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ABSTRACT

Gupta, Maaninee M.S.A.A., Purdue University, May 2020. Finding Order in Chaos:
Resonant Orbits and Poincaré Sections. Major Professor: Kathleen C. Howell.

Resonant orbits in a multi-body environment have been investigated in the past to

aid the understanding of perceived chaotic behavior in the solar system. The invari-

ant manifolds associated with resonant orbits have also been recently incorporated

into the design of trajectories requiring reduced maneuver costs. Poincaré sections

are now also extensively utilized in the search for novel, maneuver-free trajectories

in various systems. This investigation employs dynamical systems techniques in the

computation and characterization of resonant orbits in the higher-fidelity Circular

Restricted Three-Body model. Differential corrections and numerical methods are

widely leveraged in this analysis in the determination of orbits corresponding to dif-

ferent resonance ratios. The versatility of resonant orbits in the design of low cost

trajectories to support exploration for several planet-moon systems is demonstrated.

The efficacy of the resonant orbits is illustrated via transfer trajectory design in the

Earth-Moon, Saturn-Titan, and the Mars-Deimos systems. Lastly, Poincaré sections

associated with different resonance ratios are incorporated into the search for natural,

maneuver-free trajectories in the Saturn-Titan system. To that end, homoclinic and

heteroclinic trajectories are constructed. Additionally, chains of periodic orbits that

mimic the geometries for two different resonant ratios are examined, i.e., periodic or-

bits that cycle between different resonances are determined. The tools and techniques

demonstrated in this investigation are useful for the design of trajectories in several

different systems within the CR3BP.
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1. INTRODUCTION

As human interest in spaceflight evolves over time, so must the capabilities and tech-

nologies that support these goals. One such novel idea in trajectory design is recently

being adopted for implementation on spaceflight missions is resonance. Conceptually,

resonant orbits and their invariant manifolds are familiar in the design of significantly

low-cost and unusual trajectories in several planet-moon systems. The inherent sta-

bility of some resonant orbits is understood for long-term mission design, while the

intrinsically unstable trajectories are recognized for application to transfer trajectory

design for low propellant usage. This investigation aims to compute and apply reso-

nant orbits and the associated natural flow towards trajectory design in the Circular

Restricted Three-Body model. In addition to the dynamical systems theory, Poincaré

sections are exploited to aid in the understanding of the complex, ’tangled’ structures

that result from resonant orbits.

From a historical standpoint, the mission to explore the moons of Jupiter – Europa,

Ganymede, and Callisto – named the Jupiter Icy Moons Orbiter (JIMO), is designed

leveraging the multi-body spacecraft environment [1]. Specifically, resonances with

the moons of Jupiter are utilized to transfer the spacecraft to desired orbits, resulting

in a significant reduction of propellant usage throughout the duration of the mission.

Similarly, the Jupiter Ganymede Orbiter mission, a component of the Europa Jupiter

System Mission (EJSM), is expected to accomplish multiple resonant flybys of Callisto

in its approach to Ganymede [2]. The incorporation of resonant orbits in these mission

trajectories motivated research into understanding the underlying dynamics of flow

resulting from resonant orbits [3], [4].

For applications in the multi-body regime, the Interstellar Boundary Explorer

(IBEX), launched in 2008 into a highly elliptical Earth orbit, originally experienced

significant quasiperiodic oscillations in its radius of periapsis as a result of Moon
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encounters. Consequently, the mission team elected to transfer into a more stable,

spatial orbit in 3:1 resonance with the Moon around the Earth, thereby guaranteeing

orbital stability for at least two decades [5]. In 2018, the Transiting Exoplanet Survey

Satellite (TESS), directly launched into a spatial 2:1 resonant orbit in the Earth-Moon

system, owing to the stability of the orbit and the successful transition of IBEX to a

resonant orbit, [6], [7]. The selected TESS orbit is expected to retain its stability for

decades before orbit maintenance maneuvers are necessary [8].

With growing interest in resonant orbits as efficient options for trajectory de-

sign, this investigation aims to: (1) compute and catalog orbits of various resonances

in several planet-moon systems in the solar system, (2) highlight the versatility of

resonant orbits and their invariant manifolds for transfer trajectory design, and (3)

incorporate Poincaré sections associated with resonant orbit manifolds into the search

for novel trajectories. With these goals, the inherent characteristics of resonant orbits

are exploited for applications in trajectory design.

1.1 Previous Contributions

1.1.1 Multi-Body Dynamics

The publication of Astronomia Nova by Johannes Kepler in 1609, in which he

derived the three laws of planetary motion using empirical methods, cemented his

legacy in celestial mechanics [9]. Since the laws were purely empirical, they did not

offer a physical rationale to support the resulting behavior. Only in 1687, when

Isaac Newton derived the inverse square force law, Kepler’s laws were confirmed to

be a consequence of the natural force of gravitation [10]. In his publication, Newton

also formulated his three laws of motion, which have, coupled with the universal

law of gravitation, shaped current understanding of the mechanics of the universe.

Unsuccessfully, Newton also attempted to solve the N -body problem, later pursued

by Leonhard Euler in 1772. Euler formulated the three-body problem, formulating

the motion of three planetary bodies in a rotating coordinate frame [11]. Joseph
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Lagrange, in the same year, computed equilibrium solutions in the three-body model,

contributing additional insight into the problem. In 1836, Jacobi demonstrated that

the combining the conservation of energy and angular momentum renders an integral

of motion, termed the Jacobi integral [11]. Only in 1893, Henri Poincaré termed the

three-body problem restricted, and offered a qualitative assessment of the problem.

The work by Poincaré forms the basis of chaos theory and the theory of dynamical

systems. In 1881, Poincaré introduced Poincaré mapping as a tool for the visualization

of complex dynamical behaviour [11]. Due to the lack of technological capabilities

until the 20th century, the methods presented by Poincaré are only recently being

adopted for solar system applications.

1.1.2 Resonant Orbits

The phenomenon of orbital resonance is well observed in the solar system and

has long been used to explain trends in seemingly chaotic behavior. Specifically, the

orbits of comets in resonance with Jupiter are validated via resonance and associated

transitions [4]. In 1997, Belbruno and Marsden discussed the motion of short-period

comets under the effect of resonance, illustrating the temporary capture of the 3:2 and

2:3 resonant comets around Jupiter [12]. In 2000, Koon, et al. theoretically demon-

strated the role of invariant manifolds in the low energy, planar resonant transfers

and capture mechanisms for the Jupiter family of comets [13]. In 2001, Howell, Marc-

hand, and Lo numerically confirmed those results and extended the analysis to spatial

transfers [14]. In 2010, Vaquero employed Poincaré sections and dynamical systems

techniques in understanding the relationships between the invariant manifolds of the

3:4 and 5:6 unstable resonant orbits in the Jupiter-Europa system [3]. Vaquero, in

2013, also demonstrated the role of resonant orbits in the design of planar and spatial

transfer scenarios, along with cataloging resonant orbits in the Saturn-Titan sys-

tem [15]. In 2018, Vutukuri employed resonances as transfer tools in the design of

trajectories between non-resonant, stable periodic orbits [16].
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1.2 Thesis Overview

This investigation expands on the work by Vaquero and Vutukuri for application

in the Earth-Moon, Saturn-Titan, and Mars-Deimos systems. The chapters in this

document are summarized as follows:

• Chapter 2: In this chapter, the generalN -body model is introduced. The com-

plexities associated with that model are presented, followed by simplifications

that reduce the model to three bodies. The underlying assumptions that result

in the Circular Restricted Three-Body Problem (CR3BP) are then described.

The equations of motion of the CR3BP are derived, and the mathematical

framework for the model is detailed. Equilibrium solutions and zero velocity

curves in the CR3BP are then presented within the context of the Earth-Moon

system. The state transition matrix is introduced, and the information offered

by the matrix is utilized in the development of differential corrections schemes.

A single shooting algorithm is detailed and employed in the computation of

periodic orbits in the CR3BP. A natural parameter continuation scheme is in-

troduced for the computation of families of periodic orbits in the Earth-Moon

system. Finally, coordinate transformations between the inertial and rotating

CR3BP frames is derived.

• Chapter 3: This chapter introduces the concept of resonance, with emphasis

on orbital resonance. Resonant orbits in the two-body model are derived and

visualized in both the inertial and the rotating frames. The concepts of interior

and exterior resonances, as well as sidereal and synodic periods, are introduced.

The methodology of translating the initial conditions corresponding to two-

body resonant orbits into resonant orbits in the CR3BP is discussed. The

technique of natural parameter continuation is implemented for the computation

of families of planar resonant orbits in the Earth-Moon system. Various different

resonance ratios and their associated geometries are introduced. The definition

of the termination of a family of periodic orbits is then presented. Next, the
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concept of stability of periodic orbits is detailed within the context of resonant

orbits, followed by the different types of bifurcations in the CR3BP. Spatial

resonant orbit families emanating from planar resonant orbits in the Earth-

Moon system are described. The invariant manifold theory is then presented,

with details regarding the computation of manifolds for fixed points, periodic

orbits, and resonant orbits. Finally, Poincaré maps are introduced and applied

in the visualization of the chaotic dynamics associated with resonant orbits.

• Chapter 4: The tools and concepts introduced in the previous chapters are

applied towards trajectory design in the CR3BP. The physical parameters and

CR3BP quantities associated with the relevant planet-moon systems are first

introduced. The concept of the theoretical minimum ∆V is then detailed.

Transfer scenarios incorporating resonant orbits as intermediate transfer arcs

are presented in the Earth-Moon and Mars-Deimos systems. Then, transfer

scenarios incorporating resonant orbit manifolds as transfer arcs from resonant

orbits to libration point orbits are detailed in the Saturn-Titan system. Poincaré

sections are employed in the construction of these transfer scenarios. The sim-

ilarities in the manifold structure for several different orbits at a given value of

Jacobi constant in the Saturn-Titan system is noted. Homoclinic and hetero-

clinic connections between different resonant orbits are illustrated, and natural,

maneuver-free transfers between orbits are computed. Finally, chains of peri-

odic orbits that cycle between multiple resonance ratios are determined, and

families of such chains of orbits are computed.

• Chapter 5: This chapter details the conclusions of this study. The efficacy of

resonant orbits for trajectory design is summarized. The recommendations for

future work in the investigation of resonant orbits are suggested.
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2. BACKGROUND – THE CIRCULAR RESTRICTED

THREE-BODY PROBLEM

The concept of resonance in any gravitational model requires an understanding of the

underlying dynamics. Although a discrete number of resonant orbits are available

in the two-body problem, an infinite number of resonant orbits actually exist in

the three-body problem. Thus, the three-body problem serves as the foundation

of this analysis. Thus, the general N -body problem is introduced, along with the

accompanying assumptions that reduce the model to the circular restricted three-

body problem (CR3BP). The assumptions, equations of motion, and the resulting

mathematical framework for the CR3BP are detailed. The equilibrium solutions are

computed and the bounds on the behavior in this gravitational model are investigated.

Finally, the methods involved in the numerical computation of solutions in the CR3BP

are discussed.

2.1 The General N -Body Problem

TheN -body problem is the most general model employed in celestial mechanics to

illustrate the interaction of bodies under their mutual gravitational attraction. Each

point mass is assumed to be under the gravitational influence of the remaining N − 1

bodies. Let Pi be defined as one of the N bodies; each Pi possesses mass mi. Define

an inertial frame by dextral orthonormal unit vectors X̂ − Ŷ − Ẑ, as illustrated in

Figure 2.1. Let the point O be inertially fixed such that it serves as a reference point

to locate each body in space. Then, r̄i represents the vector from point O to the body

Pi. From Newton’s law of universal gravitation [10], the force exerted on each body

is modeled as,
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Figure 2.1. The Inertial Frame in the N -body System.

F̄i = −Gmi

N∑
j=1
j 6=i

mj

r3
ji

r̄ji (2.1)

where G is the universal gravitational constant, and r̄ji is the relative position vector

of body i with respect to body j. Note that overbars denote vectors. Assuming that

the masses in the system are not variable, the vector equation of motion governing the

behavior of each particle Pi as a result of the gravitational influence of other bodies

is produced as,

mir̄i
′′ = −G

N∑
j=1
j 6=i

mimj

r3
ji

r̄ji (2.2)

The primes indicate that the derivative is taken with respect to dimensional time and

the observer is inertial. The vector second-order differential equation in Equation (2.2)

is rewritten as six scalar first-order differential equations. Thus, for each particle in

theN -body system, there exist 6 scalar nonlinear differential equations that reflect the

translational degrees of freedom. In total, there are then 6N coupled scalar nonlinear
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differential equations that govern the dynamics of the N -body system. Thus, an

analytical solution requires 6N integrals of motion. However, only ten integrals of

motion are currently known: six arise from conservation of linear momentum, three

from conservation of angular momentum, and one from conservation of energy. So,

the general N -body problem cannot be solved in a closed analytical form.

To seek a more representative formulation, the N -body problem is straightfor-

wardly reformulated in terms of relative motion. Express the position of a body Pi

relative to a central body Pq as r̄qi. The vector equation of motion is then derived as,

r̄′′qi +
G(mi +mq)

r3
qi

r̄qi = G
n∑
j=1
j 6=i,q

mj

(
r̄ij
r3
ji

− r̄qj
r3
qj

)
(2.3)

The right side of Equation (2.3) is the perturbing accelerations on the motion of Pi

and Pq due to other bodies in the system. When N = 2, i.e., the more familiar

2-body model, the perturbing terms in Equation (2.3) are zero. In such a case,

there exists a closed form analytical solution that governs the relative motion of two

bodies. However, when N > 2, this result no longer holds, and numerical techniques

are necessary to explore the gravitational interactions between bodies.

2.2 The Circular Restricted Three-Body Problem

The general three-body problem is formulated by considering the motion of three

bodies: P1, P2, and P3 of masses m1, m2, and m3 respectively. Letting N = 3,

Equation (2.2) is rewritten as,

m3r̄3
′′ = −Gm3m1

r3
13

r̄13 −G
m3m2

r3
23

r̄23 (2.4)

The solution for Equation (2.4) requires knowledge of the position vectors r̄1(t) and

r̄2(t). These position vectors are not available since P1 and P2 are influenced by the

motion of P3 and its instantaneous position. Solving for all three position vectors
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simultaneously requires 18 integrals of motion; only 10 constants of the motion are

available. Reformulating the problem in terms of relative motion affords additional

insight in the two-body problem. Consider, then, the motion of P3 relative to the

motion of P1 and with respect to P2 as,

r̄′′13 +
G(m1 +m3)

r3
13

r̄13 = Gm2

(
r̄32

r3
32

− r̄12

r3
12

)
(2.5)

r̄′′23 +
G(m2 +m3)

r3
23

r̄23 = Gm1

(
r̄31

r3
31

− r̄21

r3
21

)
(2.6)

This formulation results in two second-order vector differential equations, that, to-

gether, serve as the dynamical model for the time history governing r̄13 and r̄23.

However, the analytical solution is unavailable since this formulation requires 12 con-

stants. Although the problem does not possess a closed form analytical solution, great

insight is gained by introducing some simplifying assumptions that make the problem

more tractable. This simplified problem is termed the circular restricted three-body

problem (CR3BP).

2.2.1 Assumptions to Simplify the Relative Three-Body Problem

The CR3BP is a stepping stone in orbital mechanics that builds upon insights

from the two-body model while incorporating some of the complexities of the N -

body model. The three bodies that comprise the system are P1 and P2, labelled the

primaries, and the third body, P3, representing a spacecraft or a smaller celestial

body. Assuming that the body of interest is P3, the critical assumptions that form

the basis of the CR3BP are:

• The mass of P3 is infinitesimal relative to the masses of P1 and P2, such that

m3 << m2 < m1. This relationship is a reasonable assumption when modeling

the motion of a spacecraft (P3) under the influence of a set of larger primaries,

for instance, a planet and a moon. This assumption implies that P3 does not

influence the motion of the two primaries.
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• Being independent of P3, the motion of the primaries are modeled as an isolated

two-body system. The solution of the system is known to be conic, and for most

relevant applications, a closed conic.

• The primaries P1 and P2 move on circular orbits about their mutual barycenter.

