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ABSTRACT

Sinha, Debjyoti. M.S.E.C.E., Purdue University, May 2020. Design Space Exploration
of MobileNet For Suitable Hardware Deployment. Major Professor: Mohamed El-
Sharkawy.

Designing self-regulating machines that can see and comprehend various real world
objects around it are the main purpose of the AI domain. Recently, there has been
marked advancements in the field of deep learning to create state-of-the-art DNNs
for various CV applications. It is challenging to deploy these DNNs into resource-
constrained micro-controller units as often they are quite memory intensive. Design
Space Exploration is a technique which makes CNN/DNN memory efficient and more
flexible to be deployed into resource-constrained hardware. MobileNet is small DNN
architecture which was designed for embedded and mobile vision, but still researchers
faced many challenges in deploying this model into resource limited real-time proces-
SOTS.

This thesis, proposes three new DNN architectures, which are developed using
the Design Space Exploration technique. The state-of-the art MobileNet baseline
architecture is used as foundation to propose these DNN architectures in this study.
They are enhanced versions of the baseline MobileNet architecture. DSE techniques
like data augmentation, architecture tuning, and architecture modification have been
done to improve the baseline architecture. First, the Thin MobileNet architecture
is proposed which uses more intricate block modules as compared to the baseline
MobileNet. It is a compact, efficient and flexible architecture with good model accu-
racy. To get a more compact models, the KilobyteNet and the Ultra-thin MobileNet
DNN architecture is proposed. Interesting techniques like channel depth alteration

and hyperparameter tuning are introduced along-with some of the techniques used
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for designing the Thin MobileNet. All the models are trained and validated from
scratch on the CIFAR-10 dataset. The experimental results (training and testing)
can be visualized using the live accuracy and logloss graphs provided by the Liveloss
package. The Ultra-thin MobileNet model is more balanced in terms of the model
accuracy and model size out of the three and hence it is deployed into the NXP i.MX

RT1060 embedded hardware unit for image classification application.



1. INTRODUCTION

Artificial Intelligence (Al) is the engineering which develops intelligent machines and
programs. Machine Learning is a subset of AI which is mainly concerned with the
ability of machines to learn data without being explicitly programmed. Deep learn-
ing is a subdomain of Machine Learning in Al that has networks called Deep Neural
Networks that are capable of unsupervised learning from unstructured data. This
is achieved through various learning algorithms and optimization techniques. Deep
Neural Networks (DNN) gained popularity when AlexNet [1] won the ImageNet Chal-
lenge in the year 2012. Since then, the domain of deep learning expanded exponen-
tially. Many standard algorithms for computer vision like Canny algorithm or HOG
have been replaced by deep learning models like SqueezeNet [2], SqueezeNext [3],
ResNet [4], Inception [5], etc. There also had been significant developments in new
optimization techniques, non-linear activation functions, training methods, etc. In
order to get higher accuracies, the models are made deeper and complex. The advent
of deeper and complicated models has led to the development of a wide number of
hardware architectures like GPUs, Bluebox 2.0, S32V234 MCU, etc to increase the
speed of the training process and deploy the models for various computer vision ap-
plications. But increasing the depth and complexity of a model increases the size
and computation cost making it less efficient for hardware deployment, especially in
resource-constrained mobile and embedded platforms.

In real-time applications such as image classification, image captioning [6] object
detection [7] and semantic segmentation [8,9] in autonomous driving [10], the inference
time and accuracy are very important factors to safety. So, it becomes necessary to
have a model which is very accurate, requires less memory complexity and has less
computation time for its utilization in real-time scenarios. DNNs came out of existing

algorithms like HOG and SIFT and they have performed well in image classification,



object recognition, detection and segmentation tasks. RNN have been successful
in generating text from visual stimulus. DNN are more accurate when it comes to
computer vision applications, but the issue with them is that they are computationally

intensive and memory consuming.

1.1 Context

DNNs have become powerful tools as for CV applications in various industries.
DSE of CNN, new strategies and techniques have led to the development of memory
and computationally efficient DNN models. This has made CNN suitable to be de-
ployed into resource-constrained embedded platforms. The main idea of this research
work is to propose efficient or adaptable deep neural network models which are com-
pact, less computationally intensive and having competitive accuracy levels at the
same time.

The expanding intricacy of NN has further prompted the use of parallel-distributed
architectures and complex hardware units for computation like the S32V234, BLBX2.0,
NVIDIA TITAN, GTX 1080, TESLA GPUs, etc. These units accelerate the training
process of different DNN. Apart from the advanced hardware units, DL has made
significant progress in CV due to the advent of advanced software frameworks like
TF, Keras, PyTorch, Theano, Caffe, etc. There is also a large open source com-
munity associated with this particular domain to help researchers and academicians
develop more efficient DNNs, by improving these software frameworks time to time.
This further encouraged a larger group of people to acquire the knowledge, skill and
expertise, and train and test CNNs rapidly. Datasets like the ImageNet, CIFAR-10,
CIFAR-100 are used for the training of deep architectures. Transfer learning has
made numerous pre-trained models readily available. These pre-trained architectures
have shown good results during the model testing phase. Even though the state-
of-the-art GPUs and advanced software frameworks have made the training of DNN

and image classification tasks easier, there is an increasing need to embed these ap-



plications into real-time processors with power, size and memory constraints. Deeper
neural network architectures need more resources than shallow networks. For obtain-
ing more accurate DNNs, researchers have concentrated more on increasing the depth
and complexity of the DNNs. The shallow DNN architectures, on the other hand,
concentrated only on the model size and not on the model speed. There is a need
to make the models more compact, keeping the accuracy level same as those of the
CNNs, with a good model speed at the same time, so that they can be easily deployed
easily into resource-constrained processors and can be reliably utilized for real-time
autonomous applications. The inference time should be in milliseconds when they
are used for real-time computer vision applications, otherwise there will always be a
question mark on the reliability of these DNNs in real-time scenarios.

There are some exemplary DNN models which have achieved good competitive
accuracy, small model size and good model speed such as SqueezeNet, SqueezeNext
and MobileNet [11]. This research work proposes two similar DNN architectures which
would be easily deployable into resource-constrained autonomous hardware platforms

for real-time CV applications.

1.2 Motivation

Image classification, object detection, object recognition are challenging tasks
for a machine. Various CV algorithms are the basis to develop applications for
autonomous cars, surveillance systems, drones, UAVs, etc. As the quality of self-
governance of a system increases, the need to design an algorithm with intuitions
rises. Significant developments in the area of CV algorithms have been made in the
past few years, and hence it gave rise to more sophisticated CV systems. Machine
Learning is a novel AI methodology, where the hard-coded attributes of an image are
not searched for, rather a machine is trained to learn the image attributes with the

help of DNNs. This can be thought as the brain of a human child learning to identify



various objects. The training and testing of DNNs has become much easier due to
the advent of advanced hardware and software platforms.

As mentioned earlier, deployment of DNNs becomes a challenge when the size
of the model is in the range between few Megabytes to Gigabytes, as it leads to a
big memory overhead. Big models also take a good amount of time to execute CV
tasks. The use of GPUs can be a solution but they are not compact enough to be
used within the target devices right now. This thesis explores the DSE technique to
make a DNN model compact and have less computation time with minimum trade

off with the model accuracy.

1.3 Problem Statement

This thesis explores the DL field by dealing with the following:

1. Importance and effect of the Design Space Exploration method.
Effect of architectural tuning on the baseline DNN.

Effect of architectural modifications on the baseline DNN.
Monitoring the DNN accuracy and losses after every epoch.

Deployment into NXP i.MX RT1060 hardware

AR

1.4 Roadblocks

Training and testing of DNN at good pace.
Appropriate DSE tools for the development of the new DNN architectures.
Maintaining a competitive model accuracy alongwith small model size.

Solving the overfitting problem which is present in the baseline DNN.

AN e

Configuring the autonomous hardware for deploying the model into it.



1.5 Contribution

This thesis primarily focuses on the different DSE techniques induced on a base-
line DNN to develop three new DNN architectures which are more efficient than the
baseline version. The foundation architecture is the baseline MobileNet v1 DNN [11]
and the proposed frameworks are: Thin MobileNet, KilobyteNet and Ultra-thin Mo-
bileNet. The proposed models are better than the baseline MobileNet v1 model in
some aspects like the mode accuracy or the model size. A competitive model ac-
curacy is maintained in case of the proposed architectures and the accuracy levels
are higher than the baseline accuracy level for two of the proposed architectures. A
significant reduction in the total number of parameters, and hence the model size,
is achieved. The Thin MobileNet DNN contains only 25% of the total number of
parameters contained in the baseline MobileNet v1. The average computation time
is also about 17s less than the baseline version. The KilobyteNet is an enhanced ver-
sion of the MobileNet with a model size in the kilobyte range and better model speed
than the MobileNet v1. The Ultra-thin MobileNet is another enhanced version of the
MobileNet like the Thin MobileNet and contains only 9.37% of the total number of
parameters contained in the baseline MobileNet v1. The average computation time of
this architecture is about 15s less than the baseline MobileNet. There is almost neg-
ligible overfitting problem in these two models. Apart from comparing the proposed
models with the baseline model, a comparison with other benchmark architectures
is also drawn. These models are trained and tested on the CIFAR-10 dataset and
the finally deployed into the autonomous embedded processor, NXP i.MX RT1060
using the MCUXpresso SDK respectively for image classification application, both

with and without camera.



2. LITERATURE REVIEW

AT has narrowed down the difference between humans and machines to some extent.
Researchers in the field of CV have been trying to develop more advanced algorithms
and architectures using the analogy of the human brain and machines.The year 2012
was a significant year for DL. Many people in this area are working hard to make
machines as proficient as the human brain.

