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ABSTRACT 

Plant root phenotyping technologies play an important role in breeding, plant 

protection, and other plant science research projects. The root phenotyping customers 

urgently need technologies that are low-cost, in situ, non-destructive to the roots, and suitable 

for the natural soil environment. Many recently developed root phenotyping methods such as 

minirhizotron, CT, and MRI scanners have their unique advantages in observing plant roots, 

but they also have disadvantages and cannot meet all the critical requirements 

simultaneously. The study in this paper focuses on the development of a new plant root 

phenotyping robot that is minimally invasive to plants and working in situ inside natural soil, 

called “MISIRoot”. The MISIRoot system (patent pending) mainly consists of an industrial-

level robotic arm, a mini-size camera with lighting set, a plant pot holding platform, and the 

image processing software for root recognition and feature extraction. MISIRoot can take 

high-resolution color images of the roots in soil with minimal disturbance to the root and 

reconstruct the plant roots’ three-dimensional (3D) structure at an accuracy of 0.1 mm. In a 

test assay, well-watered and drought-stressed groups of corn plants were measured by 

MISIRoot at V3, V4, and V5 stages. The system successfully acquired the RGB color images 

of the roots and extracted the 3D points cloud data which showed the locations of the 

detected roots in the soil. The plants measured by MISIRoot and plants not measured 

(controls) were carefully compared with Purdue’s Lilly 13-4 Hyperspectral Imaging Facility 

(reference). No significant differences were found between the two groups of plants at 

different growth stages. Therefore, it was concluded that MISIRoot measurements had no 

significant disturbance to the corn plant’s growth. 
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1. INTRODUCTION 

Plant phenotyping technology has been playing an important role in assisting 

researchers studying the connections between plant phenotypes and genotypes (Cobb et al., 

2013). This technology can monitor a plant’s physical growing condition (Yang et al., 2013), 

predict nutrient deficiencies (Paez-Garcia et al., 2015), and detect plant diseases (Cobb et al., 

2013). Plant root is a type of organ that mostly grows in the soil, which works to acquire 

water and nutrients from the living environment (Uga et al., 2013; Zarebanadkouki et al., 

2016), sense the environment(Hashiguchi et al., 2013), and forward sensing messages to the 

plant body (DREW, 1990). In addition, the root network is the base foundation that supports 

the above-ground plant body to stand firmly (Crook and Ennos, 1994) and to withstand 

natural hazard like strong wind and drought stress (Crook and Ennos, 1994; Ryan et al., 

2016). Thus, studying the plant root phenotypes is critical for learning more about plant 

growing health, bidirectional influences between soil content effect and plant roots, and 

symbiotic relationship between root and Rhizobia (De Baets et al., 2008; Cheol Song et al., 

2016).   

However, development of root phenotyping methods severely falls behind the 

demands from plant researchers due to many challenges including: 1) Plant roots are 

naturally growing in opaque soil, which makes it difficult to directly image root. 2) Unlike 

the stem and leaves structure of a plant that are above the ground, it is hard to detect the 

complex 3-dimensional morphological patterns of underground roots. 3) The complexity of 

soil environment and the softness of root body makes it difficult to measure roots in a non-

destructive way or in situ. 

In recent years, researchers have developed several progressive methods that could 

overcome certain aspects of challenges for plant root phenotyping. For example, growing the 

plants in a transparent medium offers the convenience for researchers to image the plant roots 

directly without being blocked by the opaque soil (Clark et al., 2011; Iyer-Pascuzzi et al., 

2013). However, the gel-based or liquid-based medium can be far from comparable with the 

real natural soil. As a result, plant roots could grow differently in those two mediums because 

of soil’s differences in physical, chemical, and biological characteristics. In a currently 

popular type of method called “minirhizotron” (Amato et al., 2012; Lu et al., 2019; Pateña 

and Ingram, 2000), researchers buried transparent plastic tubes with camera or deployed 

several miniature cameras directly into soil, and then waited for the roots to come close 



 

7 
 

enough for being imaged (Lu et al., 2019). Minirhizotron has the advantages that it can 

measure the root structure in situ and with natural soil. However, with the hard materials like 

plastic tubes or circuit boards buried in the soil, plant roots can be misled and redirected off 

their original growing paths. As a result, the root poses that the plant was intended to grow 

may be lost. Other most recent technologies such as X-ray Computed Tomography (X-ray 

CT) (Mairhofer et al., 2013; Mooney et al., 2012) and Magnetic Resonance Imaging (MRI) 

can provide high resolution 3D data of the plant root structures in natural soil (Pflugfelder et 

al., 2017), and overcome most of the challenges described above (Metzner et al., 2015). 