The mutual plane of motion of the two primaries is fixed. However, P3 is free

to move in any spatial dimension.

The simplified model resulting from these assumptions is illustrated in Figure 2.2.

The inertial reference frame is represented by the unit vectors X̂ − Ŷ − Ẑ. The

frame rotates with the motion of the primaries and is represented by x̂ − ŷ − ẑ; the

two primaries lie on the x̂-axis. The origins of both the frames lie at the system

barycenter, B. The angle θ represents the orientation of the rotating frame with

respect to the inertial frame and is measured in the plane of motions of the primaries.

The rate of change of θ, i.e., θ̇, represents the angular velocity of the primary system,

which is constant for the circular orbits of the primaries. This rate is also equal to

the mean motion of the orbits of the primaries, N , in dimensional units.

2.2.2 Equations of Motion

Once the assumptions associated with the CR3BP are satisfied, it is convenient

to nondimensionalize the equations of motion associated with the system. Time is

replaced as the independent variable in the problem and the new formulation offers

greater insight over a larger range of problems. To nondimensionalize, characteristic

quantities are first identified; let l∗,m∗, and t∗, be defined as the characteristic length,

characteristic mass, and characteristic time, respectively. These quantities are defined

as,

l∗ = ‖r̄1‖+ ‖r̄2‖ (2.7)

m∗ = m1 +m2 (2.8)

t∗ =

√
l∗3

Gm∗
(2.9)
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Figure 2.2. The Inertial and Rotating Frames in the CR3BP.

Additionally, other useful nondimensional parameters are also defined using the char-

acteristic quantities. The nondimensional mean motion, n, is then,

n = Nt∗ (2.10)

where N is the dimensional mean motion associated with the primaries. For n as

evaluated in Equation (2.10), the nondimensional value is equal to 1. Next, the

nondimensional time variable τ is defined as,

τ =
t

t∗
(2.11)

Next, a nondimensional mass parameter µ is defined for convenience such that,

µ =
m2

m∗
(2.12)
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Finally, the vectors that represent the location of P3 with respect to the barycenter

and each of the two primaries are nondimensionalized using the characteristic quantity

l∗ as,

ρ̄ =
r̄3

l∗
= xx̂+ yŷ + zẑ (2.13)

d̄ =
R̄13

l∗
= (x+ µ)x̂+ yŷ + zẑ (2.14)

r̄ =
R̄23

l∗
= (x− 1 + µ)x̂+ yŷ + zẑ (2.15)

These nondimensional quantities yield a straightforward approach for the derivation

of the equations of motion associated with the CR3BP.

Recall from Equation (2.4), the motion of P3 as expressed in terms of the masses

of the primaries and the relative position vectors. This equation is rewritten in terms

of the vectors defined in the rotating CR3BP frame as,

m3r̄3
′′ = −Gm3m1

R3
13

R̄13 −G
m3m2

R3
23

R̄23 (2.16)

Cancelling out the m3 term from both sides of Equation (2.16) and substituting the

nondimensional characteristic quantities and variables, the vector equation reduces

to,

¨̄ρ = −(1− µ)
d̄

d3
− µ r̄

r3
(2.17)

The dots indicate the derivative with respect to nondimensional time, τ . In Equation

(2.17), the values of d and r are defined as,

d =
√

(x+ µ)2 + y2 + z2 (2.18)

r =
√

(x− 1 + µ)2 + y2 + z2 (2.19)

To construct the left side of Equation (2.17), i.e., the double derivative of ρ as ex-

pressed in rotating coordinates but viewed with respect to the inertial frame, the Basic
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Kinematic Equation is employed. First, define the angular velocity of the rotating

frame with respect to the inertial frame,

I ω̄R = nẑ (2.20)

The superscripts I and R denote the inertial and rotating frames, respectively. Using

the expression for angular velocity in Equation (2.20), the first derivative of ρ is

evaluated as,

I ˙̄ρ = R ˙̄ρ + (I ω̄R × Rρ̄) (2.21)

Substituting the relevant values into Equation (2.21) results in,

I ˙̄ρ = (ẋ− ny)x̂ + (ẏ + nx)ŷ + (ż)ẑ (2.22)

Differentiating Equation (2.22) results in the following kinematic expansion for ¨̄ρ,

I ¨̄ρ = R ¨̄ρ + (I ω̄R × R ˙̄ρ) (2.23)

I ¨̄ρ = (ẍ− 2nẏ − n2x)x̂ + (ÿ + 2nẋ− n2y)ŷ + (z̈)ẑ (2.24)

Equation (2.24) represents the left side of Equation (2.17) in terms of rotating coor-

dinates. The right side of Equation (2.17) is decomposed further as follows,

¨̄ρ =

(
−(1− µ)(x+ µ)

d3
− µ(x− 1 + µ)

r3

)
x̂

+

(
−(1− µ)y

d3
− µy

r3

)
ŷ

+

(
−(1− µ)z

d3
− µz

r3

)
ẑ

(2.25)
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Combining Equations (2.24) and (2.25), the three scalar, second-order nondimensional

differential equations of motion for P3, under the gravitational influence of the two

primaries, are obtained as,

ẍ− 2nẏ − n2x =
−(1− µ)(x+ µ)

d3
− µ(x− 1 + µ)

r3
(2.26)

ÿ + 2nẋ− n2y =
−(1− µ)y

d3
− µy

r3
(2.27)

z̈ =
−(1− µ)z

d3
− µz

r3
(2.28)

Since the time variable does not appear explicitly in these equations, the system

is autonomous. These second-order nondimensional scalar differential equations are

rewritten as six first-order differential equations and numerically integrated using

specified initial conditions.

Since the formulation is developed in the rotating frame, the integral of the differ-

ential equations yields a potential function U∗ that is actually an augmented potential

function. This new potential, called the pseudo-potential, is defined as,

U∗ = U +
n2(x2 + y2)

2
(2.29)

Simplifying Equation (2.29) and substituting the value of nondimensional mean mo-

tion n, the pseudo-potential function becomes,

U∗ =
(1− µ)

d
+
µ

r
+

(x2 + y2)

2
(2.30)

The differential equations of motion can then be rewritten in terms of U∗ as,

ẍ− 2ẏ =
∂U∗

∂x
(2.31)

ÿ + 2ẋ =
∂U∗

∂y
(2.32)

z̈ =
∂U∗

∂z
(2.33)
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These equations, in theory, supply a sufficient number of scalar differential equations

to solve for the motion of P3 mathematically. However, since the equations are coupled

and nonlinear, no general closed form solution is available. Analysis of the properties

of the differential equations yields useful particular solutions.

2.2.3 Integrals of Motion

Since the system modeled by the CR3BP is conservative, there may exist an

energy-like quantity that is constant for the problem formulation in the rotating

frame. To compute this energy integral, first consider the velocity vector in the

rotating frame,

Rv̄ = ˙̄ρ = ẋx̂+ ẏŷ + żẑ (2.34)

Then, the dot product between the velocity vector in Equation (2.34) and the vector

form of the Equations (2.31)-(2.33) yields,

ẋẍ− 2ẋẏ =
∂U∗

∂x
ẋ (2.35)

ẏÿ + 2ẏẋ =
∂U∗

∂y
ẏ (2.36)

żz̈ =
∂U∗

∂z
ż (2.37)

Next, add these three scalar equations, i.e.,

ẋẍ+ ẏÿ + żz̈ =
∂U∗

∂x
ẋ+

∂U∗

∂y
ẏ +

∂U∗

∂z
ż (2.38)

Since U∗ is only a function of position, the right side of Equation (2.38) is equal to the

total derivative dU∗

dτ
. Finally, integrate Equation (2.38) with respect to nondimensional

time τ to yield the integration constant of interest, C:

1

2
(ẋ2 + ẏ2 + ż2) = U∗ − C

2
(2.39)
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Rearranging the terms in Equation (2.39) results in the following definition of the

integration constant C, hereby termed the Jacobi constant:

C = 2U∗ − v2 (2.40)

where v is the magnitude of the relative velocity vector in the rotating frame. While

the existence of one integral of motion is not sufficient for a clear, closed-form solution,

it does aid numerical analysis.

2.2.4 Equilibrium Points

Equilibrium solutions offer practical insight into the behavior of a system. These

equilibrium solutions are determined by investigating the locations at which the veloc-

ity and acceleration relative to the rotating frame are zero in the differential equations

that represent the CR3BP. Specifically, solve the following scalar equations,

∂U∗

∂x
=
∂U∗

∂y
=
∂U∗

∂z
= 0 (2.41)

If P3 is placed at any of equilibrium solution locations without any initial velocity

or acceleration relative to the rotating frame, the gravitational and centrifugal forces

cancel and it maintains its position relative to that frame. Joseph Lagrange, in

1772, determined the five solutions to Equation (2.41) and hence, the equilibrium

solutions are termed Lagrange points, libration points, or equilibrium points [11].

These solutions are located in the CR3BP rotating frame, as illustrated in Figure

2.3. All five of the equilibrium points lie in the plane of motion of the primaries, i.e.,

the ẑ component of their positions is zero. Three of these points, namely L1, L2, and

L3, are collinear and lie along the x̂-axis. Although the numbering of these points

is arbitrary, in this work, the point to the left of P2 is L1, to the right of P2 is L2,

and the point to the left of P1 is L3. The remaining two points, L4 and L5, form

equilateral triangles with the two primaries, where L4 is defined with a positive ŷ



17

component and L5 corresponds to a negative ŷ component. To locate the equilibrium

points with respect to the primaries, define the distances γ1, γ2, and γ3, also denoted

in Figure 2.3.

Figure 2.3. The Equilibrium Points in the CR3BP Rotating Frame.

Given that the ŷ and ẑ components of the collinear libration points are equal to

zero, only a solution for their x components is necessary. The expression for the

partial derivative of the pseudo-potential function with respect to x equals zero,

xeq −
(1− µ)(xeq + µ)

d3
− µ(xeq − 1 + µ)

r3
= 0 (2.42)

Recall that the distances d and r are defined as,

d =
√

(x+ µ)2 + y2 + z2 (2.43)

r =
√

(x− 1 + µ)2 + y2 + z2 (2.44)
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Next, define the x̂ components of the location for the collinear libration points as xLi

for i = 1, 2, 3. In terms of γi, these components are expressed as,

xL1 = 1− µ− γ1 (2.45)

xL2 = 1− µ+ γ2 (2.46)

xL3 = −µ− γ3 (2.47)

Equations (2.45)-(2.47) are substituted into Equation (2.42) and result in three fifth-

order equations for the three collinear libration points; these are then iteratively

solved for the values of γi for i = 1, 2, 3.

A similar approach is adopted to compute the locations of the remaining two

libration points, L4 and L5. However, in this case, the ŷ components of their locations

are not equal to zero. Thus, in addition to Equation (2.42), ∂U∗

∂y
also equals zero. The

following expression is then obtained,

y

(
1− (1− µ)

d3
− µ

r3

)
= 0 (2.48)

Equating d = r = 1 results in the term in the parentheses being equal to zero.

Consequently, the two off-axis libration points form equilateral triangles with the two

primaries. The components of these points are equal to,

xL4,5 =
1

2
− µ (2.49)

yL4,5 = ±
√

3

2
(2.50)

where µ is the characteristic quantity associated with the system. With the known

locations of the libration points, the dynamics of the system relative to these solutions

is insightful.
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2.2.5 Zero Velocity Curves

An important consequence of the existence of both the equilibrium solutions and

the Jacobi constant on the motion of P3 is reflected in the zero velocity curves.

Consider the expression for Jacobi constant, in Equation (2.40). Rearranging and

expanding the pseudo-potential terms results in,

v2 = (x2 + y2) +
2(1− µ)

d
+

2µ

r
− C (2.51)

If the relative velocity in the rotating frame, v, is equal to zero, Equation (2.51)

reduces to,

C = (x2 + y2) +
2(1− µ)

d
+

2µ

r
(2.52)

Equation (2.52) implies that, for a given value of Jacobi constant, all locations at

which the relative velocity is zero are straightforwardly identified. Since an infinite

number of sets of x, y, and z values satisfy Equation (2.52), all solutions together

represent a surface in 3D space. The existence of this zero velocity surface (ZVS)

essentially bounds the motion of P3 for a given value of C. For solely planar motion,

these surfaces are termed zero velocity curves (ZVC); ZVC also reflect a slice of the

ZVS through z = 0. The region outside the bounds of allowable motion of P3 is

denoted a forbidden region, and at a given value of Jacobi constant, the particle P3

cannot cross into this region. To move into a forbidden region requires a change

in velocity and, consequently, a shift in the Jacobi constant value and the ZVS.

Further analysis of these surfaces at any given energy level offers great insight into

the dynamical environment.

The libration points corresponding to a specific CR3BP system must always lie on

these zero velocity surfaces since, by definition, these equilibrium solutions require the

relative velocity and acceleration to be zero. For reference, the values of the Jacobi

constant associated with the libration points in the Earth-Moon, Saturn-Titan, and

Mars-Deimos systems are summarized in Table 2.1. Figures 2.4-2.12 represent the zero
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velocity surfaces and curves in the Earth-Moon system for various values of the Jacobi

constant. The two primaries and the libration points are labelled in Figure 2.4(b) for

reference. The larger, cylindrical surface in each case represents the exterior region.

Moving inwards, the solid white region is inaccessible and reflects the forbidden region.

Finally, two additional spherical surfaces surround the two primaries. As the value of

Jacobi constant decreases, these two interior surfaces expand and eventually merge

to form a single interior region. At the same time, the outer surface contracts, as is

evident in Figures 2.4-2.12.

In reference to the zero velocity curves in Figures 2.4-2.12, the white region repre-

sents the forbidden region, while the purple surfaces highlight the boundaries of the

accessible regions in different views. When the Jacobi constant value is greater than

the Jacobi value corresponding to L1, two distinct interior regions emerge, bounding

the motion of P3 to the vicinity of either primary, as illustrated in Figure 2.5. As

the Jacobi value decreases to the value of CL1 , the interior surfaces around P1 and

P2 expand and converge to the location of L1, as plotted in Figure 2.6. Decreasing

the Jacobi constant further causes the surfaces to merge, opening a gateway linking

the regions around the primaries. At this value of the Jacobi constant and lower,

P3 moves in the interior region between P1 and P2 in the plane of motion without

restrictions. Decreasing the Jacobi value to equal that of CL2 results in an expansion

of the interior region and further contraction of the exterior region, as apparent in

Figure 2.7, converging at the location of L2. At further lower values, the L2 gateway

opens, as observed in Figure 2.8. Continuing to decrease the value of the Jacobi

constant further, as evident in Figures 2.9 and 2.10, the forbidden region shrinks

rapidly, opening the L3 gateway as well. When the Jacobi value is below CL4,5 , the

zero velocity curves disappear in the x − y plane, thus, P3 is free to move around

the primaries or exit the system, as illustrated in Figures 2.11 and 2.12. However,

inaccessible regions remain beyond the x− y plane, as evident in Figure 2.12(a).



21

Table 2.1. Values of Jacobi Constant for Libration Points in the Earth-Moon, Saturn-
Titan, and Mars-Deimos Systems.

System L1 L2 L3 L4 L5

Earth-Moon 3.18834 3.17216 3.01215 2.98799 2.98799

Saturn-Titan 3.01576 3.01545 3.00024 2.99976 2.99976

Mars-Deimos 3.00001 3.00001 3.00000 2.99999 2.99999

(a) ZVS for C = 3.2000 (b) ZVC for C = 3.2000

Figure 2.4. ZVS and ZVC for C > CL1 in the Earth-Moon System.

(a) ZVS for C = 3.1883 (b) ZVC for C = 3.1883

Figure 2.5. ZVS and ZVC for C = CL1 in the Earth-Moon System.
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(a) ZVS for C = 3.1800 (b) ZVC for C = 3.1800

Figure 2.6. ZVS and ZVC for CL2 < C < CL1 in the Earth-Moon System.

(a) ZVS for C = 3.1722 (b) ZVC for C = 3.1722

Figure 2.7. ZVS and ZVC for C = CL2 in the Earth-Moon System.

