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ABSTRACT 

Condition monitoring of hydraulic systems has become more available and inexpensive to 

implement. However, much of the research on this topic has been done on stationary hydraulic 

systems without the jump to mobile machines. This lack of research on condition monitoring of 

hydraulic systems on mobile equipment is addressed in this work. The objective of this work is to 

develop a novel process of implementing an affordable condition monitoring system for axial 

piston pumps on a mobile machine, a mini excavator in this work. The intent was to find a 

minimum number of sensors required to accurately predict a faulty pump. First, an expert 

understanding of the different components on an axial piston pump and how those components 

interact with one another was discussed. The valve plate was selected as a case study for condition 

monitoring because valve plates are a critical component that are known for a high percentage of 

failures in axial piston pumps. Several valve plates with various degrees of natural wear and 

artificially generated damage were obtained, and an optical profilometer was used to quantify the 

level of wear and damage. A stationary test-rig was developed to determine if the faulty pumps 

could be detected under a controlled environment, to test several different machine learning 

algorithms, and to perform a sensor reduction to find the minimum number of required sensors 

necessary to detect the faulty pumps. The results from this investigation showed that only the pump 

outlet pressure, drain pressure, speed, and displacement are sufficient to detect the faulty pump 

conditions, and the K-Nearest Neighbor (KNN) machine learning algorithms proved to be the least 

computationally expensive and most accurate algorithms that were investigated. Fault detectability 

accuracies of 100% were achievable. Next, instrumentation of a mini excavator was shown to 

begin the next phase of the research, which is to implement a similar process that was done on the 

stationary test-rig but on a mobile machine. Three duty cycle were developed for the excavator: 

controlled, digging, and different operator. The controlled duty cycle eliminated the need of an 

operator and the variability inherent in mobile machines. The digging cycle was a realistic cycle 

where an operator dug into a lose pile of soil. The different operator cycle is the same as the digging 

cycle but with another operator. The sensors found to be the most useful were the same as those 

determined on the stationary test-rig, and the best algorithm was the Fine KNN for both the 

controlled and digging cycles. The controlled cycle could see fault detectability accuracies of 

100%, while the digging cycle only saw accuracies of 93.6%. Finally, a cross-compatibility 
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between a model trained under one cycle and using data from another cycle as an input into the 

model. This study showed that a model trained under the controlled duty cycle does not give 

reliable and accurate fault detectability for data run in a digging cycle, below 60% accuracies. This 

work concluded by recommending a diagnostic function for mobile machines to perform a 

preprogrammed operation to reliably and accurately detect pump faults. 
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 INTRODUCTION 

1.1 Motivation 

Fluid power systems are central to the operation of numerous industries with mobile equipment, 

such as aerospace, mining, construction, agriculture, forestry, automotive, and others. The drive to 

increase reliability, reduce machine downtime, and to increase the understanding of hydraulic 

failures brings condition monitoring to the cutting edge of mobile hydraulic systems. Common 

components in hydraulic systems include valves, cylinders, accumulators, motors, and pumps. The 

hydraulic pump is the heart of the hydraulic system. If the pump fails, the entire hydraulic system 

is rendered inoperable. Therefore, it is critical to ensure the axial piston pump operates as desired 

without failure.  

 

Pump failure is often attributed to wear. Wear can be defined as the removal of material by 

mechanical and/or chemical interactions (Silva Gabriel, 1990). Approximately 80% to 90% of 

machine breakdowns are attributed to wear (Drozdor, 1985). Several different types of wear exist, 

but the most prevalent type of wear will be discussed in this work.  

 

Abrasion, the asperity contact between two materials of different hardness, accounts for 50% of 

failures in industrial machines (Eyre, 1976), and Feicht found that up to 70% of hydraulic failures 

are caused by contamination, which is a result and can cause abrasive wear (Feicht, 1976). This 

wear occurs in the lubricating interfaces of the hydraulic system, such as the valve plate/cylinder 

block interface of an axial piston pump. Therefore, it can be stated that abrasion occurs under 

lubricated conditions from asperity contact of the two lubricating surfaces or from the asperity 

caused by loose particles in the fluid (Silva Gabriel, 1990). Wear from contamination accounts for 

about 10% of damage found in hydraulic pumps (Feicht, 1976). 

 

Since failure caused by wear is so prevalent in hydraulic systems, then maintenance strategies must 

be implemented to ensure the machine remains operating as reliably as possible. Three main 

maintenance strategies exist, and they are breakdown maintenance, preventative or predictive 

maintenance, and condition monitoring. 
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Breakdown maintenance is considered the most archaic maintenance method that is possibly too 

most expensive and dangerous. Breakdown maintenance is a “fix when broken” approach that 

replaces a component after failure has already occurred. This strategy results in unplanned 

downtime of the equipment, requires time for technicians to search and repair the faulty component, 

and can compromise the safety of personnel near the machine when failure occurs. Additionally, 

failure of a component in a fluid power system can send debris throughout the system, which can 

cause further damage to other components. 

 

Predictive maintenance is a significant improvement to breakdown maintenance. A predetermined 

maintenance schedule is developed from manufacturer data and experience to replace components. 

This method reduces the downtime of the equipment and maintenance is scheduled in advance. 

However, this method causes components to be replaced even if they are considered healthy.  

 

The final maintenance strategy is condition monitoring and is considered the best maintenance 

strategy. This strategy continuously monitors the condition of the system using a data acquisition 

system and a decision maker to determine the state of the system being monitored. This method 

improves the understanding of how the machine operates, in addition to increasing the machine 

availability and reducing the inventory of required spare parts. However, condition monitoring 

requires sensors, some sort of signal processing, and maintenance staff must be trained in 

instrumentation and calibration (Watton, 2007). 

 

Condition monitoring of hydraulic systems in mobile equipment has been an area of increasing 

interest for Original Equipment Manufacturers (OEMs), operators, and researchers. Condition 

monitoring is more readily available and easier to implement on industrial or stationary machinery. 

However, the implementation of a condition monitoring method on mobile machines is more 

difficult because of the various operating conditions of the machines and the limited space on the 

machine. The amount of readily available computing software with machine learning packages 

makes condition monitoring a more affordable and realistic maintenance strategy to implement on 

mobile machinery than in previous years. Therefore, the motivation of this work is to bring an 

affordable condition monitoring system to mobile machinery, specifically to axial piston pumps 

on mobile equipment. 
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1.2 Research Objectives 

The research objectives are to develop a process for implementing a condition monitoring system 

for a swashplate type axial piston pump on mobile machinery that will determine if the pump is 

healthy or unhealthy using a machine learning algorithm. The aim is not for the machine learning 

algorithm to determine which component of the pump is failing or to predict the Remaining Useful 

Life (RUL) of the pump. Instead the aim is to determine the binary state of the pump, healthy or 

unhealthy. The research will include: 

 

 A study on which component to investigate for pump failure. 

