
DEFENDING AGAINST ADVERSARIAL ATTACKS WITH DENOISING

AUTOENCODERS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Rehana Mahfuz

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science in Electrical and Computer Engineering

May 2020

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF THESIS APPROVAL

Dr. Aly El Gamal, Chair

School of Electrical and Computer Engineering

Dr. Milind Kulkarni

School of Electrical and Computer Engineering

Dr. Fengqing Maggie Zhu

School of Electrical and Computer Engineering

Approved by:

Dr. Dimitrios Peroulis

Head of the School of Electrical and Computer Engineering

iii

ACKNOWLEDGMENTS

I express my sincere gratitude to my advisor, Prof. Aly El Gamal, for mentoring

my project, for giving me a platform to make mistakes and learn, and for providing

constructive feedback. I am grateful not only for the direct supervision of my research

project he provided, but also for the advice and support he has provided throughout

the pursuit of my Master’s degree. Next, I would also like to thank other members of

my advisory committee, Prof. Milind Kulkarni and Prof. Maggie Zhu, for providing

guidance and helpful advice in my transition from a Bachelor’s degree to a Master’s

degree, and for always being available.

I also take this opportunity to acknowledge my labmate Rajeev Sahay for the

fruitful discussions we had regarding subject matter of our research. Further, I would

like to thank my labmate and officemate Teng-Hui Huang for the pleasure of the

discussions we had about graduate school and research. Finally, I would like to thank

family and friends that have supported and encouraged me throughout.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

SYMBOLS . viii

ABBREVIATIONS . ix

ABSTRACT . x

1 INTRODUCTION . 1

1.1 What are adversarial attacks? . 1

1.2 Contributions of this work . 2

2 BACKGROUND . 5

2.1 Adversarial Attacks . 5

2.1.1 Fast Gradient Sign Attack . 5

2.1.2 Deepfool Attack . 5

2.1.3 Carlini-Wagner Attack . 6

2.2 Existing Defenses . 7

2.2.1 Network Distillation . 7

2.2.2 Adversarial Training . 7

2.2.3 Data Preprocessing . 8

2.3 Overcoming defenses . 10

3 CASCADED DEFENSE . 12

3.1 Motivation . 12

3.2 Procedure . 13

3.2.1 Implementation Details . 14

3.3 Results . 18

4 HIDDEN LAYER DEFENSE . 25

v

Page

4.1 Motivation . 25

4.2 Procedure . 25

4.2.1 Implementation Details . 26

4.3 Results . 26

5 DEFENSE IN AN UNCERTAIN SETTING 31

5.1 Motivation . 31

5.2 Procedure . 33

5.2.1 Implementation Details . 34

5.3 Results . 38

5.3.1 Performance Metric . 38

5.3.2 Varying the Architecture Type 40

5.3.3 Varying the Attack . 45

5.4 Conclusion . 48

6 DISCUSSION . 49

REFERENCES . 51

A COMMON ACTIVATION FUNCTIONS USED 55

B COMMON LOSS FUNCTION USED . 56

C COMMON OPTIMIZERS USED . 57

D COMMON LAYERS USED . 59

vi

LIST OF TABLES

Table Page

3.1 MNIST adversary’s CNN architecture. 15

3.2 Training time of classifiers with and without reduced input dimensions, in
seconds . 23

4.1 Training time of defenses for the Cascaded defense and the Hidden Layer
defense, in seconds . 29

5.1 CIFAR-10 victim CNN architecture. 35

5.2 CIFAR-10 DAE architecture. 36

vii

LIST OF FIGURES

Figure Page

3.1 Our three considered defenses. 12

3.2 MNIST-Digit images attacked with the FGS algorithm. The upper row
has unperturbed images. The middle row has images perturbed using
gradients of an FC classifier with l2 norm 2.5. The bottom row has images
perturbed using gradients of a CNN classifier with l2 norm 1.5. 17

3.3 Performance of the Cascaded defense. 20

4.1 Performance of the Hidden Layer defense. 28

5.1 Images from the CIFAR-10 dataset attacked with the FGS algorithm with
an l2 norm of 1.7. The upper row has unperturbed images. The lower row
has perturbed images. 37

5.2 Accuracies of all considered defenses in all considered scenarios for the
MNIST-Digit and Fashion-MNIST datasets. 39

5.3 Normalized accuracy changes when using an FC-CNN-trained defense. . . 43

5.4 Normalized accuracy changes when using a CW-DF-FGS-trained defense. . 47

viii

SYMBOLS

x input data sample

y label corresponding to input data sample x

|C| number of classes in the classification task

θ weights of a trained machine learning model

fk(x) classification score of data point x for class k

Zk(x) logit corresponding to class k in classification of data sample x

C∗(x) classification label of data sample x assigned by unattacked ma-

chine learning model

J(x, y, θ) loss function when classifying data sample x with true label y

using a model with parameters θ

D(x) output of a denoising autoencoder when data sample x is forward

propagated through it

δ perturbation added to an input sample x in an effort to make it

adversarial

ix

ABBREVIATIONS

CW Carlini-Wagner

DF Deepfool

FGS Fast Gradient Sign

DAE Denoising Autoencoder

Dim Red Dimensionality Reduction

x

ABSTRACT

Mahfuz, Rehana M.S., Purdue University, May 2020. Defending Against Adversarial
Attacks with Denoising Autoencoders. Major Professor: Aly El Gamal.

Gradient-based adversarial attacks on neural networks threaten extremely critical

applications such as medical diagnosis and biometric authentication. These attacks

use the gradient of the neural network to craft imperceptible perturbations to be

added to the test data, in an attempt to decrease the accuracy of the network. We

propose a defense to combat such attacks, which can be modified to reduce the train-

ing time of the network by as much as 71%, and can be further modified to reduce

the training time of the defense by as much as 19%. Further, we address the threat

of uncertain behavior on the part of the attacker, a threat previously overlooked in

the literature that considers mostly white box scenarios. To combat uncertainty on

the attacker’s part, we train our defense with an ensemble of attacks, each generated

with a different attack algorithm, and using gradients of distinct architecture types.

Finally, we discuss how we can prevent the attacker from breaking the defense by

estimating the gradient of the defense transformation.

1

1. INTRODUCTION

The ability of neural networks to learn from exposure to training data closely mimics

the ability of humans to learn from experience. Just as humans are employed for

tasks that have no easy solutions and therefore require critical thinking and deliber-

ation, neural networks are now being employed for tasks which have no closed-form

mathematical solution, and hence require pattern recognition. Any system that in-

volves subjectivity in making decisions is likely to be fooled by certain inputs. Just

as humans are fooled by optical illusions, neural networks have also been found to be

fooled by adversarial examples [1].

1.1 What are adversarial attacks?

Adversarial attacks are ways to perturb data that is input into a machine learning

model, with the aim of deteriorating the performance of the model. We refer to this

machine learning model as the victim model or the victim network. Specifically, we

consider neural networks used for classification tasks as our machine learning model.

The attacker’s goal is to make the output of the machine learning model incorrect.

The attacker can achieve this goal by either influencing the training process of the

victim model, or by corrupting the test data. The former is known as a poisoning

attack, where the attacker injects malicious samples into the training dataset of the

victim model, so that it is trained to misclassify. The latter is known as an evasion

attack, which involves perturbing the test data, often imperceptibly. The occurrence

of poisoning attacks is subject to the very strong assumption that the attacker will

be able to influence the training process. Hence, in our work, we only consider the

more realistic evasion attacks which only require perturbation of the test samples.

2

Formally, an evasion adversarial attack on a machine learning model f(x, y, θ)

is constructed by finding the minimum perturbation δ to be added to input x such

that the classification decision of the model changes. The attacked data sample is

x′ = x+ δ, where

δ = min
β
||β||a such that f(x+ β) 6= f(x) (1.1)

where a is a norm usually chosen to be 0, 2 or ∞. Minimizing the l0 norm would

minimize the number of features that are modified. Minimizing the l2 norm would

minimize the Euclidean distance between the attacked image and original image,

which is sometimes a good measure of perceptibility. Minimizing the l∞ norm min-

imizes the magnitude of maximum perturbation that can be applied to any feature.

In our experiments, we use the version of the attack that minimizes the l2 norm.

Intuitively, adversarial attacks can be viewed as data samples that lie very close

to the classification decision boundary. Since the decision boundary of every neural

network is subject to multiple random factors such as random initialization of weights,

the decision boundary of a neural network is never perfect. Attackers take advantage

of such imperfection and move data points belonging to one class across the decision

boundary so that the neural network classifies it as belonging to a different class.

This is the methodology of computing adversarial attacks using the Deepfool method,

which is discussed later. This view is reinforced by [2], which suggests that adversarial

images occupy dense regions in the pixel space, instead of existing as isolated points

in that space. More generally, this would mean that adversarial examples occupy

dense regions in the feature space.

1.2 Contributions of this work

We see that adversarial attacks have the ability to reduce the accuracies of neu-

ral networks which are relied on for extremely critical applications such as medical

diagnosis [3–5] and biometric authentication [6–8]. Hence the need of the hour is

to make these neural networks robust to adversarial perturbations. We propose a

3

method to recover the accuracy of an attacked network by leveraging the power of

Denoising Autoencoders (DAEs), and combining that with dimensionality reduction.

Further, we also customize our defense to maintain robustness when there is uncer-

tainty about the attacker’s choices regarding construction of the attack. Our defense

has the following merits:

1. Effective against an unknown attack type generated using gradients

of an unknown network

Existing defense mechanisms are often studied only in scenarios where the at-

tacker is likely to use the strongest attack possible against a given network.

