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GLOSSARY

Hot Spot: “Hot spot heating occurs in a PV module when its operating current exceeds the

reduced short-circuit current (Isc) of a shadowed or faulty cell or group of cells. When

such a condition occurs, the affected cell or group of cells is forced into reverse bias and

dissipates power, which can cause local overheating” (Deng and Xing, 2017, p. 80).

Aerial Thermography: “Aerial thermography is a remote sensing technique that displays the

apparent temperatures of objects in a scene” (Allinson, 2007, p. 2).

IR Thermography: “Infrared thermography is the science of detecting infrared energy emitted

from an object, converting it to apparent temperature, and displaying the result as an

infrared image” (Fluke, n.d., para. 2).

Thermal Anomaly: “Thermal Anomaly means a departure from a reference value or long-term

average. A positive anomaly indicates that the observed temperature was warmer than the

reference value, while a negative anomaly indicates that the observed temperature was

cooler than the reference value” (Portland Cement Association, n.d., para. 1).
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ABSTRACT

Author: Jeon, Hyewon

Institution: Purdue University

Degree Enrolled: August 2018

Title: Thermal Image Analysis for Fault Detection and Diagnosis of PV Systems

Major Professor: John A. Springer

This research presents thermal image analysis for Fault Detection and Diagnosis (FDD) of

Photovoltaic (PV) Systems. The traditional manual approach of PV inspection is generally more

time-consuming, more dangerous, and less accurate than the modern approach of PV inspection

using Aerial Thermography (AT). Thermal image analysis conducted in this research will

contribute to utilizing thermography and UAVs for PV inspection by providing a more accurate

and cost-efficient diagnosis of PV faults. In this research, PV module inspection was achieved

through two steps: (i) PV monitoring and (ii) PV Fault Detection and Diagnosis (FDD). In the PV

monitoring stage, PV cells were monitored by aerial thermography. In this stage, the thermal data

was acquired for the next step. In the PV FDD stage, hot spot phenomenon and the condition of

the PV modules were detected and measured. The FDD stage was conducted in three steps: (i)

fault detection, (ii) fault isolation, and (iii) fault identification. The fault detection stage

determined whether the PV module has an abnormal condition. Next, in the fault isolation stage,

the location and the area of possible hot spots were identified. Lastly, the number of the hot spots

were counted in the fault identification stage. The proposed research will help with the problems

of the modern PV inspection and, eventually, contribute to the performance of PV power

generation.
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CHAPTER 1. INTRODUCTION

Photovoltaic (PV) systems, also known as solar panels, are gaining more attention

nowadays than ever. The global PV market has grown exponentially from 1992 to 2019, and the

market is expected to grow faster in the coming years (Willoughby, 2019). According to a market

report, Renewables 2019 by IEA (n.d.), the maximum amount of energy produced by renewable

energy is estimated to increase by 50% between 2019 and 2024. The IEA addresses that Solar PV

accounts for about 60% of the increase.

Although the worldwide PV market has been growing, most of the Operations and

Maintenance (O&M) work is being handled bytraditional manual methods. These methods

require a considerable amount of human labor, and sometimes it is dangerous. Please see

Willoughby (2019) for the traditional and the modern methods of PV inspection. United States

Department of Labor addressed, “workers in the solar energy industry are potentially exposed to a

variety of serious hazards, such as arc flashes (which include arc flash burn and blast hazards),

electric shock, falls, and thermal burn hazards that can cause injury and death” (United States

Department of Labor, n.d., para. 5). There is a need to build a solution that provides economical

operation and safe maintenance.

Utilizing Aerial Thermography (AT) with Unmanned Aerial Vehicles (UAVs) has become

an emerging solution for a PV system inspection. UAVs can collect data more than 50 times faster

than traditional handheld methods by flying over PV modules and also guaranteeing safety by

avoiding dangerous working conditions. Additionally, PV inspection using UAVs promotes

accuracy in data management and data integrity (Willoughby, 2019). AT for PV inspection allows

us to “assess performance of photovoltaic modules, superseding time-consuming traditional

manual methods” (Gallardo-Saavedra, Hernández-Callejo, and Duque-Perez, 2018, p. 1).

This chapter introduces an overall introduction to the research subject. It includes the

problem, significance, the purpose, research questions, assumptions, delimitations, and

limitations.
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1.1 The Problem

At present, most of the PV system inspections are operated by traditional manual

methods, which are inefficient, inaccurate, and hazardous. This is why the new application of

aerial thermography with UAVs has become a new solution for the inspection of PV systems.

Aerial thermography with UAVs provides a reliable and high-performing method for a PV system

inspection. However, there exists a limitation of using thermography occurring from irradiance

and the environmental condition.

1.2 Significance

With worldwide PV market growth and support from the government, the demand for PV

system installation and O&M is rising. Moreover, solar panels can be pricey. “Solar panel costs

for an average-sized installation in the U.S. usually range from $10,836 to $14,196 after solar tax

credits” (MATASCI, 2019, para. 4). Considering the initial cost of operating PV systems, it is

economical to keep them longer. Effective and timely inspections are a necessary part of O&M

for ensuring durable PV systems. Especially, PV systems require regular inspections, not like

other artificial infrastructure objects (UgCS, n.d.). A PV cell, a basic unit of PV systems, has the

potential to affect the performance of the entire system. Any internal or external defects can

drastically decrease the whole power generation performance of the PV module (Lee & Park,

2019).

PV systems are installed in varied scales. In most cases, PV systems are mounted on roofs

to generate electricity for residential energy needs. When the PV systems become massive, they

are called PV power stations, also known as solar parks, solar farms, or solar ranches. Energy

generated by PV solar farms is transmitted through the electric grid and powers thousands of

houses, businesses, and even cities (Renewable Energy World, 2019). Regarding the various

application of PV systems and their sizes, inspecting them in a handheld way is very inefficient

and dangerous.
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The PV module inspection system suggested in this study is significant because it enables

safe condition monitoring and accurate Fault Detection and Diagnosis (FDD). The proposed

system uses UAVs and thermal cameras to maximize the efficiency of fault detection of PV

systems. UgCS addressed that a “drone equipped with thermal camera is the best choice for solar

panel field inspection, as in most cases it saves costs compared to manned aviation and saves time

compared to visual control with handheld IR camera” (UgCS, n.d., para. 2). In addition, the

research uses an image analysis technique to analyze the condition of PV modules accurately. To

summarize, the proposed system will eventually minimize harms and enhance the accuracy of PV

inspection by applying reliable and efficient methods.

1.3 The Purpose

The purpose of the study is to detect the hot spot phenomenon on PV modules using aerial

thermography. Specifically, the study focuses on analyzing the differences in the thermal

appearances of PV faults in different PV conditions, to provide meaningful factors for the modern

PV inspection approaches.

1.4 Research Questions

• How effective is it to utilize aerial thermography for PV module inspection?

• What are the differences in the thermal appearances of the PV faults in different PV

conditions?

1.5 Assumptions

• PV modules generate electrical energy in real-time.

• The AT method used in this study can realize a close-range UAV flying.

14



1.6 Delimitations

• Out of many kinds of PV module faults, the study focuses on the Hot Spot (HS)

phenomenon.

• One mono crystalline PV module was subjected to inspection.