(a) ZVS for C = 3.0800 (b) ZVC for C = 3.0800

Figure 2.8. ZVS and ZVC for CL3 < C < CL2 in the Earth-Moon System.
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(a) ZVS for C = 3.0122 (b) ZVC for C = 3.0122

Figure 2.9. ZVS and ZVC for C = CL3 in the Earth-Moon System.

(a) ZVS for C = 3.0000 (b) ZVC for C = 3.0000

Figure 2.10. ZVS and ZVC for CL4,5 < C < CL3 in the Earth-Moon System.

(a) ZVS for C = 2.9879 (b) ZVC for C = 2.9879

Figure 2.11. ZVS and ZVC for C = CL4,5 in the Earth-Moon System.
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(a) ZVS for C = 2.7000 (b) ZVC for C = 2.7000

Figure 2.12. ZVS and ZVC for C < CL4,5 in the Earth-Moon System.

2.3 The State Transition Matrix

The application of numerical methods towards constructing solutions in the CR3BP

requires the introduction of the State Transition Matrix (STM). This matrix, also la-

belled the Sensitivity Matrix or Guidance Matrix, approximates the behavior of a

particle in a nonlinear system with respect to a reference solution. Given the vari-

ational equations relative to a reference solution, for a state perturbed at any given

initial time, the STM provides a linear estimate for the final state at some future time.

This information is useful in achieving desired nonlinear behavior in the CR3BP and

assessing the associated characteristics, e.g., stability.

To determine the STM, first consider the variational equations. The nonlinear

system of differential equations is represented in first-order form as,

˙̄x = f̄(x̄, t) (2.53)

where the six-element state vector is represented as x̄ = [x y z ẋ ẏ ż]T . Let a set of

initial conditions in the CR3BP produce a solution or an arc along a trajectory x̄∗(t)

over time t, as evaluated with the full set of nonlinear differential equations. Then,
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with a variation from this solution denoted by δx̄(t), a nearby trajectory is expressed

as,

x̄(t) = x̄∗(t) + δx̄(t) (2.54)

The definition in Equation (2.54) is employed with Equation (2.53) as,

˙̄x∗(t) + δ ˙̄x(t) = f̄(x̄∗ + δx̄, t) (2.55)

Expanding Equation (2.55) in a Taylor series about the reference solution x̄∗ and

neglecting higher-order terms results in the following linear approximation,

δ ˙̄x(t) ≈ ∂f̄

∂x̄

∣∣∣∣
x̄∗(t)

x̄(t) = A(t)δx̄(t) (2.56)

Equation (2.56) represents the linear, time-varying variational equations, where the

matrix A(t) is the 6× 6 Jacobian matrix of the form,

A(t) =

03×3 I3×3

U∗XX Ω

 (2.57)

where the constant matrix Ω is defined as,

Ω =


0 2 0

−2 0 0

0 0 0

 (2.58)

and the matrix UXX is comprised of the second partial derivatives of the pseudo-

potential function ∂2U∗

∂i∂j
,

U∗XX =


U∗xx U∗xy U∗xz

U∗yx U∗yy U∗yz

U∗zx U∗zy U∗zz

 (2.59)
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These partial derivatives are evaluated along the reference trajectory or arc. The

solution to Equation (2.56) is then written as,

δx̄(t) = Φ(t, t0)δx̄(t0) (2.60)

where Φ(t, t0) is the STM evaluated from time t0 to t. The STM reflects variations

in the state at a time t as a result of any perturbations in the initial state at time t0.

Mathematically, the partials are represented as,

Φ(t, t0) =
∂x̄(t)

∂x̄(t0)
(2.61)

In the CR3BP, the STM is easily expanded as,

Φ(t, t0) =



∂x

∂xo

∂x

∂yo

∂x

∂zo

∂x

∂ẋo

∂x

∂ẏo

∂x

∂żo

∂y

∂xo

∂y

∂yo

∂y

∂zo

∂y

∂ẋo

∂y

∂ẏo

∂y

∂żo

∂z

∂xo

∂z

∂yo

∂z

∂zo

∂z

∂ẋo

∂z

∂ẏo

∂z

∂żo

∂ẋ

∂xo

∂ẋ

∂yo

∂ẋ

∂zo

∂ẋ

∂ẋo

∂ẋ

∂ẏo

∂ẋ

∂żo

∂ẏ

∂xo

∂ẏ

∂yo

∂ẏ

∂zo

∂ẏ

∂ẋo

∂ẏ

∂ẏo

∂ẏ

∂żo

∂ż

∂xo

∂ż

∂yo

∂ż

∂zo

∂ż

∂ẋo

∂ż

∂ẏo

∂ż

∂żo



(2.62)

The STM satisfies the following differential equation for the evolution of the STM

over time,

Φ̇(t, t0) = A(t)Φ(t, t0) (2.63)

To numerically integrate Equation (2.63) and produce the elements of Φ, the STM at

time t0 is initialized as the 6×6 identity matrix. These 36 first-order scalar differential

equations corresponding to each scalar element of the STM along with the six first-
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order scalar equations of motion are simultaneously numerically simulated to yield

solutions in the CR3BP.

2.4 Differential Corrections

A trajectory computed in this model may not always meet the desired criteria; dif-

ferential corrections are then employed until the desired characteristics are achieved.

The computation of the STM is critical in implementing such corrections schemes.

Relevant to this investigation is the application of differential corrections towards

constructing periodic orbits in the CR3BP. In theory, this method is simply a multi-

dimensional version of a Newton-Raphson solver.

The design variable vector and the constraint vectors are first formulated as the

initial step in developing a corrections algorithm. These vectors are chosen specific

to the problem and the desired final state. In general, the design variable vector is

represented by X̄ and is of the form,

X̄ =



X1

X2

X3

...

Xn


(2.64)

where n is the number of free variables in the problem. The constraint vector is

represented by F̄ (X̄), and is defined as,

F̄ (X̄) =



F1(X̄)

F2(X̄)

F3(X̄)
...

Fm(X̄)


= 0̄ (2.65)
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where m is the number of scalar constraints equations. The goal in the problem is to

determine a design vector X̄c such that F̄ (X̄c) = 0̄. With X̄0 representing an initial

guess for the design variable vector, F̄ (X̄) is approximated using a first-order Taylor

series expansion as,

F̄ (X̄) ≈ F̄ (X̄0) +DF̄ (X̄0) · (X̄ − X̄0) (2.66)

where D(F̄ ) is an m× n matrix of partials evaluated at X̄0,

DF̄ (X̄0) =
∂F̄

∂X̄
=


∂F1

∂X1

∂F1

∂X2
. . . ∂F1

∂Xn

∂F2

∂X1

∂F2

∂X2
. . . ∂F2

∂Xn

...
...

. . .

∂Fm

∂X1

∂Fm

∂X2
. . . ∂Fm

∂Xn

 (2.67)

From Equations (2.65) and (2.66), an update equation to iteratively solve for X̄ is

formulated as,

F̄ (X̄j) +DF̄ (X̄j) · (X̄j+1 − X̄j) = 0̄ (2.68)

where ||(X̄j+1)|| < ||F̄ (X̄j)||. Equation (2.68) is iteratively solved for X̄j+1 until a

certain tolerance ε is met, i.e.,

||F̄ (X̄j+1)|| < ε (2.69)

The update equation represented in Equation (2.68) takes different forms depending

on the number of design variables and number of constraint equations in the problem.

When n = m, i.e., the number of design variables is equal to the number of constraints,

the matrix DF̄ (X̄j) is a square matrix and is invertible. Therefore, one solution exists

that is obtained by solving for X̄j+1 such that,

X̄j+1 = X̄j −DF̄ (X̄j)−1F̄ (X̄j) (2.70)
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In the case when n > m, i.e., the number of design variables is greater than the

number of constraints, infinitely many solutions exist. One method of producing a

unique solution is the minimum norm approach, resulting in the following form of the

update equation,

X̄j+1 = X̄j −DF̄ (X̄j)T
[
DF̄ (X̄j) ·DF̄ (X̄j)T

]−1
F̄ (X̄j) (2.71)

In the case when n < m, i.e., the number of design variables is less than the number

of constraints, the system is considered to be overdetermined and no solutions exist.

However, with the application of the method of least squares, an approximate solution

is obtained [17]. In solving these equations iteratively, issues of importance include

the radius of convergence, the speed of convergence, and the efficiency of the process;

the number of iterations for the solution to converge impacts the result significantly.

2.4.1 Single Shooting

One implementation of a targeting algorithm is the single shooting method, which

involves correcting a single trajectory arc to reach a desired state. Single shooting

algorithms target any state or combination of states, but the focus of this investigation

is targeting position over a variable time of flight, as illustrated in Figure 2.13. For a

given initial position vector r̄0 = [x0 y0 z0]T and initial velocity vector v̄0 = [ẋ0 ẏ0 ż0]T

at initial time t0, the goal is to determine the ∆v̄0 necessary to achieve the desired

position r̄d = [xd yd zd]
T in time t. The state at the end of each propagation for time

t is denoted x̄t = x̄(x̄0, t). The design vector X̄ for this example is then equal to,

X̄ =


ẋ0

ẏ0

ż0

t

 (2.72)
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and the constraint vector is given as,

F̄ (X̄) =


xt − xd
yt − yd
zt − zd

 = 0̄ (2.73)

In this formulation, the Jacobian matrix DF̄ (X̄) is a 3× 4 matrix,

DF̄ (X̄) =


∂xt
∂ẋ0

∂xt
∂ẏ0

∂xt
∂ż0

∂xt
∂t

∂yt
∂ẋ0

∂yt
∂ẏ0

∂yt
∂ż0

∂yt
∂t

∂zt
∂ẋ0

∂zt
∂ẏ0

∂zt
∂ż0

∂t
∂t

 (2.74)

In terms of the elements of the STM, this Jacobian matrix is rewritten as,

DF̄ (X̄) =


φ14 φ15 φ16 ẋt

φ24 φ25 φ26 ẏt

φ34 φ35 φ36 żt

 (2.75)

Since the number of design variables is greater than the number of constraints, a

minimum norm solution is employed, and iterations ensue on the update equation

represented in Equation (2.71) until the required tolerance is met.

Figure 2.13. Schematic for a Variable Time Position Targeter.
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Computation of Symmetric Periodic Orbits

Periodic solutions for the motion of the spacecraft in the vicinity of libration

points are computed numerically by employing a similar targeting scheme. In a

planar scenario, such periodic orbits, also labelled Lyapunov orbits, are symmetric

across the x̂-axis. The Mirror theorem, which states that if n-point masses are moving

under their mutual gravitational forces, their orbits are periodic if – at two separate

epochs – a mirror configuration occurs, aids in the computation of these orbits [18].

A consequence of this theorem is that the orbits only require propagation for half

their periods, initiated at a perpendicular crossing where ẋ0 and y0 are equal to zero.

Thus, the initial state vector is represented as x̄0 = [x0 0 0 0 ẏ0 0]T . Then, the design

vector and the constraint vectors are formulated as,

X̄ = [ẏ0 t] (2.76)

F̄ (X̄) = [ẋf yf ] (2.77)

where t is the propagation time. The resulting Jacobian matrix for this problem is

given as,

DF̄ (X̄) =

∂ẋf∂ẏ0

∂ẋf
∂t

∂yf
∂ẏ0

∂yf
∂t

 (2.78)

Equation (2.70) is employed to iteratively solve for the design variables, since the

number of constraints and design variables is equal. Figure 2.14 illustrates a corrected

L1 Lyapunov orbit in purple, along with the initial guess arc plotted in black.

2.4.2 Natural Parameter Continuation

The existence of a single periodic orbit as an isolated trajectory is not as insightful

or useful towards trajectory design as a group of orbits with similar characteristics or

geometries. Poincaré states that the computation of a single periodic orbit can lead to

the determination of a set of periodic orbits, typically denoted a family [19]. Note that
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Figure 2.14. An L1 Lyapunov Periodic Orbit in the Earth-Moon System.

a ’family’ is certainly not unique. The process of continuation to produce a family of

orbits offers valuable insight into the evolution of stability and energy characteristics

across the orbits. The initial conditions corresponding to each member of a family of

periodic orbits seeds the initial guess for each subsequent orbit. For instance, consider

the L1 Lyapunov orbit represented in Figure 2.14. Selecting the initial x position as

the natural parameter of interest, a sufficiently small perturbation in x0 is applied to

determine the next member in the family of L1 Lyapunov orbits. This initial value

of x0 typically remains constant throughout the iteration process. Representative

members of the L1 Lyapunov Family are illustrated in Figure 2.15, with the color

scheme corresponding to the value of Jacobi constant of each orbit.
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Figure 2.15. Representative Members from the Family of L1 Lyapunov Periodic Orbits
in the Earth-Moon System.

2.5 Coordinate Transformation

Although a major focus of this investigation is the visualization of trajectories

in the rotating frame, the capability to plot in the inertial frame offers additional

critical insight into the geometry of the trajectories [3], [4]. Recall the inertial and

rotating frames defined in Figure 2.2, where the inertial frame I is represented by the

X̂ − Ŷ − Ẑ axes and the rotating frame R by the x̂ − ŷ − ẑ axes. In the rotating

frame, the position vector locating the body P3 with respect to the barycenter B, in

nondimensional coordinates, is defined as,

Rρ̄ = xx̂+ yŷ + zẑ (2.79)
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The subscript R in Equation (2.79) indicates the rotating frame. Similarly, in inertial

coordinates, this position vector is expressed as,

I ρ̄ = XX̂ + Y Ŷ + ZẐ (2.80)

Also recall that the angle θ orients the rotating frame with respect to the inertial

frame. Since the angular velocity of the primary system in the CR3BP, θ̇, is constant,

the angle θ is rewritten in terms of nondimensional mean motion n and nondimen-

sional time τ as,

θ = n(τ − τ0) (2.81)

where τ0 is the initial nondimensional time. The nondimensional mean motion is, by

definition, equal to one, and that allows Equation (2.81) to be written explicitly in

terms of nondimensional time. Next, the scalar inertial position coordinates [X Y Z]T

are expressed in terms of the rotating coordinates as,

X = xcos(τ − τ0)− ysin(τ − τ0)

Y = xsin(τ − τ0) + ycos(τ − τ0)

Z = z

(2.82)

The direction cosine matrix ICR(τ) summarizes the relationship between the inertial

and rotating coordinates and is formulated as,
X̂

Ŷ

Ẑ

 = ICR(τ)


x̂

ŷ

ẑ

 (2.83)



35

where the matrix ICR(τ) is,

ICR(τ) =


cos(τ − τ0) −sin(τ − τ0) 0

sin(τ − τ0) cos(τ − τ0) 0

0 0 1

 (2.84)

The velocity vector is transformed from rotating to inertial coordinates as well, but

with the application of the Basic Kinematic Equation, as discussed in Equations

(2.20)-(2.22). In terms of rotating and inertial coordinates, the expression for the

inertial velocity vector is,

I ˙̄ρ = ẊX̂ + Ẏ Ŷ + ŻẐ (2.85)

I ˙̄ρ = (ẋ− y)x̂+ (ẏ + x)ŷ + żẑ (2.86)

still expressed in terms of rotating coordinates. Employing again the direction cosine

matrix ICR(τ), the velocity vector is transformed from rotating coordinates to inertial

coordinates as, 
Ẋ

Ẏ

Ż

 = ICR(τ)


(ẋ− y)

(ẏ + x)

ż

 (2.87)

To transform a full six-element state vector from rotating to inertial coordinates, the

IĊR(τ) matrix is first defined as,

IĊR(τ) = θ̇


−sin(τ − τ0) −cos(τ − τ0) 0

cos(τ − τ0) −sin(τ − τ0) 0

0 0 0

 (2.88)

Here, recall that θ̇ is equal to the nondimensional mean motion and is, therefore,

equal to one. Therefore, the transformation of position and velocity states together
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from rotating coordinates to inertial coordinates is conveniently determined using one

6× 6 matrix as, 

X

Y

Z

Ẋ

Ẏ

Ż


=

ICR(τ) 03×3

IĊR(τ) ICR(τ)





x

y

z

ẋ

ẏ

ż


(2.89)

where 03×3 is a zero matrix. To perform a coordinate transformation from inertial

to rotating coordinates, the inverse of the 6 × 6 block matrix in Equation (2.89) is

utilized.
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3. BACKGROUND – RESONANT ORBITS

This investigation involves an in-depth analysis of resonant orbits and their character-

istics in the CR3BP. The concept of resonance is introduced in this chapter, followed

by the computation of resonant orbits in the two-body and three-body models. The

difference between synodic and sidereal periods is also discussed. The methods in-

volved in the calculation of families of planar and spatial resonant orbits are described,

along with the theory of bifurcations and stability changes in the CR3BP. Finally,

the invariant manifold theory and Poincaré maps are introduced.