 Determining whether the varying degrees of wear and damage on valve plates are 

detectable under controlled conditions. 

 Resolve the minimum number of sensors required for the successful detection of pump 

damage. 

 Selecting a machine learning algorithm that accurately classifies the pump as healthy or 

unhealthy, while requiring the least amount of computational power. 

 Demonstrating this process on a stationary test-rig under steady-state and dynamic 

operating conditions. 

 Instrument a mini excavator for condition monitoring purposes. 

 Demonstrate the same process that was performed on the stationary test-rig but on the mini 

excavator under controlled and digging duty cycles. 

 Investigate the effects of using different operators on a condition monitoring system trained 

with one operator during the digging cycle. 

1.3 Original Contributions 

This work provides novel contributions to the field of fluid power and condition monitoring 

research.  

 

1. The implementation of valve plates with quantifiable damage and wear for the use of 

condition monitoring on axial piston pumps.  
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2. The investigation of existing condition monitoring methods for the implementation on 

axial piston pumps on a stationary test-rig using physically damaged valve plates under 

dynamic operating conditions. 

 

3. Determine the minimum number of sensors required to detect valve plate wear on an axial 

piston pump in a stationary test-rig setting. 

 

4. Demonstrate a process for producing a condition monitoring process for axial piston pumps 

with physically damaged valve plates on a mini excavator using machine learning 

algorithms. 

 

5. Determine the minimum number of sensors required on a mini excavator to detect pump 

failure. 

 

6. Investigate how actual duty cycles of a mini excavator and operator variability influence 

the ability to detect pump failure. 

1.4 Organization 

A review of relevant literature is discussed in Chapter CHAPTER 2 that shows the state-of-the-art 

in condition monitoring of axial piston pumps, and the different methods used. Chapter CHAPTER 

3 explains which component is selected to produce a faulty pump and shows the varying degrees 

of wear and damage on the component. The experimental stationary test-rig is shown in Chapter 

CHAPTER 4, which also includes the data acquisition system and data structure. Chapter 

CHAPTER 5 discusses the observations on pump performance characteristics between the 

different states of pump health. The process of feature selection, dimensionality reduction, or 

sensor reduction is shown in Chapter CHAPTER 6. Machine learning algorithm selection is shown 

in Chapter CHAPTER 7. The instrumentation of the mobile mini excavator is described in Chapter 

CHAPTER 8. The observations of the excavator’s measurements, and the machine learning results 

are discussed in Chapter CHAPTER 9 and Chapter CHAPTER 10, respectively. The conclusion 

is found in Chapter CHAPTER 11. Finally, a brief discussion of possible future work is found in 

Chapter CHAPTER 12.  
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 STATE OF THE ART 

The purpose of this chapter is to show previous research that has been conducted in the area of 

condition monitoring of hydraulic pumps. Additionally, this chapter will expose areas where 

research is lacking with respect to condition monitoring of hydraulic pumps on mobile equipment.  

2.1 Condition Monitoring Methods for Fluid Power Systems 

Several methods of condition monitoring have been implemented on fluid power systems. Some 

methods require more expert knowledge than others. A common method to monitor the condition 

of the fluid power system as a whole is through monitoring the oil condition, or contamination. 

Another method is a highly analytical technique that calculates the pump efficiency based on the 

first law of thermodynamics. The next method that is commonly used is to perform a spectral 

analysis of the vibrations of the pump. Finally, quite possibly the fastest growing and easiest to 

implement is the machine learning or artificial intelligence method. This method is more of a black 

box approach that is typically used with purely experimental data. The machine learning method 

shows significant promise, especially since computational power is becoming more affordable and 

readily available. 

2.1.1 Contamination Monitoring 

Monitoring the contamination and condition of the hydraulic oil is one of several methods that is 

used to monitor the health of the hydraulic system. Oil contamination monitoring is an excellent 

method at observing the condition of the hydraulic system. However, it is not necessarily effective 

on determining the state of health on a component level. 

 

Contamination in hydraulic systems is caused by the ingress of particles into the oil through seals, 

such as a hydraulic cylinder seal or pump shaft seal. In fact, approximately 50-60% of particles 

enters the system from cylinder seal, and this percentage would only increase as the seals wear 

(Stecki, 1998). Contamination is also caused by the wear of components within the hydraulic 

system. In addition to solid particles, liquid contamination from the presence of water in the 

hydraulic oil can cause corrosion and failures.  Monitoring the contamination of the oil can monitor 
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the age and its remaining useful life, but it can also carry information about the state of the 

hydraulic system based on the debris particles entrained in the oil (Opperman, 2007).  

 

Failures related to contamination in hydraulic systems did not exist before 1975, but serious 

consideration and research into oil contamination began in 1973 (Edlund, 1979). An off-line 

particle counter was used to help determine the condition of the oil. In 1985, Hunt was capable of 

analyzing the oil condition for automobile and motorcycle oils by using a portable contamination 

meter measuring the pressure drop across a filter (Hunt, 1985). 

 

In the above-mentioned work, Hunt presented his results from the portable contamination meter, 

Neale discussed condition monitoring methods used in other industries. Neale observed that 

aircraft gas turbines condition monitoring had been successful implementing a magnetic plug to 

catch wear particles (Neale, 1985). The idea is that a magnetic plug is placed in the hydraulic oil 

in a location with high catch efficiency, and the rate at which the magnetic plug fills with magnetic 

debris indicates the condition of the system.  

 

Many companies now produce products that are capable of determining the online condition of the 

oil by monitoring the temperature, relative humidity, relative permittivity, and the debris particles 

entrained in the oil (Argo-Hytos, 2019; Bosch-Rexroth, 2019; Hydac, 2019; MP Filtri, 2019).  

2.1.2 Thermodynamic Monitoring 

The efficiency of a hydraulic pump can be found by implementing temperature and flow 

measurements to the first law of thermodynamics. Monitoring a decrease in efficiency suggests a 

decrease in health for the pump. This is another tested method for monitoring the state of hydraulic 

pumps. 