• The PV module has outer dimensions of 24.84 x 21.81 inches and consists of 36 individual

cells that measure 5 x 2.55 inches each.

• One type of PV modules was inspected in the experiments.

• One type of UAVs, PHANTOM 2 (n.d.), was used for a close-range UAV realization.

• One type of thermal sensors, Seek Thermal Compact (n.d.) for Android, was used to collect

thermal images.

• Seek Thermal Compact has a resolution of 206x156 pixels with a 36◦ field of view.

1.7 Limitations

The limitations of the research include:

• The experiment was conducted in a location with the GPS coordinates of 40.425965,

-86.909730 (DD).

• The experiment was conducted on November 26, 2019.

• The performance of PV modules was easily affected as the weather changes.

• The amount of sunlight was not constant.
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1.8 Summary

This chapter provided the purpose and the problem of the study. Specifically, it covers the

introduction, the problem, the significance, the purpose, the research questions, the assumptions,

the delimitations, and the limitations of the research.
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CHAPTER 2. LITERATURE REVIEW

2.1 Methodology of the Review

The diversity of the research subject ‘Thermal Image Analysis for Fault Detection and

Diagnosis of PV Systems’ can be classified into three fields: (i) PV systems inspection, (ii) Aerial

Thermography (AT), and (iii) Fault Detection. The literature review process consists of searching

four scientific search engines, IEEE Xplore digital library, Springer, ScienceDirect, and Google

Scholar. These scholarly resources are known for the most promising databases in science and

engineering fields.

The literature review was initiated by reviewing the recent research trends in the relevant

fields of the research. ScienceDirect (n.d.) and Google Scholar (n.d.) were used for the initial

search step. After examining the initial group of scientific resources, the author moved on to

searching for studies more relevant to the study. In this step, most of the references were found in

IEEE Xplore digital library published by the Institute of Electrical and Electronics Engineers

(IEEE) (IEEE Xplore R© Digital Library, n.d.). Additionally, Springer was used to finding

suitable literature. After evaluating the second group of articles from IEEE Xplore R© Digital

Library (n.d.) and Springer (n.d.), some of them were discarded from the references for this study.

In addition, the author manually reviewed the related publications including Energies, Renewable

and Sustainable Energy Reviews, and Solar Energy.
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Figure 2.1. Key concepts in the concept map

Figure 2.2. Key concepts that were used synonymously
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Key concepts of the literature study involve PV module inspection, aerial thermography,

fault detection, and others. The key concepts are present in the concept map in Figure 2.1. The

author used PV module, PV panel, PV system, solar panel, solar PV panel, and solar photovoltaic

system synonymously when doing literature searching. The key concepts and their synonyms are

listed in Figure 2.2. The author used the overlapping areas of the three main key concepts, PV

module inspection, aerial thermography, and fault detection, for the search input in order to find

relevant literature. The Venn diagram shown in Figure 2.3 shows the search strategy of the

literature study.

Figure 2.3. Search strategy in Venn diagram
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2.2 Findings Pertaining to the Problem & Purpose

The world uses 35 billion barrels of oil every year (Jean-Paul & Claude, 2017). This huge

dependence on fossil fuels pollutes the Earth and oil is not a permanent energy source. According

to the U.S. Energy Information Administration (2019), the U.S. consumed about 20.5 million

barrels of petroleum per day in 2018. If this trend continues, oil and gas in the Earth will be

depleted in 53.3 years (George, 2014). On the other hand, we have rich energy sources on the

planet Earth, such as sun, wind, water, and geothermal energy. The energy generated by these

sources is called renewable energy, sustainable energy, or alternative energy. These energy

sources could replace traditional energy sources such as oil and coal (SunPower, n.d.).

Governments and businesses have tried to popularize renewable energy for decades with

the hope of harnessing natural energy sources to meet our complete needs in energy. However,

renewable energy is expected to fulfill only up to 13% of our needs as of 2020 (Hodge, 2019).

Although satisfying the full need for energy with renewables looks challenging now, on the bright

side, our technology is highly advanced enough to utilize renewables, and there is an abundant

supply of renewable energy. The Earth intercepts 50 quadrillion watts of solar energy per day

(Farret & Simões, 2017). That amount is more than enough to support the entire civilization

(Farret & Simões, 2017).

Someone might wonder why we do not solely depend on solar energy. That is because

there are hurdles to overcome. Operations and Maintenance (O&M) for alternative energy is still

expensive and not easily accessible (Ellsmoor, 2019). Therefore, “at present, the greatest

advances in photovoltaic systems (regardless of the efficiency of different technologies) are

focused on improved designs of photovoltaic systems, as well as optimal operation and

maintenance” (Hernández-Callejo, Gallardo-Saavedra, and Alonso-Gómez, 2019, p. 1). There is

a need to develop an innovative and efficient PV system inspection.
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2.3 Findings Pertaining to the Methodology of Cited

2.3.1 Motivation

The motivation of this research is to continue the author’s previous research, “Analyzing

the Range of Angles of a Solar Panel to Detect Defective Cells, using a UAV” (Kim et al., 2019,

p. 471). The precedent research was conducted during the fall of 2018 at Purdue University and

was published at 5th Workshop on Collaboration of Humans, Agents, Robots, Machines and

Sensors (CHARMS 2019) in Naples, Italy. The research received positive reviews and was

identified as one of the best papers accepted for the conference.

The paper focuses on improving the power generation efficiency of solar panels. The

study designed and implemented a thermal UAV system that analyzes “the range of angle

between a solar panel and thermal camera to detect defective cells of the solar panel effectively”

(Kim et al., 2019, p. 471). The study also “developed an algorithm that detects defective solar

cells using computer vision” (Kim et al., 2019, p. 471). In conclusion, the research identified “the

relationship between the angle of the solar panel and the detection of the defective cells” (Kim et

al., 2019, p. 475).
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2.3.2 Photovoltaic (PV) Technologies Overview

Photovoltaic is a carbon-free technology that converts sunlight into a form of electrical

energy (Lynn, 2011). A PV Cell or a Solar Cell is a semiconductor device. There are multiple

different types of solar cells of which three most common technologies are monocrystalline,

polycrystalline and amorphous silicon solar cells (Fraunhofer Institute for Solar Energy Systems,

2019). Monocrystalline silicon solar cells are a high-performance solar technology that typically

has higher efficiency, but also higher cost when compared to other technologies. Polycrystalline

silicon solar cells are less efficient than monocrystalline solar cells but cost comparatively less.

Amorphous silicon solar cells are even less efficient than polycrystalline solar cells but are still

lower cost (Parida, Iniyan, & Goic, 2011). Polycrystalline solar cells have a leading market share

amongst silicon based solar panel technologies although monocrystalline cells have recently

gained some market share (Fraunhofer Institute for Solar Energy Systems, 2019). Multiple

individual PV cells are interconnected to form a PV Module or a PV Panel to increase PV utility.

PV modules can form a PV Array when they are wired in a row. These different types of PV

systems are shown in Figure 2.4.

Figure 2.4. PV Cell, Module, and Array. Retrieved from “Solar (PV) Cell Module,
Array”, by Samlex America Inc (n.d.).