3.1 Introduction to Resonance

The phenomenon of resonance is a direct consequence of subtle gravitational effects

that determine the dynamical structure of the solar system. In general, resonance in a

system occurs when there exists a simple numerical relationship between frequencies

or periods [9], [15]. Within the scope of orbital mechanics, it is useful to analyze this

relationship between planetary bodies and leverage it towards identifying favorable

orbital characteristics. The basic theory behind orbital resonance is reviewed, along

with the existence of resonant orbits in the two-body model and the various ways

that these orbits are categorized.

3.1.1 Orbital Resonance

Orbital resonance is a result of any combination of orbital parameters, such as

eccentricity and semi-major axis, or eccentricity and inclination. The impact of reso-

nance on an orbit is observed on shorter time frames, such as the period of an orbit,

or longer term, such as thousands or even millions of years. Some of the known
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types of orbital resonances include mean motion resonance, Laplace resonance, Kozai

resonance, and secular resonance [20]. The focus of this investigation is the phe-

nomenon of orbit-orbit resonance, which occurs when the orbital periods of two or

more bodies exist in a simple integer ratio. For two bodies in orbit-orbit resonance,

the phenomenon is also labelled mean motion resonance; for three or more orbiting

bodies that possess a simple integer ratio of their orbital periods, the phenomenon is

termed Laplace resonance. These types of resonances occur among planets, satellites,

and even asteroids with commensurate periods [9].

Consider two bodies A and B, each of arbitrary mass orbiting a central body.

Then, an orbit-orbit resonance is said to exist if the orbital periods of these bodies

are described by a simple integer ratio p : q, or TB : TA, where TA and TB are the

periods of bodies A and B, respectively. The occurrence of resonance in a system

can lead to long term stabilization of the orbits involved or, in some cases, destabilize

the orbits. Within our solar system, stabilization has been observed in the orbits of

Pluto and the Plutinos, which are a group of trans-Neptunian objects that form the

inner part of the Kuiper belt. In spite of crossing the orbit of Neptune, the stable

orbits of the Plutinos are attributed to a 2:3 orbit-orbit resonance with Neptune.

This resonance ratio implies that for every two revolutions of a Plutino around the

Sun, Neptune orbits the Sun three times. In another example, destabilization due

to resonance accounts for the Kirkwood gaps in the asteroid belt between Mars and

Jupiter, the locations corresponding to 3:1, 2:1, 5:2, and 7:3 mean-motion resonances

with Jupiter [21]. The same phenomenon is also observed in the Cassini Division in

the rings of Saturn, cleared out due to a 2:1 resonance with Saturn’s moon Mimas.

3.1.2 Resonance in the Two-Body Model

Resonance in the two-body model serves as a foundation prior to moving on to

the higher fidelity CR3BP. Closed-form solutions in the two-body model consist of

elliptic, parabolic, and hyperbolic conic sections. For the purpose of this investigation,
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elliptical orbits are the focus, that is, closed orbits in the inertial frame. Consider two

massless bodies A and B in orbit around a central body with orbital periods equal to

TA and TB, respectively. In this instance, consider the central body to be the Earth,

and let the body A be the Moon. Define body B as a spacecraft on an elliptical

orbit around the Earth. Then, the spacecraft is moving in orbital resonance with the

Moon around the Earth if the spacecraft completes p orbits around the Earth in the

same time that the Moon completes q revolutions around the Earth, where p and q

are positive integers. Mathematically, this relationship is expressed as,

p

q
=
Np

Nq

=
Tq
Tp

(3.1)

where Tq corresponds to the period of the Moon and Tp corresponds to the period

of the spacecraft. The values of Np and Nq are the mean motions of the spacecraft

and the Moon, respectively. In terms of two-body dimensional parameters, the mean

motion Ni for a conic section is defined as,

Ni =

√
GM

a3
i

(3.2)

where GM is the gravitational parameter associated with the central body, and ai

is the semi-major axis of the associated orbit. Equations (3.1) and (3.2) yield a

relationship between the resonance ratio and the semi-major axes of the two bodies

in resonance:

p

q
=
Np

Nq

=

√
a3
q

a3
p

(3.3)

In the case of the Moon in resonance with a spacecraft orbiting the Earth, the knowl-

edge of the semi-major axis of the Moon, aq, aids in the computation of the semi-major

axis of the spacecraft orbit, ap, for a given resonance ratio p : q. The value of ap is

then evaluated as,

ap =

(
q2a3

q

p2

) 1
3

(3.4)
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To compute a resonant orbit in the two-body model, consider a spacecraft orbiting the

Earth in a planar 3:4 mean motion resonance with the Moon. Since the focus is the

two-body model, recall that the Moon is modeled as massless and does not influence

the motion of the Earth. For reference, the two-body parameters corresponding to the

lunar orbit are summarized in Table 3.1. Assume that the gravitational parameter

value of the central body, Earth, to be equal to 398600.448 km3/s2. Then, the semi-

major axis of the spacecraft orbit, ap, is computed using Equation (3.4) with the ratio

p : q equal to 3:4. The value of ap is calculated to be 465653.11 km.

Table 3.1. Orbital Parameters of the Moon in the Two-Body Model.

Parameter Value

Semi-major Axis, aq 384, 338.174 km

Period, Tq 27.45 days

Inclination, iq 0◦

Eccentricity, eq 0

The initial state vector for the resonant orbit in the two-body inertial frame is of

the form IX̄0,2B = [X0 Y0 Z0 Ẋ0 Ẏ0 Ż0]T . Since the resonant orbit is planar, the initial

values Z0 and Ż0 are equal to 0. Assuming that at t = 0, the spacecraft is located at

one of the apses; the initial position in the Ŷ2B direction and the initial velocity in the

X̂2B direction are equal to 0, i.e., Y0 = 0 and Ẋ0 = 0. The eccentricity of the orbit of

the spacecraft is selected such that at the initial time, the spacecraft lies between the

Earth and the Moon. In this case, the eccentricity is selected as ep = 0.7853, which

corresponds to a spacecraft periapsis distance of rpq = 100000 km. Thus, the initial

position along the X̂2B direction is X0 = 100000 km. Then, the magnitude of the

initial velocity is determined as,

v0 =

√
2GM

(
1

r0

− 1

2ap

)
(3.5)
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where GM is the gravitational parameter associated with the Earth, and r0 is the

magnitude of initial position. Recall that the components of velocity in the X̂2B and

Ẑ2B directions are zero. Thus, using Equation (3.5), the final component of the initial

state vector, Ẏ0, is determined to be equal to 2.6676 km/s. The resonant orbit that

results from these initial states in the two-body inertial frame is illustrated in Figure

3.1. The orbit of the spacecraft is plotted in purple, while the dashed black curve

represents the orbit of the Moon. A distinct geometry, however, arises when the

resonant orbit is viewed in the rotating frame. The x̂2B axis in the rotating frame is

defined along the position vector from the Earth to the Moon, ẑ2B is defined parallel

to the angular momentum vector, and ŷ2B completes the dextral orthogonal triad.

The initial state is then transformed into rotating coordinates using Equation (2.74),

and the resulting geometry is illustrated in Figure 3.2. In the rotating view, the orbit

of the spacecraft appears in purple. As a consequence of the definition of the rotating

frame, the lunar orbit appears as a fixed point.

Figure 3.1. The 3:4 Resonant Orbit in the Earth-Moon Two-Body Inertial Frame.
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Figure 3.2. The 3:4 Resonant Orbit in the Earth-Moon Two-Body Rotating Frame.

Recall that for a 3:4 resonance ratio, the spacecraft orbits the Earth three times

in the same interval required for the Moon to orbit the Earth four times. A stark

difference between the inertial and rotating frame views of the resonant orbit is the

formation of loops in the latter. The three loops in the orbit correspond to the value

of p in the p : q resonant ratio for this orbit, and represent the periapse passes along

the orbit. At the location of these loops, the velocity of the spacecraft around the

Earth is faster than the velocity of the Moon in its orbit, a fact that renders the

spacecraft to seemingly reverse its direction of motion in orbit. Another important

feature of the rotating view is associated to the relative alignment of the Earth, the

Moon, and the spacecraft. This phenomenon is termed a conjunction, and it occurs

when the three bodies are aligned. The rotating view offers insight into the frequency

of these conjunctions, which occur when the spacecraft intersects the x̂-axis.
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Interior and Exterior Resonances

Depending on the resonance ratio, resonant orbits are classified as interior or

exterior resonances. For an integer resonance ratio of p : q, orbits with p > q are

labelled interior resonant orbits and their orbital periods are smaller than the period

of the Moon. For cases where p < q, the orbits are denoted exterior resonant orbits

and their periods are larger than the period of the Moon.

Sidereal and Synodic Periods

Another category of resonant orbits originates from the type of orbital period in

consideration. The two types of periods are sidereal and synodic periods [22]. The

sidereal period is the time required for a celestial body to complete a 360◦ revolution

around its central axis in the inertial frame, while a synodic period is defined as the

time interval necessary for a celestial body to complete a revolution and return to

the same orientation relative to another body. For instance, in the case of the Moon

orbiting the Earth, the sidereal period is roughly 27.32 days. In contrast, the synodic

period of the Moon is 29.53 days, and is equal to the length of time for the Moon

to return to the same orientation with respect to the Sun. Depending on the period

of the orbit, a sidereal or synodic resonance with another orbiting body might be

available.

3.2 Resonance in the CR3BP

The determination of resonant orbits in the higher-fidelity CR3BP builds upon

resonant orbits as computed in the two-body model. However, one major distinction

that arises between resonant orbits in the two models is the difference in resonance

ratios. For resonant orbits in the two-body model with perfect integer resonance

ratios, the equivalent orbits in the CR3BP no longer possess precise integer ratios,

but approximate rational fractions. Thus, for p : q resonant orbits in the CR3BP, P3
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complete p orbits around P1 in approximately the time required for P2 to complete q

orbits around P1. However, it is noted that such orbits in the CR3BP are precisely

periodic.

Consider the 3:4 resonant orbit in the Earth-Moon two-body rotating frame il-

lustrated in Figure 3.2. The computation of the equivalent 3:4 resonant orbit in the

Earth-Moon CR3BP rotating frame originates from the two-body orbit. However,

recall that the two-body model assumes the Moon to be massless, which is no longer

true in the CR3BP. Consequently, the additional gravitational effects of P2 perturb

the orbit in the CR3BP and initially results in an orbit that is not periodic. Therefore,

the initial conditions corresponding to the periodic orbit in the two-body model re-

quire adjustments via differential corrections for the computation of its analog in the

CR3BP. To illustrate this process, recall the six-element dimensional initial conditions

for the 3:4 resonant orbit in the two-body inertial frame as computed earlier,

IX̄0,2B = [ 100000 km 0 0 0 2.6676 km/s 0 ]T (3.6)

These states, when converted to the two-body rotating frame, result in the state,

RX̄0,2B = [ 100000 km 0 0 0 2.4010 km/s 0 ]T (3.7)

The initial state vector in Equation (3.7) then is converted into rotating CR3BP

nondimensional coordinates, along with a coordinate shift to the Earth-Moon barycen-

ter at the origin. The characteristic quantities l∗, m∗, and t∗ are employed to nondi-

mensionalize the states, and the origin is shifted by µ in the −x̂-direction. The

resulting nondimensional rotating CR3BP state is,

Rx̄0 = [ 0.2480 0 0 0 2.3435 0 ]T (3.8)

Propagating the initial state in Equation (3.8) for one period, corresponding to the

two-body resonant orbit, using the CR3BP nonlinear equations of motion results in a



45

trajectory that is neither closed nor periodic in the rotating frame. In several resonant

orbits, there also exist multiple crossings of the x̂-axis, not all perpendicular. To

implement a targeting scheme to successfully compute an orbit with multiple x̂-axis

crossings sometimes requires knowledge of the geometry of the orbit; such information

is available from the two-body generating orbit. The number of crossings are then

seeded into the targeter, which terminates numerical propagation at the appropriate

crossing. However, when this information is not available a priori, the approximate

period of the resonant orbit is utilized to terminate integration at approximately half

the period along the resonant orbit. The single shooting scheme employed in the

computation of the L1 Lyapunov orbits in Chapter 2 is adopted to correct resonant

trajectories. The initial state represented in Equation (3.8) is employed as an initial

guess for the targeter. Correcting the six-element nondimensional initial state in the

CR3BP rotating frame yields,

Rx̄0,corr = [ 0.2480 0 0 0 2.3496 0 ]T (3.9)

In dimensional units, this initial state vector is rewritten as,

Rx̄0,corr = [ 95329.46 km 0 0 0 2.4073 km/s 0 ]T (3.10)

The corrected resonant orbit is illustrated in Figure 3.3. Note that the orbits are

plotted on nondimensional axes. The corrected CR3BP orbit is plotted in purple,

while the dashed orbit corresponds to the two-body initial guess propagated using

the nonlinear CR3BP equations of motion. The corrected orbit possesses a period of

109.65 days and a Jacobi constant value equal to 2.168.

3.3 Families of Planar Resonant Orbits

The computation of one resonant orbit in the CR3BP guarantees the existence of a

family of resonant orbits. The process of natural parameter continuation (in Section
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Figure 3.3. The 3:4 Resonant Orbit in the Earth-Moon CR3BP Rotating Frame.

2.4.2) is employed to generate families of resonant orbits, with the initial position

in the x̂ direction as the natural parameter of interest. A family of 3:4 resonant

orbits in the Earth-Moon system, constructed with natural parameter continuation,

is illustrated in Figure 3.5(c). The same continuation scheme, together with the

corrections process leveraging two-body initial guesses for various resonant ratios in

the CR3BP, is used to evolve several families of orbits corresponding to different

resonances in the Earth-Moon system. Representative members of these resonant

families are illustrated in Figures 3.4-3.5, with each member colored according to its

value of Jacobi constant. The corrected nondimensional initial states, values of Jacobi

constant, and dimensional periods for selected orbit members from each resonant

family are summarized in Table 3.2.
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Table 3.2. Initial Conditions for Selected Planar Resonant Orbits in the Earth-Moon
System.

Resonance Ratio x0 [nd] ẏ0 [nd] C Period [days]

1:1 0.16686 2.99389 2.13068 27.26688

1:2 0.17166 3.00312 1.78911 54.48454

1:3 3.34922 -3.01527 2.72353 77.78698

1:4 4.18667 -3.90141 2.78529 109.29229

2:1 0.19987 2.56951 2.78693 27.23629

2:3 0.27385 2.20322 2.16282 81.48373

3:1 -0.87594 0.37515 2.92681 27.27912

3:2 0.44416 1.29134 2.90416 54.31372

3:4 0.33752 1.86475 2.32417 108.71706

3:5 0.487234 1.32669 2.48211 135.34218

4:1 0.10252 3.72303 3.40649 27.26631

4:3 1.18945 -0.69908 2.69085 79.45508
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(a) 1:1 Resonance (b) 1:2 Resonance

(c) 1:3 Resonance (d) 1:4 Resonance

(e) 2:1 Resonance (f) 2:3 Resonance

Figure 3.4. Members of Planar Resonant Orbit Families in Configuration Space in
the Earth-Moon CR3BP Rotating Frame.
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(a) 3:1 Resonance (b) 3:2 Resonance

(c) 3:4 Resonance (d) 3:5 Resonance

(e) 4:1 Resonance (f) 4:3 Resonance

Figure 3.5. Members of Planar Resonant Orbit Families in Configuration Space in
the Earth-Moon CR3BP Rotating Frame.
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3.3.1 End of a Family

The sections representing bounded regions along the resonant orbit families as

illustrated in Figures 3.4-3.5 suggest an end to a family of orbits. To consider the

possible outcomes that define the end of a family, first consider the visualization of an

orbit hodograph. At a given value of µ, the hodograph is defined such that each point

represents a periodic orbit, and a family of periodic orbits is represented by a curve.