However, there are still unsolved major challenges that could prevent most of the researchers 

from being able to use these technologies. X-ray CT and MRI system typically have: 1) 

extremely high price for both software and hardware system, 2) large system size which 

makes it hard to be constructed or transported, 3) a challenge that the data quality could be 

dramatically influenced by the properties of soil (Zappala et al., 2013), 4) safety-risky usage 

of radioactive materials in X-ray CT, and 5) safety-risky usage of strong magnet in MRI. 

Since all these methods have their unique advantages but also disadvantages, researchers are 

demanding a better solution that can overcome as many challenges as described above.  

This paper introduces a relatively low-cost and easy-to-implement method that can 

collect color digital images of the plant roots within the original soil environment and 

reconstruct the 3D structure of the root without damaging the roots or changing their original 

poses. This method utilizes an industrial level robotic arm to hold a miniature camera and 

repeatedly inserting the camera into the soil to certain positions while recording frames with 

3D coordinates of each image. The real-world implementation of this method is called 

‘MISIRoot’ in this paper. In the most recent experiment, it successfully generated a 3D point 

cloud of a corn plant and collected many high-resolution 3D-positioned color images of the 

plant roots. The point cloud can help researchers measure the morphological features of the 

plant root in terms of depth, width, density distribution and so on. The roots’ surface texture 

and their living environment in the soil can be clearly observed from the color images. 
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2. MATERIALS AND METHODS 

In general, MISIRoot takes several color images (RGB) on corn plant roots by 

controlling a robotic arm to insert a mini-size RGB camera into the soil media where the corn 

root exists. It records the Cartesian X, Y, and Z coordinates of the camera tip position when 

taking each image. All the images and coordinates data are directly saved into the computer’s 

hard disk as Portable Network Graphic (PNG) and Comma-Separated Values (CSV) files 

respectively, which could be easily accessed for further processing. A software program was 

developed to process the images and their positions data to calculate various root feature 

results.  

A provisional patent application was filed by Purdue University for the design of the 

MISIRoot system in 2019.  

  



 

9 
 

2.1. Hardware system design 

 

Fig. 1. Hardware system design of the MISIRoot system 

(a) Detailed view of component No. 3,  

(b) MISIRoot system overview,  

(c) Detailed view of component No. 5. 

1.     Robotic arm (Universal Robot Inc., UR10) 

2.     System base (Vention Inc., Aluminum frames) 

3(a). Experiment platform (10. Pot clamp, 11. Support panel, 12. Support frames) 

4.     Virtual plant pot in position  

5(c). Imaging head (6. Mounting panel, 7. Aluminum T-slotted frame, 8. Stainless-steel tube,                  

9. Endoscope camera head) 

 

The system was carefully designed to capture root images of a plant in the soil with 

minimum impact to the plant’s growth. MISIRoot continuously takes measurements 

automatically by inserting a tiny camera facing vertically downwards to capture images near 

the plant roots. Fig. 1 shows the design of the hardware system which consists of four main 

components, including a robotic arm, a system base, an experiment platform, and an imaging 

head.  
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2.1.1. Robotic Arm and system base 

The robotic arm works as one of the most important components of the MISIRoot 

system. The robotic arm, which is UR10 (Universal Robots Inc.), was carefully chosen to 

meet many requirements of the system design. Some of the key specifications of this robotic 

arm are listed in the Table 1. In terms of the hardware, it has enough payload and power for 

holding and stabbing the imaging head into soil, enough moving speed to ensure high 

throughput, enough movement range to cover the whole sampling region, and enough degrees 

of freedom for taking measurements at specific gestures. As for the software, it has an 

accurate control system to minimize the measurement errors when the robotic arm repeatedly 

performs inserting and pulling actions. It has a high-frequency feedback system for sending 

position and counter-acting force information to the user interface, which helps the researcher 

record the 3D coordinates of each image and check the system’s real-time status. In the 

MISIRoot system, a virtual boundary and a force limit was set in the UR10 control system so 

that if the robotic arm moves out of the safety range or encounters a force larger than 10 

newtons, the system would be emergently stopped.  

System base is a compact base structure mainly consisting of multiple aluminum 

extrudes, connection parts, and wheels. It serves as a stable supporting platform during 

experiments and the system can be easily transported between the research lab and the 

greenhouse with its wheels. 
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Table 1. Technical specifications of the UR10 robotic arm. 