22



PV systems come in diverse scales and shapes. When PV systems become utility-scale,

the energy generated by them can support millions of people, thousands of houses, and

communities (Becker, 2019a). These large-scale PV systems are called PV power plants or solar

farms. Solar Star built in June 2015 is the largest PV power plant in the U.S. “It consists of 1.7

million solar panels spread out over 13 square kilometers (or 3,200 acres) in Kern and Los

Angeles Counties, California” (Becker, 2019b, para. 3). It produces 579 megawatts of energy,

which is enough electricity to power about 255,000 households in California.

2.3.3 Hot Spot Phenomenon in PV Systems

Identifying defects in PV modules is crucial because these faults can prompt severe power

losses and degenerate performance. A single fault in a cell has the potential to spread to other

modules near it and result in a complete failure in its functioning (Mapundu, 2018). There are

three types of PV system faults: (i) module faults, (ii) string and system faults, and (iii) racking

and balance of the system. For the module faults, there are “hot spots on the cells, diode failure,

shattered or dirty modules, coating and fogging issues, and junction box heating” (Constantin and

Dinculescu, 2019, p. 3). For the string and systems faults, there are “wiring issues (reversed

polarity, frayed cables), charge controller issues, and inverter and fuse failures” (Constantin and

Dinculescu, 2019, p. 3). Out of these varied PV faults, this research focuses on Hot Spot (HS)

phenomenon, which is the primary defect of PV modules. Therefore, HS has been a popular

research topic in the photovoltaic systems field (Lee & Park, 2019).

HS is a phenomenon in PV modules when a cell in a PV panel acts as a load for other cells

and significantly harms the substantial performance of itself and the cells linked to itself (Lynn,

2011). This phenomenon is a sign of energy loss in PV modules and it is considered as one of the

critical faults in PV modules. The leading causes of the hot spots are PV cell failures, partial

shadowing, PV cell mismatch, or connection failures in cell links (Molenbroek, Waddington, &

Emery, 1991).
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2.3.4 Cell Mismatch in PV systems

The leading cause that facilitates hot spot phenomenon is cell mismatch. It occurs “when

cells of varying current are connected in series which can often be mitigated via the solar panels

bypass diodes” (Solar Review, 2018, para. 6). When it happens, the amount of energy generated

by the modules is limited by the cell with the lowest performance, which results in energy loss.

When utilizing PV modules, it is challenging to avoid small-scale manufacturing tolerance, minor

cracks, meager temperature differences depending on the locations of the PV module and partial

shades in the PM module (Lynn, 2011). Partial shading, soiling, or aging in photovoltaic modules

result in a serious energy loss in PV performance (Olalla, Hasan, Deline, & Maksimović, 2018).

2.3.5 Shadow Effect on PV Systems

Shadow Effect on PV systems is a common but critical problem. According to Deutsche

Gesellschaft für Sonnenenergie (DGS), “in a large number of these systems, shading caused

annual yield reductions of between 5 percent and 10 percent. Shading can be classified as

temporary, resulting from the location, the building, or caused by the system itself (self-shading)”

(Deutsche Gesellschaft für Sonnenenergie (DGS), 2013, p. 173). Shadow effect on PV systems

can be categorized into two groups, direct shadows and temporary shadows. In particular, direct

shadows can result in a significant impact on the PV module. In the case of temporary shadows,

circumstances like snow, leaves, animal droppings, and other objects on PV modules can result in

a shading effect (Deutsche Gesellschaft für Sonnenenergie (DGS), 2013). Figure 2.5 shows an

example of a shadow effect on PV modules.
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Figure 2.5. Shading Effect on PV modules: No shading (left) and shading (right)

2.3.6 Soiling Effect on PV Modules

Soiling means an accumulation of dirt on PV module surfaces (Piliougine, Carretero,

Sidrach-de Cardona, Montiel, & Sánchez-Friera, 2008). When it comes to soiling, the meaning

of ‘dirt’ contains not only dust but also snow, leaves, pollen, animal droppings, and any other

object stacked up on PV modules (Maghami et al., 2016). It is considered one of the significant

causes of energy losses in PV systems performance. “Soiling is a complex problem that increases

uncertainty and drives up the levelized cost of energy through lost energy production, increased

operation and maintenance costs, and financing rates” (U.S. Department of Energy, 2018, p. 47).

“Soil deposition can result into cementation, which eventually leads to an energy loss of up to

100%” (Fagnani, 2016, para. 5). Figure 2.6 shows one example of soiling effect on PV modules.
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Figure 2.6. Soiling effect

Due to its significance, recent studies have shown interest in the impact of soiling effect

on PV modules. In recent years several studies have been conducted to estimate the impact of

soiling on photovoltaic modules. According to Fagnani, the most influential factors that preceed

soiling losses are “the dust properties (size, shape. . . ), the chemical components in soil, pollution,

moisture, rainfall frequency and intensity, wind speed, direction, and PV array structural

configuration” (Fagnani, 2016, para. 4). Amongst the factors, tilt-angle (direction) and structural

configuration of PV array are the most critical causes. An in-depth study conducted by Cano has

proven that “the soiling effect is present at any tilt angle, but the magnitude is evident: the flatter

the solar module is placed, the more energy it will lose” (Cano, 2011, p. 48). In 2016, Maghami

et al. researched Power loss due to soiling on a solar panel. It addresses that “there are two types

of soil shading on PV modules, which are known as hard shading and soft shading. Soft shading

takes place when some materials such as smog are in the air, and hard shading occurs when a

solid such as accumulated dust blocks the sunlight in a clear and definable shape” (Maghami et

al., 2016, p. 1313).

26



2.3.7 Snow Effect on PV Modules

Soiling effect can pose serious harm in places where snow accumulates and remains for a

long time. “Snow cover can be seen as a special case of soiling applicable in countries with colder

climate” (Stridh, 2012, p. 1). In this condition, where snow entirely covers up PV modules, the

performance of the PV modules can be badly decreased. An example of the snow effect on PV

modules is present in Figure 2.7. It is recommended to arrange the PV modules horizontally than

vertically to minimize the loss because electrical strings of vertically arranged PV modules will

be more affected by the snow effect (Deutsche Gesellschaft für Sonnenenergie (DGS), 2013).

Figure 2.7. Snow effect

2.3.8 Fault Detection and Diagnosis (FDD) in PV systems

Fault Detection and Diagnosis (FDD) methodology can be achieved through the three

main steps shown below.

1. Fault detection: “The indication that something is going wrong in the monitored system”

(Gertler, 2017, p. 3).

2. Fault isolation: “The determination of the exact location of the fault” (Gertler, 2017, p. 3).

3. Fault identification: “The determination of the magnitude of the fault” (Gertler, 2017, p. 3).

Step two (fault isolation) and three (fault identification) are the subsets of ‘Fault Diagnosis.’
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Fault detection and diagnosis methods can be categorized into two main classes, (i) visual

and thermal methods and (ii) electrical methods. Visual methods are suitable for “detecting

discoloration, browning, surface soiling, hot spot, breaking, and delamination,” and electrical

methods are suitable for “detecting and diagnosing faulty PVM, strings, and arrays including arc

fault, grounding fault, diodes fault, etc” (Mellit, Tina, and Kalogirou, 2018, p. 6).