This curve corresponding to a family of orbits in orbit space is termed a characteristic.

Hénon [19] discusses that, upon continuing a family of orbits beyond a certain finite

set, two cases arise in accordance with the Principle of Natural Termination [23]:

• The family closes in on itself. This occurs when the characteristic corresponding

to the family is a closed curve; such families are termed closed families.

• For the evolution of quantities such as the Jacobi constant or the period along

the family, those quantities grow without limits in each of the two directions.

This infinite growth is denoted natural termination, and such families are la-

belled open families.

The Principle of Natural Termination applies to periodic solutions, and not specif-

ically periodic orbits. In some cases, it might be observed that orbits in a family,

especially those closer to the libration points, shrink into the points themselves. Ana-

lytically, however, the family may still be continued beyond the libration point, which

returns the same periodic solutions with a shift in time by half the period of the orbit.

Continuing the family further returns the same periodic solutions, and the family of

orbits essentially returns over itself. This occurrence is termed a reflection of the

family [24]. In theory, then, a family of periodic orbits can be characterized in four

possible ways:

• A closed family with no reflections, where the characteristic is a closed curve.

• A closed family with two reflections, where the characteristic shifts back and

forth along a finite curve as the family evolves.
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• An open family with no reflections, where the characteristic goes to infinity in

both directions.

• An open family with one reflection, where the characteristic goes to infinity in

one direction and ends in a point in the other.

Characterizing orbit families as such provides useful insight into the evolution of

orbital characteristics and quantities along a family.

3.4 Stability of Periodic Orbits

With the availability of periodic resonant orbits in the CR3BP, the next step

is an understanding of the behavior of these orbits to leverage their characteristics

towards spacecraft trajectory design. One variable that offers useful insight is the

linear stability of an orbit and its evolution across a family. The linear stability of

a periodic orbit is associated to its state transition matrix (STM), with elements

that change along an orbit. Thus, it is necessary to investigate the properties of

the full cycle STM, that is, the STM at precisely one full period along an orbit; it

is also termed the monodromy matrix. For an orbit of period T , the monodromy

matrix is represented as φ(T, 0) or φ(T + t0, t0). The matrix is computed originating

from any point along an orbit. The six eigenvalues of the monodromy matrix, λj,

possess a constant value along the orbit. Since the CR3BP is a time-invariant system,

Lyapunov’s Theorem applies, which is stated [25] as,

Theorem 3.4.1 (Lyapunov’s Theorem) If λ is an eigenvalue of the monodromy

matrix φ(T + t0, t0) of a time invariant system, then λ−1 is also an eigenvalue, with

the same structure of elementary divisors.

At least one eigenvalue from the monodromy matrix in the CR3BP is equal to one,

owing to the periodic nature of the orbit. Coupled with Theorem 3.4.1, it is apparent

that at least two eigenvalues from the monodromy matrix of a periodic orbit are

equal to one. This pair of eigenvalues is also identified as the trivial pair. Since the
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monodromy matrix is real, if any of the four remaining eigenvalues are complex, they

occur in complex conjugate pairs, represented as λj = a± bi. If the magnitude of the

real part of such eigenvalues is greater than one, the resulting solution is unstable; if

the magnitude of the real part is less than or equal to one, the resulting solution is

labelled linearly stable. Solely imaginary eigenvalues of the form λj = ±bi correspond

to oscillatory motion; the solution neither grows or decays over time [26], [16]. In

summary, the following three cases occur that determine the linear stability of the

periodic orbit:

• Unstable Eigenvalues: If |λj| > 1, then the eigenvalue is unstable, and the

periodic orbit is defined as unstable. These eigenvalues lie outside the unit

circle, and any perturbation along the orbit grows with time.

• Stable Eigenvalues: If |λj| < 1, then the eigenvalue is stable. These eigen-

values lie inside the unit circle, and any perturbation along the orbit tends to

zero as time increases along the orbit.

• Marginally Stable Eigenvalues: If |λj| = 1, then the eigenvalue is marginally

stable. These eigenvalues lie on the unit circle.

Figure 3.6 illustrates the location of each type of eigenvalue on the unit circle, as

plotted on the complex plane. The green region corresponds to stable eigenvalues, the

red to unstable eigenvalues, and the blue perimeter of the unit circle corresponds to

marginally stable eigenvalues in the linear sense. Note that the existence of even one

unstable eigenvalue renders the orbit unstable. For stability, however, all eigenvalues

of the monodromy matrix are required to be stable. Nonetheless, due to the reciprocal

nature of eigenvalues in the CR3BP, the existence of a stable eigenvalue guarantees

the existence of a corresponding unstable eigenvalue. Therefore, only unstable and

marginally stable orbits – those with all eigenvalues equal to one – are known to exist

in the CR3BP. Consider the 3:4 resonant orbit plotted in Figure 3.3 in the Earth-Moon

CR3BP rotating frame. The eigenvalues determined from the monodromy matrix for

this orbit are listed in Table 3.3. Note that the eigenvalues do occur in reciprocal
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pairs, with one pair of trivial eigenvalues. Since one of the eigenvalues, λ3, is greater

than unity in magnitude, the orbit is unstable.

Figure 3.6. Possible Locations of λj in the Complex Plane.

Table 3.3. Eigenvalues of the Monodromy Matrix of the 3:4 Resonant Orbit in the
Earth-Moon System.

λ1 1.00000 λ2 1.00000

λ3 5.80849 λ4 0.17216

λ5 0.94686 + 0.32164 λ6 0.94686− 0.32164

Another useful measure of the stability of an orbit is the stability index, ν, which

is a function of the eigenvalues from the monodromy matrix, λj [27], [22]. The value

of ν is computed as,

ν =
1

2

(
λj +

1

λj

)
(3.11)
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For any periodic orbit, there exist three stability indices that arise from the six eigen-

values of the monodromy matrix. For the 3:4 resonant orbit in Figure 3.3, these three

stability indices are computed as,

ν1 = 1

ν2 = 2.99033

ν3 = 1.05201

(3.12)

The stability index is an insightful metric in evaluating the evolution of the nontrivial

eigenvalues for each orbit across a family, since the evolution of stability is more ap-

parent. The magnitude of the stability index itself is informative towards evolution of

the stability properties of an orbit, where larger magnitudes indicate faster departure

from the vicinity of the reference orbit.

3.5 Bifurcations

Analyzing the stability index for a family of periodic orbits leads to the concept

of bifurcations and bifurcating orbits. By definition, a bifurcation occurs when there

is a change in the form or character of the orbital stability across a family [26]. For

instance, such changes occur when the stable or marginally stable eigenvalues of a

periodic orbit cross the unit circle, causing the corresponding eigenvalues of orbits

further along the family to become unstable. Qualitative changes such as these result

in the formation of bifurcating orbits, possibly signaling new families of periodic

solutions or, in some cases, delivering the end of a family of solutions. When a new

family arises as a consequence of a bifurcation, the bifurcating orbit is common to

both families. There are three ways [28] in which a change in the stability properties

of a family of periodic orbits can signal the occurrence of a bifurcation:

• Tangent Bifurcation: A pair of eigenvalues moves along the unit circle and

collides at the value +1 on the real axis, and then continues to the real axis, as
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illustrated in Figure 3.7(a). One specific type of a tangent bifurcation, denoted a

cyclic fold, does not result in the formation of a new family of periodic solutions.

• Period Doubling Bifurcation: A pair of eigenvalues moves along the unit

circle and collides at the value -1 on the real axis; then the eigenvalue shifts to

the real axis, as illustrated in Figure 3.7(b).

• Secondary Hopf Bifurcation: Two pairs of eigenvalues collide on the unit

circle and split into the complex plane, as illustrated in Figure 3.7(c). This

behavior is typically termed a Krien collision.

By investigating the eigenvalues from the monodromy matrix for various orbits along

a family, bifurcations are identified.

(a) Tangent Bifurcation (b) Period Doubling Bifurcation (c) Secondary Hopf Bifurcation

Figure 3.7. Change in Eigenvalue Structure associated with each type of Bifurcation.

3.6 Three-Dimensional Resonant Orbits

The computation of planar resonant orbit families and the determination of their

stability properties enables the search for three-dimensional resonant orbit families

[29]. The availability of such solutions opens additional dynamically viable regions

for spacecraft pathways at a given value of the Jacobi constant. To determine spatial

families of resonant orbits, the eigenvalue structure along their planar analogs is
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investigated in search of bifurcating orbits. Specifically, certain tangent bifurcations

from planar resonant families are known to bifurcate into spatial resonant families [15].

Once the bifurcating orbit is identified, a slight perturbation in the initial state

corresponding to the orbit is introduced in the z-direction. Then, the initial state

to construct the first spatial orbit is of the form x̄0 = [x0 0 ∆z 0 ẏ0 0]T , where

∆z is the slight perturbation in the z-direction. This perturbed state is corrected

for periodicity using a three-dimensional targeting scheme focused on perpendicular

crossings, during which the value of the initial position in the z-direction is fixed at a

constant value. Following a strategy of natural parameter continuation, as employed

in the computation of planar families of resonant orbits, families of spatial resonant

orbits are produced as well. Each subsequent orbit in the family is incremented by a

fixed value in the z-direction, and the resulting initial state is corrected. Increments

in the positive z-direction result in northern spatial resonant orbits, while stepping in

the negative z-direction results in southern spatial resonant orbits. Selected families

of three-dimensional resonant orbits as plotted in the CR3BP rotating frame are

illustrated in Figure 3.8. Table 3.4 summarizes the initial conditions, values of the

Jacobi constant, and the periods for selected members from each family of spatial

resonant orbits.

3.7 Invariant Manifold Theory

Solutions to differential equations are explored via classical analysis techniques

and a global geometric approach. The former, which involves analyzing individual

trajectories and their properties, is detailed in the previous sections. The latter ap-

proach is based in the phase space of a dynamical system, and involves understanding

the global behavior of the flow. The structure and geometry of the phase space is

investigated by considering equilibrium points and periodic solutions as well as the

local flow associated with these particular solutions [25]. The knowledge of the flow

structure is frequently leveraged towards trajectory design, especially involving un-



57

Table 3.4. Initial Conditions for Selected Spatial Resonant Orbits in the Earth-Moon
System.

Resonance Ratio x0 [nd] z0 [nd] ẏ0 [nd] C Period [days]

1:1 0.23194 -0.04950 2.39606 2.27756 27.17505

1:2 0.86671 -0.09899 0.58415 2.79918 49.90111

1:3 3.30648 -0.49499 -2.96886 2.71778 78.56741

2:1 0.18779 -0.00099 2.68094 2.75952 27.24767

2:3 0.89202 -0.09899 0.53269 2.86043 75.52696

3:1 -0.77817 -0.09899 0.05450 3.17423 27.18625

3:2 0.42394 -0.09899 1.33542 2.85688 54.33685

3:4 0.90596 -0.09899 0.51463 2.88458 101.89412

3:5 0.88019 -0.09899 0.54910 2.83993 130.64942
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(a) 1:1 Resonance (b) 1:2 Resonance (c) 1:3 Resonance

(d) 2:1 Resonance (e) 2:3 Resonance (f) 3:1 Resonance

(g) 3:2 Resonance (h) 3:4 Resonance (i) 3:5 Resonance

Figure 3.8. Members of Spatial Resonant Orbit Families in the Earth-Moon CR3BP
Rotating Frame.
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stable orbits [30]. The following sections introduce the invariant manifold theory

and the methodology to compute stable and unstable manifolds for fixed points and

periodic orbits.

3.7.1 Manifolds of Fixed Points

Consider the equilibrium solutions in the CR3BP, represented by Li and state

x̄L. The trajectories with initial conditions near x̄L, i.e., x̄ = x̄L + δx̄, represent the

phase portrait of the flow near Li. This phase portrait is obtained by linearizing the

nonlinear equations about Li such that,

δ ˙̄x(τ) = Aδx̄(τ) (3.13)

where A is the Jacobian matrix evaluated at Li, and is constant. The solution, then,

to Equation (3.13) is derived as,

δx̄(τ) = eA(t−t0)δx̄(τ0) (3.14)

Assuming that the matrix A possesses n distinct eigenvalues and n linearly indepen-

dent eigenvectors, Equation (3.14) is rewritten as,

δx̄(τ) =
n∑
j=1

cje
λj(t−t0)v̄j (3.15)

where cj are the coefficients determined using initial conditions, λj are the eigenvalues

of the A matrix, and v̄j are the corresponding eigenvectors. The eigenvalues of A,

λj, are characteristic multipliers of the local flow that determine the linear stability

of the equilibrium points. Depending on the form of the eigenvalues, the following

three cases occur [11]:

• <[λj] < 0 for all λj : Sufficiently small perturbations tend to zero as t→∞.

The equilibrium point is asymptotically stable.
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• <[λj] > 0 for all λj : Any perturbation grows as t → ∞. The equilibrium

point is unstable.

• <[λi] < 0 and <[λj] > 0: The equilibrium point is non-stable and is a saddle

point.

Stable or unstable points with no complex eigenvalues are denoted as nodes. An

equilibrium point is hyperbolic if all the eigenvalues of A possess non-zero real parts

[31]. In addition to the eigenvalues, the eigenvectors associated with each λj are used

to introduce the linear subspaces of Rn. Consider the n distinct eigenvalues of A; let

ns be the eigenvalues with negative real parts, nu be the eigenvalues with positive

real parts, and nc be the eigenvalues without real parts, such that:

n = ns + nu + nc (3.16)

Then, the eigenvectors associated with each λj are linearly independent and, therefore,

span Rn. Thus, Rn is represented in terms of three fundamental spaces, ES, EU , and

EC , which are the invariant subspaces corresponding to the linearized system. The

subspaces ES, EU , and EC are termed the stable, unstable, and center subspaces,

respectively. Their invariance arises from the fact that a solution that exists initially

in a given subspace remains in that subspace for all time. This concept leads to the

definitions of local stable, unstable, and center manifolds [32]. For an equilibrium

solution represented by x̄L, i.e.,

• Local Stable Manifold, W S
loc, is the local stable manifold associated with x̄L.

It is the set of all initial conditions in the vicinity of x̄L, such that flow initiated

at these states asymptotically approach x̄L as t→∞.

• Local Unstable Manifold, WU
loc, is the local unstable manifold associated

with x̄L. It is the set of all initial conditions in the vicinity of x̄L, such that flow

initiated at these states asymptotically approach x̄L as t→ −∞.
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Recall that an equilibrium point is termed hyperbolic if all the eigenvalues of A possess

non-zero real parts, i.e., nC = 0. The relationship between the invariant manifolds

and the stable and unstable subspaces of the system is then expressed using the Stable

Manifold Theorem [32] as,

Theorem 3.7.1 (Stable Manifold Theorem) Suppose ˙̄x = f̄(x̄) possesses a hy-

perbolic equilibrium point x̄eq. Then, there exist local stable and unstable manifolds

W S
loc(x̄eq), WU

loc(x̄eq) of the same dimension nS, nU as that of the eigenspaces ES and

EU of the linearized system in Equation (3.13), and tangent to ES and EU at x̄eq.

Theorem 3.7.1 allows the stable and unstable subspaces to serve as linear approx-

imations for the stable and unstable manifolds, respectively. To demonstrate the

relationship between manifolds and subspaces, consider the L2 libration point in the

Earth-Moon system. The stable and unstable manifolds W S
loc and WU

loc corresponding

to L2 are depicted in Figure 3.9, in blue and magenta, respectively. The stable and

unstable subspaces ES and EU are represented as lines along the stable and unstable

eigenvectors, v̄S and v̄U , since by definition, these are structures in the linear system.

The ± sign indicates the direction of the eigenvector along which the positive and

negative half-manifold branches are constructed. Conforming to the Stable Manifold

Theorem, the manifold structures are tangent to their corresponding subspaces at the

equilibrium point. The local invariant manifolds W S
loc and WU

loc also possess global

analogs, W S and WU , that extend further from the vicinity of the equilibrium solu-

tions. The global stable manifold is generated by propagating flow backwards in time

along W S
loc, and the global unstable manifold by propagating flow forwards in time

along WU
loc.