In the year 2012, a DNN model named the AlexNet [1] won the ILSVRSC
competition. The model was trained on a large dataset called the ImageNet.It had
a very low error rate of classification. The area of deep learning gained immense
popularity after this.

In the ILSVRC 2013, another efficient DNN model called ZFNet [12] won the
competition. ZFNet was an enhancement over the AlexNet architecture. It was
developed by tuning the hyperparameters of the AlexNet architecture.

ILSVRC 2014 was won by a CNN submitted by Google called the GoogleNet [13].
In this architecture, the Inception component was introduced. As a result of it, the
model became very compact. There was also another benchmark architecture pre-
sented which clearly demonstrated that the depth of a CNN model is a crucial factor
in determining its accuracy. The object localization CV task was implemented using
the VGGNet DNN architecture. It became the first runner-up in the competition.

In 2015, Microsoft researcher Kaiming He developed an architecture called MSRA
introducing the concept of Resnet [4] blocks and it won the ILSVRC challenge that
year.

In ILSVRC 2016, ResNext [14], an enhanced ResNet [4] architecture was the
first runner up in the challenge. It was developed by University of California, San

Diego and Facebook AI Research.



After 2016, the deep learning annual challenge was held by Kaggle. Most of the
winners who won this challenge worked in the field of CNNs or DNNs.

2.1 Neural Network

output layer
input layer

hidden layer 1 hidden layer 2

Fig. 2.1. A Neural Network [15]

The human brain has neurons which are responsible for transmitting informa-
tion from one part to another. Numerous neurons are orchestrated in our brain to
form a network. The nerve cells in the brain are specialized to memorize patterns or
features and infer connections between objects and their characteristics. The infor-
mation from one corner of the brain is transmitted to the other corner using impulses.
Humans are able to learn different object properties, structures, shapes, infer various
attributes and conventions through the biological neurons which interpret sensory
data. Similarly, in the ML field, the ANNs and CNNs are analogous to the neurons
in the human brain. They learn about image features with the help of cameras and
sensors. The input image is a matrix of pixels. The NNs cluster or label the informa-
tion and perform CV tasks. Fig 2.1 shows the diagram of a simple NN. The circles in
the diagram are the neurons and the information is transmitted from left to right i.e
from input to output through the hidden layer. A single layer in NN can be thought

of as a collection of stacked nerve cells that extract some feature from the image at



each level. Deep Neural Network is a neural network which has more than one hidden

layer along with other visible layers connected to each other.
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Fig. 2.2. A Simple Artificial Neuron [16]

Fig 2.2 is a diagram of a simple artificial neuron. The passing of data is through
the connections made by each neurons. Each of these connections has a specific
weight which is a number that determines how the neurons relate to each other. If
the weight has a high positive value, it means the first neuron favours the activation

of the second neuron i.e the second neuron is more likely to get activated. Here, X1,
/
R D d — BICYCLE
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Fig. 2.3. Convolutional Neural Network [17]

X2, and X3 are the input data and these are routed through connections W1, W2, and
W3 respectively, which are the connection weights. The output is obtained by first

doing the scalar product of the input with suitable value of weights, and combining



the result. For scaling the weights, a non-linear activation function is used. Thus,
Input * Weight = Output or Prediction.

An input image or text is fed to the CNN. It passes through some convolutional
layers, where features are extracted and they are combined at the end for image
classification. The CNN is mainly composed of the input layer, hidden layer(s),
and output layers. The hidden layers consist of pooling layers, normalization layers,
and fully connected layers. These converge either by multiplication or dot product.
An activation function (generally ReLU [16] [18]) conceals the input and output of
these layers, succeeded by a final convolutional layer. The CNN is analogous to the
cerebrum of the brain which learns to classify objects step by step by learning various
characteristics for a particular class. There is a restricted area in the visual field

known as the receptive field. Each nerve cell reacts to a stimulus only in this region.

2.1.1 Convolutional Layer

The input data can be an image, video or text from a dataset or real-time. The
Convolutional layer is the basic building block of a CNN and is used to extract features
from the input image. Initially, when the image is passed through first convolutional
layers, simple features are learned. As the image passes deeper into the CNN, more
complicated and intricate features are extracted. The hidden or visible layers and the
kernels keep the spatial relation between pixels intact.

There are several hyperparameters that determine the performance of the CNN.
These are: depth, stride and zero padding. Depth gives the output volume of the
convolutional layer. It a measure of the number of filters that the network learns.
These filters learn distinct attributes to provide an activation map. While performing
kernel convolution, the filter slides through the image. A stride is a numerical value
which determines how the filter slides through it. Zero padding is used to control
the output dimension by padding zeros. The expression for calculating the output

dimension is as follows:



Output Dimension= (W - F + 2P)/S + 1.

W = Input dimension.

F = Filter size.
P = Padding.
S = Stride.

7

Fig. 2.5. Mlustration of Convolution Operation [20]

Input data

Kernel

Convoluted feature

404040404

40=40=4000=

Fy

10

Fig 2.4 illustrates the use of a convolutional kernel along an input channel for

efficient and accurate model in image prediction task.

feature extraction. Fig 2.5 represents the convolution operation in matrix form. Here,
a Hx b matrix is an input channel is used with a 3x3 kernel or filter or feature detector
for convolution operation. The filter is slid over the input image. An element wise
multiplication is done between the two matrices and then they are combined (sum-
mation) to obtain a convolved feature or activation map or feature map as illustrated
in Fig 2.5. Different varieties of kernels may be used but generally 1x1, 3x3, and

5x5 kernels are used. More filters means more feature extraction leading to a more
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2.1.2 Calculation of the Total Number of Parameters

Another critical factor to be kept in mind in when designing CNNs is the total
number of parameters. The size of the model and the computation time is directly
proportional to the total number of parameters, so it becomes important to calculate
the number of parameters. The number of parameters depends on the dimension
of the activation map and filter size. If the number of neurons in the input layer
is 5x5Hx3 and the filter size is 3 and the number of kernels is 3 then we require
5xHhx3x3x3x3 = 675 parameters. For the sake of explanation, we have taken the
image size to be 5x5 and a channel depth of 3. In reality, the image dimension is of

the order 227x227 and the channel depth is 3.

2.1.3 Pooling

The other name for downsampling is Pooling. There are a different kinds of
pooling layers, the common ones are Avg Pooling and Max Pooling. It produces a
summarized version of the feature maps obtained after the convolution mathematical
operation. Pooling has the effect of reducing the total number of parameters and

overfitting.

2.1.4 Activation Function or Non-linearity

Non-linearity or activation function is a significant component of CNN. The
reason for including this layer into our CNN is that it introduces some non-linearity
in the network, as most of the data in real life will be non-linear. It makes a model
more efficient. Some of the common activation functions are ReLU (Rectified Linear
Unit [18]), ELU [21] , Sigmoid [22,23] , tanh, LeakyReLU [24], SELU [25], and
Swish. In this experiment, Drop-activation (a randomized version of ReLU) and

Swish activations have been used.
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2.1.5 Fully Connected Layer
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Fig. 2.6. Nlustration of FC Layer Working [26]

A FC layer links each neuron from a layer to every neuron in another layer.
A softmax function is used in this layer as an activation. The FC layer generally
lies at the end of the network. The feature extraction has already been done by the
convolutional layers earlier. Here, in the FC layer the object in the image is classified
by looking at the inter-class variations within the objects. Class scores or probability
values between 0 and 1 are assigned for a particular class label. In this layer, the
complex features of an object are linked to a particular class. The class scores for
each class are calculated based on the weights Fig. 2.6 shows the working of FC layer.
There are four probable outputs such as bird, sunset, dog and cat. The category with

the highest class score is the detected output.
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2.2 Related DNN Architecture
2.2.1 MobileNet vl Architecture

MobileNet v1 [11] architecture was developed by Google for embedded and mo-
bile vision tasks. The unique feature of this streamlined DNN architecture is that
it uses depthwise separable convolutions [11,27,28] instead of standard convolutions.
The depthwise separable convolutions were first introduced into the Inception mod-
ule. These convolutions are essentially an approach for making a network compact,
other than compression techniques like Pruning [29], Huffman coding, etc.

The core layer of the MobileNet v1 is the depthwise separable convolution layer.
These depthwise convolutions are a kind of factorized convolutions which divide a
standard convolution into a depthwise and a pointwise convolution. The input chan-
nels are filtered separately in a depthwise convolution i.e a single filter is applied per
input channel. The depthwise layer is followed by the 1x1 pointwise convolution
layer. Here the outputs of the depthwise convolution layer are linearly combined. A
standard convolution filters and integrates the outputs in one step. Unlike standard
convolutions, depthwise separable convolution contains separate layers for filtering
and combining the outputs respectively. This reduces the computation overhead and

the model size to a great extent.

Fig. 2.7. Standard Convolutions [30]

Generally multiple kernels are applied between two NN layers. Let us assume we
have 128 kernels here. Fig 2.7 shows how a standard convolution works. We convert

the input layer of dimensions 7x7x3 to the output layer of dimensions 5x5x128.
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The height and width are reduced, while the depth is extended. We try to achieve
the same transformation using depthwise separable convolutions.