However, the attacker may not always have enough information or computa-

tional resources to craft such an optimal attack. It is therefore important to

find effective defenses when the attack may be crafted differently from the opti-

mal. We take a step in that direction by evaluating the effectiveness of defenses

trained to denoise multiple attacks, which are generated with distinct choices of

the parameters which the attacker can vary while generating the attack. Vari-

ation of these parameters by the attacker leaves the defender with uncertainty.

We empirically determine the smartest way to handle such uncertainty.

2. Customizable for enhanced computational efficiency

Our proposed defense can be modified to reduce training time of the classifier

by as much as 71%. This may make tasks that were previously computationally

infeasible more feasible. Further, it is also possible to modify our defense to

reduce the training time of the defense itself by as much as 19%, as explained in

Chapter 4. This comes with a small tradeoff in the performance of the defense.

3. Suitable for any data type, not just images

Several existing defenses such as JPEG compression [9, 10], color bit depth

reduction [11], and random resizing and random padding [12] are applicable

only to defend image data against adversarial attacks. Our proposed defense

is suitable for many data types involving many different applications such as

4

income prediction from socio-economic details, human activity recognition from

sensor data, medical diagnosis from patient history, identifying type of glass

from their oxide content for criminological investigation, etc.

4. May be cascaded with other detection/defense mechanisms For any

defense, there is generally a robustness-accuracy tradeoff [13], which means

that using the defense is likely to compromise the performance of the machine

learning model. Hence it is wise to use the defense only in the presence of a

non-trivially strong attack. Not all defense mechanisms offer the ability to se-

lectively defend test samples. Our defense affords us the ability to apply the

denoising mechanism selectively to samples that are detected as being adver-

sarial, and letting the remaining samples be processed in a standard manner.

Thus our denoising defense may be used in series with detection methods such

as exploiting convolution filter statistics [14] and SafetyNet [15].

The remaining document is structured as follows. In the next chapter, we provide

an overview of the related work, which includes adversarial attacks and the defenses

that have been proposed to counter them. In Chapter 3, we propose a defense built

on the DAE, which also reduces training time of the classifier. Chapter 4 discusses

modification of this defense to reduce the training time of the defense itself. In

Chapter 5, we investigate the performance of our defense in scenarios where the

attacker behaves unexpectedly, by customizing our defense to take into consideration

different choices made by the attacker in generating the attack. Finally, Chapter 6

wraps up our discussion of this proposed defense against adversarial attacks.

5

2. BACKGROUND

2.1 Adversarial Attacks

2.1.1 Fast Gradient Sign Attack

The Fast Gradient Sign (FGS) attack [16] views the input x as a space where small

changes can be made with the objective of minimizing the cost function J(θ, x, y).

Hence it adds a perturbation δ in the direction of the sign of the gradient of the cost

function with respect to the input. While imposing an upper bound of ε on the l∞

norm of the perturbation, ε is chosen to be the magnitude of this perturbation, as

shown in Equation 2.1.

δ = εsign(∆xJ(θ, x, y)) (2.1)

To generate an attack bounded by an l2 norm of ε, this gradient is divided by its l2

norm, as shown in Equation 2.2.

δ = ε
∆xJ(θ, x, y)

||∆xJ(θ, x, y)||2
(2.2)

Apart from being fast because of requiring only one gradient computation, another

advantage of this method is the attack is general enough to transfer to other networks

trained to perform the same task. This is because it takes a step of a certain size in

the direction of the sign of the gradient, which may be larger than the minimum step

required for that particular classifier.

2.1.2 Deepfool Attack

The Deepfool (DF) attack [17] attempts to move the data sample across the bound-

ary of the closest separating hyperplane. This is performed for a certain number of

iterations (generally 50), or until the classifier is found to misclassify the perturbed

6

data. At every iteration i, by assuming the decision boundaries to be linear at the

point closest to the data point xi, a region P̃i is approximated such that xi would be

correctly classified in that region:

P̃i =

|C|⋂
k=1

{x : fk(xi) +∇fk(xi)Tx ≤ fC∗(x0)(xi) +∇fC∗(x0)(xi)
Tx} (2.3)

At iteration i, the perturbation δi is calculated as:

δi =
|fl(xi)− fC∗(x0)(xi)|

||∇fl(xi)−∇fC∗(x0)(xi)||22
(∇fl(xi)−∇fC∗(x0)(xi)) (2.4)

where l is the index of the class closest to x0, which is found as:

l = argmink 6=C∗(x0)

|fk(xi)− fC∗(x0)(xi)|
||∇fk(xi)−∇fC∗(x0)(xi)||22

(2.5)

This is a good strategy to use if the attacker has access to the victim classifier’s

exact weights, since this finds a very small perturbation that is effective in causing

the classifier to misclassify. However, this attack does not work very well if deployed

on a different classifier, since it perturbs the data only as much as required for that

specific classifier whose gradients are used to craft the attack. Thus the Deepfool

attack is not transferable.

2.1.3 Carlini-Wagner Attack

The Carlini-Wagner (CW) attack [18] solves a carefully constructed optimization

problem using gradient descent from multiple random starting points. The first term

of the objective function to be minimized is the squared l2 norm of the perturbation.

The second term is a term that is 0 if and only if misclassification occurs. In other

words, it is a constraint that is introduced as a term in the objective. Out of many

candidates for such a term, the authors empirically determined that max(ZC∗(x)(x+

δ)−maxi 6=C∗(x){Zi(x+ δ)}, 0) is the most effective choice. This second term is scaled

by a constant c to adjust the relative importance of the terms. Such a constant c is

determined by using binary search. Formally, the optimal perturbation δ is found as:

min
δ
||δ||2 + c.max(ZC∗(x)(x+ δ)− max

i 6=C∗(x)
{Zi(x+ δ)}, 0) (2.6)

7

Moreover, for image data, since the perturbed data sample x+δ has to lie in a certain

range to be interpreted as a pixel, a change of variable is applied to δ to ensure that

it lies between 0 and 1:

δ = σ(2w)− x (2.7)

The success of this attack can be attributed to three factors: i) the carefully chosen

form of the constraint in the second term, ii) the carefully chosen constant c that

scales the second term, and iii) the use of multiple random starting points for gradient

descent.

2.2 Existing Defenses

2.2.1 Network Distillation

Neural network distillation [19] involves training the victim network with soft

or continuous labels, instead of hard or discrete labels. These soft labels are the

prediction probabilities output by a neural network trained to perform the same task.

To make these probabilities more continuous and less discrete, the softmax layer is

modified as follows, where the temperature T is set to a value greater than 1.

fk(x) =
e

zk(x)

T∑|C|
l=1 e

zl(x)

T

(2.8)

A high temperature is used to train the network used to generate soft labels, and also

to train the network which is going to be used as the actual classifier. However, the

temperature is set to 1 while testing. This defense has been overcome by the CW

attack [18].

2.2.2 Adversarial Training

When a network is trained to correctly classify adversarial examples in addition

to classifying clean samples, that process is known as adversarial training. Such a

process is very computationally intensive since it requires more training. One variant

8

is cascade adversarial training [20], where the victim network is trained with adversar-

ial examples generated using a different network, in addition to adversarial examples

generated using the same network. [21] trained the generator of a Generative Adver-

sarial Network (GAN) to generate adversarial examples while the victim classifier was

being trained. The victim classifier was trained to correctly classify both clean and

perturbed samples, as the perturbed samples were being generated by the generator

which was also being trained.

2.2.3 Data Preprocessing

Several approaches have been proposed to apply transformations to the input

before feeding it into the victim network.

Compression

Reducing the dimensionality of data generates a representation of the data using

fewer dimensions which are able to capture only the large variation. Hence this

has been used as a common approach to defend against adversarial attacks, in the

hope that it will exclude the adversarial perturbation, since it is small. [22] proposes

using Principal Components Analysis (PCA). [23] uses an autoencoder to reduce the

dimensionality of the input. An autoencoder is a neural network whose successive

layers decrease in the number of neurons before increasing again to the original. It is

trained to reconstruct the original input, which necessitates trimming down the data

to a small number of dimensions to propagate through the smallest layer. The output

of this smallest layer is the representation of the input data in a reduced number of

dimensions. Another method specifically used for images is JPEG compression [9,10].

Comparing the effectiveness of JPEG compression with PCA, low-pass filtering, low

resolution wavelet approximation and soft thresholding, [24] found JPEG compression

to be most effective as a defense. As with other preprocessing defenses, this can be

overcome by the attacker if they use a differentiable approximation of the JPEG

9

transformation, as shown by [25]. A general problem with input compression is that

high compression causes a loss in the classification accuracy.

Denoising Autoencoder

Attempts have been made to remove the perturbation from the test input. One

way is to use a Denoising Autoencoder (DAE). This has an autoencoder structure

similar to that of an autoencoder used for dimensionality reduction. However, the

training method is different. While training, a DAE is presented with both clean

data and corrupted data as the input, and is trained to produce only clean data at

its output. This output is then fed into the classifier. MagNet [26] uses one of many

trained DAEs as a reformer, on examples it has detected as adversarial. The detector

is an autoencoder that has learnt the manifold of clean data, and declares an example

as being adversarial if it is more than a certain distance away from this manifold.

However, MagNet only trains its DAEs on data corrupted by adding Gaussian noise,

and not on data corrupted by adding adversarial perturbations. Thus its detector

and reformer have only been tested with very small perturbations, with an l2 norm of

upto 1.0. Perturbations with l2 norms larger than 1.0 continue to be imperceptible,

as shown in Figures 3.2 and 5.1. Another use of a DAE has been seen in DUNET [27],

which trained a convolutional DAE to learn the noise which can then be subtracted

from the corrupted examples. This works well for color images, for which a simple

DAE is insufficient.

