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ABSTRACT

X-ray crystallography is a foundation of the modern structural biology. Thus, refinement
of crystallographic structures remains an important and actively pursued area of research. We
have built a software solution for refinement of crystallographic protein structures using X-ray
diffraction data in conjunction with state-of-the-art MD modeling setup. This solution was
implemented on the platform of Amber 16 biomolecular simulation package, making use of
graphical processing unit (GPU) computing. The proposed refinement protocol consists of a
short MD simulation, which represents an entire crystal unit cell containing multiple protein
molecules and interstitial solvent. The simulation is guided by crystallographic restraints based
on experimental structure factors, as well as conventional force-field terms. We assessed the
performance of this new protocol against various refinement procedures based on the Phenix
engine, which represents the current industry standard. The evaluation was conducted on a set of
84 protein structures with different realizations of initial models; the main criterion of success
was free R-factor, Rg,... Initially, we performed the re-refinement of the models deposited in the
PDB bank. We found that in 58% of all cases our protocol achieved better R_free than Phenix.
As a next step, we conducted the refinement on three different sets of lower-quality models that
were manufactured specifically to test the competing algorithms (average C* RMSD from the
target structures 0.75, 0.89, and 1.02 A). In these tests, our protocol outperformed the refinement
procedures available in Phenix in up to 89% of all cases. Aside from R-factors, we also
compared geometric qualities of the models as measured by MolProbity scores. It was found that
our protocol led to consistently better geometries in all of the refinement comparisons.

Recently, a number of attempts have been made to fully utilize the information encoded in
protein diffraction data, including diffuse scattering, which is dependent on molecular dynamics
in the crystal. To understand the nature of this dependence, we have chosen three different
crystalline forms of ubiquitin. By post-processing the MD data, we separated the effects from
different types of motion on the diffuse scattering profiles. This analysis failed to identify any
features of the diffuse scattering profiles that could be uniquely linked to certain specific
motional modes (e.g. small-amplitude rocking motion of protein molecules in the crystal lattice).

However, we were able to confirm the previous experimental observations, made in the

13



combined X-ray diffraction and NMR study, suggesting that the amount of motion in the specific

crystal is reflected in the amplitude of diffuse scattering.
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CHAPTER 1. INTRODUCTION

The contemporary paradigm of macromolecular biology is that structure underpins
function. Thus, many biochemical studies rely on structure of biological macromolecules, such
as proteins, nucleic acids, lipids and their various complexes, to address the function. Based on
structural information, the researchers try to predict the system’s behavior: e.g. drug efficacy,
mechanisms of signal transduction, protein stability, etc.

X-ray crystallography is by far the most powerful method for protein structure
determination, as indicated by the RCSB statistics. Approximately 90% of the structures
deposited into Protein Data Bank (PDB) are solved using this method. Even with the emergence
of 3D electron microscopy, which has undergone an exponential growth over the last decade,
scientists continue to report approximately 10 times more of crystallographic structures than
structures solved by other techniques. Thus, further exploration in the field of protein
crystallography and improvements in both experimental practices and computational methods
remain highly relevant for the future progress of structural biology. In particular, the advent of
GPU-based computers opens new avenues for building highly accurate structural models.

Figure 1.1 illustrates a general pipeline used in X-ray structure determination. In this work,
we focus on the in-silico methods associated with this technique. Specifically, we have used
molecular dynamics (MD) tools to design and implement the advanced structure refinement
procedure. The results of this project are covered in CHAPTER 2. In the second project we
modelled the X-ray diffuse scattering effect based on the MD trajectories. These results are
stated in CHAPTER 3. We summarize our observations in the CHAPTER 4.

In the current chapter, we first introduce the mathematical models used in both research
projects. Next, we address the specific concepts used in the area of structure refinement. Finally,
we overview the origins of diffuse scattering and its relationship with protein dynamics. While in
this dissertation we focus primarily on proteins, almost everything that is discussed below can be

generalized to other types of macromolecules.
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Figure 1.1. Crystallographic structure determination pipeline.
1.1 Protein X-ray crystallography basics

1.1.1 Fundamentals of X-ray diffraction

X-ray waves are scattered by electrons in a sample, hence giving rise to a multitude of
secondary waves of the same wavelength from all the electrons in the sample. Therefore, the
resultant wave in each given direction is a sum of the secondary waves from the electrons in the
sample. These waves are much weaker than the primary ones.

In the case of crystal, the sample is built of the blocks called unit cells. These unit cells are
repeated periodically in the three spatial dimensions. Superimposing all the secondary waves
from the electrons in a whole unit cell, one can consider it as a single source of energy. Given the
regularity in the structure of the crystal, it becomes obvious that in some directions the diffracted
waves ‘align” and come to a detector “in phase’, even though in most of the directions the waves
interfere destructively. Such effect multiplies the energy of the secondary waves by the squared

number of the unit cells, which makes them detectable. These waves are called Bragg
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reflections, and the relation describing the diffracting directions is known as Bragg’s law (see
Figure 1.1):
2dsin 8 = n4,
where d is the spacing between diffracting planes, 8 is the incident angle, A is the wavelength of
the primary wave and n is an integer.
If ¢’ and @'’ are the unit vectors corresponding to the directions of the primary and
secondary waves, the expression for a scattering vector s is as follows:

o —a'’
A
Then, the expansion of the Bragg’s law into the three-dimensional real space is provided by the

S =

Laue Equations [1]:
sra=hs'b=ks-c=1,
where the dot -’ is scalar product of two vectors, a, b, c are the vectors representing the periods
of the crystal, and h, k, [ are integers referred to as Miller indices. The triplet of h, k,
corresponds to a particular reflection spot on a diffracting pattern. We denote the observed
intensity of the secondary wave at this spot as I,,,s(s).
In the simplest case, the intensity of N,;,,,s immobile structured atoms in a unit cell is

described by the formula below:

Natoms Natoms

loaie(s) = Z Z fe(8)f(s) cos[2ms - (r; — 1], 1.1)

k=1 j=1
where 1, T are their positions and f (s), f;(s) are spherically symmetric atomic scattering
factors that are known for all chemical types of atoms [2]. This expression allows to calculate the
diffraction pattern knowing the positions of the atoms. Vice versa, substituting the calculated
diffraction pattern of the observed intensities, I,,¢(s), the solution of the set of equations (1.1)
with respect to the atomic positions {r;} is the problem the crystallographers face when they

solve or determine structures.
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Figure 1.2. A schematic illustration of Bragg’s law. Black circles represent unit cells as a single
source of scattering in the lattice. The source of the incoming beam is located at the upper left
corner. The beam is coming to the reflecting planes spaced by the distance d at an angle 6. The
difference between the path lengths of the primary spherical waves according to the Pythagorean
theorem is 2d sin 6. Therefore, to produce constructive interference, the difference must be a
multiply of the wavelength, A. The more reflecting planes are in the crystal, the more pronounced
is the effect of the in phase superposition. That is, the higher intensity of the diffracted beam.

1.1.2 Structure factors, reciprocal space and reflection resolution

In practice, researchers often operate with structure factors instead of the intensities.
Structure factor as a function of a reflection s is the ratio between the secondary wave
amplitudes in the same direction of the following two experiments: 1) the original crystal
considered above when introducing Bragg’s law (Figure 1.2) and 2) an imaginary crystal as the
original one, but with single electrons at the origins of each unit cell.

As wave amplitude is a complex number, it has a magnitude and a phase. Then, the formal

expression for the structure factors is as follows using the same notation as previously:

18



Natoms

F(s) = F(s) expli(s)] = Z £(s) exp[izms - 1;]. (1.2)
=1

Taking the magnitude of that expression and squaring it gives a simple relationship of it to
intensities: F2(s) = I(s). Thus, the problem of structure determination can be reformulated as

the solution of the following system:

Natoms

z fi(s) expli2ms - ;]| = Fops(s),s € S,
=1

where S are the available Bragg scattering vectors. Unfortunately, the direct solution for this
problem is impossible: usually there is an extremely large number of unknown parameters
(atomic coordinates) and equations.

Because of the Laue equations, there is a mapping between scattering vectors s and Miller
indices hkl. Because of this correspondence, we will sometimes substitute s on hkl and vice
versa later in the text for convenience.

It is also convenient to introduce here the reciprocal space basis a*, b*, c*, for which the
following conditions hold: a*-a=b*-b=c*-c=1, a*-b=a"c=0, b**a=b"-c=0,
¢’ -a = c*-b = 0. Therefore, each scattering vector can be easily expressed in the reciprocal
space basis: s = ha” + kb* + Lc*. The atomic positions in the unit cell are defined in fractional
coordinates along each of the periodicity vectors a, b, c as r = xa + yb + zc. The scalar product
needed to calculate structure factors would have the following form:

s*r =hx+ky+lz.

The spacing d between reflecting planes shown on Figure 1.2 is the inverse of the
scattering vector length: d(s) = |s|~t. This value is called the resolution of the reflection. The
larger values of hkl correspond to a denser set of reflecting planes, hence, to smaller values of d

and considered as reflections of higher resolution.

1.1.3 Electron density distribution calculated from structure factors

By design, the major contribution to the observed intensities on a diffraction pattern from a

crystal comes from the secondary waves reflected by the electrons of that crystal. Most of these
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electrons are part of atomic composition of the crystal. Thus, their distribution helps to
understand where the atoms are located in a unit cell.

Due to the periodic nature of crystal, the function describing electron density distribution
is defined as a real three-dimensional non-negative function of the fractional coordinates 7

p(r) = p(x,y,2) = p(x + i,y +iyz+1i,),

where iy, i,, i, can be arbitrary integer numbers.

By the same reason, this function can be represented as Fourier series with the complex
structure factors of the crystal as coefficients summing over the Bragg reflections hkl:

p(x,y,2) = Z Ferystal(pir) exp[—i2m(hx + ky + 12)] . (1.3)
hkl

As one can see from this formula, the determination of the electron density is impossible
from a single X-ray diffraction experiment since only the magnitude information is available
while no phase information is being collected. Thus, often the distribution is approximated using
the experimental amplitudes and phases calculated from a model of the crystal.

Among the difficulties introduced by the nature of experiment one can also point out
incompleteness of the set of detected reflections. Another obstacle is the uncertainty of the

observed amplitudes.

1.1.4 Structure factors parameters

The considered examples of the diffraction experiments above were thought experiments
in ideal conditions: ideal lattice order and immobile atoms all in the same configuration in all
unit cells across the crystal. In practice, these conditions are violated and various corrections for
experimental and physical nature of the crystal are needed. Further, we discuss some

computational approaches on how to mitigate these problems.

Occupancy

First, let us consider the situation when some atoms in the unit cell have multiple positions
due to some reason. These alternate conformations might have a different character since the X-
ray experiment provides both space-wise and time-wise averaged data. The spatial averaging

masks the possibility that some atoms are located at different positions across the crystal unit
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cells, for example, they are in conformation A in 60% of the unit cells and in conformation B in
the rest 40% of the unit cells. The time averaging leads to the interpretation that 60% of the time
during data collection the atoms stay in conformation A and 40% of the data collection time the
atoms are in conformation B.

In the case of biologic macromolecules, such situation might be caused by multiple
possible states of the structure and/or the dynamics. Also, there might be a combination of the
space and time averaging, which is hard to distinguish in the standard approach for structure
determination. Nevertheless, both situations are described by the introduction of an additional
fourth parameter to the atoms’ coordinates — occupancy. Moreover, there might be more than
two alternate conformers. Hence, the number of the unknown in the system of equation to

determine the structure might grow even more than by 25%:

Nll.C.

F(s) = Z q;fi(s) exp[iZns . r]-],

)
where the summation goes over all the atoms and their alternate conformers in the unit cell. The

occupancies of the conformers are limited: 0 < g; < 1 and usually there is a single unity
conformation for most of the atoms or the sum of the occupancies per atom sum up to 1. Water
molecules, which are bound to protein only part of the time, might illustrate the exception to
these conditions. They would have a partial occupancy that would be less than 1 since the rest of
the time the position of that molecule is unknown.

The lower the partial occupancy of an atom, the harder it is to identify them because of the
decreasing contribution to the structure factors. Thus, it is extremely difficult to detect more than
two alternate conformers. Their identification also gets harder with the lower resolution of the
structure.

Usually, the partial occupancies are present for the mentioned solvent molecules and ions.
While in the macromolecules, the occupancy is typically the same for a whole group of atoms

such as amino acid residue side chain or a flexible loop region.

Displacement parameters

In the previous paragraph, we discussed large-scale static and dynamic disorders related to

spatial and time averaging from the experimental data. Another case of disorder occurs when
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there are no multiple distinct conformations but only small-scale fluctuations around a single
position. Again, both can happen across the crystal and/or over time of the data collection. These
are typically modelled by Gaussian distributions.

In the simplest case of isotropic displacement, the probability distribution P; of a shift Ar
of the j-th atom is described by the following formula:
|Ar|?

)

P;(Ar) ~ exp I—4112

]
where the parameter is B; > 0. The isotropic factor also called isotropic B-factor assumes that
the displacement is happening in all directions with equal probability.

The isotropic model is an idealization. In practice, for example, the presence of a bond
constraints the movements of the atom. If the experimental data allows to introduce more

parameters per atom, a more sophisticated anisotropic modelling is adopted:
1
P;(4r) ~ exp —EArAU‘IAr].

Here, AU is a symmetric, positive definite matrix that has six parameters describing the
probability of movements along the principal axes.
The introduction of the displacement parameters into the overall picture renders the

following formulae for the structure factors in isotropic and anisotropic cases, respectively:

Na.c.

1
F(s) = Z q;f;(s) exp [—ZBJ'lSIZ] exp|i2ms - 1],
j=1

and
F(s) = Z q;f;(s) exp[—2n2sU;s| exp[i2ms - 1] . (1.4)
=

Bulk solvent: exponential model

So far, we have considered the case when only structured elements are present in the unit
cell. In macromolecular crystallography, 27-78% of the crystal by volume consists of solvent [3].
If one locates a water molecule or a prosthetic group or other adjunct used to crystallize the

sample at a well-defined region, they can be treated using the methods described above.
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Moreover, the higher the resolution, the more ordered molecules can be fitted into electron
density distribution.

However, even the introduction of atomic occupancy and displacement parameters is not
enough to produce a model that has a good agreement between the calculated structure factors
and the experimental ones at low resolution. A large portion of the solvent cannot be modelled
that way due to its dynamic nature. Time and spatial averaging of experimental data can provide
only blurry and featureless electron density corresponding to the solvent, which is exactly the
reason why only low resolution is getting affected. The Fourier coefficients in the formula (1.3)
corresponding to high resolution are fast-oscillating components, and they are absent. Thus, the
disordered solvent, also called bulk solvent, requires a special approach.

Babinet’s principle states the diffraction patterns from a diffracting body and from a hole
of the same size and shape are equal in amplitude and opposite in phase (see Figure 1.3). This
statement is applicable to the structure factors of the structured part and bulk solvent of the
crystal, Fsiructured (gy and F2ULk (), respectively. The electron density calculated from low
resolution data are both distributed almost equally smoothly and are complementary to each
other, hence:

Fstructured (g) ~ _phulk(s),

at s corresponding to low resolution reflections.
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Figure 1.3. Schematic representation of Babinet’s principle in macromolecular crystallography.
At low resolution the electron density of a macromolecular component and the complementary
bulk solvent are almost indistinguishable. Therefore, corresponding structure factors are
approximately equal in amplitude but opposite in phase.

Using this observation, the simplest way to include bulk solvent into the model is to add
the negative component of the structured molecules with a Gaussian weight, which would negate

bulk solvent impact for high resolution reflections:
1
Fmodel(s) — Fstructured(s) + Fbulk(s) ~ Fstructured(s) (1 _ ksol exp [_ZBsollslz])-

The scale coefficients k,,; and B,,; can be estimated by their physical significance or by least-
sgquares minimization to reduce the discrepancy between the observed and the model data.

The phenomenon of almost cancelling each other’s structure factor component holds only
at very low resolutions [4] requiring a more rigorous treatment. Currently, there exists another
approach to handle this limitation. It is probably the most popular one after the described

exponential bulk solvent model and is called flat bulk solvent model.
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Bulk solvent: flat model

In this model crystallographers consider the electron density corresponding to bulk solvent
being flat. They introduce a grid of points with unity values in the unit cell. The points inside the
minimal region occupied by ordered atoms are assigned to zero. Such grid is called the molecular
mask, and it emulates the bulk solvent electron density distribution. The finer the grid, the more
precise the mask is. Further, the Fourier transform of the mask, F™%(s), provides the
corresponding structure factors.

Fmodel(g) = pstructured(g) 4 pbulk(g) = pstructured(g) 4 g (|s|)F™ask(s).

Analogous to the exponential model, one needs to introduce the scaling coefficients,

K., (]s]), which correct the values for actual electron density. As previously, the choice of
Gaussian scale function works well to achieve better agreement between structure factors of the
model and the experimental ones [5]. When we correct for bulk solvent in CHAPTER 2 we use

exactly this approach.

1.1.5 Scaling to the experimental values

Similarly to the atoms in unit cells, each building block of the crystal also vibrates, one
needs the displacement parameters to model that. We have mentioned in paragraph 1.1.1 on
fundamentals of X-ray diffraction, that intensities and structure factors depend on the number of
unit cells in the crystal. This parameter is unknown a priori but needs to be considered.
Therefore, the overall structure factor of the crystallographic model can be written as follows:

F™04eL(8) = KoperaikisotropicKanisotropic(FT 074 () + Kynasi P (5)).

Here, all the factors are dependent on reflections s, except k,perqii:

B 2
* kiask = ksorexp (— %ls) where k,,;, Bso; are the flat bulk-solvent parameters,
_ Bs? .
* Kisotropic = €xp (— T)’ where B is a scalar parameter,

212sTUcryses . . . .
——— ), where U, is the overall anisotropic scale matrix,

o kanisotropic = exp (_

i — tructured k —
d DenOtmg F;nodel - kisotropickanisotropic(FS ructure (S) + kmaskaas (S)): koverall -

z:SFOllslpinodell

——mese, where the sum is over all reflections.
Zlemodell
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1.2 Macromolecular structure refinement

1.2.1 Statement of the problem

Once macromolecular crystallographers obtained the experimental values of intensities
from the diffraction pattern, they try to solve two interconnected problems: 1) determine the
electron density distribution yet lacking the phase information (see paragraph 1.1.3) and 2)
identify the set of atoms in that distribution, which provides a hypothesis on the initially
unknown phases of structure factors. Thus, neither of these problems can be fully solved
independently, and they are approached iteratively. An initial atomic model always contains a lot
of errors that need to be corrected to achieve a valid atomic model.

We can divide these errors into two classes. The first one is molecular geometry errors and
includes such cases as atomic clashes and impossible bond lengths or angles, etc. The other class
is the poor agreement of the model with experimental data.

An accurate model is required to draw accurate structural conclusions, which affect how
different features both structural and functional are interpreted. Hence, the elimination of model
imperfections is an undoubtedly necessary step to perform. This is the goal of crystallographic
refinement.

Even in its simplest form, the problem of solving the system of equations (1.1) is too
complicated for modern computational hardware. In a realistic setup, the system is non-linear, it
contains thousands of equations depending on thousands of parameters. Additionally, the
existence and uniqueness as necessary conditions for analytical approach are not ensured. Even
the model with true parameters, which are accurate from the molecular geometry point of view,
might still produce not ideal conformity between calculated and observed structure factors
because of measurement errors and/or approximations described in the corrections paragraph
1.1.4. As such, before the development of bulk solvent models, crystallographers usually cut the
range of observed reflection lower than 6-7 A artificially.

Therefore, researchers opt to another, more realistic task: given a set of inaccurate model
parameters they try to minimize the discrepancy between the observed and calculated structure
factors also adjusting the parameters. More formally, they minimize some target function, which
is a combined measure of errors in the model. For example, the simplest form of such function is

a least-squares target first introduced by Booth [6]:
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Tuse@) = ) (PR - Fgle)’, (1.5)

hkl
where the summation goes over some set of reflections used in the refinement and the model

structure factors depend on a set of model parameters, e.g. all atomic positions, occupancies, B-
factors, etc. Sometimes structure factors are also substituted for intensities, due to the
relationship discussed in Fundamentals paragraph 1.1.1:

T = Y (540 = 1)’ = ) (i) = (i)

hkl hkl
Clearly, the minimization reduces the discrepancy between the experimental structure

factors and the ones calculated from the model parameters. Moreover, if after minimization such
function reaches zero, and it would give an exact solution for the non-linear system (1.1). As
mentioned above, the existence of such a solution is rarely the case in practice, so one might
want to choose another target function. We discuss the options below in paragraph 1.2.4.
However, there is an issue with the objectivity of the target function value as a score of
refinement success. It depends on the specific experiment details, such as the number of
reflections used in refinement or the magnitudes scale. This, for example, makes the functions
values incomparable between different structures. Therefore, another measure known as R-

factors was also introduced by Booth [7] and is used nowadays:

thllFﬁOde (x) — i?l?ls thllFﬁOdel(x) - i?l?ls
orR =
Yhi Fopt Yni Pt

We will use the first expression further in the text when dealing with model validation.

R =

* 100%. (1.6)

Also, besides the problems experienced when using least-squares target, the use of R-factor as a
target indicates an issue of differentiability, which is needed for minimization methods described

next.

1.2.2 Minimization methods

There are three main types of algorithms used for optimization problems: Zero order
algorithms, First order algorithms and Second order algorithms. Zero order or pure search
methods are not used in macromolecular refinement due to an enormous computational load that

would be required. Thus, we focus on the latter two approaches.
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We start with the Taylor series approximation of the function to minimize, f(x), near a
point x,, a column vector of the current set of parameters:
df (x) d*f (%)
dx

dx?

1
f(x) = f(xo) + (x—x0)+§(x—x0)t

(x — x0).
X=Xg

t
x=x0
Here we omitted the terms of the third and higher orders as it is usually done for the refinement
problems.

The formula can be rewritten in terms of the difference between the argument and the point

in the vicinity of which we approximate our function f (x). Denoting Ax = x — x,,

df (x) 1, |d%f(x)
|W Ax + —Axt W

Ax.
> x

X=Xg

f(xo +Ax) = f(x) +

t
X=Xg

Thus, taking the derivative of the function, the quadratic form with respect to the shift
vector Ax on the right side becomes linear:

df (®)|" |df @)
dx | dx

t

d?f(x)

A t
+ Ax P

x=x¢+Ax x=xg X=Xo

The function reaches its extremum (minimum or maximum) if the function’s gradient is
zero. Therefore, the following condition on the vector Ax gives the search direction:

d*f (x) df (x)

dx? dx

-1

Ax =

x=x, x=x0

In the full-matrix method, the Hessian (the matrix of second derivatives) is calculated
directly. However, typical refinement procedure would involve 10* parameters, so the full
calculation of 108 elements in the matrix requires a lot of memory and computational time.
Hence, in other second order methods, one may estimate only some of the elements in the
Hessian.

The methods of the first order rely only on the calculation of the first derivates and assume
the Hessian to be a unity matrix. Such simplification saves time, but it brings up a problem of the
speed of convergence. The comparison of the methods used in structure refinement can be found

on Figure 1.4 diagram.
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Figure 1.4. The comparison of some optimization methods on three scales. Radius of
convergence indicates how close the starting model should be for a successful search. Rate of
convergence indicates how fast the minimum would be found. Computational time indicates how
long the procedure would take.