Fig. 2.8 shows a simple depthwise layer. Here, we do not use a single filter of size
3x3x3 as in the case of standard convolutions. We use the 3 filters separately, each
filter having the size 3x3x1. Each filter performs convolution with one channel of the
input layer. Each such convolution operation produces a map of 5x5x1 size. These
maps are stacked to form a 5x5x3 image. The spatial dimensions of the output have
shrunk but the depth remains constant. Fig 2.9 shows the application of the 1x1
convolution. It is applied with kernel size 1x1x3. The convolution of 5x5x3 image
with each 1x1x3 filter gives a map of 5x5x1 size. Figure 2.10 shows the overall
procedure of the depthwise separable convolution. It is clear now that depthwise
separable convolutions need much less operations than the standard convolutions to
get the same output. In case of the standard convolutions, there are 128 3x3x 3 filters
that are slid 5x5 times. So, the number of multiplications is 128x3x3x3x5x5 =
86,400. In case of the depthwise convolution, there are 3 3x3x1 filters that slide
5x5 times. The number of multiplications is 3x3x3x1x5x5 = 675. In case of the
pointwise convolutions, there are 128 1x1x 3 filters that slide 5x5 times. The number
of multiplications is 128 x1x1x3x5x5 = 9600. The total number of multiplications
in case of the depthwise separable convolutions is 675 + 9600 = 10,275. This is about
88% less than that of the standard 2D convolutions.

Fig. 2.8. Depthwise Layer [30]

Let us generalize the above calculations. A standard convolution takes input

feature map F of dimensions Dg*Dg*M and outputs a feature map G of dimensions
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Dg*Dg*N. D is the width and the height of the input feature map and M is the in-
put depth. Dg is the width and height of the output feature map and N is the output
depth. Let Dk be the kernel width and height. The total computational cost (number
of multiplications) = Dp*De*M*N*Dg*Dg. MobileNet addresses the interaction

1@ >
3

1
5

Fig. 2.9. Pointwise Layer [30]

between each and every term in the above expression. It utilizes depthwise separable
convolutions to impede the interaction between the output depth and the size of the
kernel. The depthwise convolution with a single filter per input channel has a compu-
tational overhead (number of multiplications): Dx*Dg*M*Dg*Dg. The pointwise
convolution which integrates all the outputs of the depthwise convolution linearly has
a computational overhead (number of multiplications): M*N*Dg*Dg. The total
computational overhead of Depthwise separable convolutions = Dg*Dg*M*Dg*Dg

+ M*N*Dg*Dg. Overall, the computation overhead decreases by one-eighth.

Fig. 2.10. Overall Procedure of the Depthwise Separable Convolution [30]

The MobileNet v1 architecture is mainly based on depthwise separable convo-
lutions. It has only one fully convolution layer which is the first layer. All the 3x3

layers are succeeded by Batch-normalization and ReLLU non-linear activation. Simi-
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larly, all the 1x1 layers are also followed by BN and ReLU. At last, is the FC layer
which feeds into Softmax layer for the image classification task. Fig 2.11 shows a
depthwise separable convolution block. Fig. 2.12 shows the MobileNet v1 architec-
ture. The blue color block represents the first convolution layer. The numbers at
the left side represents the number of filters. DWS stands for Depthwise separable
convolutions. On the right end of the blocks, the stride value is mentioned. Before
the FC layer, there is an Avg, pooling operation performed which decreases the value
spatial resolution to 1. There are 28 layers in the baseline MobileNet v1 model, if the
depthwise convolutions and the pointwise convolutions are considered separately. The
1x1 pointwise convolutions contribute about 75% of the total number of parameters,
so most of the computation time is elapsed in these layers. The FC layer contains
almost all the additional parameters.

Even though the baseline MobileNet v1 is a compact architecture suitable for
mobile vision application, sometimes a specific application may need the model to be
more compact and faster. Smaller and less expensive networks can be designed with
the help of a hyperparameter known as the width multiplier. The width multiplier,
denoted by « is used to trim a network uniformly at each layer. Mathematically, the
parameter « is multiplied with the number of input channels M and the number of
output channels N. The width multiplier [11,28] values typically range from 1 to 0,
where a=1 is the baseline setting. When « is reduced from 1 towards 0, we obtain
more compact MobileNet models. The effect of using width multiplier is that the
number of parameters and the computation overhead reduces quadratically. As the
value of « is decreased from 1 towards 0, the model accuracy starts to fall. So, there
is trade off between the model size and the model accuracy. In this experiment, the
width multiplier has been used to make the improved model Ultra-thin MobileNet
more compact, after increasing its accuracy above the baseline level through different
methodologies. There is another hyperparameter called the resolution multiplier [2,
11, 28], denoted by p that also reduces the computation cost. This is applied to the

input image, and not to the input and output channels as in case of a.
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32, DWS Conv./s=1
64, DWS Conv./s=2
128,DWS Conv./s=1
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Fig. 2.12. MobileNet v1 Architecture
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3. HARDWARE AND SOFTWARE REQUIRED
3.1 Software Used

(a) Python IDE- Spyder v3.6

(b) Anaconda Navigator 2.0

(¢) Open-source API — Keras v2.2.0

(d) Backend framework — Tensorflow-gpu v1.11.0
(e) Livelossplot package from PyPI

3.2 Deep Learning Frameworks
3.2.1 Tensorflow

Fig. 3.1 [31] shows the logos of various DL frameworks. The TensorFlow open-
source software library is used for differentiable programming and application specific
data flow tasks. The name TensorFlow comes from the variety of processes that the
neural networks perform on the multidimensional data arrays which are known as
tensors. It provides a wide range of toolkits that allows to build different architectures
at a preferred abstraction level. Tensorboard is one such tool for visualizing the
network performance. Another advantage of using TensorFlow is that it provides
deployment options which are production ready and the support it provides for mobile

vision platforms.

¢ theano 2.
Bl keras pYTHRCH

Fig. 3.1. Various DL frameworks
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3.2.2 Keras

Another widely used framework is the Keras. It is a high-level API written
in Python, for constructing and training neural network models. It is capable of
running on TensorFlow, CNTK and Theano. Some key features of this framework is
it is user-friendly, modular and easily extendable. It is mainly used in classification
and recognition applications. In this experiment, all the models are trained in the

Keras framework.

3.2.3 PyTorch

PyTorch is an open-source machine learning library for Python based on the
Torch library. This open-source library was developed by Facebook Al Research Lab.
There is support for python libraries like Scikit, Numpy, Cython, etc. It is a flexible,
modular and stable framework with immense support for production. PyTorch is
relatively, a newer framework as compared to TensorFlow but it is slowly getting

popular among researchers in the Al and Machine Learning field.

3.2.4 Caffe

Caffe was developed by Berkeley AI Research. It is written in C4++ but has
a Python interface. It supports different DNN architectures for image classification
and segmentation application. It has support for CNN, RCNN, LSTM and neural

networks which are fully connected.

3.2.5 Theano

Theano is another Python library and a compiler for optimization, mainly used
to manipulate and evaluate mathematical expressions, especially those in the form
of a matrix. A NumPy esque syntax is utilized to express the computations and are

compiled in CPU or GPU.
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3.3 Livelossplot

Livelossplot package is a python based model visualization tool which is used
to visualize the loss and accuracy levels associated with training and testing a model
after each epoch. It is supported by popular frameworks like Keras, PyTorch and
TensorFlow. It is very significant graphical tool as it is useful in monitoring the accu-
racy and the losses after every epoch. The performance of the proposed architectures
are demonstrated with the help of these plots. It gives information about the training
and validation accuracy and the losses. It helps to distinctly compare between the

performance of the baseline model and the modified models.

3.4 Hardware Used

(a) Intel 19 8th generation processor (32GB RAM)
(b) NVIDIA Geforce RTX 1080Ti GPU

(¢) Memory needed for dataset and results - 4GB
(d) NXP i.MX RT1060 board

3.5 NXP i.MX RT1060 board

The NXP i.MX RT1060 is a 4-layer through-gap USB-powered PCB and at its
centre lies the i.MX RT1060 hybrid MCU, highlighting NXP’s propelled execution
of the Arm Cortex-M7. It works at speeds up to 600 MHz to give high-performance

CPU execution and great real-time response.

3.6 Specifications

(a) Processor - MIMXRT1062DVLGA.

(b) Memory - 512MB Hyper Flash, 256 MB SDRAM, 64 MB QSPI Flash.

(¢) Connectivity - CAN transceivers, Micro USB OTG and Ethernet connector.
(

d) Display - Camera connector, Parallel LCD connector, Microphone.
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Fig. 3.2. Block Diagram of NXP i.MX RT1060 [Courtesy: NXP]
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(e) Audio - Speaker connection, Audio codec, S/PDIF connector.
(e) Power - 5V DC Jack.
(f) Debug - OpenSDA having DAP link and JTAG 20-pin connector.
(g) OS support - FreeRTOS, Zephyr OS, Linux.

The MCUXpreeso is the software development package pre-configured for the
i.MX RT1060 board. The toolchain is MCUXpresso IDE. For outputting the data
across the MCU UART, the driver for the board’s virtual COM port should be in-

stalled. The output is finally viewed in any serial terminal application like the Ter-

aTerm.
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4. DESIGN SPACE EXPLORATION TECHNIQUE

This chapter discusses the method of Design Space Exploration in detail. This is
the method which has been used in developing the enhanced MobileNet architectures
from the existing baseline MobileNet architecture. The following techniques improve
the overall performance of DNN models:
1. Collection of more data and enhancing the quality of data improves the
performance of a DNN. Data augmentation and feature selection can be used to
further improve the performance.
2. Methods like weight initialization, activation functions, alteration of network
topology, different optimizers, loss functions, learning rates come under the
category of architecture tuning.
3. Architecture modification is another method of improving the performance
where the new architecture is inspired from the literature review, and the positive
features of some of the renowned DNNs.
4. Training an ensemble of many networks can be a huge boost to the
performance of a model which includes combining views, stacking and combing

networks.