Traditionally, the latter method, the electrical method, had been the most attracted for

FDD. “Manual electrical testing is the de facto method of inspecting PV systems. Known as IV

Curve Tracing, the test is the current industry standard for inspecting and evaluating performance

of a solar array” (FLIR, 2019, p. 4). According to Piliougine, Carretero, Mora-López, and

Sidrach-de Cardona, IV curve tracing works “based on the control of the voltage at module

terminals between the short-circuit point and the open-circuit point” (Piliougine et al., 2011, p.

591). Undoubtedly, IV curve tracing has contributed significantly to PV system FDD. In spite of

the benefits of applying IV curve tracing, it is not the most efficient and easy way to perform

FDD. IV curve tracing method requires “trained, highly skilled technicians using handheld testing

kits during only ideal environmental conditions such as dry, relatively-clear weather with little to

no wind” (FLIR, 2019, p. 4). Additionally, PV modules must be set to a specific condition to test

its performance, and the testing specialists have to check five symptoms of PV failures manually

(FLIR, 2019). The electrical method also has limits in integrity in fault diagnosis.

Gallardo-Saavedra et al. pointed out that “electrical tests allow detection of abnormal

underperforming situations but do not recognize the cause or the location of the faulty module or

cell” (Gallardo-Saavedra et al., 2018, p. 574).

This study adopted a method that is classified in the other method group, visual and

thermal methods, with the application of UAV to overcome the weaknesses of the electrical

method. This approach is also called Aerial Thermography (AT), which means “the use of drone

thermal imaging for PV inspections” (FLIR, 2019, p. 5). While the manual electrical test for PV

inspection takes many hours and days, PV inspection applying UAV thermal imaging can be done

in a day. In the next paragraphs, the impact of using thermal imaging and UAV is explained.
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Thermal imaging, also known as Infrared Thermography (IRT), is a powerful inspection

tool to assess the performance of PV modules. It uses Long Wave Infrared (LWIR) cameras, also

known as thermal cameras, to “detect the infrared band of the electromagnetic spectrum” (FLIR,

2019, p. 5). The main benefit of using a thermographic camera to monitor PV modules is safe and

efficient while not interfering with the PV systems’ operations (Glavaš, Vukobratović, Primorac,

& Muštran, 2017).

Though IRT technology surpasses the electrical methods in terms of inspecting PV

modules, on-site PV inspection using a hand-held thermal camera is still not sufficient. The

application of UAV must be considered to design an optimal PV inspection methodology.

Gallardo-Saavedra et al. addressed that “the application of UAVs in a thermographic inspection of

photovoltaic modules is a major advancement in O&M activities of PV plants”

(Gallardo-Saavedra et al., 2018, p. 574). With this regard, thermal UAV has become the

mainstream methodology for PV inspection. Therefore, there are a number of studies on UAV

thermal imaging for PV inspections (Constantin & Dinculescu, 2019). The research on aerial

thermography for monitoring PV systems started in the early 21st century (Gallardo-Saavedra et

al., 2018). In 2012, Denio (2012) used aerial solar thermography to monitor the condition of PV

systems that are mounted on rooftops and in an extensive area. The study proved that aerial

thermography is a reliable solution to detect faults in solar arrays, but the causes of the faults still

needed to be confirmed. Later in 2015, Kauppinen et al. (2015) compared two PV solar plant

measurement approaches using IR scanning, one from the ground and the other one using a UAV.

The study concluded that the test of the IR measurement method using UAV was successful. In

recent years, studies have shown their interests in computer vision approaches to automate Fault

Detection (FD) (Gallardo-Saavedra et al., 2018). Jaffery, Dubey, Haque, et al. (2017) proposed

the application of fuzzy logic and heuristic knowledge to fault classification and analysis

respectively on thermal images of PV modules. Their method presented a reliable fault diagnosis.

Real world experience of AT inspections of large PV installations in Turkey found the method to

be the most efficient in finding faults. Hot spots made up 25% of all found faults in these

inspections and the most common reason for the hot spots was soiling (Cubukcu & Akanalci,

2020).
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2.3.9 Thermal camera considerations for PV module inspection

There are two general types of thermal cameras that are cooled and uncooled. Most small

unmanned aircraft use uncooled sensors due to their lower prices and lower weight, which is

essential for aircraft. Actively cooled thermal cameras are more sensitive to temperature

differences, but there exist uncooled thermal cameras with acceptable sensitivity for aerial

thermography of PV installations. Important properties to take into account when doing PV

module aerial thermography include a field of view, sensor resolution, and camera distance from a

PV module. To detect faults in an individual PV cell, the cell area in an image should be at least 3

to 5 times larger than an individual pixel. Thermal cameras can be radiometric, which means that

each pixel has a temperature value. Without radiometric function, a thermal camera only shows

the relative differences in temperature, but accurate measurement of temperature is not possible

(Gallardo-Saavedra et al., 2018).

2.4 Summary

In this section, the methodology of the review, the findings pertaining to the problem and

purpose, and the findings pertaining to the methodology of cited were reviewed. The precedent

research was introduced in the motivation section, and the background knowledge of PV systems

and PV failures were followed. In the last part, the findings about the proposed methodology were

addressed. The approach of the research contains two steps, PV module monitoring and PV

module FDD. PV monitoring using the suggested aerial thermography system, and the FDD

methods are presented in the next chapters.
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CHAPTER 3. METHODS

3.1 Introduction

The traditional PV system inspection is inefficient, inaccurate, and dangerous. Therefore,

the new approach of PV system inspection using aerial thermography has become a solution in

the industry. The thermal image analysis method introduced in this chapter will help PVS

inspection by finding and analyzing the thermal appearances of PV faults and eventually provide

meaningful factors for PV inspection using aerial thermography. The key strengths of these

research methods are reliability and accuracy in hot spot detection. This research takes three main

steps to conduct a PV module inspection: (i) Thermal data collection for PV module monitoring,

(ii) Thermal image preprocessing, and (iii) Thermal image data analysis for PV fault detection

and diagnosis (FDD). The research overview is present in the research overview in Figure 3.1.

This chapter mainly focuses on the data preprocessing method and the data analysis method. The

data collection experiment is explained in Chapter 4.

Figure 3.1. Research overview in steps
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3.2 Thermal Image Data Preprocessing

Image preprocessing procedures can help to understand the error range of hot areas in

thermal images, and enhances the characteristics of the data. Thermal cameras work as they

calculate the relative temperature differences between the objects in the camera view. This results

in images having an unstable presentation of the areas with the same temperature. Therefore, raw

thermal images can have high noise in the data. This phenomenon can lead the faulty areas in the

thermal presentation to have errors.

The image preprocessing method used in this research captured the accurate hot spot area

regarding that hot spot area appearing in thermal images have errors, compared to the physical hot

spot area in the PV module. The research originally tested a few different approaches to

maximize the hot spot feature of the thermal data while capturing the faults correctly. This testing

experiment was done through two steps. First, the image preprocessing operations listed below

were initially applied to the thermal data collected. Each operation was tested individually and,

also, multiple operations of them were tested jointly. This process was done to see what approach

is the most effective to extract important features of the hot spot phenomenon. As a result of the

first stage, adjusting the contrast level was shown to make meaningful changes in the thermal

images. It was able to present reliable hot spot error ranges while not missing the hot spot

features.

• Adjusting the contrast level.

• Adjusting the sharpness level.

• Adjusting the pixel brightness level.