Specifications values 

Weight 28.9 kg / 63.7 lbs. 

Payload 10 kg / 22 lbs. 

Reach 1300 mm / 51.2 in 

Join ranges +/- 360° 

Speed 
Base and shoulder: 120 °/s. Elbow and 

wrists:180 °/s. Tool: typical 1 m/s / 39.4 in/s 

Repeatability +/- 0.1 mm / +/- 0.0039 in (4 miles) 

Degrees of freedom 6 rotating joints 

Communications 
TCP/IP 100Mbit: IEEE 802.3u, 100BASE-TX 

Ethernet socket & Modbus TCP 

Programming 
Polyscope graphical user interface on 12 in touch 

screen with mounting 

International protection classification IP54 

Working temperature 0 – 50 °C 

  

2.1.2. Experiment platform 

Since the MISIRoot system records the 3D coordinates of the imaging head while 

taking each image, a 3D cartesian coordinate system was established for the system. 

Referring to Fig. 1., the main vertical beam is a 45 mm × 90 mm T-slotted frame (McMaster-

Carr Inc.), mounted firmly on the system base. Located at the top of the main beam is a 7075-

aluminum square shape panel and a set of pot clamps designed so that the plant pot can be 

easily and firmly mounted at a proper position. 
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2.1.3. Imaging head 

 
Fig. 2. Endoscope camera with cable, cable converter, and LED brightness controller. 

(a) Detailed view of the camera head,  

(b) Overview of the endoscope camera. 

1.     Camera cable to USB 2.0 converter 

2.     LED brightness controller 

3.     USB 2.0 (male) 

4(a). Camera head (5. A ring of 6 LEDs, 6. Camera and lens, 7. Stainless-steel cover) 

 

As shown in Fig. 2., the imaging head consists of an aluminum T-slotted frame, a 

stainless-steel tube, and an endoscope camera with its cable going through the stainless-steel 

tube. As the most important component of this subsystem, the endoscope camera was 

carefully selected and redesigned by outside service based on many requirements of 

MISIRoot’s system design. First, the size (diameter) of the camera should be as small as 

possible, so that the measurement impact on soil environment can be minimized. The camera 

chosen in MISIRoot has a diameter of 3.95 mm, which is comparable with the size of a 

typical earthworm. Second, the camera’s pixel resolution is 640 × 480, which is clear enough 

for researchers to view plant roots in the 5 mm diameter tunnel created by the camera head. 

Third, the camera head is equipped with a set of 6 white Light-Emitting Diodes (LEDs), 

which ensures the visibility when working inside the soil. The LEDs are bright enough that 

the exposure time can be set to lower than 1/60 seconds to avoid blurry images. Because of 

LEDs’ characteristic of low-power-consumption, the lights do not generate significant heat 

and will not burn the roots. Fourth, the camera head is tightly wrapped with a 5 mm outer-
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diameter stainless-steel tube for protecting the lens when being inserted into soil. Fifth, the 

camera has a fixed focal length, a fixed aperture size and a small field of view. For an object 

in an image to be well focused, the distance between the object and the camera’s tip should 

be 3 mm. Thus, if the image contains a root with clear edges, it means that the root is 3 mm 

away from the camera tip. As the 3D position and 3-axial directions of the camera tip are 

known, the position of detected root can be calculated accordingly. 

 

Table 2. Technical specifications of the endoscope camera 

Specifications values 

Total length 2520 mm 

Length of the metal cover 28.3 mm 

Camera head diameter 3.95±0.05 mm 

Stainless-steel tube size 
4.39 mm inside diameter, 

5.16±0.003 mm outside diameter 

Censor resolution 640 × 480 pixels 

Censor type RGB CCD 

Focal Length 4 mm 

Total power consumption 5V 200mA 

Communication protocol USB 2.0 Serial 

Light source 6 × white LED 

International protection classification IP54 
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2.2. System control program design 

The control logic and data flow diagram are shown in Fig. 3. Overall, there are 3 major 

subsystems including the MISIRoot base, a UR10 control box, and a desktop computer. The 

core control program was written in Python (3.7), running on a computer with Linux (Ubuntu 

16.04) operating system. The UR10 control box came with the UR10 robotic arm when 

purchasing. In this system setup, the control box was connected to the robotic arm for both 

sending control signals and accepting feedback data. The desktop computer communicates 

with the control box through an ethernet cable with TCP/IP protocol.  

 

 

Fig. 3. System control and data flow design of MISIRoot system. 