Other methods

For image data, feature squeezing [11] may be performed by reducing a pixel’s color

bit depth, or by performing spatial smoothing. This was used for only detection of

adversarial examples. Randomly resizing the test image and adding random padding

also reduces the success rate of the attacker [12]. ?? proposed two modifications. The

first modification is to use Bounded ReLU activation function, which is BReLU(x) =

10

min(max(x, 0), 1), instead of the ReLU [28] activation function, which is ReLU(x) =

max(x, 0). The second modification is to train the network with Gaussian noise added

to the training data. Both of these defenses have been broken in [29].

[30] trained a GAN such that the generator G generates clean images, while the

discriminator tries to correctly judge if the image is real or is artificially generated

by the generator. During test time, an estimation G(z∗) of the possibly perturbed

test image x is projected onto the range of the generator, using L steps of gradient

descent, which is attempted for R starting points of gradient descent. Gradient

descent is performed L times to minimize ||G(z(i))− x||22 as a function of z(i), where

i = 1, ..., R. The notation z
(i)
j is used to for the value of z(i) at the jth iteration of

gradient descent. z∗ is chosen as
z∈{z(1)L ,...,z

(R)
L }||G(z) − x||22. This estimation G(z∗) is

then input into the neural network. Another work, APE-GAN [31], attempted to use

the generator of a GAN to remove perturbation by accepting perturbed input and

generating clean output. APE-GAN was shown to be ineffective in defending against

the Carlini-Wagner attack [29].

2.3 Overcoming defenses

It has been claimed that many of these defense strategies are effective because

they obfuscate the gradient of the network that is being defended [32]. The first

type of obfuscated gradient is a shattered gradient, which happens when a gradient

is non-differentiable, nonexistent, incorrect, or causes numeric instability, such as

that seen in thermometer encoding [33], and in input transformations such as JPEG

compression for images [34]. This can be overcome by estimating a differential ap-

proximation of the non-differentiable layer, in a method termed as Backward Pass

Differentiable Approximation (BPDA). The second type of obfuscated gradient is a

stochastic gradient, which happens in defenses that use randomization either in the

input transformation or in the network itself, which is why using gradients from a

single instance of that random defense may be insufficient to generate an attack that

11

is likely to be effective in every instance of that random defense, such as that seen

in Stochastic Activation Pruning (SAP) [35] and in Mitigating Through Randomiza-

tion [36]. This is overcome by applying Expectation over Tranformation (EOT) to

compute the gradient of the expected transformation to the input. The third type

of obfuscated gradient is an exploding or a vanishing gradient, which may be caused

by multiple iterations of evaluation by a neural network, as seen in PixelDefend [37]

and in Defense-GAN [30]. This can be overcome by applying a change-of-variable to

the input x such that the function performing the optimization loop that leads to

exploding/vanishing gradients can be approximated by this new variable.

From this point of view, most defenses that process the input before feeding it into

the classifier can be overcome. All that needs to be done is estimation of the gradient

of the input transformation. Even if the input transformation is not differentiable,

a differentiable approximation of that transformation can be approximated for the

purpose of generating the attack, as is done to break JPEG compression as a defense

[25]. The DAE defense is viewed as using a shattered gradient, and can be overcome

by the attacker using BPDA, as illustrated in [29]. This is done by modifying the CW

attack such that the second term of the objective function now looks at the decision

of the classifier on the perturbed input x′ which has been transformed using the DAE,

as shown in Equation 2.9.

minimize||δ||2 + c.max(ZC∗(x)(D(x′))− max
i 6=C∗(x)

{Zi(D(x′))}, 0) (2.9)

These methods to estimate the gradient work when the attacker knows exactly

what the defense strategy is. However, with the availability of multiple defense strate-

gies which the defender can choose from at run time, the attacker can never have

certainty about which defense strategy is exactly being deployed. In such a case, the

attacker cannot find an estimation of the gradient of the defense that satisfactorily

approximates each of the possible defenses. Hence, this method of overcoming the

defense is unlikely to work if the exact defense is randomly chosen at run time.

12

3. CASCADED DEFENSE

3.1 Motivation

(a) DAE defense.

(b) Cascaded defense. (c) Hidden Layer defense.

Fig. 3.1. Our three considered defenses.

Given that an evasion adversarial attack perturbs test samples before being fed

into the machine learning classifier, our first idea to remedy this was to attempt

to remove this noise as part of the preprocessing step. Systems which use machine

learning models generally involve a step to pre-process the data and transform it

into the feature space that the machine learning models expect. For example, image

data is often centered, cropped and resized to put the subject of the image in the

center. Natural language data is converted into word embeddings which are fed into

the machine learning classifier. We envision our add-on defense to be part of such a

preprocessing module. We chose to use a Denoising Autoencoder (DAE) to remove

the noise, since this method is agnostic to the nature of data. It can be used for

13

medical diagnosis data, student loan relational database etc. Further, we decided

to test the effect of reducing the dimensionality of this denoised data. This step

also works for any data type. This is noteworthy because defenses such as feature

squeezing and JPEG compression are only effective for image data.

3.2 Procedure

An autoencoder is a neural network which has two parts: an encoder and a de-

coder. The encoder has multiple layers of decreasing sizes, starting with the first layer

whose size is the same as the dimensionality of input data. Here, the size of a layer is

the number of neurons in the layer. The decoder is the name given to the remaining

autoencoder which has layers of increasing sizes. Generally, the size of the s− i+ 1th

layer in the decoder is the same as the size of the ith layer in the encoder, where s is

the total number of layers in the autoencoder. The last layer of the encoder, which

is also the smallest layer, is called the bottleneck layer, because it limits how much

information can flow through the network. All layers are fully connected.

A Denoising Autoencoder (DAE) is an autoencoder that we use to remove per-

turbation from data, as shown in Figure 3.1(a). While training it, we present it with

some unperturbed input samples as well as some perturbed samples. The target to

be learned is always the corresponding clean sample. Since the bottleneck layer only

allows a limited amount of information to flow through the DAE, the network has to

choose which information to discard. By training it to learn a clean representation of

the data, we are forcing the DAE to learn to discard the perturbation, and only allow

the clean data to flow through the network till the output. We also used an autoen-

coder to reduce the dimensionality of data. To do this, while training, we present

the autoencoder with the same data as both the input and the target output. Since

the network is trained to reconstruct the same data, the encoder simply gets trained

such that the output of the bottleneck layer provides a compressed representation of

the input data.

14

To prepare the defense, these two autoencoders are trained separately. Also, we

train a victim classifier with a modified architecture, where the size of the input layer

is equal to the dimensionality of the compressed data. While deploying the defense,

the data is denoised using the DAE, after which it is compressed. Then this data is

sent as input into the classifier, as shown in Figure 3.1(b). Since this method involves

cascading the dimensionality reduction module with the denoising module, we call it

a Cascaded defense.

3.2.1 Implementation Details

We used two datasets to test our defense. MNIST-Digit [38] is a dataset of 70,000

28x28 pixel grayscale images of handwritten digits. The classification task is to classify

each image into one of ten labels, where each label corresponds to a digit in the decimal

system. While MNIST-Digit is a standard dataset used to evaluate the performance

of classification tasks, it may be insuffcient because of being too simple. Hence we

also chose to use the Fashion-MNIST dataset [39]. Here, the classification task is to

classify each image into one of ten fashion items such as trouser, dress, pullover and

sneaker. Both datasets have 60,000 training images and 10,000 test images.

Since both Fully Connected (FC) neural networks as well as Convolutional Neural

Networks (CNN) are able to solve these classification tasks, we use both types of

architectures. The victim FC classifier is a neural network which has 784 neurons

in the first layer, 100 neurons in the second layer and third layers each, followed by

10 neurons in the fourth layer. We describe this architecture as FC-784-100-100-10.

More generally, the architecture FC-n1 − n2 − ... − nk describes a neural network

which has n1 neurons in its first layer, n2 neurons in its second layer, and so on, till

the kth layer, which has nk neurons. In the real world, it seems unlikely that the

attacker will use exactly the same architecture as the victim classifier’s to generate

the attack. To begin with, it may be difficult for the attacker to gather information

about the exact victim classifier. Even if the attacker has that information, they

15

Table 3.1.
MNIST adversary’s CNN architecture.

Conv 3x3x32, ReLU

Conv 3x3x64, ReLU

Max Pool 2x2

Dropout (rate = 0.25)

FC (128 neurons), ReLU

Dropout (rate = 0.5)

Softmax (10 classes)

may still choose to use a different architecture because of various reasons such as

avoiding training a new classifier for the purpose of generating the attack. Hence we

use a different neural network to generate the attack. The adversary’s FC network

has architecture FC-784-200-100-100-10. In both classifiers, all layers have Rectified

Linear Unit (ReLU) activation except the last layer, which has softmax activation.

Both classifiers are trained for 100 epochs with a batch size of 200, with categorical

crossentropy loss and Adam optimizer, with a learning rate of 0.001. For the MNIST-

Digit dataset, the victim classifier achieves an accuracy of 98.11%, and the adversary’s

classifier achieves an accuracy of 98.38%. For the Fashion-MNIST dataset, the victim

classifier achieves an accuracy of 88.56%, and the adversary’s classifier achieves an

accuracy of 88.42%.

The adversary’s CNN has an architecture as shown in Table 3.1, and achieves an

accuracy of 98.61% for the MNIST-Digit dataset and 93.32% for the Fashion-MNIST

dataset. The victim CNN has a similar architecture, except that it has only two

convolutional layers followed by a softmax layer. It achieves an accuracy of 98.66%

for the MNIST-Digit dataset, and 91.06% for the Fashion-MNIST dataset. Both

of the CNNs were trained for 20 epochs with a batch size of 200, with categorical

crossentropy loss and Adam optimizer, which used a learning rate of 0.001.