Assuming that x̄eq is a non-hyperbolic equilibrium point, i.e., nS, nU , and nC are

all non-zero, the structure of the local flow is characterized by the Center Manifold

Theorem [32] as,
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Figure 3.9. Stable and Unstable Local Manifolds for L2 in the Earth-Moon System.

Theorem 3.7.2 (Center Manifold Theorem) Let f̄ be a vector field on Rn van-

ishing at the origin
(
f̄(x̄eq) = 0̄

)
and A = F f̄(x̄eq). The spectrum of A is divided into

nS, nU , and nC with

<[λj] < 0→ λj ∈ nS

<[λj] = 0→ λj ∈ nC

<[λj] > 0→ λj ∈ nU

(3.17)

Let the generalized eigenspaces be ES, EC, and EU , respectively. Then, there exist

stable and unstable manifolds W S and WU tangent to ES and EU at x̄eq, and a

center manifold WC tangent to EC at x̄eq. The manifolds W S, WU , and WC are all

invariant for the flow f̄ . The stable and unstable manifolds are unique, but the center

manifold need not be.
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The existence of center manifolds implies that the structure of the flow near x̄eq,

possessing at least some zero eigenvalues, is more diverse than an equilibrium point

with no center subspace. Some examples of the types of motion that might exist

in the center subspace near the equilibrium point include periodic orbits and quasi-

periodic trajectories. Specifically, the in-plane Lyapunov orbits and nearly vertical

out-of-plane orbits exist in WC near Li.

3.7.2 Manifolds of Periodic Orbits

Similar to the computation of manifolds for equilibrium points, manifolds for

points along periodic orbits are also produced. Recall that the stability of periodic

orbits is determined from the eigenvalues of the monodromy matrix for the orbit.

The eigenvalues are categorized as stable, unstable, or marginally stable depending

on their individual values. Extending that analysis, the number of eigenvalues corre-

sponding to each of the three subspaces are defined,

|λj| < 1→ λj ∈ nS

|λj| = 1→ λj ∈ nC

|λj| > 1→ λj ∈ nU

(3.18)

where nS, nC , and nU correspond to the dimensions of the stable, center, and un-

stable subspaces. For a periodic orbit represented as Γ and its evolving state vec-

tor x̄, there exist local stable, center, and unstable manifolds, W S
loc(Γ), WC

loc(Γ), and

WU
loc(Γ), respectively, that are tangent to the stable, center, and unstable eigenspaces,

ES(Γ), EC(Γ), and EU(Γ). These manifolds also possess global analogs, represented

by W S(Γ), WC(Γ), and WU(Γ). Consistent with the Stable Manifold Theorem for

Periodic Orbits, the stable manifold associated with the periodic orbit possesses a

dimension equal to nS + 1; the unstable manifold possesses a dimension equal to

nU + 1. Thus, the dimensions of the periodic orbit manifolds are greater than the

dimension of their corresponding eigenspaces by one. Finally, the rate of arrival and
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departure along the stable and unstable manifolds, respectively, for a periodic orbit

is determined by the size of the stability index evaluated for the orbit [33].

3.7.3 Computation of Manifolds for Resonant Orbits

Invariant manifolds corresponding to an unstable periodic orbit are computed by

discretizing the orbit into a specified number of fixed points, represented by x̄∗. Recall

from Section 3.4, that the eigenvalues of the monodromy matrix as computed at any

fixed point along a periodic orbit, remain precisely the same along the orbit. The

eigenvectors, however, corresponding to each point on the orbit reflect the natural flow

near a specific fixed point and, thus, vary along the orbit. Therefore, the eigenvectors

are determined along each fixed point to accurately determine the manifolds. The

components of each eigenvector are decomposed as,

v̄S = [xS yS zS ẋS ẏS żS]T (3.19)

v̄U = [xU yU zU ẋU ẏU żU ]T (3.20)

Next, the tangency of the eigenspaces to the invariant manifolds is exploited in the

construction of the stable and unstable manifolds associated with a specific fixed

point. The local stable manifold WU
loc is tangent to the stable subspace ES, while the

local unstable manifold WU
loc is tangent to the unstable subspace EU at the location of

the fixed point. The stable and unstable eigenspaces themselves lie along the stable

and unstable eigenvectors of the monodromy matrix, respectively. An important

component in the approximation to the nonlinear flow is the direction along the

eigenvector. The eigenvectors are normalized in terms of three position components,

three velocity components, or the full six element state. Normalization along the

position components allows the physical characterization of the states, and is the
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strategy for normalization implemented for this investigation. Then, the normalized

states of the stable and unstable eigenvectors are evaluated as,

v̄WS =
v̄S

[x2
S + y2

S + z2
S]

1
2

(3.21)

v̄WU =
v̄U

[x2
U + y2

U + z2
U ]

1
2

(3.22)

A point on a half-manifold is located by stepping off the fixed point along the direc-

tion of the stable and unstable eigenvectors. The positive half branch of the stable

manifold, W S+
loc , departs the fixed point along the positive direction of the stable eigen-

vector, v̄S, while the negative half branch, W S−
loc , departs along the negative direction

of the stable eigenvector, −v̄S. Similarly, the positive half branch of the unstable

manifold, WU+
loc , departs along the positive direction of the unstable eigenvector, v̄U ,

while the negative half branch, WU−
loc , departs along the negative direction of the un-

stable eigenvector, −v̄U . A nondimensional perturbation, denoted by d, is introduced

relative to the fixed point in the direction of the eigenvectors. The selection for the

value of d is imperative: if the value of d is too large, the resulting point might not lie

on the manifold itself; if the value is too small, the trajectory remains in the vicinity

of the fixed point for a longer interval, leading to little progress along the manifold

path and the accumulation of integration error. Once an appropriate value of d is

selected, the point on the local half-manifold is evaluated as,

x̄S± = x̄∗ ± d · v̄WS (3.23)

x̄U± = x̄∗ ± d · v̄WU (3.24)

where ± corresponds to the positive and negative directions along each manifold.

This process is repeated for each fixed point along the periodic orbit to produce the

stable and unstable manifolds corresponding to the orbit.
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The computation of periodic orbit manifolds is illustrated within the context of

the 3:4 resonant orbit in the Earth-Moon system represented in Figure 3.3. The orbit

is discretized into 100 fixed points spaced evenly in time, and a step-off distance

of d = 40 km is selected [15]. The initial states corresponding to the stable and

unstable half-manifolds are propagated for τ = 100 [nd], i.e., approximately four times

the period of the resonant orbit. Figure 3.10 illustrates the global stable manifolds

plotted in blue and the global unstable manifolds plotted in magenta. The projections

of the manifolds initially appear to shadow the resonant orbit, but become tangled

and chaotic as the propagation time increases. Thus, this approach for visualizing

manifolds is not informative towards trajectory design, and other schemes of analyzing

flow characteristics must be explored.

Figure 3.10. Stable and Unstable Global Manifolds for the 3:4 Resonant Orbit in the
Earth-Moon System.
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3.8 Poincaré Maps

There exist two main representations of dynamical systems for analysis: systems of

differential equations of the form ˙̄x = f̄(x̄, t), or mappings of the form x̄n+1 = f̄(x̄n).

The latter describes the time evolution of a vector x̄ at discrete time intervals t

(integer). Both representations are deterministic systems, and their similarities allow

the use of maps for the illustration of properties for generic dynamical systems that are

described by differential equations. Specifically, the utilization of maps to understand

chaos has been extensively explored in the last few decades.

Systems of differential equations are represented as maps on a Poincaré surface of

section, a concept first utilized by Henri Poincaré in his analysis of the CR3BP [34].

This type of formulation allows a continuous time system (flow) to be reduced to the

examination of an associated discrete time system (map). The advantages of this

technique include:

• Reduction of Dimension: The construction of a Poincaré map eliminates at

least one variable in the problem, reducing the study to a lower dimensional

system.

• Understanding of Global Dynamics: In a lower dimensional study, Poincaré

maps provide insight into the global dynamics of a system, often highlighting

trends that might not be apparent otherwise.

• Conceptual Clarity: Concepts that otherwise might be too complex to state

for ordinary differential equations can be concisely stated for the corresponding

Poincaré map.

Unfortunately, there currently exist no general methods for the construction of a

Poincaré map associated with a set of differential equations, since some knowledge of

the geometrical structure of the phase space is necessary. The process of construction

of a Poincaré map requires technical insight into the specific problem. Within the

context of the CR3BP, however, three special cases of interest arise frequently: orbit
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structure near a periodic orbit, periodically forced oscillators, or orbit structure near

a homoclinic or heteroclinic orbit. The relevant application in this investigation is

the orbit structure near a periodic orbit, which is explored in detail via maps [25].

Consider an autonomous system defined in an m-dimensional phase space (Rm).

A vector field f̄ generates a flow x̄(x̄0, t) = K̄(x̄, t), or ϕt(x̄0). The mapping K̄(x̄, t)

defines a solution curve, orbit, or trajectory corresponding to the differential equation

based at x̄0. In that phase space, an (m−1) dimensional hyperplane Σ is defined such

that the flow is transversal to Σ, that is, the trajectory possesses some component

normal to the plane. The hyperplane Σ is defined after specific time intervals, or after

specific geometries. Consider a periodic orbit Γ, and let x̄∗ be a fixed point along the

orbit. The hyperplane Σ is transversal to Γ at x̄∗. A trajectory through x̄∗ crosses Σ

at x̄∗ in time T , where T is the period of the orbit. Since the flow ϕt is continuous

with respect to the initial conditions, trajectories that originate on Σ in a sufficiently

small neighborhood of x̄∗ will intersect Σ in the vicinity of x̄∗ in approximately the

time T . Thus, ϕt and Σ define a mapping P in some neighborhood of x̄∗ (U ⊂ Σ)

onto another neighborhood of x∗ (V ⊂ Σ). Then, P is the Poincaré map for the

autonomous system, represented as,

P (x̄0) = x̄(x̄0) (3.25)

where x̄ is the state vector that results from the application of the nonlinear map to

x̄0 ∈ Σ.

Poincaré maps are particularly useful towards understanding the stability of peri-

odic solutions in the CR3BP. The stability properties of a fixed point on a Poincaré

map are closely associated with the stability of the associated periodic orbit. For a

fixed point x̄∗ on a hyperplane Σ, consider an initial state x̄0 in the vicinity of the

fixed point. The initial state is propagated numerically, and its intersections with the

hyperplane are recorded as P1(x̄0), P2(x̄0), and so on, until the last return Pn(x̄0). If

subsequent returns to the map approach the fixed point x̄∗ on the hyperplane, the
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Figure 3.11. Poincaré Map of an Autonomous Section.

orbit is considered stable. If the returns appear to diverge from the fixed point, the

periodic orbit is unstable. If the returns to the map are disordered, the orbit is con-

sidered to be chaotic. The first case corresponds to stable manifolds associated with

the fixed point and is illustrated in Figure 3.12(a). The second case corresponds to

unstable manifolds and is illustrated in Figure 3.12(b). The final scenario, e.g., in the

case of center manifolds of the fixed point, is illustrated in Figure 3.12(c). Therefore,

the manifolds for a fixed point are not trajectories, rather returns to the hyperplane

Σ resulting from perturbations.

(a) Stable (b) Unstable (c) Chaos

Figure 3.12. Poincaré Map Returns for Stable, Unstable, and Chaotic Cases.
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Recall the invariant manifolds for the 3:4 resonant orbit illustrated in Figure 3.10.

In configuration space, the manifolds appear tangled and do not offer insight into

the global dynamics near the orbit. Other methods of visualization, such as Poincaré

maps, reflect trends in stability and the nearby dynamics that are not apparent oth-

erwise. For the planar resonant orbit in consideration in R4, a geometric hyperplane

Σ is defined by fixing one of the four coordinates, reducing the problem to a surface

in R3. In this case, Σ is defined to be y = 0. The local stable and unstable manifolds

computed from fixed points along the resonant orbit are then propagated numerically,

and the intersections with the hyperplane of the global stable and unstable manifolds

are recorded. The values of x and ẋ at each intersection are used to plot the returns

to the map, but other variables may also be employed. Figure 3.13 illustrates the

Poincaré map, with the zoomed in views of different regions on the map represented

in Figure 3.14. Each point on the map corresponds to a subsequent return. The blue

points are associated to returns of the stable manifolds, while the magenta ones cor-

respond to returns of unstable manifolds. The black marker indicates the initial state

of the 3:4 resonant orbit on the x-axis. From the plot, it is immediately apparent

that the returns of the manifolds are more clearly identified than their projections

in configuration space. Some of the regions of interest on the map include locations

where the stable and unstable manifolds intersect, which correspond to homoclinic

connections. Maps are now frequently employed in the computation of low-cost and

even natural transfers between orbits representing different resonances in the CR3BP.

Such maps and methodologies are leveraged extensively in the computation of inex-

pensive transfers and the determination of relevant dynamical tools for trajectory

design in the CR3BP.
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Figure 3.13. Poincaré Map for Stable and Unstable Manifold Returns of the 3:4
Resonant Orbit in the Earth-Moon System.
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(a) x < 0

(b) x > 0

Figure 3.14. Zoomed in Views of the Poincaré Map for the 3:4 Resonant Orbit in the
Earth-Moon System.



73

4. RESONANT ORBITS FOR TRAJECTORY DESIGN

The focus of this investigation is a strategy to leverage resonant orbits for transfer

trajectory design utilizing the dynamical systems techniques. The properties asso-

ciated with the planet-moon systems for this investigation are introduced as well as

the concept of the theoretical minimum transfer cost. Most resonant trajectories offer

expansive coverage of configuration space in a CR3BP system, and that characteristic

is exploited in the design of transfers between various periodic orbits. Scenarios in

which resonant orbits are employed as intermediaries are demonstrated. Techniques

to apply unstable resonant orbits and their manifolds to the computation of natural

planar transfers follow, aided by Poincaré mapping. Finally, homoclinic connections

linking resonant orbits and other periodic orbits are detailed, along with the compu-

tation of homoclinic-type resonant orbit chains.

4.1 Relevant Physical Parameters and CR3BP Quantities

The CR3BP systems of interest in this investigation are the following planet-moon

combinations: Earth-Moon, Saturn-Titan, and Mars-Deimos. It is, therefore, useful

to summarize the physical parameters and the CR3BP quantities associated with

these systems. The gravitational parameter, GM , corresponding to each planet and

moon, along with their mean radii, are listed in Table 4.1. The CR3BP characteristic

quantities, i.e., the µ, l∗, and the t∗ values associated with these systems, are also

included in Table 4.2. Recall that these quantities are evaluated employing Equa-

tions (2.7)-(2.12). Also recall that Table 2.1 lists the values for the Jacobi constant

corresponding to the libration points in these systems.
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Table 4.1. Physical Parameters for Relevant Bodies.

Planet GM [km3/s2] Radius [km]

Earth 398600.448 6478.137

Moon 4902.799 1737.400

Saturn 37931284.499 58300.000

Titan 8978.138 2574.799

Mars 42828.374 3389.527

Deimos 0.0000962 6.299

Table 4.2. CR3BP Quantities Corresponding to Relevant Systems.

System µ l∗ [km] t∗ [s]

Earth-Moon 1.21506× 10−2 384388.174 375172.943

Saturn-Titan 2.36639× 10−4 1221865.000 219272.755

Mars-Deimos 2.24514× 10−9 23457.075 17359.811

4.2 Theoretical Minimum ∆V

An essential consideration in the design of trajectories with multiple segments is

the change in the value of the Jacobi constant as the spacecraft propagates along

a path. Impulsive maneuvers along the trajectory are employed to achieve such a

change in the Jacobi constant value. The maneuvers are quantified as the magnitude

of ∆V , that is, equal to the change in velocity required by the spacecraft to achieve

the required change in energy and direction. Evaluating the theoretical minimum

∆V assesses the corresponding maneuver to accommodate only the energy change;

such a reference number allows the comparison of the efficacy of the actual maneuver

against a benchmark [16], [35].

