incorporate

different visualization techniques where the designer identifies the three components, finds

the appropriate visual representations, and creates the visual summary.

3.2 Survey: Communicating Insights to Stakeholders

This work was inspired by regular interactions with decision-makers in multiple projects

spanning an extended period of time. Based on the feedback collected during these interac-

tions, I designed a survey to understand the problems inherent in communicating insights

from analysts to stakeholders. Below is a summary of the survey findings. The complete

survey questions and responses can be found in Appendix A.

F1 Data analysts are given limited presentation time

F2 Decision-makers are given limited exposure to data

F3 Data analysts and decision-makers understand the data differently

F4 Information bias can exist

F5 The presentation has the power to influence the decision
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3.2.1 Survey Method

To better understand how data is communicated between data analysts and decision-

makers, I surveyed six decision-makers from the first responder community. The partici-

pants, who represent my primary target user community, are decision-makers at different

levels in police and public safety departments.

The survey was conducted in March 2018 over Google Forms with the results collected

anonymously. The survey contains a total of eight questions: six multiple-choice questions

on the different characteristics and expectations of the presentation experiences, and two

short response fields for explanations. While I reached out to eight decision-makers, only

six results were submitted.

Of course, with the limited sample from one specific group, the result may not represent

all practice; I have, however, found similar needs in a survey of financial analysts [132]:

providing context, supporting analyses, allowing comparisons of the details, etc. From my

surveys, I concluded a few key points in current practices that identify the limitations of this

communication process between data analysts and decision-makers and derived the design

requirements in Section 3.1. These results support the feedback I have received from many

decision-makers in the past.

3.2.2 Survey Findings

In this subsection, I expand on the survey findings and elaborate on the implication for

the design requirements.

First, common among all respondents was a limitation that data analysts often only

have a limited amount of time to present their findings (F1). While decision-makers at

different levels and in specific fields have different practices, analyst presentations are often

limited to five minutes or less. The short amount of time means the data analysts can only

communicate a limited amount of data, and decision-makers cannot afford to waste time

on results that are not important. This ties into the requirements of my visual design R1

(comprehensibility) and R2 (accuracy), where the decision-makers must be able to quickly
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and efficiently create an understanding of the dataset and its highlights. This time limitation

also constrains the presentation to focus on the dataset and the insights instead of a full

exploration of the exploration process.

I also found that decision-makers only have limited exposure to the data (F2). It is clear

that with the limited amount of time analysts are not likely to be able to walk the decision-

maker through the entire dataset. From the survey, none of the data analysts always include

raw statistics in their presentation and one-third of the data analysts almost never include

raw statistics in their presentation. On the other hand, all of the decision-makers acknowl-

edge the impact that seeing raw statistics has on their decision making and like to see the

raw statistics at one time or another. Two of the six decision-makers actually wish to see

raw statistics at all times. It is, of course, unpractical to present all the data with the limited

amount of time, but as one of the decision-makers stated: “[The data analysts] have [the

data] in volume. I need it in highlights with the ability to ask for more.” The decision-

makers should be given the ability to better understand the raw statistics, which ties into

the requirement R3 (fidelity).

Data analysts and the decision-makers understand data differently (F3). One of the

decision-makers stated that “[data analysts] tend to focus on the manner in which data is

captured whereas [decision-makers] tend to focus on the story the data is telling.” While

that may not hold true for all data analysts, it is not surprising that important details may

be lost during the filtering process because the data analysts have a different focus in mind

while exploring and preparing the data for presentation. For example, when presenting a

dataset with just the average and standard deviation, anomalous spikes in a specific data

source that lasted only a short amount of time can easily be overlooked and not presented.

This ties into the requirements R2 (accuracy) and R3 (fidelity) in which decision-makers

must be able to identify insights that are important to their decision and explore the data

to a certain extent instead of letting the data analysts have complete control over deciding

what is important in the presentation.

Additionally, there can exist information bias (F4). Five of the six decision-makers

have experienced situations where presented information appeared to be biased toward a
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decision. Note that sometimes data analysts also present the preferred courses of action

which ideally align with the data when conveyed appropriately, even if that counts toward

providing biased information. However, as stated in the work of Ajzen et al. [133], personal

relevance could affect what is viewed as the preferred outcome even under the same work

field. As a result, information bias can happen when data are interpreted differently be-

tween data analysts and decision-makers, leading to an error in the conclusion. This leads

us back to the requirement R1 (comprehensibility), R2 (accuracy), and R3 (fidelity) where

the decision-makers must be able to obtain an understanding of the dataset that is enough

to evaluate the presented options objectively to minimize the impact of information bias.

Also, data influences real-world decision making (F5). All of the decision-makers

from the survey acknowledged that the data at least sometimes affect the outcome of their

decision. While this may seem obvious, it is important for the data to be measurable and

comparable to allow the decision-makers to link the data to additional real-world variables

for decision making. This ties into the requirements R4 (precision) and R5 (comparison)

where even in a summarized visualization, decision-makers must be able to measure and

compare significant factors relevant to their decisions.

Finally, the presentation can be limited by its medium. With limited time (F1) and

different settings, it has been observed that analysts are sometimes limited to presenting

the processed result (F2) using static images. Presenting such static charts means the final

display should be self-contained, i.e., it should incorporate the relevant analysis results

without the need for interaction or animation. By summarizing the dataset visually and

including noteworthy insights, the cluttering on screen and the dependency on interaction

or animation can be reduced, allowing the decision-makers to retrieve the same information

more efficiently even with just static images.

A summary of how the survey findings are addressed by the design requirements can

be found in Fig. 3.1.
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3.3 Component Design

To summarize the data for efficient knowledge retrieval without losing important details

and address the design requirements, the summarization design is driven by these charac-

teristics derived from the requirements from the survey:

First of all, the visualization must present a summary of the data to satisfy R1 (com-

prehensibility). The audience being presented with the data needs to be able to quickly

understand the basics of the dataset, and therefore representative values will need to be

clear to users at the moment the data is being presented. Since summarizing and focusing

on the main takeaway can result in losing perspective on parts of the dataset, it is important

for users to be able to obtain a basic understanding of the scope and the distribution of

the actual data to satisfy R3 (fidelity) and R5 (comparison) even with the visualization fo-

cusing primarily on the summarized components. Additionally, to minimize the impact of

information bias and satisfy R2 (accuracy), the visualization should not only enable quick

extraction of important analysis results, but also allow its audience to easily understand

how these results are generated from the data. Finally, to satisfy R4 (precision), the above

need to be measurable.

To include all of these characteristics, I separate the data into three components in

the final visual design, each with a different focus and priority in encoding the data, and

combine them to provide an improved and balanced visual summary presentation. The

three components are: Representative Data, Analytical Highlights, and Data Envelope

The Representative Data provides the audience with a simple but precise description of

the dataset (R1). It should be clear and easy for the casual users to understand without addi-

tional training and should be able to be communicated quickly. Visually, the representative

data should be the most prominent element in the visual summary.

Analytical Highlights are added to the visual summary as the second visual component

to reduce the time needed to gain useful insights from the dataset, to ensure it is clear how

the insights are extracted, and to minimize the loss of important discoveries during the

exploration (R2). The highlights should provide insights that are not straightforward for
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the viewer to identify directly from seeing the raw data but are important to the outcome of

the data exploration. This component should be designed to address the specific insights of

interest to the decision-makers and allow them to compare different aspects in the dataset

for decision making (R5). In the visual design, the analytical highlights should be easy

to identify and provide the connections to the raw data to support the analysis results.

Visually, the analytical highlights should not outshine the representative data, but should

remain easily recognizable.

The Data Envelope summarizes the remaining aggregated data to put the first two com-

ponents into context (R3) and therefore aids the decision-makers in understanding and

evaluating the options and conclusions provided by data analysts despite potential infor-

mation bias. It should provide simple yet specific (R4) details (e.g., boundary values)

of the raw data that are not included in the representative data, and possibly allow basic

comparison between different data points (R5). Visually, the data envelope should be less

prominent compared to the representative data and the analytical highlights, so it provides

context but does not distract. It should also be presented in a simplified manner to reduce

the complexity of the visualization.

The three components are then combined into a display to create a visual summary.

The three components should be presented in a way that encourages the audience to first

examine the representative data, the analytical highlights/comparisons, then finally the data

envelope. By displaying all three components simultaneously, the visual summary can di-

rectly present knowledge that is traditionally retrieved at the different levels of exploration

to address casual experts’ limited time, and reduce dependency in interactive exploration

to address casual experts’ lack of training in visual analytics. By having the overview and

the low-level details present when examining the analytical highlights/comparisons, this

design can preserve the context and therefore reduce the impact of potential bias from the

data analysts. The three components can be presented simultaneously by directly overlay-

ing them on top of each other or by using multiple views, which I will demonstrate in the

designs for the different use cases.
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To accommodate the casual experts’ lack of training in data analysis, this design should

utilize familiar visualizations and statistics to create the visual summaries. A summary of

how the design requirements are incorporated into the design of the three components can

be found in Fig. 3.1.

Fig. 3.1. A summary of how the three components satisfy the design re-
quirements and how the design requirements address the survey findings.

3.4 Constrained Interaction

While the Three-Component Visual Summary design aims to incorporate scenarios

where only static images are being used for presentation, the proposed three-component

layout can be applied to an interactive environment to support data analysis and the gener-

ation of the static images for presentations. To reduce the hindrance from lack of training

in visual analytics tools and to provide a better storytelling, the Three-Component Visual

Summary designs support users with constrained interactions [7]. Considering the designs

can be used to present the data to others, I limit the interactive functionalities to the level

that is intuitive on a touchscreen tablet, such as using click or hover to highlight, rearrange,

or display annotations in a tooltip. The visual summaries should utilize simple represen-

tations and common signifiers familiar to the audience in the display of the interactive

functionalities such as the save icon or the “click-able” mouse cursor icon.
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3.5 Strengths and Challenges

While traditional summarization techniques focus on the aggregation of data and present

all of the data entries equally, the Three-Component Visual Summary design identifies and

highlights the data entries relevant to the decisions to be made. The Three-Component

Visual Summary design constructs a visual summary using three different components to

incorporate insights traditionally gained from the different levels of interactive exploration.

This design provides the audiences with knowledge similar to that retrieved following the

Shneiderman mantra [2] in a shorter amount of time. The flexibility to choose the variables

for the three components also allows the visual summary to be a more customizable and

focused experience, which works toward reducing the communication gap.

However, the effectiveness of a three-component design in helping a decision-maker

generating insights relevant to the decisions now depends on the designer’s ability to se-

lect the appropriate variables and visual encodings to construct the visual summary. While

there have been many studies on the strengths and potential harms of different visualiza-

tion techniques, layering multiple visual components will introduce new challenges to be

addressed. The fact that the same visualization techniques can be used differently in differ-

ent Three-Component Visual Summary designs for different use cases or datasets can also

complicate learning multiple Three-Component Visual Summary designs.

My attempts in applying this visual summary design, which will be explored more in the

following chapters, suggest that this approach can enable casual experts to extract a more

accurate and extensive understanding of the dataset in a shorter amount of time compared

to existing visualization techniques. I believe this is a successful first step toward verifying

the potential of the Three-Component Visual Summary design in bridging the data analysis

communication gap.

While the initial attempts focus on the specific data types and use cases, I believe the

Three-Component Visual Summary design can be applied to more data types and appli-

cations as long as the designer can identify components that satisfy the characteristics de-



38

scribed in Section 3.2.1. The scope of this thesis work focuses on the four major data types

in visual analytics, which will be described in more detail in the following chapters.
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4. SUMMARIZING NUMERICAL DATA

February March April May June July August September October November December

20

40

60

80

100

120

140

160

180

200

C
ou

n
t

ALGT

ALK

ATSG

AVH

CEA

CPA

FDX

GOL

JBLU

LUV

RYAAY

SKYW

UAL

VLRS

ZNH

AAL

ALGT

ALK

CEA

DAL

FDX

JBLU

LUV

RYAAY

UAL

ZNH

Correlation
(Analytical Highlights)

HA

SAVE

CPA

SKYW
ATSG

AVHLTM
GOL

SAVE
HA

AAL
DAL

VLRS

AIRT

AIRT

LTM

Range
(Analytical Highlights)

Density Bands
(Data Envelope)

Trend
(Analytical Highlights)

Key Moment
(Analytical Highlights)

Possible Outlier
(Analytical Highlights)

A
ve

ra
g

e
(R

ep
re

se
nt

at
iv

e 
D

a
ta

)

Fig. 4.1. Example of the three-component summarized line graph
showing Nasdaq stock prices of the transportation industry in the air
freight/delivery service subsector during the year 2016 (a total of 21 stocks
over a full year). The tan line is the representative data: an average curve
providing the mean value for the entire summarized dataset. Along the
time axis, analytical highlights are shown as ranges, trends, correlations,
outliers, and key moments called out using dotted lines and triangles; red
triangles represent the absolute minimums of each line, and blue triangles
the absolute maximums. Finally, the light blue bands in the background
provide the data envelope that give the data distribution over the entire
time axis.

A version of this chapter has been previously published in Computer Graphics Forum.

Citation: C. Yau, M. Karimzadeh, C. Surakitbanharn, N. Elmqvist, and D. S. Ebert, “Bridg-

ing the Data Analysis Communication Gap Utilizing a Three-Component Summarized Line

Graph,” Computer Graphics Forum, vol. 38, no. 3, pp. 375—386, 2019.
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I created a summarized line graph following the guidelines proposed in Chapter 3 as

the first step to evaluate the Three-Component Visual Summary design. The summarized

line graph, as shown in Fig. 4.1, features the mean curve as the representative data; range,

trend, correlation, outliers and key moments as analytical highlights; and extent, density,

and traces as the data envelope. I selected a line graph because it is one of the most com-

monly used and readily understood visualization techniques for presenting simple time-

series data [1]. This simplicity allows this technique to be used to support decision making

in multiple domains. For example, in the finance field, investors can compare the perfor-

mance of stock prices between different companies and evaluate the time and the stock to

invest in or to sell out. With the same graphical design, decision-makers in the field of

public safety can examine counts and trends of different incidents over different regions to

reevaluate the budget and resources allocated to the various teams. Since there are many

visualization techniques that focus on the efficient analysis of time-series data [134], I can

use these applications to evaluate the effectiveness of the summarized line graph. This

proposed visualization technique targets casual experts, e.g., decision-makers with strong

domain knowledge but limited time or training for advanced visualizations. The proposed

technique is able to effectively and efficiently communicate multiple quantitative time-

series data and their correlations. I first explain and discuss the design choices for the three

components in the summarized line graph and then the process of constructing the final

display using the three components. I compared the performance of the summarized line

graph against traditional line graphs, band graphs, stream graphs, and horizon graphs in a

user study on both their complexity and ability to meet the requirements listed above. The

study described below measured performance in terms of both accuracy and completion

time for four representative tasks drawn from the requirements: identifying the original

data, the overall trend, the outliers, and the key moments. While the results indicate sum-

marized line graphs do not outperform other techniques in every task, it achieves the best

overall result when all four tasks are considered.
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4.1 Design

In this section I describe the design of my summarized line graph and how this design

technique ties into the requirements that motivated the Three-Component Visual Summary

design.

4.1.1 Representative Data

The summarized line graph plots the average of the data as the representative data. The

average (mean), being one of the most used descriptive statistics, is capable of providing

measurable values (R4) and change over time that represent the central tendency of the

entire dataset (R1) and is easily understood by casual users. Summarizing the entire dataset

with one line on the graph creates the initial focus in the visualization, which provides a

simple but effective visualization.

I choose to use mean over median to focus on values rather than order. While mean is

susceptible to the influence of outliers and can be misleading when extreme values exist

in the dataset, the data envelope is designed to counteract this problem. Additionally, the

sudden jumps in median values per time-step create more abrupt changes in the visual

displays and hinder trend analysis.

4.1.2 Analytical Highlights

The analytical highlights component is a component that can be customized to fit the

needs of a specific use case, providing helpful insights to aid the design and analysis in

response to the data. In this generic example, I attempt to provide as many insights as

possible while maintaining simplicity in the graph. However, the highlights can be more

specific when adapting use cases with more specific needs, such as anomaly detection or

key value alerts. Therefore, instead of directly visualizing a specific analysis, I add visual

elements to support the extraction of multiple analyses.
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I utilize absolute/global extrema to extract simple analytical highlights that are relevant

to multiple domains: ranges, trends, correlations, outliers, and key moments (time steps

when external events may have influenced multiple time-series) to demonstrate common

analytical highlights in the summarized line graph. I plot the absolute maximum as down-

ward pointing triangles in blue and the absolute minimum as upward triangles in red for

each of the time-series. I label the triangles and align them to the mean curve using verti-

cal dotted lines for better time point measurement and comparison. Note that the extrema

themselves are not the analytical highlights, but a tool that supports easier extraction of the

analytical highlights. With the absolute extrema triangles, viewers can extract the global

and individual ranges using the y-values of the extrema and the approximate global and

individual trends by comparing the time stamps and orders of the extrema. These char-

acteristics provide a sufficient overview for each of the time-series data with little visual

clutter (two data points each); aligning and comparing these overviews alongside the rep-

resentative data allows users to identify possible correlations, outliers, and key moments

and compare different subsets of the data (R5). Additionally, by comparing the ratio of

growing trends to decaying trends, users can perform similar analyses to the market indica-

tor of advance-decline issues. If the design instead highlights local extrema, users can also

examine the local extrema to perform analyses of new highs-new lows. Finally, plotting

the extrema provides measurable values of the ranges and the key moments (R4).

By analyzing the values and time points of the extrema, this design reduces the chal-

lenges of analyzing values of overlapping lines and lines that suffer from adjusting to the

overall scale of the dataset. By extracting these characteristics from the highlighted ex-

trema, the summarized line graph also allows users to understand how the analysis results

are supported by the dataset (R3). This design assumes the fluctuations of the lines have a

smaller vertical impact than the actual trend over time. From my observations, this is the

case for most real-life data.

For example, in Fig. 4.1 where the Nasdaq stock prices of the transportation industry in

the air freight/delivery service subsector during the year of 2016 are displayed, we can see

that the stock price of FedEx(FDX) ranges roughly between 125 and 195 dollars and has
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an overall growing trend. The figure suggests the subsector mostly shares a positive corre-

lation with a few commodities that are curious for having neither their maxima or minima

near the maxima or minima of the remaining time-series. There is, however, no obvious

single outlier in the figure. The figure also suggests that the end of June is worth further ex-

ploration as six of the airline stock prices reached their absolute minimum on the same day

shown by the perfectly aligned dotted lines. While this setup of analytical highlights does

not target a specific scenario, these insights can prove useful to investors looking to invest

in a company, managers trying to understand the performance of the company against its

competitors, or security advisers searching for attacks and insider trading.

By generating these insights through interpreting the highlighted extrema, the summa-

rized line graph also allows the audience to understand the reasoning behind the insights

(R3). Additionally, highlighting only the absolute extrema can guarantee the number of

nodes added to the graph to always be two times the number of lines in the graph rather

than depending on the behavior of the dataset, and therefore keep the visual display un-

cluttered. The extrema are descriptive and succinct analytical highlights that enable many

tasks, and additional highlights can be added while balancing the visual clutter for many

applications including the example described above.