16

Note that these classifier architectures were slightly modified to adjust the size of

the input layer to match the size of the compressed data. In this case, the classifier

was trained to classify data that has been compressed by the autoencoder.

The DAE has architecture FC-784-256-128-81-128-256-784. None of the layers

have any activation except the final layer, which has sigmoid activation. This DAE

was trained for 150 epochs with a batch size of 200, with Mean Squared Error (MSE)

loss and Adam optimizer which uses a learning rate of 0.001.

Each DAE is trained with perturbations generated using only one attack algo-

rithm, and using gradients of a specific architecture type. Here, architecture type

refers to either FC or CNN. While testing the performance of the defense, we specif-

ically test its effectiveness in mitigating an attack generated using the same attack

algorithm and using gradients of the same architecture type. Exploring the effec-

tiveness of a defense trained using perturbations generated by a particular algorithm

and using gradients of a particular architecture type in mitigating different types of

attacks is very interesting, and we explore that in Chapter 5.

For each dataset, we trained one autoencoder to reduce the dimensionality of

data. This autoencoder has architecture FC-784-81-784. It reduces the data to 81

dimensions from 784 dimensions, which can also be interpreted as 9x9 dimensions

from 28x28 dimensions. Hence the size of the input layer of the victim FC network is

81, and the size of the input layer of the victim CNN is 9x9. This autoencoder was

trained with the Adam optimizer with a learning rate of 0.001, MSE loss, 100 epochs

and with a batch size of 500. It had ReLU activation in all layers except sigmoid

activation in the last layer.

All attacks were generated using the TensorFlow Cleverhans library [40] and were

untargeted attacks. The hyperparameters of all three simulated attacks were adjusted

such that the attacks are reasonably imperceptible as well as effective at the same

time. The l2 norm of the FGS attack was set to 2.5 when using gradients of an FC

network, and to 1.5 when using gradients of a CNN. Such attacked images are shown

in Figure 3.2 for the MNIST-Digit dataset. For the Deepfool attack, there are no

17

Fig. 3.2. MNIST-Digit images attacked with the FGS algorithm. The
upper row has unperturbed images. The middle row has images per-
turbed using gradients of an FC classifier with l2 norm 2.5. The
bottom row has images perturbed using gradients of a CNN classifier
with l2 norm 1.5.

18

major parameters to tune except the maximum number of iterations, which was set

as 50. The CW attack was generated with 4 binary search steps, a maximum of 60

iterations, a learning rate of 0.1, a batch size of 10, an initial constant of 1.0, and the

abort early parameter was set to True. All other parameters were left unchanged at

their default values.

3.3 Results

19

(a) Accuracies when the MNIST-Digit task uses an FC network. Post-attack

accuracy in the semi-white box case for (i) CW: 1.24% (ii) DF:1.25%

(b) Accuracies when the MNIST-Digit task uses a CNN. Post-attack accuracy

in the semi-white box case for (i) CW: 1.08% (ii) DF:1.09% (iii) FGS: 60.24%

20

(c) Accuracies when the Fashion-MNIST task uses an FC network. Post-attack

accuracy in the semi-white box case for (i) CW: 8.09% (ii) DF: 7.98% (iii) FGS:

47.48%

(d) Accuracies when the Fashion-MNIST task uses a CNN. Post-attack accuracy

in the semi-white box case for (i) CW: 8.09% (ii) DF: 7.98% (iii) FGS: 47.48%

Fig. 3.3. Performance of the Cascaded defense.

We evaluate the performances of the three defenses: the Dimensionality Reduction

defense, the DAE defense and the Cascaded defense in both black box and semi-

white box settings. In the black box setting, the adversary generates an attack using

21

their own classifier, which is different from the victim classifier. In the semi-white

box setting, the adversary uses gradients of the trained victim model to generate

the attack. Note that having access to the trained victim model is different from

merely knowing the architecture of the victim model. This is because of random

initialization of weights in the model. If the attacker uses the exact trained model,

the attack generated will be much stronger than an attack generated using a model

with the same architecture which was trained using the same data and parameters

(learning rate, optimizer, number of epochs, batch size etc.), but with differently

initialized weights. To be more conservative in the evaluation of our defense, we used

the stronger attack, which is generated using the trained victim model. A gray box

setting would be when the attacker also knows about our defense strategy of using a

DAE. A white box setting would be when the attacker has access to our exact trained

DAE. However, since our defense is part of the data preprocessing pipeline, hijacking

of the data preprocessing pipeline by the attacker is a completely different problem,

which we do not consider in our work. However, in Chapter 6, we do discuss a general

strategy to prevent the attacker from overcoming defenses in a white box scenario,

which can be applied to our defense as well. Further, we discuss possibilities of the

gray box and uncertain black box settings in Section 2.3

Figure 3.3 is divided into four parts, where each part shows the performance of our

defenses for a particular dataset when a specific architecture type is used to perform

the task. In the legend of Figure 3.3, ’Dim Red’ refers to ’Dimensionality Reduction’.

In the semi-white box case, the accuracies without defense are low enough to be

outside the scope of representation of the plot, which is why we have mentioned these

accuracies in the subfigure captions when they cannot be shown in the subfigure.

To defend against an attack generated using gradients of a specific architecture type

and using a specific algorithm, we used a DAE that was trained to denoise an attack

generated using gradients of the same architecture type and using the same algorithm.

In practice, it may be hard to predict which architecture type and which attack

22

algorithm the adversary will choose, which is why there is a need to develop a more

universal defense. Chapter 5 takes a step towards investigating that.

When the MNIST-Digit data is attacked by an FC network, the DAE and Cas-

caded defenses perform similarly, while the Dimensionality Reduction performs a little

worse. When the MNIST-Digit data is attacked by a CNN, the Cascaded defense per-

forms most consistently, while the Dimensionality Reduction defense performs a little

worse. The DAE defense yields an accuracy higher than the other defenses for CW

and DF attacks, but this accuracy reduces for an FGS attack. When the Fashion-

MNIST data is attacked by an FC network, the Cascaded defense is again quite

consistent, and slightly better than the DAE defense. The Dimensionality Reduction

defense has commendable performance for the CW and DF attacks, but its accuracy

dips quite low when the attack is FGS. When the Fashion-MNIST data is attacked by

a CNN, the Cascaded defense and Dimensionality Reduction defense perform quite

similarly, but the DAE defense’s decrease in performance is very pronounced.

To sum up, when the data is attacked, our defenses increase the accuracy signifi-

cantly. Among these three, the Cascaded defense is the most consistent in delivering

a reliable performance. The DAE defense comes close, but does not always perform

well for the FGS attack, and also has poor performance when the Fashion-MNIST

data is attacked by a CNN-crafted attack. The Dimensionality Reduction defense

performs slightly worse than these two, and also has a tendency to not work well

against the FGS attack.

We also show what happens when the defenses are used in the absence of an

attack. In general, a stronger defense is expected to compromise the accuracy when

there is no attack. To quantify this compromise, we measure the percent decrease in

accuracy when using the defense, compared to the accuracy when the defense is not

used. When the clean MNIST-Digit data is preprocessed using a defense trained using

an FC network, this decrease is quite low, being upper bounded by 0.57%. When the

same data is preprocessed using a defense trained using a CNN, the compromise is a

little higher, with the percent decrease being not higher than 2.81%. However, the

23

DAE defense is noticeably less destructive than others, as it decreases the accuracy by

only has much as 0.56%. When the uncorrupted Fashion-MNIST data is preprocessed

using a defense trained using an FC network, using such a defense reduces the accuracy

by as much as 5.8%. However, the Dimensionality Reduction defense performs much

better than the rest, decreasing the accuracy by not more than 0.9%. When the same

data is preprocessed using a defense trained using a CNN, the DAE defense performs

quite poorly, as in the case of attacked data. If considering all defenses other than the

DAE defense, the compromise in accuracy is not more than 9.7%. The DAE defense

seriously hinders the accuracy without attack, jeopardizing it by as much as 29.23%.

Table 3.2.
Training time of classifiers with and without reduced input dimensions, in seconds

Dataset MNIST-Digit Fashion-MNIST

FC without reduced input dimension 78.82 78.49

FC with reduced input dimension 50.71 50.63

CNN without reduced input dimension 48.53 48.33

CNN with reduced input dimension 13.72 14.01

An added advantage of using this Cascaded defense is that the training time of

the classifier is now reduced, since the size of its input layer is smaller. As shown

in Table 3.2, the FC network experiences a speedup of 35.66% and 35.49% for the

MNIST-Digit and Fashion-MNIST datasets respectively, while the CNN experiences

a speedup of 71.73% and 71.01% for the MNIST-Digit and Fashion-MNIST datasets

respectively.

Since the tradeoff between accuracy and training time of the classifier with reduced

dimension is obvious, it looked like training the classifier less would also result in a

more robust classifier. We attempted this by training a classifier till it achieved an

accuracy about the same as that of the classifier with reduced input dimension, and

24

found that training the classifier for a lesser number of epochs does indeed lead to it

being less sensitive to adversarial perturbation.

25

4. HIDDEN LAYER DEFENSE

4.1 Motivation

In the Cascaded defense, we were compressing and decompressing the noisy data

in the denoising autoencoder, and then compressing it again for dimensionality re-

duction. We decided to remove this redundancy and to simply use the compressed

data generated by the bottleneck layer of the DAE. This has the added advantage

of being less computationally expensive while training, compared to the Cascaded

defense. This is because the autoencoder for dimensionality reduction does not need

to be trained .

4.2 Procedure

As with the Cascaded defense, we train the DAE to remove adversarial pertur-

bation. However, we do not need another autoencoder to reduce the dimensionality.