  

On the computer, there are 2 main scripts working together in order to complete the 

task. One is a sampling points generator for users to virtually mark sampling points in a pot. 

It takes user’s experiment requirements as arguments and generates two CSV files containing 

the coordinates of all the sampling points and the imaging configuration parameters, such as 

sampling range and sample labels. The other script is the main controlling program that loads 

both CSV files and controls the robotic arm according to the configuration parameters. When 

the main control script is running, the computer forwards commands to the robotic arm, reads 

feedback signals from the robotic arm, controls the camera to take images, and organizes the 

images together with their corresponding coordinates into local files. More details of the 

processing logic in the program are described below. 

 In general, at the beginning of an experiment, the sample pot must be mounted on the 

experiment platform. Then, the user must manually calibrate the relative coordinate system in 

the control script by typing the X, Y and Z coordinates of the location where plant stem’s 
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center line intersects with the soil surface. The system coordinate orientation is shown in Fig. 

3. As for the parameters required to run the system, for examples, the “Maximum sampling 

diameter” determines the total range of measuring. The “Plant stem diameter” indicates the 

region of plant stem to avoid collision between the plant and robotic arm. “Safety distance 

between points” and “Diameter of the camera head” are parameters used for determining the 

density of sampling points. The mapping algorithm ensures that all sampling points stay at 

least a certain distance from each other and away from the plant stem. Smaller sampling 

density can reduce the sampling time for each pot and reduce this system’s disturbance on the 

soil environment, but the chance of being able to find root images may decrease. 

2.2.1 Sampling points generator 

 
Fig. 4. A basic working flow of the sampling points generator 
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A basic working flow of the sampling points generator is shown in Fig. 4. Based on 

the user-defined parameters, the script first generates a series of virtual circles centered at the 

plant stem with evenly distributed radius. Then, each of the full virtual circles is evenly 

divided into small pieces of arcs. Edges of those arcs are tagged as sampling points and their 

coordinates are all recorded. All sampling points should have similar spatial interval on each 

virtual circle, with a possible difference within ±2 mm, which is a tolerance configuration to 

ensure the existence of a solution that satisfies all the requirements. Results of this script 

include a sampling field graph, by visualizing all sampling points, position of the plant stem, 

and camera’s field of view at each point. The user can evaluate the experiment settings by 

checking this graph and tune the parameters accordingly. An example of a visualized 

sampling filed is shown in Fig. 5.  

 
Fig. 5. An example of visualized sampling field, including the centers of all sampling 

points, corresponding camera’s field of view, and the plant stem. 

 

1. Camera field of view 

2. Sampling points center 

3. Plant stem indicator 
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2.2.2 Main controlling program 

 
Fig. 6. A basic working flow of the main controlling program 

 

The controlling program assumes that the two CSV files generated from the sampling 

points generator are ready in the computer. Fig. 6 shows the working flow of the main 

controlling program. The script starts with loading data files and initializing system. Then, 

the script generates a series of viewpoints along the Z axis for each of the sampling points. 

An example graph in Fig. 7. shows how the viewpoints are distributed based on the sampling 

points. 

 
Fig. 7. An example of visualized viewpoints along the depth direction, generated based on 

all the sampling points generated in the previous step 

 

Once successfully passing all the system checking procedures, the script starts the 

measurement process. First, in the ‘Initialize camera position’ stage, the robotic arm is 

controlled to move the camera head to the position above the first sampling point. Then, it 

inserts the camera head into the soil until reaching the bottom of the sampling range. This 

step creates a small tunnel of about 5 mm diameter in the soil. While the camera is moving up 
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along the tunnel, the system starts the “Sampling process” stage. When the camera arrives at 

each viewpoint, it takes one image, record its coordinates, and save the data into local files.  

To ensure high throughput and reduce as much labor time as possible, the whole 

sampling process control was designed to be fully automatic. In the sampling process, camera 

is controlled to move up step by step from the bottom of the tunnel and pauses for around 0.5 

seconds at each viewpoint until finishing the imaging. At the same time, the computer keeps 

reading the robotic arm’s position at 50Hz of frequency to check if the camera head has 

arrived at the correct position. Once arriving at each sampling position, the computer captures 

one image and saves the image and the set of 3D coordinates into local files. After 

completely sampling through a tunnel, the camera is moved to the initial position above the 

next sampling point and the system repeats the sampling process until finishing through all 

the sampling points. Exceptional circumstances during the sampling process such as having 

too much counter-acting force, or moving out of safety region, will cause the system to enter 

the emergency-stop stage so that basic safety is ensured for automatic operation. 