4.1.3 Data Envelope

Since the data envelope component introduced in Chapter 3.3 summarizes the remain-

ing aggregated data, it provides important information not presented in the representative

data and analytical highlights in a simplified and contextual manner. Additionally, to min-

imize the potential misleading information from extreme values, the data envelope adds

density bands to visualize the distribution of the original lines to the visual summary. Den-

sity bands are created by placing a transparent band between the mean curve and each of

the original lines. The transparency of the band is defined in equation 4.1, where Co is the

user chosen opacity, normally between 1 and 2. The equation is designed to incorporate
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the standard deviation, the total range, and the line count to provide better separation of the

different densities.

Opacity =Co ×
log(10×std dev

max−min )

line count
(4.1)

With multiple overlapping layers, the final opacity will inform the audiences of the

distributions of the lines, allowing them to better understand the original dataset and its

effect on the representative data (R3). Density Bands also aid the audience in connecting

the maximum and minimum of a line in further exploring the original dataset (R3), although

the difficulty of such task is proportional to the complexity of the original graph. I chose

not to use a conventional confidence band to preserve more information on the individual

time-series. Similar to Novotný et al.’s focus+context design [135], the semi-transparency

design allows the audience to focus more on the other two components. By placing the

transparent bands within the 2D plane, it provides the audience with enough measurability

for the data envelope component (R4). Additionally, by examining the density bands and

the mean in the same graph, users can examine the distribution of time-series above and

below the mean, similarly to the way market indicators examine the percentage of stocks

above and below key moving averages.

4.1.4 Constructing the Summarized Line Graph

To construct the summarized line graph with the three components, I first scan the data

in a line graph, calculate the mean value for each of the time units while keeping track of the

maximum and minimum points of each line. I plot the average over time (Fig. 4.2(b)) as a

summary statistics overlay [136]. I insert the nodes for each global maximum and minimum

and connect the nodes to the average curve through vertical dotted lines (Fig. 4.2(c)). I add

semi-transparent bands between the lines and the average curve (Fig. 4.2(d-g)). Finally,

I remove the original lines (Fig. 4.2(h)) and the remaining graph is the summarized line

graph utilizing the Three-Component Visual Summary design.
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4.1.5 Generalizability

To demonstrate the generalizability of the Three-Component Visual Summary design, I

present an alternative design using Pearson’s correlation coefficient as the analytical high-

lights for comparing point-wise trends of individual time-series against the trend of ag-

gregated time-series [137] for crime analytics [138]. As shown in Figure 4.3, the graph

highlights the representative crime (car prowl, the time-series with a strong positive corre-

lation; blue, with an up arrow following the label), the crime with the most opposite trend

to the overall trend (narcotic, moderate negative correlation; yellow, with a down arrow

following the label), and the crime most independent to the overall trend (street robbery,

very weak correlation close to zero; red, with a dash following the label) alongside the

average number of crime reports per month for the city of Seattle from 2008 to 2018. The

line-width reflects the strength of the correlation.

4.2 Evaluation

I created a 30-minute user evaluation session for the summarized line graph design

based off of the three-component summarization method. The evaluation examined the

complexity and the ability of the summarized line graph to generate insights on the overall

trend, outliers, and key moments against four linear time structured visualization techniques

capable of communicating time-series data through static presentation: the traditional line

graph, the band graph, the stream graph, and the horizon graph. Each visualization tech-

nique has its advantages and limitations for a given data set and task. Thus, I designed the

tasks to be as suitable as possible to all of the visualization techniques tested.

4.2.1 Hypotheses

The ultimate design goal is for the summarized line graph to satisfy all the design re-

quirements listed in Chapter 3.1. I tested whether this design is capable of providing a

balanced and effective analysis on all of the tasks reflecting the design requirements, and
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compare to other visualization techniques. I hypothesize the performance of the summa-

rized line graph compared to the other visualization techniques below:

H1 The summarized line graph will perform better in identifying outliers (improvement

in accuracy and reduction in completion time) and locating key moments (reduc-

tion in completion time) compared to the traditional line graph. The two techniques

will perform similarly in identifying the overall trend (improvement in accuracy and

reduction in completion time).

H2 The summarized line graph will perform similarly to a band graph (improvement in

accuracy and reduction in completion time) in identifying the original graph and the

overall trend . Because a band graph does not support examining individual time-

series, the summarized line graph will perform better in identifying outliers and key

moments.

H3 The summarized line graph will perform better in identifying the original graph and

outliers and locating key moments (improvement in accuracy and reduction in com-

pletion time) compared to the stream graph. The two techniques will perform sim-

ilarly in identifying the overall trend (improvement in accuracy and reduction in

completion time).

H4 The summarized line graph will perform better in identifying the original graph (im-

provement in accuracy and reduction in completion time) compared to the horizon

graph. The two techniques will perform similarly in identifying the overall trend

and outliers and locating key moments (improvement in accuracy and reduction in

completion time). The summarized line graph also supports measuring actual values

which the horizon graph does not.

4.2.2 Participants

For this evaluation, I recruited 22 university student volunteers (13 male, 9 female)

ranging from 18 to 32 years of age (average age of 25) with backgrounds in Computer
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Science, Electrical and Computer Engineering, Industrial Engineering, Aerospace Engi-

neering, Medicinal Chemistry, and Linguistics through the university public email lists and

campus billboards. The majority of the participants were familiar with basic Excel-level

visualization techniques, including the traditional line graph. There were no color-blind

participants (self-reported). The participants were compensated at a $10 hourly rate. All

participants were fluent in English.

4.2.3 Apparatus

The evaluation was conducted on standard Dell desktop machines equipped with a

mouse, a keyboard, and a 30” monitor set to a 2560 x 1600 resolution. The evaluation

was performed on a Chrome web browser page maximized on the screen. Each image was

displayed at a 960 x 500 resolution. Only the mouse was used for the tasks.

4.2.4 Tasks

During the evaluation, the participants were given four type of tasks to evaluate the

complexity of the visualization techniques and how they support the design requirements

R1, R2, R3, and R5. Design requirement R4 was not included in the evaluation as it is

straightforward from the design of the visualization techniques. The analytical tasks are

inspired by Amar et al.’s taxonomy tasks [139], which explore the characteristics of an

entire dataset, are not easily achievable by the majority of visualization techniques, and

are reasonable for scenarios working with time-series data. I used two years of historical

Nasdaq stock market data from the airline industries and four years of historical Nasdaq

stock market data from the technology industries. I altered the time range and the stocks

used in each question, typically a year’s worth of data for 20 to 30 stocks, to prevent

participants from memorizing the answer. As a result, each question was given a “unique

dataset.” The correct response for each task was pre-calculated using the raw data.

All considered visualization techniques were used to complete the tasks. Figure 4.4

shows how one of the tasks appeared for the different visualization techniques, although
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only one visualization was given at a time, and Figure 4.5 provides examples of the four

tasks and the five figures used in the study. Each task was evaluated based on completion

time and correctness. I evaluated the performance of my summarized line graph on these

tasks against four representative time-series visualization techniques: the traditional line

graph, the band graph, the stream graph, and the horizon graph. The traditional/simple

line graph, the stream/stacked graph, and the horizon graph are representative visualization

techniques for displaying multiple time-series data [69], and the band graph provides a

simple yet effective overview of multiple time-series data while sacrificing the ability to

explore the individual series.

The traditional line graph (Fig. 4.5, top right) shares a similar visual appearance and

attributes with braided graph and scattered plot [140] and is one of the most commonly

used and understood visualization techniques [56]. The band graph (Fig. 4.5, left) shares

similar appearance, functionality, and limitations as the river plot [141] and the functional

boxplot [142] with a more simple and direct presentation. The stream graph (Fig. 4.5,

top center) is a good representation of stacked graphs that highlights the overall dynamics

and the individual contributors. Finally, the horizon graph (Fig. 4.5, bottom right) is a good

representative visualization technique that utilizes small multiples to save space and explore

both the individual and the overall dataset. I choose the horizon graph over conventional

small multiples because conventional small multiples can take up noticeably more vertical

space, which may not be available during the knowledge transfer between the data analysts

and the decision-maker. The normalization and the different binning in the horizon graph

also allow easier trend identification and comparison. The band graph, the stream graph,

the horizon graph, and my summarized line graph can all be derived from the line graph.

Each visualization technique was given two questions for each task. I excluded the choice

“undeterminable” from the answers, forcing the participants to make their best guess when

the answer is not obvious; this option complicates the calculation of accuracy and can

influence the decision time measurement since the participants may give up at different

levels of frustration.
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Identifying the Original Graph

For each visualization technique (excluding the traditional line graph), I presented two

questions per task: one for identifying the original graph composed of 20 time-series, and

a similar question with 30 time-series in the graph. For possible answers, the participants

were given a choice of four line graphs (each with 20 or 30 time-series, respectively) to

identify as the one from which the given visualization (i.e. summarized line graph, band

graph, stream band, and horizon graph) was derived. By analyzing the time and the percent

of correct identifications of the original graph, I can better understand the complexity of

each visualization technique and user’s ability in creating the mental image of the raw form

of the data through such techniques. The result reflects the visualization techniques’ ability

to meet the design requirement R3 (fidelity).

Identifying the Overall Trend

The participants were asked to identify the overall trend for the dataset using the five

visualization techniques. For each question, the participants were asked to identify whether

a given graph had an overall increasing or decreasing trend. Each visualization technique

was given two questions, one with an overall growth or fall of five percent, and the other

thirty percent. The result of the task reflects the visualization techniques’ ability to meet

the design requirement R1 (comprehensibility).

Identifying the Outlier

The participants were asked to identify the outlier using the five visualization tech-

niques excluding the band graph. For each question, the participants were asked to select

one time-series in the given graph that deviated from the overall trend the most. This task

focuses on anomalous behavior, meaning a data source’s value is increasing or decreasing

in the opposite direction of the rest of the group, rather than a data source having values

significantly higher or lower than the rest of the group. Note that I removed the band graph
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starting with this task as the individual time-series are not identifiable with this visualiza-

tion technique. The result of the task reflects the visualization techniques’ ability to meet

the design requirement R1 (comprehensibility) and R2 (accuracy).

Locating the Key Moment

Finally, the participants were asked to identify the time step when a key moment oc-

curred (multiple time-series reaching their extrema concurrently) using the five visualiza-

tion techniques excluding the band graph. For each question, the participants were asked to

identify the month when the most time-series reached either their maximum or minimum

concurrently in the given graph. The result of the task reflects the visualization techniques’

ability to meet design requirements R2 (accuracy) and R5 (comparison).

4.2.5 Procedure

After each participant provided informed consent, I provided a 10-minute training ses-

sion describing how the summarized line graph and comparative visualization techniques

were derived from the traditional line graph. I then administered three sample questions,

similar to the evaluation tasks, for the participants to test their understanding of the visual-

ization techniques and the tasks to complete.

During the evaluation, the participants answered multiple-choice questions for the tasks.

The evaluation question order was randomized and updated for each participant using a

Latin Square randomization order [143] to ensure an even distribution of the question types

throughout the evaluation trials to minimize the learning effect in the results. After the eval-

uation, the participants were surveyed about their demographic, self-reported skill level,

and thoughts on the tasks and the visualization techniques.
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Table 4.1.
T-test on the effects of difficulties.

Task Correctness Completion Time

Original Graph p-value = 0.80 p-value = 0.19

Overall Trend p-value = 0.64 p-value = 0.45

4.2.6 Results

To analyze the collected results, I examined the 95% confidence intervals calculated

utilizing the bootstrapping method [144] with 1,000 iterations. Fig. 4.6 presents the ac-

curacy and completion time of each visualization technique under each task and Fig. 4.7

presents the overall comparison between the techniques. In this section I compare the per-

formance of the techniques using the overlap-test [145] and the t-test [146]. Note that from

Table 4.1 we can see that the difference in the difficulties of the tasks to identify the original

graph and the overall trend is not significant for the correctness and the completion time.

Therefore, the following analysis treats the results from the different difficulties equally.

Fig. 4.6 shows the accuracy of the summarized line graph to be consistently above 80%

correct. For the task to identify the original graph, summarized line graphs (µ=91%) per-

form significantly stronger in correctness compared to stream graphs (µ=62%) and horizon

graphs (µ=33%), and similarly to band graphs (µ=93%). For the task to identify the over-

all trend, summarized line graphs (µ=100%) perform significantly stronger in correctness

compared to stream graphs (µ=83%) and horizon graphs (µ=81%), and similarly to band

graphs (µ=98%) and line graphs (µ=98%). For the task to identify the outlier, summarized

line graphs (µ = 93%) perform significantly stronger in correctness compared to line graphs

(µ=67%) and stream graphs (µ=22%), and similarly to horizon graphs (µ=91%). Finally,

for the task to locate the key moment, summarized line graphs (µ=93%) perform signif-

icantly stronger in correctness compared to stream graphs (µ=43%) and horizon graphs

(µ=71%), and similarly to line graphs (µ=79%, p-value=0.08). Fig. 4.7 shows that over the
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scope of this experiment, which was designed to reflect the visualization technique’s ability

to satisfy the requirements listed in the introduction, the summarized line graph (µ=94%)

performs significantly stronger in correctness compared to the line graph (µ=81%), the

stream graph (µ=52%) and the horizon graph (µ=69%), and similarly to the band graph

(µ=95%).

Fig. 4.6 and Fig. 4.7 show that the summarized line graph has the shortest average com-

pletion time in overall comparison, trend identification and key moment locating. However,

the majority of the differences in the average completion time are not statistically signif-

icant. The only exception lies in the task to identify the overall trend, where the summa-

rized line graphs (µ=23.94s) perform significantly more efficiently compared to line graphs

(µ=26.98s, p-value=0.05).

The summarized line graph received positive feedback from the participants in the post-

experiment survey. The participants appreciated its cleaner aesthetic and found its resem-

blance to the more familiar traditional line graph helpful. The participants also found the

average curve and the removal of original lines useful when examining the data. Finally,

the participants agreed that the visualization technique is easy to interpret and gain the in-

sights required for the tasks. However, a few participants also expressed a minor frustration

with the additional time it took to find the labels in the summarized line graph.

Comparing between the summarized line graph and the traditional line graph, I can

only conclude from the study result that the summarized line graph is more accurate in

identifying the outliers and more efficient in identifying the overall trend, which partially

confirms and partially exceeds H1. The summarized line graph and the band graph per-

formed roughly on the same level regarding both accuracy and efficiency, which confirms

H2. However, I do note that the simple design of a band graph allows it to be a powerful

tool in communicating an overview of the data, but it is not capable of the more detailed

tasks a summarized line graph can handle. The summarized line graph performs signifi-

cantly stronger than the stream graph in the correctness of every task, which exceeds the

accuracy side of H3, but failed the completion time side of the hypothesis. Finally, the

summarized line graph outperforms the horizon graph in the accuracy to identify the orig-
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inal graph, to identify the overall trend, and to locate the key moment which also exceeds

H4 on the correctness aspect but not the completion time aspect.

Unfortunately, due to the large variance in the completion time between the different

participants, most of the comparisons between the efficiency are inconclusive. However,

while the differences are not statistically significant, it shows the summarized line graph to

be at least as effective as the existing techniques I tested against. I suspect the wide range

of completion time is a result of some participants giving up and moving forward with

random guesses at different points of time on tasks that require more effort. This theory

is supported by how multiple participants expressed their frustration with the stream graph

in the post-experiment survey, stating it “forced [the participants] to do a lot of the work”

and was “too difficult to figure out the heights”, yet the struggle is only reflected in its low

accuracy but not the completion time that is similar to those of the techniques that require

less effort in finding the correct answer. I consider rewarding the participants with a bonus

for results above a certain level of correctness in the next study to stress the importance of

getting the correct answer to the participants.

4.3 Discussion

The summarized line graph is not an intuitive visualization design and will require

some training before one can use it. Based on the user study results, however, a 10-minute

training is sufficient time to become reasonable skilled at understanding the visualization.

Using the global maximum and minimum may be effective for examining data across a long

period of time, but the audience may be confused by fluctuations when examining data that

span a shorter period of time or have a stable global trend. Also, placing the labels next to

the extrema makes the design less suitable for searching for specific time-series of interest

without prior knowledge of their behavior. Finally, the semi-transparent density bands can

also be misleading to audiences familiar with stream graphs, as the two techniques share a

similar appearance but are read differently.
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There are several advantages which outweigh the aforementioned drawbacks. As a

shared-space technique [69], the summarized line graph’s display size is independent of

the number of time-series it displays, unlike techniques that create a separate chart for each

series. While shared-space techniques are traditionally more efficient with fewer lines, the

summarized line graph’s design should reduce the impact of overlap and clutter better than

traditional shared-space time-series plots as it aggregates the original lines into polygonal

visual elements. Furthermore, an important advantage of my summarized line graph is

that it is simple to read direct values. In comparison, horizon graphs make reading values

difficult, and reading the stream graph requires estimating the width of a band. While this

can be supported by interaction, such interactions are not always available.

The use of extrema and the automatic selection were chosen as “shortcuts” of typi-

cal analysis tasks, and I demonstrate the benefit of this simple design using the Three-

Component Visual Summary approach. None of the participants explicitly requested addi-

tional forms of analytical highlights, and based on their performance, appeared to perform

well for the specific tasks in the evaluation. However, I leave surveying domain experts

on effective indicator-task combinations to future work. More complex highlights and

semi-automated selection of features can be added to address the needs of other scenarios.

Similarly, the scalability of the technique depends on the data and the chosen analytical

highlight. From the study, the design was able to clearly visualize at least 31 time-series.

However, I leave a formal scalability study to future work.
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Fig. 4.2. An illustration of how a three-component summarized line graph
(h) is created from a traditional line graph (a). First, the average of the
original lines is plotted over time as the representative data (b). Then
each absolute maximum, absolute minimum and the vertical dotted line
is added to support the extraction of analytical highlights (c). Layers of
transparent bands are now created between each of the lines and the aver-
age curve to form the density bands for the data envelope (d-g). Finally,
the original lines are removed to reduce cluttering (h).