At test time, we forward propagate the possibly perturbed data through the DAE,

but stop at the bottleneck layer. We take the output of the bottleneck layer, and

use that as the denoised data with reduced dimension, as shown in Figure 3.1(c).

The classifier is trained with this data that is compressed by the DAE. Given that

each DAE is trained with an attack generated using a specific attack algorithm using

gradients of a specific architecture type, we trained a different classifier corresponding

to each DAE. This resulted in six different classifiers.

One may find it hard to see how this data is indeed denoised, since it has not been

propagated through the decoder. During the training process, the data is forward

propagated throughout the network, and all the weights are updated such that the

reconstructed data becomes closer to the clean data. This also means that the weights

26

of the encoder are trained to move the data closer to the clean data. This is why

propagating the data only through the encoder indeed gives us a denoised version of

the data in a smaller dimension. However, the extent of denoising may be lesser since

the encoder was trained to remove perturbation jointly with the decoder.

4.2.1 Implementation Details

The architecture and training details of the DAE when implementing the Hidden

Layer defense are the same as those of the DAE when implementing the Cascaded

defense, as described in Subsection 3.2.1. Regarding the victim classifier, the size of

the input layer of the classifier corresponds to the size of the bottleneck layer of the

DAE, which is 81. This is the same as the size of the input layer when using the

Cascaded defense. All other details about the architecture and training of the victim

classifier remain the same as described in Subsection 3.2.1.

4.3 Results

27

(a) Accuracies when the MNIST-Digit task uses an FC network. Post-attack

accuracy in the semi-white box case for (i) CW: 1.24% (ii) DF:1.25%

(b) Accuracies when the MNIST-Digit task uses a CNN. Post-attack accuracy

in the semi-white box case for (i) CW: 1.08% (ii) DF:1.09% (iii) FGS: 60.24%

28

(c) Accuracies when the Fashion-MNIST task uses an FC network. Post-attack

accuracy in the semi-white box case for (i) CW: 8.09% (ii) DF: 7.98% (iii) FGS:

47.48%

(d) Accuracies when the Fashion-MNIST task uses a CNN. Post-attack accuracy

in the semi-white box case for (i) CW: 8.09% (ii) DF: 7.98% (iii) FGS: 47.48%

Fig. 4.1. Performance of the Hidden Layer defense.

The format of presentation of results for the Hidden Layer defense is similar to

the format of presentation of the Cascaded defense, as in Section 3.3. Apart from

the performance of the Hidden Layer defense, we also show the performances of the

29

other three defenses in the plots in Figure 4.1 for comparison. Again, in the legends

of Figure 4.1, ’Dim Red’ corresponds to Dimensionality Reduction.

While defending the MNIST-Digit data, the Hidden Layer defense performs simi-

larly to the Cascaded defense, having an approximately consistent accuracy in differ-

ent scenarios. The only exception is that in the case of a black box FGS attack, this

Hidden Layer defense performs a little worse. While defending the Fashion-MNIST

data, the Hidden Layer defense performs slightly better than the Cascaded defense

in all cases except when the attack is a black box FGS attack crafted using an FC

network.

When the Hidden Layer defense is used in the absence of an attack, its performance

is similar to that of the other defenses, sometimes even better. While using the

Hidden layer defense, processing uncorrupted MNIST-Digit data using an FC-trained

defense and a CNN-trained defense reduces the accuracy by no more than 0.47%

and 2.37% respectively. Processing uncorrupted Fashion-MNIST data using an FC-

trained defense and a CNN-trained defense reduces the accuracy by no more than

3.1% and 4.6% respectively.

Table 4.1.
Training time of defenses for the Cascaded defense and the Hidden
Layer defense, in seconds

Dataset MNIST-Digit Fashion-MNIST

Cascaded defense 333.45 316.38

Hidden Layer defense 268.1 253.48

To sum up, the Hidden Layer defense performs comparably to the Cascaded de-

fense while using less computation. Specifically, the Hidden Layer defense achieves a

19.6% and 19.88% decrease in training time of the defense compared to the Cascaded

defense, for the MNIST-Digit and Fashion-MNIST datasets respectively, as shown in

Table 4.1.

30

The recovery of the accuracy using our defenses is especially visible in the semi-

white box case, when the accuracy with defense drops to the 1%-10% range for the

CW and DF attacks. In fact, we notice that the post-defense accuracy may sometimes

be higher in the semi-white box case, compared to the black box case. This makes us

wonder if a semi-white box attack is indeed always a smarter choice for an attacker

than a black box attack. Perhaps it is important to be prepared to defend against

an attack regardless of whether it was constructed using the victim classifier or a

different classifier, and regardless of which attack algorithm was used. We make such

an attempt in the upcoming chapter.

31

5. DEFENSE IN AN UNCERTAIN SETTING

5.1 Motivation

We observed that the DAE defense performs satisfactorily when the DAE is trained

with an attack generated using the same algorithm and gradients of the same archi-

tecture type as the attacker. However, the defender may not always have knowledge

about the choices of the attacker. It is not necessary that the attacker will use

the most potent attack algorithm known in the literature, which is the CW attack,

since it requires quite a lot of computation, and hence a lot of time to be generated.

Attempting to generate the CW attack using less time would involve reducing the

maximum number of iterations or reducing the number of binary search steps, which

would result in an attack that is weak when tested against a different classifier. To

make this attack stronger without increasing the maximum number of iterations, the

learning rate could be increased. While that would result in a sample that is strongly

attacked, the perturbation would be visible. Hence there is no way around the com-

putational cost if one wants to use the CW algorithm generate a strongly attacked

sample whose perturbation is imperceptible. Moreover, if this attack is performed

during data transmission, a delay in the transmission of data may make the presence

of the attacker more obvious. Thus, even if the attacker had the computational re-

sources, they may have reason to choose a different attack. For example, the attacker

may find it reasonable to use the FGS attack if they need to compute the attack fast,

since the FGS attack involves only one step. The attacker may not find it reasonable

to use the DF attack when they are not using the exact trained victim model to

generate the attack, since this attack is not very transferable.

Further, it may be difficult for the attacker to gain access to the trained model.

Even if the attacker gets this access, they may choose to not use it to generate the

32

attack, for multiple reasons. One reason is that a defense, if it exists, is likely to be

trained using an attack generated using the gradients of the trained victim model.

If faced with an attack which is also generated using gradients of the same trained

network, such a defense will be able to reconstruct the accuracy quite well, as we

saw in Section 4.3. Another reason is that sometimes the defender may train multiple

victim models to perform the same task, and choose one at random during runtime. So

the attacker would not want their attack tailored to only one of those possible victim

models, since other victim models could also be chosen. Moreover, the attacker may

simply realize that maintaining unpredictability in their choices will make it harder

to defend against the attack.

Thus it is important to develop a defense which we can rely on regardless of the

choices made by the attacker. We investigate a setting in which the attacker is free

to choose any attack algorithm and any architecture whose gradients it will use to

generate the attack. We refer to this as a black box setting. Note that this threat

model is a little different from the typical threat model for a black box setting found in

the literature. While other threat models portray the attacker as being disadvantaged

because of limited knowledge of the victim model, we portray the attacker as using this

freedom to be manipulative and unpredictable by not letting the defender make any

assumptions about its behavior. It is very natural for the attacker to use uncertainty

as a weapon, not only when it has limited knowledge of the setting of victim classifier,

but also when it has a significant amount of knowledge. This is because the attacker

is aware that if it behaves in the same manner every time, then the defender will

eventually find a way around it. At that point, the attacker will simply have to play

mysterious.

If the defender knows the details of the attack that the adversary is using, that

attack can be defended against, as we showed in Chapters 4 and 3. Similarly, if

the attacker knows the details of the defense being used, it can craft an adaptive

attack to circumvent the defense, for almost any defense, as outlined in [32]. Then

the winner is the party that finds out about their opponent’s strategy and can act

33

quicker. Preventing the attacker from finding out about the defense strategy is a

problem in the area of network security. Discovering details about the attack that

the attacker is crafting is also a problem in network security. However, apart from

hoping that the attacker does not find out about our defense strategy, and relying on

methods to find out how they crafted the attack, the best we can do is attempt to

craft a defense that is effective regardless of the choices made by the attacker. We

take a step in that direction by training our defense with an ensemble of different

attacks which are crafted by varying the attack algorithm and the architecture type

of the classifier whose gradient is used to generate the attack.

5.2 Procedure

We examine the behavior of a DAE trained to denoise an attack generated using

one attack algorithm or an ensemble of them, and using gradients of one architecture

type, or an ensemble of them. For convenience, we henceforth refer to the variables

attack algorithm and architecture type as defender-determined variables. As specified

earlier, the attack algorithms considered are the Carlini Wagner (CW) algorithm, the

Deepfool (DF) algorithm, and the Fast Gradient Sign (FGS) algorithm. The two

architecture types considered are Fully Connected (FC) Networks and Convolutional

Neural Networks (CNN). The notation 〈list-of-attack-algorithms〉-trained defense is

used to refer to a defense trained with attack(s) generated using specific attack algo-

rithms. Similarly, the notation 〈list-of-architecture-types〉-trained defense is used to

refer to a defense trained with attack(s) generated using specific architecture types.

When we want to specify the architecture type(s) and attack algorithm(s) used to

generate attack(s) to train the defense, the notation 〈list-of-architecture-types〉-〈 list-

of-attack-algorithms〉-trained defense is used. When we want to specify that an attack

was generated using a particular attack algorithm and using gradients of a particular

architecture type, we refer to it as an 〈architecture-type〉-crafted-〈attack-algorithm〉

attack.