Being the most robust method in macromolecular structure refinement and providing an
advantage of a large radius of convergence, we relied on the steepest descent algorithm in our
project [8]:

df (x)

xnew — xold _
dx

x=xold

1.2.3 Computational load

The first refinement programs were implemented in the 1970s. At that time, the computers
were weak, and a straightforward refinement cycle could take days. Moreover, one such cycle
would be insufficient to achieve a reasonable model and the best agreement with experimental

data.
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To perform one step of minimization, one needs to compute structure factors, then one
needs to at least compute gradients or even some second derivatives of the target function
depending on the optimization scheme (see previous paragraph). The computational load of the
first sub-step is proportional to the product of the number of parameters and the number of
reflections. In the simplest scenario of steepest descent, either numeric or analytic calculation of
the first derivatives roughly takes the amount of time to compute a single target value multiplied
by the number of parameters. On top of that, the total time must be multiplied by the number of
iterations. Therefore, some efficient computational tricks were needed to make the software
usable.

The two main elements that were employed are crystal symmetries and Fourier transform.
First, in some crystal forms, the unit cells contain symmetries. A single block named asymmetric
unit can be used to generate the whole unit cell provided a set of operations such as rotation,
translation and screw. In that case the contents of all asymmetric units in the cell are assumed to
be identical. This helps to reduce the computational time since now the summations (both the
internal and external loops) in structure factors and target function formulae go over a fraction of
atoms. The second trick refers to paragraph 1.1.3 on electron density distribution and the
relationship between electron density and structure factors: they are Fourier transforms of each
other. In 1956, Cooley and Tukey [9] followed a Sayre’s suggestion [10] and proposed a
machine algorithm to calculate the approximation of structure factors efficiently using fast
Fourier transform. Now, instead of the number of reflections multiplied by the number of atoms
complexity, the number of operations would be proportional to simply the number of atoms with

a small coefficient. Similarly, one might exploit the Fourier transform to calculate the gradient.

1.2.4 Target functions and model validation

A simple test of refinement using the least-squares target (1.5) shows that for sufficiently
large molecules the number of observations is usually lower than the number of parameters. This
exposes the problem of over-fitting the experimental data. Another problem that arises with the
least-squares target is a small radius of convergence.

For example, in a review on crystallographic refinement [11], Urzhumtsev and Lunin
mimicked the refinement of a protein. They generated several models that varied in RMSD (root-

mean-squared deviation) against an ideal model from 0.3 A to 1.4 A. A set of structure factors
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was generated for the ideal model. Next, they refined the models against the set of noiseless
structure factors cut at different resolution ranges of 3 A, 2 A and 1 A. Even in the case of the
smallest deviations from the reference model, the tests showed that the refinement exhibits over-
fitting if there are not enough data points available (3003 parameters against 2290 observables).
Namely, the discrepancy between the structure factors was negligible, but the refined model was
wrong when compared against the reference. The second conclusion was that the poorer the
initial model is, the worse the refined one is in comparison with the reference model, and the
worse the model-to-data fit is as judged by R-factors. One can find more on these tests in [11].

To overcome these problems, one first needs to increase data-to-parameters ratio. The two
ways to do that are imposing restraints to increase the amount of data used in refinement or
decrease the number of independent parameters imposing constraints on them. In our project, we
implement the approach when additional data is incorporated into refinement.

When refining macromolecular coordinates, crystallographers typically approach these
issues by introduction of an additional term to the target:

T =Tis + Tgeometry
where the term T, metry, also called force field, implements the restraints on such parameters as
bond lengths and angles, dihedral and improper dihedral angles to enforce planarity, and van der
Waals and electrostatic interactions. The first four components represent bonded interactions and
the latter two — non-bonded interactions:
Tyeometry = Thonds * Tangies + Tainearat + Timproper ¥ Tvaw + Tetectrostatic (1.7)

Unfortunately, this modification of the target term alone is not enough in practice. Other
issues arise even after the additional restraints are imposed, such as a question of weighting
between the crystallographic and geometry restraints. Similar to the reasons to introduce R-
factors, since the observed data have arbitrary units and the absolute scale is never known, the
results of refinement might vary depending on the non-physical scaling factor. Some of the other
problems include the noisiness of experimental values and errors in the model, which are
irremovable, such as when a part of macromolecular structure cannot be modelled. For example,
the latter problem manifests itself analogously to overfitting, which is discussed in the next
paragraph. We explore the target function options to mitigate the mentioned challenges in the
following sub-paragraphs.
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Model validation

Even if after the refinement the corresponding R-factor is low, the model can be incorrect.
Since the target has a lot of local minimums, the optimization often gets trapped in them instead
of the desired global minimum. This is linked to structure factors expression, which involves a
lot of sines and cosines. The higher the resolution, the more such terms are present and the more
rugged the profile of the target becomes. Thus, to distinguish between the true model and an
incorrect one, a validation measure is needed.

Obviously, one needs to use some complementary data to those that have been used during
the refinement. If the refinement is unrestrained, one can check the correctness of bond lengths
and angles. In 1992, Briinger suggested to exclude a fraction of crystallographic data from the
refinement procedure [12]. Typically, one would randomly and uniformly select 5-10% of the
reflections and label them as a test set, while the rest would be used as regularly during the
refinement and called a worked set. Now, as previously one would calculate so-called free R-
factor (1.6) but the summation would go only over the test set. The discrepancy between the
observed and model structure factors during the refinement might go down, but if it went a
wrong way (e.g. over-restraining) or if the parameters-to-data ratio is too high (e.g. over-fitting)
then the difference between the Ry, and R« factors would be enormously high.

Simple tests show that such big gaps are exactly the case in a realistic scenario when a
model with irremovable errors is being refined with least-squares target even against an error-
free dataset and the partial model becomes even more distorted. This makes the direct
comparison of the observed data and those generated from a model ill-founded, suggesting a

modification to the crystallographic term of the target.

Crystallographic term of target

Maximum likelihood methods are known to be more robust than least-squares in the case
of noisy data. Maximization of the probability that the structure factors of a current model
reproduce the experimental values is a common approach to solve the problems mentioned
before. Such method was introduced into macromolecular crystallography by Lunin, Bricogne,

Read, Pannu, Murshudov and others [13]-[21]. The maximization of the probability can be
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reformulated in a more convenient form of minimization of negative logarithm [22], which now

serves as a standard target, for example in Phenix refinement module [23]:
Tur = Znit Y (Fmodet Fops) @, B), With

(_ In (ZFobs) + Fobsz + alemodellz —In Io <2a|Fmodel|Fobs

> ,acentric reflections

W ep ep ep &p
] 1 2 F,,> a?|F 2 alF F ’
——ln( ) + obs + IFmogell — In cosh M ,centric reflections
2 e 2¢ef 2ep ep

where the coefficient e depends on the Miller index hkl and on the space group of the crystal and
is equal to the number of symmetry operations that, when applied to the vector hkl, leave it
unchanged. I, is the zero-order modified Bessel function of the first kind. « and S are the
parameters that accumulate model errors and uncertainties. We will discuss the estimation of
parameters more in CHAPTER 2.

Another option is the hybrid of the maximum likelihood and least-squares [24]. One
similarly performs the estimation of a and £, but instead of the original target, now the
optimization of the following function is done:

Ty = Z W;;kl(F;lrIlc?del(x) - Fh*kl)z'
hkl

where the weights, wy,,;, and adjusted structure factors, Fj,,;, are expressed by the means of the
experimental structure factors and the uncertainty parameters of the likelihood, o and 8. The

exact expressions are derived by Lunin, Afonine and Urzhumtsev [24].

Force field term of target

The general form of the force field term of target for macromolecular coordinates
refinement was expressed in equation (1.7). Yet, the question of which values should be
plugged-in as ideal ones into the restraints stands. We have analyzed the most popular software
used for restrained structure refinement according to RCSB statistics and came up with the
following list: Xplor/CNS, PROFFT/PROLSQ, SHELXL, REFMAC, Phenix and
BUSTER+TNT. We distinguished two main datasets used in these and other less popular
programs:

1. The current standard, values developed by Engh and Huber [25] were and are used in a

number of programs such as Xplor and CNS developed by Briinger and colleagues [26],
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[27], SHELX/SHELXL by Sheldrick and Schneider [28], PROFFT/PROLSQ by
Konnert and Hendrickson [29], [30], BUSTER and TNT by Blanc, Bricogne and
Tronrud [31], [32]. The original Xplor parameters were a modification of an all-atom
CHARMM force field that did not require explicit hydrogen atoms to be used during
refinement (P19X), the reasons for that will be discussed the next sub-paragraph. The
Engh and Huber values were derived for each amino acid by querying appropriate
chemical fragments from the Cambridge Structural Database of small molecules. The
resultant dataset (CSDX) absorbed P19X. However, the accuracy of hydrogen atoms
parameters was announced to be limited [33].

1.1. REFMACS dictionary is an extension over Engh and Huber dataset, which
incorporates monomer-based approach with dynamic definition of links and
modifications [34]. It was previously used in Phenix and is currently used in
REFMAC [35].

. Conformationally Dependent Library (CDL) developed by Berkholz et al. [36], which is

the current trend [37] and is implemented in TNT and Phenix and has shown to achieve

better R-factors [38], [39]. It also can be used in SHELXL [40]. This library was
developed by the analysis of 3-residue segments from the Protein Geometry Database,

which included high-resolution structures at 1.0 A or better.

To summarize, the CSDX dataset represents single-value paradigm, which disregards

environment and provides the parameters on atom-type basis, the CDL considers two

neighboring residues and REFMACS dictionary is a mixture of these approaches.

Hydrogen atoms and solvent treatment; consequences for non-bonded interactions

As we have discussed it in the computational load paragraph 1.2.3, historically researchers

needed to sacrifice some details in the model to perform refinement efficiently. Hence, to reduce

the number of parameters, one would disregard hydrogens from the model. The justification for

that was that the contribution from their electrons to the observed intensities is six to eight times

smaller than a typical heavy atom in a protein. Thus, their location cannot be seen in the electron

density distribution. If only the resolution is high enough, approaching 1.0 A or beyond the peaks

corresponding to hydrogens could be distinguished [41].

34



From the other point of view, hydrogens make up roughly half of all the atoms present in
macromolecular structure. It has been shown that their explicit modelling improves model
geometry and provides better agreement between model and experimental structure factors by
reducing R-factors [42]. Therefore, the general recommendation is to use these light atoms
explicitly [43].

Another consequence of the omitting hydrogens from the model manifested itself in the
restraints on non-bonded interactions. First, again because of computational load and second due
to electrostatic artifacts in structure determination coupled with the absence of proper solvent
treatment to model such contacts. Lennard-Jones potential representing van der Waals forces was
replaced by simple repulsive function, and electrostatic interactions were disregarded. The only
software that kept the ability to model non-bonded forces is Xplor-NIH/CNS since it’s also used
to refine structures using nuclear magnetic resonance spectroscopy (NMR) data. However, this
program is no longer widely used, it is recommended not to use full non-bonded potential energy

in crystallographic refinement in its manual.

Table 1.1. Summary of refinement target function option in the most popular protein
crystallography software. Note: Anti-bumping conditions, e.g. simplified non-bonded
interactions term, are implemented in all programs except for PROFFT.

Target function
Program Crystallographic Geometr_y term Notes
term forms restraints
Xplor/CNS LS. ML all classical terms from | Full non-bonded term is not
formula (1.7) recommended
PROFFT/PROLSQ LS bondg, tor5|pn angles, No symmet_ry related
planarity, chiral centers restraints
bonds. planarity and No torsion-angle restraints
SHELXL LS > P y or specific hydrogen-bond
chiral volumes :
restraints
bonds, angles, torsion
REFMAC LS, ML angles, planarity,
chirality
bonds, angles, torsion
Phenix LS, ML angles, planarity, chiral
volumes
bonds, angles, torsion Special non-bonded “close™
BUSTER-TNT ML angles, planarity, chiral P .
centers contacts restraints
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Such simplification provides a different view on the modification of the crystallographic
portion of the target function: to switch off some of its terms and/or add new ones. For example,
since traditionally the refinement is done using a single asymmetric unit (see paragraph 1.2.3), it
might be beneficial to use some restraints to prevent bad clashes between a model in symmetry-
related units, which appears to be an expansion of the mentioned non-bonded interactions

modelling. Table 1.1 summarizes the potentials used in the most popular refinement software.

1.2.5 Improving convergence of optimization: molecular dynamics and simulated
annealing

So far, we have discussed the modifications of the target function which would improve
the parameters-to-data ratio. The second problem brought up in the discussion of optimization
against error-free data is the convergence: if a model has too many errors, the minimization
cannot reach the global minimum (see previous paragraph). The first approach to tackle the
problem is to improve the simplest gradient-based techniques. A comprehensive review on such
enhancements, which progressively use more and more second derivatives, can be found in [8],
also see paragraph 1.2.2.

Another technique to overcome this issue is called simulated annealing. The
crystallographic target is a multi-dimensional function with lots of local minima points (see
paragraph 1.2.4). Therefore, sometimes it gets trapped during optimization and fails to reach the
desired global minimum (Figure 1.5). From this point of view, one can consider the target as a
potential energy. In this case, one can introduce Kinetic energy to let the system overcome the
barrier. A molecular dynamics simulation program assigns high initial velocities to atoms to
provide the system more freedom of movements rather than follow the gradients of the target.
Then, it slowly reduces the introduced momentum in hope that eventually the model will fall into
a global minimum.

Such an approach provides a great deal for correcting large errors and saves time of
manual corrections, but the main drawback is the large amount of CPU time. To the best of our
knowledge, the simulated annealing protocol is implemented only in Xplor/CNS and Phenix

among the programs discussed above.

36



target function value

global minimum

/

local minima

refinement parameters )

Figure 1.5. Schematic representation of simulated annealing principle. The system is represented
as a ball at the upper left corner and its target value profile is projected on 1-dimensional x-axis
with values on y-axis. The goal of refinement is to achieve the global minimum. In the regular
optimization the system can stuck in the local minimum dips of the curve shown in green.
During simulated annealing, the ‘heated’ system naturally overcomes these barriers.

The first attempt to introduce this idea into crystallographic refinement dates back to 1987
when Karplus, Briunger and Kuriyan published an application to crambin and a-amylase inhibitor

[27]. After that, the molecular dynamics driven optimization was successfully implemented by
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Fujinaga and Gros [44], [45]. They inspected several sophisticated protocols with the simulations
carried after target function minimization, in vacuum and using an asymmetric unit cell:

1. conventional unrestrained MD, e.qg. there is only force field term present for potential

energy,

2. energy minimization (both just the pure MD potential energy and its combination with

the crystallographic restraints), and

3. simulated annealing.

Here, one might ask whether the classical MD or energy minimization using the force field
component alone help to achieve better models while maintaining the agreement with
experimental data. Unfortunately, neither of these approaches leads to the desired result. Our
preliminary tests showed that the energy minimization results in a poor agreement between the
experimental data and those calculated from the final structure, even though the geometry of the
model improves. Similar conclusions were drawn for unrestrained MD in the Fujinaga and Gros
works.

Another implementation of MD-driven approach is a module for NAMD called xMDFF
[46]: molecular dynamics flexible fitting for low-resolution X-ray crystallography, which
extends the original MDFF module designed for cryo-EM refinement [47]. This program is an
example of so-called real-space refinement. Instead of using either LS or ML crystallographic
term, the authors added a term based on the electron density calculated from the observed data
and the phases from current model (see paragraph 1.1.3). In addition, they also included the term
which restrained the secondary structure. Instead of the refinement tool, this module is rather
more designed for restrained MD that would fit structures into electron density and authors
assess the produced models by comparing with the geometry to the reference structure. The only
study using this tool for crystallographic refinement, e.g. not only the geometry but also R-

factors were examined, employed the classical approach of simulated annealing [46].

1.2.6 Other advanced refinement protocols: multi-start refinement, structure-factor
averaging and ensemble models

The next improvement over the simulated annealing approach is to start several
refinements of the same model. Due to the random number generator used in an MD engine,
some refined structures would be better than others. Thus, a more optimal model could be
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selected against a single model from the classic refinement run, based on both molecular
geometry and experimental data fit.

Since the observed intensities reflect only the averaged structure over time and space, one
can also average structure factors of the obtained models [48]. This approach improves phases
for the election density, reduces model bias and noise introduced by the deviation of a single
model from a true one. Therefore, it also helps to better identify the uncertainty parameters in the
ML term since they are calculated from the model structure factors.

The method of considering several models and averaging over them can be advanced even
further. Instead of treating each run of refinement separately, one can start with an ensemble of
structures and refine them simultaneously against the observed data. This leads to a better
agreement with experimental structure factors and alleviates local errors from a single model
[49]-[52]. Now, the alternate conformers can be modelled explicitly. One generates several
models of the same structure and the calculated structure factors are averaged and the resultant
data are refined against the observed ones. Here, it is important to notice that all the models are
independent of each other from the intermolecular interactions standpoint.

Another advantage of this method is that it might provide new insights into static and
dynamic disorder of various systems. For instance, it has been done for TCR—peptide-MHC
interface [53], hen egg white lysozyme [54], human complement factor D [55]. Overall, the
generation of ensemble representation promises to provide more adequate analysis for further
investigation of the structures. Reviews on that topic can be found in [56]-[59].

The major disadvantage of the ensemble representation is the increase of the number of
parameters while the amount of data is kept the same. Hence, one should be careful of the over-
fitting problem discussed in paragraphl.2.4. Specifically, a large gap between R-work and R-free
factors should be avoided.

It is worth pointing that the ensemble refinement does not necessarily require molecular
dynamics simulation engine to be used, but rather can be done with the regular minimization
technique. However, one aspect that was presented in some of the studies discussed in this
paragraph but is not touched in our project does require MD consideration. Besides the ensemble
representation and spatial averaging of structure factors, one can also introduce time averaging of
structure factors, which would depend on a “memory’ parameter, e.g. how long the spatial

averages should play the role. Such an approach is an attempt to fully mimic the nature of the
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observed data. Another example of such method was presented by Burnley et al. [60] where they
re-refined not just one system of interest but 20 different structures. It was shown that the
ensemble treatment not only improves the statistics reflecting agreement to experimental data but

also might reveal important functional dynamics.

1.2.7 Potential improvements in refinement

We have established above that MD-based protocols of refinement drastically improve the
radius of convergence. Therefore, we will focus on such techniques. Even though it is known
that simulated annealing protocols might diverge from the true models if the initial model is
already close, we will also discuss other approaches, which do not necessarily involve the
heating of the simulated system.

As one can see, the traditional approaches do not take into consideration the following
three conditions while there are evidences that these three factors are crucial and affect the
quality of the final model:

1. state-of-the-art force field / potential energy for the geometry restraints term of the

target function,

2. explicit solvent, and

3. explicit representation of crystal unit cell with periodic boundary conditions.

The purpose of implementing these features is to provide a more realistic representation of
structure models. Even though it has been mentioned back in 1989 that the refinement can be
performed in explicit solvent and whole unit cell with periodic boundary conditions to account
for intermolecular interactions and possible alternate conformers [44], it has never been done.
Importantly, such an approach implies all-atom ensemble models.

All the discussed refinement techniques if they involved MD simulations of some sort
were carried in vacuum using single asymmetric unit because of the issues mentioned in the
paragraph 1.2.3 on computational expenses. While earlier, the use of space groups symmetries
was handy to save time, today’s computational capabilities allow to not assume that all
molecules in the unit cell are in the same average configuration. Even in the current refinement
procedures for ensemble generation, the average structure factors are adjusted against the

experimental ones, but all contributing models are assumed to be independent of each other.
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Traditionally, solvent and electrostatics treatment during the refinement was oversimplified
even for simulated annealing schemes. Nevertheless, studies discussed below show that their
reintroduction along with an all-atom model provides better structures both in terms of biological
relevance and agreement to the experimental data.

The consideration of the full unit cell with explicit solvent and, especially, under
crystallization conditions provides a better agreement with the X-ray observations. Thus, for
example, Kuzmanic and colleagues have shown that traditional in-vacuo refinement of even high
1.0 A resolution structures can underestimate atomic fluctuations expressed as B-factors [61]. In
[62], the authors observed that atomic fluctuations computed from the simulation, which utilized
crystallization conditions, closely reproduce the fluctuations derived from experimental B-factors
and that the X-ray structure is preserved better in comparison with the simulation in pure water.

The only current software that supports the inclusion of explicit solvent for the force field
term of the target, e.g. more precise electrostatics treatment, is previously mentioned xMDFF
module of NAMD. The presence of solvent during MD simulations was shown to be beneficial
for structure geometry [63]. Also, the authors of NAMD after the exploration of X-ray derived
restrained MD simulations suggested that the introduction of solvent affects the quality of
structure positively, especially for globular proteins which are exposed to solvent [64]. Their
current recommendation is to perform the last round of refinement in an explicit solvent [65].
Yet this aspect is not fully explored in the context of refinement performance against other
engines. The fitting simulation in explicit solvent produced better R-factors when compared to
implicit solvent and in vacuo simulations, but those values were still worse than the deposited
ones by roughly 0.05 or 5%. The caveats for this piece of software are that: 1) it relies on real-
space fitting into electron density, which is strongly biased by the starting model quality, 2) it is
done for a single model.

The all-atom ensemble models in a unit cell with explicit solvent also naturally raise the
question of parameters for the geometry term of the target function. To the best of our
knowledge, only four programs perform crystallographic refinement using other than the force
fields mentioned in 1.2.4 paragraph. First, it is one of the previously discussed programs, Xplor,
and its crystallographic refinement technically can plug in any custom force field. However, it is
done in vacuum, hence the problems concerning non-bonded interactions term arise as discussed

in the sub-paragraph 1.2.4 on hydrogens. Second, it is xMDFF of NAMD, which uses
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CHARMM force field by default and can perform MD-based refinement in vacuum, implicit and
explicit solvents. Third, FFX/Force Field X uses a Amoeba polarizable force field and performs
the refinement in implicit solvent. It has been shown, that modelling electrostatics and inter-
/intra-molecular contacts more precisely leads to better results both in terms of geometric
qualities and the agreement with the experimental data [66]—[70]. Finally, the same idea of
employing a more realistic force field underlies the project of Rosetta-Phenix refinement [71],
which focuses on low resolution structures.

Phenix has also recently incorporated the ability to use Amber force field, which is soon to
be released officially, even though the electrostatics treatment reintroduction is not clearly
justified. The corresponding interactions are present in the target, but the refinement is done in
vacuum, hence, one might experience the same problems as discussed earlier (see sub-paragraph
1.2.4 on the geometry term of target function) manifested by unrealistic values for non-bonded
interactions terms and corrupting the model thereafter.

To summarize, our project is the first attempt to include explicit solvent, state-of-the-art
physics-based force field and explicit representation of unit cell with periodic boundary
conditions into the crystallographic refinement. MD simulations of crystals in conjunction with
crystallographic data can provide a better insight into dynamic nature of macromolecular
structure rather than a single static model, which is not necessarily a true structure due to
averaging over time and space of experimental data. Another advantage of our program would be
GPU-accelerated computations, which drastically reduce the time needed to refine structure,
especially those which contain many atoms and observed reflections. So far, only FFX and
XMDFF can perform calculations on GPU units.

The only current advancement established in refinement that we do not cover is time-
averaged trailing of structure factors. In comparison with the ensemble refinement, the models
from the previous steps of the refinement are introduced into the weighted average of structure
factors. However, we set the plan to add it in the future. It has been implemented in several
works [49], [60], [72], [73]. These researches showed that models built in such fashion can
exhibit large structural mobility, which is functionally important. And even such non-explicit
ensemble models are preferred over one-model structure description.

Finally, since we are interested in the refinement against crystallographic data, we do not

consider protocols that generate macromolecular models de novo.
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1.3 Rocking motions through the lens of diffuse scattering

1.3.1 Rocking motions in ubiquitin crystals

Usually, all macromolecules experience small rigid-body deviations from their average
‘ideal’ positions in crystal and such deviations affect the range of diffraction resolutions as
pointed in several studies [74]-[79].