56

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
0

200

400

600

800

1,000

1,200

1,400 C
ou

n
t

AGGRAVATED ASSAULT(0.71)

AGGRAVATED ASSAULT-DV(0.39)
ARSON(0.2)

BURGLARY-COMMERCIAL(0.62)

BURGLARY-COMMERCIAL-SECURE PA

BURGLARY-RESIDENTIAL(-0.06)

BURGLARY-RESIDENTIAL-SECURE PA

DISORDERLY CONDUCT(-0.15)

DUI(-0.05)

FAMILY OFFENSE-NONVIOLENT(0.41)
GAMBLE(-0.08)HOMICIDE(0.13)LIQUOR LAW VIOLATION(-0.32)LOITERING(-0.04)

MOTOR VEHICLE THEFT(0.55)

PORNOGRAPHY(0.09)PROSTITUTION(0.03)RAPE(0.5)
ROBBERY-COMMERCIAL(0.64)
ROBBERY-RESIDENTIAL(-0.08)
SEX OFFENSE-OTHER(0.52)

THEFT-ALL OTHER(0.59)

THEFT-BICYCLE(0.49)

THEFT-BUILDING(0.32)

THEFT-SHOPLIFT(0.57)

TRESPASS(0.67)

WEAPON(0.3)

CAR PROWL(0.76)

Average
NARCOTIC(-0.46)
ROBBERY-STREET(0.00)

Fig. 4.3. An alternative summarized line graph design using correlation
analytical highlights, showing the number of reports for 30 crime subcat-
egories from the city of Seattle between 2008 and 2018.
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Fig. 4.4. An example of how the tasks are set up to evaluate the visual-
ization techniques. The same task with the same difficulty (but a different
dataset and answer) is given to the participants in different visualization
techniques and randomized order. In this example, the participants are
asked to identify the stock that deviates from the overall trend the most us-
ing the traditional line graph, the summarized line graph, the stream graph
and the horizon graph. I examine the response accuracy and completion
time to compare the visualization techniques.
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Fig. 4.5. Examples of the five visualization techniques and the four tasks
used in the study: identifying the original graph using a band graph (left),
identifying the overall trend using a stream graph (top center), identifying
the overall trend using a traditional line graph (top right), identifying the
outlier using a summarized line graph (bottom center), and locating the
key moment using a horizon graph (bottom right).
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Fig. 4.6. 95% confidence interval plots of the study results in accuracy
(left) and completion time (right) separated by task and technique.
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Fig. 4.7. 95% confidence interval plots of the overall comparison between
the different techniques in accuracy (left) and completion time (right).
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5. SUMMARIZING CONTEXTUAL DATA

Fig. 5.1. The SuccessVis system contains three connected views. The
Project Slideshow on the top (a) serves as the representative data com-
ponent to provide quick summaries to the center and each project. The
Impact Stream Graph in the center (b) serves as the analytical compar-
isons component and allows users to compare the impact of projects under
the same category and the dynamics of different impact metrics within a
project. The Milestone Details View on the bottom (c) serves as the data
envelope component to provide context to the milestones.
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In this chapter, I present SuccessVis – a flexible web-based system created to present

the academic impact of our research center during the eight years it was supported for

its sponsors to evaluate the value of investing in academic research groups. SuccessVis

was designed following the Three-Component Visual Summary design to summarize and

present the knowledge embedded in a collection of text and multimedia data. Text visual-

ization is more difficult to overlay directly on a graph compared with the numerical data

design discussed in the previous chapter. Therefore, SuccessVis takes the form of a light

interactive system that uses three different views as the three components.

Assessing academic impact is a field that has less support from visual analytics com-

pared to fields such as financial management. This is likely a result of the concept of

academic impact and the data required to assess impact being less defined. With our data

being a collection of annual reports, visual analytics systems, presentation posters and so

on, this scenario also demonstrates the challenge in visualizing the multimedia data ca-

sual experts can sometimes gather. SuccessVis addresses this challenge by grouping data

into quantifiable data, contextual data, and supportive material and presenting data using

components that provides insights at the different levels of exploration.

In the following sections, I will first introduce the background of this project, describe

the design process and how I incorporated the Three-Component Visual Summary into the

design, then discuss the resulting system.
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5.1 SuccessVis

Exploring and evaluating the success of university activities and projects is challenging

because of the various values in different dimensions of impact (e.g., research, education,

outreach). For research activities, a common approach is to explore citation networks [72].

Researchers started visualizing the connections between citations, funding, and research

topics (e.g., [74, 76, 77]) to better understand the impact of “science.” As the research

on academic impact evolved from the traditional “scientometrics” [147] or “informetrics”

[148] and became more accessible, a new group of users, “casual experts” [77], became

interested. Casual experts are often in decision-making positions and would like to support

their decisions with data and facts.

During the 7th year of our research center, our sponsor became interested in learning

about the achievements of the center and its changes over time to help better evaluate future

investments with universities.

However, most scientometric works focus on a single temporal snapshot and rarely

provide insights to dynamic temporal changes (e.g., [74–77]). Moreover, the impact of

academic programs can be difficult to measure compared to industry, since most outcomes

come in the form of discoveries of new knowledge or developments of new techniques,

rather than easily comparable and quantifiable financial profits. After discussion with the

staff of the research center, I decided to develop a visual analytics system to explore and

evaluate the magnitude and the temporal evolution of our success, instead of compiling a

traditional text-based report.

Visualizing academic impact has its challenges. Most of the data produced by research

labs are abstract and non-numerical data such as publications, presentation slides, reports,

logs, etc. from different projects. Such outputs are difficult to port into traditional visualiza-

tion systems [149] that are simpler and easier for casual experts to understand. To address

this problem, I quantified research impact, preserved important contextual data, and then

combined simple but effective visualization techniques to create an interactive exploration

and analysis system of the products and projects, their impact, and their evolvement over
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time. The resulting system is SuccessVis, a flexible and easily adaptable web-based vi-

sual analytics system for examining the impacts of different academic research work and

how their different areas of impact change over time. SuccessVis allows users to examine

and compare how impactful different projects and impact dimensions (e.g., research vs.

real-world application) are and connect them to contextual data to provide a comprehen-

sive story. The system also provides additional supportive materials on each project and

milestone for users who are interested in further exploring the successes of the center.

5.2 Design Process

5.2.1 Desired Output

The first step was to decide on the desired output that would best present academic

impact. An interactive visual analytics system can be a powerful tool for exploring large

and complex datasets, allowing its users to obtain insights that are relevant to their deci-

sions [150]. Being able to interactively filter and examine the center's impact in different

areas visually can be more effective than examining numbers and text over spreadsheets

or paragraphs when exploring the outcome of investments. However, this visual analytics

system must take the skill-level of the prospective audiences into consideration. The goal,

through providing a visual analytics system that utilizes constrained interactions, is to ef-

fectively communicate the scale, the temporal changes, and the context of the impact from

our research center in different areas and provide an intuitive visual analytics experience

for casual experts to gain insights and support decision makings.

5.2.2 Data Compilation

Determining what data was available and categorizing it was a key step in the design

process. I was able to collect the majority of the data from our center universities and

research came from our annual reports to the sponsor. Through the reports, I obtained

information such as the publications produced, important presentations, patents received
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for each project and lists of funded students from each partnering university. There were

also monthly newsletters and lists of seminars and presentations from the center, as well as

different presentation slides, flyers, video demonstrations, software systems and logs from

the different projects. These were considered non-numerical contextual data.

I needed to separate the data into quantifiable data, contextual data, and supportive

materials in order to visualize the available contextual data using more commonly under-

standable techniques that typically require numerical data. Quantifiable data are variables

whose significance and magnitude are both positively correlated and can be represented

in or transformed into a countable manner. For example, the amount of funding a center

obtains may be proportional to the outside interest in its research work. Contextual data

includes variables whose significance are not directly represented by their count. A pres-

tigious award might be a more significant outcome than multiple less prestigious awards,

for example. Finally, supportive materials, such as a recorded demonstration of a working

system or the paper from a research discovery, provide additional details into the story for

the impact variables.

I acquired the number of publications per year for each project, and then searched for

the number of times these papers were cited throughout the years of interest from the list

of publications. I then estimated the number of important presentations from our annual

reports and quarterly newsletters. I either obtained the exact number of users based on

the accounts created, or estimated the number of users based on the unique download IP

addresses from the system logs. These classes of data became numerical to support more

traditional visualization techniques. The data was manually converted into counts during

this process, as the source materials were stored in different mediums and were accessed

differently. I leave the automated conversion to future work. I also collected contextual

data such as project milestones, start dates and end dates, significant project transitions,

workshops hosted, competitions participated, and awards received from annual reports and

newsletters. The contextual information would be presented as textual data and connected

to the visual components by date and project. Finally, there were additional supportive
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materials such as posters, presentation slides, and videos that could be attached to relevant

textual data for further investigations.

Since I aimed to present multiple projects from the center, I needed to find the data

fields commonly shared, and therefore comparable, that could represent the scale of impact.

After examining the amount of data from each data field for our main projects, I finalized

four fields or areas of impact: publication counts, citation counts, presentation counts, and

user counts. All four fields, besides user counts on rare occasions, are fairly common

across the different types of academic projects and cover a variety of impact types. The

number of publications reflects the novelty and depth of the research work, the number of

citations reflects the relevance to other research works, the number of presentations reflects

the interest from the outside world, and the number of users reflects the practicality of the

research output.

5.2.3 Visualization – the Three-Component Visual Summary

To effectively present the center impact to the stakeholders, I constructed a Three-

Component Visual Summary design with the data collected. Unlike the summarized line

graph that combines multiple numerical data visual representations, it is difficult to over-

lay visual representations of the contextual data and supportive materials. This is because

there is no commonly shared basis to connect the different components visually onto one

canvas. In this use case, I display the three components in three interactive and intercon-

nected views with the view that presents the representative data on the top and the view that

presents the data envelope on the bottom. The information to present in the three different

views was identified based on conversations with the stakeholders. The subsections below

describe the component designs for the representative data, the analytical comparisons, and

the data envelope.
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Representative Data

The representative data component provides users with an overview of the dataset. This

component must cover both the quantified portion and the contextual portion of the dataset

to guarantee the delivery of a comprehensive summary. This component also needs to

provide a summary to both the center and the primary sources of the impact – the major

projects from the center. Therefore, a Project Slideshow View was created as the repre-

sentative data component. The project slideshow presents a high-level description and the

total count of each impact metric for the center and the various important projects to in-

form users of the scope and direction of the impact generated by the center and by each

project. The project slideshow also updates automatically based on the data being exam-

ined in the analytical comparisons component and highlights the corresponding story to

help users maintain perspective and ensure users to connect the three components in the

three different views.

Analytical Comparisons

The analytical comparisons component allows decision-makers to perform comparative

analyses and quickly generate insights useful to the decisions. This component presents the

extracted and quantified high-level attributes shared between data subsets to allow accurate

and effective comparisons. The Impact Stream Graph was implemented as the analytical

comparisons component to provide audiences the opportunity for comparative analysis on

the magnitude and temporal evolution of the different impact metrics of a project or the

aggregated impact of different projects. By plotting the quantified magnitude of impact

over time, this visualization allows comparisons that are more intuitive than text-based

reports.

The Impact Stream Graph was implemented with a stacked graph using the ThemeRiver

layout [37] to visualize the scale of impact and its changes over time. Alternative vi-

sualization techniques that can encode magnitude over time for multiple distinguishable

time-series include the traditional line graph [20] and the horizon graph [67]. However,
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the layout of the traditional line graph does not reflect the combined magnitude and the

proportion of the individual time-series, and the normalized horizon graph makes compar-

ing the magnitude of each time-series impossible. The strength of the ThemeRiver layout

lies in visualizing thematic variations in both individual topics and groups of topics over

time [47], which fits the need to show the impact of the center as a whole, the impact of

individual projects, and the different types of impact from each project in a measurable and

comparable manner. Being able to see how the different impact metrics of the different

project categories evolve over time allows investors to evaluate the direction and timespan

of their next investment. ThemeRiver is also constructed on the same abstract 2D plan as

the traditional line graph and therefore reduces the learning curve for casual experts to use

effectively compared to designs like the horizon graph.

Icons were added to the ThemeRiver to represent milestones whose significance cannot

be represented fairly by its count. Different glyphs and simple annotations provide users

with a quick look into the significance of the milestones and how they might be pivotal

moments to the impact generated. A click event on the icons will update the data envelope

component to provide more details on demand.

Data Envelope

The data envelope component provides context embedded in the raw data to the first

two components. With this dataset, the component needs to be able to incorporate the

different data formats of the raw data. The Milestone Details View serves as the data

envelope component and provides the audience with a chance to look into the details of

the different milestones. This view provides more detailed descriptions of the milestone

stories highlighted in the Impact Stream Graph as more digestible aggregated summaries,

and provides links to the relevant original materials to incorporate the diverse formats of

the raw data.
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5.2.4 User-Centered Design

I designed the system with an iterative and incremental development approach [151]. I

first presented a mock-up to our sponsor, a decision-maker in the Department of Homeland

Security. I created a prototype system using their feedback. After the second development

iteration and collection of feedback using the prototype, I refined the design and populated

it with three major projects from our research center. With the affirmation on the prototype,

I populated the full data and continued demonstrating the refined system to our sponsor

and then incorporating their feedback back into the system. To ensure the design appeals

to casual experts, I also reached out to an Interaction Design & Industrial Design team at

the university to improve the color choices and glyph designs for the milestone icons used

in the system.

I distributed the work of collecting and filtering the milestone contextual data to admin-

istrative staff, instead of the researchers, to minimize the possibility of bias regarding what

would be considered as important stories to tell. For example, researchers see the discovery

and overcoming of roadblocks during a project as important achievements, while sponsors

pay more attention to project launches, transitions, and awards. It is important that the

information the system provides is relevant to the audience rather than the presenter.

Finally, to make the system usable over time as center activities continue, and to make

it beneficial to other centers without redevelopment, I decided to create a system that is

simple to update and flexible to adapt to different fields and measures. I also decided

to make the system web-based to avoid installation issues and enable easy access from

anywhere for use and presentation. The system stores data and populates the user interface

through spreadsheets for the ease in updating and exporting from databases, etc.

5.3 System

Figure 5.1 displays the system consisting of three parts: (1) a Project Slideshow (Figure

5.1a) that gives summary highlights for each project, (2) an Impact Stream Graph (Figure

5.1b) that displays the magnitude of the impact and its changes over time for the different
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Fig. 5.2. SuccessVis displaying the impact breakdown of (a) the Social
Media Category and (b) the project SMART.

projects or types of impact, and (3) a Milestone Details View (Figure 5.1c) that allows users

to read the milestone story in more detail and access the attached supportive materials.

5.3.1 Data Spreadsheet

To populate the system, a few specific spreadsheets have to be generated:

• “slideshow.csv” stores the Project Slideshow information. It includes, for each project,

its project name, start date, end date, project description, and an additional media

link.

• “gauges.csv” stores the subjects and the values of the three takeaway values on the

right side of the Project Slideshow.

• “metrics.csv” stores an index number and a corresponding name for each tab the

Impact Stream Graph displays.

• “visualization data x.csv”, where ‘x’ is a positive integer, stores the actual data of a

tab in the Impact Stream Graph. Its fields include a topic key, a topic value, a date, a

milestone summary, a milestone glyph, and a milestone link.
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• “milestone legend.csv” stores the paths to the milestone glyph image files and their

corresponding milestone categories, then uses the data to generate the legend at the

bottom of the Impact Stream Graph.

5.3.2 Visual Analytics

The three views of SuccessVis (Project Slideshow View, Impact Stream Graph, and

Milestone Details View) combine and link the numerical data, the contextual data, and the

supportive materials to provide a full picture of the center's impact.

Project Slideshow View

Project Slideshow View includes three subcomponents: project description, external

media, and takeaway values. The project description, displayed in the middle of the Project

Slideshow, provides a summary of the purpose, the output, and the partners of the project.

The external media window, displayed on the left side of the Project Slideshow, is capable

of displaying an image, a video, or a PDF file as long as a valid link address is stored in the

spreadsheet. The takeaway values are located on the right side of the Project Slideshow. It

provides users with values on the project as a whole. The slideshow starts off with an initial

slide on the center itself, then lists the projects ordered from left to right in chronological

order. Users can click on the left or the right arrows to navigate through the projects. A

semi-transparent summary that includes the project name and timespan of the next/previous

project, located under the arrows, will be highlighted when users hover the mouse over the

arrows. The project the slideshow is displaying will also be highlighted on the Impact

Stream Graph if it is included in the selected tab.

5.3.3 Impact Stream Graph

Impact Stream Graph displays the impact of the center's work. It is capable of display-

ing multiple tabs of impact, which are selected through the blue circle icons in the lower
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left corner, allowing users to display and examine impacts from different projects and cate-

gories. Tab one displays all the projects' collective impact, as seen in Figure 5.1b, showing

how the impact from the center as a whole has evolved. The substreams represent the total

impact of each project showing the proportion of their contributions to the overall impact

of the center. While examining our projects, I grouped the projects into different categories

such as law enforcement, resource allocation, and social media. In Figure 5.2a a user has

selected the Social Media tab, leading the Impact Stream Graph to display the collective

impact of GeoTxt and SMART from the Social Media category and the proportion they

each contributed to the combined magnitude. By double clicking on the larger substream

that represents SMART or by clicking the SMART tab icon, the graph will display a project

impact breakdown with the substreams being the different impact fields, as shown in Figure

5.2b, allowing the user to better understand what areas the projects have a stronger impact

on. Different icons are placed on top of the stream graph at the corresponding time to

show important milestones each project achieved. The different glyphs represent different

categories of milestones such as project launching, transitions, and awards. By hovering

over a milestone icon, a summary of the milestone story will be displayed. By clicking on

the milestone icon, a detailed description of the milestone will be displayed in the Mile-

stone Details View, as shown in Figure 5.1c. When a project is highlighted, either through

the slideshow or through hovering the mouse over the substream, the milestone icons be-

longing to the project will be highlighted to help users better connect the projects and the

milestones.

5.3.4 Milestone Details

Milestone Details View provides a more in-depth description of milestones. It also dis-

plays other important events that happened during the same timeframe that are unable to be

displayed on the milestone summary in the Impact Stream Graph. Milestone Details View

takes a web URL link and displays it in an iframe when its corresponding milestone icon is

clicked. By displaying a webpage, it is capable of not only explaining the milestone stories
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in more detail, but also embedding images, videos, external links, or other attachment files

for users to examine.

5.4 Discussion

5.4.1 Use Case

I used SuccessVis to visualize the impact of our research center from the past eight

years. I selected 11 major projects to display in the system to learn about the strengths and

weaknesses of the different projects and project categories regarding impact. For example,

by examining the law enforcement category, we can see three of the four projects have

more users compared to most of the projects, indicating that the law enforcement projects

have a strong impact in the work field. I can also examine how the proportions of different

impact fields from a project changed as time progress. For example, in Figure 5.2(b), we

can see how around the year 2015, SMART's users started increasing more dramatically

while the number of presentations and citations started decreasing, indicating the overall

impact transitioned from a more theoretical interest into more practical uses after about

three years of development.

5.4.2 Generalizability

The system has been designed to be adaptable to other academic centers. Three out

of the four impact types are collected from common products of most academic research

centers. The user count and other possible impact factors not included can be easily added

or removed using the populate-through-spreadsheet method. While the system does not

currently support automated source material conversion directly, the process can be repli-

cated manually and is easily semi-automated through periodic data collection, rather than

gathered at the end of the period of interest.
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5.4.3 Challenges

In spite of the initial system, there remain challenges to be solved, such as:

• Data frequency: Paper publications and citations often happen at the rate of one every

few months, while new users and presentations vary between the different projects.

If I input the stream graph data by month, I could end up with multiple zeros, which

creates unattractive visuals and may not present the impact of the publications and

citations fairly. However, when I input the data by year, I can only display one

milestone icon per project per year due to the limitation of the spreadsheet-filled

system. Multiple milestones of different kinds could occur within the same year, and

it is difficult to represent the different events with just one icon.

• Limited usable data fields: To ensure reasonable comparison between the impact

magnitudes of different projects, the project impacts have to share the same quantifi-

able data fields. I am thus limited to only the data that exists for all the projects I plan

to display.