34

To test the effectiveness of a defense trained for different choices of the defender-

determined variables, we use DAEs as a candidate defense. We train one DAE cor-

responding to every choice of the defender-controlled variables. The three choices of

an attack algorithm give us 3C1 = 3 ways to consider only one algorithm, 3C2 = 3

ways to consider two algorithms, and 3C3 = 1 way to consider all three algorithms.

This leaves us with seven ways to make a choice for the attack algorithm(s). The two

choices of an architecture type give us 2C1 = 2 ways to consider only one architec-

ture type, and 2C2 = 1 way to consider both architecture types. Thus, for a dataset

where the task can be solved using either FC networks or CNNs, 7 ∗ 3 = 21 different

defenses were trained. For a dataset where the task can be solved using only CNNs,

only 7 ∗ 1 = 7 defenses were trained.

For each defense trained, we tested its effectiveness when a classifier of architecture

type 1 is attacked by an attack generated using gradients of a classifier of architecture

type 2 and using a particular attack type. Here, architecture type 1 and architecture

type 2 may be the same or may be different. When the task can be solved using either

an FC network or a CNN, since the number of possibilities for architecture type 1 and

architecture type 2 is two each, and there are three possible attacks, the number of

scenarios is 2∗2∗3 = 12. In addition, we also tested the scenarios in which the victim

classifier of a particular architecture type is fed with data that is not attacked. Thus

we have a total of fourteen scenarios for a dataset where the classification task can

be solved using either architecture type. For a dataset where the classification task

can be solved using only one architecture type, we have one scenario corresponding

to each of the three attack algorithms, and one scenario corresponding to the case

when the data is unperturbed. This results in four scenarios.

5.2.1 Implementation Details

In this chapter, in addition to using the MNIST-Digit dataset and the Fashion-

MNIST dataset of grayscale images, we also used the CIFAR-10 dataset [41] of color

35

Table 5.1.
CIFAR-10 victim CNN architecture.

(Conv 3x3x32, ELU, BatchNorm)x2

Max Pool 2x2, Dropout (rate = 0.2)

(Conv 3x3x64, ELU, BatchNorm)x2

Max Pool 2x2, Dropout (rate = 0.3)

(Conv 3x3x128, ELU, BatchNorm)x2

Max Pool 2x2, Dropout (rate = 0.4)

(Conv 3x3x128, ELU, BatchNorm)x2

Max Pool 2x2, Dropout (rate = 0.4)

Softmax (10 classes)

images. The CIFAR-10 dataset consists of 60,000 32x32 pixel color images of items

belonging to one of ten categories such as airplane, cat and frog. It has 50,000

training samples and 10,000 test samples. The classification task is to classify the

image into a category.

We use a CNN for the CIFAR-10 classification task, as an FC network would be

insufficient. The victim CNN has an architecture as shown in Table 5.1. The accuracy

of this classifier is 90.44%. The CIFAR-10 DAE was trained not with perturbations

generated using gradients of a single classifier, but with perturbations generated using

gradients of multiple classifiers. To obtain variations of this architecture to train the

CIFAR-10 defense, an extra (Conv 3x3xz, ELU, BatchNorm) sequence is added after

the second, fourth, or sixth such sequence, where z is the number of filters in the

convolutional layer preceding the first added convolutional layer. These variations

are used only to train the defense, and not to generate attacks to test the defense

against. They achieve accuracies of 90.93%, 90.33% and 90.18% respectively. The

adversary’s architecture is obtained by adding such a sequence after the eighth such

sequence. It achieved an accuracy of 89.85%. Note that ELU refers to Exponential

36

Linear Unit activation and BatchNorm refers to Batch Normalization, both of which

are described in the Appendix.

All of these CNNs were trained for 225 epochs with a batch size of 64, with

categorical crossentropy loss, and the Root Mean Square Prop (RMSProp) optimizer

which starts with a learning rate of 0.001 and decays it with a learning rate of 10−6.

Data augmentation was performed prior to feeding the CIFAR-10 data into the CNN,

through rotations of up to 15 degrees, width/height shifts of up to 10% of the original,

and horizontal flips.

Table 5.2.
CIFAR-10 DAE architecture.

Conv 3x3x64, ReLU

Conv 3x3x32, ReLU

Max Pool 2x2

Conv 3x3x3, ReLU

Conv 3x3x32, ReLU

Upsampling 2x2

Conv 3x3x64, ReLU

Conv 3x3x64, Sigmoid

The DAE used to denoise CIFAR-10 data has architecture as shown in Table 5.2.

As mentioned earlier, it was trained with data that is perturbed using gradients of

three different classifiers apart from the victim classifier. It was trained for 150 epochs

with a batch size of 256, with MSE loss and Adam optimizer, which uses a learning

rate of 0.001.

Details of attack generation remain the same as described in Subsection 3.2.1.

One exception is that the learning rate of CW attack was set to 0.3 for the Fashion-

MNIST dataset, since a learning rate of 0.1 generated a very weak attack. For the

CIFAR-10 dataset, the l2 norm of the FGS attack was set to 1.7. Examples of such

37

Fig. 5.1. Images from the CIFAR-10 dataset attacked with the FGS
algorithm with an l2 norm of 1.7. The upper row has unperturbed
images. The lower row has perturbed images.

38

perturbed samples can be found in Figure 5.1. For this dataset, the CW attack was

generated with 6 binary search steps, a maximum of 10000 iterations, a learning rate

of 0.7, a batch size of 25, an initial constant of 0.001, and the abort early parameter

was set to True.

5.3 Results

5.3.1 Performance Metric

As shown in Figure 5.2, when the attacker generates an attack using the same

architecture type as the victim classifier’s, it reduces the accuracy significantly, in

which case our defense increases the accuracy quite a bit. This is especially visible

for the MNIST-Digit dataset. When the attacker uses a different architecture type to

generate the attack, the attack is weaker, and our defense does not have much to do. In

some cases when the attack is very weak (example: CNN attacked by FC-crafted DF)

or when there is no attack, using our defense may even decrease the accuracy a little

bit. This is why it may be a good idea to only use a defense if the test-time accuracy

is significantly lower than the validation accuracy. This figure is also important in

giving us a sense of what to expect from our defense in any given scenario. No matter

how strong the attack is, our defense is always able to recover the accuracy to above

92% for the MNIST-Digit dataset, and to above 73% for the Fashion-MNIST dataset.

However, among the differently trained DAEs, some perform better than others in

different scenarios. For example, with the Fashion-MNIST dataset, in the scenario of

a CNN being attacked by a CNN-crafted DF attack, a DAE trained with the FGS

and DF attacks on a CNN increases the accuracy to 81.2%, but a DAE trained with

the FGS attack on a CNN is only able to increase the accuracy to 62.6%. Hence,

investigating the performance of each defense in a given scenario may go a long way

in making a wise choice of a defense.

For a particular defense, we define the accuracy change as the change in accuracy

from the no-defense case. This is calculated by subtracting the pre-defense accu-

39

(a) Accuracies for the MNIST-Digit dataset.

(b) Accuracies for the Fashion-MNIST dataset.

Fig. 5.2. Accuracies of all considered defenses in all considered sce-
narios for the MNIST-Digit and Fashion-MNIST datasets.

racy from the post-defense accuracy. This accuracy change is positive if the defense

increases the accuracy, and negative if it decreases the accuracy. In a particular sce-

nario, to measure the accuracy change resulting from a specific defense relative to the

40

accuracy change resulting from other defenses, we normalize the accuracy changes for

all defenses in a particular scenario as follows:

normalized accuracy change =
acc−min(acc)

max(acc)−min(acc)
(5.1)

where acc is a vector consisting of accuracy changes for each defense corresponding

to a particular scenario, whose minimum value is min(acc), and maximum value is

max(acc).

This normalized accuracy change conveys the extent to which a particular defense

is effective in a given scenario, relative to the other defenses. The value of this metric

lies between 0 and 1. In a given scenario, it is 0 for the weakest defense, and 1 for

the strongest defense. When calculating the normalized accuracy change, we consider

only the DAE defenses, and not the Dimensionality Reduction defense.

5.3.2 Varying the Architecture Type

41

(a) Normalized accuracy changes when using defenses trained with the CW attack for the MNIST-

Digit dataset.

(b) Normalized accuracy changes when using defenses trained with the CW attack for the Fashion-

MNIST dataset.

42

(c) Normalized accuracy changes when using defenses trained with the DF attack for the MNIST-

Digit dataset.

(d) Normalized accuracy changes when using defenses trained with the DF attack for the Fashion-

MNIST dataset.

43

(e) Normalized accuracy changes when using defenses trained with the FGS attack for the MNIST-

Digit dataset.

(f) Normalized accuracy changes when using defenses trained with the FGS attack for the Fashion-

MNIST dataset.

Fig. 5.3. Normalized accuracy changes when using an FC-CNN-trained defense.

Figure 5.3 shows the normalized accuracy changes separately for all defenses in

whose training a particular attack algorithm was involved. Since we are considering

44

the MNIST-Digit dataset and the Fashion-MNIST dataset, we consider all fourteen

scenarios in which we vary the architecture type chosen by the adversary, the archi-

tecture type of the victim network, and the attack algorithm (if any) chosen by the

attacker. We only show the performances of the defenses that were trained using

attacks generated using gradients of both architecture types. This is because these

defenses perform better than defenses trained using attacks generated using gradients

of only one architecture type. This is made obvious by the fact that the normalized

accuracy changes of the FC-CNN-trained defenses are generally above 0.4. The only

exceptions are for the Fashion-MNIST dataset, when a DF-trained DAE is used to

defend an FC network against an FC-crafted FGS, and when an FGS-trained DAE

is used. This means that the lower normalized accuracy changes correspond to the

FC-trained defenses and the CNN-trained defenses.