The research proceeded thermal image preprocessing by following the steps below. As a

result of the preprocessing, two thermal images with different contrast levels were created.

1. Input a raw image→ Figure 3.2 (b) Image A.

2. Adjust the image, Figure 3.2 (b), to have a lower contrast level→ Figure 3.2 (a) Image A-L.

3. Adjust the image, Figure 3.2 (b), to have a higher contrast level→ Figure 3.2 (c) Image

A-H.

32



(a) Image A-L: Image
(b) with low contrast
level

(b) Image A: Original
frame

(c) Image A-H: Image
(b) with high contrast
level

Figure 3.2. Thermal image preprocessing

Appendix A.1 is an algorithm written in Python that used to adjust the contrast level of

images. The key feature of the function is using cv2.convertScaleAbs() provided by OpenCV. The

formula of the method is addressed in (3.1). The contrast level was adjusted by using α and β ,

respectively. α of 3 was used, and to lower the contrast level α of 0.5 was used to increase the

contrast level.

i: pixel location of x,

j: pixel location of y,

f (i, j): source image pixels,

g(i, j): return image pixels,

α: optional scale factor for Contrast, and

β : optional scale factor for Brightness

g(i, j) = α ∗ f (i, j)+β (3.1)
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3.3 Fault Detection and Diagnosis

This research used a visual method of Fault Detection and Diagnosis (FDD) to inspect PV

modules. FDD was realized by three algorithms written in Python using OpenCV library. The

three FDD algorithms are: (i) fault detection, (ii) fault isolation, and (iii) fault identification.

Throughout the FDD procedures, the hot spot phenomenon was identified, and the severity of

each faulty area was measured. Figure 3.3 is a flow chart of the FDD algorithms, and it gives an

overview of each procedure. The details of the fault detection and diagnosis method are

introduced in the following sections in this chapter.

Figure 3.3. FDD algorithm flow chart
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3.3.1 Fault Detection

Fault detection stage checks whether any abnormal condition was detected in the PV

module or not. The abnormal conditions considered in this research are listed below.

• Unstable color representation in the PV module.

• Area that is colored in red (Hot Spot).

• Area that has higher ambient temperature than the surrounding area.

If no fault was found in this stage, the flow of the FDD model stops and the thermal image

was sent to the next step, the fault isolation process.

3.3.2 Fault Isolation

The fault isolation stage starts if there was one of more fault(s) detected in the fault

detection stage. In the fault isolation stage, the location and the size of PV faults were identified.

If there was any hot spot detected, the exact location of them was measured as well as the size of

them. In the fault isolation stage, all the faulty areas detected were taken into consideration for the

next step.

Appendix A.2 is faultIsolation() function was built to find: (i) the area of PV fault and (ii)

the original image with contour line indicators. cv2.findContours() is the key OpenCV method

used in faultIsolation() function. This function was used to detect the red colored area(s) using

upper and lower thresholds and highlight the area in the original thermal image. The detected

areas were indicated by dark contour lines. The steps below summarize the fault isolation process.

1. Apply faultIsolation() on Image A-L→ returns the max area of PV faults and the outer

contours.

2. Apply faultIsolation() on Image A-H→ returns the min area of PV faults and the inner

contours.

3. Apply the outer and inner contours to the original image - Image A.
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Figure 3.4 presents an example of how faulty areas were detected in the thermal images

with different contrast levels. Possible faulty areas in both Figure 3.2 (a) and Figure 3.2 (c) were

indicated with contour lines, as shown in Figure 3.4 (a) and (c). The faulty area in Figure 3.4 (a)

being the maximum area of faults (the outer contour line in (b)) and the faulty area in Figure 3.4

(c) being the minimum area of the faults (the inner contour line in (b)). Then the contours from

both (a) and (c) were applied to the original image, Figure 3.4 (b), to indicate the location of the

PV faults range. In addition, the size of the contoured areas in Figure 3.4 (a) and Figure 3.4 (c)

were calculated and returned as maxArea and minArea, respectively.

(a) Faulty area detected
in Image A-L

(b) Faulty area range
applied to Image A

(c) Faulty area detected
in Image A-H

Figure 3.4. Faulty areas detected in different contrast levels
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3.3.3 Fault Identification

In the fault identification stage, only the meaningful hot spot areas were identified using

hot spot clustering. Based on the information achieved in the previous stage, the PV fault

detection model found meaningful clusters of the hot spots isolated. Figure 3.5 shows the final

hot spots found in the model. First, it collected all hot areas possibly found in a thermal image, to

create a pool. The pool of hot spot collection was in a grey-scale view, as presented in Figure 3.5

(b). This pool might have some noise as well as the actual hot areas. Second, it found the hot

spots by their size. A threshold was used to screen out only the meaningful hot areas in the hot

spot pool. Appendix A.3 demonstrates the fault identification process.

(a) Original image (b) Mask (c) Hot spot areas

Figure 3.5. Hot spot clusters identified
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3.3.3.1 Noise filtering in fault identification

Figure 3.6. Camera distance and field of view

The used Seek Thermal Compact camera has a 36◦ field of view and resolution of

206x156 pixels. Measuring distance was set to 70 inches to gather close to the maximal amount

of data from the PV module.

Image width from measuring distance of 70 inches:

2∗70∗ tan18◦ = 45.49

The field of view at the widest direction of the camera view is 36 degrees. From a

measuring distance of 70 inches from the PV module, the image captured is 45.49 inches wide.

Seek Thermal Compact camera has 206 pixels to the widest direction of the image giving a pixel

density to x-direction of 4.528 pixels per inch at the measuring distance of 70 inches.

Pixel density to x-direction at measuring distance of 70 inches:

206
45.49

= 4.528pixel/inch (3.2)
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Pixel density to both x-direction and y-direction from measuring distance of 70 inches:

4.5282 = 20.50pixel/sq.inch (3.3)

The measured PV module had 36 (4 x 9) single solar cells sized 5 x 2.55 inches, each with

an area of 12.75 sq.inch. Therefore, from a measuring distance of 70 inches, the captured images

had on average of 261 pixels of data from each solar cell.

20.50∗12.75 = 261.375≈ 261pixels (3.4)

Thus, 250 pixels were selected as the minimum size for measured hot spots in the

algorithm to ensure that individual solar cell faults would be detected, while smaller hot pixel

noise caused by the camera’s measurement inaccuracy was filtered out. The selected

measurement distance could be further away, allowing the measurement of multiple PV modules

at once with a more accurate thermal camera wingtra (n.d.).

(a) With noise (b) Without noise

Figure 3.7. Filtering noises
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3.4 Summary

Chapter 3 provided the thermal image analysis methodology on PV fault. It started with

the introduction, followed by the thermal image data preprocessing method. Then it introduced

the approach of the FDD. The data collection method and the analysis of the experiment result are

addressed in the next chapter.
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CHAPTER 4. RESULTS

4.1 Introduction

Chapter 4 deep dives into the experiment for data collection and the results of the

experiment. The key feature of the experiment lies in aerial thermography. Cooperation of a UAV

and a thermal camera can realize aerial thermography, which is a rising method for PV module

inspection. Out of many PV faults that can be found during PV inspection, the research focuses

on the hot spot phenomenon. Hot spot phenomenon appears on PV modules, and it is considered

to be one of the crucial PV faults. Despite its severity, this phenomenon is not visible with naked

eyes most times, as shown in Figure 4.1. This problem makes PV inspection more challenging.