Consider a spacecraft moving along a trajectory segment with a Jacobi constant

value of C1, and let the Jacobi constant of the next arc in the trajectory sequence
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be C2. Assuming the two arcs intersect in configuration space, the corresponding

values of the pseudo-potential at the intersection point are equal, and this value is

represented by U∗. Let v̄1 and v̄2 denote the velocities at the point of intersection of

the arcs, with α representing the angle between the velocity vectors. Then, rewriting

Equation (2.40) yields,

C1 = 2U∗ − v2
1 (4.1)

C2 = 2U∗ − v2
2 (4.2)

where v1 and v2 are the magnitudes of the velocity vectors corresponding to each

segment at the time of intersection. Representing the difference in the Jacobi constant

value as ∆C = C1 − C2, Equations (4.1) and (4.2) are reduced to,

∆C = v2
2 − v2

1 (4.3)

The change in velocity between the two arcs, ∆V , is then computed as,

∆V =
√
v2

1 + v2
2 − 2v1v2cosα (4.4)

Clearly, the value of ∆V as computed in Equation (4.4) is a minimum when the value

of cosα is equal to one, i.e., when the velocity vectors are parallel. Consequently, the

minimum ∆V is represented as,

∆Vmin =
√
v2

1 + v2
2 − 2v1v2 (4.5)

Rewriting Equation (4.5) in terms of the change in Jacobi constant value, ∆C, yields

the expression for the theoretical minimum ∆V , that is, the cost to accommodate the

energy difference,

∆Vmin =

√
2v2

1 + ∆C − 2v1

√
∆C + v2

1 (4.6)
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Equation (4.6) suggests that tangential maneuvers correspond to the lowest values of

∆V . This conclusion aids in the selection of trajectory segments that result in lower

maneuver costs.

4.3 Transfers Incorporating Resonant Arcs

The versatility of resonant orbits is apparent in their coverage, both planar and

spatial, in various CR3BP systems. This property is leveraged in designing low-cost

transfers between other periodic orbits. Specifically, in the cases where periodic orbit

manifolds cannot be employed due to orbital stability considerations, incorporating

sections along resonant orbits as transfer arcs is favorable [16], [15].

To understand the methodology behind designing periodic orbit transfers utilizing

resonant orbit arcs, consider a planar transfer between an L3 Lyapunov orbit and a

Distant Retrograde Orbit (DRO) in the Earth-Moon system [36]. The DROs are

planar, stable orbits that surround the smaller primary [22]. Let an L3 Lyapunov

orbit be the departure orbit with arrival into the DRO. The initial conditions, the

period, and the Jacobi constant value corresponding to the two orbits are summarized

in Table 4.3. Figure 4.1 illustrates the orbits plotted as in the CR3BP rotating frame,

where the L3 orbit is plotted in blue, and the DRO is represented in red.

Table 4.3. Initial Conditions and Jacobi Constant Values for the Departure and
Arrival Orbits.

Orbit x [nd] ẏ [nd] C Period [nd]

L3 Lyapunov −1.3868 0.7209 2.8510 6.2240

DRO 0.6731 0.7500 2.8510 5.1283

An appropriate resonant orbit for incorporation as a transfer arc is determined

as the first step in the transfer design process. Note that the L3 Lyapunov orbit

and the DRO, both, cross the x̂-axis perpendicularly. Given that resonant orbits also

possess perpendicular x̂-axis crossings, the locations of the crossings are analyzed
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Figure 4.1. The L3 Lyapunov and DRO for Departure and Arrival in the Earth-Moon
System.

to locate intersections with the departure and arrival orbits in configuration space.

Noting the perpendicular crossings limits the search for intersections to tangential

intersections only; tangential intersections are known to be favorable for low-cost

maneuvers. Figure 4.2 illustrates the perpendicular crossings for resonant orbits that

intersect the x̂-axis at the same location as the DRO, with the Jacobi constant values

corresponding to each orbit plotted on the ŷ-axis. It is evident from the plot that

orbits from the 3:4, 2:3, 3:5, and 1:2 planar resonant families are potential candidates

for intermediate arcs, with the 3:4 resonance requiring the least, and the 1:2 orbit

requiring the most change in energy. Although any of the four orbits are employable,

the 2:3 resonant orbit offers a convenient, near-tangential intersection with the L3

Lyapunov orbit as well, allowing the orbit to provide both the departure and arrival

legs along the transfer. Therefore, the 2:3 resonant orbit is selected to construct

an intermediate transfer arc from the departure to the arrival orbits. The initial

conditions, the Jacobi constant value, and the period of the selected 2:3 resonant
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orbit are listed in Table 4.4. Figure 4.3 represents the 2:3 resonant orbit, plotted in

black, with the departure and arrival orbits illustrated as dashed grey curves.

Figure 4.2. Resonant Orbit Perpendicular Crossings for Intermediate Arc Selection.

Table 4.4. Initial Conditions and Jacobi Constant Value for the Selected 2:3 Resonant
Orbit in the Earth-Moon System.

x [nd] ẏ [nd] C Period [nd]

0.6729 0.8450 2.7001 18.1759

To depart the L3 orbit on a segment of the resonant 2:3 orbit, a departure ma-

neuver of magnitude ∆VD is applied. Similarly, to arrive at the DRO on the 2:3

resonant arc, an arrival maneuver of magnitude ∆VA is necessary. Note that, in spite

of the near-tangential intersections, the departure and arrival maneuvers are not zero,

due to the difference in the Jacobi constant values of the three orbits. Additionally,

since the intersection of the transfer arc with the L3 orbit is not perfectly tangential,

involving a directional change of the velocity vector of approximately 5◦, the depar-

ture maneuver is significant as well. The computed values of ∆VD and ∆VA, along

with the theoretical ∆Vmin at the maneuver locations, are included in Table 4.5. As

expected, at arrival, the ∆VA is equal to the value of ∆Vmin owing to the tangential
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Figure 4.3. 2:3 Resonant Orbit as an Intermediate Transfer Arc in the Earth-Moon
System.

intersection. The values of ∆VD and the ∆Vmin at the departure location, however,

do differ significantly. The time of flight for the transfer is 37.344 days, and the total

∆V is 0.2243 km/s. Figure 4.4 illustrates the complete transfer sequence, with the

departure and arrival orbits plotted in black, and the transfer arc represented in pur-

ple. Solid purple points indicate the locations of the departure and arrival maneuvers.

Note that the transfer is an exterior transfer, since it propagates through the exterior

region of the Earth-Moon system. Also, this feasible transfer is not optimized.

Table 4.5. Departure and Arrival Maneuver Magnitudes for Transfer using a 2:3
Resonant Orbit Arc in the Earth-Moon System.

∆VD [km/s] ∆VA [km/s]

Actual 0.1274 0.0969

Theoretical Minimum 0.1141 0.0969
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Figure 4.4. Transfer between L3 Lyapunov Orbit and DRO employing a 2:3 Resonant
Orbit Arc in the Earth-Moon System.

4.3.1 Tour of the Mars-Deimos System

Another application of resonant orbits is in the design of system tours [15], [37].

Such tours are characterized by close approaches to the primaries, shorter periods, and

generally stable orbits [38], [39]. These criteria are favorable for flybys and orbiter-

based mission scenarios, and allow for lower maintenance orbits that are not sensitive

to orbital perturbations. For demonstration, consider resonances in the Mars-Deimos

system. Families of resonant orbits computed in the Earth-Moon system are also

computed in the Mars-Deimos system. A consequence of the low µ value of the

system is that most resonant orbits are highly stable. The process of incorporating

resonant orbits as intermediate transfer arcs is extended to the design of stable tours

of the Martian system.

Resonant orbits that facilitate the tour of the system are selected on the basis of

their orbital stability and passage through the system. For instance, stable orbits that

provide both, circumlunar and cislunar passages, are candidates for a tour trajectory.
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To construct a tour, consider a 3:2 resonant orbit and a 2:1 resonant orbit in the

Mars-Deimos system. The initial conditions, the Jacobi constant value, and the

period corresponding to these orbits are summarized in Table 4.6. Note that, in spite

of a tangential intersection between the two orbits in configuration space, a maneuver

is necessary to obtain a continuous trajectory due to the difference in their Jacobi

constants. The magnitude of the maneuver is computed as ∆V = 266.95 m/s, which

is approximately equal to the theoretical minimum value of 266.92 m/s. The resulting

trajectory that meets the system tour design criteria is illustrated in Figure 4.5, with

the maneuver necessary to shift to the 2:1 resonant orbit from the 3:2 resonant orbit

as indicated by a solid purple point. The total time of flight for the trajectory is

3.787 days; the cislunar passages requires 1.262 days. The trajectory allows for a

Deimos flyby at a relative radius of 610.40 km at a velocity of 0.5741 km/s.

Table 4.6. Initial Conditions and Jacobi Constant Values for the 3:1 and 2:1 Resonant
Orbits.

Resonance x [nd] ẏ [nd] C Period [nd]

3:2 0.4999 1.1402 2.9503 12.5664

2:1 −1.0262 0.4249 2.8215 6.2832

4.4 Transfers Utilizing Resonant Orbit Manifolds

Incorporating invariant manifolds into transfers can substantially reduce transfer

costs, potentially allowing for natural, cost-free transfers [4], [40]. Since the focus of

this study is resonant orbits, invariant manifolds associated with unstable resonant

orbits are investigated for use as intermediate arcs to create transfers from resonant

orbits to other periodic orbits. In particular, resonances in the Saturn-Titan system

are examined, and Poincaré sections are employed to produce useful transfer arcs [41].

Consider the unstable 5:6 resonant orbit in the Saturn-Titan system, as illustrated

in Figure 4.6. The nondimensional initial conditions, the Jacobi constant value, and
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Figure 4.5. 3:2 and 2:1 Resonant Tour Trajectory in the Mars-Deimos System.

the period of the orbit are listed in Table 4.7. A distinctive feature of the orbit is the

double-loop geometry in the vicinity of Titan [42]. The unstable eigenvalue associated

with the orbit possesses a magnitude of 290.5564, indicative of the instability of the

orbit. Therefore, it is relevant to investigate the invariant manifolds associated with

the orbit for transfers to other periodic orbits.

Table 4.7. Initial Conditions and Jacobi Constant Value for the 5:6 Resonant Orbit
in the Saturn-Titan System.

x [nd] ẏ [nd] C Period [nd]

1.0905 −0.1621 3.0013 42.9871

To compute the manifolds, the orbit is discretized into 10, 000 fixed points. Using

a step-off value of 40 km, the stable and unstable manifolds for each fixed point along

the orbit are propagated for τ = 100 [nd], that is, 253.7879 days. A Poincaré section

for manifold crossings is then constructed with the hyperplane Σ defined at y = 0. The

values of x and ẋ at each return to the hyperplane are recorded. Since the problem
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Figure 4.6. Double-Loop 5:6 Resonant Orbit in the Saturn-Titan System.

is planar, z0 and ż0 are zero. Recall that the value of the Jacobi constant is fixed for

the map, allowing the computation of the only remaining unknown in the problem, ẏ.

Figure 4.7 illustrates the Poincaré section produced for the returns of the invariant

manifolds associated with the 5:6 resonant orbit. Magenta corresponds to the returns

of unstable manifold, and blue represents the returns of the stable manifold. The

black curves highlight the bounds that restrict the motion at this value of the Jacobi

constant. Note that the map is double-sided, that is, both positive and negative

returns to the map are represented.

In the design of trajectories that depart from the resonant 5:6 orbit along invariant

manifolds, the arrival orbit must possess the same value of the Jacobi constant as the

resonant orbit. Consider, then, the L1 and L2 Lyapunov orbits in the Saturn-Titan

system at C = 3.0013. The orbits are illustrated in Figure 4.8. The L1 Lyapunov

orbit is plotted in purple; the L2 Lyapunov orbit appears in green. The orbital

parameters for the two orbits are summarized in Table 4.8. The unstable eigenvalue

of the L1 orbit has a magnitude of 220.4960, and that of the L2 orbit is nearly the

same at a magnitude of 205.0309. The computation of manifolds for these orbits and

the subsequent Poincaré mapping of the manifolds reveals a structure that is similar
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(a) x < 0

(b) x > 0

Figure 4.7. Poincaré Map for the Stable Manifolds (Blue) and Unstable Manifolds
(Magenta) of the 5:6 Resonant Orbit in the Saturn-Titan System.
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to the 5:6 resonant orbit manifolds [41]. Therefore, it is reasonable to search for

invariant manifolds that result in natural transitions from the 5:6 resonant orbit to

these libration point orbits.

Figure 4.8. L1 and L2 Lyapunov Orbits at C = 3.0013 in the Saturn-Titan System.

Table 4.8. Initial Conditions and Jacobi Constant Values for the L1 and L2 Lyapunov
Orbits in the Saturn-Titan System.

Orbit x [nd] ẏ [nd] C Period [nd]

L1 Lyapunov 0.9356 0.1343 3.0013 4.7470

L2 Lyapunov 1.0083 0.2307 3.0013 4.8009

The Poincaré sections in Figure 4.7 are employed in the identification of a transfer

arc to the Lyapunov orbits. First, the fixed points corresponding to the perpendicular

x̂-axis crossings for the arrival orbit are also plotted on the map. Then, a return on

the map closest to those specified fixed points is selected and, depending on the

application, propagated forwards or backwards in time. In this instance, the goal

is an arc that departs the 5:6 resonant orbit and arrives at the L1 or L2 Lyapunov
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orbits. Therefore, the points on the map corresponding to returns of the unstable

manifold are the focus, since those trajectories diverge from the resonant orbit as

t → ∞. Once the intermediate arc is computed, a corrections scheme is applied to

enforce continuity in position and velocity states along the trajectory [41].

One sample transfer scenario, from the 5:6 resonant orbit to the L1 Lyapunov orbit,

is plotted in Figure 4.9(a). The purple curve corresponds to the intermediate transfer

arc from the unstable manifold of the resonant orbit. Figure 4.9(b) illustrates the

transfer arc as it approaches Titan and the L1 Lyapunov orbit. After the application

of the corrections scheme, the resulting transfer is a natural, maneuver-free trajec-

tory between the two unstable periodic orbits, with a time of flight of 45.6818 days.

Another transfer scenario, this time from the 5:6 resonant orbit to the L2 Lyapunov

orbit, is illustrated in Figure 4.10. Similar to the transfer to the L1 Lyapunov orbit,

an unstable resonant manifold is employed to construct an intermediate transfer arc.

Interestingly, the time of flight of the converged transfer trajectory is the same as the

first case, i.e., 45.6818 days.

(a) Overview of the Transfer Trajectory. (b) Trajectory in the Vicinity of Titan.

Figure 4.9. Transfer from a 5:6 Resonant Orbit to an L1 Lyapunov Orbit in the
Saturn-Titan System.
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(a) Overview of the Transfer Trajectory. (b) Trajectory in the Vicinity of Titan.

Figure 4.10. Transfer from a 5:6 Resonant Orbit to an L2 Lyapunov Orbit in the
Saturn-Titan System.

4.5 Similarities in Invariant Manifold Structure

The comparison of the invariant manifolds evolving from different periodic solu-

tions at the same Jacobi constant value offers insight into the relationships between

such periodic solutions [43], [41]. In the Saturn-Titan system, consider the resonant

3:5 and 3:4 orbits at C = 3.0013, that is, the Jacobi constant value at which the

5:6 resonant trajectory and the L1 and L2 Lyapunov orbits are available. The initial

conditions and the periods associated with the 3:5 and 3:4 resonant orbits are sum-

marized in Table 4.9. The two orbits are plotted in Figure 4.11, as viewed in the

rotating frame, with the resonant 3:5 orbit represented in purple and the resonant 3:4

appearing in green. Consistent with the 5:6 resonant orbit, these orbits are also un-

stable. The unstable eigenvalues possess magnitudes equal to 709.6140 and 1660.3383

for the resonant 3:5 and 3:4 orbits, respectively.

For the computation of the stable and unstable manifolds of the resonant orbits,

the orbits are discretized into 10, 000 fixed points spaced equally in time. The stable

and unstable manifolds corresponding to each of those points are then propagated for

τ = 100 [nd], and their returns to the hyperplane defined by y = 0 are recorded. The
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Table 4.9. Initial Conditions and Jacobi Constant Values for the 3:5 and 3:4 Resonant
Orbits in the Saturn-Titan System.