2.3. Validation experiment 

A plant assay experiment was designed and conducted in June 2019. All the 

experimental plants were grown in one room of the greenhouse at Lilly Hall, Purdue 

University, West Lafayette, USA.  

2.3.1 Validation experiment on MISIRoot’s data collection quality  

Several groups of plants were grown to check if the data collected from the MISIRoot 

could tell the differences about root growing phenotypes at different plant stages, or under 

different watering treatments. A total of 18 corn plants (genotype: B73 x Mo17 hybrid) were 

grown simultaneously for this research project. All plants had the same type of soil, which 

was commonly used in the greenhouse to grow corn, made by a mixture of sands and ‘grow 

mix’ (ScottMiracle-Gro Inc, USA). Plants were grown without any nutrient treatment, but 

with different water treatments in plastic pots (around 160 mm bottom diameter, 220 mm top 

diameter, 210 mm depth, ContainerSupply Co. Ltd, China). Soil were filled into the pot to the 

same depth of around 165 mm, and the corn seeds were planted at the pot center with depth 

of about 10 mm from the soil surface. This strict seeding standard ensured that all the roots 

could grow from the same position and had the same amount of free space for growing roots.  
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Eighteen samples were equally divided into 2 main groups based on 2 levels of water 

treatments: well-watered group and drought-stressed group. Each group was then equally 

divided into 3 subgroups: V3, V4, and V5. For the well-watered group, all plants were 

watered with about 600 milliliters of water every 2 days after germination to keep the average 

soil moisture content at around 30%. For the drought-stressed group, all plants were watered 

with about 300 milliliters of water every 4 days after germination and the average soil 

moisture content was kept below 10%. The name of each subgroup indicated the stage when 

plants should be measured by the MISIRoot system. For example, all plants in the V3 group 

were measured when the plants were at the V3 stage. 

Around 4 weeks after germination when the plants grew to the V3 stage, the 6 pots 

from V3 subgroup of both well-watered and drought-stressed groups were transported to the 

MISIRoot system for measuring. About 5 days after when the corn plants grew to a higher 

stage (V4), the 6 pots of the V4 subgroup were measured with the same sampling process as 

V3. The same process was utilized for plants in the V5 subgroup. With this setup, by 

comparing the plants at different stages with the same water treatment, root structure 

differences between plant stages were evaluated. By comparing the plants that are at the same 

stage, but with different water treatments, root structure differences caused by water 

conditions were evaluated. 

2.3.2 Test of MISIRoot’s influence on plant growth 

Another experiment was designed to evaluate MISIRoot’s impact on plant growth. In 

addition to the 18 plants described above, another 20 corn plants were grown for evaluating 

the system’s disturbance to the plant growth. Similarly, all the plants were equally divided 

into 4 subgroups: ‘Controlled well-watered’, ‘Controlled drought-stressed’, ‘Measured well-

watered’ and ‘Measured drought-stressed’, with 5 plants in each. They all had the same type 

of soil, same type of pot, same watering criteria, and the same genotype of corns as the 18 

plants described above. At the end of the assay, the ‘Controlled’ plants were compared with 

the ‘Measured’ plants so that the disturbance caused by MISIRoot system could be measured 

in both well-watered and drought-stressed conditions. In the ‘Measured well-watered’ and 

‘Measured drought-stressed’ subgroups, when plants grew to every stage of V3, V4, V5 and 

V6, the MISIRoot system was used to take measurement on each plant with the same 

sampling parameters used in the 18 pots experiment described above. Plants in ‘Controlled 

well-watered’ and ‘Controlled drought-stressed’ subgroups were left for growing normally 
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without being measured by the MISIRoot system. Right after each measurements taken by 

MISIRoot, all 20 plants were imaged by a hyperspectral imaging station at the Lilly Hall 

Greenhouse of Purdue University (Ma et al., 2019). The average Normalized Difference 

Vegetation Index (NDVI) was determined to be a standard index to evaluate the rough health 

condition of green plant leaves (Tucker, 1979). For each plant, first, all the plant body pixels 

were segmented from the hyperspectral image. Second, the NDVI value for each pixel was 

calculated with Eq. (1), in which NIR means the intensity reading at the near infrared light 

(800 nm), and Red means the intensity reading at red light (650 nm). Finally, the mean NDVI 

value of all the plant body pixels was used for comparation.  