The research realized aerial thermography using a close-range UAV and a compact thermal

camera for the data collection experiment, in order to overcome the challenges in hot spot

capturing. The details of the experiment and the analysis of the result will follow in this chapter.

Figure 4.1. PV module with hot spot phenomenon
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4.2 Experiment Setting

4.2.1 Hardware

Aerial Thermography (AT) was achieved by attaching a thermal sensor to a UAV. This

study used a cost-efficient thermal camera compatible with Android devices. The thermal sensor,

Seek Thermal Compact (n.d.), was plugged into a micro USB port of the mobile device. Using a

mobile device brings many benefits, such as network connectivity, lightweight, and access to both

Android applications and computing power of the device. The thermal sensor plugged into the

mobile device was mounted on the bottom of the UAV, PHANTOM 2 (n.d.), to realize AT. The

mounted thermal sensor collected thermal videos of a PV module. Figure 4.2 shows how the

thermal sensor, Seek Thermal Compact (n.d.), was installed in the mobile device, Acer Iconia 8

(n.d.), and Figure 4.3 presents PHANTOM 2 (n.d.) with a mobile device mounted on the bottom

of it.

Figure 4.2. Thermal camera, Seek Thermal Compact (n.d.), plugged into an Android
device, Acer Iconia 8 (n.d.)
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Figure 4.3. PHANTOM 2 (n.d.)

4.2.2 PV Module

The experiment chose to use a PV module that works in both sunny and overcast

conditions and is fully weatherproof. A 12v 40w monocrystalline solar panel shown in Figure 4.4

was used to collect thermal image data. This solar module has 36 PV cells (4 x 9) in itself and has

a size of 631mm(w) x 554mm(h) x 30mm(d). Its best energy generation condition is known as

more than 28ah per day, according to BSP (n.d.) The specifications of the PV module is present in

Table 4.1. One important feature of the PV module used in this research is that it has a hot spot

fault in itself, as shown in Figure 4.1.
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Figure 4.4. PV module size

Table 4.1. PV module specifications

Panel Size(w) 631mm

Panel Size(h) 554mm

Panel Size(d) 30mm

Weight 5.1kg

Open Circuit Voltage 21.5V

Short Circuit Current 2.64A

Max Power Voltage 17.5V

Max System Current 2.35A

Max System Voltage 300VDC

Number of Cells 36 (4 x 9)
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The three different PV environments for data acquisition are: (a) no effect, (b) soiling

effect, and (c) shading effect. Figure 4.5 describes how the three types of experiments were set up

in the experiments. The experimental conditions were identical for all the experiments, but only

the PV condition was set differently in each experiment. In Figure 4.5 (a), the surface of the PV

module was kept clean, and no obstacle or shade was on the panel. In Figure 4.5 (b), dried maple

leaves were used to realize the soiling effect. Lastly, in Figure 4.5 (c), the shade effect was

naturally made by the tree near the experiment site. The experiment with Figure 4.5 (c) was done

after the PV module was placed under the shade for about 45 minutes to have a full shading effect

on the PV module.

(a) No effect (b) Soiling effect (c) Shading effect

Figure 4.5. Three different PV Conditions

4.3 Data Acquisition

All three experiments for data acquisition were conducted at an open area with the GPS

coordinates of 40.425965,-86.909730 (DD) on the same day (November 26, 2019). The weather

was sunny and windy. The temperature range during the experiment was between 50 ◦ F and 55 ◦

F. In this stage, video footage was collected instead of images due to image quality issues. When

the thermal camera takes images while the UAV is flying, the images collected tend to have poor

quality, as shown in Figure 4.6 (a). To improve the quality of the data, the thermal image data was

achieved through two steps: (i) collect thermal video data during the experiments, and (ii) extract

thermal images from the collected videos using an OpenCV (n.d.) model. The thermal image

present in Figure 4.6 (b) is an example of the thermal frame extracted from a thermal video. This

clearly shows the improvement between the two approaches for collecting data.
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(a) Thermal image
directly collected by
aerial thermography

(b) Thermal image
frame extracted from a
thermal video

Figure 4.6. Difference in image quality

4.3.1 Aerial Thermography

Aerial thermography was realized by a close-range thermal UAV and a thermal camera

sensor. The experiment design present in Figure 4.7 describes the details of the close-range

thermal UAV realization. The UAV was not flown by itself in the experiment, but it was used to

mimic an actual UAV flying motion by being held from the pole. The T-shaped pole, shown in

Figure 4.7 (a), has a height of 120 inches, and the UAV was hanged by a string that was attached

from the pole. The UAV was pulled and moved by an experimenter to mimic the UAV movement

properly. Figure 4.7 (b) describes how the UAV was moved during the experiment. Considering

the size of the UAV and the PV module, the UAV did not need to move a big distance over the PV

module. The motion of the close-range UAV realization was similar to a drone hovering over the

PV module. This approach enabled data collecting much more stable, avoiding high errors. This

method of using a UAV was referred by research done by Kim et al. (2019).
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(a) Side view (b) Front view (c) Motion of the
close-range UAV

Figure 4.7. Close-range thermal UAV realization. The UAV icon was made by
Freepik (n.d.)

4.3.2 PV Monitoring

There were three types of PV monitoring experiments conducted in this research: (i) PV

monitoring on a PV module with no effect, (ii) PV monitoring on a PV module with soiling

effect, and (iii) PV monitoring on a PV module with shading effect. The thermal image data were

collected during the three PV monitoring processes. The left experiment setup in Figure 4.8(a)

was designed to collect the thermal video data of a PV module with no effect (Figure 4.5 (a)). The

experiment setup in Figure 4.8(b) was designed to collect the thermal video data of a PV module

with the soiling effect (Figure 4.5 (b)). Lastly, the right experiment setup in Figure 4.8(c) was

designed to collect the thermal data of a PV module with the shading effect (Figure 4.5 (c)).
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(a) No effect (b) Soiling effect (c) Shading effect

Figure 4.8. PV monitoring in the three different PV conditions. The UAV icon and the
tree icon were made by Freepik (n.d.).

4.4 Experiment Result

4.4.1 Data collection result

A total of 15 thermal videos were successfully collected, and five videos were collected

from each experiment type. The reason why more than one video was used for analysis is to

collect a more significant number of videos for statistics. The metadata of the thermal videos

collected in each experiment is introduced in Table 4.2. In the metadata, each length of the video

data varied from 2 to 38 seconds. The data was collected to reflect the realistic data collection so

that the video frames do not have the same duration. A short clip of video could generate more

than enough image frames as long as the quality of the video is good. Therefore, the experimenter

focused more on collecting good quality videos that could display the necessary features of the

PV module than having all the videos meet the same length. Eventually, the average length of the

collected thermal videos was about 18.5 seconds. For the video data collected, the research first

extracted image frames from each video. The total frames count column in Table 4.2 shows the

number of image frames that were extracted from each video. From this process, a total of 8349

thermal images were achieved.
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However, not all the images were used in the image analysis because of their quality. The

author looked through the image data and screened out only the good quality images that clearly

present the PV module view in their frames. Frames used count column in Table 4.2 shows the

number of frames used out of the total frames achieved from the collected videos. This concludes

that out of 8349 frames, 5856 images were used in this research for thermal image analysis. Table

4.3 presents a summary of the data collection by each experiment type.