• Combining impacts: To compare the impacts from different projects, I need a rep-

resentative overall impact value for each project. To not be biased toward a specific

field, I add up the four different fields of impact to get an estimated project impact.

However, the four fields do not share the same units or weights, and adding up the

fields makes the actual measurement confusing. If I instead normalize the different

fields before adding them up, the comparison between the project magnitudes will

not be accurate.

• Project duration: Not all the projects share a similar amount of data. A simple spread-

sheet may be more effective for short projects than the system. But selecting a thresh-

old at which the system will be most effective is difficult.
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5.4.4 Initial Feedback

After presentations of the system using eight years’ worth of data, our sponsor indicated

an appreciation for the storytelling aspects of the system and the ease of understanding and

comparing the overall picture of the center and its projects. Our sponsor was very interested

in sharing the system and in expanding the use of the system to university research centers

to show their impact as well. Our sponsor also expressed interest in learning more about

the educational impacts. To respond to this request, I collected data regarding courses and

students that benefited from the funding and inserted it into the system as an additional and

standalone project.

I had the chance to present this work to faculty from other universities. Many of them

expressed interest in having access to the system and the opportunity to populate their

research impact. I hope to collaborate with them in the future to further evaluate and

improve the system.

One piece of feedback expressed concern about a potential color matching issue be-

tween the takeaway values in the Project Slideshow and the impact type in the Impact

Stream Graph. This is, unfortunately, a result of the approach to populating the system

through dynamic spreadsheets. Linking the repeated fields between the takeaway values in

the Project Sideshow and the fields in the Impact Stream Graph is currently not supported.

I aim to resolve this issue in future work.

These pieces of feedback were collected over multiple demonstrations and informal

interviews with the intended user of the system and university faculties that can benefit

from the system. No formal reports were generated.

5.4.5 The Success of SuccessVis

Unlike the summarized line graph, it is more challenging to perform a quantitative

study on the effectiveness of SuccessVis due to the more interactive nature of the design

and the lack of well-developed tools focusing on the exploration of academic impact over

time. I also do not have access to information on how future decisions in academic-based
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investments have benefited from SuccessVis. However, the value of this work is reflected

in the following: First, I have successfully created and populated a visual analytics tool

based on the Three-Component Visual Summary design using the type of unorganized data

collection many academic research groups have, which, in the end, is preferred over the tra-

ditional reports. Second, since our sponsors wish to provide the system to other academic

research centers and other university faculty members wish to adapt the system to showcase

their work, it is clear that SuccessVis is a desirable storytelling tool for academic impact.

Therefore, even though SuccessVis, as a Three-Component Visual Summary design, is not

evaluated over a quantitative study, it is evident that it outputs an effective summary pre-

sentation which allows the casual experts to evaluate the impact of the VACCINE Center.
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6. SUMMARIZING GEOSPATIAL DATA

Fig. 6.1. A web-based Three-Component Visual Summary design for
geospatial crime report data. Users can select and adjust the appropri-
ate visual elements for the three components through the control panel
on screen left. This design utilizes an annotated boundary and a sum-
mary textbox as the representative data to provide a quick overview of the
dataset. Users can select a combination of even-volume clusters, topic-
specific data distribution(s), time-based analysis, and correlation analysis
as the analytical highlight for decision-relevant insights. Users can also
select a combination of the raw data distribution, landscape information,
and census data as the data envelope for context.

Large amounts of multimedia and multivariate data are now geo-tagged by the GPS

trackers embedded in smartphones and other devices [152]. This presents new opportu-

nities for data analysts and stakeholders to explore and identify patterns and relationships

between the spatial distributions and various other spatial characteristics over different sub-

jects of interest. The connection to geographic space also provides a unique opportunity to

incorporate knowledge of the geographic region into the decision-making process. Previous
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applications included in this dissertation render data in an abstract 2D space disconnected

from the physical reality. Incorporating knowledge of different geospatial regions implies

that the synergy of human and computer is specifically beneficial in this use case. However,

the current tools and methods for analyzing geospatial data prove challenging for stake-

holders and decision-makers from a more diverse background who are not trained in data

analysis to use effectively [88]. This results in a more challenging collaboration between

different actors, such as data analysts, decision-makers, and stakeholders. Often, presenta-

tions with filtered options from data analysts are not enough for decision-makers to make

data-driven decisions confidently [153]. In the case of geo-tagged historical reports, visual

analytics tools were developed to support decision-makers in the first responder fields to

identify potential risks following the different decisions [44, 45]. With additional knowl-

edge of the geographic locations, decision-makers are also able to consider factors that are

not encoded into the data, including the atmosphere of the various neighborhoods and how

communities may respond to the decisions, etc. However, it is observed and confirmed by

our domain experts that and many of the decisions are still made primarily based on domain

knowledge and traditional methods. Further, first responders primarily operate on a case

by case scenario and often miss opportunities provided by the collected data.

In this chapter, I propose a web-based visual analytics system to support decision-

makers in first responder fields in utilizing multivariate geospatial data more effectively for

situation assessment and resource allocation. This design follows the Three-Component

Visual Summary design to address the main issues in Geovisual Analytics for Spatial Deci-

sion Support: collaboration, communication, and flexibility [153]. The Three-Component

Visual Summary design provides the solution by being: (a) accessible to casual experts, (b)

capable of generating comprehensive visual summaries, and (c) customizable for specific

decisions. It presents a dataset using three simultaneously displayed visual components

(representative data, analytical highlights, and data envelope) encoding the knowledge

generally retrieved at the high-level overview, the comparative analysis, and the low-level

detail stage of exploration into one display. The three-component approach communi-

cates a comprehensive data story more efficiently without requiring the technical expertise
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to interactively explore a dataset using a visual analytics system, and the displayed visual

components can be customized to focus on analysis more relevant to its audiences. The pro-

posed design, as shown in Fig. 6.1, utilizes an annotated contour and a summary textbox as

the representative data, the different possible combinations of data clusters, topic-specific

data distribution, data movement, topic-specific correlation as the analytical highlights,

and a density function visualization of the entire dataset, landscape, and census data as the

data envelope. While the data envelope component is traditionally limited to summariz-

ing the aggregated data, this design imports external contexts that are not encoded in the

data entries but have the potential to explain the patterns observed, similarly to the domain

knowledge of a user. Simple human-interface interactions are incorporated into the system

to provide the audiences with the ability to explore the dataset and the analyses further and

adjust the transparency of each visual element to generate a balanced visual summary.

The following sections explain the design of the system in more detail, present interest-

ing findings through a case study and the feedback from a prospective user, and discuss the

outcome of the design.

6.1 Design

In this section, I first explain the design choice behind each of the three components. I

then describe the system setup. The three components were built over a map visualization

for two reasons. First, most spatial analysis can be visualized over geographical coordi-

nate systems, meaning the three components can be overlaid directly to allow are more

straightforward mental connection. Second, with most geospatial data visualized using

maps [154], this setup will be more familiar to casual experts. Both the direct connection

between the components and the familiar setup aim to create a more accessible tool for

different actors. This design considers data-driven, political (man-made), and geographic

(natural) boundaries to present a more coherent picture of the region of interest.
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6.1.1 Representative Data

The representative data component provides a quick summary to help users understand

the scope of the dataset. The visual design has to be simple, effective, and prominent to

attract the user’s attention upon first glance. Therefore, a simple contour is used to high-

light the boundary of the dataset. The contour boundary is quick to extract, requires no

interpretation, and informs users the geographical range of the data points in the dataset

immediately. It encloses the remaining visual components, establishing its role as the first

element to examine. Its hollow nature also minimizes possible collisions with other visual

components. However, the boundary itself provides no information as to the size and dis-

tribution of the data, which can be important in order for users to understand the scope of

the dataset. Therefore, the dataset’s center of mass is visualized and labeled on the map to

hint at the data distribution and provide a representative point for the dataset I annotate the

boundary by adding a short text description on the total count of the data and the number

of data points that fall under specific categories relevant to the decision-makers to the outer

edge of the contour. Another challenge with the boundary overview is that it may not be

visible in the display when a user zooms in on a region within. While the remaining visual

components can inform the user whether the displayed region contains data entries, the data

summary contained in the annotated text will be lost. An easily accessible fixed-position

textbox is added to the corner of the map to provide the summary in more detail.

A few alternative options to address the challenge in examining the overview while

zoomed in include using a fisheye [155] or a space folding [29] distortion and an additional

zoomed out map. However, maintaining the true scale may be important to some users,

especially in the static visual output for communication. With visual components for ana-

lytical highlights and the data envelope also present, the distortion could bring more harm

than benefit. The additional map view also moves the overview components out of the same

coordinate scale, making the connection between different components more difficult. The

additional textbox ensures a smoother exploration of the three components.
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6.1.2 Analytical Highlights

The analytical highlights component presents interesting characteristics of geospatial

data that can be combined in the visual display for further exploration. A list of geospatial

analyses that are beneficial for data-driven situation assessment and resource allocation in

first responder fields is added to the design as the analytical highlights component. The

analysis results are encoded with visual components that can be understood by most audi-

ences to allow more fluent communication and collaboration.

First, the design provides even-volume clusters. Traditionally, first responder resources

are allocated to cover evenly-sized regions. However, different regions may have varied

amounts of incidents happening. By allocating the resources based on even-volume re-

gions, first responders can guarantee having enough resources for each region. The even-

volume clusters aggregate data points into multiple clusters, each with the same number

of data entries, using a Same-size k-Means Variation algorithm 1. Each cluster is visual-

ized using a contour visualization. The contour visualization is selected to allow further

examination of the regions within. Users can layer the contour over data distributions

to understand the hotspots within the region. Users are also given the ability to adjust

the k-value through the corresponding slider bar in the control panel. This option allows

decision-makers to adjust the number of clusters based on the resources available. A log-

ical next step would be to automatically adjust the contour to conform to the shape of the

streets or the neighborhoods if available. I leave that to future work.

The topic-specific data distributions visualize through heatmaps the distributions of data

points that fall under a specific category or include specific content. Decision-makers in law

enforcement have started considering assigning officers based on their expertise for more

effective work [156]. Understanding the distributions of different incidents allows decision-

makers to assign the appropriate resources to each region. A heatmap visualization is

chosen, as the density may be more crucial than the range when the resources are ranked

by relevance. The topic-specific distribution option also allows users to examine how this

1https://elki-project.github.io/tutorial/same-size k means
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subgroup of data contributes to the overall dataset and how it relates to the political and

geographical boundaries when layered over the corresponding data envelope components.

Users can select the topic of interest using the corresponding radio buttons in the control

panel. To ensure the system complies with the recommended constrained interaction, the

system does not allow users to filter the topic through queries but has users select from a

pre-determined list of topics. If the relevant topic or category is not determined, a dropdown

menu may suffice. In this example, we limit the number of topics to reduce the complexity

of the system.

Time-based analysis encodes the directions and the incident counts of a selected group

of data over multiple time bins during the selected time frame. Understanding potential

seasonal or hourly patterns of incidents over space and time can support first responders

with situation assessment and resource allocation [44]. Users can filter the data displayed

by topic, select the number of bins to separate the data into, and alter the start and end time

of the data displayed using the radio button, the number-only input field, and the double

slider bar in the control panel. This allows users to potentially display the data movement

by the hour, day, week, month, year, etc. and identify possible temporal patterns in the

changes of data size and weighted center over time. The data movement is visualized using

circles and arrows. The position of the circles represents the data collection’s centers of

mass for each time bin. The radius of the circles represents the size of the data collec-

tion for each time bin. Finally, the arrows connect the circles pointing from the circle of

the earliest time bin to the circle of the latest time bin. Additional contour boundaries are

added to present the geographical range of the data collections’ distributions to address the

potential confusing from the radius of the circles. The contours can be distinguished by

the opacity where the lighter contours belong to earlier time bins, and the darker contours

the later time bins. This visual encoding is chosen to focus on the high-level shifting (or

overlapping) of the aggregated data, which, unlike trajectory-based movement visualiza-

tion, is not bounded by street paths. An alternative visual encoding uses multiple heatmaps

for the different time bins and indicates the order by a sequential color scheme. However,

while the heatmap encoding is more effective in showing the range of the data collections,
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the movement can be more challenging to track, the normalized visualization is less effec-

tive for comparing data sizes (which should not be confused with the geographical range

of the data distribution), and the area-covering visualization style can create more visual

clutter when layering multiple visual components. The currently-visualized time frame is

displayed in the summary textbox to reduce the visual clutter in the map view.

Correlation analysis encodes the correlation between the data subsets of two categories

within the different political boundaries. This allows first responders to understand the

relationship between the two categories (e.g., criminal charges) in different geographical

regions better [52] and can support them in situation assessment and making potential pre-

dictions based on the data collected on one of the categories. The correlation is visualized

using a choropleth map that utilizes census tract boundaries with a diverging color scheme.

An alternative design could use a grid-based boundary and encode the statistical signifi-

cance of the correlation on the side [52]. However, census data were assigned to specific

census tracts, and by visualizing along the census tracts, the design retains the visual-

ization of the base map and reduce the hindrance from examining the details in the base

map. While the nonuniform boundary in this design makes incorporating indications of

statistical significance difficult, the statistical significance can be estimated by layering the

corresponding data distributions. Users can select from the control panel the category pair

of interest. The system then calculates the correlation for each census tract using the phi

coefficient [157] and colors the corresponding census tract using the computed value. The

calculated phi coefficient will have a value between negative one and one, where negative

one represents the two categories strongly negatively correlated, zero represents the two

categories not correlated, and one represents categories strongly positively correlated. The

diverging color scheme was chosen as being able to identify correlations close to zero is

equally important as being able to identify coloration near one or negative one.
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6.1.3 Data Envelope

The data envelope component summarizes the remaining data and provides context to

the analytical highlights. Unlike the numerical and the contextual applications that draw

contexts from the raw data only, geospatial data can also retrieve context from additional

geographical and political information on the region the data is geotagged. As a result,

the data envelope component of the geospatial application includes the aggregation of the

original dataset, landscape, and census data.

First, the data envelope summarizes the dataset by visualizing the distribution of all

the data points using a heatmap visualization. The density-based visualization allows a

well-scalable presentation of the raw data distribution. With the proper opacity level, it

can overlap with analytical highlights to inform users how the data distribution could have

contributed to the analysis results retrieved or how a highlight compares to the overall

dataset in volume, etc. This heatmap uses a color scheme in the opposite color family to

the topic-specific data distribution heatmap visualizations to allow more distinguishable

comparisons.

Another method of visualizing the raw dataset is to directly display the geo-tagged data

entries as individual points on the map. However, this introduces visual clutter quickly

with larger datasets. The circle visual components can easily collide with other visual

components, and data entries generated from the same geographical coordinates will over-

lap perfectly and become unidentifiable. This visualization may be more useful when not

displayed with additional visual components, but for merely examining the raw data. The

system keeps this visualization as an option for flexibility as the point visualization may

be more intuitive compared to heatmaps for certain casual experts. Data entries that be-

long to the highlighted categories are filled with the same colors used in the topic-specific

visualizations.

The landscape option updates the base map to include landscape information. This

additional context can be crucial as certain phenomena are caused by landscapes [94],

while the landscape data is rarely encoded in the raw data. This allows users to examine
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the relationship between the terrain and the data distributions or movements. The landscape

information has the potential to provide reasoning to various analytical highlights.

Finally, the census data is added to the visualization using a choropleth map. Census

data provides valuable characteristics of the different neighborhoods that are not likely in-

cluded in the raw data. Domain experts familiar with the regions examined may be able to

provide similar information that is more up to date. However, the census data can be more

detailed and be encoded into the visualization for more precise comparisons. Users can

choose to visualize population, income, race, or education data using the radio buttons in

the control panel. Hovering over each census tract in the map will also trigger a short text

summary of the actual count inside the selected census tract to appear in a summary textbox

below the map view. Both population and income data color the census tracts using a scale

of normalized range from the lowest to the highest value. Education data colors the census

tracts using a scale from no education to Ph.D. Race data colors the census tracts by mix-

ing white, black, yellow, and red based on the proportion of Caucasian Americans (white),

African Americans (black), Asian Americans (yellow), and Native Americans (red) resid-

ing in each census tract. By overlapping the census data with visual elements from the

analytical highlights, users can explore potential reasoning or correlations behind how the

different characteristics change over the different regions.

6.1.4 System

The geospatial application of the Three-Component Visual Summary design takes the

form of a lightweight web-based visual analytics system that outputs static visual sum-

maries by selecting and layering the different combinations of visual elements. The system

was implemented in a web-based environment to reduce the technical requirements associ-

ated with software installation and allow accessibility through more devices and platforms.

Being able to display the system in a touchscreen tablet also allows more opportunities in

presenting the data. This fits the overall direction of the Three-Component Visual Summary

design to be more accessible to users.
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The system interface utilizes a map view, a control panel, and a summary textbox. The

control panel allows users to adjust the visual presentation for each of the components in

the system. Each of the visual components can be displayed or hidden using a checkbox.

When displayed, each option (asides from the overview and the landscape functions) is

given a slider to adjust its transparency for users to find a balance between the layered visu-

alizations displayed for the most effective storytelling presentation. A tooltip will appear to

provide a short description for each option when hovering over a label or a slider. Finally,

the summary textbox displays text summaries of the overall dataset and additional regional

information when the appropriate visual elements are selected to be displayed.

While the visualization relies on the “three components” to tell the data story, all three

components visualize the data over the same coordinate system and therefore are designed

to directly overlay on top of each other to preserve space and provide stronger mental con-

nections between the components. Each of the visualization techniques is also selected and

implemented to be compatible, meaning they should be distinguishable and understandable

when displayed together.

This system and approach combine the computational power of machines and the soft

knowledge of the user. The machine computes and visualizes the dataset, and given the

ability to adjust the visibility of each visual component, the end users can use their domain

expertise to select different combinations of visual components and analyze the relation-

ships between the different characteristics that contributed to the final data story and under-

stand how the discoveries are derived from the data. I will demonstrate this in Section 6.2.

6.2 Case Study

In this section, I present a use case on crime report data. I then demonstrate how

different analyses can be performed using different combinations of the visual components

provided by the system to support decision-makers in law enforcement-related fields.
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6.2.1 Data

I collected 7426 geo-tagged crime reports from Tippecanoe County, Indiana between

June 1st, 2018 12:32AM and August 31st, 2018 11:17PM. In this use case, I highlighted

three crime categories – trespassing, theft, and fraud for the topic-specific data distribution,

the time-based analysis, and the correlation analysis visualizations. In addition, I also high-

lighted drug violation crimes to the time-based analysis. These topics were selected based

on previous studies performed with the same dataset [52] and suggestions from domain

experts.

In addition to the crime report data, the official US Census Data from 2010 is used

to populate the census data choropleth map 2. The landscape visualization uses map tiles

from Openlayers 3. Finally, the color schemes used in the system are selected from Color-

Brewer 4.