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 (1) 

By comparing the ‘Controlled’ subgroups and the ‘Measured’ subgroups, the 

influences on plant growth made by the measurement activities of MISIRoot system were 

evaluated. 

2.3.3 Control program setup 

In the experiment, some parameters varied and should be updated according to 

different plants such as the plant stem diameter, pot label, and stem center position. Some 

parameters were controlled as constants throughout the whole experiment, and they are listed 

in the Table 3. 

 

Table 3. Constant parameters used for setting up the measurements in sampling points 

generator and the main controlling program 

Parameters values 

Measuring depth (Z direction) 81 mm 

Measuring step (Z direction) 3 mm 

Sampling range (X-Y plane) 120 mm 

Safety distance from plant stem surface 7 mm 

Sampling points center distance range 8~12 mm 

Camera diameter 4 mm 
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2.3.4 Preliminary data processing 

Not all the images collected through this system contained plant roots. Thus, all the 

raw images were manually checked and classified into two classes: ‘Has Root’ class, and ‘No 

Root’ class. To determine the classification results, a voting rule was established which 

requires the 3 research team members to vote for the visibility of roots in each image. 

Manual classification on a large number of images costs human labor and can be time 

consuming. Thus, a machine learning model was developed for the purpose of image 

classification based on a deep convolution neural network so called “Inception V3” (Szegedy 

et al., 2016). The model was built and trained in PyTorch 0.4.1 (Paszke et al., 2017) with 

those manually classified images. Using a computer model to process the images can 

dramatically reduce the labor requirement and improve the overall throughput. The model is 

still under refinement and more details will be published in another separate paper. 

The set of X, Y and Z coordinates of each image was recorded based on the global 

coordinate system relative to the robotic arm’s origin. For analyzing the data, all coordinates 

were transformed to the local coordinates relative to the center of the plant stem. Coordinate 

transformation process in form of matrix is shown in Eq. (2). The center coordinates of the 

plant stem were acquired when calibrating the robotic arm at the beginning of measurements 

on a plant. 

 

[

𝑋𝑙𝑜𝑐𝑎𝑙
𝑌𝑙𝑜𝑐𝑎𝑙
𝑍𝑙𝑜𝑐𝑎𝑙

] (𝑚𝑚) = [

𝑋𝑠𝑡𝑒𝑚
𝑌𝑠𝑡𝑒𝑚
𝑍𝑠𝑡𝑒𝑚

] (𝑚𝑚) − [

𝑋𝑔𝑙𝑜𝑏𝑎𝑙
𝑌𝑔𝑙𝑜𝑏𝑎𝑙
𝑍𝑔𝑙𝑜𝑏𝑎𝑙

] (𝑚𝑚) (2) 
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3. RESULTS AND DISCUSSION 

3.1 System setup in real-world 

Fig. 8. shows the system setup in a laboratory in Lilly Hall at Purdue University. The 

overall occupied space was around 1.5 meters in width, 1.5 meters in length, and 2 to 3 

meters in height. Total cost of the whole system was less than $50,000. After setting up the 

system in the lab, a series of safety settings were configured on the main control box to fit in 

the working environment. This system can be easily moved to a greenhouse, but the safety 

settings would need to be reconfigured to accommodate the change in working environment. 

 
Fig. 8. The real-world setup of the MISIRoot system in the experiment lab room at Lilly 

Hall, Purdue University 

3.2. Data acquisition and pre-processing 

As part of the preliminary image classification results, some example images of both 

classes are shown in Fig. 9. The red bounding box in each image indicates the view and 

location of a plant root voted by the research team members. After the manual classification, 
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only the images that were classified as ‘Has Root’ along with their corresponding 3D 

coordinates were used for further analysis. 

 

‘Has Root’ Class ‘No Root’ Class 

    

    

    

    
Fig. 9. Example images in both the ‘Has Root’ class and the ‘No Root’ class. Red 

bounding box shows the rough position where a root was identified by the team members. 

 

In this experiment, MISIROOT was configured to have a high sampling density 

which resulted in about 2 hours spent and 5125 images collected for each pot. 92250 images 

were acquired during the whole experiment. After checking through all the images, a total of 

788 images were manually labeled as the ‘Has Root’ class and were used for the further 

morphological analysis. The distribution of the classification resulted in the groups and 

subgroups are shown in the Table 4. 