 

The idea that the efficiency of hydraulic turbines could be evaluated using a thermodynamic 

method began in 1920 (Babbillion and Poirson, 1920), but it wasn’t until Witt in 1974 that 

thermodynamic measurements were used in the context of monitoring the efficiency in hydraulic 

systems (Witt, 1974). The overall efficiency of the pump is determined through the mass balance 

of the pump and fluid properties, but this method does not consider an external drain line, see 
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Figure 2.1. The pump efficiency is calculated for a steady-state process using Equation (2.1. The 

total efficiency is the specific work out divided by the specific work into the pump. The work 

terms can be found from dividing the change in enthalpy for an isentropic state by the change in 

enthalpy of the pump outlet minus the inlet. 

 

𝜂𝑡𝑜𝑡 =
𝑤𝑡,𝑜𝑢𝑡,𝑠

𝑤𝑡,𝑖𝑛
=

(ℎ𝐴
′ − ℎ𝐵)𝑠

ℎ𝐴 − ℎ𝐵
 (2.1) 

 

 

 

Figure 2.1: Mass balance of pump with no external drain line. 

 

Kjølle applied the thermodynamic method to a hydrostatic transmission in 1993 (Kjølle, 1993). In 

2001, Pomierski applied the thermodynamic approach to the propulsion system of a combine 

harvester to monitor hydraulic unit efficiency. This approach was tested under steady-state 

conditions but theorized for a dynamic operating condition (Pomierski, 2001). The thermodynamic 

method was successfully used on a gear-type pump in 2006 (Dalla Lana, Eduardo and De Negri, 

2006). 

 

Up to this point, the thermodynamic method to determine the efficiency of a hydraulic pump has 

neglected the drain line and has been used for an open-circuit pump. However, in 2007 Opperman 

showed a modification to the method developed by Witt by including an external drain line for 

both closed- and open-circuit pumps (Opperman, 2007). Pump efficiency including an external 

drain line can be calculated using Equation (2.2, see Figure 2.2 as a reference. This incorporates 

ratio of the mass drain flow to the mass outlet flow. Opperman utilized this concept on a mobile 

wheel loader with artificial volumetric pump losses. 
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𝜂𝑡𝑜𝑡,𝑜𝑐 =
𝑤𝑡,𝑜𝑢𝑡,𝑠

𝑤𝑡,𝑖𝑛
=

(ℎ𝐴
′ − ℎ𝐵)𝑠

(ℎ𝐴 − ℎ𝐵) +
𝑚̇𝐿
𝑚̇𝐴

∙ (ℎ𝐿 − ℎ𝐵)
 

 

(2.2) 

 

 

Figure 2.2: Mass balance of pump with external drain line. 

 

More recent work in 2018 utilizes the external drain line when calculating the pump efficiency. 

However, this work makes the important point that each of the thermodynamic methods require a 

torque meter and flow meters to measure the outlet flow of the pump. These sensors are not cost 

effective for condition monitoring purposes on mobile machines and are difficult to install (Casoli, 

Campanini, et al., 2018).  

 

Casoli et. al. proposes the concept of measuring the differential pressure across a known orifice in 

the drain line to calculate drain flow. From this information, the effective, or outlet, flow can be 

estimated by subtracting the calculated drain flow from the ideal pump flow. This concept would 

eliminate the need for costly torque and flow meters. 

2.1.3 Spectral Analysis of Noise or Vibrations 

A third method for monitoring the condition of a pump is to perform a spectral analysis of the 

noise or vibrations from the pump. Often, accelerometers are mounted on the case of the pump to 

monitor vibrations at different locations. The change in frequency content can suggest a 

deterioration of pump performance and health. 
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Spectral analysis is the study of the frequency content of a signal in the time domain. The time 

domain is converted into the frequency domain by taking the Discrete Fourier Transform (DFT) 

of the signal or by using the less computationally expensive Fast Fourier Transform (FFT) 

developed in 1965 (Cooley and Tukey, 1965).  

 

Ramdén et al implemented a spectral analysis study on axial piston pumps as a method that 

introduced the least amount of interference to the hydraulic system as possible and was sensitive 

to variations in the signals by installing accelerometers on the outside casing of the pump (Ramden, 

Weddfelt and Palmberg, 1993; Ramden, 1998). Ramdén implemented the accelerometers to detect 

differences in faulty pump bearings. 

 

This work included the use of the FFT to observe the frequency content of the accelerometer 

signals. Another method to observe the accelerometer signals was used, and it is called the 

backstrum. The backstrum is a variation of the cepstrum, which has been used in condition 

monitoring of axial piston pumps (Backe and Schwarz, 1989) and can be seen below. A variation 

of the cepstrum used by Ramdén is shown in Equation (2.3 and was originally develop in 1963 

(Bogert, 1963).  

 

𝐶𝑒𝑝𝑠𝑡𝑟𝑢𝑚: 𝐶(𝑞) =  |𝐹{ 𝑙𝑜𝑔_
10 [𝐹{𝑢(𝑡)}]}|

2
 (2.3) 

 

The backstrum is slightly easier to calculate, since it does not contain the logarithm function. The 

backstrum can be calculated as seen below. The cepstrum and backstrum are not part of the 

frequency domain, but rather part of the time domain called quefrency. The quefrency is the 

inverse of the distance between successive lines in a Fourier transform and is measured in seconds. 

This work compares accelerometer locations by observing the different signals by taking the 

magnitude of the fast Fourier transform and the backstrum of the accelerometer signals.  

 

𝐵𝑎𝑐𝑘𝑠𝑡𝑟𝑢𝑚: 𝐵(𝑞) =  |𝐹{|𝐹{𝑢(𝑡)}|}|2 (2.4) 

 

A more recent study on fault detection of axial piston pumps implementing a spectral analysis 

study was conducted in 2018 and was able to detect slipper damage from vibrational data collected 
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by accelerometers (Casoli, Bedotti, et al., 2018). These studies were conducted under steady-state 

conditions. 

2.1.4 Machine Learning (Artificial Intelligence) 

The final condition monitoring method for pumps to be discussed in this work is the machine 

learning or Artificial Intelligence (AI) method. Machine learning algorithms, AI, can find 

corollaries between data that are too complex for the human to comprehend. Machine learning 

algorithms can handle highly nonlinear data, which is beneficial considering the nonlinearity of 

hydraulic systems. This approach is more like a black box approach, where one does not 

necessarily require an expert knowledge of the system being monitored. Areas such as regression, 

classification, clustering, and neural networks are each a branch in the machine learning tree. This 

work will discuss classification and clustering, but neural networks will also be discussed and can 

fall within both areas. 

 

Machine learning algorithms require training and testing, or validation, to develop a connection 

from the input data set to the outputs. Once the training and validation is completed, then a model 

is generated with the appropriate settings to map input data to the trained outputs. The training 

depends on what main category the machine learning algorithm falls under, supervised or 

unsupervised learning. 