6.2.2 Insights

Overview and original data distribution

Upon first glance at the system, as shown in Fig. 6.2, we can see the overall boundary

of where the data is distributed. From the text around it, we can see that this dataset

contains 7426 data entries, including 472 trespassing reports, 544 theft reports, and 305

fraud reports. Below the map view, we can also see in the textbox the time frame the

data was collected and the percentage of the three crime reports in the dataset. The data

distribution, visualized using the 5-class allports heatmap, also shows how the 7426 data

points are distributed throughout the region and where most of the data points were reported

from. This initial display, though not highlighting any analysis, demonstrates that by simply

layering the overview and the data envelope, the system is able to provide users with a quick

and comprehensive overview of the dataset. Without the annotated boundary, the heatmap

2https://www.census.gov/data.html
3https://openlayers.org/
4http://colorbrewer2.org/
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Fig. 6.2. An overview of a crime report dataset visualized with the anno-
tated contour (Representative Data) and the 5-class allports heatmap (Data
Envelope)

is not able to communicate the scale of the data effectively. Without the heatmap, users

would have no way to examine the way the data is distributed throughout the region.

Even-volume clusters & data distribution

In Fig. 6.3, the system highlights the even-volume clusters with a k-value of 5. By

adding the cluster boundaries to the overview and the data distribution, this separates the

map into multiple regions, each containing an even volume of data entries and highlights

the distribution hotspots within each region. This information can help a decision-maker

in the police department better assess how to allocate resources and where to focus within

each of the patrolling zones. The k-value can be adjusted based on the number of teams

available.
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Fig. 6.3. Breaking the dataset into multiple regions using even-volume
clusters (Analytical Highlights).

(a) Trespassing. (b) Theft. (c) Fraud.

Fig. 6.4. Crime distributions visualized using heatmaps (Analytical Highlights).

Crime distribution

Fig. 6.4 shows the distributions of the three highlighted crime categories. From the

5-class red heatmap in Fig. 6.4(a), we can see that trespassing crimes center mostly around

downtown Lafayette and Purdue campus. From the 5-class amber heatmap in Fig. 6.4(b),

we can see that theft crimes are more evenly distributed through the different neighbor-
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Fig. 6.5. Time-based analysis on drug violation reports over the summer
of 2018 (Analytical Highlights).

hoods in the greater Lafayette area. From the 5-class flush orange heatmap in Fig. 6.4(c),

we can see that fraud crimes focus on a few specific points. With the topic-specific distribu-

tions layered on top of the overall data distribution, we can see how each crime contributes

to the overall dataset. If we add the cluster visualization back to the display, this can also

aid the decision-maker in selecting teams with the right experience and training for the

right neighborhoods.

Time-based analysis

Fig. 6.5 highlights how the center of mass and the count for drug violation reports

moved from June 2018 to August 2018. Since the data was collected from the beginning

of June to the end of August, by adjusting the bin number to 3, each circle on the map

represents a month’s worth of data. Based on the radii of the circles, it is clear that the

number of drug violations increased significantly in the month of August. Based on the

order and the positions of the circles, we can also see that the center of mass moved from the
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Fig. 6.6. Correlations between fraud and trespassing reports over the dif-
ferent regions are visualized using a 7-class spectral choropleth map (An-
alytical Highlights).

outskirts of Lafayette in June to the neighborhood besides Purdue University in August, the

month when a new school year starts and students return to campus. With this information

at hand, the decision-maker could further investigate the use of illegal drugs around specific

neighborhoods and adjust the propaganda strategy against illegal drugs accordingly.

Correlation Analysis

Fig. 6.6 shows the correlations between crime reports on fraud and trespassing using a

7-class spectral choropleth map. In Fig. 6.6, we can see that fraud and trespassing have a

strongly positive correlation in the south end of downtown Lafayette and a lightly positive

correlation near Purdue campus. However, by overlaying the heatmaps of the two crime re-

ports, we can see that the positive correlation is a result of a small portion of the two crime

reports only. While both the distribution feature and the correlation feature are included in

the system as an analytical highlights component, the different visualization techniques al-
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Fig. 6.7. Trespassing distributions (Analytical Highlights) on top of in-
come data (Data Envelope) for additional context.

low the two features to be visualized simultaneously. In this case, the distribution provides

additional context to the correlation results and allows users to reconsider the significance

of the finding.

Census Data

Asides from the information encoded in the raw data, this design also imports addi-

tional context from the census data with the hope to explain certain phenomena or identify

previously unknown correlations. Fig. 6.7 overlays the 5-class red heatmap for trespass-

ing distributions on top of the 7-class green choropleth map for the aggregated income of

each census tract. The figure suggests that trespassing primarily happened around neigh-

borhoods with lower incomes. By updating the choropleth map to visualize the proportion

of different ethnicities resided within each census tract, as shown in Fig. 6.8, we can see

that there are three regions in Lafayette that have a slightly higher African American per-
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Fig. 6.8. Trespassing distribution (Analytical Highlights) on top of race
data (Data Envelope) for additional context.

centage. The figure suggests that the triangle formed by the three regions attracted more

trespassing crimes. It is worth noting that the insights gained through such visual examina-

tion deserve additional investigation before making any conclusions and that the correlation

identified does not equate causation.

Landscape

Fig. 6.9 overlays the data distribution heatmap and the time-based data movement on

top of a landscape map tile. This setup can help decision-makers understand how the

landscape might be able to explain particular phenomena. In this specific use case, the

landscape of Indiana seems to have no noticeable impact on either the distribution or the

movement of the crime reports. This is likely because of the minimal terrain variations in

the region.
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Fig. 6.9. Crime distribution (Data Envelope) and movement (Analytical
Highlights) visualized on top of landscape map tile (Data Envelope) for
additional context.

6.3 Feedback

This system was informally assessed by a high-level decision-maker in local law en-

forcement from Tippecanoe County, Indiana, in early February 2020. The decision-maker

was familiar with the dataset and how the dataset has been utilized in a sophisticated visual

analytics toolkit designed for crime analysts [44]. In this section, I summarize the feedback

received after a demonstration of the system and an informal interview.

The decision-maker first explained that many decisions made in his department are “pri-

marily incident-based” and mainly consider data relevant to specific criminal cases rather

than the entire collection of reports, making this system not directly applicable to his daily

practices. However, he found this system to be a valuable addition to the current practice,

specifically in providing “a higher-level look at situational awareness” and “develop[ing]

specific priorities within [the] common operating picture.” The decision-maker considered

the system a tool that can “help everybody [at the analysis and response center] understand
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where problems exist and then develop a higher-level understanding of what the situation

on the ground is, especially when it comes to the allocation of resources.” He also recog-

nized features such as the combination of even-volume clustering and data distribution to

be a great tool for data-driven resource allocation, which, in his vision, the current practice

will shift toward.

The decision-maker was able to confirm some of the patterns identified with his domain

knowledge, such as the hotspot distribution of fraud reports tying to local businesses. He

was also surprised by some of the insights discovered, such as the temporal analysis of drug

violation, and was interested in investigating the different temporal patterns further.

The decision-maker especially appreciated that the system connected the data to the

additional context of census reports and landscape. The external context was not well-

utilized in the current practices of his department, and the decision-maker found the ability

to understand the possible influences of cultural components to have great potential in

allowing a better understanding of the data. The decision-maker also expressed interest in

incorporating more context-focused map tiles into the system for further exploration, such

as the correlation between streetlights and night-time crimes.

The main improvement the decision-maker wanted to see is the ability for the system

to identify interesting patterns automatically. He explained that while the system can be

effective for examining items he knows he is interested in, it is also important to be able

to identify knowledge he does not know he needs to know. This request could be more

beneficial to investigative fields similar to law enforcement, but is nonetheless a research

problem worth further exploration.

Note that this summary is the result of an informal discussion with a domain expert on

the usability and the significance of the system to his work. While written notes were taken

during the discussion, no official report was generated. A questionnaire designed to mimic

what users might be able to answer at the end of MILCs [158] can be found in Appendix

B. While MILCs were not considered for this research work due to constraints in time and

resources, this questionnaire was used to initiate the discussion.
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6.4 Discussion

6.4.1 Strengths

The main advantage of this system is its simplicity. As a tool designed for decision-

makers who are not professionally trained data analysts, it requires significantly less effort

to use. It reduces possible confusion for its users, allowing them to obtain knowledge

otherwise traditionally acquired through lengthy exploration. The system utilizes simple

analyses that do not require expertise in data analysis to understand, opening the tool to a

broader group of audiences. The audiences can perform every action through click, drag,

and hover. The direct feedback from each of the checkboxes and sliders also makes using

the tool more intuitive when setting up the display. With its simplified nature and design

choices such as moving the lengthier text outside of the visual components, and allowing

users to adjust the transparency of each layer and placing emphasis on different elements,

the final display of the system can also effectively communicate insights from the data to

other audiences.

Even though the system is simple, it still provides the basic analyses common to spatial

data and covers the different factors that are important to the data story. Being able to

use any combination of the analyses provided opens up more opportunities than focusing

on one analysis at a time or going back and forth between multiple views. Many of the

analysis results can be combined to provide additional contexts or insights, as shown in the

case study.

The system utilizes both the users’ domain expertise and the machine’s computational

power. It preserves the context during the simple exploration stage to allow users a stronger

understanding of the reasoning behind the analysis results retrieved. The simplicity of the

system and the pre-computation of the majority of the analyses provided also reduce the

time required to retrieve knowledge compared to most tools. The addition to incorporate

external context also allows a more comprehensive exploration of the dataset.
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6.4.2 Trade Offs

The simplicity of the system, however, also leads to the inflexibility of the system.

While the Three-Component Visual Summary design encourages customized design for its

users, the users are limited to the functions and adjustable variables provided by the final

system. As a result, the system may have limited contributions to professional data analysts

and limits the potential for its users to grow into more sophisticated data analysis.

The web-based platform also limits the processing power of the system. This can be

seen when the size of the dataset exceeds a certain threshold. The initial processing of the

data becomes noticeably slower.

Overlaying components with area-based visual encoding can also be challenging. For

example, a single context-specific hotspot works well with other visualization displays,

but becomes harder to distinguish when multiple context-specific hotspots are displayed

simultaneously. The adjustable transparency setting helps users to see visual components

that overlap, but when heatmaps of different colors overlap, the transparency starts to mix

the colors, which can cause additional confusion.

6.4.3 Scalability

Since the system does not examine the full content of the crime reports, the visual pre-

sentation (ignoring the processing power of a web browser) handles the scale of the data

reasonably well. The contour visualization and the normalized heatmap can easily present

a large amount of data, and the landscape is independent of the data. The main challenge in

scalability is shown in the data movement visualization and the number of features utilizing

visual designs of the same style being displayed at the same time. The first challenge is

straight forward. As the user-selected number of temporal bins increases, the paths con-

necting the nodes start to overlap more and could become difficult to follow eventually.

The second challenge is slightly more complicated. The visualization techniques used in

this system can be roughly grouped into three different categories. The first category of

visualization techniques overlays items directly on top of its location on the map. The
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raw data points, the time-based analysis, and the landscape map tiles belong to this cate-

gory. The second category of visualization techniques draws contours to surround an area.

The overview and the even-volume clusters belong to this category. The third category of

visualization techniques utilizes area overlay to demonstrate the change over space. The

heatmaps for data distribution and the choropleth map for the correlation analysis and cen-

sus data belong to this category. Techniques from different categories usually have little

conflict with each other, and being able to adjust the transparency of each visual element

made displaying multiple techniques from the same category, especially the last category,

possible. However, when transparent layers with different colors overlay, the colors blend

and could cause confusion. As a result, the display scales better when the selected analyses

do not fall within the same category.

While the use case presented in this paper focuses on crime report data, the same ap-

proach and analyses can be performed over other geospatial data for useful insights. For

example, social media data can be used to study and compare the topics of interest among

different neighborhoods. This design of the system should be able to incorporate most

geo-tagged multivariate data.
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7. SUMMARIZING NETWORK DATA

Fig. 7.1. A Three-Component Visual Summary design for a Twitter fol-
lowing network. The overall structure and the text summary serve as the
representative data component, providing the audience with a quick grasp
of the data size and the high-level network structure. The Analytical High-
lights component covers network-relevant analyses including influencers,
group dynamic comparison, connection strength and direction, neighbor
distance, shortest path, and mutual data sources and targets. Network-
level analyses are encoded into the design, while node-specific analyses
require nodes to be selected. In this example, the mutual data source of
the two selected nodes is being visualized. Finally, the edge information
within each matrix and the community summary serve as the data envelope
component to support the analyses with raw data and context.
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With the popularization of the World Wide Web, social media introduced a new way for

people to communicate. Users can generate and publish content easily using identifiable

or anonymous accounts. Social Media content, some of which is unverified, can quickly

spread and influence people across the globe, altering their opinions or behaviors. For ex-

ample, many users now retrieve news stories from social media tools such as Facebook

and Twitter instead of the traditional media outlet [159, 160]. Many also trade through

online platforms such as eBay, Craigslist, and Facebook. With many of these interactions

over the internet recorded and converted into digital data entries, more opportunities are

provided to explore and analyze human connections and interactions. These opportuni-

ties can greatly benefit decision-makers in multiple domains. For example, understanding

how information travels through different social media accounts can aid decision-makers

in cybersecurity to identify possible sources of false information or dangerous propaganda.

Knowing how news stories are shared between different organizations and individuals can

help a decision-maker running a campaign to decide where to insert a piece of information

to help it propagate quickly. Recognizing the direct and indirect connections between dif-

ferent identified criminals can help decision-makers in law enforcement identify potential

key players behind the curtain and predict future targets.

By now, it is reasonably common to analyze network data using graph theory [102,

103]. However, most network visual analytics utilize the traditional node-link diagram 1,

which can become visually cluttered quickly [111] and become challenging to navigate

effectively if not familiar with the filtering and highlighting functionalities in interactive

visual analytics systems. Many network visual analytics systems allow users to manipulate

the layout of the node-link diagram and encode variables into different attributes of the di-

agram, such as colors, stroke width, etc. 2. Utilizing this practice meaningfully will require

an understanding of the effect the different variables have on the display, enough time to

explore the different setup, and the training in analyzing a network using an interactive

visual analytics system still. As we have learned from our domain experts, the decision-

1http://www.visualcomplexity.com/vc/index.cfm?domain=Social%20Networks
2https://video.sas.com/detail/video/6029136083001
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maker survey, and Andrienko et al. [153], many decision-makers do not possess such time

and training.

Fig. 7.2. A simple node-link diagram displaying the same network dataset
shown in Fig. 7.1.

In this chapter, I present another web-based visual analytics system designed based on

the Three-Component Visual Summary design to support casual-expert decision-makers in

exploring and understanding data flow networks. I built my design on top of NodeTrix [14],

which excels at providing the overview (representative data) while preserving the details

(data envelope), by adding the missing analytical highlights component and introducing

additional external context. This design utilizes the global structure of the NodeTrix lay-

out and an additional summary text as the representative data, and the detailed connections

displayed in the adjacency matrices and additional community descriptions as the data en-
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velope. Added to this visualization design is a list of analytical highlights that are beneficial

for network-related decisions on top of the NodeTrix layout, including influencer, neigh-

bor distance, shortest path, mutual sources and targets, connection strength and directions,

and group dynamics comparison. Node-specific analytical highlights can be toggled on

and off using click events. Hover events are also available to help users examine details

or highlight a selection. Shown in Fig. 7.1 is the design visualizing a mock-up Twitter

Following network that contains 5 communities, 30 nodes, and 60 edges and highlighting

the influencers and the Twitter account the two selected Twitter accounts both follow. In

comparison, Fig. 7.2 displays the same dataset in a traditional node-link diagram. The

difference in visual clutter is clear.

In the following sections, I explain the design choices of the three components and the

system, present interesting findings through a case study and the feedback from decision-

makers that are domain experts of network data, and discuss the outcome of the design.

7.1 Design

In this section, I explain the design of my Three-Component Visual Summary for net-

work data. This design focuses on visualizing data flow networks to support decision-

makers in understanding how information spreads and identifying influencers (sources that

are sending data to a large number of receivers directly) and relationships between different

actors or communities. When data flows from node A to node B, it is visualized by an edge

or a glyph pointing from node A to node B. In the example presented in Fig. 7.1, if Twitter

account C follows Twitter account D, the data is flowing from node D to node C and will

result in a visualization where node D points to node C.

7.1.1 NodeTrix

Henry et al. presented NodeTrix in 2007 and introduced the first network visualization

design that combines the strengths of the node-link diagram and the adjacency matrix rep-

resentation [14]. NodeTrix utilizes the two visual representations of network data to show
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the high-level global structure of a network and support exploring the low-level connections

within the communities effectively. This design direction parallels with the representative

data and the data envelope component of my Three-Component Visual Summary design.

The next logical step is to highlight analysis results in the visual display, instead of obtain-

ing them through an extensive interactive exploration process. Therefore, I decided to build

my network visual summary design on top of the NodeTrix design.

One major difference between my application and NodeTrix is in the dataset it tar-

gets. While both applications handle network data with communities, NodeTrix visual-

izes weighted non-directional data and manipulable communities such as co-authorship

between different research groups, and my work focuses on non-weighted directional data

such as Twitter following among different ground-truth communities. I decided to group

the nodes based on real-life communities to preserve context rather than reducing crossing

edges with automatic clustering algorithms. As a result, the authoring support in Node-

Trix that allows users to understand how community matrices are formed is not carried

over to this iteration of my network visual summary design. Given datasets with multiple

node-based attributes, however, animated transformations between different user-selected

ground-truth communities may be implementable to achieve a similar effect. I leave this to

future work.

7.1.2 Representative Data

The representative data component in this design combines a global node-link diagram

structure from the NodeTrix layout and a short summary text. The summary text is placed

on the top of the design and displays the name of the dataset and the number of commu-

nities, nodes, and edges. Unlike the proposed geospatial design, the summary text is not

necessary for users to extract the number of nodes and edges. However, the summary text

allows users to understand the scope of the dataset more quickly, satisfying the design re-

quirement of the Three-Component Visual Summary design. The global structure of the

network can be seen through the node-link diagram, where each node represents a commu-
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Fig. 7.3. The system also includes a zoom-out level of the visualization
to accommodate large scale datasets. This figure visualizes an e-mail net-
work between members from five different departments of a research in-
stitute. The dataset is further explored in the case study.
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nity. First, users can obtain an easy grasp of the scale of the nodes and if the nodes connect

to each other. From each node in the diagram, visualized as an adjacency matrix, users can

roughly understand the size of the communities. From the number and the directions of

edges between the nodes, users can also see the relative strength and direction between the

communities.

A simple node-link diagram is also drawn as a ”zoom-out” overview display, as shown

in Fig. 7.3. Each node represents a community. The radius of the nodes reflects the size

of the communities, the width of the edges represents the combined non-directional con-

nection strength between the communities, and the texts in the center of the nodes are the

community ids. This is designed to accommodate datasets that include a large number

of communities and cross-community edges. The node-link diagram was chosen for the

zoom-out overview instead of an adjacency matrix representation because of the audiences’

familiarity [14] and the resemblance to the zoom-in visual.

7.1.3 Analytical Highlights

The analytical highlights component provides a set of analyses that help users further

explore and understand the key players and the relationships between different nodes and

communities in a network dataset. The network-level highlights are incorporated into the

overall design. The node-specific highlights are triggered by selecting a node or a pair of

nodes through clicking events. No query is needed to select the nodes.