Independent atomic motions are modelled through the introduction of isotropic or
anisotropic B-factors, as discussed in the displacement corrections sub-paragraph 1.1.4. Overall
crystal motions are introduced in a similar fashion as pointed in paragraph 1.1.5 on scaling to
experimental values. The motions of intermediate scale such as dynamics of a protein domain or
any other group of residues or/and atoms are routinely modelled through translation-libration-
screw (TLS) parametrization, see for example [80]. This technique bears the same underlying
idea which we touched when talked about the reduction of the number of parameters of the
model. It is done to achieve better data-to-parameters ratio during the refinement. In this case,
there are 20 refinable parameters per group of atoms with presumably correlated motions [79].
Such approach is biased to the choice of atomic groups, uses only Bragg data and, therefore,
does not necessarily lead to a correct model [81]-[83]. As well as B-factors and occupancy
parameters, TLS has no ability to distinguish between static and dynamic disorders.

Also, since the TLS approach does not provide hints on the timescale of correlated
motions, we have directly observed such rocking motions in crystals for the first time [84]. In
that study, we made use of magic-angle spinning NMR spectroscopy, X-ray diffraction (XRD)
and MD simulations of explicit crystal lattices to characterize the rigid-body motions of ubiquitin
in different crystalline forms: MPD-ub, cubic-PEG-ub and rod-PEG-ub. Such names reflect
different precipitation agents (methyl-pentanediol (MPD) and polyethylene glycol (PEG),
respectively) and different symmetry relations. These crystals corresponded to previously
deposited structures of 30ONS, 3N30 and 3EHV, respectively.

First, we were able to show that the local dynamics is on the ps-ns timescale and is similar
between MPD-ub and cubic-PEG-ub as judged by MAS NMR relaxation rates and order
parameters. These results were successfully reproduced by explicit MD model of the crystals. To
evaluate the parameters obtained from NMR experiments, we produced 1-us-long all-atom MD
trajectories of a 2x2 block of unit cell for MPD-ub and single unit cell for cubic-PEG-ub. These
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trajectories contained 24 and 48 ubiquitin molecules, respectively.

Further, we evaluated the rigid-body motions in the three crystal forms. We found that the
rocking motions are much more pronounced in cubic-PEG-ub than rod-PEG-ub, and rod-PEG-ub
motions are slightly more expressed than in MPD-ub as judged by MAS NMR and MD-
generated relaxation rates, order parameters. Next, the structures of cubic-PEG-ub and rod-PEG-
ub were solved by conventional XRD methods. Their B-factors analysis and TLS modelling
confirmed the finding that cubic-PEG-ub is the crystal with the most amount of rigid-body
motions.

Concluding, it becomes clear that different motions in different crystalline forms affect
structure determination. Interestingly, we found that the amplitude of rigid-body motions
correlates with obtainable resolution in our crystals: rod-PEG-ub resolution is 2.2A, cubic-PEG-
ub crystal resolution is 2.91A. A similar trend holds for the original structures 3ONS (MPD-ub)
1.8A, 3EHV (rod-PEG-ub) 1.81A, 3N30 (cubic-PEG-ub) 3A.

1.3.2 Diffuse scattering and Guinier formula

According to the classical macromolecular crystallographic approach, researchers use only
the intensities of the Bragg peaks to determine the structure and other information is disregarded.
Structure modelling using Bragg data can reveal deviations from average positions.
Unfortunately, it cannot explain whether these motions are coupled.

The realistic diffraction patterns of most crystals are not clear. In addition to the diffracting
reflection spots they also contain smeared background, which is present due to motions in the
crystal. Figure 1.6 illustrates the case of only simple translational disorder. The diffraction of the
perfect lattice produces sharp Bragg peaks while small deviations from the ideal order introduce
cloud-like background.

It has long been known that proteins can preserve their functioning in crystalline form
[85]-[88]. The diffuse scattering information reflects the information about disorder and motions
in crystal and cannot be extracted from purely Bragg data [89]. Therefore, due to the dynamic
nature of proteins, it would be useful to decode the information from diffuse scattering, which is
usually omitted, in order to better model proteins’ motions. In turn, that would enhance the

understanding of the underlying biological process coupled with macromolecular activity.
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Figure 1.6. Atomic motions in crystal are the source of diffuse scattering. A specific example of
how translational motions affect diffaction pattern: perfectly ordered crystal lattice produces
sharp Bragg peaks, while translations from the perfect lattice result in cloud-like background.

Equation (1.2) describes the simplest case of just N static atoms in the crystal. Let us
consider a more general case when the crystal consists of more than just a single unit cell and the
location of the atoms across unit cells might differ. The overall scattering intensity formula looks

as follows:
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where the first double summation goes over the unit cells, R,, and R, are the positions of the
cells in the lattice, and the second double summation goes over the atoms in the units cells and
Ty,; and ry , are the positions in fractional coordinates. If Nyp;¢ ceurs is the number of unit cells
in the crystal and assuming strict order of the atoms in the crystal, the expression reduces to the
familiar formula:
Itota1(8) = Nt cenis F(8) + F*(s),

where F(s) is the unit cell’s structure factor, and we have a perfect Bragg diffraction in this case.

Next, let us assume that each atom is displaced by a small vector §; from the average

position across the crystal (r;). The intensity can now be rewritten:

Liotar(8) = Z Z exp[Zni(s “(Ry — RN))]
N ZZ (f] fie €Xp [Zni (s -({r;) - (rk)))] X exp [Zni (s (6 — 6N,k))]).

The variation from the average positions produces diffuse scattering and one can divide
these variations in several types by the range of interactions:

1. uncorrelated random atomic motion,

2. correlated motions within unit cells,

3. correlated motions across several unit cells,

4. long-range interactions.

Assuming random uncorrelated isotropic displacement of atoms and averaging over unit
cells, the formula simplifies such that the exponent, which includes atomic displacements,

becomes extracted:
Itotal(s) = Ninit cells Z f)’z(l - exp(—4n2(6f) * Sz))
J
+ DD expl2mi(s « Ry — Ry X fifi expl2miCs - (1) = ro))]
M N j k

x exp[—2m?((87) + (6%)) * s2].
Here we approximated the average of displacements as follows: (8; — 8k)2 ~ (67) — (6%). The

first term in the sum represents the diffuse scattering that is spherical and is modulated by the
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atomic B-factors.

Next, if we assume atomic translational displacements are fully correlated within unit cells
then the average displacement would depend only on a unit cell representative and one could
write the formula where a single average displacement parameter is present:

Liotar (S) = (sznit cells(]- - exp(—4n2(82) * Sz))

+ ;Z\]: exp[2mi(s * (Ry — Ry))] X exp[—4m2(62) * s%]) X F(s) - F*(s),

where F(s) is the average unit cell structure factor across the crystal. The diffuse scattering that
arises in this case is of type two.
To include rotational motions of molecules in unit cells, let us similarly to the previous

cases combine the atomic motions into varying structure factors and averaging them:

hotat(s) = Y ) expl2mi s * (Ry = R)] Fy () * iy (5)
M N
= Nunieceus ) (Fi(5) * Fiy(s)y exp[27i s * ARy
M

= Nunit ceus Z((F ()% + ((Fn(8) = (F(IN(F () = (F(SHNIw )
M

X exp[2mi s * ARy].

Here, AR, are the differences between unit cell origins. Clearly, the first part of the
equation is the classical Bragg scattering, while the second part containing correlations between
unit cells corresponds to diffuse scattering. In our case, we are particularly interested in rigid-
body motion in unit cells, so it is convenient to rewrite this formula to separate the diffuse
scattering intensity explicitly:

Ltotar(8) = Ninir cons(F ($))? + Igipp (s),
Lairr = Nunit ceus{|1Fn(s) — (F(s)))n-
This equation is also known as the Guinier equation and has been proven to be suitable for

modelling motions in unit cells in the studies that we discuss below.

1.3.3 Exploration of diffuse scattering

There is a limited number of studies on diffuse scattering in protein crystals. By the point
of the review by Welberry and Weber in 2016 [90] there has been published less than 30
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attempts to investigate the relationships between protein dynamics in crystalline form and diffuse
scattering over the past three decades and not much published after that. Those studies included
investigations of tropomyosin [91]-[93], insulin [94], lysozyme in various crystalline forms [95],
[96], DNAs [97], 6-phosphogluconate dehydrogenase [98], and how correlated motions of
different ranges manifest themselves on diffuse scattering patterns. In these pioneering studies,
key patterns of diffuse scattering were distinguished and techniques for modeling disorder such
as liquid-like motions, normal modes, and rigid-body motions were formulated.

Here, we would like to focus on diffuse scattering modelling, which unfortunately remains
relatively small niche with a small contributing community. Miziguchi and Kidera modelled
lysozyme diffuse scattering patterns using normal mode based refinement protocol [99]. Faure et
al. modelled diffuse scattering of orthorhombic lysozyme also using normal mode analysis and
molecular dynamics and showed its similarity in form with the experimental data [100]. The
result of modelling using MD simulations was a program called SERENA [101]. Later, they
modelled diffuse scattering of tetrahedral lysozyme using isotropic translation-libration analysis
and claimed close agreement to experimental data [102]. An attempt to reproduce the
experimental X-ray scattering for tRNA was also made by the use of multi-cells and
convolutional methods to model atomic disorder [103], [104]. In 1995, diffuse scattering was
simulated for myoglobin to investigate how well MD samples conformational space [105]. Next,
in a series of works, Wall and colleagues modelled calmodulin [106] and staphylococcal
nuclease [107] diffuse scattering and found it to be close to the experimental one using multi-
conformer refinement and liquid-like motions analysis developed in the mentioned insulin study
[94]. Later, Hery et al. have had lysozyme as a test case for MD-based derivation of diffuse
scattering, which well reproduced experiment and, particularly, in the context of rigid-body
motions [108]. In a series of works, Meinhold and Smith studied staphylococcal nuclease X-ray
scattering profiles and patterns derived from MD simulation and compared those to experimental
data [109]-[111]. Riccardi et al. made another attempt to evaluate elastic network models of
staphylococcal nuclease by comparison of diffuse scattering predicted by normal mode, liquid-
like, and TLS models [112]. In 2014, Wall continued his study on staphylococcal nuclease by
producing 1.1-us long MD trajectory of a single unit cell and 5.1-us long trajectory of 2x2x2
block of unit cells, which progressively enhanced previously developed results partially due to a

more extensive conformational sampling [113], [114]. Van Benschoten compared liquid-like

48



motions, normal mode, and TLS models of disorders for cyclophilin A and trypsin [83]. Similar
comparison was later done to cyclophilin A, a flavodoxin-like protein WrpA, alkaline
phosphatase by Peck et. al [115], and, most recently, cyclophilin A and lysozyme models of
disorder and the respective diffuse scattering 3D maps were analyzed by de Klijn in 2019 [116].
More detailed information on the key studies of diffuse scattering can be found in the review by
Meisburger and Ando [117].

Several investigators noted that diffuse scattering can be used to verify TLS models [80],
[82], [118], ensemble models [60], [113] and others such as detailed contact model [119] and,
vice versa, to be used for model building [81], [120]-[122]. Summarizing the current progress in
diffuse modelling, unfortunately, there still does not exist a technique that would achieve a
correlation coefficient with the experimental data of more than approximately 0.70. Thus, this
field needs to be explored more. As it has been mentioned in several recent reviews [90], [120],
[123]-[125], taking into account modern progress in data processing and new high quality
detectors, now is the time to include the information encoded in diffuse scattering into structure
solution instead of omitting it as it is done conventionally.

1.3.4 Application of Guinier formula to compare diffuse scattering of ubiquitin in
different crystal lattices based on MD simulation trajectory

So far, the studies which exploited MD simulations approach to investigate proteins used
the Guinier formula to generate diffuse scattering profiles and maps from trajectories and
compare those to the experimental ones. The obtained results only explored how bad or good the
agreement between them is. Also, there has not been done any direct comparison between
different crystalline forms of the same structure.

At the same time, during the investigation of rocking motions in ubiquitin, we did solve
two structures. Yet, it was done traditionally using only Bragg data and the diffuse scattering
data was dismissed. It is also suggested that rigid-body motions dominate the influence on
diffuse scattering [116]. The analysis of different models showed that other motions also have to
be taken into account to reconstruct the experimental signal [115]. Therefore, given the
promising future of diffuse scattering, we wanted to estimate if we could see any evidence of
different magnitudes of rocking motions, which we observed using other methods. In other
words, do there exist any specific features or watermarks in diffuse scattering that could
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distinguish amplitudes of rigid-body motions regardless of crystal space group?

We formulated the goal of our project to investigate how different types of protein motions
influence diffuse scattering profile of ubiquitin in different crystalline forms. First, since we
know that our MD trajectories closely reproduce the results from NMR and XRD experiments
[84], we might also expect the diffuse scattering profiling from trajectories to be successful and
reproduce the experimental profiles. Another advantage of such approach is that we could
numerically characterize each type of motion based on MD trajectory and try to find a
correlation with the diffuse scattering profiles.

Another positive premise of success to our study was that the decomposition of protein and
solvent component contribution into diffuse scattering was done in a study on staphylococcal
nuclease by Meinhold and Smith [110]. Therefore, our attempt to look at the effect of different

types of motions was promising.
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CHAPTER 2. MACROMOLECULAR REFINEMENT

2.1 Project product

We aimed to develop a modification of the Amber MD simulation package [126] which
could be used as an X-ray crystallography refinement tool with the state-of-the-art force field. In
the refinement protocol, we planned to implement explicit solvent treatment and explicit unit cell
with periodic boundary conditions rather than traditional asymmetric unit refinement in vacuum.
The potential benefits of such approach were discussed in the introductory CHAPTER 1.

Our tool could also potentially be employed in the rebuilding of poorly diffracting regions

such as loops and tails, as well as to be used for restrained dynamics to evaluate force fields.

2.2 Summary of Amber modifications

Recent benchmarks and the existing refinement protocols tell that Amber's force field is at
least one of the best force fields for the simulation of protein crystal structures [127]-[129].
Hence, one of its most recent versions recommended by the developers, ff14SB [130], was used
in this project. We have selected Amber16 package as a base for the refinement software. To
accomplish our goal, we have written a Fortran module for CPU-based version and a CUDA
module for GPU-based version with Python interface to call auxiliary functions from The
Computational Crystallography Toolbox (cctbx) open source library. We also changed the
original files to call the additional methods from the newly written modules. Our code could be
divided into two main parts: 1) the calculation of structure factors of a macromolecule and 2) the
calculation of crystallographic force term from the observed and the calculated structure factors.

In the text we mainly refer to the GPU accelerated version of our code, yet all that was

done can be accomplished with the CPU version but in longer time period.

2.3 Theoretical basis of the modifications

The overall potential energy in the modified version of Amber can be expressed as follows:

T =w * Tx_rqy + Tamper, Where Tyyppg is the original Amber force field, Ty_,q, is the

introduced X-ray restraints term, and w is its weight. This overall energy form is essentially the
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classic one used in almost all refinement procedures with two terms where the first one is based
on experimental results and the second one is based on a priori knowledge.

For our initial tests, we used one of two most common forms for the term based on the
experimental data, the least-squares target function. However, it quickly becomes clear that the
least-squares function performs well only in case when the model is close to a complete one,
otherwise systematic errors should be introduced [17], [18], [131]. The usage of such target
function leads to a huge gap between R-free and R-work while the model is not being improved.
We omit the presentation of our results with the LS target, but similar findings are summarized,
for example, in the recent review by Urzhumtsev and Lunin [11].

Therefore, we mainly considered the second common target function: maximum likelihood
[18], [132], [133] which is known to improve macromolecular models [134]. We use the form of
negative logarithm of the maximum-likelihood function [22], which was introduced in
CHAPTER 1:

Ty = Xnkt Y (Fmodet Fops, @, B), With

—In (ZFobs) + Fobs2 + alemodellz —In Io zalFmodellFobs
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To obtain the structure factors of the structured atoms in crystal and particularly of the

> ,acentric reflections

macromolecular component, we first calculate the structure factors of the macromolecule using

the direct summation formula:

Natoms 2

F(s) = Z qn * fn(s) * exp (— B’j > * exp(2inr,s),

2
where f(s) = YXF_; a, exp (— kas) — atomic scattering factor approximation (P depends on the

approximation and ay, b;, are specific for atom type, we used the it1992 scattering table [135]),
g, — atomic occupancy, B,, — atomic isotropic B-factor, r,, = (x,,, y,,, Z,) — atomic coordinates,
s? = sTG*s, s — column-vector of Miller indices, G* — reciprocal-space metric tensor. The direct
summation formula provides a more precise description of how the scattering waves from the
crystal electrons affect the diffraction data instead of the Fourier method suggested by Sayre [10]

and Cooley and Tukey [9].
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Afterwards, provided the experimental structure factors, the scaling procedure scaler.run
of cctbx library [136] is called to correct the obtained macromolecular structure factors
F acromotecute TOr the bulk solvent effect and overall, isotropic and anisotropic factors as in the
formula below (see also paragraph 1.1.5):

Froaet = koverauKisotropicKanisotropic (Fmacromotecute + Kmask F butk sotvent)- (2.1)

To achieve an agreement with the experimental data, one needs to minimize Ty_,,,. We
implemented the steepest descent method, which is the most robust minimization approach in
structure refinement [8]. The overall force vector applied to each atom at every step of the
simulation becomes vper + W * (—VTx_rqy ) instead of the original v, vector induced by
the Amber force field. Hence, we calculate the crystallographic force term for each atom of the
structure by taking a negative partial derivative of this term with respect to atomic coordinates
T = (X, Yms Zm) @nd add the weighted correction to the Amber force vector.

Further, we devise the derivatives for the maximum likelihood crystallographic target
function since the least-squares is inappropriate for macromolecular refinement.

As we expand the refinement from a single asymmetric unit to the whole unit cell, we
assume the P1 space group. Therefore, all € from the crystallographic term of the target function
are equal 1, and there are no centric reflections. As a result, all the terms in the sum have the

following form:

(2.2)

IIU _ ln (zFobS) + Fobgz N alemOdelIZ _ ln[ <2a|Fm0del|Fobs>
N 0 .

B B B B

Consequently, one simplifies the partial derivatives of the target function with respect to
the changes in atomic coordinates:

(2“|Fmodel|Fobs)
B

_ aTX—ray — _Z kg 9|Fmodeil and Ad — 2(12|Fmodel| _ 2aFops h
0xm ML 9| Fmogerl  0xm 0|Fmodell B B 10<2a|Fmogel|Fobs)'

0 (Fmodel*Fmodel) —
0xm

Since the amplitude of a structure factor is non-negative, using

OIm(Fmodel)

ORe(Fodel)
2 (Re(Fmodel) * le + Im(Fmodel) * 9%m

), the crystallographic force term of the

m-th atom in the x dimension can be calculated as follows:
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5 I <2a|Fmodel|Fobs>
_aTX—ray — _Z 2a |Fmodel| _ 26(Fobs 1 ,3 a|Fmodel|

axm ot [)) ,3 I <2a|Fmodel|Fobs) axm
0 B
5 I (ZalFmodellFobs)
a*|Fiodeil _ aFops !
ﬁ :8 I <2a|Fm0del|Fobs> "
— _ Z 0 a(Fmodel Fmodel)
il IFmodell axm
" I <2a|Fmodel|Fobs)
a”|Fpmogell _ aFops B
ﬁ B IO (2a|Fmodel|Fobs>
= —2 Z Whii 7 | £ Re(Fmoqer)
kil model
dRe(Fmoqer) IIm(Foge1)

* axr:tno : + Im(Fmodel) * ax:nno : .

We use flat bulk solvent model and we assume that W = 0 for further
l

derivations. From one point of view, this shortcut is linked to non-differentiability of the solvent
model and is in accordance to the widely adopted practice of most contemporary refinement
suits. On the other hand, we justify that simplification due to unordered effect of the bulk
solvent. It is important to notice here that this simplification makes the derivatives slightly off
when compared to numerical estimations: i.e. one shifts an atom by small value A in one
direction and to obtain the numerical derivative of the crystallographic target along that

dimension with respect to atomic coordinates one uses the standard formula:

aTX—ray — TX—ray(xm + A) - TX—ray(xm - A)
0y, 2A '

Importantly, if one keeps the maximum likelihood parameters (a and ) fixed as well as
the structure factors scaling coefficients (koyerairs Kisotropic: €1C.), the numerical derivatives

match the semi-analytical ones.

2
Denoting the m-th term in the direct summation formula g, * f,,(s) * exp (— B"f ) *

exp(2inr,,s) as e,,:
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_ aTX—ray

0xXm
5 I <2a|Fmodel|Fobs)
k. e N |Fmodet _ aFpps ! B
isotropic™anisotropic ﬁ ﬁ / (zalFmodelIFobs>
0 B
= —2Koveraul Z |F I Re(FmOdel)
‘il model
aRe(Fmolcromolecule) aIm'(Fmacromolecule)
+ Im(F
* axm m( model) * axm
5 I <2a|Fmodel|Fobs>
hk: e I |Fmodet _ s ! B
isotropic™anisotropic B ﬂ ]O (ZalFmoﬁdellFobs)
= _47Tkoverall z |F I (_Re(Fmodel)
‘il model

* Im(em) + Im(Fmodel) * Re(em)) .

Here, again all sums are taken over the working set of Miller indices, and h is the first
component of the vector of Miller indices. Similarly, one can write the crystallographic force

term expression along y and z dimensions.
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2.4 Methods

2.4.1 Test structures selection criterion

To reduce computational time and to avoid individual treatment of the deposited models,
we scanned the PDB for the protein structures, which meet the following conditions:

1. experimental data are deposited (either structure factors or scattering intensities),

2. no twinning is present,

3. structure mass is lower than 40kDa per asymmetric unit,

4. asymmetric unit contains only protein chains without modified residues, ligands or gaps

(i.e. at least one backbone heavy atom per residue must be present, sidechain atoms
might be absent),

5. atomic occupancies are all equal to 1.0,

6. unit cell size is less than 200000 A3,

7. unit cell dimensions are large enough to comprise a doubled non-bonded cutoff radius

of the default 8.0 A (see [126]),

8. number of water molecules is no more than 50 per asymmetric unit,

Condition (2) would lead to a modification of the target function and its derivatives, which
we do not have implemented at the time. Condition (4) is intended to avoid rebuilding missing
protein parts and derivation of non-standard parameters for Amber force field. Condition (7) is
coupled with the GPU code of Amber, which is currently deemed to be unsafe in situations not
matching the requirement. Condition (8) is similar to the condition about gaps in proteins and
was introduced to avoid the bias by structured solvent since currently there is no solution on how
to treat it in the body of Amber source code. In the future, the crystallographic water or ligands
might be handled by estimating electron density maps in a fashion introduced in [60].

Using the criterion above, we ended up with 84 structures of different resolution and
geometric qualities from different space groups. We have assessed different refinement setups on

this set or, in certain cases, on a subset of 74 structures where Ry,.., value was available.

2.4.2 Preparation of input files for refinement

We removed crystallographic water molecules from the deposited pdb-files if present.

Then, we rebuilt missing heavy atoms and hydrogens (see paragraph 2.4.1, condition (4)).
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Further, we assigned B-factors: the values for the previously missing heavy atoms were put as of
their preceding neighbors, the values for the missing hydrogens were standardly set to their
bearers as done in Phenix suite. B-factors optimization usually is performed on a different step in
the overall pipeline of refinement rather than the coordinate refinement. Thus, we did not pursue
that goal and left the published B-factors fixed. One should notice that these procedures are
similar to those suggested by Burnley et al. [60] for ensemble refinement.

We considered two major cases of initial models of structures to be refined:

1. Mimicking real life — three different initial conformation sets are prepared from the

deposited one by deforming it with regular MD for 100 ps (MD1 set), 1 ns (MD2 set),
10 ns (MD3 set). The MD simulations are preceded by 20 ps period of heating of the
system and followed by 10 ps cooling.