 

Supervised learning algorithms take a set of input data and create a mapping to corresponding 

target outputs provided by the supervisor (Bishop, 2006; Alpaydin, 2010). This means the machine 

learning algorithm knows what the outcomes are supposed to be and can find connections from 

the input data to the output. A sub-type of supervised machine learning is classification. 

 

A classifier takes input data then assigns the input of a set to discrete output classes. The objective 

of the classification algorithm is to learn the mapping of the input to the output. Practically, this 

means a model or rule is developed that allows the machine learning algorithm to make future 

predictions based on past data. Classification helps designers and operators extract more 

information about the system. The more information known about the system, then the better it 

can be designed to become more reliable and productive for the consumer. In addition to predicting 
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future behavior and extracting more information about the system, learning systems perform a 

compression (Alpaydin, 2010). A compression is done by creating a rule or model from the data 

explaining the behavior of the system simpler than the data itself.  

 

Unsupervised learning algorithms take the input data and group the data into clusters of similar 

characteristics. These algorithms do not have a priori knowledge of what to look for or how to 

group the data. They do not know the “true” target outputs but try to find regularities within the 

input data (Alpaydin, 2010). 

 

Once the algorithm has been trained, its performance should be evaluated in making predictions 

on new datasets (MathWorks, 2019b).  This means the model should be validated with data that is 

not used in the training set. The validation data can protect the model from overfitting the data, 

therefore, making a more generalized model. Hold-out and k-fold validation are the two main 

methods for validating the model generated by the machine learning algorithm. 

 

The hold-out method divides the dataset into training and testing groups. For example, a common 

hold-out percentage is 25%, where 25% of the dataset is reserved for validation or testing, while 

the remaining 75% of the data is used for training. Hold-out validation is an effective method with 

large datasets, like the data used in this work. 

 

K-fold cross-validation is a proven effective and statistically justified validation method for 

smaller datasets (Foster, Koprowski and Skufca, 2014). This method partitions that dataset into k 

randomly chosen groups, also known as folds, that are roughly equal in size. One group is used to 

validate while the remaining groups are used for training. This process is repeated until each group 

is used to validate the model. 

 

An example of k-fold cross-validation can be found in Figure 2.3, which is taken from (Bishop, 

2006). This example has k = 4 folds. The dataset is divided into roughly four equal sized groups, 

with the first group being the validation set and the remaining 3 groups belonging to the training 

set. In run 2 the second group is now the validation set, and the first, third and fourth groups are 

used for training. This process is repeated until each group is used for validation. 
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Figure 2.3: k-fold cross-validation method (Bishop, 2006). 

 

(Lu, Burton and Schoenau, 1994, 1995) trained an artificial neural network (ANN) to detect 

piston/cylinder faults on an axial piston pump using purely experimental data. The pistons had 

varying degrees of wear and were each tested. The inlet and outlet pressures were measured and 

fed into an ANN to be trained with the known faults, supervised learning.  

 

(Ramdén, Krus and Palmberg, 1995) trained an ANN, Self-Organizing Map (SOM) type of ANN, 

to detect faulty valves in a hydraulic system using data obtained from simulation results. (Crowther 

et al., 1998) determined that ANNs trained on experimental data were more accurate than those 

trained using simulation data by comparing the fault detection of cylinder actuators trained using 

either simulation or experimental data. This is likely because the simulations contain assumptions 

and inherently do not capture the complete understanding of the system (Schoenau, Stecki and 

Burton, 2000). 

 

(Ramdén, Krus and J. Palmberg, 1995) showed the detection of worn-out bearings and a valve 

plate using an ANN that was trained on purely experimental data. These tests were conducted 

under a single operating condition running at steady state. 

 

(Li, 2005) used various condition monitoring algorithms to detect faulty pistons in an axial piston 

pump. The faulty piston/cylinder interface was artificially induced to simulate the leakage of a 

worn piston/cylinder interface. This was done by implementing a pressure control servo valve that 

diverted flow from the pump outlet to the drain with a waveform simulating different degrees of 

piston wear. 
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(Krogerus et al., 2007) developed a SOM neural networks that was able to detect a faulty cylinder 

and proportional valve on a water hydraulic forklift. The faults on the proportional valve were 

obtained by damaging the seals, or O-rings, to induce leakage and a difference in performance. A 

bleed valve connected either side of the cylinder to artificially induce a fault caused by a faulty 

seal in the cylinder. Only the pressures were used for fault detection. 

 

An ANN trained to detect the valve plate and slipper/swashplate wear was implemented in 2011. 

This work was interesting as it implemented neural networks in conjunction with chaos theory 

(Lu, Ma and Wang, 2011). The actual condition of the valve plate and slipper/swashplate were not 

quantified to show the degree of wear. 

 

(Du, Wang and Zhang, 2013) used a layered clustering algorithm to detect multiple faults on an 

aerospace axial piston pump by measuring drain flow, outlet pressure, radial vibrations, and axial 

vibrations.  

 

(Lan et al., 2018) developed implemented a pattern recognition ANN in conjunction with spectral 

analyzes of pump vibrations and outlet flow to detect slipper wear on an axial piston pump. The 

results were comparable to other machine learning algorithms used. 

 

With the exception of (Krogerus et al., 2007), each of the previously mentioned work concerning 

machine learning algorithms has been completed under steady-state conditions in stationary test-

rigs. They also do not give a detailed account of the degree of damage on the components, if faults 

were not artificially generated by using some modification to the hydraulic system or by 

simulation. 

2.2 Problem Formulation and Solution 

The work that has been presented in this chapter does not consider monitoring the condition of 

axial piston pumps with physically damaged components on mobile equipment. Most of the work 

includes the use of artificially generated faults and running tests under steady-state conditions. 

Additionally, the focus of the previous works has not been to reduce the number of sensors required 

to accurately monitor the health or state of the pump. This thesis work will address the lack of 



 

 

31 

research performed on condition monitoring of axial piston pumps for mobile machines under 

dynamic operating conditions with physically faulty components. 

 

The following steps show the steps to achieve the goal of creating a condition monitoring algorithm 

for a mobile hydraulic machine. 

 

1. Selection of Faulty Component 

a. An application of expert knowledge and FMEA type principles is to be used to 

understand all the different components in an axial piston pump and how they 

interact with one another. 

b. An extensive literature review will be conducted to determine the critical 

components of a swashplate type axial piston pump. 

c. Obtaining selected components that have varying degrees of wear. 

d. Document the degree of wear and damage using an optical profilometer. 