4.1 Data Augmentation

Data augmentation is a technique of artificially increasing the training dataset
size, by making modified genres of images in the dataset. It improves the training
process efficiency, accuracy of the model, reduces the overfitting problem and also en-
hances the generalizing ability of a network. In our experiment, a data augmentation
technique called Random Erasing is used to improve the overall performance. The

Random Erasing technique is discussed in detail in the Chapters 6 and 7.
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4.2 Weight Initialization

Weight initialization stops activation outputs from vanishing or exploding in the
course of forward pass in a DNN. If the vanishing of activation outputs occur, loss
gradients will either be very small, or very large to flow backwards beneficially, and
the model will take a long time to converge. In this experiment, Xavier weight initial-
ization is used. The weights are based on a Gaussian distribution. The distribution
has zero mean and finite variance. With every passing layer, the variance remains

fixed, which prevents the signal from exploding to a large value or vanishing to zero.

4.3 Loss Function

Loss functions measure how well a machine learning algorithm models the given
data. If the estimation or prediction diverges too much from the original results,
the loss function gives a large value. The Cross-entropy loss function is used, which
evaluates the performance of a classification DNN model by assigning a probability

value between 0 and 1.

4.4 Different Optimizers
4.4.1 SGD

SGD [32,33] or Stochastic Gradient Descent is an iterative technique for doing
optimization on an objective function with appropriate smoothness properties like
differentiable and subdifferentiable properties. It performs one parameter update at
a time. The SGD optimizer fluctuates a lot, as it has got a high variance due to
frequent updates. As, a result the convergence to the minima becomes complicated.
To solve this problem, we use Momentum combined with the SGD optimizer, which
dampens oscillations. Also, Nesterov can be used to propel the SGD in the relevant

path.
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4.4.2 SGD with Momentum and NAG

When the gradient is continuously small, SGD can have very slow convergence.
Momentum can be used to eliminate the problem and accelerate the learning. It can
increase the gradient descent by taking into consideration the past gradients in the
parameter update rule at each iteration for the SGD [32]. Another closely associated
method to momentum is the Nesterov Accelerated Gradient [32,33] . It can be seen as
a correction term for the Momentum optimization. In the Momentum optimization,
the gradient is calculated with the current parameters. In case, of Nesterov, the
velocity is applied to the current parameters, to find out the interim parameters.
Finally, the gradient is computed with the help of the interim parameters. The

parameters are updated using the similar update rule.

4.4.3 RMSProp

RMSProp [34] or Root Mean Square Propagation is an efficient optimizer as the
LR is adapted for all the parameters. The main concept is to divide the LR for a
weight by exponentially decaying average of magnitudes of the latest gradients for

that particular weight. Sometimes, slow convergence is encountered using RMSProp.

4.4.4 Adam

Adam [35,36] is an updated version of the RMSProp optimizer. It adapts to the
learning rate by using the running averages of the first moment as in the case of the
RMSProp optimizer and also the second moments of the gradients are stored. In a
nutshell, we can say that Adam accumulates the running average of past gradients
as well as as past squared gradients. It calculates the adaptive LR of every param-
eter, thus eliminating manual definition of the LR. During training of DNN models,

problems like slow convergence, vanishing gradient and large variance are eliminated.
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4.4.5 Nadam

Nadam [32,33], an efficient optimizer integrates Adam, RMSProp and Nesterov
momentum. It accelerates the search towards the direction of minima and impedes
the search in the direction of oscillations. It also does not overshoot drastically around
the minima as compared to SGD and Momentum. We get the best results, in terms

of accuracy, by using Nadam optimizer.

4.5 Non-Linear Activation Functions

Mainly three activation functions have been used in this research work. They

are: (a) ReLU (b) Drop-activation and (c) Swish.

4.5.1 Rectified Linear Units (ReLU)

Among all the activation function, ReLU [18] is the most popular one. The
mathematical expression for ReLU is max(0,z). If the input value is greater than 0,
then the function is linear. If the input value is negative, the output is always a 0.
ReLU can be labelled as nearly linear and as a result, it preserves many characteristics
that make linear models easily optimizable. It also solves the vanishing gradient issue,
and is less computationally intensive. The main demerit of ReLU is that since the
ouput of the function for negative input values is 0, the ability of the DNN to fit

decreases and also the negative parts are not properly mapped.

4.5.2 Drop-activation

The proposed Thin MobileNet architecture utilizes the Drop activation [37] func-
tion in place of ReLLU. The non-linear function is randomly deactivated and activated
during training i.e. randomness is introduced into the activation function. The non-
linearity in the activation function is kept with a probability P and dropped with

a probability of (1-P). Here, the non-linear activation function considered is ReL.U
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and the way of applying ReLLU to the network is modified by using Drop-Activation
layer. If f(x) is the non-linear operator, x is the input and if the activation is ReLU
then, f(x)=0, when x<0 and f(x)=x with some probability, when, x>0. This means,
the function may go towards the third quadrant with some probability, even if the
input is negative. This solves the above-mentioned problem with the ReLLU activation

function. The use of Drop-activation is discussed in more detail in Chapter 6.

4.5.3 Swish Activation

Fig. 4.1. Graph of Swish Activation Function [22]

Another activation function which consistently performs well like the ReLU is

the Swish [22,32] activation function. The Swish function is expressed as:

fz) = z.0(5.7)

o = Sigmoid function.

[ = A constant or trainable parameter.

Swish is a very smooth activation function. Unlike ReLU, it does not change
its direction abruptly around x = 0. In Swish, the small negative input values are
not zeroed out, as at times they can be relevant for seizing patterns connected to

the data. This property is a clear cut advantage over the ReLLU activation function.
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Also, there are benefits like, the models can be optimized for convergence towards the
direction of minimum loss. Fig. 4.1 shows the graphical representation of the Swish
activation function. The proposed Ultra-thin MobileNet architecture uses the Swish

activation function.
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5. MOBILENET DNN ARCHITECTURE
5.1 Transfer Learning Technique

Usually, researchers do not train the Deep Neural Network from scratch, as
training the model is a hectic task as it takes a lot of time, memory and power to
train any model from scratch. There is also an issue of non-availability of datasets
which are largely labelled. Generally, a pre-trained model is used and applied in a
particular area. This is known as the transfer learning [38] technique.

Transfer learning is effective as many characteristics or features at low-level
are common in many image classification applications. Also, a lot of memory and
computation time is saved. The pre-trained model trained on a different dataset, for
example, the ImageNet cannot be used in this experiment as there will be no common

features in two dissimilar datasets.

5.2 Training From Scratch

The baseline MobileNet [11, 39] was trained from scratch on the CIFAR-10
dataset with Keras as the backend framework. The CIFAR-10 dataset contains 6000

Table 5.1.

MobileNet vl Features on the CIFAR-10 dataset
Model name MobileNet v1 baseline
Accuracy 84.30%

Model size 39.1 MB

Computation time per epoch | 31s

Total number of parameters | 3,239,114
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images among which 5000 images are for training i.e the training set and 1000 images
are for testing or validation i.e the test set. The data was trained in batches of 32 and
1563 steps-per-epoch for 200 epochs. The RMSProp optimizer is used for training
the network as in the case of the original research paper [4]. The default values for
the LR and momentum are used. The default momentum value is 0.9 and the default
LR value is 0.001. Table 5.1 shows the accuracy, model size, computation time and
the total number of parameters of the MobileNet v1 model trained on the CIFAR-10
dataset. The accuracy obtained is 84.30%. The model size is 39.1 MB, total number
of parameters is approximately 3.2 million with a computation time per epoch of 31s.
Fig. 5.1 shows the plot of accuracy when the MobileNet baseline model on the left
side and the plot of losses on the right side. The blue line in the plot represents the

training accuracy or loss and the orange line represents the test accuracy or loss. It

Aecuracy Log-loss (cost function)

= Funing \ anify
valiitson oaq{ i alidatisn

Fig. 5.1. MobileNet vl Baseline Accuracy and Loss

is evident from the log-loss plot and the accuracy plot that the gap between the train-
ing line and the validation line is huge. The training accuracy is much higher than
the test accuracy and the validation loss is much higher than the training loss. This

means there is a problem of overfitting [40]. It is a problem in ML where the network
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predicts well with the images of the known dataset i.e the training set, but it does
not predict that well when images of an unknown dataset i.e a dataset other than the
training set is fed to it. The accuracy of prediction drops, thus lacking generalization
ability. Also, the model is compact but still it is not deployable into microprocessors
with limited space and power. The new DNN models, that is, the Thin MobileNet
and the Ultra-thin MobileNet are developed using this baseline MobileNet v1 as the
foundation. These enhanced models have better accuracy, model size, model speed

and negligible overfitting.



33

6. THIN MOBILENET

The proposed architecture uses the MobileNet v1 baseline model as its foundation.
The Thin MobileNet [41] has improved accuracy along-with reduced size, lesser num-
ber of layers, lower average computation time and very less overfitting as compared
to the baseline MobileNet v1. The reason behind developing this model is to have a
variant of the existing MobileNet model which will be easily deployable in memory-
constrained MCUs. We introduce some modifications like using Separable Convolu-
tions instead of Depthwise Separable Convolution to reduce the size of the network.
Also, Drop Activation and Random Erasing methods are introduced to improve the
overall performance of the model. After introducing these modifications, we make the
MobileNet shallower by eliminating some layers from the network to reduce the num-
ber of parameters and computation overhead without compromising on the accuracy.
The optimizer used in the baseline MobileNet is RMSProp. We replace RMSProp by
the Nadam optimizer to get a better accuracy. The modified network is trained on
the CIFAR-10 dataset from scratch in 32 batches and 1563 steps-per-epoch for 200

epochs. These are the following modifications:

6.1 Modification 1 - MobileNet Architecture with Separable Convolu-

tions [42] Instead of Depthwise Separable Convolutions

A depthwise separable convolution is implemented by first performing channel-
wise convolution (filtering each input channel separately) and then linearly integrat-
ing those outputs with the help of pointwise convolutions. In the baseline model,
the depthwise convolution layers and the pointwise convolution layers are defined

separately. In our model we use separable convolutions [42] instead of depthwise sep-
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arable convolutions which combines the depthwise layer and the pointwise layer into

one layer and there is no need to define them separately as two different layers.