2. Improvement of the deposited model (D set).

MD1 set of models RMSD over Ca atoms from the deposited model is 0.75 A and
MolProbity percentile is 96% on average. MD2 set structures have 0.89 A RMSD and 98.05%
MolProbity score percentile on average. MD3 set has 1.02 A RMSD and 98.16% MolProbity
score percentile. Generally, the longer the MD, the larger the RMSD was, but that was not
always the case. The summary of RMSD values for the distorted structures can be found in
Figure 2.1. Our focus is on the D and MD1 sets, however, MD2 and MD3 sets do provide some

insights into the benefits of the radius of convergence of Amber/Amber refinement, which are

discussed below.
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Figure 2.1. The plot represents root mean square deviations over Ca atoms of the distorted
models (MD1, MD2, MD3 sets) against the deposited models (D set).

The exact parameters and flags used during regular MD simulations to obtain the distorted
models and during crystallographic refinement are the following and in accordance with the
recommended Amber settings [126]:

1. ntb =1, periodic boundary conditions, constant volume,

2. ntp =0, flag for constant pressure dynamics: no pressure scaling is applied,
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3. to employ TIP3P water model:

a. ntc =2, flag for SHAKE algorithm: bonds involving hydrogen are constrained,
b. ntf =2, force evaluation method: bond interactions involving H-atoms omitted,

4. ntt =3, Langevin dynamics,

5. gamma_In = 2., collision frequency in ps™*: small value is advantageous in terms of

sampling or stability of integration,

6. cut = 8.0, non-bonded interactions cutoff radius in Angstroms,

7. dt  =0.002, time step in ps,

8. temp0 = 298.0, reference temperature in Kelvins.

During the heating the following parameters were used:

1. ntr =1, restrain protein 10.0 kcal/mol,

2. ntt =1, switch for temperature scaling: constant temperature, using the weak-coupling

algorithm.

As for the experimental data, we used phenix.cif2mtz routine to unify the format of all the
deposited files. By the end of the procedure we prepared the files in such a way that:

1. the intensities were converted to structure factors, if present,

2. the fraction of R, factors were adjusted to 10% of all reflections,

3. structure factors were expanded from the original space group to P1 group.

Since we suggest the whole unit cell approach, we needed the expansion of structure
factors (condition (3)) to maintain the data-to-parameters ratio used in refinement. The
importance of this ratio is overviewed in the introductory CHAPTER 1. In an ideal case, we
would use the raw data before the reduction due to symmetries in the space group, which is not

affected by averaging. Such example is covered in paragraph 2.10.

2.4.3 Main Amber-based refinement protocol

For the refinement with our Amber modification, we used the following basic protocol (we
call it Amber/Amber setup further in the text, see also Figure 2.2):
1. rebuild whole unit cell, add counter ions to neutralize the system, and place explicit
water molecules into the voids,
2. minimize the energy of such water box over 500 steps,

3. heat the system up to the room temperature over 10,000 steps (20 ps),
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4. refine the structure for 5,000 steps with evenly increasing X-ray energy term weight w
from 0 to 1 (10 ps),

5. Gradually cool down the model over 5,000 steps with the constant unit weight (10 ps).

300 - 1.0
— Temperature
— Weight
250 -
-0.8
© 200 A
S 0.6
5 Tz
@ 150 2
2 =
=
O -0.4
= 100-
0.2
50 A
01 . . : ; 0.0
start 20 ps start 10 ps start 10 ps end
heating refinement cooling

Figure 2.2. Representation of our general Amber-based refinement protocol: temperature and X-
ray term weight control during refinement.

Steps (1)-(3) are preparatory while (4) and (5) perform the crystallographic refinement. As
one can see from equation (2.2), the maximum likelihood target function depends on the
parameters a and S that are estimated based on the model and experimental structure factors. As
such, during steps (4) and (5) we updated these parameters every 100 steps along with bulk
solvent mask using the aforementioned scaling cctbx routine and the estimator for the uncertainty
parameters [137], [138]. In the follow-up paragraph, we will justify our choice of the weight.

At the end of the refinement, we remove explicit water molecules from the simulation box
that we added initially. It is worth noting that we use these molecules to perform MD simulations
and properly model non-bonded interactions of the force-field component of the target function.
Importantly, to calculate instantaneous structure factors and the crystallographic term of the
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target function we need to use bulk solvent modelling instead. Therefore, after we possess a
refined protein model, we autodetect missing crystallographic water with Phenix procedure using
mF, s — DF,04e0 Maps [23]. This manipulation adds bound molecules into the macromolecule
component of structure factors equation (2.1), consequently, it results in a slightly different bulk-
solvent mask. Such manipulation helps to achieve better agreement with the experimental
structure factors (reduce R-factors) while maintaining the geometric qualities of the
macromolecular model. After such the bound water addition, we also properly compare our
results with the deposited data, which also have crystallographic waters. Such protocol was run
two times to collect more comprehensive statistics since the results are dependent on the initial
MD random seed.

Aside from the standard MD simulation parameters covered in paragraph 2.4.2 and the
crystallographic term weight, there are only two tunable variables: the length of refinement and
the non-bonded interactions cutoff radius. Their choice is discussed in paragraph 2.5.

2.4.4 Amber/Amber selection of crystallographic weight

The selection of the crystallographic weight, w, appears to be critical. Phenix and other
popular refinement packages have a common built-in procedure to compute the X-ray term
weight, which is based on gradients calculations of each term of the target function with respect
to atomic parameters [18], [139]. In the case of our Amber modification, we tried the
implementation of this function and modified the refinement protocol described in paragraph
2.4.3 as follows: in the beginning of stage (4) of Amber/Amber setup we calculate the weight as
in Phenix, then start with the zero weight and by the end of the stage we reach the estimate.
Afterwards, we re-calculate the weight again and use it during stage (5). Such choice appears to
be sub-optimal and significantly depends on the quality of the initial structure.

Thus, we have implemented the approach proposed in [69] where the crystallographic term
has unity weight as the a priori geometry term. Briefly, the original crystallographic maximum
likelihood target is formulated as a conditional probability of observing the measured data (F)
given an atomic model (X). Therefore, the Bayes’ rule can be applied to the function that is
being maximized during refinement since the measured data (F) given instead:

P(X|F) = P(FIX)P(X).
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P(X) is the prior probability of the atomic model and can be given as Boltzmann factor

exp(— T“%‘;”(X)) where T, pri0ri IS the potential energy of the crystal (in our case, the Amber

force field). Finally, since we minimize the negative logarithm of the probability, the overall
target expands into the following formula:

Ta priori (X )
kT '

In these terms, the maximum probability problem suggests that the weight of the

T(X) = —log(P(FIX)) +

crystallographic term of the target function should be equal to kT. At 300K it is equals to 0.6.
Further, their grid search tests proved that the choice of 1.0 provides a good balance between the
terms of the crystallographic component (2.2) and Amoeba force field component of the target
function. Hence, we increase the weight from 0.0 to 1.0 during stage (4) and maintain constant

1.0 weight during stage (5) (Figure 2.2).

2.4.5 Phenix-based protocols

Due to the ability of Phenix to utilize Amber force field, we decided to compare our results
with the results of this program. We used the default Phenix refinement schedule except the
following options to achieve a one-to-one comparison between the abilities of Phenix and our
Amber-based procedure:

e 5 macrocycles (we have tried 3, 5, and 7 macrocycles and the increase from 5 to 7

macrocycles did not show considerable improvement),

¢ individual hydrogen coordinates refinement (since the presence of explicit hydrogens is

required by Amber force field, as well as it is also known to improve model geometry),

e no B-factors refinement,

e no occupancies refinement,

e maximum likelihood target function,

e turned on direct summation formula for structure factors calculation.

Further, we introduced the following variations to this basic protocol. First, simulated
annealing dynamics could be performed in both Cartesian and Torsion angles spaces [140],
giving 4 options: sequential torsion angles and Cartesian dynamics (full SA for short), only

Cartesian dynamics, only torsion angles dynamics (TAD for short), absence of any dynamics (no
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SA). Secondly, one can also employ a more sophisticated approach to crystallographic term
weight instead of the default gradient-based procedure described above. Namely, grid search
target function T weight optimization (WQ) scheme. Finally, one can choose between two
available gradients: the built-in Phenix gradient and the Amber gradient. We refer to them as
Phenix/Phenix and Phenix/Amber setups, respectively. Such modifications to the basic
configuration provide us a total of 16 different protocols. As with the Amber/Amber setup,

crystallographic bound water molecules were added at the end of each setup.

2.4.6 Refinement results evaluation criterion

During initial experiments we considered using so called Q-score for the assessment of
structure quality: a combined measure of R,... and MolProbity score introduced in [141] to
select the best result when R values are closely distributed over the set of refined structures:

Q = Rfree + c(MP™** — MP),
where MP is the MolProbity score percentile of the refined structure and MP™%* is the
maximum MolProbity percentile among all considered protocols. The weight c is the ratio

between the ranges of R factors and MolProbity score percentiles:

Rmax min

free free

::A4Innax — M pmin’
However, this measure worked inappropriately with our results due to poor R, values of

c

the failed Phenix setups, hence, giving a huge gap between the best and the worst results, thus
making the best results indistinguishable. More on that issue will be discussed further. We,
therefore, opted to a simple comparison of the three characteristics: R, being the primary one,
MolProbity score and MolProbity score percentile being the secondary. MolProbity score
percentiles are calculated based on the PDB statistics of the structures which have resolution
within £0.1A margin of the evaluated structure.
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2.5 Auxiliary results: Amber-based performance

2.5.1 Influence of the length of refinement MD

In our basic Amber/Amber setup we have two periods of 10 ps when the crystallographic
force is being applied (see paragraph 2.4.3, steps (4) and (5)). For this paragraph we denote this
protocol as “10 ps + 10 ps” and following the same pattern we named others, for example, 10 ns
of step (4) and 100 ps of step (5) correspond to “10 ns + 100 ps” nomenclature. We have also
tried to increase the two periods to evaluate the necessary length of the refinement. We have
tested these variations on five random test structures with the initial models from the MD1 set.
We found that longer refinement might sometimes improve the results both in terms of R,.., and
MolProbity, however, not significantly and not consistently. Therefore, we decided to use the
shortest “10 ps + 10 ps” protocol. The full comparison is in Table 2.1 where the structures are

sorted by the volume of the corresponding unit cell.
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Table 2.1. Summary of Amber/Amber performance for selected structures when using different length of refinement.

Ramachandran (%) |RMSD
Poor ) )
Refined strucutures  [R-work |R-free Refree —R- Clashscore |rotamers |outliers favored |bonds |angles Molprobity Molprob.lty
work score Percentile
(%)
3K9P
10ps+10pstrial1 |0.227 (0.289 [0.062 0.12 2.32 0.19 96.44 0.0146 [2.19 [1.06 98.42
10ps + 10 pstrial 2 |0.227 (0.288 |0.062 0.23 2.53 0.19 96.82 0.0145 |2.20 [1.09 98.17
100 ps+100 ps trial 1 |0.218 [0.286 |0.068 0.00 1.27 0.19 96.07 0.0135 [2.08 |0.85 99.57
100 ps+100 ps trial 2 |0.222 [0.286 |0.064 0.23 1.48 0.19 97.38 0.0134 2.10 |0.84 99.59
100 ps+100 ps trial 3 |0.222 [0.289 [0.067 0.35 1.48 0.19 97.38 0.0134 |2.08 |0.88 99.47
100 ps+100 ps trial 4 |0.226 [0.290 |0.064 0.12 211 0.19 96.44 0.0135 [2.12  [1.03 98.59
2 ns+100 ps trial 1 0.218 |0.291 |0.073 0.12 1.69 0.19 97.75 0.0136 [2.06 [0.77 99.80
2 ns+100 ps trial 2 0.217 |0.284 |0.067 0.12 1.48 0.19 97.94 0.0136 [2.08 |0.69 99.91
2ns+2ns 0.226 |0.298 |0.072 0.23 1.48 0.37 97.38 0.0134 2.06 |0.84 99.59
10 ns+100 ps trial 1 |0.217 (0.287 [0.071 0.35 1.27 0.19 97.94 0.0136 [2.09 [0.72 99.89
10 ns+100 ps trial 2 |0.216 [0.286 [0.070 0.23 1.05 0.19 97.19 0.0134 |2.07 |0.75 99.83
2371
10ps+10pstrial1 |0.256 [0.294 [0.038 0.23 2.08 0.20 98.21 0.0148 [2.12 |0.83 99.62
10ps + 10 pstrial 2 |0.262 [0.302 [0.040 0.11 3.54 0.40 98.41 0.0150 [2.11 |0.96 99.30
100 ps+100 ps trial 1 |0.249 [0.282 [0.033 0.00 2.92 0.20 98.81 0.0140 [2.03 |0.85 99.59
100 ps+100 ps trial 2 |0.250 [0.284 [0.034 0.00 1.46 0.20 98.61 0.0141 [2.04 |0.62 99.95
100 ps+100 ps trial 3 |0.256 [0.292 [0.037 0.00 1.46 0.20 97.82 0.0143 [2.04 |0.67 99.87
100 ps+100 ps trial 4 |0.250 [0.284 [0.035 0.00 1.67 0.20 98.41 0.0141 [2.03 |0.67 99.87
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Table 2.1 continued.

2 ns+100 ps trial 1 0.238 |0.274 |0.036 0.00 1.88 0.20 98.02 0.0139 [1.98 0.71 99.87
2 ns+100 ps trial 2 0.237 |0.272 |0.035 0.00 2.92 0.20 97.62 0.0140 [2.00 0.93 99.41
10 ns+100 ps trial 1 |0.237 |0.279 |0.042 0.23 1.04 0.20 98.61 0.0139 (1.97 0.60 99.97
10 ns+100 ps trial 2 |0.236 |0.274 |0.037 0.00 2.08 0.20 98.81 0.0138 [1.98 0.74 99.86
4UG3

10ps+10pstrial1 |0.233 |0.285 |0.052 0.26 0.69 0.23 97.75 0.0148 (2.03 0.65 99.94
10ps+10pstrial2 |0.231 |0.279 |0.048 0.00 0.93 0.00 97.52 0.0148 [2.04 0.60 99.97
100 ps+100 ps trial 1 |0.228 |0.280 [0.052 0.00 1.62 0.00 97.75 0.0139 (1.93 0.72 99.89
100 ps+100 ps trial 2 |0.228 |0.288 |0.060 0.00 1.16 0.23 97.07 0.0137 [1.94 0.71 99.91
100 ps+100 ps trial 3 |0.228 |0.285 [0.057 0.00 1.39 0.23 97.97 0.0137 (1.93 0.62 99.96
100 ps+100 ps trial 4 |0.228 |0.280 [0.052 0.00 1.16 0.00 97.75 0.0139 [1.94 0.60 99.97
2 ns+100 ps trial 1 0.223 0.279 |0.056 0.00 0.46 0.23 97.30 0.0135 (1.89 0.63 99.96
2 ns+100 ps trial 2 0.223 |0.277 |0.054 0.00 1.39 0.00 97.30 0.0137 [1.91 0.74 99.86
10 ns+100 pstrial 1  |0.227 |0.278 |0.051 0.00 0.93 0.23 96.85 0.0139 [1.92 0.69 99.91
10 ns+100 ps trial 2 |0.227 |0.279 |0.053 0.00 0.23 0.00 97.52 0.0138 (1.92 0.60 99.97
4COM

10ps+10pstrial1 |0.269 |0.316 [0.047 0.11 0.66 0.00 98.92 0.0151 (2.12 0.55 99.98
10 ps + 10 pstrial 2 |0.268 |0.311 [0.043 0.11 0.88 0.00 98.74 0.0147 [2.10 0.55 99.98
100 ps+100 ps trial 1 |0.266 |0.316 [0.049 0.23 1.32 0.00 99.64 0.0139 [2.05 0.68 99.92
100 ps+100 ps trial 2 |0.269 |0.322 |0.053 0.11 0.88 0.00 98.74 0.0139 [2.04 0.55 99.98
2 ns+100 ps trial 1 0.264 |0.317 |0.053 0.11 0.66 0.00 99.28 0.0139 [2.04 0.55 99.98
2 ns+100 ps trial 2 0.266 |0.319 |0.053 0.00 0.22 0.00 98.74 0.0137 (2.02 0.50 100.00
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Table 2.1 continued.

2ns+2ns 0.271 |(0.321 |0.050 0.11 0.22 0.00 98.38 0.0136 (2.02 0.55 99.98
10 ns+100 pstrial 1  |0.264 |0.320 [0.056 0.00 1.32 0.00 98.20 0.0140 [2.04 0.59 99.97
10 ns+100 ps trial 2 |0.267 |0.319 [0.053 0.23 1.10 0.00 98.38 0.0139 [2.03 0.62 99.96
4BHC

10ps+10pstrial1 |0.202 |0.257 |0.055 0.00 0.58 0.31 95.86 0.0153 (2.18 0.79 99.74
10ps+10pstrial2 |0.198 |0.246 |0.048 0.10 1.16 0.15 95.71 0.0151 (2.13 0.89 99.39
100 ps+100 ps trial 1 |0.191 |0.238 [0.047 0.00 1.36 0.31 95.55 0.0143 [2.05 0.91 99.31
100 ps+100 ps trial 2 |0.194 |0.242 |0.048 0.10 1.94 0.15 96.93 0.0142 [2.04 0.94 99.27
2 ns+100 ps trial 1 0.197 |0.252 |0.055 0.10 1.55 0.46 96.63 0.0147 (2.09 0.90 99.37
2 ns+100 ps trial 2 0.195 |(0.250 |0.055 0.00 1.55 0.15 96.78 0.0146 (2.06 0.84 99.59
10 ns+100 pstrial1 |0.195 |0.246 |0.051 0.00 2.71 0.15 96.63 0.0141 (2.03 1.05 98.48
10 ns+100 pstrial 2 |0.199 |0.247 |0.048 0.00 2.52 0.46 96.01 0.0146 [2.10 1.08 98.31




2.5.2 Non-bonded interactions cutoff: 8 A vs 10.5 A

Next, we tested another parameter of the refinement MD steps that can be tweaked, cutoff
for non-bonded interactions. Unlike Xplor, where non-bonded interactions are truncated
completely out of the cutoff radius, Amber uses a particle mesh Ewald scheme (PME) [142]
since periodic boundary conditions are also employed. In brief, the non-bonded energy (both
electrostatics and van der Waals terms) are calculated explicitly inside the cutoff radius, and
reciprocal space is then used to calculate the energy outside the cutoff. In some MD software,
such as CHARMM or CPU version of Amber, the developers allow to select different cutoffs for
electrostatics and van der Waals forces when PME is in actions. However, a single value is used
instead in the GPU version of Amber, which we adapted for the refinement.

In paragraph 2.4.1, we described the test structure selection criterion. However, the 84
structures are reduced to 58 if one chooses 10.5 A non-bonded cutoff due to condition (6) in the
GPU implementation so that the unit cell is sufficiently large. Table 2.2 shows the comparison of
Amber/Amber setup when using 8 A (our basic option) and 10.5 A cutoffs with the initial
models devised in paragraph 2.4.2 (D, MD1, MD2, MD3 sets).

There is no apparent correlation between the cutoff and MolProbity score. The differences
in the geometric qualities of the refined structures are marginally small, less than 1% of
MolProbity score percentile on average. The range of the differences across the 58 structures
from all 4 initial structures sets is from -22.3% to 18.4%. As in Table 2.2, negative difference
indicates the advantage of the larger non-bonded cutoff, and positive difference indicates the

advantage of smaller non-bonded cutoff.
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Table 2.2. Summary of Amber/Amber refinement performance depending on the non-bonded interactions cutoff radius. Average
differences are calculated between the best out of two runs for each of the cutoff values. Positive values in the differences indicate the
advantage of smaller 8 A cutoff, and negative values of the differences indicate larger 10.5 A cutoff advantage.

Initial Averqge difference Average difference in Number of structures with Number of structures with
structures set IN Reree MolProbity percentile 8A cutoff best result 10.5A cutoff best result
D 0.0021 -0.0354 43 15
MD1 0.0020 0.2175 40 18
MD2 -0.0014 -0.8408 23 35
MD3 -0.0039 -0.0062 23 35




The larger cutoff radius tends to improve the agreement with experimental data when the
initial structures have a larger RMSD to the deposited model. It is worth to be mentioned though
that the 10.5 A cutoff also helped refinement to converge in several cases from MD3 set of initial
models (with the biggest RMSD from the deposited models) where 8 A cutoff setting failed.
Therefore, the larger cutoff radius proved to be beneficial in certain cases.

Since we focus on Deposited and MD1 sets of initial structures, we selected 8 A cutoff

results to compare with the performance of Phenix-based setups.

2.6  Auxiliary results: Phenix-based refinement using single asymmetric units and whole
unit cells

As we have mentioned on multiple occasions, traditional refinement is performed using a
single asymmetric unit (ASU) of the unit cell. Multiple studies have shown that ensemble
refinement has a number of advantages that we covered in the introduction chapter. However, in
such setups structure factors of ensemble models are being averaged and refined against the
experimental ones, but the multiple conformations are independent of each other. To the best of
our knowledge, we performed the first ensemble refinements in explicit unit cells (UC). This
way, the explicit condition on different conformers in unit cells are implied: they must physically
co-exist in the crystal. Here, unlike our Amber/Amber protocol, the periodic boundary conditions
cannot be applied by the design of the program.

With this idea in mind, we first have compared phenix.refine performance in the two cases:
ASU refinement and UC refinement on the set of deposited models (D set of initial models). We

have selected the best of the 16 protocols described in paragraph 2.4.5 based on Ry, value for

each of these categories. The UC approach achieved better results than the ASU approach in
terms of Ry, in 64 cases out of 84. The average difference in Ry,.., between the two setups is
0.011 in favor of the UC approach. Interestingly, the geometric qualities of the refined models
vary quite significantly but the average difference in MolProbity percentiles is negligibly small, -
0.3%, given the range of the differences, from -50.2% to 62.7%. Figure 2.3 depicts structure-
wise comparison of the results between ASU and UC refinement on the D set.

However, the longer the deposited model undergoes the MD to become the initial one for
refinement, the better become both the Ry, factors and MolProbity score percentiles in ASU-

refined model rather than in UC-refined models. On average the difference values between the
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UC approach and ASU approach are: 0.006 and -4.00%, 0.000 and -12.21%, -0.016 and -15.37%
for MD1, MD2, MD3 sets, respectively.
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Figure 2.3. Summary of phenix.refine performance using single asymmetric unit (ASU) and

whole unit cell (UC) with the deposited models as initial ones. Green bars indicate the advantage
of UC approach, red bars indicate the advantage of ASU approach.
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2.7 Main Results: Comparison of Amber-based and Phenix-based protocols

Here we proceed with the main results of our investigations: the comparison of our
Amber/Amber setup to the classic scheme of ASU Phenix refinement and the proposed UC
Phenix refinement. After the comparison, we highlight some advantages of our method. Next, we
showcase an application of Amber/Amber setup to the real problem: we were able to obtain
experimental data from our collaborators before the reduction due to space group symmetry to
refine the structure of GRB2 adaptor protein with MPD co-crystallization factor. Finally, we

conclude with a brief overview of the web-service based on our Amber refinement module.

2.7.1 Example of refinement comparison, the case of 3K9P

To show how we compare Amber-based and Phenix-based refinement, we selected the
structure with PDB code 3K9P. This is a structure of ubiquitin-conjucating enzyme and ubiquitin
complex. The lengths of proteins are 217 and 79 residues, respectively. The space group isP 1 21
1, the resolution is 2.8 A and the reported Rfree 15 0.296. We chose the initial model from the
MD1 set and first compare with the ASU approach of Phenix to demonstrate how we compared
our Amber-based refinement with Phenix-based setups.