In order to automate the root identification process, the manually labeled images were 

then used to train an image classification model. Another 788 images were randomly picked 

from all the ‘No Root’ class images so that the data in both classes could be balanced in the 

dataset. Certain numbers of images were randomly picked from each of the two classes to 

form subgroups of data in the process of model development. There were 550 images for 

training, 119 images for validation and 119 images for testing (never seen by the model).With 
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the most recent model, 108/119 (90.8%) images and 106/119 (89.1%) images in the testing 

dataset were correctly classified into ‘Has Root’ class and ‘No Root’ class, respectively. On 

the MISIRoot’s controlling computer with a normal Core-i5 CPU, and a GTX 1080 GPU, the 

image classification speed was around 0.05 seconds per image. This model provided an 

automatic, high-accuracy and fast root identification software solution in MISIRoot system.  

With the 0.2 m measurement range in diameter and the 0.08 m measurement depth, 

the overall measurement volume inside the soil is 2.51×103 cm3. Since all the sample points 

were evenly distributed, it was assumed that all the roots within this space had the same 

chance to be captured by the MISIRoot. Thus, the more roots that existed in the pot, the more 

‘Has Root’ class images that were expected to be found in a pot. According to Table 4, if 

comparing the samples with the same treatment but at different stages, the average number of 

‘Has Root’ class images increased along with the maturity of plants. It matches a common 

expectation that plants tend to develop more roots as they grow. 

 

Table 4. Average numbers of ‘Has Root’ class images of all subgroups in both well-

watered and drought-stressed groups of samples 

Treatment groups Plant stage subgroups 
Average number of ‘Has Root’ 

images per pot 

Well-watered 

V3 30 

V4 37 

V5 61 

Drought-stressed 

V3 25.3 

V4 42.3 

V5 67 
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3.3 Distribution of the 3D point cloud along Z axis 

 
Fig. 10. An example of the points cloud generated from one plant picked from drought-

stressed group at V3 stage.  

1. Red triangle at the top: Seed location in the soil. 

2. Blue dots: The positions where at each a root was found. 

3. Green lines connected between blue dots: Possible root connections. 

 

Fig. 10 shows an example of the 3D points cloud reconstructed with the data collected 

from one corn plant in the drought-stressed group at V3 stage. The red triangle on the top of 

the graph indicates the seed location in the soil. Each blue dot indicates a position at which a 

‘Has Root’ class image was found. Green lines are the possible connections between cloud 

points, showing a possible root network in the soil. The connections in this graph were 

generated by our preliminary intuitive 3D reconstruction algorithm which connects the 

nearest neighboring points while minimizing the turning angle at each point.  

In order to verify the reconstruction results, the plants were scanned by an X-ray CT 

system and then the roots were also washed out of the soil for observing. However, the CT 

images were not clear enough to recognize the roots because of CT’s high requirements on 

the soil’s properties. After being dug out and without the physical supports of soil, roots’ 

original shapes and structures were totally lost.  

However, the validity of the 3D points cloud and 3D reconstruction results were 

proved by their ability of clearly differentiating the roots from different watering treatments: 

The calculated root size and depth results from the MISIRoot system showed significant 
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differences between the watering treatments. More specifically, a preliminary analysis was 

conducted based on the depth distribution of those points clouds. Point cloud distribution 

along the Z axis was analyzed. After combining all the data points of the 3 replicates within 

each subgroup, the average depth values are shown in Fig. 11. The average root depth 

increased with the growing of plant in the drought-stressed group but remains almost the 

same in the well-watered group. It showed that the roots in the drought stress condition were 

trying to grow deeper to increase their chances to survive and the roots that had enough water 

tend to accumulate in a relatively shallower region (Hund et al., 2009; Uga et al., 2013).  

 

 
Fig. 11. The average depth values of all data points that were classified as ‘Has Root’ class 

for all treatment and stages subgroups. 

 

 The depth distributions of all subgroups are shown with boxplots in Fig. 12. Roots 

grew from seeds close to the soil surface, which is why the minimum depth values in all 

groups are close to 5 mm. Many differences between the groups can be observed from the 

boxplots. For example, plant roots in the drought-stressed group had larger values in both 

maximum depth and average depth than the well-watered group at V3 stage. In the drought-

stressed group, the maximum values remained at around 80 mm which was the deepest 

measuring range setting for this experiment. In the well-watered group, the maximum depth 

was larger in the higher stage plants, but the average depth remained at a smaller value than 

the drought-stressed group. One hypothesis is that plants at the same stage but with different 

water treatments tend to have different root depth distributions (ZHU et al., 2010). Because 

the data were not normally distributed and data transformation could not solve the data 
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skewing problem, a nonparametric test should be used in this case. To verify this hypothesis, 

a Kruskal-Wallis ANOVA (Ostertagová et al., 2014) test was conducted. It tests the 

differences between pairs of samples at the same stage in well-watered and drought-stressed 

groups. The P-values are 0.2742, 0.00602, and 4.44e-6, for V3, V4, and V5 pairs, 

respectively. To draw a preliminary conclusion for this test, at 95% significance level, the 

plants at V3 stage did not show a significant difference on the depth distribution between 

drought-stressed group and well-watered group. However, at V4 and V5, the depth 

distribution difference between the plants in drought-stressed group and well-watered group 

was significant.  