 

2. Experimental Stationary Test-Rig 

a. Perform fault detectability under the following conditions: 

i. Various steady-state conditions. 

ii. Controlled dynamic duty cycle. 

b. Test for repeatability to ensure experiments are valid and repeatable. 

c. Perform a sensor/dimensionality reduction to reduce the cost and complexity. 

required for future implementation on mobile machine. 

i. Implement backward elimination feature selection. 

d. Select a machine learning algorithm that accurately detects a faulty pump condition. 

that also requires minimal computational power. 

i. Compare various machine learning algorithms. 

 

3. Experimental Mini excavator Test-Rig 

a. Develop repeatable duty cycles. 

b. Perform fault detectability using repeatable machine cycle. 

c. Test for repeatability. 
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d. Perform a sensor/dimensionality reduction. 

i. Ideally using less sensors than the stationary test-rig because of the results 

obtained from performing a dimensionality reduction on the stationary test-

rig. 

e. Select a machine learning algorithm that accurately detect the faulty pump but is 

computationally inexpensive. 

f. Further test condition monitoring model with different operators and various 

operating cycles. 
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 FAULTY COMPONENT SELECTION  

This chapter briefly introduces axial piston pumps and reveals the reference pump and its general 

specifications for this work. A detailed description of how each of the components in an axial 

piston pump interact with one another is then discussed. The wear interfaces of the pump are then 

discussed and limited to three main wear interfaces: piston/cylinder, valve plate/cylinder block, 

and slipper/swashplate interfaces. The scope of the work is narrowed to only include the valve 

plate/cylinder block wear interface. Finally, physical wear and damage on the valve plates are 

shown in detail with the use of an optical profilometer. 

3.1 Reference Pump 

An axial piston pump is known as a positive displacement machine. This means that the pump 

displaces a fixed amount of fluid each rotation. Essentially, this means the pump outputs the same 

amount of flow regardless of pressure, neglecting small amounts of leakages between pump 

interfaces (Esposito, 2009). Positive displacement machines are flow sources and do not supply 

pressure to the hydraulic system. The swashplate type axial piston pump is a variable displacement 

pump that allows for the pump outlet flow to vary by changing the swashplate angle, see Figure 

3.1. This type of pump is what has been selected for this work. 

 

Fluid is displaced by the reciprocating action of the pistons. The amount of fluid displaced by this 

type of pump is dependent on the swashplate angle and shaft speed. A larger swashplate angle 

results in larger displacement chambers of the piston, therefore greater quantities of fluid are 

displaced each rotation. The shaft speed determines how quickly the pistons reciprocate, so 

increasing the shaft speed increases the flow rate of the pump. 
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Figure 3.1: Swashplate type axial piston pump (Ye and Xu, 2018). 

 

The selected reference pump for this work is an 18 cc/rec Parker P1 swashplate type axial piston 

pump. This pump is chosen because of its availability to the researcher, and the readily availability 

of several components for this pump. This Parker P1 pump is a closed-circuit pump that can control 

the swashplate to the over-center position, meaning flow can be reversed without changing the 

direction of shaft rotation. It is rated for pressures up to 350 bar and rotational speeds up to 3600 

rpm. Table 3.1 gives the general specifications for the Parker P1 pump selected for this work. 

 

Table 3.1: Parker P1 pump general specifications. 

 

3.2 Selection of Faulty Components 

An extensive Failure Modes and Effects Analysis (FMEA) and literature review is required to 

determine which component or components should be included in this condition monitoring 
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investigation. FMEA requires expert knowledge of the operation of the pump and how the different 

pump components interact with one another.  

 

Figure 3.2 is a diagram of the interactions for each of the components in a swashplate type axial 

piston pump. This diagram represents how reactionary forces, moments, and motions interact 

between each of the components of the axial piston pump. Simplified explanations will be given 

of the interaction between some of these components and how an axial piston pump function. The 

components are divided into four main groups: drive shaft subassembly (colored in grey), rotating 

group subassembly (colored in purple), control subassembly (colored in blue), and the hydraulic 

system (colored in green). Additional components, such as the charge pump, valve plate, and end 

case are considered.  

 

The drive shaft subassembly, shown in grey in Figure 3.2, consists of the drive shaft, rear, and 

front bearings. The drive shaft is connected to a prime mover, electric motor or internal combustion 

engine, and transfers rotational speed (ω) to the bearings. The bearings, in turn, produce a resistive 

torque (M) on the shaft due to frictional losses. 

 

The drive shaft also transfers rotational speed (ω) to the rotating group subassembly, which 

consists of the cylinder block, pistons, and slippers. The rotating group subassembly is colored 

purple in Figure 3.2. The rotational motion of the cylinder block (ω) and the linear motion of the 

pistons (𝑥̇) transfer flow to the hydraulic system, which feeds the pressure back to the pistons (pin). 

The pressure in the piston chambers (pout) and the reactional forces from the slipper/swashplate 

interaction produces a radial force (Fradial) on the cylinder block. This radial force causes a torque 

(Mz), which is transferred to the drive shaft. For more detailed description of the operation and the 

forces involved with the rotating group subassembly see  (Ivantysyn and Ivantysynova, 2003).  

 

The cylinder block receives flow from the inlet source (Qin), which passes flow through the end 

case and valve plate porting to the cylinder block. A valve plate, in simple terms, determines the 

timing of the flow into and out of the piston chambers.  
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The control subassembly consists of the swashplate, swashplate bearings, control arm, feedback 

mechanism, unit control cylinder, unit control valve, the low-pressure setting relief valve, and the 

controller. The controller subassembly is colored blue in Figure 3.2. The purpose of the control 

subassembly is to control the outlet flow of the pump (Qout) by varying the angle of the swashplate 

(β). The changing angle of the swashplate (𝛽̇) changes the piston stroke (x) in the rotating group, 

thus increasing the displacement of the pump. The charge pump and low-pressure relief valve 

provide the flow (Qcharge) and necessary pressure (pcontrol) to overcome the resistive torques 

transferred to the swashplate at the slipper/swashplate interface (Mx and My). 

 

 

Figure 3.2: Swashplate type axial piston pump component interactions. 