Depthwise separable
convolutions:
Layer 1:
&_ Depthwise

~ ‘ convolutions
Layer 2:
Pointwise
convolutions

Depthwise convolution

Pointwise convolution

Depthwise convolution

Separable
+ ‘ convolutions
Layer 1:
Depthwise +

Pointwise
convolutions

Pointwise convolution

Fig. 6.1. Depthwise Separable Convolutions and Separable Convolu-
tions Comparison

The Keras framework is used here where the Separable Convolution 2D API
is defined. Here, the pointwise initializer, pointwise regularizer and pointwise con-
straint for the pointwise convolution are defined inside the same init() function as the
depthwise initializer, regularizer and constraints. It is a technique called deep layer
aggregation. This reduces the network to 14 layers, keeping the basic functionality of
the depthwise separable convolutions intact, but does not do much in increasing the
accuracy of the network. The model size becomes 26.9 MB (12.2 MB less than the
baseline) and the total number of parameters becomes 2,158,826. Fig. 6.1 [41] shows
the difference between the core layers of the original network and the core layers of

the modified network. The computation time per epoch is now reduced to 21s. Table



Table 6.1.
Network Architecture before Introducing Modification 1

Layer / Stride Output Shape | Parameter
Input layer 32,32, 3 0
Conv2d/s2 16, 16, 32 864
Separable conv2d /sl 16, 16, 32 1312
Separable conv2d/s2 8, 8, 64 2336
Separable conv2d /sl 8, 8,128 8768
Separable conv2d/s2 4,4, 128 17536
Separable conv2d /sl 4, 4, 256 33920
Separable conv2d /s2 | 2, 2, 256 67840
Separable conv2d /s1 |2, 2, 512 133376
Separable conv2d /sl | 2,2, 512 133376
Separable conv2d /sl | 2, 2, 512 266752
Separable conv2d /s1 |2, 2, 512 266752
Separable conv2d /sl | 2, 2, 512 266752
Separable conv2d/s2 1, 1, 512 266752
Separable conv2d /s1 | 1,1, 1024 528896
Global average pool/sl | 1, 1, 1024 0

FC and Softmax/sl 1,1,10 10250
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6.1 [41] shows the modified deep neural network architecture with the output shape

of the activation maps and the number of parameters associated with each layer.

6.2 Modification 2 - MobileNet Architecture with Drop- Activation Lay-
ers Instead of ReLU

Fig. 6.2. Graph of Standard ReLLU Function

fix)

Fig. 6.3. Graph of Drop-Activation Function

Regularization [43,44] has been an important part of Deep learning networks.
Sometimes, regularizations [45] individually work quite well but when they are com-
bined, they do not enhance the overall performance of the network. For example, if
we are using Batch normalization and Dropout [46,47] in our model, the performance
drops as Batch normalization requires the statistical variance should be same in both
training and testing scenarios. Dropout changes the variance of the layers output
when the model is in testing phase after its training phase. To make our model more
robust, accurate and compatible to other regularization techniques, the non-linear

activation function ReLU is replaced by Drop-Activation [37] layers. The non-linear
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function is randomly deactivated and activated during training i.e. randomness is
introduced into the activation function. The nonlinearity in the activation function
is kept with a probability P and dropped with a probability of (1-P). Here, the non-
linear activation function considered is ReLLU and the way of applying ReLU to the
network is modified by using Drop-Activation layer.

Suppose, f(x) is the non-linear operator. If x is the input and if the activation is
ReLU then, f(x)=0, when x<0 and f(x)=x, when, x>0. Fig. 6.2 [41] illustrates that
if the input is negative, then in case of standard ReLLU, the output is zero (the graph
does not go to the third quadrant). Fig. 6.3 [41] illustrates that in case of drop-
activation, suppose if the input is negative having the probability P=0.75, the output
is zero as in normal ReLLU, but the identity function I is also used with a probability of
0.25. That means, the graph may go towards the third quadrant with a probability of
0.25. Thus, we switch between standard ReLLU (75%) and Identity mapping function
(25%). The value of drop-activation probability P should be somewhere in between 0
and 1, since P=1 means all the non-linearities have been kept and P=0 means all the
non-linearities have been dropped. In the testing phase, we average the realizations
of P and get a deterministic non-linear function as a result. We use this function
for testing. Mathematically speaking, we calculate the expectation of the equation of
the standard non-linear function we are using during training, for example, ReLLU in
this case and get Leaky ReLU [48] with slope (1-P) as our deterministic non-linear
function for the testing phase.

The advantages are that, Drop-activation technique increases the accuracy of
the model to 85.14% and reduces the overfitting problem present in the baseline
architecture. The difference between the training and testing accuracy is only 0.2
now. It is also compatible with other training methods like Batch normalization and

regularization techniques like data augmentation.
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6.3 Modification 3 - Use of Random Erasing in the Network

Random erasing [49] is a kind of data augmentation [50,51] method where we
select rectangular regions in an image I in a mini-batch randomly, and erase the
pixels of that region and substitutes it with random values. It enhances the ability of
generalization of a convolutional neural network. When some regions of an object in
an image are occluded, a CNN model can be unsuccessful in recognizing the object
from its global structure due to poor generalization power. To curb this problem,
Random erasing [49] technique was established. Random erasing has the following
input parameter values (base setting) [49] in our model:

Probability of erasing p = 0.5.
Maximum erasing area ratio S, = 0.4.
Minimum erasing area ratio S; = 0.02.

Erasing aspect area ratio r, = 0.3.

AN o

Erasing aspect ratio range = [0.3,3.33].

The Erasing area ratio is equal to S./S, where S is the area of the original image
and S, is the erased area. It helps us to further enhance the accuracy to 85.21% [41]
and to reduce the overfitting problem in our model. Now, the difference between the
validation loss and the training loss is roughly 0.1 which is an acceptable value in
any CNN object recognition model. There is a little increase in computation time
per epoch which is currently 23s but still, it is much less than that of the baseline

architecture which has this value as 31s.

6.4 Modification 4 - Eliminating Unnecessary Layers

We can make our architecture shallower by eliminating some layers which are
repetitive [11] or redundant as they significantly increase the computation overhead
by largely increasing the total number of parameters. The five layers with output

shape (2,2,512) [41] that is layers, 9 to 13 as illustrated in Table 6.1 and Fig. 6.4 [41],

are eliminated as they contribute about 41% of the total number of parameters. Here,
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the output shape (2,2,512) indicates that both the width and height of the output
map is 2 and the depth is 512. This drastically reduces the model size to 9.9 MB
without a decrease in the accuracy. The accuracy does not decrease because drop-
activation function and the random erasing techniques which have been applied earlier

compensate for the loss in accuracy.

Layer / Stride Output Shape | Parameter
Input layer 32,323 0
Conv2d/s2 16, 16, 32 864

Separable conv2d/s| 16, 16, 32 1312
[ Separable conv2d/s2 8, 8, 64 2336
[ Separable com2d/sT | 8,8, 128 8768
[ Separable com2ds2 | 4,4, 128 17536
[ Separable conv2dis| 4,4, 25 33920
Separable comv2d /52 | 2, 2 256 67840
Separable conv2d /s1 | 2,2, 512 133376
Separable conv2d /s1 | 2, 2, 512 133376
[ Separable com2d 51 | 2,2, 512 266752
Separable conv2d /s1 | 2, 2, 512 266752
v _Separable conv2d /s1_| 2,2, 512 266752
Separable conv2d/s 1, 1,512 26675
[ Separable com2d /5T | 1, T, 1024 528806
Global average pool/sl | 1, 1, 1024 0
FC and Softmax/s] 11,10 10250
_s A

Fig. 6.4. Eliminating Layers with Redundant Output Shape
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Table 6.2.

Thin MobileNet Architecture
Layer / Stride Output Shape | Parameter
Input layer 32,32, 3 0
Conv2d/s2 16, 16, 32 864
Separable conv2d /sl 16, 16, 32 1312
Separable conv2d/s2 8, 8, 64 2336
Separable conv2d /sl 8, 8,128 8768
Separable conv2d/s2 4,4, 128 17536
Separable conv2d /sl 4, 4, 256 33920
Separable conv2d /s2 | 2, 2, 256 67840
Separable conv2d/s2 1,1, 512 133376
Separable conv2d /sl 1,1, 1024 528896
Global average pool/sl | 1, 1, 1024 0
FC and Softmax/sl 1,1,10 10250

6.5 Modification 5 - Using Nadam Optimizer

Nadam [35,36] is Nesterov Adaptive Moment Estimation. Nadam combines the
positive effects of three optimizers: RMSProp [34], Adam [36] and Nesterov momen-
tum [52,53]. In the baseline version, RMSProp is used. In this modified, model
Nadam is used instead. When RMSProp is used, the problem of slow convergence is
encountered. Adam perfoms better than RMSprop but sometimes it does not con-
verge to an optimum solution. Nadam accelerates the convergence towards the local
minima. The default values for the exponential decay rate for the 1st moment esti-
mates and the exponential decay rate for the exponentially weight infinity norm are
used i.e 1 = 0.9 and 52 = 0.999. After introducing Modifications 1, 2, 3, 4 and 5 we
get the Thin MobileNet DNN architecture. Table 6.2 [41] shows the Thin MobileNet

architecture with its different layers, the output shape at each layer and the number
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of parameters contributed by them. Fig. 6.5 shows the building blocks of the Thin
MobileNet architecture with the different layers, channel depths and strides.