Table 4.2. Data collection metadata

Experiment Type Take No. Length (sec.) Total frames (cnt.) Frames used (cnt.)
1 2 264 163
2 12 356 283

No Effect 3 19 549 340
4 25 728 652
5 38 1112 725
6 12 365 258
7 11 318 272

Soiling Effect 8 15 363 322
9 12 426 402

10 22 648 516
11 13 392 215
12 22 650 538

Shading Effect 13 38 1136 336
14 19 552 473
15 17 490 361

Total Sum 15 277 8349 5856
Total Average - 18.5 556.6 390.4

Table 4.3. Summary of data collection by experiment types

Experiment Type No Effect Soiling Effect Shadow Effect
Avg. lengths (sec.) 19.2 14.4 21.8
Avg. total frame count 601.8 424 644
Avg. used frame count 432.6 354 384.6
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4.4.2 Data analysis results

Since the research used one PV module with a fault in itself (Figure 4.1), there was no

thermal image data identified as a non-faulty condition. Figure 4.9 shows how the abnormal areas

were found in each type of experiment.

(a) Abnormal area found in a PV
module with no effect

(b) Abnormal area found in a PV
module with soiling effect

(c) Abnormal area found in a PV
module with shading effect

Figure 4.9. Abnormal areas identified in all experiment

Thermal data analysis using the fault detection and diagnosis algorithm introduced in

Chapter3 brought three types of information to this study: (i) minimum hot spot area in pixel

(minArea), (ii) maximum hot spot area in pixel (maxArea) and (iii) the number of hot spots

identified. The minimum hot spot area and the maximum hot spot area are used to estimate the

range of the area size. Table 4.4 is the result of the data analysis. It has three types of information

from the 15 thermal videos taken in the data collection stage. The samples of the thermal image

data, collected and analyzed, are present in APPENDIX B.
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Table 4.4. Data analysis result

Experiment Type Take No. minArea (pixel) maxArea (pixel) Hot spot (cnt.)
1 1702.398773 18365.62883 0.938650307
2 2791.869258 32877.18905 1.098939929

No Effect 3 2819.572059 32713.74706 1.391176471
4 3391.222393 28170.14801 1.552147239
5 3856.274483 19390.59655 1.227586207
6 4564.53876 32783.48062 2.209302326
7 173.3014706 2208.134191 1.555147059

Soiling Effect 8 8560.34472 50637.8944 1.760869565
9 7255.731343 42995.48383 1.654228856

10 544.6947674 8577.675388 2.36627907
11 248.7744186 5433.474419 3.013953488
12 881.4553903 11567.11524 1.678438662

Shading Effect 13 531.5431548 19916.93452 1.863095238
14 233.2019027 7410.109937 2.687103594
15 358.7714681 13945.08726 1.20498615

Average 15 2527.579624 21799.51329 1.746793611

Table 4.5 summarizes the hot spot areas calculated in the analysis stage. One noticeable

thing is that the difference of the error ranges between the average minArea and the average

maxArea is not significant for the no effect case and the soiling effect case. However, distinct

differences in values are found in Avg. minArea data and Avg. maxArea data. Assuming that the

experiment with no effect would only reflect the hot spot phenomenon, the data from the

experiment with soiling effect tells bigger fault areas were detected than the no effect case. In the

case of the shadow effect, the faulty areas detected were the least in both minAea and maxArea.

Table 4.5. Fault area analysis by experiment types

Experiment Type Avg. minArea (pixel) Avg. maxArea (pixel) Error range (pixel)
No Effect 2912.267393 26303.4619 23391.19451
Soiling Effect 4219.722212 27440.53369 23220.81147
Shadow Effect 450.7492669 11654.54428 11203.79501
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For a deeper understanding of the faulty area data, the author analyzed the weight of the

fault detected over the PV module area. Having the knowledge of the number of PV cells, present

in Table 4.1, and the number of pixels for each solar cell (3.4), it is possible to calculate the ratio

of the PV module area affected by hot spots. The calculation below achieved that the estimated

number of pixels in the image for the total solar cell area is 9409.5 pixels (4.1).

36∗261.375 = 9409.5pixels (4.1)

The weight of the faults was measured by calculating the ratio of hot spot area over the

area of the whole PV module. The equation (4.2) shows how the weight of the hot spot

phenomenon in the PV module was calculated. In the equation, H is the area of the hot spot

detected in the thermal images data, and P is the total solar cell area of the PV modules in pixel.

Eventually, w indicates the area ratio of hot spot area over the PV module area.

w =
H
P
∗100(%) (4.2)
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Table 4.6 shows the weights of the hot spots in each case of the experiment. The average

weight indicates that the experiment with no effect case has about 31% of the hot spot area in the

PV module while the soiling effect case has a higher value in weights and the shading effect case

has a much lower value. The author interprets it as the thermal data of the soiling effect case had

an impact from soiling obstacles. Since the weather on the experiment day was windy, the

experimenter had to re-position the dry leaves to realize a soiling effect for each session of data

collection. This is why the weights for the soiling effect case in Table 4.6 shows the high variance

between the values. On the other hand, the shading effect case did not present the internal hot spot

area precisely due to the ambient temperature difference created by the shade. For example, if the

ambient temperature of the PV module is low, then the hot spot present in thermal views could be

smaller than its actual size, and vice versa for the opposite situation. This explains why the

weights for the shading weight case is not so significant, but the average weight value is small.

Due to the weather and the temperature, the hot spot presentation on the thermal images were

smaller than the ones in the no effect case. The cold ambient temperature made the PV module

surface cooler. Also, the experiment for the shadow effect case was done in the last order so that

the temperature of the experiment site became the lowest out of the three cases of the experiments.

Table 4.6. Weight of faulty area

Experiment Type Take No. Weight (%) (4.2) Average Weight (%)
1 18
2 30

No Effect 3 30 31
4 36
5 41
6 49
7 2

Soiling Effect 8 91 45
9 77

10 6
11 3
12 9

Shading Effect 13 6 5
14 2
15 4
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Lastly, the fault detection and diagnosis algorithm brought the number of hot spots

detected in the thermal images. Table 4.7 presents the analysis of the hot spots count. The

research used a PV module that has one hot spot area, as shown in the thermal view in Figure 4.1.

With this regard, the correct answer for the hot spot count is one. The research calculated the

error in the Avg. hot spot count in Table 4.7. The experiment with no effect case has 0 error. It

can be interpreted that the hot spot areas shown in thermal images was just about the actual hot

spot. In the case of the soiling effect, the error in the hot spot count was 1. The author interprets it

as the error is due to the obstacles placed on the PV panel. The leaves on the PV module occurred

ambient temperature differences and resulted in creating false hot spot areas in the thermal view.

In the case of the shadow effect, the error of 1 was made because the shade created ambient

temperature differences. The shades on the PV module created temporal hot and cold areas, and

the FDD algorithm detected hot areas as hot spots.