The network-level highlights visualize the analysis results that are constant regardless

of the node being examined. This includes the influencers, the community dynamic com-

parison, and the connection strengths between communities. Being able to identify the

influencers of a network can be crucial for maximizing the speed to diffuse a piece of infor-

mation [161]. In the scope of this work, how influential a node is is defined by the number

of nodes directly receiving data from it. The influence score for each node is normalized

across the dataset and encoded into the label color of the nodes in the adjacency matrices to

allow users to identify the most influential nodes in each community and across the dataset.
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In the NodeTrix layout, both the label of a node and its corresponding cell in the diagonal

line of the matrix (where both the row and the column represent the node) can be used to

encode the influence score. The system encodes the normalized influence score using the

opacity of the label color to reduce the effort in identifying the node and to match the design

of NodeTrix – the darker a label is, the more influence the node has. Graph comparison is

another form of analysis that can impact a wide range of domains [162]. With each commu-

nity containing a sub-network, comparing the dynamics between different communities can

generate useful insights. While comparing node-link diagrams visually can be challenging,

high-level visual comparisons between different adjacency matrices are more straightfor-

ward – how do the different nodes in each community communicate with each other, does a

community mainly send out information, receive information, or both, etc. As a side prod-

uct of the NodeTrix layout, the connection strength between two communities is visualized

through the combination of the count and the directions of the edges connecting the two

communities. All of the edges connecting two communities are designed to connect to and

from the same side of the corresponding matrices, using the same two-turn curve to help

users separate the edges connecting different communities. Each edge is semi-transparent

in order to allow users to identify overlapping. The connection strength gives users insights

into the relationships between the different communities. It is easy to identify the lack of

connection or minimal connection between communities. A strong connection represented

by a narrower but darker-edged overview means the communication mainly goes through

specific members, whereas a strong connection represented by a wider but lighter-edged

overview means the communication happens more on personal levels. By correlating the

understanding of the comparisons and the connections between different communities to

additional context, decision-makers from management can identify patterns that lead to

more successful outcomes.

The node-specific highlights can be triggered when users select either a node or a pair

of nodes. These highlights focus on the relationships of specific nodes. When a node is

selected through clicking its corresponding cell in the matrix, cells that represent all the

nodes it can, directly and indirectly, send information to will be marked with the neighbor
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distance. This allows decision-makers to further explore the diffusion of information [161]

– how much direct influence does the player have, how far can information reach, and

what are the distance or time it takes for the information to travel to the targeted receiver.

Distance-1 and distance-2 neighbors are highlighted with a higher opacity, neighbors with

a distance of 3 and beyond have a lower opacity, and nodes that are not reachable are

dimmed out. By visualizing the neighbor distances over the matrix cells, users are able

to select the next node of interest by clicking directly on the component that presents the

information which motivated the action. This design reduces the effort to navigate through

the matrix representation for node selection. Additionally, edges that do not connect to

the selected node will also be dimmed out to focus on the cross-community influence of

the node. Hovering over the neighbor distance of a node will trigger the system to display

the shortest path in a tooltip. When two nodes are selected, the system highlights the

mutual distance-1 sources and targets of the two nodes using arrowhead and arrow feather

glyphs that are commonly used in Physics to represent vector into page and vector out

of page. This supports decision-makers in detecting second-degree contacts between two

seemingly unrelated players, which can be important to domains such as crime network

investigation [163]. The mutual source uses the arrowhead glyph as the data comes out of

the node, and the mutual target uses the arrow feather glyph as the data goes into the node

from the two selected nodes. This visual representation is chosen for three reasons. First,

the glyph needs to be easily identifiable in the small area defined by the cell. Second, the

glyphs need to be able to stack on top of each other for nodes that are both the mutual source

and the mutual target of the selected nodes and remain recognizable as the combination of

the two glyphs. Finally, while instructions are provided, it is ideal to select a design that is

used in different fields that users might recognize to help them make the mental connection

easier. An alternative design uses letters to encode mutual sources and targets (e.g., ’ms’

and ’mt’). However, a larger grid size will be required to encode recognizable letters.

Additionally, the amount of space required for the complete label to eliminate the need

of instruction is impractical. With instructions required for both options, the glyphs were
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chosen to reduce the space necessary. Hovering over the target node will again display the

shortest path from the source.

7.1.4 Data Envelope

Fig. 7.4. Three directional glyphs are added to the matrix cells. One glyph
points from the row label to the column label, one glyph points from the
column label to the row label, and one glyph connects both ways. The
lower half of the matrix provides a summary and a description of the com-
munity.

The data envelope component allows users to explore the dataset further and compile

reasoning to the analytical highlights. Having the ability to understand the context of each

community and trace the connections within can help users validate the insights gained

and explore potential reasoning behind the findings. With the design built on the NodeTrix

layout, this is mostly achieved through the updated design of the community matrix, as

shown in Fig. 7.4.
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Fig. 7.5. Different glyph designs were considered to indicate the direction
of the information flow within the community adjacency matrices.

As described earlier, this design focuses on non-weighted directional edges. While

adjacency matrix can encode direction using the row-to-column direction, this may not

be known or intuitive to the casual experts. Therefore, I keep the matrix symmetric (like

the NodeTrix design that focuses on non-directional edges) but add directional glyphs to

the cells inside the matrix to visualize the direction between the connected nodes. This

allows users to visually and more intuitively trace if two nodes from the same community

are connected, and if so, with which direction. Fig. 7.5 shows the different glyph designs

considered to encode the connection direction in the upper half of the adjacency matrix.

There are a total of three directions that need to be encoded: information flowing from the

column node to the row node, information flowing from the row node to the column node,
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or information going both directions. An important factor to consider is that the glyph must

remain easily recognizable when the grid size of the matrices is small. As a result, glyph

designs from row two column two (row-to-column), three (column-to-row), and six (both

directions) were selected for their simplicity and well use of space while being discernible.

From our initial feedback, the small sample of prospective users was able to utilize the

selected glyph designs effectively after simple instructions. While the glyph designs are

easy to learn, future studies on the intuitiveness and the effectiveness of different designs

may be beneficial.

Since the community matrix design is kept symmetric, and the directions of the edges

are encoded with glyphs to reduce the learning curve, half of the matrix is used to repeat

the same information. To use the space more effectively, this design clears up half of

the matrix to display a text description of the community to provide additional context to

users. Similar to the geospatial application, additional information about the community

can be added to the description text as the external context. However, the size of the

matrix varies based on the number of players in the community, meaning matrices that

represent smaller communities may not have enough space for the full text. To address

this issue, I add a tooltip that will display the full text when hovering over a community

description. It is worth noting that it is easier to examine the individual nodes in a smaller

community, making the description for that community less critical to the understanding of

the community.

7.1.5 System

Similar to the previous designs, the Three-Component Visual Summary design for net-

work data also takes the form of a light web-based visual analytics system that allows

the use of constrained interaction to manipulate and generate static outputs that satisfy the

three-component design. The system can be populated using spreadsheets that store net-

work data of interest in a structure commonly used for network visual analytics datasets. A

set of simple instructions is provided on the top of the web page. Aside from the instruc-
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tions, the system utilizes just one view, allowing users to layer and interact with the visual

components directly and creating a more intuitive user experience with the direct manip-

ulation feedback. Since the NodeTrix design largely covered the component designs of

representative data and the data envelope, this work focuses on incorporating the additional

analysis results into the visual presentation.

The system also provides the following interactive functionalities. Users are able to

adjust between the two zoom levels. The zoom-out level presents a community-based

simple node-link diagram, as shown in Fig. 7.3. The zoom-in level presents the three-

component design described in the previous sections, as shown in Fig. 7.1 and Fig. 7.6.

The initial positions of the matrices are determined using a force-based layout [124], but

users can click and drag to move the community matrices around as they see fit, and the

edge positions will update accordingly. Hovering the cursor over any cell in the matrices

will highlight the labels of the corresponding nodes. Hovering over a path will highlight

the edge with wider stroke width and a darker arrow, and trigger a tooltip to present the

source node and the target node. Hovering over the community description text in a matrix

will trigger a tooltip to display the full text. Clicking on a diagonal cell in an adjacency

matrix will select or deselect the corresponding node. At most, two nodes can be selected at

the same time. If two nodes are already selected, the first selected node will be deselected

when a third node is selected. When two nodes are selected, the mutual distance-1 source

and target nodes are marked using arrowhead and arrow feather glyphs. Common signifiers

are used throughout the design, such as cursor icons for panning, clicking, and dragging.

7.2 Case Study: E-mail Network

In this section, I present a case study using the Three-Component Visual Summary

design for network data. First, I introduce the dataset that is being visualized. I then

demonstrate the insights gained through using this visualization and how such insights can

support decision-makers in performing data-driven investigations.
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Fig. 7.6. An e-mail network visualized using the Three-Component Visual
Summary design.
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7.2.1 Data

Shown in Fig. 7.6 is an e-mail network between members of five departments in a Eu-

ropean research institution over a period of eighteen months [164]. This is a self-contained,

directed, non-weighted dataset with ground-truth communities. E-mails sent to or received

from addresses outside of the five departments are excluded. The direction of the edge

goes from the sender to the receiver. I am only interested in whether a connection has

been established and do not include the count of e-mail exchanges between two e-mail ad-

dresses. Finally, the e-mail addresses are grouped by the department their owners belong

to. This dataset includes 5 departments, 110 e-mail addresses, and 1018 established con-

nections. The e-mail addresses and the department names are anonymized. The nodes of

this network represent the owners of the e-mail addresses, the edges represent the existing

history of at least an e-mail exchange between two e-mail addresses, and the communities

represent the different departments. This differs from the Twitter following social media

network example shown in Fig. 7.1, where when account A follows account B, the data

flow direction is reversed to point from node B to node A, if e-mail address C has ever sent

an e-mail to e-mail address D, the data flow direction points from node C to node D.

7.2.2 Insights

Influencers

In Fig. 7.7, we can see the labels of each node in this dataset. Since the darker a label

is, the more influence its node has, we can tell that member 84 from department 2 has

the most influence across this dataset as well as department 2 (Fig. 7.7(b)). Examining

the remaining departments independently, we can see that member 24, 55, and 58 are the

more influential members in department 1 (Fig. 7.7(a)), member 44 is the more influential

member in department 3 (Fig. 7.7(c)), member 4 and 5 are the more influential members in

department 4 (Fig. 7.7(d)), and member 18 is the more influential member in department 5

(Fig. 7.7(e)). Knowing this information could help decision-makers understand the power
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(a) Members of department 1.

(b) Members of department 2.

(c) Members of department 3.

(d) Members of department 4. (e) Members of department 5.

Fig. 7.7. The color of the labels help identifying the influencers of the
dataset and of the communities.

structure of each department and identify members to reach out to speed up the diffusion

of information.

Neighbor distance and shortest path

When a node is selected, neighbor distance is added to the display, and the shortest

path to a reachable node is enabled through the use of a tooltip. If we select the node for

member 84, the most influential node of the dataset, we can see that there exist members
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Fig. 7.8. Neighbors of node 84.

in every department besides department 3 that receive first-hand information from member

84. (Fig. 7.8). In comparison, member 170 has not sent an e-mail to any members of the

five departments in the eighteen months (Fig. 7.9). Examining another member, member

122, in the department 5 member 170 is from, we can see that while information can flow

from member 122 to the rest of the members in the department, none of them receive

from member 122 directly (Fig. 7.10). In order for member 122 to spread information

to the group, the information has to go through members in different apartments before

circling back around. We can also see in order for member 170 to receive information

from member 122, the fastest way based on the current communication network is to go

through member 4 and member 37. With these insights, decision-makers can understand

personal circles and how that may or may not be affected by the community a member is
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Fig. 7.9. Neighbors of node 170.

in. Additionally, decision-makers can use this information to filter out members that do

not have connections to a specific member of interest. Finally, by examining the largest

neighbor distance, decision-makers can estimate how efficient it is to communicate within

the communities.

Mutual data sources and targets

By exploring the mutual sources and targets of two nodes, decision-makers can further

understand the connections between the two nodes. In Fig. 7.11, we can see that after

selecting member 14 and member 25 from department 1, their mutual sources and targets

are highlighted. The two members are from the same department with a neighbor distance
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Fig. 7.10. Neighbors of node 122 and shortest path to node 170.

of 2 to each other. The two members both receive information from member 24, 45, 58,

and 72, and they both pass information to member 24 and 26. Assuming member 25 and

member 54 have shown similar noteworthy behavior, this may allow decision-makers to

explore possible causes and take actions accordingly. Now, we explore the connections

between member 6 from department 3 and member 14 from department 1. The two nodes

are distance-2 neighbors from two different departments with no direct connection. In

Fig. 7.12, we can see that member 44 is the only node that connects the two members, and

member 6 and member 14 both send and receive e-mails from member 44. This indicates

the possibility that member 6 and member 14 could communicate through member 44 even

if they are not directly connected in the data flow network.

Applying similar analysis to a criminal investigation use case, decision-makers could

use such insights to determine if two seemly unrelated players took similar actions because

they are both under the influence of another character? Is there someone in the middle
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Fig. 7.11. Mutual sources (sender) and mutual targets (receiver) are high-
lighted when two nodes are selected.

that they are communicating through? If they are working together, who might be the next

target?

Community connection strength and direction

By comparing Fig. 7.13(a) and Fig. 7.13(b), we can tell department 1 and department

2 have a strong and two-way relationship while department 3 and department 5 have a

weak one-way connection. Due to the data anonymization, we do not know specifically

what departments these are, which makes it impossible to use the context to explain the

observation. We do know that it is common for different departments to collaborate on de-

livering products, and it is important to have good communication between the departments

(e.g., Designers and Engineers). Understanding the connection strength and direction be-

tween the collaborating communities can help decision-makers explore whether an issue in

a project could result from miscommunication between the different departments.
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Fig. 7.12. Member 6 and member 14 from different departments have one
mutual source/target.

Community dynamic comparison

In Fig. 7.14, we compare the group dynamics of the two smaller communities in the

dataset. In Fig. 7.14(a), we can see every member talks to every member in department 4.

On the other hand, Fig. 7.14(b) shows that there is very little inside communication between

the members of department 5. By comparing the group dynamics with additional perfor-

mance metrics, this could help decision-makers evaluate and identify patterns that lead to
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(a) Connections between department 1 and department 2.

(b) Connections between department 3 and department 5.

Fig. 7.13. Connection strength and direction can be determined by exam-
ining the combination of edges between two communities.

a more productive work environment. If available, additional context such as performance

metrics could be added to the community description to support this process.
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(a) The group dynamics of department 4.

(b) The group dynamics of department 5.

Fig. 7.14. The dynamics between different communities can be compared
by examining the differences in their matrices.

7.3 Case Study: Physician Network

In this section, I present a second case study using the Three-Component Visual Sum-

mary design for network data. This dataset contains additional metadata on the nodes that

allow different community groupings. Through this case study, I demonstrate the effect of
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Fig. 7.15. A physician network, grouped by practicing city, visualized
using the Three-Component Visual Summary design.

different community selections and external context, which was not available in the previ-

ous case study.

7.3.1 Data

This case study visualizes a non-weighted, directed, ground-truth community network

for the diffusion of innovations between 246 physicians from Illinois in the year of 1966 [165].

Each node represents a physician. The dataset includes additional information on the physi-

cians, such as the cities in which the physicians were practicing, their social circle forma-

tion, the length of time they have been practicing, the fields they specialize in, etc. This

information can be used to group physicians into different communities. An edge connect-

ing node E to node F indicates that Physician E considers reaching out to Physician F for

the exchange of information.
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This dataset contains 246 nodes, 1098 edges, and 13 possible community groupings.

For this case study, I focus on two ground-truth communities grouped by the cities in

which the physicians practiced, and the duration the physicians had been practicing in their

corresponding cities.

7.3.2 Community Selection and External Context

Practicing City

(a) Quincy, IL. (b) Galesburg, IL.

(c) Bloomington, IL. (d) Peoria, IL

Fig. 7.16. Behavior comparison between physician networks in four cities.
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Fig. 7.17. Node 15 is highly influential in the Peoria community.

Fig. 7.15 visualizes the dataset with ground-truth communities based on the cities the

physicians practiced. This dataset focuses on physicians that practiced at four Illinois cities:

Peoria, Bloomington, Quincy, and Galesburg. As shown in the figure, the connections be-

tween the physicians are mostly restricted to their cities. While Peoria is the only inde-

pendent community, the remaining communities only require minimal shifting of nodes to
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create four independent communities. This indicates that geographical communities serve

as a major factor in forming physician networks. However, as shown in Fig. 7.16, no obvi-

ous behavior differences between the four communities are found through comparing the

density and edge types within each community.

With the additional context imported, as shown in Fig. 7.15, we can see the four cities

have similar physician-to-population ratios, close to 1 to 1000. Based on the economy-

related context, we can also hypothesize that the reason Peoria has a more independent

physician network might be related to one of its top employers being a medical center,

therefore allowing a more self-contained medical community. It is also interesting to ob-

serve that, while the populations in all four cities are primarily Caucasian, communities

with a lower ratio of the Caucasian population have lower external edges.

Similarly to the previous case study, users can extract information such as influencers

and neighboring distance to evaluate the diffusion of information or innovations for each

city. For example, Fig. 7.17 shows physician 15 to be the influencer in the Peoria commu-

nity. They can reach all but 9 out of the 117 physicians in the community. Out of all of

the reachable nodes, only one node is at a degree-4 distance, while the remaining nodes are

under degree-3 distances.

Practicing Duration

Fig. 7.18 visualizes the dataset with ground-truth communities based on how long the

physicians practiced within their corresponding communities. This community selection

separates the physicians into four groups: physicians that have been practicing for less than

10 years, physicians that have been practicing between 10 and 20 years, physicians that

have been practicing for over 20 years, and physicians that did not report the duration of

their practices. As shown in the figure, when switched to the duration-based grouping, the

number of cross-community edges increases significantly, and the edges are evenly spread

throughout the nodes in the communities. This suggests that practicing duration has lit-

tle impact on the connections between physicians. While I originally predicted physicians
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Fig. 7.18. A physician network, grouped by practicing duration, visualized
using the Three-Component Visual Summary design.

would be more likely to reach out to physicians that are more senior in the field, the di-

rectional arrows connecting the different community matrices show no apparent difference

between the two directions.

Fig. 7.19 shows the connections within each community to be noticeably more sparse

compared to the city-based communities. Additionally, we can see each community con-

tains multiple independent network subsets, which are likely based on the practicing cities.

As with the city-based communities, there is no obvious difference between the network

behavior within each community, which is observed through the edge patterns and the la-

bel shadings. Overall, grouping by practicing duration provides a less effective grouping

for this Three-Component Visual Summary design, as it increases the number of crossing

external edges significantly. However, each community selection provides unique insights

into understanding the dataset.
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(a) Less than 10 years (b) 10 to 20 years

(c) Over 20 years (d) Unknown duration

Fig. 7.19. Behavior comparison between physician networks based on practicing duration.