Among all defenses trained with the CW attack, the CW-DF-FGS-trained defense

performs the best, as shown in Figures 5.3(a) and 5.3(b). The only scenarios in which

this defense does not perform well is when the pre-defense accuracy is high, which

may be caused by a weak attack, or by unattacked data. Specifically, this is seen

for the MNIST-Digit dataset when a CNN is attacked by an FC-crafted CW attack,

and when there is no attack on an FC classifier. When the pre-defense accuracy is so

high, this defense would not be even used in the first place. For all other scenarios,

the normalized accuracy change of the CW-DF-FGS-trained defense is well above 0.6

for both datasets. The remaining three defenses also deliver reasonable performance,

maintaining normalized accuracy changes above 0.5 for both datasets, with one slight

exception. For the Fashion-MNIST dataset, the CW-trained DAE’s performance is

not as good as the other two defenses’.

As shown in Figures 5.3(c) and 5.3(d), among all defenses trained with the DF

attack, the CW-DF-FGS-trained defense performs well, for both datasets, as noted

earlier. For the MNIST-Digit dataset, the CW-DF-trained defense also has reason-

able performance, compared to other defenses. The DF-trained defense’s normalized

accuracy change drops down to values lower than 0.5 not only when the attack is

45

weak but also when an FC network is attacked by an FC-crafted CW attack. While

the FGS-DF defense performs quite well in some scenarios, this defense also has a

weak point when an FC network is attacked by an FC-crafted CW attack. For the

Fashion-MNIST dataset, both the DF-trained DAE and the CW-DF-trained DAE

have a harder time defending against the FGS attack than defending against other

attacks. Other than that, all the FC-CNN-trained DAEs in whose training the DF

attack was involved perform fairly well.

Among all defenses trained with the FGS attack, the CW-DF-FGS-trained de-

fense again performs better among the rest, for both datasets, as shown in Figures

5.3(e) and 5.3(f). For the MNIST-Digit dataset, the remaining three defenses perform

reasonably, maintaining normalized accuracy changes above 0.5, except one scenario

for the FGS-DF-trained defense, as noted earlier. For the Fashion-MNIST dataset,

all defenses have very good and similar performances except the FGS-trained de-

fense, whose performance is less satisfactory, almost always maintaining a normalized

accuracy change below 0.5.

In summary, when considering FC-CNN-trained defenses, all defenses trained with

the CW attack seem to perform satisfactorily in defending against strong attacks,

saving one slight exception, where satisfactory performance is defined as have a nor-

malized accuracy change of more than 0.5. This is especially true of the defenses

trained with more than one attack algorithms. Overall, the FC-CNN-CW-DF-FGS-

trained defense seems capable of maintaining a reasonable performance consistently,

in all scenarios in which a defense is likely to be used.

5.3.3 Varying the Attack

46

(a) Normalized accuracy changes for the MNIST-Digit dataset.

(b) Normalized accuracy changes for the Fashion-MNIST dataset.

47

(c) Normalized accuracy changes for the CIFAR-10 dataset. The num-

ber in parentheses after each scenario description indicates the post-

attack accuracy with no defense. This is important to measure how

strong the attack is.

Fig. 5.4. Normalized accuracy changes when using a CW-DF-FGS-trained defense.

Figure 5.4 shows the normalized accuracy changes when a defense trained with all

three attacks is used. For the MNIST-Digit and Fashion-MNIST datasets, since we

have established that a CW-DF-FGS-trained defense performs better than a defense

trained using only one or two attack algorithms, we show the performances of only

the CW-DF-FGS-trained defenses in Figures 5.4(a) and 5.4(b). We find that the

FC-trained defense has a tendency to work well when the attack is generated using

gradients of an FC network. Likewise, the CNN-trained defense has a tendency to

work well when the attack is generated using gradients of an CNN. These tendencies

are especially prominent when using the MNIST-Digit dataset. However, the FC-

CNN-trained defense maintains a consistently high normalized accuracy change in all

scenarios.

Figure 5.4(c) shows the performances of all defenses trained for the CIFAR-10

dataset. With this dataset, we are only able to consider the four scenarios in which

the attacker varies its choice of the attack algorithm (if any). This is because the

architecture type cannot be varied for this dataset. The CW-DF-FGS-trained defense

48

performs reasonably in the presence of a strong attack. Many of the other defenses

also perform well, or even better. The DF-trained defense is consistently the lowest

performing defense in the presence of an attack. Other than that, selectively training

a defense with some specific attack algorithm(s) does not seem to influence the effec-

tiveness of the defense. This is not surprising, since we adjusted the hyperparameters

of each attack algorithm such that all of them have similar levels of perceptibility,

and hence similar levels of strength.

5.4 Conclusion

In conclusion, if there is a possibility of using multiple architecture types to solve

the classification task, then the defense should be trained with attacks generated

using gradients of different architecture types. Regarding the choice of the attack

algorithm used to train the defense, using a ensemble of the three attack algorithms

may be likely to perform reasonably when the attack is strong. To determine if the

attack (if any) is strong, the test-time accuracy can be compared to the validation

accuracy. If the test-time accuracy is significantly lower than the validation accuracy,

then using the defense is a good idea.

We make our suggestions with the assumption that all scenarios are equally likely.

However, depending on the application, the defender may have some prior belief

about which scenarios are more likely than others. In such cases, the results of our

experiments in different scenarios may be valuable to determine an appropriate way

to train the defense.

49

6. DISCUSSION

We have proposed a defense that is successful in reducing the training time of the

classifier, apart from building robustness against adversarial attacks. Further, we

suggested a modification of this defense to reduce the training time of the defense

itself, for a small price in the performance of the defense. However, our defense only

works well when we train it with attack(s) generated using the gradients of the same

architecture type and same attack algorithm that the attack is generated with. In

light of the realization that the attacker can vary these parameters unpredictably, we

investigated the performance of our defense in multiple scenarios, where the attacker

differs their choices. We trained our defense using an ensemble of attacks generated

using gradients of different architecture types, and using different attack algorithms.

We found that a defense that is trained with attacks generated using gradients of mul-

tiple architecture types that can solve the task, and using different attack algorithms,

performs reasonably well in all scenarios where the attack is strong.

A caveat of our defense is that it performs questionably when the attack is weak, or

when there is no attack. This is why it is important to only deploy our defense when

there is a nontrivially strong attack. The most straightforward way to detect such an

attack (if any) is to compare the test time accuracy of the classifier to the validation

accuracy, without the use of a defense. If the test time accuracy is significantly lower,

that indicates the need to use a defense because of the presence of a nontrivially

strong attack.

Another contribution of this work is that we identify the scenarios in which Back-

ward Pass Differentiable Approximation (BPDA) may or may not work, as described

in Section 2.3. BPDA can easily be overcome if the defender has a variety of defenses

available, and randomly chooses one at runtime. As outlined in Section 2.2, there

is a large body of existing defenses against adversarial attacks, where each defense

50

has its own strengths and weaknesses. Our DAE defense contributes to this body of

defenses, out of which some defenses can be made available for random selection at

test time. Such a randomized defense may be viewed by the attacker as a stochastic

gradient, and they will attempt to overcome this by applying Expectation over Trans-

formation (EOT) over all the transformations that the defenses perform. However,

if we carefully select defenses that perform distinct transformations, the expectation

will provide a very inaccurate estimate of the true gradient. Hence the attacker’s

strategy to overcome such an obfuscated gradient will fail, even if the attacker has

access to all of the trained defenses.

Of course, every defense has its own limitations. If the attacker is able to manipu-

late the seed of the random number generator which determines which defense to use

at test time, then they can craft an attack to overcome this defense. However, this

would be really hard to do for the attacker. A question that is open to discussion is

what a realistic threat model is. This may vary depending on the application, and

will only become clearer once adversarial attacks are seen in practice. Considering

this, we have kept an open mind about the reasonableness of different threat mod-

els, and have experimented with different ways to train and deploy the Denoising

Autoencoder defense.

REFERENCES

51

REFERENCES

[1] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R. Fergus, “Intriguing properties of neural networks,” 2013.

[2] P. Tabacof and E. Valle, “Exploring the space of adversarial images,” in 2016
International Joint Conference on Neural Networks (IJCNN), vol. 2016-. IEEE,
2016, pp. 426–433.

[3] S. Jha and E. J. Topol, “Adapting to artificial intelligence: Radiologists and
pathologists as information specialists,” JAMA, vol. 316, no. 22, pp. 2353–2354,
2016.

[4] M. Abramoff, “Fda clears ai-based device to detect diabetes-related eye prob-
lems.(lab notes)(artificial intelligence),” Clinical Lab Products, vol. 48, no. 4,
p. 6, 2018.

[5] S. G. Finlayson, H. W. Chung, I. S. Kohane, and A. L. Beam, “Adversarial
attacks against medical deep learning systems,” 2018.

[6] M. Gopikrishnan and T. Santhanam, “Improved biometric recognition and iden-
tification of human iris patterns using neural networks,” Journal of Algorithms
and Computational Technology, vol. 6, no. 3, pp. 411–420, 2012.

[7] F. Sadikoglu and S. Uzelaltinbulat, “Biometric retina identification based on
neural network,” Procedia Computer Science, vol. 102, pp. 26–33, 2016.

[8] J. Chen, Z. Mao, W. Yao, and Y. Huang, “Eeg-based biometric identification
with convolutional neural network,” Multimedia Tools and Applications, pp. 1–
21, 2019. [Online]. Available: http://search.proquest.com/docview/2174599557/

[9] G. K. Dziugaite, Z. Ghahramani, and D. M. Roy, “A study of the effect of jpg
compression on adversarial images,” 2016.