Table 4.7. Hot spot count analysis result by experiment types

Experiment Type Avg. Hot spot (cnt.) Error in Hot spot (Rounded cnt.)
No Effect 1.241700031 0
Soiling Effect 1.909165375 1
Shadow Effect 2.089515426 1
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CHAPTER 5. DISCUSSION AND CONCLUSIONS

5.1 Conclusions

The number of solar power installations is growing rapidly around the world in many

different environments. Maintenance of these installations can be improved with the use of aerial

thermography and accurate thermal IR image analysis. The research aimed to detect hot spot

phenomenon exposed to no effect, soiling effect, and shading effect in a PV module. The

suggested methods use aerial thermography and the FDD algorithm for PV inspection. The

achieved results have shown the accuracy and reliability of the proposed methods to identify the

hot spot phenomenon in the no effect PV condition. Nonetheless, the soiling and shading effects

caused difficulties in accurate hot spot detection. Notably, the soiling on the PV module disturbed

the hot spot presentation in thermal images. Additionally, the shading effect increases and also

decreases the hot spot areas in thermal views because shade interrupts the ambient temperature.

To conclude, this research is expected to contribute to the inspection of domestic applications of

PV systems.
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5.2 Discussion

Without any PV effects, the proposed thermal image analysis technique can contribute to

identifying hot spot failures in detail. Furthermore, the present methods not only provide the size

of the hot spot areas but also indicate the location and the number of hot spots. The contribution

of this research for the modern methodology of PV inspection is in the detailed information on

the hot spot phenomenon because it will help accurately diagnose the status of PV systems.

Furthermore, the study proved that aerial thermography for PV inspection is cost-efficient while

being an accurate method. On the other hand, by making a comparison of the PV conditions, the

study noted that the performance of the thermal sensor must be taken into account in order to

accurately detect hot spot phenomenon and PV conditions. Low quality thermal images are not

sufficient in themselves to distinguish the PV conditions because the images capture soiling and

shades as hot spots. For better accuracy, radiometric capability and sufficient accuracy are

pre-requisites for conducting aerial thermography for PV inspection. However, high-performing

sensors can enhance the accuracy of fault detection, but they can be costly for small-scale PV

systems for domestic purposes. Therefore, the level of performance should be considered in terms

of economic factors. For example, exploiting cutting-edge sensor technologies would still be

worthwhile for large-scale PV installations such as utility-scale solar power plants, while the FDD

method introduced in this study should be enough for domestic PV installations.

Related literature supports the findings and conclusions of this study. Aghaei, Gandelli,

Grimaccia, Leva, and Zich (2015) found out that aerial thermography can detect hot spots in

optimal conditions. However, their study did not attempt to detect hot spots with shading or

soiling effect. Jiang, Su, and Li (2016) also noted that shading effects would significantly increase

the noise in thermal images and hot spot detection is reliable in optimal conditions because “the

thermal images suffer from relatively high stochastic noise and non-uniformity clutter caused by

the complex environment and emissivity uncertainty” (p. 4). Notably, Jiang et al. (2016) tried to

overcome the noise on PV modules generated from dust or internal faults by applying curve

fitting of gray histogram. Márquez and Ramı́rez (2019) studied the efficiency of aerial

thermography by detecting soiling effects on solar panel installations. They were able to detect

soiling effects reliably by using a radiometric thermal camera in combination with a UAV.
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5.3 Limitations

The thermal camera used in this study was of a lower quality, which reduces the amount

of valuable information gathered greatly. Also, due to the inaccuracy of the used thermal camera,

the drone could not be actually flown and was instead hung from a string at a close distance to the

PV module, so that sufficient quality images could be gathered. Even with these limitations, aerial

thermography was shown to be able to detect hot spots in a PV module. However, for practical

utilization of the method, a thermal camera with better accuracy, higher resolution, and

radiometric capability is necessary (Gallardo-Saavedra et al., 2018). This will allow thermal

imaging from greater distances with better quality.

5.4 Future work

To continue this research, improvements in the used methodology are necessary. A

combination of a thermal camera with radiometric capability and a visual spectrum camera could

lead to better ability to distinguish the soiling effect and shading effects. To improve the image

recognition algorithm, a neural network could be used to improve the image recognition

algorithm with a sufficiently large amount of training data that could be gathered. Lastly, an

optimization of the flight paths during an inspection could be applied to future methods.
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APPENDIX A. PV FAULT DETECTION AND DIAGNOSIS

ALGORITHMS

1 def adjustContrast(self , img , alpha):

2 beta = 50 # Brightness control (0 -100)

3

4 # Adjusting contrast

5 return cv2.convertScaleAbs(img , alpha=alpha , beta=beta)

Listing A.1: Image Preprocessing Model

1 def faultIsolation(self , img , opt):

2 if img is None:

3 return None , None

4

5 image = img.copy()

6 hsv = cv2.cvtColor(image , cv2.COLOR_BGR2HSV)

7

8 # Fault range

9 con = Contour(opt)

10 lower = np.array(con.LOWER_THRESHOLD , dtype="uint8")

11 upper = np.array(con.UPPER_THRESHOLD , dtype="uint8")

12

13 mask = cv2.inRange(hsv , lower , upper)

14

15 cnts = cv2.findContours(mask , cv2.RETR_EXTERNAL ,

16 cv2.CHAIN_APPROX_SIMPLE)

17 cnts = cnts [0] if len(cnts) == 2 else cnts [1]

18

19 area = 0

20 for c in cnts:

21 # sum all areas

22 area += cv2.contourArea(c)

23 cv2.drawContours(self.raw , [c], 0, con.COLOR , 1, cv2.LINE_8)

24

25 contour = self.raw.copy()
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26

27 return area , contour

Listing A.2: Fault Isolation Model

1 def faultIdentification(self):

2 if self.raw is None:

3 return None , None , None

4

5 image = self.raw.copy()

6 hsv = cv2.cvtColor(image , cv2.COLOR_BGR2HSV)

7

8 # Fault range

9 lower = np.array(Contour(’OUTER ’).LOWER_THRESHOLD , dtype="uint8")

10 upper = np.array(Contour(’OUTER ’).UPPER_THRESHOLD , dtype="uint8")

11

12 mask = cv2.inRange(hsv , lower , upper)

13

14 ret , thresh = cv2.threshold(mask , 250, 255, 0)

15

16 # Finding clusters

17 n_labels , labels , stats , centroids

18 = cv2.connectedComponentsWithStats(thresh)

19 total_cnt = n_labels - 1

20 cnt = 0

21 size_thresh = 1

22

23 for i in range(1, n_labels):

24 if stats[i, cv2.CC_STAT_AREA] >= size_thresh:

25 x = stats[i, cv2.CC_STAT_LEFT]

26 y = stats[i, cv2.CC_STAT_TOP]

27 w = stats[i, cv2.CC_STAT_WIDTH]

28 h = stats[i, cv2.CC_STAT_HEIGHT]

29 a = stats[i, cv2.CC_STAT_AREA]

30

31 if 250 < a:

32 cnt += 1
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33 cv2.rectangle(image , (x, y), (x + w, y + h),

34 (0, 0, 0), thickness =2)

35

36 return total_cnt , cnt , image

Listing A.3: Fault Identification Model
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APPENDIX B. THERMAL DATA COLLECTED AND ANALYSED

Figure B.1. Thermal Data from Experiment (i) No effect

Figure B.2. Thermal Data from Experiment (ii) Soiling effect

Figure B.3. Thermal Data from Experiment (iii) Shading effect
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