We ran Amber/Amber protocol twice with the only difference in the initial random seed
and the 16 Phenix-based protocols. The best run was selected in each category. The following
Table 2.3 summarizes the results. The selected cells represent the best protocols. Thus, for
example, the best Phenix-based protocol turned out to be the one using Amber14 force field with
torsion angles dynamics and the standard gradient-based weight for the crystallographic terms.

We should mention that the best Phenix-based protocol varies from one structure to
another. For example, one can find that the protocol with CDL geometry restraints without any
simulated annealing worked the best for the N-terminal SH3 domain of GRB2 (see paragraph
2.7.6).

Using such a scheme for the comparison, we evaluated our Amber/Amber setups on the
four sets of initial models (D, MD1, MD2, MD3) across the 84 structures.
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Table 2.3. Comparison of the refinement results of the corrupted initial model for 3K9P structure. The best results in each category are
highlighted with boxes. P/A — Phenix with Amber14 force field, P/P — Phenix with Phenix force field, SA — simulated annealing, TAD
— torsional angle dynamics, Cartesian — Cartesian dynamics, WO — weight optimization. The best Amber/Amber run is the second
trial. Phenix-based protocol with Amber14 force field with torsional angles dynamics without weight optimization is the best.

MD1 initial structure

Amber results
Run 1

Run 2

Phenix results

P/P, SA, WO

P/P, no SA, WO

P/P, no SA, no WO
P/P, SA, no WO

P/A, SA, WO

P/A, no SA, WO

P/A, no SA, no WO
P/A, SA, no WO

P/P, Cartesian, no WO
P/P, Cartesian, WO
P/P, TAD, no WO

P/P, TAD, WO

P/A, Cartesian, no WO
P/A, Cartesian, WO

P/A, TAD, no WO

P/A, TAD, WO

R-work

0.419

0.221
0.227

0.240
0.293
0.265
0.227
0.393
0.286
0.236
0.292
0.220
0.243
0.242
0.260
0.285
0.298
0.218
0.263

R-free

0.422

0.282

0.326
0.357
0.347
0.331
0.502
0.332
0.331
0.417
0.326
0.337
0.340
0.337
0.409
0.389
0.310
0.323

R-free -
R-work
0.280

0.061
0.048

0.085
0.064
0.082
0.104
0.109
0.046
0.095
0.125
0.107
0.094
0.098
0.077
0.124
0.091
0.092
0.060

Clash
score

0.35

0.58
0.23

15.04
9.49
20.59
20.82
4.16
0.69
4.86
14.11
24.76
17.12
39.10
31.47
15.97
0.69
5.78
4.63

Poor
rotamers (%)

0.63

2.11
3.80

0.00
0.00
0.42
0.42
0.00
0.00
0.00
0.00
0.00
0.42
0.00
1.27
0.42
0.42
0.00
0.00

Ramachandran
outliers

0.37

0.19
0.37

3.75
1.87
0.37
5.24
7.12
0.00
1.12
6.74
5.24
4.87
2.62
3.75
8.24
5.24
1.50
0.75

Ramachandran
favored

96.25

96.63
97.19

83.52
87.64
89.14
78.65
76.78
96.63
91.76
79.40
79.40
81.65
82.77
82.02
74.53
85.77
92.88
92.88

Molprobity = Molprobity

score percentile
0.88 99.47
1.16 97.42
1.18 97.10
2.37 57.92
211 69.03
2.38 57.41
2.57 48.24
1.97 74.41
0.94 99.27
1.75 82.12
2.40 56.56
2.63 45.40
2.45 53.97
2.77 38.31
2.77 38.31
251 51.03
1.37 93.05
1.77 81.43
1.69 84.23



2.7.2 Comparison across the whole test set: ASU case

First, we compared how well Amber-based and Phenix-based setups improve the deposited
structure if it is used as the initial model. Figure 2.4 depicts the relative comparison of the
resulting values. Clearly, Amber/Amber setup outperformed all the 16 Phenix-based protocols in
cases 65 out of 84. The average improvement of R, factor and MolProbity score percentile
among the structures is 0.0181 and 9.225%, respectively.

Next, we compared the results of the best Amber-based and Phenix-based setups with the
distorted initial model MD1 based on Rg,... value in a similar fashion (Figure 2.5). We remind
that the average RMSD over Ca atoms from the deposited model was 0.75 A and the average
MolProbity percentile was 96%. The results appeared to be even more impressive as compared
with the deposited models set. Amber/Amber protocol produced better R, factors than Phenix-
based refinement for 75 out of the 84 structures with the average improvement of 0.0215. The
average improvement in terms of geometry quality is 18.555% MolProbity score percentiles.

Following up, we tested the refinement on the MD2 and MD3 sets (0.89 A and 1.02 A
average RMSDs, 98.05% and 98.16% average MolProbity score percentiles, respectively). We
achieved the results analogous to the earlier outcomes (see Figure 2.6 and Figure 2.7). Using
MD2 starting model, R, produced by Amber/Amber setup was better in 68 cases out of 84
with the average improvement of 0.0174 and MolProbity score percentile improvement was
15.569%. It should be mentioned that the poorer the starting model (i.e. case of MD3), the worse
the performance refinement for both Amber/Amber and Phenix setups. This could be observed
from the absolute values of R-factors. The comparison between the setups in this case should be
taken with a grain of salt: Amber/Amber setup performs better than phenix.refine in 52 cases out
of 84 and the Ry, improvement is 0.0192 and the MolProbity percentile improvement is
16.480%. The figures with absolute values can be found in the Appendix.

The direct comparison of Amber/Amber setup with non-bonded cutoff radius of 10.5 A has

shown no significant improvement when compared to phenix.refine as well.
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Overall, as one can see from the figures and the statistics above, Amber-based refinement
leads to consistently better Ry,... factors and MolProbity scores even with the simplest approach
versus Phenix-based refinement.

At last, we assessed the performance of refinement protocols against the PDB structures.
We compared the re-refined models (the results from the D set of initial models) and the newly
refined models (MD1, MD2, MD3 sets) versus the deposited models. Table 2.4 shows this
comparison between Amber/Amber, Phenix-based refinement protocols and the Protein Database
deposited structures, which had Ry, factors available (74 out of 84). Clearly, Amber/Amber
setup provides the best result in more than 50% of the cases from Deposited, MD1 and MD2
initial models: even starting with a poor model, the refined structure is frequently better than the

originally published one.

Table 2.4. Comparison of Amber-based and Phenix-based ASU refinement with the PDB
deposited data.

Initial model Amber produces the | Phenix produces the | PDB deposition is the
best model best model best model
Deposited 43 12 19
MD1 (0.75 A rmsd) 47 4 23
MD2 (0.89 A rmsd) 39 5 30
MD3 (1.02 A rmsd) 24 11 39

2.7.3 Comparison across the whole test set: UC case

We have also refined the 84 structures with Phenix using the entire unit cell approach and
compared the results to the Amber/Amber results in the fashion introduced in paragraphs 2.7.1
and 2.7.2. Unlike the ASU case, the Amber-based refinement performance is not as prominent
but still very competitive.

On the D set of initial structures, our protocol gave better results than Phenix in 47 cases
out of 84 with an average improvement of 0.0078 Ry,... units and 14.220% MolProbity score
percentiles (Figure 2.8). The comparison on MD1 set is again more striking: 73 out of 84
structures benefit from Amber/Amber refinement rather than phenix.refine with improvements to

R¢re and MolProbity score percentiles of 0.0147 and 24.040%, respectively (Figure 2.9).
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Afterwards, we decided to run additional tests. We accumulated 5 trials of the best Phenix-
based setup and matched them with 5 runs of Amber-based setup for both D and MD1 sets. We
also tried to increase the length of refinement in selected cases. As we have mentioned in
paragraph 2.4.6 we used Q-scores in the initial tests, so we have also tried to extend the length of
Amber-based procedure 10 times with some of the structures from the MD1 set where our
Amber/Amber setup was outperformed by the Q-score. Instead of 10 ps intervals during the
refinement, we used 100 ps since sometimes it leads to better outcomes (see Table 2.1). Despite
these add-ons, the pattern in the comparison remained the same.

The statistics for the MD2 set of initial models is as follows: 67 out of the 84 structures are
refined better with Amber/Amber setup with average improvements in R¢,... and MolProbity
score percentiles of 0.0165 and 27.865% (Figure 2.10). The Amber-based protocol on the MD3
set outperforms Phenix-based refinement in 61 out of the 84 cases (Figure 2.11). The advantage
is 0.0266 in Ry, and 34.329% in MolProbity percentiles.

Amber/Amber protocol looks more modest in comparison with the Phenix-based UC
refinement in terms of the benefits in R, than in the ASU case (paragraph 2.7.2). Despite that,
the geometric qualities of the Amber-refined models markedly profit from this approach as

measured against phenix.refine models in the UC case.
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83



0.15

©
=
o

R-free difference
©
[en]
[9;]

o
o
o

= N

MP score difference
o

N ul ~
o wu o (6]

MP percentile difference
N
wu

..IJ..||I.,|.||I|.I.| ..4|||._|J|.|\.\.\.Hj\|||||L|.||\..\I|II|||“\.‘|I||\.

|
ul
=]

L., |I‘ I ‘Il“hll Illl‘lll.l |||“I‘|‘|Id“||I“Il.||‘||||I|||||‘|||‘||‘ ‘
| I |
w‘%& NN N A N ,\‘,” f\/(‘o ,.\’,\ f\/cb "\/Q”';:‘g)

Structures (sorted by resolution)

Amber
advantage

Phenix
advantage

Figure 2.11. The plots show the difference between Ry, factors, MolProbity scores and
MolProbity percentiles of the refined MD3 models. Green bars represent the superiority of our
Amber-based setup. Red bars represent the superiority of Phenix-based UC setups.
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Finally, we compiled a table similar to Table 2.4 to estimate the re-refinement abilities of
the Amber/Amber setup Phenix-based UC protocols. As seen from Table 2.5, our newly
developed refinement module for Amber still produces the best result in roughly half of the 74

PDB entries which had Ry, available.

Table 2.5. Comparison of Amber-based and Phenix-based UC refinement with the PDB
deposited data.

Initial model Amber produces the | Phenix produces the | PDB deposition is the
best model best model best model
Deposited 36 22 16
MD1 (0.75 A rmsd) 43 8 23
MD2 (0.89 A rmsd) 31 10 33
MD3 (1.02 A rmsd) 21 13 40

2.7.4 Conformational diversity example: 3ZQ7

To illustrate what the whole unit cell Amber-based refinement can achieve, we selected the
3ZQ7 crystal from P 43 21 2 space group. This is a randomly selected structure that had a high
symmetry space group among the 84 test structures. Each asymmetric unit contains a 102 residue
long chain of DNA-binding domain of response regulator from E. coli. The reported structure
has 2.52 A resolution with Ry, value of 0.283. Below we describe our results of refinement
from the MD1 set of initial models.

First, we proceeded with DSSP assignment of the secondary structure [143], [144]. Then,
the refined macromolecules were superimposed based on the secondary structure Co atoms. This
way, our approach produced an ensemble of 8 asymmetric units. Next, we calculated the average
structure and RMSDs to each of the models to color the cartoon representation of the ensemble
on Figure 2.12. From the figure one can see that variations in positions of back bone residues and
side chain atoms reach up to 2.5 A (residues at the bottom of the figure) and 7 A (residues at the
top of the figure), respectively. To conclude, our approach indeed might provide another
perspective on conformational diversity aside from fixed alternate conformers as other ensemble

models.
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Figure 2.12. 8 superimposed asymmetric units of 3ZQ7. Red color corresponds to higher
conformational variability, higher RMSD to the average structure. Blue color corresponds to
lower conformational variability, lower RMSD to the average structure.

2.7.5 Natural representation of alternate conformers example: 3C57

The observations in this paragraph were guided by the idea of the explicit conformational
diversity application to distinguish states of alternate conformers in macromolecules. Using the
same criteria as we employed to choose the test structures in paragraph 2.4.1, except eliminating
the restriction (5) on non-unity occupancies, we have selected the 3C57 PDB structure. This was
the structure with the smallest size of unit cell to showcase how our approach can benefit
structures with alternate conformers. The structure has P 21 21 21 space group providing 4
asymmetric units and has one homodimer per asymmetric unit. The dimer consists of DNA-
binding transcriptional activator DevR. The structure has 1.7 A resolution and reported 0.206

Rfree Value. Each monomer is 95 amino acids long and has five alternate conformers.

In this case we increased the time of refinement from the total of 20 ps to 4 ns: 2 ns
constant temperature MD with increasing crystallographic weight and 2 ns of cooling MD with a
constant crystallographic weight. This was done to increase the chances of observing the
transition between alternate conformers. We selected the first alternate conformer of the two-
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component transcriptional regulatory protein as the initial model and refined the ensemble using
the extended Amber/Amber setup. The secondary structure remained almost intact except termini
after our Amber-based re-refinement: average RMSD against the deposited model is 0.1A over
the four asymmetric units.

Figure 2.13 depicts a cartoon representation along with some of sidechains which had
alternate conformers by the end of re-refinement. The initial position of the sidechains is
represented in blue, the alternate reported conformer is in orange, and the refined models of the
ensemble are in green. Thus, for example, one of the 4 copies from the ensembles” M194 residue
of the protein’s chain B flipped the side chain to the alternate reported conformation (panels A
and B) after the refinement. All the representatives of the chain B L160 swapped their
conformation into the second reported possible position (panels C and D). Some other residues,
which originally had alternate conformers like chain B L165, appeared to be near the initial
conformation. This suggests that the MD approach if given enough time might help to determine

different occupational states.

Figure 2.13. Projections of side chains with alternate conformers of 3C57. The first reported
alternate conformation is represented in blue. The second reported alternate conformation is
represented in orange. The refined multiple conformers are represented in green. Panels (A) and
(B) show different projections of chain B M194 residue. Panels (C) and (D) show different
projections of chain B L160 and L165 residues.

2.7.6 True real-life example: N-terminal SH3 domain of GRB2 adaptor protein

As a part of a collaboration with the I. Bezprozvanny laboratory, S. Korban kindly
provided us with the experimental data and a model of the N-terminal SH3 domain of GRB2
protein in apo form (PDB ID 6SDF). The model was co-crystallized with the MPD, thus, before
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proceeding with the Amber/Amber refinement we determined the Amber force field parameters

for this agent using Gaussian package [145] and prepared the structure according to our standard
procedure (see paragraph 2.4.2). Therefore, along with the protein component of the crystal, we

also refined the position of the co-factor.

The space group for this crystal was determined to be R 3. However, since we were able to
obtain raw data in P 1 space group at 2.5A resolution, we used them instead for the refinement.

We ran the same 16 Phenix-based protocols and two trials of Amber-based setup and
compared the achieved results similar to what we did in the bulk tests (paragraph 2.7.1). Below
follows Table 2.6 with this comparison and the results achieved by the Bezprozvanniy lab where
they used REFMACS and Phenix.

Our independent to the collaborators’ attempt to achieve the best possible model resulted
in comparable R, factors from Amber-based and Phenix-based ASU protocols: 0.2150 versus
0.2082, respectively. However, the geometric qualities of the Amber-refined model are almost
perfect, unlike in the case of Phenix-based ASU setups: 99.253% against 73.126% MolProbity
score percentile, respectively. Interestingly, Phenix-based UC refinement results did not follow
the trends notes in paragraph 2.6 and produced worse Ry,... factors and better MolProbity score
percentile than in ASU case: 0.2211 and 89. 421%, respectively. Also, the best Phenix-based
protocols for ASU and UC cases are different.

Another feature in this example is the incorporation of a co-factor into the refinement
protocol. In a similar fashion one can derive non-standard protein residue parameters for Amber
force field. If one has no access to the Gaussian software, there is a general Amber built-in script
that can be used for this purpose: antechamber [146], [147]. This highlights the possibility of the
extension for our protocol (paragraph 2.4.3) to more cases, which we restricted while selecting
the test structures (paragraph 2.4.1). The MPD molecules fit into the electron density as well in
Phenix-based UC refinement: 28 out of 45 molecules have real space correlation of more than
0.8 in our refined model and 27 out of 24 molecules for Phenix. This also supports their

inclusion into Amber/Amber refinement.
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Table 2.6. Summary of N-terminal SH3 domain of GRB2 protein refinement. The best results in each category are highlighted with
boxes. P/A — Phenix with Amber14 force field, P/P — Phenix with Phenix force field, SA — simulated annealing, TAD - torsional angle
dynamics, Cartesian — Cartesian dynamics, WO — weight optimization. The best Amber/Amber run is the first trial. The best Phenix-
based ASU protocol is the one with CDLv1.2 restraints without any simulated annealing and weight optimization. The best Phenix-
based UC protocol is the one with CDLV1.2 restraints without any simulated annealing and with weight optimization.

R-work  R-free R-free -  Clash  Poor Ramachandran Ramachandran = Molprobity Molpropity
R-work | score  rotamers (%) @ outliers favored score percentile

REFMACS5 0.160 0.210  0.050 1243 1.00 0.00 99.13 161 80.78
Amber results

Run 1 0.186 0.216  0.029 0.61 1.78 0.00 98.36 0.89 98.98
Run 2 0.187 0.028 050 167 0.00 98.16 0.84 99.25
Phenix results: ASU case

P/P, SA, WO 0.190 0.218 0.028 9.94 0.00 0.00 97.39 1.64 79.50
P/P, no SA, WO 0.194 0.211  0.016 4.97 0.00 0.00 99.13 1.26 92.82
P/P, no SA, no WO 0.182 0.212  0.030 10.43  0.00 0.00 99.13 1.54 83.67
P/P, SA, no WO 0.183 0.213  0.030 12.42  0.00 0.00 99.13 1.61 80.78
P/A, SA, WO 0.249 0.271  0.023 7.95 0.00 2.65 93.81 1.85 70.22
P/A, no SA, WO 0.212 0.214  0.002 1.99 0.00 0.00 97.39 1.09 96.88
P/A, no SA, no WO 0.182 0.209  0.027 6.46 0.00 0.00 100.00 1.36 89.79
P/A, SA, no WO 0.216 0.258  0.042 5.46 0.00 5.22 89.57 1.86 69.69
P/P, Cartesian, no WO 0.185 0.216 0.031 1441  0.00 0.00 98.26 1.67 78.25
P/P, Cartesian, WO 0.203 0.228  0.026 12.42 0.00 0.87 98.26 161 80.78
P/P, TAD, no WO 0.180 0.208 | 0.028 19.87 0.00 0.00 98.26 1.79 73.13
P/P, TAD, WO 0.198 0.216 0.018 9.44 0.00 0.00 98.26 1.50 85.19
P/A, Cartesian, no WO 0.236 0.287 0.051 13.41 0.00 3.48 89.57 2.20 53.52
P/A, Cartesian, WO 0.258 0.285  0.028 4.97 0.00 0.00 93.91 1.67 78.25
P/A, TAD, no WO 0.197 0.234  0.037 7.45 0.00 0.00 96.52 1.64 79.50

P/A, TAD, WO 0.221 0.235 0.014 1.49 0.00 0.00 97.39 1.01 98.04
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Phenix results: UC case
P/P, SA, WO

P/P, no SA, WO

P/P, no SA, no WO
P/P, SA, no WO

P/A, SA, WO

P/A, no SA, WO

P/A, no SA, no WO
P/A, SA, no WO

P/P, Cartesian, no WO
P/P, Cartesian, WO
P/P, TAD, no WO

P/P, TAD, WO

P/A, Cartesian, no WO
P/A, Cartesian, WO
P/A, TAD, no WO

P/A, TAD, WO

0.180
0.200
0.182
0.165
0.233
0.206
0.186
0.209
0.163
0.183
0.165
0.182
0.181
0.230
0.178
0.201

0.245
0.224
0.241
0.290
0.234
0.228
0.280
0.240
0.247
0.231
0.228
0.260
0.272
0.232
0.235

0.065
0.021
0.042
0.076
0.057
0.027
0.042
0.070
0.077
0.063
0.066
0.046
0.079
0.042
0.054
0.033

Table 2.6 continued.

21.83
6.80

13.15
27.91
20.29
3.48

9.01

16.75
30.07
21.73
37.20
25.31
22.43
12.44
11.33
8.51

0.00
0.00
0.00
0.00
0.11
0.00
0.00
0.00
0.11
0.00
0.22
0.00
0.22
0.00
0.00
0.00

2.51
0.00
0.00
3.86
5.51
0.00
0.00
6.47
3.96
2.80
1.74
1.26
6.31
6.67
1.06
1.16

85.41
98.55
96.81
83.96
85.02
98.55
98.45
82.80
83.38
84.93
88.99
91.50
82.33
83.29
93.82
94.88

2.48 38.21
1.37 89.42
1.82 71.54
2.61 31.53
2.46 39.35
1.14 95.79
1.48 85.90
2.42 41.69
2.65 29.53
2.49 37.58
2.63 30.66
2.40 42.69
2.55 34.54
2.30 48.27
1.98 64.13
1.81 72.14



2.7.7 Performance timing

Another important aspect of structure determination is the time needed to obtain a refined
structure. Amber/Amber setup requires a significantly smaller time than it is used to unravel the
best protocol of Phenix for a structure. For example, we present the statistics and timing for the
discussed 3K9P structure in Table 2.7. Cleary, the benefit of our refinement module in speed is
at least 4.7 times.

One should also mention that the best Phenix-based protocol varies from structure to
structure. Thereby, the particular advantage of our method is the absence of necessity to fine-
tune variable parameters and, consequently, the less amount of time needed to find the best

model without manual intervention.

Table 2.7. 3K9P R-factors, MolProbity, and timing statistics.

3K9P Ryree RMSD Ca
MD1 0.42 0.73 A

Best Rrree | MolProbity percentile

Amber-based refinement (2 runs, 2.4 hrs) 0.27 97 %
Phenix-based ASU refinement (16 runs, 11.4 hrs) 0.31 81 %
Phenix-based UC refinement (16 runs, 16.7 hrs) 0.32 53 %

As seen from the formula for structure factors of the whole model (2.1), one needs to
consider bulk solvent contribution and further scale the data. At the moment, we use the
implementation of such procedure from the cctbx library [136]. cctbx interface and Amber code
are based on different programming languages and require frequent data passage back and forth.
This passage is coupled to data structures reorganization. Therefore, such a bridge comes with
significant computational expenses. Nevertheless, our GPU code is ~10x faster than the CPU
code as calculated on the test cases. Even though it is significantly slowed down by that piece of
CPU calculations. We expect that the translation of the scaling procedures on GPU and more
optimization of the currently existing X-ray related GPU code will drastically improve the

current performance. The work in this direction is currently going with Amber developers.
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2.7.8 Web server

The final product of the project is our refinement server, which produces consistently
better models in comparison with Phenix-based approach for further investigations of proteins
via completely automated pipeline without the need to fine-tune various refinement schedules.

On top of our refinement module we have built a web server currently located at

http://purcell.chem.purdue.edu:8000/refinements using Django framework with Celery task

scheduler and custom in-house Python scripts to deliver the service. The server provides an
opportunity to refine macromolecular structures in the PDB format against structure factors
anonymously. Alternatively, one can register and keep track of the refinement jobs as well.