[10] N. Das, M. Shanbhogue, S.-T. Chen, F. Hohman, L. Chen, M. E. Kounavis,
and D. H. Chau, “Keeping the bad guys out: Protecting and vaccinating deep
learning with jpeg compression,” 2017.

[11] W. Xu, D. Evans, and Y. Qi, “Feature squeezing:detecting adversarial examples
in deep neural networks,” in 2018 Network and Distributed Systems Security
Symposium (NDSS), vol. 2018-, 2018.

[12] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille, “Adversarial
examples for semantic segmentation and object detection,” arXiv.org, 2017.
[Online]. Available: http://search.proquest.com/docview/2076083509/

52

[13] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry, “Robustness
may be at odds with accuracy,” arXiv.org, 2019. [Online]. Available:
http://search.proquest.com/docview/2073804650/

[14] X. Li and F. Li, “Adversarial examples detection in deep networks with convo-
lutional filter statistics,” in 2017 IEEE International Conference on Computer
Vision (ICCV), vol. 2017-. IEEE, 2017, pp. 5775–5783.

[15] J. Lu, T. Issaranon, and D. Forsyth, “Safetynet: Detecting and rejecting adver-
sarial examples robustly,” in 2017 IEEE International Conference on Computer
Vision (ICCV), vol. 2017-. IEEE, 2017, pp. 446–454.

[16] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adver-
sarial examples,” 2014.

[17] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: A simple and
accurate method to fool deep neural networks,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), vol. 2016-. IEEE, 2016,
pp. 2574–2582.

[18] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural net-
works,” 2016.

[19] N. Papernot, P. Mcdaniel, X. Wu, S. Jha, and A. Swami, “Distillation
as a defense to adversarial perturbations against deep neural networks,” in
IEEE Symposium on Security and Privacy (SP), 2016, pp. 582–597. [Online].
Available: http://search.proquest.com/docview/1835565498/

[20] T. Na, J. H. Ko, and S. Mukhopadhyay, “Cascade adversarial machine learning
regularized with a unified embedding,” 2017.

[21] H. Lee, S. Han, and J. Lee, “Generative adversarial trainer: Defense to adver-
sarial perturbations with gan,” 2017.

[22] A. N. Bhagoji, D. Cullina, C. Sitawarin, and P. Mittal, “Enhancing robustness
of machine learning systems via data transformations,” in 2018 52nd Annual
Conference on Information Sciences and Systems (CISS). IEEE, 2018, pp. 1–5.

[23] R. Sahay, R. Mahfuz, and A. E. Gamal, “Combatting adversarial attacks through
denoising and dimensionality reduction: A cascaded autoencoder approach,”
in 2019 53rd Annual Conference on Information Sciences and Systems (CISS).
IEEE, 2019, pp. 1–6.

[24] U. Shaham, J. Garritano, Y. Yamada, E. Weinberger, A. Cloninger, X. Cheng,
K. Stanton, and Y. Kluger, “Defending against adversarial images using basis
functions transformations,” 2018.

[25] R. Shin and D. Song, “Jpeg-resistant adversarial images,” in Advances in Neural
Information Processing Systems 30, 2017.

[26] D. Meng and H. Chen, “Magnet: A two-pronged defense against adversarial
examples,” in Proceedings of the 2017 ACM SIGSAC Conference on computer
and communications security, ser. CCS ’17. ACM, 2017.

53

[27] F. Liao, M. Liang, Y. Dong, T. Pang, X. Hu, and J. Zhu, “Defense against
adversarial attacks using high-level representation guided denoiser,” 2017.

[28] V. Nair and G. Hinton, “Rectified linear units improve restricted boltzmann
machines,” vol. 27, 06 2010, pp. 807–814.

[29] N. Carlini and D. Wagner, “Magnet and ”efficient defenses against adversarial
attacks” are not robust to adversarial examples,” 2017.

[30] P. Samangouei, M. Kabkab, and R. Chellappa, “Defense-gan: Protecting
classifiers against adversarial attacks using generative models,” arXiv.org, 2018.
[Online]. Available: http://search.proquest.com/docview/2073468217/

[31] G. Jin, S. Shen, D. Zhang, F. Dai, and Y. Zhang, “Ape-gan: Adversarial per-
turbation elimination with gan,” in ICASSP 2019 - 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), vol. 2019-.
IEEE, 2019, pp. 3842–3846.

[32] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a false sense
of security: Circumventing defenses to adversarial examples,” 2018.

[33] J. Buckman, A. Roy, C. Raffel, and I. Goodfellow, “Thermometer
encoding: One hot way to resist adversarial examples,” in Interna-
tional Conference on Learning Representations, 2018. [Online]. Available:
https://openreview.net/forum?id=S18Su–CW

[34] C. Guo, M. Rana, M. Cisse, and L. van der Maaten, “Countering adversarial
images using input transformations,” 2017.

[35] G. S. Dhillon, K. Azizzadenesheli, J. D. Bernstein, J. Kossaifi, A. Khanna,
Z. C. Lipton, and A. Anandkumar, “Stochastic activation pruning for robust
adversarial defense,” in International Conference on Learning Representations,
2018. [Online]. Available: https://openreview.net/forum?id=H1uR4GZRZ

[36] C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. Yuille, “Mitigating adversarial effects
through randomization,” in International Conference on Learning Representa-
tions, 2018. [Online]. Available: https://openreview.net/forum?id=Sk9yuql0Z

[37] Y. Song, T. Kim, S. Nowozin, S. Ermon, and N. Kushman, “Pixeldefend:
Leveraging generative models to understand and defend against adversarial
examples,” in International Conference on Learning Representations, 2018.
[Online]. Available: https://openreview.net/forum?id=rJUYGxbCW

[38] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010. [Online].
Available: http://yann.lecun.com/exdb/mnist/

[39] H. Xiao, K. Rasul, and R. Vollgraf. (2017) Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms.

[40] N. Papernot, F. Faghri, N. Carlini, I. Goodfellow, R. Feinman, A. Kurakin,
C. Xie, Y. Sharma, T. Brown, A. Roy, A. Matyasko, V. Behzadan, K. Ham-
bardzumyan, Z. Zhang, Y.-L. Juang, Z. Li, R. Sheatsley, A. Garg, J. Uesato,
W. Gierke, Y. Dong, D. Berthelot, P. Hendricks, J. Rauber, and R. Long, “Tech-
nical report on the cleverhans v2.1.0 adversarial examples library,” arXiv preprint
arXiv:1610.00768, 2018.

54

[41] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (cana-
dian institute for advanced research).” [Online]. Available:
http://www.cs.toronto.edu/ kriz/cifar.html

APPENDICES

55

A. COMMON ACTIVATION FUNCTIONS USED

Rectified Linear Unit (ReLU): The ReLU function is defined as:

ReLU(s) = max(x, s) (A.1)

Softmax: For a vector v with m elements, the softmax function for any element vi

is defined as:

softmax(vi) =
exp(vi)∑m
j=1 exp(vj)

, i ∈ 1, ...,m (A.2)

Sigmoid: The sigmoid function is defined as:

σ(x) =
1

1 + e−x
(A.3)

Exponential Linear Unit (ELU): Exponential Linear Unit (ELU) activation

is defined as:

ELU(x) =

x x ≥ 0

α(ex − 1) otherwise
(A.4)

56

B. COMMON LOSS FUNCTION USED

Categorical Crossentropy: For a dataset with N samples xi, where iε[1, n], when

the model predicts the probability of sample xi belonging to class k as p(yi, k), cate-

gorical crossentropy loss is defined as:

loss = − 1

N

N∑
i=1

log(p(yi, ci)) (B.1)

where ci is the true class label for data sample xi.

Mean Squared Error (MSE): Given the target label vector ŷ and the computed

label vector y of length len(y), the MSE loss of y with respect to ŷ is calculated as:

loss =
||y − ŷ||2
len(y)

(B.2)

57

C. COMMON OPTIMIZERS USED

Adam: The Adam optimizer works by maintaining an exponentially weighted aver-

age v of past gradients, and another exponentially weighted average s of squares of

past gradients. Hyperparameters β1 and β2 are respectively used to decide how much

to change v and s in each step. Mathematically, this can be expressed as:

v = β1v + (1− β1)(
∂J

∂W
) (C.1)

s = β2s+ (1− β2)(
∂J

∂W
)2 (C.2)

Here, J is the loss function and W is the weight matrix. Next, to reverse the bias

towards zero, we compute v̂ and ŝ as follows:

v̂ =
v

1− (β1)t
(C.3)

ŝ =
s

1− (β2)t
(C.4)

where t is an index which increments each time v or s is updated. Finally, the weight

matrix W is updated as:

W = W − α v̂√
ŝ+ ε

(C.5)

where ε is a small value to avoid division by zero.

Root Mean Square Prop (RMSProp): The RMSProp optimizer works by

dividing the learning rate by an exponentially weighted average s of the squares of

past gradients. Updating this average requires choosing a hyperparameter β to decide

how much to modify the average with the square of the gradient. Mathematically,

the weight matrix W is updated as:

W = W − α√
s+ ε

(
∂J

∂W
) (C.6)

58

where J is the loss function, and ε is a small value to avoid division by zero. The

exponentially weighted average s is updated as follows:

s = βs+ (1− β)(
∂J

∂W
)2 (C.7)

59

D. COMMON LAYERS USED

Batch Normalization: Batch Normalization involves computing the mean µ and

variance σ2 of a minibatch, and transforming each data sample xi in the minibatch

to x̂i as follows:

x̂i = γ(
xi − µ√
σ2 + ε

) + β (D.1)

where γ and β are hyperparameters to be tuned.