Resonance x [nd] ẏ [nd] C Period [nd]

3:5 1.0279 0.1299 3.0013 31.8237

3:4 1.0176 0.1587 3.0013 25.6848

Figure 4.11. The 3:5 and 3:4 Resonant Orbits at C = 3.0013 in the Saturn-Titan
System.

Poincaré section appears in Figure 4.12 for the manifold returns associated with the

3:5 resonant orbit, with the stable returns plotted in blue and the unstable returns

plotted in pink. The section associated with the manifold returns of the 3:4 resonant

orbit are then plotted in Figure 4.13, with cyan representing stable and orange re-

flecting unstable returns. For reference, the Poincaré sections corresponding to the

manifolds of the L1 and L2 Lyapunov orbits are illustrated in Figures 4.14 and 4.15

as well. For the L1 Lyapunov orbit, the stable returns are plotted in blue, and the

unstable returns appear in gold. For the L2 Lyapunov orbit, the stable returns are
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plotted in green, and the unstable returns in dark red. The four Poincaré sections,

along with those of the 5:6 resonant orbit illustrated in Figure 4.7, are plotted on the

same axes scales for comparison. The maps expose the similarities in the manifold

structures of the five orbits, as the manifolds appear to shadow each other closely

in all five cases. This similarity guarantees the existence of dynamical relationships

between the periodic orbits and allows for the computation of transfer trajectories

and connections between these orbits with initial guesses seeded from the Poincaré

sections [41], [15].
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(a) x < 0 (b) x > 0

Figure 4.12. Poincaré Map for the Stable Manifolds (Blue) and Unstable Manifolds
(Pink) of the 3:5 Resonant Orbit in the Saturn-Titan System.

(a) x < 0 (b) x > 0

Figure 4.13. Poincaré Map for the Stable Manifolds (Cyan) and Unstable Manifolds
(Orange) of the 3:4 Resonant Orbit in the Saturn-Titan System.
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(a) x < 0 (b) x > 0

Figure 4.14. Poincaré Map for the Stable Manifolds (Blue) and Unstable Manifolds
(Gold) of the L1 Lyapunov Orbit in the Saturn-Titan System.

(a) x < 0 (b) x > 0

Figure 4.15. Poincaré Map for the Stable Manifolds (Green) and Unstable Manifolds
(Red) of the L2 Lyapunov Orbit in the Saturn-Titan System.
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4.6 Homoclinic and Heteroclinic Connections

The computation of invariant manifolds leads to the analysis of the relationships

between the stable and unstable manifolds for both the same periodic orbit or differ-

ent periodic orbits in the system at the same Jacobi constant value [44]. For a periodic

orbit Γ, the intersection of its unstable and stable manifolds, i.e., WU(Γ) ∩W S(Γ),

is defined as a homoclinic connection. When propagated in both forward and re-

verse time, a homoclinic connection approaches the orbit itself. Alternatively, the

intersection of the stable and unstable manifolds for two different orbits is termed a

heteroclinic connection. For two distinct periodic orbits denoted Γ1 and Γ2, a hete-

roclinic connection is represented as WU(Γ1) ∩W S(Γ2), or WU(Γ2) ∩W S(Γ1), and

is a trajectory that approaches one orbit in forward time and the other orbit in re-

verse time. Heteroclinic connections offer natural, maneuver-free transfers between

two periodic orbits at the same Jacobi constant value. In this investigation, Poincaré

sections are leveraged for the identification of homoclinic and heteroclinic connections.

4.6.1 Homoclinic Connections in the Saturn-Titan System

Homoclinic connections in the Saturn-Titan system are computed employing Poincaré

mapping. Consider the Poincaré section for the resonant 3:5 orbit, illustrated in Fig-

ure 4.12. There exist multiple intersections of the stable and unstable manifolds,

implying the existence of homoclinic connections to/from the resonant orbit. At a

point of intersection between the manifolds, the stable manifold is propagated in

backward time and the unstable manifold in forward time until the trajectories inter-

sect the 3:5 resonant orbit [3]. The initial conditions and orbital parameters for the

homoclinic connection are listed in Table 4.10. Figure 4.16 illustrates the homoclinic

connection plotted in the Saturn-Titan rotating frame. The asymptotic departure

from the 3:5 resonant orbit is plotted in Figure 4.16(a), while Figure 4.16(b) repre-

sents the asymptotic arrival to the 3:5 resonant orbit. In both the cases, the resonant

3:5 orbit is also plotted in black, and the initial and final positions are indicated by
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black stars. The complete trajectory is corrected for continuity in position and veloc-

ity at the initial and final points along each manifold arc, and the resulting homoclinic

trajectory appears in Figure 4.16(c).

Table 4.10. Initial Conditions and Jacobi Constant Value for the 3:5 Resonant Ho-
moclinic Connection in the Saturn-Titan System.

x [nd] ẏ [nd] C Period [nd]

−2.1046 1.5423 3.0013 44.2305

(a) Stable Manifold Propagated in Back-
ward Time.

(b) Unstable Manifold Propagated in For-
ward Time.

(c) Corrected Homoclinic Trajectory.

Figure 4.16. Homoclinic Connection for the 3:5 Resonant Orbit in the Saturn-Titan
System.
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4.6.2 Heteroclinic Connections in the Saturn-Titan System

Poincaré sections are leveraged in the computation of heteroclinic connections as

well. Recall that a heteroclinic connection is constructed from the intersection of

the unstable manifold of one orbit with the intersection of the stable manifold along

a different periodic orbit [13]. To achieve such a connection, consider the Poincaré

section for the unstable manifold of the 3:4 resonant orbit and the stable manifold for

the 5:6 resonant orbit. The resulting Poincaré section is illustrated in Figure 4.17,

with orange representing the unstable manifold returns of the 3:4 resonant orbit and

blue indicating the stable manifold returns of the 5:6 resonant orbit. The map exposes

several intersections of the stable and unstable manifolds and therefore, heteroclinic

connections between the two resonant orbits are likely available. Again, a point of

intersection of the manifolds is selected from the map. The unstable manifold is then

propagated backward in time until the trajectory intersects the resonant 3:4 orbit,

and the stable manifold is propagated forward in time until the trajectory intersects

the resonant 5:6 orbit [15]. The trajectory is corrected for continuity in position and

velocity at the initial and final states along the two orbits. The resulting heteroclinic

trajectory, that is, a natural, maneuver-free transfer from the resonant 3:4 to the

resonant 5:6 orbit, is illustrated in Figure 4.18. The time of flight of the transfer is

125.3712 days.

4.7 Resonant Orbit Chains

Homoclinic connections, in some cases, suggest chains of periodic orbits that tra-

verse extensively throughout a system [45], [41]. Similar to periodic orbit families,

such orbit chains exist in families as well. To construct a periodic orbit chain, a ho-

moclinic connection to a periodic orbit is first identified. If the homoclinic connection

exists near the fixed point of a different periodic orbit, an orbit chain linking the two

periodic orbits is determined via differential corrections. Since the focus of this study

is resonant orbits, chains of resonant orbits are investigated.
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(a) x < 0 (b) x > 0

Figure 4.17. Poincaré Map for the Stable Manifolds (Blue) of the 5:6 Resonant Orbit
and the Unstable Manifolds (Orange) of the 3:4 Resonant Orbit.

Figure 4.18. Heteroclinic Connection between the 3:4 and the 5:6 Resonant Orbits in
the Saturn-Titan System.

Recall the Poincaré section for the resonant 3:4 orbit in the Saturn-Titan system,

as plotted in Figure 4.13. There exist several intersections of the stable and unsta-

ble manifolds of the orbit, some that pass through the interior region of the system.

Selecting one such intersection and propagating the state forward and backward in

time yields a homoclinic connection to the 3:4 resonant orbit. Let the homoclinic
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connection, in this case, be an intersection close to the fixed point corresponding to

the resonant 9:8 orbit. The fixed point, along with the closest homoclinic connec-

tion, are illustrated in Figure 4.19. Consequently, the homoclinic connection passes

through the interior region of the system and appears to follow the geometry of the

9:8 resonant orbit. Such behavior is illustrative of a periodic orbit chain that shad-

ows the dynamics of its original orbits [41]. The resulting homoclinic trajectory is

illustrated in Figure 4.20, where the orange trajectory corresponds to the unstable

manifold arc, and the cyan curve represents the stable manifold arc. The grey curve

serves to identify the zero velocity curve at this value of the Jacobi constant, i.e.,

C = 3.0013. The unstable and stable trajectory arcs are together corrected for con-

tinuity in position and velocity, resulting in a continuous periodic orbit chain that

cycles between two different resonance ratios, 3:4 and 9:8. This orbit is a resonant

orbit chain, and because the underlying trajectory originates from a homoclinic con-

nection, it is termed a homoclinic-type resonant orbit chain. The orbital parameters,

the Jacobi constant value, and the period of the orbit are summarized in Table 4.11.

Following the methodology behind the computation of families of planar resonant or-

bits, families of this resonant orbit chain are also computed. Figure 4.21(a) illustrates

members of the same family that also includes the periodic orbit chain. In a zoomed

view, the evolution of the family in the vicinity of Titan appears in Figure 4.21(b).

The orbits in the family are colored according to their Jacobi constant value.

Table 4.11. Initial Conditions and Jacobi Constant Value for the 3:4 Resonant Ho-
moclinic Connection in the Saturn-Titan System.

x [nd] ẏ [nd] C Period [nd]

−1.3993 0.6214 3.0013 68.6009

Another example of a homoclinic-type resonant orbit chain in the Saturn-Titan

system arises from a homoclinic connection for the 3:5 resonant orbit. Leveraging

the Poincaré section for the orbit, illustrated in Figure 4.12, homoclinic connections

are identified. A homoclinic connection close to a fixed point corresponding to the
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Figure 4.19. Poincaré Section for the Stable and Unstable Manifolds of the 3:4 Res-
onant Orbit with the Fixed Point for the 9:8 Resonant Orbit.

(a) Overview of the Homoclinic Connection. (b) Trajectory in the Vicinity of Titan.

Figure 4.20. Homoclinic Connection for the 3:4 Resonant Orbit in the Saturn-Titan
System.

perpendicular crossing of an 9:10 resonant orbit is selected, as illustrated in Figure

4.22. Consistent with the previous case, the resulting homoclinic trajectory traces out

the geometry of the exterior 9:10 orbit in connecting the resonant 3:5 orbit to itself.

The trajectory, plotted in Figure 4.23, follows the unstable manifold as well as the

stable manifold of the 3:5 resonant orbit, in pink and blue, respectively. The corrected

homoclinic-type resonant orbit chain cycles between the 3:5 and 9:10 resonant orbits.

The initial conditions, the Jacobi constant value, and the period for the periodic
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(a) Representative Members from the Orbit Fam-
ily.

(b) Orbits in the Vicinity of Titan.

Figure 4.21. Family of the 3:4-9:8 Resonant Orbit Chain in the Saturn-Titan System.

orbit chain appear in Table 4.12. In this case as well, employing natural parameter

continuation, a family of periodic orbit chains is computed. Figure 4.24 illustrates

some members of the resulting family, with each orbit colored according to its value

of Jacobi constant.

Figure 4.22. Poincaré Section for the Stable and Unstable Manifolds of the 3:5 Res-
onant Orbit with the Fixed Point for the 9:10 Resonant Orbit.
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Table 4.12. Initial Conditions and Jacobi Constant Value for the 3:5 Resonant Ho-
moclinic Connection in the Saturn-Titan System.

x [nd] ẏ [nd] C Period [nd]

1.7697 −1.1229 3.0013 93.8197

(a) Overview of the Homoclinic Connection. (b) Trajectory in the Vicinity of Titan.

Figure 4.23. Homoclinic Connection for the 3:5 Resonant Orbit in the Saturn-Titan
System.

(a) Representative Members from the Orbit Fam-
ily.

(b) Orbits in the Vicinity of Titan.

Figure 4.24. Family of the 3:5-9:10 Resonant Orbit Chain in the Saturn-Titan System.
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5. CONCLUDING REMARKS

5.1 Summary

The focus of this investigation is an analysis of resonant orbits and their associated

properties for incorporation into future mission scenarios. Although the original foun-

dation for resonant orbits is the two-body problem, this work expands the basis for

resonant orbits. Specifically, the dynamics of resonant orbits in the higher-fidelity Cir-

cular Restricted Three-Body Problem (CR3BP) are detailed in various planet-moon

systems in the solar system. The tools and techniques necessary to explore periodic

orbits in the CR3BP are developed, and their functionality, specifically within the

context of resonant orbits, is illustrated via demonstrative examples. Resonant orbits

that exhibit both stable and unstable behaviors, are leveraged for the appropriate

applications.

The first objective of this investigation is the characterization and cataloging of

resonant orbits in various systems within a multi-body environment. To meet this

objective, the CR3BP is first introduced. The underlying assumptions, equations of

motion, and the mathematical framework for the computation of equilibrium solu-

tions in the CR3BP are detailed. Dynamical tools that offer additional insight into

the properties of motion in the CR3BP, such as zero velocity surfaces and zero ve-

locity curves, are illustrated in the Earth-Moon system. Next, numerical methods,

namely, single shooting algorithms and natural parameter continuation are employed

in the determination of periodic solutions in the CR3BP. Coordinate transformations

that allow visualization of orbital motion in the inertial and rotating frames are also

detailed. These tools are then implemented in the computation of resonant orbits.

Since the two-body model serves as a first introduction to resonance, resonant orbits

are first computed in this model in the Earth-Moon system. Those solutions are then
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translated into the CR3BP, and families of planar resonant orbits are constructed

and catalogued. Then, the stability properties of such orbits are explored for the de-

termination of spatial resonant orbit families in the CR3BP. Therefore, the primary

objective of this investigation is met via the application of the dynamical systems

theory.

The second objective of this investigation is the representation of resonant orbits

and their invariant manifolds as efficient tools in the design of transfer trajectories.

An observation regarding the extensive reach of orbits for various different resonances

in several CR3BP systems is useful. This feature of resonant orbits is leveraged in

the selection of intermediate arcs for transfer between non-resonant orbits. Suitable

resonant arcs are incorporated into transfer trajectories for relatively low maneuver

costs in the Earth-Moon system. In another application, resonant orbits are exploited

for the design of a tour of the Mars-Deimos system. Given the benefits of resonant

orbits for trajectory design, techniques to reduce the cost of transfers between peri-

odic orbits in the CR3BP are pursued via the application of Poincaré sections and

invariant manifold arcs. Low cost and, in some cases, free transfer scenarios emerge

after leveraging the properties of resonant orbits. Therefore, the second objective of

this investigation is met with the utilization of resonant orbits and their invariant

manifolds for transfer trajectory design.

The final aim of this investigation is to incorporate Poincaré sections associated

with resonant orbit manifolds into the search for novel trajectories in the CR3BP.

Poincaré sections are, first, utilized for the visualization of the global dynamics of the

stable and unstable manifolds for various different resonant orbits. This concept is

demonstrated within the context of the Saturn-Titan system for both resonant and

non-resonant orbits. The similarity in structure of the resulting Poincaré sections is

noted, and relationships between different orbits are obtained. The concept of homo-

clinic trajectories obtained via Poincaré mapping is illustrated for various resonant

orbits in the Saturn-Titan system. The existence of natural, maneuver-free transfers

between resonant orbits is validated. Finally, families of periodic orbits that cycle
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between multiple different resonances are computed for different sets of resonance

ratios.

5.2 Recommendations for Future Work

The techniques exploited in this investigation lay the groundwork for the further

incorporation of resonant orbits into trajectory design. Specifically, such orbits that

traverse throughout numerous CR3BP systems are available to be exploited in the

design of trajectories that are valuable for various additional mission scenarios. One

such area of exploration is the further incorporation of resonant orbits for the design

of tours in the Mars-Deimos system, with added mission constraints, including but

not limited to flybys of the Martian moon Phobos. Another area of exploration within

the context of resonant orbits is Poincaré mapping of the manifolds associated with

spatial resonant orbits, and the subsequent incorporation of resulting trajectories into

low cost transfer scenarios between spatial periodic orbits. A methodology of system

translation for easier computation of resonant orbits in different planet-moon systems

within the CR3BP is also warranted.
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