A huge benefit of this server is that the user does not need to worry about the execution of
the process and receives a notification through an e-mail once the structure of interest is refined.
The availability of GPU-accelerated computational power on users’ side is also unnecessary, and
one can track the progress from a handheld device such as smartphone or tablet. A sample job
upload page of a registered user is presented in Figure 2.14.
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http://purcell.chem.purdue.edu:8000/refinements

€6

@ Create new refinement task X + o X

< C @ Notsecure | purcell.chem.purdue.edu:8000/refinements/new/ b4

BYoOOO O HEEDBRDO

Upload new structure

Title  (optional)

Helps to disambiguate your uploads

EPDB Choose file Browse

Make sure your PDB file satisfies the following conditions:
. CRYST1 record is present

-

atoms' occupancies are equal to 1

if you have alternate conformers, they are unpacked into the unit cell and have occupancy of 1

if you don't have alternate conformers and store cnly single asymmetric unit, the file has REMARK 296 SMTRY records to rebuild unit
cell

you can modify residue names according to AMBER convention to vary protonation states from defaults

preferably, only hydrogens are missing (otherwise, missing hydrogens and heavy atoms, such as terminii ones, will be rebuilt and
their bearer's or neighbor's b-factors will be assigned to them)

if present, water molecules will be removed

Rl

o o

~

EBMTZ Choose file Browse

Make sure your MTZ file satisfies the following conditions:
1. has only structure factors and R-flags
2. R-flags are present, the majority of the flags will be considered as a work set
3. structure factors are not merged due to symmetry (it is assumed to be expanded to P1 space group)
4. we recommend using phenix.reflection_file_converter tool to generate proper file

Figure 2.14. Job upload page of a registered user on the Amber-assisted X-ray refinement web-server.



CHAPTER 3. DIFFUSE SCATTERING

3.1 Diffuse scattering profiling

To compare molecular dynamics of 30ONS, 3N30 and 3EHV crystal structures and,
particularly, to investigate rigid-body motions in these trajectories, we simulated radially
averaged diffuse scattering profiles. The diffuse intensities were calculated according to the
Guinier equation, which was introduced in CHAPTER 1.:

Laisp(hkD) = < |Fp(hkD)|? >, = |< Fp(hkl) >, |2,
where hkl are Miller indices, 14,77 (hkl) is the corresponding diffuse intensity, F,, (hkl) is the
structure factor of the whole frame for the corresponding Miller indices. To calculate structure
factors, we use the direct summation formula (1.4). Since we know the precise location of each
atom at each given moment in our simulations, we do not need the corrections covered in
paragraph 1.1.4. Hence, we use unity occupancies and zero B-factors for all atoms, including

solvent molecules where specified and the direct summation formula simplifies to the following:

Natoms

F(s) = Z £(s) exp[i2ns - 1;] 3.1)
=1

We have three different crystal simulations with different unit cell dimensions. Therefore,
the reciprocal space coordinates, e.g. Miller indices, do not have a direct relationship between
them. However, we need to use some invariant to compare the intensities. Thus, instead of the
intensities versus Miller indices dependence, we chose to compare the intensities versus the
resolutions corresponding to respective Miller indices. These corresponding scattering
resolutions are calculated from the Miller indices based on unit cell dimensions, providing a unit
cell independent measure.

The deposited observed data corresponding to our simulated crystals had from 96.5% to
99% of all possible reflections. However, since our goal is to simulate the hypothetical intensities
for new experiments, we generated 100% complete sets of Miller indices to be used in our
modelling. The minimum cutoff value was set to 1.8 A as the best resolution of the three crystals.
The maximum cutoff value for the resolutions was set to 30 A since the reflections become

extremely rare above this resolution.
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Clearly, the diffuse scattering intensities produce overwhelmingly crowded plots. Hence,
the intensities were radially averaged. Following the same argument as for the lower resolution
cutoff, it is more rational to consider inverse resolution scale to increase intensity values
distribution at lower resolution (30 A) and reduce this density at upper resolution (1.8 A). The
corresponding interval of direct resolutions translates to (0.033 A=, 0.555 A~1) on inverse
resolution scale. The inverse resolution dimension was dissected into 50 bins, and the average
lq4if value was computed for each of these bins. Similar techniques are employed in a number of
studies mentioned in the introduction [82], [89], [99], [110], [112], [123]. We call such averaged
curves as diffuse scattering profiles further in the text.

Finally, the averaging in the Guinier formula was performed over 2000 frames (uniform
sampling of 2 us long trajectories). In all the results, except where we predict the experimental
profile, we omitted: 1) hydrogen atoms to accelerate the calculations unlike CHAPTER 2, and 2)

ions and solvent. The solvent effects are discussed in the following paragraph and paragraph 3.3.

3.2 Methods
3.2.1 Trajectories preparation

Table 3.1. Summary of crystal simulations setups.

3EHV 30NS 3N30
Unit cell dimensions (A) | 45.823, 52.630, 96.402 | 49.204, 49.204, 62.986 | 106.61, 106.61, 106.61
Unit cell angles 90, 90, 90 90, 90, 120 90, 90, 90
Water residues 6198 8772 23419
Chlorine atoms 48 192 0
Protein heavy atoms 14448 14448 28896
Total heavy atoms 20694 23412 52315

Over the course of the crystal simulations, the molecules undergo a slow drift across
periodic boundaries. This is a harmless effect for the refinement in general, but it requires a
correction for the purpose of diffuse scattering simulations. Clearly, such overall drift in

coordinates introduces the same phase shift in all structure factors (see formula (3.1)). Therefore,
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the first component of Guinier’s formula, < |F,,(hkl)|? >, remains unaffected, but the second
component, |< F,,(hkl) >.,|?, becomes severely distorted.

Thus, as preliminary actions, 1) using GROMACS utility trjconv we have eliminated
jumps of protein chains occurred due to the periodic boundary conditions with —pbc nojump
subcommand, 2) performing subcommand —fit translation on "protein-H" group (i.e. protein
component) we eliminated the drift. A similar approach is suggested by Wall [114].

To check that this correction procedure also correctly addresses the drift of water (not only
protein component) we have performed several tests. First, we traced the centers of mass
translations of solvent and protein lattice separately and ensured that they follow similar paths
for each of our trajectories: 30ONS, 3N30 and 3EHV crystal MD simulations. Figure 3.1 depicts
such paths for the 3N30 crystal during the first 100 ns of the simulation. We estimated the speed
of the changes in the difference between the coordinates of the corresponding centers of mass.
This value does not exceed 1 A over the sampled 2000 frames for all three trajectories: 0.90 A,
0.54 A, 0.99 A for 3N30, 3EHV, 30NS, respectively. Taking the large dimensions of unit cells
into account, we conclude that water drifts together with the protein as one may expect.

Second, we compared the diffusion and the overall drift of solvent molecules. Based on the
previous test, the water drift and the crystal lattice drift are tightly coupled. Hence, we estimated
the diffusion coefficients of the lattice center of mass as a measure of water drift using
CPPTRAJ. Next, we measured the true diffusion coefficient of the solvent by similar means. As
one can see from Table 3.2, it turns out that the water diffusion is much faster than its drift.

Finally, we recorded a control simulation consisting entirely of water and verified that its
diffuse scattering response is unaffected by the drift correction treatment. Obviously, the diffuse
scattering intensities are slightly different for the original and the corrected trajectories (top panel
of Figure 3.2). However, the radially averaged profiles are practically identical (bottom panel of
Figure 3.2), giving the maximum difference of 0.0018% along the range of intensities between
them. These three points validate our drift correction strategy. Therefore, the effect of the water

drift on diffuse scattering can be safely neglected.
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Table 3.2. Diffusion coefficients as estimated by CPPTRAJ analysis of the three original

trajectories.

30NS 3N30 3EHV
Protein lattice 5.09 0.28 1.94
Solvent diffusion 300.89 582.43 168.77

3.2.2 Separation of motions

Along with the original trajectories we have generated several pseudo-trajectories for each
of the crystals corresponding to the three kinds of motions:

e internal motions - molecules from MD frames are superimposed onto molecules in the

crystallographic structure,

e rotational motions - 1UBQ molecules are superimposed onto molecules from MD
frames and then translated to their positions in the crystal lattice according to the
crystallographic structure (using center-of-mass coordinates),

¢ translational motions - 1UBQ molecules are superimposed onto molecules in the
crystallographic structure and then translated to their positions in the crystal lattice
according to the MD data (using center-of-mass coordinates).

All superpositions and translations above are based on Ca atoms within the secondary
structure of ubiquitin. We have used a 1UBQ crystallographic structure to isolate rotational and
translational motions for the unbiased comparison between different structures. In this way, we
have estimated the impact of different kinds of motions on the diffuse scattering profiles based

on the above pseudo-trajectories.
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Figure 3.1. Drift correction strategy validation. Projection of the protein's and solvent's centers of
mass paths from the 3N30 2 s trajectory. The first 100 ns are shown.
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Figure 3.2. Diffuse scattering intensities of the control pure water simulations. Top panel shows
all intensities sorted by inverse resolution. Bottom panel shows the radially averaged intensities.
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3.2.3 Profile’s independence on the unit cell dimension and scaling

Even though we have established the strategy for the invariant comparison of intensities
across different crystals (see paragraph 3.1), one can also note that unit cell dimensions do not
have a significant effect on the simulated diffuse scattering profiles. Here, we mean that we can
change the unit cell dimensions for the calculations in the Guinier formula, i.e. for the
calculations of structure factors. Yet the crystal MD simulations are still performed using the
original values. Figure 3.3 depicts the profiles calculated from 3ONS crystal using different cell
dimensions in the Guinier formula. It is clear that the profile based on the smaller 30ONS unit cell
would exhibit larger fluctuations over the inverse resolutions range, which is attributed to a less
dense distribution of reflections in the bins. Thus, the maximum difference between the averaged

intensities of the profiles calculated with the two sets of dimensions comprised 2.89%.

le6

30NS protein w/ 3N30 UC dimensions

14 30NS protein w/ original UC dimensions

12

=
o

Intensity [a. u. ]
o
[o:]

o
o

0.4

0.0

01 0.2 0.3 0.4 0.5
Inverse resolution [471]

Figure 3.3. Diffuse scattering profiles of 30ONS crystal trajectory using the actual crystal unit cell
parameters and the unit cell parameters of 3N30, alternatively.
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Therefore, we used the 3N30 unit cell dimensions for the purposes of comparison between
structures, unless otherwise specified. These dimensions are the largest among the crystals,
hence, they provide the smoothest curves given the same resolution range.

To eliminate the differences in the number of scatterers, e.g. crystal size, the structure
factors and intensities need to be normalized. Let us first estimate a structure factor for a frame
of a trajectory. If all n atoms in the frame are of the same type with approximately equal
scattering factors, our problem is analogous to that of the displacement of a particle due to
Brownian motion in two dimensions, where n is the number of equal steps.

In other words, by looking at the direct summation formula one can see that F(hkl) is a
sum of n exponents with quasi-random phases, and the length of the resulting vector is
proportional to v/n (see Figure 3.4). Hence, the following relationship holds for any structure
factor: F(hkl) ~ +/n, and consequently, lirr (hkl) ~ n. Therefore, the intensities calculated
from 3EHV and 30ONS pseudo-trajectories from paragraph 3.3 are scaled by a factor of 2 since
they have two times less atoms than 3N30 (see Table 3.1). It is worth noting that only heavy
atoms of proteins are considered in this estimation as well as in structure factors calculations (see

paragraph 3.1).
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Figure 3.4. Schematic representation of the total structure factor for a given reflection as a sum
of the contributing atomic scattering factors.
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3.3 Results

3.3.1 Pseudo-trajectories profiles comparison

First, we analyzed the influence of each type of motion on the diffuse scattering profile for
the three crystals (see Figure 3.5). Clearly, all three crystals exhibit a similar pattern in the
profiles when the curve corresponding to internal motions is disregarded. The dominant input
into the overall profile is the intensities generated by the rotational (i.e. rocking) motions. This
input is followed by the intensities generated by translational motions.

The internal motions influence the diffuse scattering of 3EHV and 30ONS in a similar
fashion at lower resolutions (>10 A, or <0.2 A~1). However, the higher the resolution, the less
pronounced is their relative effect in 3SONS compared to 3EHV. Unlike the first two crystals,
3N30 diffuse scattering intensities are affected by the internal protein motions the least.

Next, we compared the profiles for each type of motions between the crystals. As
expected, the internal motions across the MD simulations produced very similar diffuse
intensities response (see Figure 3.6, top left panel). The profiles generated using the pseudo-
trajectories that represent rotational and translational motions appeared to be similar. The 3EHV
diffuse scattering intensities associated with these motions are the smallest. The 30ONS crystal
intensities are affected slightly more than in the case of 3EHV, while the 3N30 intensities are the
biggest. These observations are logically concluded in the same pattern of the overall intensities
(Figure 3.6, bottom right panel).

The magnitudes of the intensities of rotational motions pseudo-trajectories support the
results of [84] where we estimated the amplitude of rocking motions in 3N30 to be larger than it
is in 30ONS and 3EHV.
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Figure 3.5. Comparison of diffuse scattering profiles for each pseudo-trajectory by ubiquitin crystals. The solvent component for the
overall profile is disregarded.
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3.3.2 Experimental data simulation

To predict the experimental diffuse scattering profiles, solvent and ions have been taken
into account as well as the accurate MD unit cell dimensions for each individual crystal. Solvent
molecules of trajectories after elimination of crystal drifting were put back into the original
simulation box using GROMACS trjtool -pbc atom command for 3EHV and 3N30 trajectories.
In the case of 30ONS simulations with non-orthorhombic unit crystal cell, the GROMACS output
had corrupted unit cell dimensions and, therefore, we had to use the VMD pbc wrap command
after copying the correct dimensions from the original trajectory.

Analogously to the previous paragraph, we first analyzed the results for each of crystals. In
Figure 3.7 below, we do not apply any normalization and again omit hydrogen atoms. The
solvent contribution to the diffuse scattering profile is specifically interesting for the resolutions
of less than 3.7 A (or more than 0.37 A~1). It is the least prominent relative to the protein part for
the 3EHV structure. While the most significant influence of the solvent part is present for the
30NS crystal.

Next, we compare the predicted diffuse scattering profiles, where the normalization is done
according to the number of heavy atoms in each simulation (see Figure 3.8). The profiles’ curves
appear to be very similar for all three crystals. 3N30 crystal diffuse scattering profile shows the
largest magnitudes. However, it is not clear whether this is simply the effect of scaling or
motions. Moreover, since the experimental data are in arbitrary units, it can be scaled to any
desired magnitude. Therefore, we conclude that we were unable to identify any profile’s feature
which would point to the motions that gave rise to it. Hence, it is impossible to compare the
amount of rocking motions from the diffuse scattering profiles not quantitatively nor
qualitatively.

There are no distinctive features of the diffuse scattering profile indicative of rocking. If

this is so, it may not be worthwhile to pursue the experimental study of diffuse scattering.
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Figure 3.7. Diffuse scattering profiles of protein only, solvent only, and whole unit cell contents of the simulated crystals.
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3.3.3 Solvent contribution and Babinet’s principle

Interestingly, the whole unit cell diffuse scattering profiles at low resolution lie below the
profiles from proteins and solvent (Figure 3.7). This implies that there is a cancelation of signal
from protein and solvent at low resolution. Such effect is described in details by Podjarny, A. D.
and Urzhumtsev, A. G.[4] and it originates from the structure factors of protein and solvent. As
we use the formula based on structure factors to calculate the diffuse scattering, the phenomenon
also manifests itself in the case of intensities. The idea has been covered in the introduction
paragraph 1.1.4. Briefly, in the range of low resolutions the structure factors of protein and
solvent regions are almost identical in magnitude and opposite in phase, since we do not
distinguish between them, and the content of the cell is considered homogeneous. “As the
resolution increases, density fluctuations appear inside these regions and the anticorrelation
between the corresponding structure factors disappear”[4].

Another interesting point is that the solvent contribution is different among the three
crystals relative to the protein counterpart as judged by the diffuse scattering intensity. However,
it is almost the same in all three simulations if normalization is based on the number of heavy
atoms in the corresponding pseudo-trajectory (see Table 3.1 for numbers). Since CI" ions have
roughly twice more electrons than a typical heavy atom in our simulations, they contribute twice
more to the intensities. Hence, we account for that by doubling the number of atoms
corresponding to the anions. Thus, one can conclude that the dynamics of solvent is similar in the
three simulations (see top right panel of Figure 3.9).

In the case of no normalization (Figure 3.7), we established the relative impact of the
solvent profile on the protein profile to be much higher in 30ONS than it is in case of 3EHV and
3N30. One can also normalize the profiles based on the total number of heavy atoms in the
original simulation (see Table 3.1, here we again count chlorine atoms twice when necessary).
This time, the 3N30 solvent diffuse scattering profile has the biggest magnitude and the 3EHV
solvent curve again has the lowest magnitude. The resultant curves are represented on Figure
3.10.

The dominance in the whole unit cell profiles of 30ONS over 3EHV might be explained by
the solvent content — 51.93% over 39.97% by volume and 38.79% and 30.34% by the number of
heavy atom scatterers. The similar explanation might be applied to the dominance of 3N30 over
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30NS - 56.12% vs. 51.93% by volume, and 44.77% vs. 38.79% by the number of heavy atom
scatterers. The effect of self-cancellation takes place here as well.

MD simulations suggest that contributions from “disordered” solvent molecules appear to
play an important role in more slowly varying parts of diffuse scattering intensities [110]. Hence,
combining the outcomes of this and the previous paragraph, we conclude that the rotational

motions input into diffuse scattering is hidden under the scaling issue and solvent contribution.

3.3.4 Patterson maps

At the American Crystallography Association meeting in 2019, | had a conversation about
our results with Michael Wall. He also recommended to analyze Patterson maps generated from
the obtained diffuse intensities. Further, we introduce the definition of the maps and report the
results.

The relationship between Patterson maps and intensities is fundamentally the same as
between electron density and structure factors (see paragraph 1.1.3). Patterson function is the
Fourier transform of the intensities:

P(u,v,w) = Zthkllz exp[—2mi(hu + kv + lw)],
hkl

while electron density distribution is the Fourier transform of structure factors. Similarly, the
Patterson function is defined in the real space with the same periodic conditions as the crystal
unit cell.

Such maps are used to identify the positions of heavy atoms. The peaks’ positions in the
Patterson map correspond to interatomic distance vectors. The magnitudes of the peaks are
proportional to the product of the respective atomic numbers. Since the vector corresponding to
i-th and j-th atoms implies the existence of the oppositely directed vectors, the function is
centrosymmetric (see, for example, Figure 3.11, panel A).

To analyze the effect of rigid-body motions, we extracted single chain trajectories from the
pseudo-trajectories representing the rotational motions in our three crystals. Next, using small
artificial unit cell dimensions, we generated the diffuse scattering intensities for the three single
chains. Finally, we plugged these intensities into the Paterson function to generate the maps.

Figure 3.11 shows the sections of the maps on xy-plane at zero z value.
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The results turned out to be interesting and support our previous observations as in
paragraph 3.3.1. As can be seen from Figure 3.6, 3EHV and 30NS rotational motions in crystals
are smaller than in 3N30 since the peaks are more pronounced and well defined. It is also
supported by the values of the Patterson functions (see Table 3.3).

Unfortunately, the interpretation of Patterson maps in a direct comparison of the
magnitudes of motions between the whole crystals having different unit cells is much more
complicated. This is due to the same reason mentioned in paragraph 3.1: these maps depend on
the unit cell dimensions. Thus, one will also see intermolecular distance vectors along with
intramolecular atomic distance vectors. Therefore, one would need to use the native unit cell
parameters for the diffuse scattering intensities. Moreover, the magnitude of the vectors
corresponding to intermolecular atomic distances would significantly depend on the
configuration of the asymmetric units in the crystal. Since the goal of the project was to answer
the question whether one could see the difference in the scattering intensities, we decided not to

proceed forward with this task.

Table 3.3. Summary of Patterson functions values obtained for single chain rotational motions in
crystals 3EHV, 30ONS and 3N30.

Minimum value (a.u.)

Maximum value (a.u.)

Mean value (a.u.)

3EHV 155.083 -20.820 -1.913e-11
30NS -22.804 140.607 1.317e-11
3N30 -11.185 94.982 3.990e-11
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Figure 3.11. Representation of xy-plane sections of Patterson maps at z value of zero. Panels A,
B and C correspond to the data obtained for single chain rotational motions in crystals 3EHV,
30NS and 3N30, respectively. Panels dimensions are in fractional coordinated.
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CHAPTER 4. DISCUSSION AND FUTURE DIRECTIONS

4.1 Macromolecular refinement

4.1.1 Discussion

To the best of our knowledge, we have created the first refinement software that operates
with entire unit cells and employs periodic boundary conditions. Generally, ensemble models
suggest that asymmetric units are independent during refinement. In Phenix tests of the whole
unit cell approach, all the asymmetric units had to co-exist in the unit cell (paragraph 2.7.3).
Unlike our Amber modification, Phenix cannot utilize the periodic boundary conditions. The
results of the Phenix UC approach showed better agreement with experimental data than the
traditional ASU approach, but mixed results in terms of geometric qualities of the re-refined
models (see paragraph 2.6). Our Amber/Amber setup outperforms both ASU and UC Phenix
setups in terms of geometry qualities on average, which we expected from the state-of-the-art
force field. Even though Phenix UC approach showed similar R¢,... results as Amber/Amber
protocol on the re-refinement tests, our results are quite striking on the simulated initial models
(MD1, MD2 sets) and the deposited models against the ASU approach (see paragraphs 2.7.2 and
2.7.3) in terms of both R,... and MolProbity measures. This showcases the larger radius of
convergence of our method against both the ASU and UC Phenix approaches. In part, we
attribute that not only to the better force field but also to the different method of minimization of
the target function (see paragraphs 1.2.2 and 2.3). However, if the starting model is way too poor
(MD3 set), the comparison becomes meaningless since no protocols can refine structures well.

Moreover, our software is GPU-accelerated. As we noticed in paragraph 1.2.7, only FFX
and xXMDFF package are able to perform the refinement on graphics processors for now. They
are one of the few to employ different from the widely used force fields as well (see paragraph
1.2.4). However, there are some major differences with our approach. First, it is impossible to
plug in an explicit solvent into the FFX package. Second, FFX does the refinement using a single
asymmetric unit and not an ensemble. The latter implies that the treatment of the implicit solvent
to model non-bonded interactions is also limited and does not account for crystal packing. Yet,

the polarizable force field also yields better geometry than those obtained by the classical force
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fields. Third, XMDFF employs the real space crystallography term and constraints on the
secondary structure of macromolecules. Therefore, our package is unique of its kind.

Paragraph 2.7.6 shows that, in principle, the inclusion of ligands is possible, however, it
requires some additional procedures to derive the Amber force field parameters. At this point, we
have no automation of the files’ preparation such that they would be compatible with both
Amber/Amber and Phenix/Amber setups due to different standards. Thus, we encourage manual
intervention in this task. However, with the creation of a unified format that would not be an
issue. The same is applicable to non-standard residues.

In case of already good starting model, one of the inevitable downsides of Amber/Amber
setup is the initial increase of R-factors and RMSD against the target or deposited structure on
the stages of minimization and heating (see paragraph 2.4.3), and the longer those stages are the
worse the R-factors statistics become. Elimination of the minimization stage resulted in
explosion of simulation setups. Elimination of the heating stage practically moved it to the first
stage of refinement and R-factors still increased in the beginning of this stage. We attribute these
issues to the correction of poor geometry features of the starting models, such as clash score and
Ramachandran outliers.

Currently, there is a technical limitation for our method that we do not employ modelling
of crystallographic water molecules during the refinement and focus on macromolecules only.
The use of a high-resolution data implies that the geometry restraints become less critical, and
the restraints based on experimental data are mainly important, since the ratio of observables to
parameters increases. Therefore, our current approach is particularly valuable for lower
resolution structures where the influence of high-quality force field and ensemble representation
is especially significant, and the presence of explicit solvent is limited [148].