 

To narrow the scope of the investigation, only the wear interfaces on the pump are considered. The 

wear interfaces are where two components move relative to one another. Figure 3.3 shows a cross-

section of a Danfoss Series 90 axial piston pump, and its wear interfaces. While this is not the 

reference pump for this work, the wear interfaces are shown clearly in the cross-section and can 

be applied to the reference Parker P1 pump. These interfaces are common among most variable 

displacement swashplate type axial piston pumps, even though pump architectures can vary. 
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Eight wear interfaces are shown in Figure 3.3 and include: roller bearings, swashplate bearings, 

piston/slipper, control piston/cylinder, rear bushing, valve plate/cylinder block, and the 

piston/cylinder interfaces. The roller bearings reduce radial loads on the shaft and are a major 

source of failure and wear on rotating machinery (Zhao-neng and Wang, 1989; Wang and Wang, 

1993; Fey et al., 2000; Lybeck, Marble and Morton, 2007; Huang et al., 2010; Du, Wang and 

Zhang, 2013). The swashplate bearings support the axial loads placed on the swashplate from the 

rotating group and the control arm. The swashplate bearings also allow for reduced friction motion 

as the swashplate rotates about its axis. The slipper/swashplate interfaces is where the slippers 

move across the swashplate with a microscopic fluid film between the two surfaces to provide 

lubrication and load bearing capabilities (Ivantysyn and Ivantysynova, 2003), these type of 

interfaces are often known as a hydrodynamic or hydrostatic bearing (Rowe, 2012). Other 

hydrodynamic bearings that allows for relative motion between them are the piston and slipper, 

control piston and cylinder, piston and cylinder, valve plate and cylinder block, and the rear 

bushing.  

 

 

Figure 3.3: Wear interfaces of Danfoss Series 90 axial piston pump. 
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It is well known that the main sources of energy dissipation in swashplate type axial piston pumps 

occur at the slipper/swashplate, piston/cylinder, and valve plate/cylinder block interfaces (Zecchi, 

2013; Busquets, 2018; Mizell, 2018). These three main lubricating interfaces can be seen in Figure 

3.4. These interfaces are also the locations that exhibit the most wear on a pump, not including the 

roller bearings (Silva Gabriel, 1990; Hertz et al., 1991; Yamaguchi and Matsuoka, 1992; Kazama 

and Yamaguchi, 1993, 1995; Li, 2005; Du, Wang and Zhang, 2013; Fatima et al., 2013; Wang et 

al., 2016). 

 

 

Figure 3.4: Main lubricating interfacing on a swashplate type axial piston pump. 

 

The valve plate is a critical component that is one of the components that experiences the most 

wear and damage. Valve plates contribute to up to 38% of pump failures in some aerospace pumps 

(Du, Wang and Zhang, 2013). For these reasons, the valve plate is the component that is chosen to 

investigate condition monitoring of axial piston pumps for mobile applications in this work. 

Additionally, several valve plates are readily available with varying degrees of wear.  

3.3 Six Different Levels of Valve Plate Health 

Six valve plates of varying degrees of wear and damage have been obtained to perform the 

necessary experiments for a condition monitoring investigation. It is important to note that the 

effects on the performance of the pump with the various states of valve plate health cannot be 

exactly known and is difficult to predict because of the high nonlinearity of these interfaces (Wang 

et al., 2016). The selected valve plates can be seen in the list below. 
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1. No Wear with No Damage (Healthy) 

2. Severe Wear with No Damage (SW_ND) 

3. Minor Wear with Moderate Damage (MinW_ModD) 

4. Minor Wear with Severe Damage (MinW_SD) 

5. Moderate Wear with Minor Damage (ModW_MinD) 

6. Extreme Damage (ED) 

3.3.1 Naturally Occurring Valve Plate Wear 

The wear on the valve plate occurred naturally from being in a Bobcat 435 mini excavator. The 

wear was not artificially generated or induced. Four valve plates with varying degrees of wear 

have been obtained, and they include: no wear, minor wear, moderate wear, and severe wear. The 

wear profile on each of the valve plates is measured using a ZeGage® optical profilometer. This 

is done to observe and rank the severity of wear. The wear profile is measured at the same location 

for each of the valve plates. 

No Wear 

The valve plate that exhibited the least amount of wear can be seen in Figure 3.5. The film 

thickness of this lubricating interface is designed to be on the order of microns. Notice that the 

profile varies on the sub-micron level. Therefore, the wear could be considered negligible and is 

designated at the “healthy” valve plate.  
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Figure 3.5: Profilometer measurements of valve plate with no wear or damage. 

 

Minor Wear 

The valve plate that is classified with minor wear can be seen in Figure 3.6. This valve plate has a 

wear profile of about four micrometers. This is not a significant amount of wear but is on the same 

order of magnitude that the film thickness is designed for, therefore some differences in 

performance are possible. 
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Figure 3.6: Profilometer measurements of valve plate with minor wear. 

Moderate Wear 

The severity of the wear begins to drastically increase with the valve plate classified as moderate 

wear. The variation in wear is approximately ten micrometers, see Figure 3.7. The wear profile is 

now an order of magnitude greater than the “healthy” valve plate. Performance is more likely to 

be affected by the amount of wear observed in Figure 3.7. 

 

 

Figure 3.7: Profilometer measurements of valve plate with moderate wear. 
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Severe Wear 

Severe wear on a valve plate can be observed in Figure 3.8. The variation in the wear profile is 

about 20 micrometers. An interesting phenomenon can be observed in Figure 3.8 where a ridge 

with a height of about 20 micrometers is present. This ridge is likely caused by the contact from 

the cylinder block and caused the soft brass-alloy material to deform into a ridge. This ridge is 

higher than the fluid film thickness. The distance from the top of the ridge to the bottom of the 

wear profile is approximately 40 micrometers, which is significant. Observable performance 

differences are more likely to be seen with the severely worn valve place when compared to the 

healthy valve plate. A ridge of smaller height can be observed in the moderately worn valve plate 

in Figure 3.7, likely due to less wear.  

 

 

Figure 3.8: Profilometer measurements of valve plate with severe wear. 

3.3.2 Artificially Induced Valve Plate Damage 

To observe the effects that a damaged valve plate would have on the performance of the pump, 

some valve plates have been artificially damaged at the relief groove on the suction side of the 

valve plate. The artificial damage is used to approximate damage from debris particles gouging 

and removing material at the suction side of the pump. This debris could have come from another 

segment in the system or have been caused by cavitation. 
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The damage was caused by using a tungsten carbide tip scriber to manually scratch the surface of 

the valve plate. The scratches were placed in approximately the same location with varying degrees 

of depth and material removed. An optical profilometer, Zegage™, is used to observe the profile 

of the damage. Four levels of damage are performed and measured: No damage, minor damage, 

moderate damage, and severe damage. 