Input image 32*32*3 Separable Conv, 256/
F Stndes=1 |
Balch-normalization
ik Drop-Activation
Separable Conv, 32/ Separable Conv, 256/
Stnides=1 Strides=2
Bltﬂl-m m.m
Drop-Activation Drop-Activation
Separable Conv, 64/ Separable Conv, 512/
Strides=2 Strides=2
Batch-normalization Batch-normalizabon
Drop-Activation Drop-Activation
Separable Conv, 128/ Separable Conv, 1024/
Stndes=1 Strides=1
Batch-normalization
Batch-normalization ]
Drop-Activation D'“""";‘”“"““
Separable Conv, 128/
Strides=2 Global avg. pooling
Balch-normalization \i
Drop-Activation FC and Softmax

Fig. 6.5. Thin MobileNet Architecture [41]
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7. KILOBYTENET AND ULTRA-THIN MOBILENET

We propose two other compact architectures inspired from the baseline MobileNet
and the Thin MobileNet architecture. They have less model size and fewer number
of parameters than the baseline MobileNet and the Thin MobileNet with a compet-
itive accuracy. Design Space Exploration of the baseline MobileNet model makes it
compact and less memory intensive. We propose some modifications again to develop

the KilobyteNet and the Ultra-thin MobileNet architecture.

7.1 KilobyteNet Architecture Development

There are nine modifications introduced on the baseline MobileNet, four of which

are already done for developing the Thin MobileNet architecture [41].

7.2 Modification 1 - Separable Convolutions Instead of Depthwise Sepa-

rable Convolutions

This modification is same as the Modification 1 which we had introduced for
developing the Thin MobileNet architecture. Section 6.1 of Chapter 6 discusses this
modification in more detail. While keeping the basic functionality of depthwise sep-
arable convolutions the same, the number of layers is reduced to 14 which is half the
number of layers in the baseline MobileNet that has 28 layers. The size of the net-
work becomes 26.9 MB from 39.1 MB. The total number of parameters now is 2.1 M.
The computation time per epoch decreases to 21s from 31s. Table 7.1 [54] shows the
modified architecture. Fig. 7.1 [54] shows the difference between Depthwise separable

convolutions and the Separable convolutions.



convolutions:
| 1* layer: |
Depthwise+Pointwise
convolutions
| 21

Fig. 7.1. Depthwise Separable and Separable Convolutions
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Table 7.1.

Modified Network Architecture after Introducing Modification 1

Layer / Stride Output Shape | Parameter
Input layer 32,32, 3 0
Conv2d/s2 16, 16, 32 864
Separable conv2d /sl 16, 16, 32 1312
Separable conv2d/s2 8, 8, 64 2336
Separable conv2d /sl 8, 8,128 8768
Separable conv2d/s2 4,4, 128 17536
Separable conv2d /sl 4, 4, 256 33920
Separable conv2d /s2 | 2, 2, 256 67840
Separable conv2d /s1 |2, 2, 512 133376
Separable conv2d /sl | 2,2, 512 133376
Separable conv2d /sl | 2, 2, 512 266752
Separable conv2d /s1 |2, 2, 512 266752
Separable conv2d /sl | 2, 2, 512 266752
Separable conv2d/s2 1, 1, 512 266752
Separable conv2d /s1 | 1,1, 1024 528896
Global average pool/sl | 1, 1, 1024 0

FC and Softmax/sl 1,1,10 10250
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7.3 Modification 2 - Use of Random Erasing Data Augmentation Method

This modification is same as the Modification 3 which we had introduced for
developing the Thin MobileNet architecture in Chapter 6 Section 6.3. This is a data
augmentation method which increases the abstraction power of a model. These input
parameter values are the same as that which we have used in the case of the Thin
MobileNet architecture:

1. Probability of erasing p = 0.5.

2. Minimum erasing area ratio S, = 0.4.

3. Maximum erasing area ratio S, = 0.02.

o

Erasing aspect area ratio r, = 0.3.

5. Erasing aspect ratio range = [0.3,3.33].

Se/S = Erasing area ratio.

S = Area of the original image.

Se = Erased area.

The accuracy of the model slightly increases [54] and the overfitting problem
reduces to a large extent. The gap between the validation loss and training loss is
almost 0.1 which is quite less than the baseline model. The computation time per

epoch increases to 23s from 21s though [54].

7.4 Modification 3 - Removing Layers with Redundant Output Shape

This modification is same as the Modification 4 which we had introduced for
developing the Thin MobileNet architecture in Chapter 6 Section 6.4. We make our
model shallow by eliminating some layers (layers 9 to 13) with the same output shape
of (2,2,512) [54]. This modification drastically reduces the size of the model to 9.9
MB as eliminating those five redundant layers leads to cutting off 41% of the total

number of parameters.
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Table 7.2.

Network Architecture after Introducing Modifications 1,2,3, and 4
Layer / Stride Output Shape | Parameter
Input layer 32,32, 3 0
Convad /s2 16, 16, 32 864
Separable conv2d /sl 16, 16, 32 1312
Separable conv2d/s2 8, 8, 64 2336
Separable conv2d /sl 8,8, 128 8768
Separable conv2d/s2 4,4, 128 17536
Separable conv2d /sl 4, 4, 256 33920
Separable conv2d /s2 | 2, 2, 256 67840
Separable conv2d/s2 1,1, 512 133376
Separable conv2d /s1 | 1,1, 728 377344
Global average pool/sl | 1, 1, 728 0
FC and Softmax/sl 1,1,10 7290

7.5 Modification 4 - Altering the Channel Depth [54]

The last separable convolution block has a channel depth of 1024 which is re-
placed to make the network more compact. We substitute a separable convolution
block with depth 728 instead of the block with channel depth 1024 to reduce the
number of parameters by 0.2 million and hence, the size of the model further reduces
by 1.9 MB. The total number of parameters contributed by the layer with depth
1024 is approximately 0.5 million and the total number of parameters contributed by
the new layer with depth 728 is 0.3 million as is evident from, Table 7.2. Now, the
model has a size of 8.0 MB. Table 7.2 [54] shows the network architecture obtained till
now along-with the different layers, the output shape and the number of parameters

associated with each layer.
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7.6 Modification 5 - Use of Swish Activation Instead of ReLU Activation

Function

ReLU is a standard non-linear activation function that consistently performs
well for almost every CNN model trained on any dataset as compared to many other
non-linear activation functions. Through our experiments, we find that if ReLLU which
was used in the baseline MobileNet, is replaced by the Swish [55] activation function,
the accuracy of the model increases to 85.60%. Hence, we proceed with Swish instead

of ReLU. The Swish function is defined to be:

z.0(f.x)

Here, o is the sigmoid function and § is a constant or trainable parameter.
When, 8 = 0, Swish behaves as a linear function that is f(z) = 5. When g—o00, Swish
behaves like the ReLLU function. In our model, we obtain the best performance when
we use = 1 when Swish becomes equal to the Sigmoid-weighted Linear Unit(SiL)
[55]. Each separable convolution is followed by a batch normalization layer and swish

activation layer as shown in Fig. 7.2 [54].

Separable
convolution

*

Batch
normalization

x

Swish activation

Fig. 7.2. Modified Block with Separable Convolution, Batch Normal-
ization, and Swish Activation
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7.7 Modification 6 - Dropout

The overfitting problem causes huge losses of a DNN model in terms of accuracy.
They are likely to rapidly overfit a dataset due to sampling noise involved. One
efficient way to deal with this problem is using ensembles of DNNs with various
configurations. But this technique increases the computational expenses for training
and maintenance of these models. Dropout is an alternative technique which can be

used to solve the above-mentioned issues.

® B ‘D
L 4 ()

T,

o eo

A @ —
o )

/

Fig. 7.3. Dropout technique

Dropout [47] is nothing but dropping out hidden and visible units in a DNN
to solve overfitting issues and to maintain competitive accuracy levels. Removing a
unit means eliminating a unit with all its inward and outward connections temporarily
from a DNN. The method of selecting the units is random. There is a probability value
p associated with it. We have chosen p=0.5 as the optimal value for our network. The
dropout layer is incorporated after the last separable convolution layer with the depth
728. Every-time the network is trained with dropout, a thinner network is obtained
which comprises of all the units which are retained. The usage of dropout makes
the connections in a dense network sparse leading to a more compact architecture.
During testing, only one DNN is used. The weights associated with this single DNN
are basically scaled-down forms of the training weights. If a unit is preserved during

training with a probability p, its outgoing weights are multiplied by p during testing.
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This guarantees that the expected output during train time is same as the actual

output during test time, thus increasing the overall accuracy of the architecture.

7.8 Modification 7 - Depth Multiplier Tuning

As discussed earlier, the MobileNet baseline uses a unique type of convolution
called the depthwise separable convolution. These convolutions reduce the compu-
tation overhead by one-eight as compared to the standard convolutions. To further
trim the model with a little drop in accuracy, the width multiplier hyperparameter
was used. Another hyperparameter called the depth multiplier [27] can be used to
produce multiple features from one input channel. It can be also said that, the value
of the depth multiplier decides the number of feature maps which will be produced
by each input channel. The depth multiplier is denoted by §. The typical values of
0 are 1, 2, and 4. For example, if the value of §=2, each input channel will produce
two feature maps after the convolution. If the value of =3, three feature maps will
be produced after convolution by each input channel. The accuracy of the model
increases with the increase in value of 4. But as the model accuracy increases the
model size and computation overhead too. By trial and error, the value of =2 is
chosen to be an optimal value for the KilobyteNet model. Fig. 7.4 shows the effect

of using depth multiplier on the number of output channels.