To summarize, the implementation of the proposed enhancements increases the geometric
quality of the outcome in comparison with the performance of Phenix package [149], which core
is The Computational Crystallography Toolbox (cctbx) library [150] also used by CCP4 suite
[151]. Even the usage of Phenix in conjunction with an advanced Amber force field does not
affect geometry as much. On top of this engine, we built a web server, which not only can be

used even by a non-specialist from a handheld device but also delivers significant time savings.
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4.1.2 Future directions

As we mentioned previously, our Amber modification currently refines only coordinates of
proteins. However, in the refined models we do have B-factors, which researcher would also
want to refine in principle. We have tried several schedules that included the B-factors
refinement. For example, we added the B-factors refinement between stages (4) and (5) and after
stage (5) (see paragraph 2.4.3). In this scenario, the agreement with the experimental data at the
end of stage (5) was poorer than it was at the beginning. This is due to the maximum likelihood
parameters estimation and somewhat similar to the increase of R-factors during the heating stage.
The relative weight of the crystallographic terms becomes smaller than it was at the end of stage
(4) and the structure is released for dynamics again. Therefore, more testing needs to be done

A potential amplification of the current state of Amber/Amber setup is accounting for
diffraction data twinning. Since not all crystals are perfect and there are intergrown ones, the
addition of it would potentially broadly expand the range of applications.

The implementation of time-averaged crystallographic restraints would also give our
refinement protocol another boost [60]. Since it is known that such treatment not only improves
Rgyree Tactors but also gives insights into the dynamics of proteins, such tool would be especially
useful for GPU-based runs.

Another important application of Amber/Amber protocol would be alternate conformers
optimization, especially those of the backbone residues, since they are hard to identify [152]. As
our setup provides not only an ensemble model but also is supplied GPU-acceleration, the
performance is drastically sped up in comparison with the current software. In paragraph 2.7.5,
we presented a proof-of-concept. However, this is not a routine job yet.

In the same manner one would also try to model missing loop. Currently, all available
software solutions design missing protein elements with either ab initio or template-based
approaches. In its turn, Amber module can make use of experimental data. We did try to rebuild
missing tail of the 30ONS ubiquitin structure, but our various protocol to treat the B-factors of the
missing region failed so far by producing poor R,.... The solution of this problem is closely
related to the problems with B-factors optimization and alternate conformers optimization.

Another interconnected issue is the crystallographic water detection. As stated in paragraph
2.4.3, we currently run a Phenix routine at the end of the coordinates’ refinement. This routine

picks up the bound water molecules by electron density map calculation and as it is done in the
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cctbx library. However, we might implement such a procedure into the body of Amber to
account for the bound molecules during the coordinates’ refinement.

Finally, since diffuse scattering affects the precision of measured intensities, it would be
useful to test the joint refinement against both Bragg and diffuse scattering data. That would be a
blend of the two major concepts discussed in this dissertation. With the time-averaged
crystallographic restraints, one could potentially try to estimate the atomic displacement
parameters (B-factors). The refined model would not only agree with the experimental data but
also have naturally derived B-factors.

At this point, we are working on the testing of our X-ray refinement related code as well as
scaling procedures of the official codebase of Amber package. The latter makes the code
completely independent of the cctbx library and speeds up the performance. The core of the code
will be officially released in Amber 20, while the rest that is currently being tested will be rolled

out through one of the updates.

4.2 Diffuse scattering

4.2.1 Discussion

Just like in the X-ray, NMR and straight MD experiments showed, by decomposition of
pseudo-trajectories we can see the correlation between the magnitude of rotational motions and
the corresponding diffuse scattering intensities amplitudes. However, there are several studies
which indicate that one or the other type of motion is critical for diffuse scattering, for example,
internal motions dominate in staphylococcal nuclease case [114], and rigid-body motions are
claimed to be the main source of the diffuse scattering in cyclophilin A and lysozyme cases
[116]. In the absence of solvent, we can see that the rotational motions dominate in ubiquitin
crystals, but the amplitudes of the intensities from the rotational motions are of similar order to
the ones from the translational motions. Moreover, the presence of the solvent in the experiment
totally smears distinguishable differences between the different crystals of ubiquitin.
Unfortunately, we conclude that even though one can incorporate the diffuse data into

refinement. It seems virtually impossible to compare the motions solely based on that data.
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4.2.2 Future directions

Interestingly, the profile shapes that we obtained for ubiquitin are quite similar to already
known profiles for other proteins such as lysozyme (see Figure 4.1), or staphylococcal nuclease
[110]. It would be useful to compare the diffuse scattering between different protein crystals to
find what exactly is the source of different shape features. Another direction would be to produce
crystal simulations of different proteins with different magnitudes of rotational motions
belonging to the same space group. That way, we could compare not only the resolution against
intensity profiles, but Miller indices against intensities, which is a three-dimensional map.

Alternatively, we could proceed with the ubiquitin in different crystalline forms and to
produce supercell simulations. This would help to collect in-between Bragg peaks intensities and
sample the reciprocal space more finely. Such approach was implemented by Wall to examine

the diffuse scattering of the mentioned staphylococcal nuclease [114].
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APPENDIX. ABSOLUTE SCALE VALUES OF REFINEMENTS
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Figure 4.2. Phenix.refine performance using UC and ASU approaches on the deposited models.
Green bars indicate the results of UC approach, red bars indicate the results of ASU approach.
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Observing the overall rocking motion of a
protein in a crystal
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The large majority of three-dimensional structures of biclogical macromolecules have been
determined by X-ray diffraction of crystalline samples. High-resolution structure determina

tion crucially depends an the homogeneity of the protein crystal. Overall ‘rocking motion of
malecules in the crystal is expected to influence diffraction quality, and such motion may
therefore affect the process of solving ¢rystal structures. Yel, so far overall melecular motion
has not directly been observed in protein crystals, and the timescale of such dynamics
remains unclear. Here we use sclid-state NMR, X-ray diffraction metheds and ps-long
molecular dynamics simulations to directly characterize the rigid-body motion of a protein in
different crystal forms. For ubiquitin crystals investigated in this study we determine the
range of possible correlation times of rocking motion, 0.1-100 us. The amplitude of rocking
varies from one crystal form to ancther and is correlated with the resclution obtainable in
X-ray diffraction experiments.
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macromolecular structure determination. The method

provides atomic coordinates along with atomic displace-
ment parameters, which are generally expressed as B-factors and
reflect the coordinate uncertainty around the mean positions. The
coordinate precision in X-ray structures is limited by several
factors, including model errors and invalid restraints!. The
precision is also adversely affected by protein dynamics and static
disorder, which together contribute to the “blurring’ of electron
density maps. Motion has therefore long been treated as a
nuisance limiting the effective resolution at which a
crystallographic structure can be solved. Recent methodological
advances have shown, however, that useful dynamical
information can be extracted from X-ray diffraction (XRD)
data® 19, provided that high-resolution structural information is
available. Several investigators pointed out the importance of
rigid-body motions, which limit the achievable resolution in XRD
experiments*?,

Overall motion is routinely modelled from XRD data using
translation-libration-serew (TLS) analyses. However, refined TLS
parameters offer only a simplified view of rotational and
translational dynamics in the crystal lattice, meaning that some
ambiguity remains regarding the physical nature of the modelled
motion. Furthermore, diffraction data cannot provide insights
into the timescale of motions, making it difficult to distinguish
between static disorder and molecular motions. In other words, it
is not possible to ascertain that the dynamics modeled from XRD
data accurately reflect the overall motion of the molecules in the
crystal.

Magic-angle spinning (MAS) NMR spectroscopy provides
atomic-level-resolution access to crystalline proteins. MAS NMR
is complementary to XRD in the sense that it can provide atom-
specific insights into reorientational motions at a large number of
sites. A number of NMR observables, in particular relaxation rate
constants and dipolar couplings, probe exclusively the angular
motion as sensed at each individual site while being unaffected by
static disorder. Furthermore, NMR measurements can provide
direct access to the timescale at which dynamics occur. It has been
hypothesized before that rocking motion in crystals might be
observable through spin relaxation parameters in MAS NMR!!, yet
no experimental evidence has to date been produced. Rotational
diffusion and its effects have been investigated for membrane
proteins embedded in lipid bilayers'', but reorientational
fluctuations in protein crystals remain largely unexplored.

Here we report on the combined use of MAS NMR, XRD and
microsecond-long molecular dynamics (MD) simulations of
explicit erystal lattices to characterize the overall rocking motion
and the local internal dynamics of the protein ubiquitin in three
different crystal forms. Our results provide direct insight into the
amplitudes and timescales of rocking motion in the three crystals.
They illuminate the possibly general relationship that exists
between crystalline rocking motions and the experimental
resolution achieved in XRD and MAS NMR experiments.

X—m}r crystallography is the quintessential method for

Results

MAS NMR and XRD of three different ubiquitin crystals.
Disentangling overall rigid-body motion (herein referred to as
‘rocking’ motion) from internal dynamics is a challenge, regard-
less of whether XRD or MAS NMR is used as an experimental
tool. This is because both types of motion contribute to the
dynamics-related observables, that is, to B-factors in XRD and to
relaxation and dipolar-coupling parameters in MAS NMR. In the
present study, these complications were circumvented by using
different crystal forms of the same protein, allowing us to assume
that the internal dynamics are similar—an assumption that we

2 (

verify below—and thus to focus on differences in overall motion
of the protein in the crystal lattices.

We prepared three different crystal forms of the 8-kDa
globular protein ubiquitin. These crystals are henceforth referred
to as MPD-ub, cubic-PEG-ub and rod-PEG-ub, reflecting the
different precipitation agents (methyl-pentanediol (MPD) and
polyethylene glycol (PEG), respectively) and the morphology of
the crystals. Structures for the three crystal forms have been
solved before and correspond to Protein Data Bank entries 30NS
(ref. 16), 3N30 (ref. 17) and 3EHV (ref. 18), respectively. To
ensure that our crystals were consistent with the previously
reported structures, XRD data were collected on the three crystals.
For the two types of PEG crystals, we collected diffraction data at
100K and solved the structures by molecular replacement,
confirming the identity to the two already reported sets of
coordinates, Our MPD-ub crystals appeared too thin for
conventional structure determination when crystallized under
the conditions that yield high-quality MAS NMR spectra.
Nevertheless, a powder pattern obtained by rotating a scoop of
MPD-ub crystals into the X-ray beam yielded a distribution of
Bragg peaks similar to that calculated from the previously
deposited structure (see Methods section). Thus, our crystals
display the same space group as crystals previously obtained in
the same crystallization conditions.

We used MAS NMR to further study the three crystal
forms and obtain information about their dynamics. Figure 1
shows MAS NMR 'H-'°N correlation spectra recorded on the
three crystal forms. A first interesting observation concerns
the number of peaks found in the three spectra. In MPD-ub,
which has been extensively characterized befo rel? 21 one set of
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Figure 1 | High-resolution solid-state NMR spectra of three different
crystal forms of ubiquitin. 'H-'5M NAMR spectra of MPD-ub, cubic-PEG-ub
and rod-PEG-ub are shown in a-g, respectively. (d) Three regions of

the spectra wilh well-isclaled peaks, showing the different peak
multiplicity observed in the different erystals (the residue numbers are
indicated in each subpanel). A set of assigned HN and NCA spectra as well
as methyl H-C spectra are shown 23 Supplementary Figs 1, 2 and 3,
respectively,
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well-resolved TH-1°N cross-peaks is observed. In cubic-PEG-ub
many residues give rise to two peaks, as exemplified in Fig. 1d. In
rod-PEG-ub we find—for several instances of well-isolated
regions of the spectrum—three peaks per residue. This peak
multiplicity is in good agreement with the number of non-
equivalent molecules in the asymmetric unit of the crystals, ie
one (MPD-ub), two (cubic-PEG-ub) and three (rod-PEG-ub),
respectively. OF note, similar peak duplication has been reported
previously in NMR spectra of ubiquitin crystals (prepared under
slightly different conditions and resulting in different NMR
spectra) and polymorphs of GBI crystals?® 2>, We obtained
residue-specific assignments of a majority of HN resonances in
cubic-PEG-ub, using a set of IH- and 3C-detected three-
dimensional correlation spectra (assignments are reported in
Supplementary Table 1). Owing to the higher spectral complexity
arising from the three non-equivalent molecules, we did not
assign the spectra of rod-PEG-ub.

Internal dynamics in different crystals from MAS NMR and
MD. We conducted 'H"-detected ssNMR experiments on highly
deuterated protein samples to study dynamics in MPD-ub and
cubic-PEG-ub. In what follows, we rely on three different
experimental observables that concurrently probe a wide range of
timescales at each amide site in the protein and are informative of
both amplitudes and timescales of the dynamics. The first para-
meter, 'H-1°N dipolar-coupling derived squared order parameter
$2, report on the amplitude of motion of HN bond vectors,
The value of §2 can range from 1 for a completely rigid bond to 0
for fully dynamically disordered peptide planes. The dipolar-
coupling derived order parameters reflect the net effect from all
reorientational motions occurring on timescales shorter than
about 100 ps. The second parameter, the !N R, spin relaxation
rate constant, is sensitive to both the amplitude and the timescale
of "H-'N bond vector motions. This relaxation parameter is
particularly sensitive to dynamics on timescales from tens of
picoseconds to ~ 100 naneseconds (Supplementary Fig. 4). The
third parameter, the "N R, spin relaxation rate constant, is also
sensitive to both the amplitude and timescale of the motion, but
mainly to slower motion, occurring on the ns-ps timescale (see
Supplementary Fig. 5 and discussion below). Analysing these
three experimental observables therefore provides good insight
into motional properties of individual protein residues over a
wide range of timescales.

Figure 2a-¢ shows a comparison of site-specific amide 1°N R,
rate constants and NH order parameters in MPD-ub and cubic-
PEG-ub, obtained at 300 K sample temperature. These data reveal
that the local dynamics in the two crystal forms are generally
similar, with few differences. Overall, residues located in
secondary structure elements have high order parameters §*
and low R relaxation rate constants, indicating that these
residues are motionally restricted in both crystal forms. Previous
studies of MPD-ub showed that low-amplitude motions in the
secundar}i—structure elements occur primarily on the picosecond
timescale?”. Certain details of local dynamics are reproduced in
both crystals, For example, an alternating pattern of low/high
motional amplitudes in strand P2 is observed in both MPD-ub
and cubic-PEG-ub (residues T12-V17, dashed outline in Fig. 2).
This pattern arises from alternation of amides which are
hydrogen bonded or otherwise exposed to solvent®®. Similarities
between the twe crystals are also found in several loop regions,
such as the «1-p3 loop and the p3-p4 loop, which show similarly
increased flexibility (as reflected in the increased R, and decreased
§* values). Yet, distinct differences in dynamic behaviour are
observed at certain sites, as evident from Fig, 2a,b. For example,

high Ry, low 5% and high Ry, (see further below, Fig. 3) values in

the P1-P2 loop in MPD-ub are indicative of extensive ns-
timescale motion. In contrast, this loop appears rigid in cubic-
PEG-ub, displaying similar dynamics to residues in the
secondary-structure  regions. Another prominent example is
residue Q62 located in the o2-P5 loop, which displays
significant flexibility in cubic-PEG-ub but seems relatively stiff
in MPD-ub. It is also worth noting that the order parameters in
MPD-ub are overall slightly higher than in cubic-PEG-ub. When
applying an overall scaling factor of 1.04 to the % values from
cubic-PEG-ub, the agreement with MPD-ub data is significantly
improved (see Supplementary Fig. 6 for details). As discussed
further below, this offset can be explained by the rocking motion
of ubiquitin within the crystal lattice of cubic-PEG-ub.

It has been recently shown that experimental data by MAS
NMR and XRD can be successfully reproduced using explicit MD
models of protein crystals?” 2%, Towards this goal we have
recorded 1-ps-long all-atom MD trajectories representing the two
different crystal lattice arrangements of ubiquitin. A block of
four crystal unit cells (24 ubiquitin melecules) was simulated for
MPD-ub, while one crystal unit cell (48 ubiquitin molecules) was
simulated for cubic-PEG-ub. The presence of multiple protein
maolecules in the simulations effectively improves the statistical
properties of the MD maodels. The results from MD simulations,
Fig. 2e-h, nicely reproduce the experimentally observed trends.
Consistent with the experimental data, simulated >N R, and §?
parameters are overall similar in the two crystals, with two
notable exceptions found in the f1-2 loop and residue Q62. On
average, the simulated 5% in cubic-PEG-ub are slightly lower than
those in MPD-ub, which is again consistent with the experimental
observations.

For the two crystal forms at hand, NMR and MD produce
similar R, profiles (sensitive primarily to motions on a timescale of
tens of picoseconds to ~100 nanoseconds) and §2 profiles
(sensitive to all motions faster than ca. 100us). This leads
us to suggest that internal dynamics of ubiquitin are similar
in the two crystals. Furthermore, site-specific $* data in
crystals are remarkably similar to those in solution, as confirmed
by experimental measurements as well as MD simulations
(Fig. 2dh). These observations are in line with the results from
previous studies, which suggested that the crystalline environment
has only comparatively minor effect on protein internal
dynamics*®7,

Evidence for overall rocking motion from MAS NMR and MD.
Having established that internal motions on ps-ns timescales are
§cncmlly similar in the two crystals, we then focused on amide-
N Ry, spin relaxation rate constants. This relaxation parameter
is highly sensitive to amplitudes and time constants of reor-
ientational motions occurring on longer timescales—specifically
nanosecond to microsecond motions (Supplementary Fig. 5). The
experimental R, relaxation rate constants in MPD-ub and cubic-
PEG-ub are summarized in Fig. 3a. Interestingly, a clear-cut
difference is observed between the two crystal forms. In
particular, the ‘base’ level of R;, within secondary structure
regions is significantly higher in cubic-PEG-ub (125~ ') than in
MPD-ub (355 1), To a reasonable approximation this offset is
uniform across the sequence, at least for secondary-structure
elements. Site-specific differences in Ry, rates are found mostly in
loops, and can be ascribed to nanosecond mobility of these
regions?%2, differences in loop dynamics have been exposed
already by the R; and order parameter data discussed above.
The overall offset in the ‘base” Ry, rates of the two crystals
points to a global motion that involves the entire molecule. This
motion appears to be present in cubic-PEG-ub crystals, but
absent or less pronounced in MPD-ub crystals. We attribute this
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effect to relatively slow reorientational fluctuations of the protein  the protein secondary structure). A sequence of these small-angle
molecule embedded in the crystal lattice, that is, to rocking rotation matrices encodes the rocking motion of each individual
motion. In what follows, we will show that the observed R, offset  ubiquitin molecule. Finally, matrices = have been applied to a set
in cubic-PEG-ub is consistent with a rocking motion having an  of 100 dipolar vectors uniformly distributed on a unit sphere
amplitude of several degrees and a correlation time in the range  so as to calculate ‘isotropic’ rocking correlation functions groa.(7).
from hundreds of nanoseconds to tens of microseconds. The results are shown in Fig. 4 for all individual ubiquitin
To obtain additional insight into rocking motion, we analysed molecules from MPD-ub, cubic-PEG-ub and rod-PEG-ub
the 1-ps-long MD trajectories of the three crystals (MPD-ub and  simulations. Supplementary Movies 1-3 illustrate rocking motion
cubic-PEG-ub, as described previously, as well as rod-PEG-ub). in  MPD-ub, cubic-PEG-ub (chain A) and cubic-PEG-ub
For each trajectory we defined a set of reference coordinates, that  (chain B), respectively.
is, a block of crystal unit cells constructed from the corresponding Clearly, the rocking motion found in the MD simulation of
crystallographic  structures. We further calculated rotation cubic-PEG-ub (order parameters 0.982 and 0.957 for chains A
matrices Z connecting instantaneous MD coordinates of protein  and B, respectively) is much more pronounced than for MPD-ub
molecules with their respective reference coordinates (E were and rod-PEG-ub (average order parameter 0.995 for both
obtained from least-square fitting of the Ce atoms belonging to  systems). This result correlates well with our experimental data
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that offer multiple lines of evidence for increased rocking motion

a - = s s n in cubic-PEG-ub. The MD simulations also have a potential to
35 1 shed light on the timescale of rocking dynamics. The simulated
gg . correlation functions g, (7) shown in Fig. 4 involve a small-

o 20 p ' amplitude fast component with the correation time t¢~ 1 ns and

=15 . e | the more prominent slow component with 7, in the range from

© > s Tkt y
10 EITLIR R - P ~0L1 to 1 ps.

5 —m"“‘uu It is important to bear in mind, however, that MD simulations
0 offer, at best, a qualitative insight into recking motions. The effect
30 40 B0 &0 TO L . . N
of crystal packing in protein crystals is governed by a multitude of
Residue number . . - - . o .
subtle interactions that involve, in particular, mobile side chains

b 20 MPO-ub and hydration water. Capturing these interactions in the context

of MD modelling remains a challenge even for state-of-the-art

g 0 force fields. As a consequence, the crystal lattice undergoes slight

g 0 but progressive distortion during the course of the simulation??,

3 8 Cubk-PEG-ub Of note, such ‘structural drift’ has also been observed in MD

.E a simulations of globular proteins, even though the determinants of

5 2 ol m mm protein  structure (for example, amide hydmg,cn hnn::‘]s) are

£ - - - -~ generally far better understood than the determinants of crystal

£ Rod-PEG-ub L hg N ] o

z packing™. This leads to a situation where rocking motion in the
10 MD simulations occurs against the background of gradually

0 . nn. . . . deteriorating crystal lattice.
0 5 10 15 20 25 30 35 40 One should also be aware of statistical limitations. Even though
Ry cach of our 1-ps-long trajectories contains from 24 to 48
Xeray dffraction ubiquitin molecules, which improves their statistical properties,
c s this would not be sufficient to capture rocking dynamics should it
< 3 occur on a timescale approaching 100 ps. Note that in this
by &0 Sz situation it can be difficult to differentiate between ‘structural
g ¥ 5 drift’ (discussed above) and lack of convergence. The limitations
% 20 g1 of the MD model can be appreciated from Fig. 4 where one
0 Ty observes a significant spread in the rocking correlation functions
1.2 3 43 1.2 3 43 belonging to the individual ubiquitin molecules, including a
oﬁ? L e_,\‘? o.u)“ (f? (?{59 number of outliers (green curves). Under these circumstances it is
& & & & F impossible to meaningfully estimate the anisotropy of rocking

Figure 3 | Evidence for rigid-body motion (rocking) in ubiquitin crystals
from NMR and XRD data. (a) Residue-wise '°N Ry, spin relaxation rate
canstants in MPD-ub (black) and cubic-PEG-ub (red). (b} Histograms of
per-residue 15N Ry, relaxation rate constants in the above two crystals, as
well as rod-PEG-ub (blue). (e} XRD data peinting to different motional
behaviour of ubiguitin in the three crystals: Wilson B-faclors (lefl) and
structural resolution (right). Shown are the data from the following five PDB
structures: 1, 3ONS (rel. 16); 2, 3N30 (ref. 17); 3, 4XOL (this sludy);

4, 3EHV (ref. 18); 5, 4XOK (this study).

Cuble-PEG-ub (chain A)

motion, although in general rocking is certainly expected to be
anisotropic. For further insight into convergence properties of
froce(7) see Supplementary Fig. 7.