7.4 Feedback

This design was informally assessed in February 2020 by two University faculty mem-

bers that are in decision-making positions and often interact with network data. Neither

faculty were involved in the decision-maker survey described in Chapter 3.2. In this sec-

tion, I summarize the feedback received from informal interviews with the decision-makers

after demonstrating the system.
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Faculty 1 first confirmed the challenge of not having the time and technical expertise to

utilize the full potential of visual analytics tools. She described her processes of collecting

the information needed for her decisions as relying primarily on her data analysts, who

often present to her using static screenshots from visual analytics toolkits. Faculty 1 found

this tool to be a great help to her work. She appreciated “the clarity and the preciseness of

the display” and the way “the system reduces the workload required to trace the connections

between nodes.” She stated that the system allows her to gain a quick grasp of the dataset

and is a tool she feels like she can use herself. She stated her “ideal scenario would be for

the data analyst to present to [her] datasets using this system directly.” In a similar amount

of time as the usual presentation, she could use the tool to discuss with her analysts and

update the selections in the system to examine the analysis results immediately, and store

the screenshots for later use. However, she did express a tendency to identify additional

interests when examining the visualization and wanted “an interactive way for the user to

define new questions to ask or network parameters to subset on while looking at the data

with the analyst.”

Additionally, faculty 2 complimented “the approach of displaying patterns and data si-

multaneously.” He also agreed with how “the visualization suggests an order in which to ex-

amine the three components” and “fades additional text to the background.” He noted that it

is “important to ensure continuity of visualization elements and clear hierarchy.” While he

liked the design idea of the Three-Component Visual Summary and recognized the value of

the design in bridging the communication gap between data analysts and decision-makers,

he urged the designer to “emphasize patterns (such as the flow of data) further”, to “ensure

clarity of each individual information element”, and to “incorporate more automated fea-

tures into the system” such as automatic sorting based on neighbor distance when a node is

selected. Finally, he encouraged designers to “consider affordance theory [166,167] and the

C.R.A.P Principles of Graphic Design [168] when selecting visual encoding for the three

components.” This aligns with the guideline to use conventional visualization techniques

and signifiers to reduce the required technical expertise from the decision-makers.
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Similarly to the feedback presented in the previous chapter, this summary is the result

of informal discussions with domain experts on the usability and personal relevance of

the system. Written notes were taken during the discussions, but no official reports were

generated. The MILCs [158]-inspired questionnaire used to initiate the discussions can be

found in Appendix B.

7.5 Discussion

Henry et al.’s NodeTrix design [14] established an effective display for the represen-

tative data and the data envelope. Interestingly, they also decided to improve network

representation by providing both a readable global structure and the local communities in

one visualization rather than the use of interactive exploration. The interaction function-

alities provided in NodeTrix focus on building and rearranging the node-link and matrix

combination to form a balanced display and create ”meaningful summary visualizations of

[analysts’] finding.” This direction also aligns with the goal of this research work. How-

ever, the main challenge for my target audience, decision-makers who are casual experts,

in adapting to NodeTrix’s summary visualization is that using NodeTrix effectively still

requires the skill and the time of a data analyst. While NodeTrix allows the analysts to

arrange the dataset in a manner that is convenient to analyze, analysts still need to per-

form the network analysis the traditional way. Building on top of NodeTrix’s design, the

Three-Component Visual Summary design for network data inherits many of NodeTrix’s

strengths in effectively communicating the global structure and the community details of

large scale network datasets, and adds to the system by inserting the analysis results into

the display directly to reduce the time and skill required for decision-makers who are ca-

sual experts. With the network Three-Component Visual Summary, a decision-maker will

not need to manually trace the connections within the matrices to identify paths connecting

communities and nodes and so on, and can focus on identifying which relations to explore.

This makes the best use of decision-makers’ domain expertise and the computational power

of machines. Since correlation does not always equal causation, the additional descriptions
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added to each community can also help decision-makers tie the insights discovered to real-

world context and better confirm or dismiss the findings.

While designed to handle large scale datasets, the network Three-Component Visual

Summary still has a limit to its scalability. Unlike the designs of the three other applica-

tions, each data entry in the dataset is adequately visualized. This is necessary as many of

the analyses focus on specific nodes, which means each node needs enough pixels in the

display to allow proper communication of its identity and the related analyses and provide

a recognizable and accessible area for click events. The design allows easier navigation of

large datasets by reducing the number of crossing edges, but does not necessarily reduce

the number of pixels needed to visualize each data entry. With how compact the adjacency

matrix representation is, it is also difficult to overlay additional information on top of it,

making the use of tooltip necessary. However, decision-makers may not find tooltips an

appealing visual component in the final static presentation.

While this design does not consider weighted edges, as I am more interested in connec-

tions between players and would like to keep the initial design simple, it can easily adapt

weight into the design. In the adjacency matrices, the weight of the edges can be encoded

into the opacity of each cell. In the node-link diagram, the weight of the edges can be en-

coded into either the width or the opacity of the paths. Weight can also be incorporated into

the calculation of neighbor distance and shortest path if applicable. Ultimately, the design

should be customized to accommodate the needs of the user.
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8. DISCUSSIONS AND RECOMMENDATIONS

This chapter discusses the collective insights gained through designing the Three-Component

Visual Summary and the four applications. With these insights, I provide recommendations

for applying the Three-Component Visual Summary design.

8.1 Strengths

Differing from summarization techniques focusing on the aggregation of data and equally

weighted presentation of data entries, the Three-Component Visual Summary highlights

components more relevant to the decisions to be made and dims the entries that contribute

less to the decision. This approach prevents data entries of high importance from being

accidentally dropped during the summarization process. With the different priorities re-

flected in their corresponding visual design, the visual design also provides audiences with

a defined order to explore the visual summary in a manner similar to the Shneiderman

mantra [2] without requiring interactive exploration, which many of the domain experts do

not have the time or training for. The flexibility to choose the variables for the three com-

ponents also allows the visual summary to be a more customized and focused experience,

which works toward reducing the communication gap.

The Three-Component Visual Summary design also improves the storytelling of the

data by balancing between author-driven and reader-driven stories and supporting the sys-

tem with constrained interaction [7]. The balance between author-driven and reader-driven

stories is achieved by pre-generating a selected list of relevant analyses and context and

allowing users to select the desired combination. Constrained interaction is used to sup-

port the selection of components and highlighting attributes of the data entries. With the

goal of communicating more comprehensive storytelling of data and analysis results while

allowing simple backtracking and reasoning, this design falls between the exploratory and
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confirmatory spectra of visualization, leaning slightly toward confirmatory as specific re-

sults are highlighted. However, designers can adjust the number of options allowed to alter

the display in order to shift a design toward one spectrum. The more options allowed,

the more exploratory a design will be, and vice versa. The improvement in storytelling is

reflected by the preference of the domain experts and prospective users for using designs

presented in this dissertation over their traditional practices.

The strengths of this work are reflected in the evaluation results of the four designs.

From the numerical design and its study, we can see the Three-Component Visual Sum-

mary design increases the accuracy in performing decision-making inspired tasks when

tested against common visualization techniques (Chapter 4.2). While it may seem obvious,

having a design that focuses on the needs of the audience allows the user to perform better

than using a generalized tool. From the contextual design, we see the Three-Component

Visual Summary design creates a coherent display of the dataset and generated a more pre-

ferred way of storytelling (Chapter 5.4.4). From the geospatial design, we see the Three-

Component Visual Summary design is considered to be accessible to most decision-makers,

and the inclusion of external context is considered a welcoming addition that is not utilized

enough in the current practices (Chapter 6.3). From the network design, we see the Three-

Component Visual Summary design increases the precision of the presentation (Chapter

7.4). It also allows decision-makers with limited time and technical expertise to properly

utilize the power of visual analytics. With the Three-Component Visual Summary design

proved effective across the four major data types utilized in commercial visual analytics

tools, I believe this design can benefit decision-makers in most domains.

8.2 Limitations

While the customizable aspect of the Three-Component Visual Summary design re-

duces the difficulty for casual experts to make use of visualizations, the outcome still de-

pends on the designers’ ability to select the appropriate variables and the corresponding vi-

sual representations to construct effective three-component visual summaries. Even though
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there exist guidelines and tools for identifying visualization techniques suitable for differ-

ent data types (e.g., The Grammar of Graphics [169], The TimeVis Browser 1, and Text

Visualization Browser 2), in-depth studies on combining and connecting different visual-

ization techniques into one static display are lacking. Additionally, using the customized

visual summary instead of a generalized tool for presentation means that spontaneous anal-

ysis that is not incorporated into the design and more sophisticated analyses may not be

achievable through the Three-Component Visual Summary design. From the feedback re-

ceived, we know the design is effective in identifying “what you know that you do not

know”, but it is often valuable to be able to identify “what you do not know that you do

not know” as well. The discovery of “unknown unknowns” is not well incorporated into

the Three-Component Visual Summary, fundamentally because of the design direction in

automatically calculating and highlighting the “known unknowns”. However, this tool is

not meant to replace traditional visual analytics, but rather serve as an additional tool to

reduce the communication gap between the data analysts and the decision-makers. This

highlights the need for designers to be able to quickly update the Three-Component Visual

Summary to incorporate a new analysis of interest.

Even though the goal of the Three-Component Visual Summary design is to allow do-

main experts with little to no training in visual analytics to be able to make use of data

visualization, it remains difficult to create a design that can guarantee casual experts will

be able to use it without any previous skill in visualization. The design tries to minimize

the training necessary by utilizing simple visual designs, familiar signifiers, and provide

instructions throughout the system. It is recommended to consider both affordance the-

ory [166, 167] and the C.R.A.P Principles of Graphic Design [168] in the design process

to achieve the same goal. The design also focuses on reducing the need for interactive

exploration to reduce the technical expertise necessary to use the system and allows users

to focus on learning the visualization. While it is difficult to eliminate training completely,

the result from the quantitative study in Chapter 4 shows that minimal training is sufficient.

1http://browser.timeviz.net/
2https://textvis.lnu.se/



133

8.3 Design Comparisons and Discussions

When constructing the Three-Component Visual Summary designs for the four data

types, different approaches were taken because of the differences in data characteristics

and visualization techniques available. This section discusses the different approaches and

their impact.

Visualizing the analysis results directly versus indirectly: In Chapter 4, the summa-

rized line graph utilizes the highlighted and aligned extrema to support the estimation of

multiple analyses relevant to the decisions. Extracting analysis results from the supporting

tool that is visualized on top of the data envelope component allows users to gain an under-

standing of “why” without the need for an interactive system. Compared to the numerical

design, the geospatial design and the network designs allow users to select the analyses

of interest to be displayed directly in the visual summary generated, rather than utilizing

a supporting tool to aid the extraction of analysis results. In these two cases, the “why”

is provided through the layering of other visual components in the geospatial design and

through the additional context and the ability to trace the path in the network design. While

both approaches help users make sense of the analysis results, the first approach can embed

more analyses in a static visual summary, and the second approach allows more direct and

efficient extraction of the analysis results. This means that while the improvement in com-

pletion time from the summarized line graph user study (Chapter 4.2) was not statistically

significant, the geospatial design and the network design should allow a quicker generation

of relevant insights that is more significant without losing the context. Similarly, the al-

ternate numerical design described in Chapter 4.1.5 should allow greater improvements in

completion time, although the design may require adjustments in scaling to incorporate the

context clearer.

Connecting the three components through an direct overlay approach versus an

interconnected multi-view approach: Of the four applications, we can see that the nu-

merical and the geospatial designs are the most suitable for a direct overlay approach when

combining the three components as the three components are able to find a shared ba-
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sis to be drawn upon. For the numerical application, all three components can share the

same x-axis and y-axis. For the geospatial application, all three components can be drawn

over the same geospatial coordinate system. The network application technically uses a

direct overlay approach as well, with the three components sharing the same canvas. The

main difference is that while the analytical highlights are layered on top of the NodeTrix-

inspired diagram, the representative data and the data envelope are separated by a hierar-

chical structure instead of two structurally separated visual components. For the contextual

application, the analytical highlights are gained through the visualization component that

quantified the important metrics in the dataset, while the representative data utilize a text-

based summary and the data envelope provides context through the original multimedia

files. This makes connecting the three components through overlaying them directly while

retaining the property to be able to generate effective static summary reports difficult. In-

stead of the direct overlay approach, the contextual application goes back to a multi-view

approach. With the interconnected setup, the three views for the three components should

be telling a connected story at all times. However, this approach still increases the effort

required to connect the knowledge gained from the three different components.

Visualizing the individual data entries versus the aggregated data: Another sepa-

ration between the four applications is whether the data entries are individually displayed

or aggregated. In the contextual and geospatial applications, the data entries are being vi-

sualized in an aggregated manner. The geospatial application focuses more on collective

boundaries and hotspots of data entries that belong to a selected category, and highlights

specific locations rather than specific data entries. The contextual application quantifies the

information extracted from the individual data entries to allow more sophisticated analyses

and focuses on the dynamics and comparisons between the scale of the quantified metrics

rather than a specific file or text. As a result, the two applications scale well with larger

datasets, with the main restriction being the processing power given. The limitation in scal-

ability, instead, is reflected in the number of spatial highlights displayed simultaneously for

the geospatial design, and the number of metrics being compared simultaneously for the

contextual application. On the other hand, both the numerical and the network application
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visualize every data entry. The network design visualizes every node and edge in the dataset

but minimizes the clutter of the edges within the communities by replacing the node-link

diagram with an adjacency matrix representation. The numerical design dims out the orig-

inal time-series and moves them to the background while highlighting two specific points

from each time-series. While the numerical and network applications improve the scala-

bility from the common line chart and node-link diagram, the scalability remains limited

by the size of the dataset. However, there are other factors that can affect the scalability of

the visual summaries. For example, the numerical design scales better with a larger dataset

when the time-series have stronger correlations, as the contrast between the time steps of

the maxima and the minima becomes more apparent. The network design also scales better

with a larger dataset when the majority of edges are restricted within the communities as it

would reduce the number of crossing edges.

Considering the designs generate visual summaries, it can be interesting to analyze

the data loss of the Three-Component Visual Summary designs and compare the results

between the four applications. The resolution loss and the variable loss of a visual sum-

mary can potentially be evaluated using information theory [170]. However, the research

work for estimating information communicated over visualizations using information the-

ory is still in an early stage. There is currently no well-established calculation method

for precise measurement of data-loss. While high-level estimations can be made by com-

paring the differences in alphabet compression, potential distortion, and cost throughout

statistics, algorithm, visualization, and interaction, the estimations vary greatly based on

the specific visualization designs, the datasets, and the display spaces [171] and may not

properly reflect the general effect of the three-component design. The designers can, how-

ever, consider high-level principles (e.g., overlapping causes uncertainty, binning reduces

precision, uncertainty leads to higher privacy but lowers utility [172]) when constructing a

three-component design. It is also worth noting that information communicated over the vi-

sualization differs from the knowledge gained from the visualization. Higher display space

utilization or visual mapping ratio does not necessarily result in higher utility or quality.

Rather, the goal of a visual summary design should be to ensure the design loses infor-
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mation optimally such that users can easily locate the information of interest. Given the

research problem the Three-Component Visual Summary is designed for, data loss analysis

may not be a critical metric. With the goal of bringing forth the data entries relevant to the

decision to be made, and dimming out the remaining data entries to the background, it is

more important for the Three-Component Visual Summary designs to retain and highlight

the appropriate data entries efficiently, rather than simply minimizing the data loss in the

graphic. On the other hand, knowledge can compensate for information loss [173], and

the targeted audience of Three-Component Visual Summary designs are decision-makers

who are also domain experts. Additionally, in the target scenario of the Three-Component

Visual Summary design, the data analysts will still have access to the raw data, and the

decision-makers will likely have limited time to focus on the highlighted items only. As a

result, the impact of data loss analysis should be minimal.

8.4 Recommendations

The Three-Component Visual Summary can be applied to more datasets as long as the

designer can identify components that satisfy the characteristics described in Chapter 3. In

this section, I provide a list of recommendations based on what I learned from designing

the visual summaries for the four applications.

• Identify the characteristics to be compared: It is important first to understand

what characteristics in the dataset are to be compared to support the decision mak-

ing. Knowing the characteristics to be compared can help the designer separate data

entries that can be aggregated and data entries that cannot. This then allows the

designer to identify the appropriate visual encoding. For example, the goal in the

geospatial design is to compare the locations of data under different categories. As a

result, the selected visual elements display aggregated attributes of the selected data

subset on a fixed coordinate system and do not display the locations and content of

the individual data entries.
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• Identify visualization techniques that share the same visualization basis for the

three components: While users can make the mental connection between the three

components through the direct feedback of the multi-view approach, connecting the

three components through a direct overlay approach reduces the dependency on an

interactive system and supports more effective static visual summaries. For example,

the data size, time, and location for the temporal analysis in the geospatial applica-

tion can be encoded with an annotated line graph where the x-axis encodes the time,

the y-axis encodes the volume of data within that temporal bin, and the annotated

text describes the location by township or nearby landmarks. This visual encod-

ing can allow more accurate visual comparison on data volume over time between

multiple categories but will require a separate view from the data distribution visu-

alization, which makes connecting and comparing findings from the two views more

difficult. Therefore, when exploring different visual encodings fitting for the three

components, it can be useful to identify visualization techniques sharing the same vi-

sualization basis first and prioritize experimenting with corresponding combinations.

• Keep the visual representations of the three components in different styles: It is

best to use distinct visual styles to allow for a more distinct separation between the

three components in a direct overlay design. For example, in the numerical appli-

cation, the representative data uses a line, the analytical highlights are supported by

small icons, and the data envelope utilizes semi-transparent areas. The three compo-

nents can also be separated by different opacity levels or locations to suggest to users

the examination order.

• Provide context outside of data: While many insights can be supported by the data

itself, designers can link to external resources to provide additional context. In the

geospatial application, landscape and census data are imported to provide additional

context that may not be included in the raw data and are linked to the raw data through

a shared coordinate system. A numerical data use case with stock market prices
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can also import finance news on the companies included in the dataset to explain

anomalous behaviors.

• Understand the scalability limitations: The scalability of a design may vary based

on the data type and the visual encoding. Understanding the scale of each variable in

the dataset, the possible visual encodings for those variables, and how those visual

encodings can create visual clutter allows the designers to create more usable visual

summaries. For example, knowing that visual clutter in a node-link diagram can be

reduced when there are fewer crossing edges, a designer may be able to increase the

scalability of the network visual summary by arranging the communities in a layout

that has fewer crossing edges or selecting communities that have less external edges.

• Utilize common signifiers and combine conventional visualization techniques:

To address the skill-level of casual experts, sometimes it is more effective to use

standard visualization techniques that are simple than powerful but new visualization

techniques. Supporting the constrained interactions with familiar signifiers and in-

corporating affordance theory [166, 167] and the C.R.A.P. Principles [168] into the

designs also reduces the learning curve.

• Use additional text or figures to tell the story: It is okay to overlay additional text

or figures to the visual design to annotate the graphics and tell a stronger data story as

long as they are not interfering with other crucial visual components. This practice is

commonly seen in early data graphics such as those by William Playfair [20] before

the support of interactive functionalities.

8.5 Summary Reference

Table 8.1 summarizes the visualizations explored by this thesis work and their compat-

ibility with the Three-Component Visual Summary design. Specifically, this table presents

visualization techniques or visual components that are appropriate for the four data types.