—

Input channels = 3 Output channels = 3*1=3
(Depth multiplier=1)

QOutput channels = 3*2=6
(Depth multiplier=2)

Fig. 7.4. Effect of Depth Multiplier [27]
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Table 7.3.
Effect of Using Width Multiplier «
Width multiplier value | Accuracy | Model size | No. of parameters
0.75 85.95% 5.6 MB 4,85,290
0.50 82.36% 3.0 MB 2,48,269
0.25 81.59% 996 KB 74,106

7.9 Modification 8 - Tuning the width multiplier

The width multiplier « [11,27] is used to trim a model uniformly at every layer.
It reduces the model size and makes it faster. The width multiplier a@ should have
values between 0 and 1. The baseline MobileNet has the setting & = 1. As we decrease
the value of o from 1 towards 0, the size of the model reduces as the total number
of parameters decreases quadratically. The accuracy of the model starts to fall as we
decrease the value of a. Table 7.3 shows the accuracy, model size and the number of
parameters we obtain when we start playing with different values of a.

We observe, that as we reduce the value of «, the accuracy decreases and falls
below the baseline level accuracy of 84.30%. We choose the value of « to be 0.25 so
that we get a compact network in the kilobyte range and also maintaining a reasonable

model accuracy (above 81%) at the same time.

7.10 Modification 9 - Using Nadam as the Optimizer

The Nadam optimizer is used as a method or algorithm to increase the learning
rate of the DNN. As a result the overall rate of convergence of the DL algorithm
towards the local minima gets increased. It performs better than other benchmark
optimizers like SGD, NAG, Momentum, RMSProp and Adam. Its main highlight

is that it prevents the curve from going towards oscillations. This is an effective
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optimizer which combines the positive effects of Adam, Nesterov and RMSProp and

drastically reduces the loss or the cost function of the deep neural network model.

Input image » Standard
YAtV convolution
Parameters

Dropout(p) = GAPooling
p=0.5
0=0.25
0=2

Fig. 7.5. Schematic Diagram of the KilobyteNet DNN

After introducing Modifications 1, 2, 3, 4, 5, 6, 7, 8 and 9, a new DNN archi-
tecture is obtained. It is named KilobyteNet. It is more compact as compared to
the MobileNet v1 and the Thin MobileNet as it has only 10 layers in total. Fig. 7.5
shows the KilobyteNet architecture depicting its different layers. The numbers to the

right of the convolution layer description represents the channel depth.

7.11 Ultra-thin MobileNet Architecture Development

Although we have obtained a compact architecture like the KilobyteNet, we still

wish to further have an architecture which is small (less than 5 MB) and the accuracy
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almost same or higher than the baseline MobileNet. For developing the Ultra-thin
MobileNet [54, 56], seven modifications have been introduced on the baseline Mo-
bileNet. These are as follows:

1. Separable convolutions instead of Depthwise separable convolutions
2. Random erasing data augmentation.

3. Eliminate redundant layers.

4. Nadam optimizer.

5. Use of Swish activation.

6. Altering the channel depth.

7. Width multiplier tuning with a different value.

Modifications 1, 2, 3, 4, 5, 6 have already been discussed for the development
of the KilobyteNet architecture. The same modifications are introduced here. We
eliminate the dropout technique and the depth multiplier tuning in this case to get
the desired result. Also, the width multiplier is tuned to a different value for better

model accuracy.

7.12 Width Multiplier Tuning

We choose the value of o between 0.75 and 0.60 such that the accuracy does not
fall below the baseline level. After putting different values of v in our code, we find
that when « is equal to 0.69 [54], the accuracy of the model is 84.32% which is just
above the baseline level accuracy. The size of the model obtained is 3.9 MB which
is less than 5 MB making it suitable for autonomous hardware deployment. Apart
from reducing the number of parameters, the usage of the width multiplier makes the
model faster and reduces the problem of overfitting to a large extent. Table 7.4 shows
the Ultra-thin MobileNet architecture. It shows the output shape and the number of
parameters associated with each layer. The depth multiplier is not used here. Fig.

7.6 shows the Schematic diagram of the Ultra-thin MobileNet.



Table 7.4.
Ultra MobileNet Architecture [54]

Layer / Stride Output Shape | Parameter
Input layer 32,32, 3 0
Convad /52 16, 16, 22 594
Separable conv2d /sl 16, 16, 22 682
Separable conv2d/s2 8,8, 44 1166
Separable conv2d/sl 8, 8, 88 4268
Separable conv2d/s2 4,4, 88 8536
Separable conv2d /sl 4,4, 176 16280
Separable conv2d/s2 2,2, 176 32560
Separable conv2d/s2 1, 1, 353 63712
Separable conv2d /sl 1,1, 502 180383
Global average pool/sl | 1, 1, 502 0

FC and Softmax/sl 1,1, 10 5030
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Input image -
323259 4
| Separable 4-]
; Conv,88/5Strides=2
Conv,22/Strides=2 Batch Separable
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Conv,22/5trides=1 Swish Batch
Batch normalization
o Separable
normalization ; :
Conv,176/5trides=1 Swish
Swish Batch
normalization ot
Separable Conv,502/Strides=1
Conv,44/5trides=2 Swish Batch
Batch Separable normalization
normalization Cony, 176/Strides=2 Swish
; Batch
Swish A
normalization Global Avg. Pooling
Separable ;
Conv,88/5trides=1 Swish FC and Softmax
Batch
normalization
Swish
S

Fig. 7.6. Schematic Diagram of the Ultra-thin MobileNet DNN
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8. HARDWARE DEPLOYMENT
8.1 i.MX RT1060

The Ultra-thin MobileNet model is a more balanced model in terms of model
accuracy (84.32%, just above baseline) and model size (3.9 MB, less than 5 MB). It is
deployed into an autonomous embedded hardware called i.MX RT1060 [56] produced

by NXP semiconductors for image classification application.

8.1.1 Converting the Ultra-thin MobileNet Model into TensorFlow Lite

Format

The NXP elQ software is a machine learning software development environment
which includes optimized libraries, neural network compliers and inference engines, to
develop end user machine learning applications on NXP crossover processors. Tensor-
Flow Lite is one such inference engine supported by the elQ with a better performance
and more efficient memory utilization than the TensorFlow. A model trained using
the Keras backend framework is converted into TensorFlow Lite format (.tflite) using
the TFLiteConverter. The python API for TFLiteConverter permits custom objects
like loss functions, activation functions, etc. The integrated development environment

used for the above process is Microsoft Visual Studio Code.

8.1.2 Running TFLite Model on the i.MX RT1060

The elQ software is given as middleware in the MCUXpresso SDK for the NXP
i.MX RT1060 board. It contains updated elQ software platform plus demos. The
package contains an image label demonstration for the TensorFlow Lite, which is

imported into the MCUXpresso. The MCUXpresso SDK also contains UART debug
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console for debugging the application on the TeraTerm emulator. The model is now
running in the .tflite format for image classification application. The images are
captured by a camera attached to the i.MX board. The .tflite file is then converted
to a C array header file that is in .h format which can be dumped into an embedded
project. This .h file is utilized to load the DNN model in the code using an APIT call.
The application is built, the code is compiled and it is now executable for the i.MX
platform. Lastly, it is debugged on the TeraTerm serial emulator to get the output.
Fig 8.1 and Fig 8.2 shows the flowchart for running the model on the i.MX RT1060

processor with and without camera respectively.

Training model on Running the code
GTU on MCUXpresso
Model saved in .h5 o
format (Keras F|Ie.|9; dtuhm pac
framework) sl
processor
!
.h5 format
converted to .tflite . Output on the TeraTerm-
format Testimages Classified images
lite convertedto | |
.h C header file

Fig. 8.1. Running Ultra-thin MobileNet on i.MX RT1060 with Test images

In case of running the model with camera, a MT9M114 camera module is needed
with an LCD screen. The camera captures the image frame by frame. The image
captured by the camera flashes on the LCD screen. Then image reshaping is done to
obtain the image in the desired shape. Finally, the model running on the processor

classifies the images frame by frame.



Training modelon .
Camera input
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Model saved in .nd

format (Keras

framework)
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haformt Running the code

converted o fite | | onMCUXpresso
format

. Output- Classiiied
Afite converted to images wih
N C header il inference fime

Fig. 8.2. Image classification with Camera [Courtesy: NXP]
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9. RESULTS

In this chapter, the obtained results for the DNN architectures are discussed.

9.1 Proposed Architecture 1: Thin MobileNet

The proposed Thin MobileNet model is trained and tested from scratch on the
CIFAR-10 dataset. The experimental results are based on the following parameter
setting: Batch size= 32, Steps-per-epoch= 1563, Epochs= 200, Width multiplier «
value= 1, Loss function= Cross-entropy. The results are visualized using the Liveloss-
plot package which provides live loss and accuracy graphs after each epoch. Fig. 9.1
shows the plot of accuracy obtained for the Thin MobileNet architecture. Fig. 9.2
shows the loss plot for the same. The blue line in the plots represents the training
part and the orange line in the plots represents the testing part. The network has
been trained from scratch on the CIFAR-10 dataset. It gives better model accuracy
but training the model from scratch using small datasets like CIFAR-10, CIFAR-100
takes less time and computation cost. The trained model is saved in the specified
folder in the .h5 format. This .h5 file is loaded again for testing. Table 9.1 shows
the model accuracy value, model size, computation time and the total number of

parameters of the Thin MobileNet model.