Finally, one should bear in mind that no attempt has been
made to include into MD simulations the crystallization additives,
such as 2-methyl-2,4-pentanediol or PEG. These compounds do
not appear in the crystallographic coordinates and it is unclear to
what degree they are partitioned into the crystals. We also did not
include the Zn** ions, although they are explicitly present in the
X-ray structures of cubic-PEG-ub and rod-PEG-ub. There are
currently no force field parameters that would be suitable to
model Zn?* jens in highly diverse and conformationally

Cublc-PEG-ub {chaln B) Rod-PEG-ub (chains A, B, C)
1.00

1.00 ;

0.98 ) 0.98 — 098 0.98 S
o 0.96 ) 0.96 096 0.96
% owm 0.04 \ 0.04 0.04
o \ \

0.2 0.92 \ 0.92 0.92

1= 118 ns =424 ns 7= 1565 us \‘-.I ;= 145 ns
0.90 | 57 _-ooes 080 | 5. -omez 0.80 | 57, -09s7 0980 |5, -099s
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 1.0 00 02 04 08 08 10
T {us) T (us) 7 (us) ™ (us)

Figure 4 | Rocking correlation functions from three 1-ps-long MD trajectories of ubiquitin crystals. The curves, representing individual ubiquitin molecules
in the crystals, were averaged and then fitted using 2 bi-exponential function with a flat hase, gf\,‘m{r} = oy exp( t,‘n) | e r:xp( r,."r_,,'} b Sfm(. The best-fit

curve gty (1) is shown in the plot (black line), along with the values of the fitted parameters 7, and 57, In the case of cubic-PEG-ub we have treated two
inequivalent molecules, chains A and B, separately, whereas in the case of rod-PEG-ub the data from three inequivalent molecules, chains A, B and C, have been
averaged before the fitting. Only red curves have been used in the fitting procedure (green curves have been classified as outliers and set aside).
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dynamic adventitious binding sites at protein-protein interfaces.
Fundamentally, no single set of force-field parameters would be
sufficient in this situation®—2,

Nevertheless, despite all these shortcomings, our MD simula-
tions clearly reproduce the same trend as has been observed
experimentally and thus confirm that MPD-ub and rod-PEG-ub
form stable crystal arrangements, whereas cubic-PEG-ub is
prone to rocking. Furthermore, the MD-derived correlation
functions grﬂ“l(,k (1) can be used to calculate the contributions of
rocking metion into Ry, relaxation rate constants. These
contributions turn out to be 065! for MPD-ub, 9.1 and
6345 for cubic-PEG-ub (chains A and B, respectively) and
0757} for rod-PEG-ub. The difference between the first two
numbers, 855 1, reproduces quantitatively the difference between
the experimentally measured R;, rates in MPD-ub (base rate
3557 1) and cubic-PEG-ub (base rate 12s~1). Although this
result is certainly fortuitous, it demonstrates the potential for
quantitative analysis of rocking dynamies using MD models (see
Fig. 5 for further details).

In order to obtain better insight into the time scale of the
rocking motion, we plot in Fig. 5 the calculated R, relaxation

. Log
a o0 b 107 (A, /5"
g g 2
2w 2 10 Sz
- -5 = 5 | = 06
§ 10 5 10 I oo
= 104 = 10-% - 06
N 12
§ 107 § 1077 I_:B
102 10 -24
094 096 098 100 084 006 058 1.00

Squared order parametar, 57 Squared order parameter, g*

Figure 5 | Estimating the ti le of rocking motion from N R,,
measurements. Plotted is the "N Ry, relaxation rate constant as a function
of the order parameter 5% and correlation time © that describe the motion of
the NH vector (a) The calculations were conducted using the Redfield-
theory formulas, equations 8 and 18 in ref. 5. (b} Alternatively, the
calculations were conducted using a numeric model that is also valid
outside the Redfield regime; the geometrical details of this two-site jump
maodel are exactly as described in Fig. 2 of ref. 6, and the simulation was
implemented in the program GAMMASY, 2s described before®®, The jump
angle © used in the numerical simulation is related Lo the order parameler
according to 57 = (143 cos? ©)/4. Both calculations a and b assume an
MAS frequency of 39.5kHz and a PN spin-lock radio-frequency field
strength of 15kHz, the same as in our experimental measurements. The
results abtained from the two computational models prove to be similar,
thus validating the Redfield-theory based approach for the problem at hand
(see Supplemetary Fig. 5 for additional discussion), The black contour line
represents the ‘base’ Ry, relaxation rate constant as experimentally found in
MPD-ub (355 1), whereas the purple line represents the ‘base’ rate in
cubic-PEG-ub (125~ 1. The black circle represents the relaxation due to
rocking melion as oblained from the MD trajectory of MPD-ub, while the
purple circle represents the relaxation due to recking motion in cubic-PEG-
ub (chain A). These relaxation rate constants were calculated hased on the
respeclive correlation funclions gf‘;l (1), see Fig. 4. In deing so, the small
rapidly decaying companent of the correlation function, 7,~1ns, has been
ignored since it makes only negligible contribution to R, Thus, for the
purpose of calculating Ry, we have made the identification 1— s4=¢, and
=1, where ¢, is lhe amplilude of the slow rocking motion and 7, is the
respeclive lime conslant. Mole thal the experimentally delermined
relaxation rale constants (black and purple contour lines) reflect both
rocking motions and internal protein dynamics, whereas the caleulated
rates (black and purple circles) are limited to rocking alone.

6 (

rate constant as a function of the amplitude and time scale
of the motion. The black curve shows the solutions
(order parameters and correlation times) that are in agreement
with the experimentally measured base’ Ry, rate in MPD-ub,
while the purple curve shows the solutions for cubic-PEG-ub.
Furthermore, the black and purple circles illustrate the results
obtained from the two respective MD trajectories. If one takes
guidance from the MD trajectory of cubic-PEG-ub, and
specifically the results for chain A (purple circle in the plot),
then one is led to believe that rocking motion is characterized
by 52~ 0985, t,~400ns. Indeed, such a scenario would be
consistent with all of our existing experimental data (Fig. 5).
However, as explained above, the MD simulations offer only
qualitative insight into the problem and cannot be viewed in this
case as a source of quantitative information. Therefore, we
recognize that there is an alternative solution corresponding to
the upper branch of the purple curve in Fig. 5 §2~0985,
7, ~ 40 ps. Generally, we can safely conclude that rocking maotion
in cubic-PEG-ub occurs on the timescale from hundreds of
nanoseconds to tens of microseconds. More accurate determina-
tion of this important parameter is deferred to future work.

The emerging picture is self-consistent in more ways than one.
For instance, MD simulations predict that order parameters in
the cubic-PEG-ub crystal should be ~2-3% lower than in
MPD-ub due to the intensified rocking motion. This is
compatible with our experimental data, which show that
cubic-PEG-ub order parameters $% are ~ 4% lower than those
in MPD-ub (see above and Supplementary Fig. 6). Furthermore,
the MD model predicts the crystallographic B-factors in
cubic-PEG-ub to be significantly higher than in MPD-ub, with
rocking motion making an important contribution to B-factors in
cubic-PEG-ub, but much less in MPD-ub (Supplementary Fig. 8).
These predictions are also borne out by the experimental data, as
explained below.

Overall rocking impacts resolution in XRD experiments. Both
the NMR and MD data indicate that ubiquitin molecules arran-
ged in a crystal lattice experience varying degree of rocking
motion at room temperature. But is this rocking motion
impacting the XRD data collected at 100 K? Figure 3¢ shows that
this is indeed the case. The Wilson B-factor in cubic-PEG-ub is
almost fourfold higher than in MPD-ub and the resolution is
significantly lower, which we propose to arise from differences in
the respective rocking dynamics. This correlation between NMR
15y Ry, relaxation data and XRD resolution is further sub-
stantiated by the third erystal form, rod-PEG-ub, which displays
lower ""N R,, rates, suggesting that rocking motions are of low
amplitude (blue bars in Fig. 3b). Correspondingly, these rod-
PEG-ub crystals display a lower Wilson B, and they diffract to
high resolution (blue bars in Fig. 3c).

Similar conclusions can also be reached if a TLS model is used
to account for rigid-body motion of proteins in the crystals”. In
XRD refinement, TLS modelling is one of the ways by which
collective and local motions can be separated. As expected, cubic-
PEG-ub shows the highest librational as well as translational
amplitude among the three crystal structures (Supplementary
Fig. 9), in good qualitative agreement with our NMR and MD
data. At this stage, it should be reminded that the TLS model is
based on certain simplifying assumptions. If a protein molecule
experiences a series of small rotations with different pivot points
(a likely scenario in the protein crystal lattice), the TLS model
may interpret this dynamics as translation. In this sense, the
information content of the TLS parameters is not very different
from that of the Wilson B-factor insofar as it is difficult to
disentangle libration and translation.
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It is interesting to examine why the same molecule, with overall
identical structure and internal dynamics, exhibits more rocking
motion in one of the examined crystals than in others. A direct
influence on rocking of the precipitating agent used for crystal-
lization can be excluded on the basis that both cubic-PEG-ub and
rod-PEG-ub erystals crystallize in essentially the same condition
(sometimes even in the same crystallization drop). The amplitude
of the rocking motion is likely to be influenced by the crystal
packing density—increased contact surface area is generally
expected to offer more resistance to rocking. In our case, the
packing density is indeed lowest for the crystal with the most
pronounced rocking motion, with solvent content V; of 58% for
cubic-PEG-ub, 49% for MPD-ub and 40% for rod-PEG-ub,
respectively. These values follow the expected trend—lower
packing density allows for more overall motion. However, given
the small size of this data set, the correspondence of rocking
motion and packing density may as well be fortuitous. We thus
performed a wider analysis seeking to determine whether there is
a correlation between packing density and rocking dynamics (as
manifested in XRD resolution and B-factors). A comprehensive
search of the Protein Data Bank indeed shows that high solvent
content correlates with low resolution and high Wilson B,
with correlation coefficients of .39 and 036, respectively
(Supplementary Fig. 10a). As expected, these dependencies are
subject to strong scatter, reflecting the intricate and complex
nature of the crystallization process and the large diversity of the
shapes and properties of the analysed structures™#, We have
also repeated this analysis for the subset of crystallographic
structures in the Protein Data Bank that have been solved at
room temperature, The results prove to be very similar
(cf. Supplementary Fig. 10a,b). Although not a direct proof,
this finding suggests that the spread of orientations observed at
eryo-temperatures (typically 100K) reflects qualitatively the
amplitudes of rocking motions at reom temperature. In other
words, the disorder associated with rocking motion also persists
under cryo-cooling conditions.

Discussion

‘We have shown here that three independent and complementary
techniques, NMR, MD and XRD, all provide evidence for an
overall rocking motion in protein ¢rystals. The rocking motion is
(i) observed by NMR, through the increased R, , rates, as well as a
slight decrease of order parameters; (ii) reproduced by MD in all-
atom crystal lattice simulations; and (iii) confirmed by XRD
through the decreased resolution and increased atomic displace-
ment factors. We have been able to provide for the first time a
measure of the timescale at which this motion takes place at room
temperature, which tumned out to be hundreds of nanoseconds to
tens of microseconds. Our data suggest that rigid-body motion is
an important determinant for the resolution achieved in X-ray
crystallography and may explain at least partly why visually
perfi&él: crystals do not always produce high-resolution XRD
data™.

Methods

Sample preparation. Uniformly [EH,13¢C, 150 - Jabelled ubiquitin was obtained by
bacterial overexpression in Escherichia coli and purified using jon-exchange and
size-exclusion chromatography. The protein was dialysed against water, lyophilized
and then ded in 20 mM acetate at pil 4.3 with protein con
centration of 20 mg ml = L Al crystals were obtained using a sitting-drop crystal-
lization plate with 47-50 il protein drops and 500 jil reservoir buffer. In all protein
drops except MPD-ub, the protein solution was mixed with reservoir buffer at a
ratio of 1:1. All NMR samples have been prepared with HyO:Dy0 ratio of 1:1
{taking into account the exchangeable protons on precipitation agents).

For generating MPD-ub crystals, described before!”, the ubiquitin solution was
mixed with reservoir buffer at a ratio of 3.7:1. The reservoir buffer was a mixture of
20mM citric acid, pH 4.2 and 2-methyl-24-pentanediol (MPD) at a ratio of 40:60.
Needle-shaped crystals were obtained at 4°C after about 1-2 weeks.

Cubic-PEG-ub crystals {(PDB 1D code 4XOL) were obtained with a reservoir
buffer of 100 mM 2-{MN-merpholinojethanesulfonic acid {MES), pH 6.3, 20% PEG
3350 and 100 mM zinc acetate. Cubic-shape crystals were obtained within 1 week
at 23°C,

Rod-PEG-ub crystals {FDB [D code 4XOK) were obtained with a reservoir
buffer of 50 mM 4-(2-hydroxyethyl}-1-piperazineethanesul fonic acid {HEPES),
pH 7.0, 25% PEG 1500 and 25 mM zinc acetate. Long-rod-shape crystals were
abtained after 2 weeks at 23°C.

In addition to these three crystal forms, we also obtained a fourth crystal, from
unlabelled ubiquitin. This crystal, red- PEG-ub-1I, (FDB D code 4XOF) was
abtained with a reservoir buffer of 50 mM MES, pH 6.3, 25% PEG 2000 and | mM
zinc acetate, after 1 month at 23 °C. The amount of crystals obtained was
insufficient for NMR analyses, but we were able to determine its structure by XRD.

For the preparation of NMR samples, protein crystals with their crystallization
solution were pipetted into an in-house made centrifugation device (funnel) that
was adapted to a 1.6-mm solid-state NMR rotor. The device, similar to a recently
reported filling tool*, was spun in a Beckman SW41 rotor at 10,000 rp.m. {about
15.000g) for 10min to pellet the protein crystals into the NMR rotor. Typical
samples contained ~4-5 mg of material {total mass, including the solvent).

NMR spectroscopy. All dynamics experiments were performed on an Agilent
VNMES spectrometer operating at a 'H Larmor frequency of 600 MHz, equipped
with a 1.6 mm HXY MAS probe tuned to 'H, '*C and "*N frequencies. HIN dipolar
couplings as well as "N R, and "N R, relaxation rate constants were measured
using proton-detected two-di ional HN correlation experiments, identical to
those used before, employing MAS frequencies between 37.0 {dipolar-coupling
measurement) and 39.3kHz (R, , measurement, using Y spin-lock with radio-
frequency fild strength of 15kHz)*. The REDOR scheme® was used to measure
HN dipolar couplings; this experiment was shown to be particularly robust with
respect to systematic errors™. Dipolar couplings were fitted based on peak volumes
in a series of two-dimensional HN spectra with variable recoupling time, The
employed 3 fitting procedure explicitly takes into consideration the radio
frequency field inhomogeneity across the sample as described®” and utilizes full
scale numerical simulations of the REDOR recoupling element conducted on a
grid which ples di coupling Error were obtained from
Monte Carlo analyses, based on three times the spectral noise level. Relaxation rate
constants were obained through numerical fits using a single-exponential function
and their associated error margins were also obtained from Monte Carlo analysis.
Resonance assignment of MPD-ub has been reported before'™?®. Assignment of
cubic- PEG-ub has been achieved using a series of three-dimensional correlation
spectra based on '*C detection (NCACX with 50 ms DARR CC transfer, NCOCX
with 50ms DARR CC transfer and CANCO, NCACE with DREAM transfer) and
spectra with 'H detection (RCONH, hCANH, heoCAcoNHY¥, Por a number of
residues two sets of spectral correlations were identified, resulting from the two
nen-equivalent molecules in the unit cell {(chains A and B). It was possible 1o obtain
partial connectivities for certain groups of peaks representing chain A or,
alternatively, chain 5. [t was not possible to unambignously identify the two sets of
resomances, because of the extensive chemical shift overlap between the two sub-
spectra. The obtained partial connectivities are shown by red lines in Figs 2 and 3.

MD simulati and ysis. The initizl coc for the MPD-ub simulation
were obtained from the crystallographic structure 30NS {ref. 16). Four flexible
C-terminal residues of ubiquitin were rebuilt as described previously®®. To
determine the protonation status of ionizable residues, we performed the
PROPKA™ calculations for ubiquitin in the relevant crystal-lattice environment.
The effective pH was assumed to be 4.2, same as in the crystallization buffer of
J0ONS. The original dimensions of the unit crystal cell were all multiplied by a
factor 1016 to account for thermal expansion of the protein crystal on transition
from 100 {temperature at which 30NS was solved) to 301 K*!. The unit crystal cell
was hydrated using SPC/E water™; in doing so, the crystallographic water
molecules have been retained in their original positions. The system was
neutralized by adding Cl~ ions. The periodic boundary box was defined as a block
of four crystal unit cells, containing 24 ubiquitin molecules and 8772 water
molecules, for the total of 56,244 atoms. The simulations were conducted under
Amber f9955*-ILDN force field using Amber 11 proy_mmsj'bﬁ. The trajectory was
recorded at 301 K, using isothermal-isobaric (NPT} ensemble. The volume of the
imulation box ins stable thr the simulation within 0.5% of its target
value {on average, there is a slight uniform expansion as described by linear factor
L0009). The production rate with NVIDIA GeForce GTX580 cards was 9ns per
card per day. The net length of the trajectory was 1 ps.

The same approach was employed to record the cubic-PEG-ub trajectory. In
this case the initial coordinates were derived from the crystallographic structure
3N30 {ref. 17). The periodic boundary box was modelled after a single crystal unit
cell, containing 48 ubiquitin molecules {equally divided between chains A and B)
and 23419 water molecules. The net length of the trajectory was 1 jis. The volume
of the simulation bex remains stable throughout the simulation within 0.7% of its
target value {on average, there is 2 slight uniform contraction as described by linear
factor 0.9986). Note that the statistical sampling for both chain A and chain B is the
same as for the single ubiquitin chain in the MPD-ub trajectory. Finally, the rod-
PEG-ub trajectory was designed based on the crystallographic coordinates 3EFV
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Cell dimensions

a, b, ¢ (A)

o, fiy ()
Resolution (A}
Rrnerge
o
Completeness (%)
Redundancy

Refinement

4372, 5036, 9346
90, 80, S0
4673-22 (2278-22}

0.08323 (01753)
16.04 (75%9)

5291 (62.00)
56 (49

2754, 4330, 5015
G0, 80, 80
32.78-115 (1191-1153
0.0609 (0.813)
1410 (1.53)
9968 (9812)
7067

32.78-115 (1191-115)
155,489 (143503
01369 (0.2230)
0173 (0 26053

IATURE ¢ MNIC. I 1 38/ ncomm
Table 1| X-ray data collection and refinement statistics.
Rod-PEG-ub Rod-PEG-ub Il Cubic-PEG-ub
Data collection
Space group P22 2 P222 P4,32

10485, 10455, 104 95
G0, 80, 90
3498-291 (3.013-2.81)
0.06642 (0.7768)
16.46 (2113
GE.83 (99.34)
510

3498-251 (3.013-251)
23,513 (2321
02372 (0.3805)
0.268% (0.418%9)

Resolution (A) 46.73-2.2 (2279-2.2)
Mo, of reflections 56,285 (3144)
Roon 03015 (0.3538)
Riree 0.3249 (D3776)
Me. of non-H atoms 1791
Protein 1703
Ligand/ion &
Water a2
B-factors
Protein 2630
Ligand/ion 2380
Water 1270

R.m.s devialions
Bond lengths (A) 0.007
Bond angles (%) 136

189 1191
663 1178
5
125 0
1460 8170
NA 8760
2800 3730
000 0.005
127 053

NA, not applicable; Rmus., root mean squared

{ref. 18). The periodic boundary box was defined as a block of two crystal unit cells,
containing 24 ubiquitin molecules {equally divided between chains A, B and C,
which comprise the asymmetric unit} and 6,198 water molecules, for the total of
48,234 atoms.

The solution trajectory was based on the coordinate file 1UBQ®; this crystal
structure has an excellent record in terms of interpreting the solution NMR data.
The sample conditions were assumed to be pH 4.7, 300 K, matching those in lhn:
experimental study””. The truncated octahedral periedic © fary box ¢ ined

{ref. 17} and 3EHV (ref. 18) for cubic-PEG-ub and rod-PEG-ub, respectively. As
expected, two and three molecules of ubiquitin were found in the molecular
replacement solutions for cubic-PEG-ub and rod-PEG-ub. Rod-PEG-ub-1I crystals
grew in the same space group as red PEG-ub (P 2, 2, 2,), but with different unit
cell parameters and difiracted up to 1.15 A {Table 1). Only one ubiquitin molecule
is present in the asymmetric unit of this crystal form. The refinement was con-

ducled with PHENIX®, Following an initial rigid body minimization, the

single ubiquitin molecule and 3,572 water molecules. The net lengv.h of the solution
trajectory was 2 jis.

To caleulate PN-1H dipolar order parameters from the MPD-ub trajectory, we
first superimpesed all ubiquitin molecules in the periodic boundary box by
applying the appropriate crystal symmetry transformations. Then PN-THY vectors
were extracted from the t d ¢ tes; the vectors pertaining to each
individua] residue were arranged to the form of a long array {corresponding to the
effective 24 jis time span). Finally, the Brischweiler-Wright formula has been
applied to these armys to calculate §% {ref. 58). To calculate the '*N relaxation rate
constants, the *N-'H dipolar correlation functions have been computed on a non
linear grid™. They were ly ged over 24 equi ubiquitin
molecules, as found in the rrvsta] trajectory. The resulting curves were fitted to a
combination of six exp tials and a constant. The upper bound was imposed on
the fitted correlation times: they were not allowed to be longer than the length of
the trajectory, that is, 1 jis. The time-modulated portion of the correlation function
{that is, the six weighted exponentials) was then used to evaluate the spectral
density functions and subsequently calculate the per-residue N 2, rates®. The
same strategies were used for the other trajectories.

XRD data collection and processing. Before being flash frozen in the cryogenic
N, stream on the beamline, crystals were eryoprotected with a brief soaking in a
solution composed of the mother liquor complemented with 20% giycerol. Data
were collected at 100K on the ESRF ID29 {cubic-PEG-ub and rod-PEG-ub) and
1D23-2 {rod-PEG-ub 11} beamlines. Diffraction frames were processed with XD§®!
and intensities were further processed with XSCALE and XDSCONV. All
structures were solved using the molecular replacement technique with PHASER®.,

Molecular replacement and model refinement. The initial search models were
ubiquitin models obtained under identical crystallization conditions, that is, 3N30

8 COMM

procedure was identical for cubic-PEG-ub and rod-PEG-ub models
and consisted of refinement of atomic displacement and individual isotropic
B-factors. Water molecules were added to the rod-PEG-ub model using the
automated water-picking option in PHENIX and were checked manually for
possible close contacts with the protein. For the model of rod- PEG-ub-11, similar
refinement strategy was used with the exception of anisotropic refinement of
B-factors for all protein atoms, as well as water molecules. Five and six Zn® jons
were modelled in cubic-PEG-ub and rod-PEG-ub coordinates, respectively,
based on the presence of large positive peaks in the mFo-DFc map and taking
into consideration Zn® T chemical coordination. Model bullding was carried out
with COOTH, for rod-PEG-ub, unexpectedly high Agee and Ry, values were
abtained (0.325 and 0.202, respectively). Various refinement strategies were
attemnpted without success {for example, multiple models, TLS refinement, use of a
reference model). To validate the correctness of our molecular repla(,ement
solution, we carried out a de nove model building, using the build fi of
PHENIX. The initial map was computed using our experimental data and the
refined ubiquitin model obtained under identical crystallization conditions
{3EHV). The automated procedure was able to reconstruct 99% of the backbone
and 84% of the side chains confirming the correctness of the molecular
replacement selution. Cubie-PEG-ub, rod-PEG-ub and rod-PEG-ub-II have been
deposited to the Protein Data Bank under the codes 4XOL, 4XOK and 4XOF,
respectively.

MPD-ub crystals grew as sea urchins composed of thousands of extremely thin
rods {~ 100-200 = 5 x 5m), impossible to isolate and loop individeally. We
therefore performed a powder diffraction experiment, to confirm that our crystals
have the sume space group as the previously reported PDB entry 20NS {which was
obtained under identical « and comprek ly characterized by NMR).
Details of the powder diffraction experiment are reported in the Supporting
Information {Supplementary Fig. 11).

Stereo view images of the electron density maps are provided as Supplementary
Fig. 12
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