No Damage 

The healthy valve plate does not contain any artificial damage, as can be seen in Figure 3.5. This 

valve plate serves as a no wear and no damage case to determine the performance of a healthy 

pump. However, there is no damage on the valve plate with severe wear. This allows for a 

comparison of wear versus damage. The severe wear and healthy cases can be compared, and the 

minor wear and severe damage case can be compared to the healthy case to observe differences in 

performance. The extreme damage case is used to observe trends in the pump’s volumetric 

performance.  

Minor Damage 

Figure 3.9 shows the minor damage that is induced on the suction relief groove on the valve plate. 

The scratch was placed in a radial pattern as to follow the motion of the cylinder block relative to 

the valve plate. The scratch is deep but narrow. It goes down approximately 30 micrometers but is 

less than 0.5 micrometers in width. This damage is classified as minor in comparison to the other 

selected valve plates. 
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Figure 3.9: Profilometer measurements of valve plate with minor damage. 

 

Moderate Damage 

The moderate damage is in the same location as the minorly damaged valve plate, see Figure 3.10. 

This damage profile consists of several scratches around 15 micrometers in depth with each scratch 

spanning about 25 micrometers. 

 

 

Figure 3.10: Profilometer measurements of valve plate with moderate damage. 
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Severe Damage 

The damage done to the relief groove on the suction side of the valve plate is significantly more 

severe than the other damage on the previously discussed valve plates. Figure 3.11 shows the 

damage varies from 20 to 80 micrometers in depth while spanning almost 800 micrometers. Not 

measured but observable in the picture of the valve plate in Figure 3.11, a significant dent can be 

seen at the beginning of the relief groove. This dent is a result of a spring-loaded automatic steel 

center hole punch and was used to provide extra severity to the damage on the valve plate. This 

valve plate could simulate a severe case of cavitation and abrasion damage. 

 

 

Figure 3.11: Profilometer measurements of valve plate with severe damage. 

Extreme Damage 

A valve plate with extreme damage is used to help ensure a difference can be observed and 

detected. Figure 3.12 shows measurements from a Bruker® optical profilometer of an extremely 

damaged valve plate. The Bruker® optical profilometer is used because the ZeGage® optical 

profilometer that was used to measure the wear and damage on the other valve plates is incapable 

of measuring the depth of damage that exists on the extreme damage valve plate.  

 

This valve plate is artificially damaged to simulate a scenario where the sealing function of the 

valve plate is compromised. Figure 3.12 shows the extent of the damage induced on this valve 

plate. The width of the damage is approximately 2 mm while the depth of the damage groove is 
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about 350 µm. This type and severity of damage would increase the leakage to the case of the 

pump, thus increasing case drain flow. 

 

The extreme damage valve plate will only be used for observational purposes during procedures 

on the stationary test-rig. However, this valve plate will be included in machine learning 

algorithms on the mobile mini excavator. 

 

 

Figure 3.12: Optical profilometer measurements of valve plate with extreme damage. 
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 STATIONARY TEST-RIG DEVELOPMENT 

The selection of a reference pump and faulty components now leads into the need for the 

development of a stationary test-rig to investigate fault detectability, machine learning algorithms, 

pump performance characteristic based on the various valve plates, and sensor/dimensionality 

reduction. This chapter will discuss the purpose of the stationary test-rig, show the schematics, 

hardware, and data acquisition system, the different duty cycles, how the data is structured, and 

the measurement process. 

4.1 Test-Rig Purpose 

Three main purposes exist for the stationary test-rig: perform fault detectability, 

sensor/dimensionality reduction, and machine learning algorithm development. The stationary 

test-rig can be seen in Figure 4.1. It is crucial to perform fault detectability on a stationary test-rig 

before the faulty pumps are instrumented on the mobile excavator. Fault detectability is the 

determination of whether the faulty component affects the performance of the pump in an 

observable or detectable manner. If the fault cannot be observed or detected on the stationary test-

rig under controlled conditions, then the fault will not be able to be observed on the mobile machine 

where the operating conditions are not as controllable.  

 

Figure 4.1: Stationary Test-Rig 
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Sensor or dimensionality reduction is the process of eliminating redundant or unnecessary signals. 

In machine learning, sensor/dimensionality reduction is also known as feature selection. The aim 

for reducing the dimensionality of machine learning algorithms is to decrease the chance of 

overfitting the data, decrease algorithm or model training time, and increase the prediction speed 

of the model. However, a main driver for dimensionality reduction in this work is to find the 

minimum number of sensors required to detect the faulty pump. Mobile equipment has limited 

space for extra components, such as flow meters or torque meters, and mobile equipment 

manufacturers do not want to increase the cost of the machine. Therefore, the decrease in the 

number of sensors is critical for implementation and performance of the condition monitoring 

system on mobile equipment. In coming chapters, more detail will be discussed on how 

dimensionality is performed. 

 

The final main purpose of the stationary test-rig is to determine which machine learning algorithm 

is “best” for the case of faulty valve plates. The term “best” simply means the algorithm that 

successfully and accurately can detect the faulty pump with the minimum amount of training time, 

number of dimensions, and adequate prediction speed. More will be discussed on algorithm 

selection in a later chapter of this dissertation. 

4.2 Schematic, Hardware, and Data Acquisition 

The stationary test-rig consists of an electric motor, hydraulic pump, 24 sensors, signal 

conditioning boxes, National Instruments (NI) cDAQ chassis, several NI data acquisition cards, 

and a computer running LabVIEW. Many sensors have been included in this study to compare the 

effectiveness of the different sensors in detecting a pump in a faulty condition. It is not the intent 

to include these many sensors on a mobile machine. 

4.2.1 Hydraulic Schematic 

As mentioned previously, the chosen reference pump for this investigation is a Parker P1 18cc 

pump and is chosen because of the access to many faulty components. The 18cc pump (1) is driven 

by an electric motor (2), see Figure 4.2, and receives hydraulic fluid at 25 bar from the Maha power 

supply. The pump sends the flow through a gear-type flow meter (6) and, either, over a pressure 
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relief valve (3) or through a variable orifice (19). The variable orifice is closed, and the pressure 

relief valve is set to a predefined pressure during steady-state measurements. However, the 

pressure relief valve is set to the max pressure of the system, 350 bar, and the variable orifice is  

set to a predefined position during the dynamic duty cycle.  

 

In addition to the flow meter that measures the outlet flow of the pump, two similar gear-type flow 

meters are measuring the flow in the drain (7) and control (8) lines, respectively. An accurate 

measurement of the volumetric losses can be obtained with the combination of these three flow 

meters. The flow loss is determined by subtracting the control flow from the drain flow, since the 

control flow drains to tank through the case drain of the pump. 