Table 9.1.
Thin MobileNet Features

Model Accuracy% | Model Size(MB) | Model Speed(s) | Parameters
Thin MobileNet | 85.61 9.9 14 8,14.826
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The computation time per epoch or the model speed indicates the overhead in-
curred during training or testing the model after each epoch on the GPU (NVIDIA
GeForce RTX 1080Ti). It is 14s for this DNN architecture. Clearly, there is a con-
siderable improvement in the model size and model speed with a little improvement
in the model accuracy too. There is almost 75% reduction in the total number of
parameters, and hence the model size of the Thin MobileNet is approximately 29 MB
less than the baseline architecture. The accuracy also improves by 1.31% and the
overfitting problem reduces by a large extent. The proposed architecture implemen-
tation takes up to 1 hour 20 minutes. The proposed Thin MobileNet architecture is
implemented using DSE techniques like separable convolutions, drop-activation func-
tion, random erasing data augmentation, redundant layer elimination, and Nadam
optimizer. These modifications had been done over the baseline MobileNet v1 DNN.
At last there is one global average pooling layer followed by FC layer and Softmax
classifier. The width multiplier value is kept 1, as we do not want the accuracy to

drop further in this case.

9.2 Proposed Architecture 2: KilobyteNet
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Fig. 9.3. KilobyteNet Plot of Accuracy
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Table 9.2.
KilobyteNet Features
Model Accuracy% | Model Size(MB) | Speed(s) | Parameters
KilobyteNet | 81.59 0.996 14 74,106

The introduction of some more modifications on the existing baseline MobileNet
vl architecture lead to the development of a more shallower architecture called the
KilobyteNet. Nine modifications are introduced into the baseline architecture to
obtain this enhanced model. The proposed model is trained from scratch on the
CIFAR-10 dataset.The experimental results are based on the following parameter
setting: Batch size= 32, Steps-per-epoch= 1563, Weight decay=5e-4, Number of
epochs= 200, Width multiplier a = 0.25, § = 2, dropout probability p = 0.5, Loss
function= Cross-entropy. The results are viewed using the Livelossplot package which
provides live accuracy and loss graphs after each epoch. Table 9.2 shows the Kilo-
byteNet features. Fig. 9.3 shows the accuracy plot for KilobyteNet. Fig. 9.4 shows

the loss plot for the same.

Log-loss (cost function)

13

— fraining
validation

oy |
e ‘\\L;\M| i
n & 1 | | |
! 'i“-:",""."*‘]u il .I\ ‘ .
08 TP ) P Y
M
E @ % 00 s B\ w5 M
epoch

05

Fig. 9.4. KilobyteNet Plot of Loss
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9.3 Proposed Architecture 3: Ultra-thin MobileNet
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Fig. 9.5. Ultra-thin MobileNet Plot of Accuracy
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Fig. 9.6. Ultra-thin MobileNet Logloss Plot

The Ultra-thin MobileNet architecture is developed by eliminating the dropout
layer and the depth multiplier hyperparameter from the KilobyteNet architecture.

Also, an optimum value of the width multiplier « is chosen so that a balanced model
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Table 9.3.
Ultra-thin MobileNet Features
Model Accuracy% | Model Size(MB) | Speed(s) | Parameters ‘
Ultra-thin MobileNet | 84.32 3.9 16 3,19,095 ‘

is obtained whose accuracy is almost the same as the baseline MobileNet and the

size is less than 5 MB as well so that it can be deployed into resource-constrained

autonomous hardware for image classification application. The proposed model is

trained from scratch on the CIFAR-10 dataset.The experimental results are based

on the following parameter setting: Batch size= 32, Steps-per-epoch= 1563, Weight

decay=>be-4, Number of epochs= 200, Width multiplier @ = 0.69, Loss function=

Cross-entropy. Fig. 9.5 shows the plot of accuracy for the Ultra-thin MobileNet

model. Fig. 9.6 shows the loss plot for the same. Table 9.3 shows the Ultra-thin

MobileNet features.

9.4 Deployment of Ultra-thin MobileNet into i.MX RT1060
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Detected: ship (99%)

Inference time: 121
Detected: airplane (92%)

Inference tine: 128 Inference time: 128
i) Detected: airplane (9%:)

Inference tine: 119
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Inference time: 119
Detected: airplans (992)

Inference tine: 118
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Inference time: 119
Datected: airplane (97%)

Fig. 9.7. Image Classification on NXP i.MX RT1060
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The Ultra-thin MobileNet DNN is deployed into the i.MX RT1060 board for
image classification application by first converting the model into the .tflite format
and then again converting it to the .h format as mentioned in Section 8.7. The image
classification application is done for both the cases, without camera and with camera.
Firstly, the model is run on the i.MX RT 1060 processor without camera input. The
input are the test images and the output are the correctly detected images which
are viewed on the TeraTerm window. Fig. 9.7 [56] shows the TeraTerm output.The
inference time is the time taken by the DNN to classify the image. Various images
of ship and airplane is fed to the network and as the results show, they are detected
accurately in an average inference time of 115ms. The percentages shown inside the
brackets is the confidence level with which the images are classified.

To classify images from a screen, the MT9M114 camera module is attached to
the processor and focused in front of a computer screen. An LCD is attached to the
processor to view the frames captured by the camera. Fig. 9.8 shows the results
obtained for two classes: frog and horse. Both the classes are accurately detected at

about 114ms.

Inference time: 113 ms
Detected: horse (86%)
Detected: . I
e e Inference time: 113 ms
) frog (98%) Detected: horse (85%)

Fig. 9.8. Image Classification on NXP i.MX RT1060 with Camera
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10. SUMMARY

One of the reasons why deep learning is popular today is convolutional neural net-
works. The motivation behind this research is designing DNN architectures suitable
for real-time embedded processors. Three variants of MobileNet v1, namely Thin
MobileNet, KilobyteNet and Ultra-thin MobileNet DNNs have been designed which
are more efficient and flexible. First, the Thin MobileNet DNN was designed by intro-
ducing five modifications on the existing baseline MobileNet v1 architecture. It was
trained and validated on the CIFAR-10 dataset. This compact architecture was then
compared with the baseline MobileNet v1 architecture. It was found that the new
architecture was more compact, faster and more accurate than the baseline model.
Also, the overfitting problem was solved to a large extent. Then another model is
designed which is the Ultra-thin MobileNet by introducing nine modifications on the
baseline MobileNet, out of which four were already done in developing the Thin Mo-
bileNet. Training and testing of the above-mentioned DNN is done on the CIFAR-10
dataset. It was compared with the baseline MobileNet and the Thin MobileNet. It is
even more compact than the Thin MobileNet. The accuracy is slightly lower (about
2.30%) than the baseline MobileNet. It is much faster than the baseline model, having
a model speed almost comparable to that of the Thin MobileNet DNN. The overfitting
problem was almost negligible in this case. Since, the accuracy of the KilobyteNet was
less than the baseline MobileNet, another architecture the Ultra-thin MobileNet was
developed by introducing some changes to the KilobyteNet model, to strike a good
balance between the model accuracy and the model size. It is compact (less than 5
MB) and slightly accurate than the baseline MobileNet. Its model accuracy and size
lies between the Thin MobileNet amd the KilobyteNet model. All the architectures
were designed using a special type of convolution called the separable convolutions

and other Design Space Exploration techniques. The Ultra-thin MobileNet is then
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deployed into an embedded processor, NXP i.MX RT1060 for image classification
application. The input images (with and without camera) are classified with good
confidence levels in about 115 ms which makes the DNN safe and reliable for au-
tonomous applications. Also, the model size is only 3.9 MB which makes it easily
deployable into a resource constrained processor like the NXP i.MX RT1060. Chap-
ter 9 discusses the experimental results for the proposed DNN architectures and the
deployment of Ultra-thin MobileNet into the i.MX hardware. Here is a brief summary
of the research work:

1. Proposed three DNN architectures: (a) Thin MobileNet, (b) KilobyteNet

and (c) Ultra-thin MobileNet.

2. The models have been trained and validated on the CIFAR-10 dataset.

3. Best accuracy model — Thin MobileNet (85.61%) - 1.31% better than the

baseline MobileNet (84.30%).

4. Best model size — KilobyteNet (996 KB) - 38.1 MB better than baseline

MobileNet (39.1 MB).

5. Best model speed — Thin MobileNet (14s) and KilobyteNet (14s)- 17s better

than baseline MobileNet (31s).

6. Most balanced model in terms of accuracy and size — Ultra-thin MobileNet

(84.32% and 3.9 MB) — 0.02% more accurate than baseline MobileNet (84.30%)

and 35.2 MB less than the baseline MobileNet (39.1 MB).

7. The Ultra-thin MobileNet model is deployed into an autonomous embedded

processor NXP i.MX RT1060 for image classification application. The input

images (test images and camera input) are accurately classified in an average

inference time of 115 ms.
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11. FUTURE WORK

There are many other tools and techniques to further improve the performance of
these DNN architectures:
1. Analyzing errors - Sometimes, during the testing phase, the predictions done
by the DNN architectures may not be upto the mark. These bad predictions
must be analyzed and changes must be made to make the model more accurate.
2. Detecting dead nodes - There can be some nodes which are not as useful as
some other node in the image classification task, but may contribute a lot of
parameters to the DNN. These nodes can be detected and certain methods like
Pruning may be applied to cut out the connections.
3. Changing datasets - The proposed models can be trained on larger datasets
like the ImageNet, STL-10 and SVHN. This can increase the model accuracy
and speed.
4. Controlling exploding gradients - Techniques like gradient clipping can be
used to control exploding gradients.
5. Data ensembles - Used to enhance a model. It is a procedure in which multiple
models are trained and then combined together to get better performance.
6. Pruning - It is the process of making a DNN sparse by eliminating those
neurons which contribute very less or nothing at all to the final result.
7. CV applications - Apart from image classification task, object localization

and other CV applications can also be implemented on embedded hardware.
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