For each visualization technique, the table highlights which of the three components it is
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appropriate for, the information that can be encoded, the visualization basis, and the visual-

ization style. The table separates the visualization techniques into the different components

based on their abilities to convey a simple overview (RD: Representative Data), perform

specific analyses (AH: Analytical Highlights), and present an aggregated summary of the

raw data (DE: Data Envelope). The visualization style includes how the data is presented

(individual, aggregated) and in what style it is visualized (point, glyph, line, area, view),

which ties back to the recommendations. Based on the data types and the attributes a de-

signer wants to present in a Three-Component Visual summary, the designer can identify

first from the table which visualization techniques are capable of encoding the information

desired. With those techniques, the designer can then explore the different combinations

and attempt to construct a design that covers all three components, visualizes the com-

ponents over the same basis, and utilizes different styles for each component. This table

serves as a quick reference that complements the recommendations. Note that the analyt-

ical highlights component for the contextual application depends greatly on the important

metrics of the quantified data. Also, most network visualization techniques can serve as

the data envelope component by visualizing every node and edge. The separation between

being categorized as appropriate representative data or analytical highlights lies in whether

it is more effective at communicating the overall network structure or specific attributes.
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Table 8.1.
A summary of the visualizations explored and a reference for the recommendations.

Component Encoding Basis Style Visualization

Numerical

RD, AH Mean, Median, Best Fit, Statistical Analyses Specified 2D Plane Individual, Line Line Graphs

RD Proportion Overview Abstract 2D Plane Aggregated, Area Pie Charts

AH Individual and Overall Trends Abstract 2D Plane Individual, View Horizon Graphs

AH Thresholds, Trends, Alignments Specified 2D Plane Individual, Line (Straight) Lines

AH, DE Statistical Analyses, Progress, Count, Value Specified 2D Plane (Along One Axis) Either, Area Bar Charts

AH, DE Overall Trend, Raw Data Specified 2D Plane Aggregated, Area Stream Graphs

DE Raw Data, Distributions Specified 2D Plane Aggregated, Area Density Bands

DE Overall Range Specified 2D Plane Aggregated, Area Band Graphs

DE Raw Data Specified 2D Plane Individual, Point Scatter Plots

DE Hierarchical Sizes and Trends Abstract 2D Plane Aggregated, Area Tree Maps

Contextual

RD Text Summary, Takeaway Values Abstract 2D Plane Aggregated, Area Short Text

RD Overall Progress Percentage Abstract 2D Plane Aggregated, Area Liquid Fill Gauge/Radio Progress Bar

AH Quantified Comparisions Depends Depends Quantified Visual Representations

DE Events Abstract 2D Plane Aggregated, Area Storyboard

DE Tags, Topics, Metadata Abstract 2D Plane Aggregated, Area Word Cloud

DE Original File(s) Existing Elements Depends Hyperlink

DE Detailed descriptions Abstract 2D Plan Aggregiated, Area Description Text

Geospatial

RD, AH Range/Boundary, Clusters Geospatial 2D Plane Individual, Line Contour

AH Regional Statistical Analyses Geospatial 2D Plane Aggregated, Area Choropleth Map

AH Regional Statistical Analyses Geospatial 2D Plane Individual, Area Charts

AH Temporal Movements Geospatial 2D Plane Individual, Line Trajectories

AH, DE Distributions Geospatial 2D Plane Aggregated, Area Heatmaps

DE External Geographical Context Geospatial 2D Plane External, Background Map Tiles

DE Raw Data Geospatial 2D Plane Individual, Point Points

Network

RD, DE Network Connections, Network Structure Abstract 2D Plane Individual, Area Node-Link Diagram

RD, DE Network Connections, Network Structure Abstract 2D Plane (Radial Layout) Individual, Area Hive Plots

AH Communities Abstract 2D Plane Aggregated, Lines Contour Boundaries

AH, DE Network Connections Abstract 2D Plane Individual, Area Adjacency Matrices

AH, DE Network Connections, Flow Proportion Abstract 2D Plane Individual, Area Sankey Diagrams

AH, DE Network Connections, Flow Proportion Abstract 2D Plane (Radio Layout) Individual, Area Chord Diagrams

DE Network Connections Abstract 2D Plane (Along One Axis) Individual, Area ARC Diagrams

Universal

AH Correlation, Group, Scale, Outliers Existing Elements Depends Color/Texture Variations

AH Outliers, Extrema, Events Specified 2D Plane Individual, Glyph Icons

AH, DE Analyses, Context Abstract 2D Plane Individual, Area Annotations
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9. CONCLUSIONS

The main goal of this dissertation is to provide a solution to the challenges that keeps casual

experts from fully utilizing the power of visual analytics to support data-driven decisions.

Specifically, the solution needs to address the communication gap between data analysts

and decision-makers. In this chapter, I summarize my thesis work and explain the next

steps to move this research forward.

The first part of this research focused on gaining an in-depth understanding of the chal-

lenges and designing a solution accordingly. I surveyed six decision-makers employed by

safety agencies to gather an understanding of the interactions between decision-makers and

data analysts (Chapter 3.2). A list of design requirements for the solution was then derived

from the survey findings (Chapter 3.1). Following the design requirements, I proposed a

Three-Component Visual Summary design that combines a high-level overview, analytical

highlights and comparisons, and context relevant to the analyses into a visual summary that

allows efficient and accurate knowledge extractions and validations (Chapter 3.3). This de-

sign aims to reduce the time and technical expertise required for visual analytics tools by

highlighting the known decision-relevant analysis results and incorporate the knowledge

traditionally gained from different levels of exploration into the visual design. This de-

sign also aims to bridge the communication gap connecting the highlighted analyses to the

corresponding context to reduce the impact of the potential information bias.

The second part of this research focused on evaluating and understanding how ap-

plicable and effective the solution is and answering questions such as: “Does the solu-

tion provide significant enough improvements?” “Can the solution be applied to different

datasets?” I evaluated the design by applying it to four datasets, from which four new visu-

alizations were created, each using one of the four major data types used in commercial vi-

sual analytics tools. The numerical application visualized stock market data and improved

the accuracy in decision-making inspired tasks (Chapter 4.2). The contextual application
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visualized the impact of an academic research group and was the preferred way of telling

the story behind the data (Chapter 5.4.4). The geospatial application visualized crime re-

ports and provided a new perspective into exploring the crime report data for data-driven

decision making (Chapter 6.3). The network application visualized data flow networks and

allowed the decision-maker to have a quicker and more precise grasp of the dataset (Chap-

ter 7.4). The evaluation results suggested that the design is applicable to a wide range of

datasets and produces consistent improvements to the understanding and the communica-

tion of the data. Based on the insights gained through extracting the design requirements

and applying the design to the different datasets, I compiled a list of recommendations on

implementing the Three-Component Visual Summary design.

This dissertation marks a first step in designing decision-driven visualizations for casual

experts. With the solution proposed in this thesis validated in experimental and practical

settings, future work should, naturally, focus on making the solution accessible and easy to

implement to generate more practical (in contrast to theoretical or empirical) contributions.

Below is a list of future directions identified from the feedback and the discussions to

continue moving this research work forward:

• Survey common data types, critical decisions, and relevant analyses for decision-

makers in different fields: Having a reference on the visualization techniques suit-

able for different decision-makers can reduce the effort required to design a Three-

Component Visual Summary. Chapter 8 provides a simple reference for selecting

the appropriate visualization techniques to combine and effectively communicate the

analysis results based on the different data types. This reference basis is appropriate

for the scope of this thesis as one of the goals is to understand the applicability of the

solution that is the Three-Component Visual Summary across different data types.

However, when designing a visual summary to communicate to a specific decision-

maker, the reference and the recommendation should be based on the domain of the

decision-maker. A more in-depth understanding of the standard data collected, criti-

cal decisions that are often made, and analyses that can generate insights relevant to

those decisions for the different fields will greatly expand the reference and support a
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more fluid and customized design process focusing on the decision-maker. Building

such a reference will require extensive surveys of decision-makers at different levels

and in various fields of work.

• Explore and define the appropriate evaluation metrics for combined visualiza-

tion techniques: While guidance, surveys, and research work on the strengths and

trade-offs of different visualization techniques exist, the overall effectiveness of a

visualization that consists of multiple connected techniques is not a simple union or

intersection of the strengths and weaknesses from the individual techniques. Metrics

used to evaluate the usability of the design, such as scalability, will have to be mea-

sured differently. For example, the scalability of my proposed geospatial design in

Chapter 6 is more dependent on the number of visual components displayed in the

same visual style than it is the least scalable visual component incorporated or the

number of data entries. With the number of possible visualization techniques to in-

corporate into the design increasing immensely because of the combination aspect, a

set of evaluation metrics on the overall effectiveness of the Three-Component Visual

Summary designs can help designers rank the different combinations of visualization

techniques based on the scenario and identify the most fitting visual summary design.

Having such impact metrics defined can also help to establish a more structured de-

sign process for the Three-Component Visual Summary design.

• Create a tool to support creating and/or updating Three-Component Visual

Summary designs: Based on the feedback from prospective users (described in

Chapter 6.3 and Chapter 7.4), it is not uncommon for a decision-maker to discover

a new analysis of interest when examining the visual summaries. If the analysis of

interest is unexpected and not previously incorporated into the design, the designer

needs to be able to update the design quickly to provide the needed information.

However, incorporating a new visual component for a new analysis into an estab-

lished design can damage the visual balance between the existing visual components.

It is important for designers to be able to quickly construct or update an effective
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Three-Component Visual Summary design for this solution to be practical. With

a domain-focused reference built and a set of evaluation metrics defined, the final

step to make designing a Three-Component Visual Summary more straightforward

and efficient will be creating an authoring system for the Three-Component Visual

Summary design. This tool should provide a list of recommended visualization tech-

niques based on the decision and the domain of the target audience, evaluate the

combinations of the selected techniques, and construct the Three-Component Visual

Summary with the data provided.
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[135] M. Novotný and H. Hauser, “Outlier-preserving focus+ context visualization in par-
allel coordinates,” IEEE Transactions on Visualization and Computer Graphics,
vol. 12, no. 5, pp. 893–900, 2006. doi: 10.1109/TVCG.2006.170

[136] N. Kong and M. Agrawala, “Graphical overlays: Using layered elements to aid
chart reading,” IEEE Transactions on Visualization and Computer Graphics, vol. 18,
no. 12, pp. 2631–2638, 2012. doi: 10.1109/TVCG.2012.229

[137] R. Chang, M. Ghoniem, R. Kosara, W. Ribarsky, J. Yang, E. Suma, C. Ziemkiewicz,
D. Kern, and A. Sudjianto, “WireVis: Visualization of categorical, time-varying
data from financial transactions,” in Proceedings of the IEEE Symposium on Visual
Analytics Science and Technology. IEEE, 2007, pp. 155–162. doi: 10.1109/VAST
.2007.4389009

[138] A. Malik, R. Maciejewski, N. Elmqvist, Y. Jang, D. S. Ebert, and W. Huang, “A
correlative analysis process in a visual analytics environment,” in Proceedings of the
IEEE Conference on Visual Analytics Science and Technology. IEEE, Oct 2012,
pp. 33–42. doi: 10.1109/VAST.2012.6400491

[139] R. Amar, J. Eagan, and J. Stasko, “Low-level components of analytic activity in
information visualization,” in Proceedings of the IEEE Symposium on Information
Visualization. IEEE, 2005, pp. 111–117. doi: 10.1109/INFVIS.2005.1532136

[140] Y. Wang, F. Han, L. Zhu, O. Deussen, and B. Chen, “Line graph or scatter plot?
automatic selection of methods for visualizing trends in time series,” IEEE Transac-
tions on Visualization and Computer Graphics, vol. 24, no. 2, pp. 1141–1154, 2018.
doi: 10.1109/TVCG.2017.2653106

[141] P. Buono, C. Plaisant, A. Simeone, A. Aris, B. Shneiderman, G. Shmueli, and
W. Jank, “Similarity-based forecasting with simultaneous previews: A river plot in-
terface for time series forecasting,” in Proceedings of the International Conference
on Information Visualization. IEEE, 2007, pp. 191–196. doi: 10.1109/IV.2007.
101

[142] Y. Sun and M. G. Genton, “Functional boxplots,” Journal of Computational and
Graphical Statistics, vol. 20, no. 2, pp. 316–334, 2011. doi: 10.1198/jcgs.2011.
09224

[143] W. G. Cochran and G. M. Cox, Experimental Designs. Wiley, 1950.

[144] B. Efron, “Bootstrap methods: another look at the jackknife,” in Breakthroughs in
Statistics. Springer, 1992, pp. 569–593. doi: 10.1007/978-1-4612-4380-9 41



156

[145] N. Schenker and J. F. Gentleman, “On judging the significance of differences by
examining the overlap between confidence intervals,” The American Statistician,
vol. 55, no. 3, pp. 182–186, 2001. doi: 10.1198/000313001317097960

[146] Student, “The probable error of a mean,” Biometrika, pp. 1–25, 1908. doi: 10.2307/
2331554

[147] D. de Solla Price, “Editorial statements,” Scientometrics, vol. 1, no. 1, pp. 3–8, 1978.
doi: 10.1007/BF02016836

[148] L. Egghe and R. Rousseau, Introduction to informetrics: Quantitative methods in
library, documentation and information science. Elsevier Science Publishers, 1990.
doi: 10.1086/602337

[149] C. Upson, T. Faulhaber, D. Kamins, D. Laidlaw, D. Schlegel, J. Vroom, R. Gurwitz,
and A. Van Dam, “The application visualization system: A computational environ-
ment for scientific visualization,” IEEE Computer Graphics and Applications, vol. 9,
no. 4, pp. 30–42, 1989. doi: 10.1109/38.31462

[150] J. J. Thomas and K. A. Cook, “A visual analytics agenda,” IEEE Computer Graphics
and Applications, vol. 26, no. 1, pp. 10–13, 2006. doi: 10.1109/MCG.2006.5

[151] C. Larman and V. R. Basili, “Iterative and incremental developments. a brief history,”
Computer, vol. 36, no. 6, pp. 47–56, 2003. doi: 10.1109/MC.2003.1204375

[152] C. Heipke, “Crowdsourcing geospatial data,” ISPRS Journal of Photogrammetry and
Remote Sensing, vol. 65, no. 6, pp. 550–557, 2010. doi: 10.1016/j.isprsjprs.2010.
06.005

[153] G. Andrienko, N. Andrienko, P. Jankowski, D. Keim, M.-J. Kraak, A. MacEachren,
and S. Wrobel, “Geovisual analytics for spatial decision support: Setting the re-
search agenda,” International Journal of Geographical Information Science, vol. 21,
no. 8, pp. 839–857, 2007. doi: 10.1080/13658810701349011

[154] J. Kehrer and H. Hauser, “Visualization and visual analysis of multifaceted scien-
tific data: A survey,” IEEE Transactions on Visualization and Computer Graphics,
vol. 19, no. 3, pp. 495–513, 2013. doi: 10.1109/TVCG.2012.110

[155] M. Sarkar and M. H. Brown, “Graphical fisheye views of graphs,” in Proceedings of
the SIGCHI Conference on Human factors in Computing Systems. ACM, 1992, pp.
83–91. doi: 10.1145/142750.142763

[156] J. Zhao, M. Karimzadeh, L. S. Snyder, C. Surakitbanharn, Z. C. Qian, and D. S.
Ebert, “Metricsvis: A visual analytics system for evaluating employee perfor-
mance in public safety agencies,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 26, no. 1, pp. 1193–1203, 2019. doi: 10.1109/TVCG.2019.
2934603

[157] H. Cramér, Mathematical Methods of Statistics. Princeton University Press, 1946,
vol. 43. doi: 10.1515/9781400883868-fm

[158] B. Shneiderman and C. Plaisant, “Strategies for evaluating information visualization
tools: multi-dimensional in-depth long-term case studies,” in Proceedings of the AVI
workshop on BEyond time and errors: novel evaluation methods for information
visualization. ACM, 2006, pp. 1–7. doi: 10.1145/1168149.1168158



157

[159] S. A. Matei, M. G. Russell, and E. Bertino, Transparency in Social Media. Springer,
2015. doi: 10.1007/978-3-319-18552-1

[160] S. Petrovic, M. Osborne, R. McCreadie, C. Macdonald, I. Ounis, and L. Shrimpton,
“Can twitter replace newswire for breaking news?” in Proceedings of the Interna-
tional AAAI Conference on Weblogs and Social Media. AAAI, 2013.

[161] E. Bakshy, J. M. Hofman, W. A. Mason, and D. J. Watts, “Everyone’s an influ-
encer: quantifying influence on twitter,” in Proceedings of the ACM International
Conference on Web Search and Data Mining. ACM, 2011, pp. 65–74. doi: 10.
1145/1935826.1935845
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A. SURVEY QUESTIONNAIRE: UNDERSTANDING THE
KNOWLEDGE GAP BETWEEN DECISION MAKERS AND DATA

ANALYSTS

Q1 What is the average time analysts have to present their data on a decision to

make to you?

• Under 3 minutes: 0

• Under 5 minutes: 2

• Under 15 minutes: 0

• Less than half an hour: 2

• More than half an hour: 2

Q2 What is the main difference in the way you and the analysts understand data?

• “They have it in volume. I need it in highlights with the ability to ask for more”

• “I look at the data as how best to allocate my resources.”

• “Analyst tend to focus on the manner in which data is captured where as end

users tend to focus on the story the data is telling.”

• “No difference. I see the data in the same light as the analysts.”

Q3 How often does the data presented change your decision?

• Almost Never: 0

• Sometimes: 5

• Often: 1

• Almost Always: 0

Q4 How often does the analyst include the raw statistics?

• Almost Never: 2
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• Sometimes: 2

• Often: 2

• Almost Always: 0

Q5 How often do you wish to see the raw statistics?

• Almost Never: 0

• Sometimes: 3

• Often: 1

• Almost Always: 2

Q6 How much of an impact does seeing the raw statics make in understanding the

data / making the decision?

• Very Low: 0

• Some: 4

• Significant: 2

• Very High: 0

Q7 Have you ever had an experience where the presented information appeared to

be biased toward a decision?

• Never: 1

• Occasionally: 4

• Often: 0

• Almost Always: 1

Q8 Is there any additional information you think would be helpful for us to know

in order to reduce the gap in transferring knowledge from the analysts to the

decision makers?

• “Understanding that the data is being captured consistently and is accurate is

more important that interpretation.”

• “From my perspective the data validates the decision to plan an operation, board

vessels in a particular area.”
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• “I appreciate the opportunity to comment. I often brief senior level decision

makers and do have have the luxury to display large amounts of raw statistics. I

need to provide visual displays of information that convey my point. Depending

on the point of view, we often try to provide our senior leader decision makers

with preferred courses of action based on the visualized information. I align this

with providing biased decisions, but if we convey the data appropriately, it should

align with our recommendation.”
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B. INTERVIEW QUESTIONNAIRE

• Traditionally, with this kind of dataset, how have you collected the information to

make data-driven decisions?

• How might having this tool change the process and how you think about your deci-

sions?

• Would any aspects of this system benefit you in making a data-driven decision?

• What improvements would you like to see to this work?

• What features does the current system have that you have not seen elsewhere?

• What information would you look for using this system? Or what would you want to

look for in this dataset?
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