 

  
Fig. 12. The distribution of the depth values in boxplots of all subgroups. Drought-stress and well-

watered groups demonstrated different growing patters in terms of the roots’ depth distributions. 

1: Maximum.  

2: Median of the 3rd quantile.  

3: Mean.  

4: Median.  

5: Median of the 1st quantile.  

6: Minimum. 

 

The depth distributions of all subgroups are shown in Fig. 13 with more details than 

the boxplots. As the plants grow and develop, plants in the drought-stressed group tended to 

grow more roots in a relatively deeper region (30mm ~ 70mm) but remained similar densities 

in the shallower (0 ~ 20mm) regions. However, plants in the well-watered group tended to 

grow more in the shallower regions (0 ~ 30mm) but tended to grow less in the deeper regions 

(> 30mm).  
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Fig. 13. Frequencies of the cloud points in both drought-stressed, and well-watered groups 

that fell in certain depth intervals. 

 

3.4. Proof of minimally invasive characteristic 

 The NDVI values that were calculated based on the hyperspectral images of the corn 

plants are shown as boxplots in Table 6. The P-values of two-tailed T-tests between all pairs 

of control and measurement subgroups are also listed in the Table 6. The null hypothesis was 

that the NDVI values of two test groups had the same mean value, while the alternative 

hypothesis was that the NDVI values of two test groups had different mean values. Since all 
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the P-values are larger than 0.05, the null hypothesis was rejected at a 95% significance level. 

As a conclusion, utilization of the MISIRoot system did not cause significant difference on 

the plant growth in this experiment. 

 

Table 5. NDVI distributions of all subgroups, and two-tailed T-test P-values between 

control subgroups and measurement subgroups. (a) Average NDVI values at V4 stage. (b) 

Average NDVI values at V5 stage. (c) Average NDVI values at V6 stage. 

‘C-L’: ‘Controlled drought-stressed’ subgroup.  

‘M-L’: ‘Measured drought-stressed’ subgroup.  

‘C-H’: ‘Controlled well-watered’ subgroup.  

‘M-H’: ‘Measured well-watered’ subgroup.  

Boxplots Test groups 
T-test P-

values 

 

‘C-L’ 

and 

‘M-L’ 

0.593 

‘C-H’ 

and 

‘M-H’ 

0.111 

(a) 

 

 

‘C-L’ 

and 

‘M-L’ 

0.810 

‘C-H’ 

and 

‘M-H’ 

0.245 

(b) 
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Table 5 continued 

 

‘C-L’ 

and 

‘M-L’ 

0.987 

‘C-H’ 

and 

‘M-H’ 

0.300 

(c) 
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4. CONCLUSIONS AND FUTURE WORK 

In this study, a novel robotic imaging system, MISIRoot, was developed at Purdue 

University for high quality root phenotyping. MISIRoot uses a robotic arm to repeatedly insert a 

miniature camera into the soil while recording the real-time 3D positions and images of the roots. 

With a comparatively low cost, this system can automatically measure the roots’ 3D structures 

and take color images of the corn plant roots in normal soil, and in situ. In the most recent 

experiment on corn plants, MISIRoot successfully detected the roots’ significant size and depth 

differences between plants at different stages and with different water treatments. In the 

controlled test, it was proved that the measurement activity by MISIRoot does not inhibit plant 

growth. There was no statistically significant difference (𝛼 = 5%) on the plants’ average NDVI 

values caused by MISIRoot’s measurements. This nondestructive method makes it possible to 

continuously monitor the growth of plant roots. 

The Purdue engineering team is still working to improve MISIRoot. Future works should 

generalize this method with other plant roots such as soybeans. Further experiments will be 

conducted to evaluate the system’s impact on plant growth from other aspects other than only 

NDVI values. When the X-ray CT scanner becomes available at Purdue University, X-ray root 

images will be collected as the ground truth to improve the current root reconstruction algorithm.  
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