 

Pressures are monitored and measured in the outlet (15 and 16), supply (12), control (13), and 

drain (14) lines. All the pressure sensors are piezoresistive, except for the additional pressure 

sensor on the pump outlet (15). Mounted directly on the pump outlet port fitting is a piezoelectric 

pressure transducer designed to measure the pressure transients of the fluid. This pressure sensor 

can measure the pressure ripple from the pump. 

 

Four thermocouples are mounted on or near the test-rig to measure hydraulic oil and ambient air 

temperatures. The pump supply (9), outlet (10), and drain (11) temperatures are monitored with a 

thermocouple that is inserted in the center of fluid flow for accurate temperature readings. An 

additional thermocouple, not shown in Figure 4.2, is mounted outside the hydraulic test-rig near 

the pump to capture the ambient air temperature. The ambient air temperature is important to 

capture the difference between oil and air temperatures. 
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Figure 4.2: Hydraulic schematic of stationary test-rig with component and sensor legend. 

 

The shaft torque (4) and speed (5) are measured with a torque meter that contains an integrated 

speed sensor. The pump displacement is measured using a Hall effect sensor (17) that senses the 

relative position of the swashplate. Finally, nine single axis accelerometers (18) are mounted on 

the pump in various locations. 

 

It can be noted there is an obvious lack of oil condition and contamination sensors on this test-rig. 

These sensors were considered but have been deliberately neglected for this study. The main 
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reason for not including these sensors is because the components were worn and damaged outside 

of the hydraulic system under investigation, and, therefore, the wear particulates are not circulating 

through the hydraulic system on the stationary test-rig. An additional reason to disregard oil 

condition and contamination sensors is because this stationary test-rig shares a hydraulic power 

supply with many other test-rigs in the Maha Fluid Power Laboratory. This would not guarantee 

that the wear particles are caused by the stationary test-rig where the condition monitoring 

investigation is taking place. The list of sensors and their corresponding accuracies can be seen in 

Table 4.1. 

Table 4.1: Summary of sensor characteristics. 

 

4.2.2 Accelerometer Placement 

Nine accelerometers are mounted on the outside casing of the pump to measure the vibrations 

throughout the pump, see the location in Figure 4.3. The selected accelerometers measure the 

vibrations perpendicular to the mounting surface. Critical locations, such as at the pump inlet, 

Company Model Type Full Scale Accuracy

Keller Valueline
Diaphram Strain 

Gauge
0 - 30 bar ± 0.1% FS

Keller PR-33x
Diaphram Strain 

Gauge
0 - 30 bar ± 0.02% FS

Hydac HDA 4475-B-0150
Diaphram Strain 

Gauge
 0 - 400 bar ≤ ± 0.5% BFSL

Omega KMQSS-062G-6 Thermocouple 1-1250 °C 0.75% FS

Parker RS60 Hall Effect 47° 1.4° FS

PCB Electronics 352C03
Piezoelectric 

Accelerometer
± 50 g ± 1% FS

Kistler 4503A Torque Sensor 500 Nm ± 0.1 Nm

Kistler 4503A Speed Encoder 8000 rpm ± 0.1 rpm

VSE VS0.2
 Gear Type Flow 

Meter
18 L/min ± 0.3 % MV

VSE VS0.4
 Gear Type Flow 

Meter
40 L/min ± 0.3 % MV

Kistler 603C

Piezoelectric 

Pressure 

Transducer

1000 bar ≤ ± 0.4 bar FS
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outlet and roller bearings are selected because of the presence of higher vibrations based on 

previous experience and literature review. However, other locations are considered to ensure 

adequate coverage over the pump.  

 

 

Figure 4.3: Accelerometer placement. 

 

An accelerometer is mounted at each of the pump ports, as well as other locations that could see 

higher vibrations. The swashplate pivot is a location that can potentially experience high variations 

in vibrations due to the swashplate movement. Other locations on the pump have been 

instrumented with an accelerometer. Additional places such as the case nameplate, end case, and 

end case of the pump in the direction of the shaft axis.  

4.2.3 Data Acquisition 

Data acquisition includes sensors that measure an observable phenomenon, measurement 

hardware, and a computer running a programmable software, such as LabVIEW. The sensors have 

already been discussed, but this section discusses the hardware and software implemented on the 

stationary test-rig. 

 

The sensors have been discussed in the previous section, but it is appropriate at this time to explain 

the sampling frequencies of the different sensors. The accelerometers and the piezoelectric 
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pressure transducer are sampled at a frequency rate, fs, of 50 kHz, or a sample time, ts, of 2*10-5 

seconds. The chosen accelerometers have a Nyquist frequency of 10kHz, so a sampling frequency 

five times greater than the Nyquist frequency is selected to prevent aliasing. The piezoelectric 

pressure transducer requires the same National Instruments (NI) data acquisition card as the 

accelerometers, so it is sampled at the same frequency as the accelerometers. Of course, it is 

possible to obtain cheaper accelerometers with reduced frequency characteristics, but these 

accelerometers are readily available and accurate for initial vibration investigations. All other 

signals are sampled at a frequency of 1,000 Hz, or 0.001 seconds. 

 

Figure 4.4 shows the data acquisition system for the test-rig. The flow meter and torque/speed 

sensor signal conditioning boxes can be seen on the right in Figure 4.4. These signal conditioning 

boxes apply necessary filtering, amplifying, and additional conditioning to produce an analog 

voltage. Another crucial component to the DAQ system is the charge amplifier used to convert the 

charge produced by the piezoelectric pressure transducer into an analog voltage, see Figure 4.5. 

The piezoelectric accelerometers have an amplifier built into the sensor to convert from charge to 

voltage, therefore a conditioning box is unnecessary for the accelerometers. 

 

 

Figure 4.4: Data acquisition hardware setup. 
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Figure 4.5: Kistler piezoelectric charge amplifier. 

 

Once the sensors have observed the phenomenon, and the necessary signals have been passed 

through signal conditioning boxes, then the signals are sent to the appropriate cards mounted in 

the NI cDAQ-9178 chassis, see Figure 4.6. The accelerometer and piezoelectric pressure 

transducer signals are sent to NI 9234 analog input Integrated Electronics Piezoelectric (IEPE) 

cards. The thermocouple signals are fed into a NI 9213 thermal couple card, while the remaining 

signals are sent to an NI 9205 analog input card. 

 

 

Figure 4.6: National Instruments (NI) data acquisition hardware. 

 

The NI cDAQ communicates with LabVIEW, which is installed on the computer. In LabVIEW, 

the signals can be routed, sorted, modified, and saved to a designated location. LabVIEW is where 

the measurement recording process is initialized and carried through.  
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LabVIEW and NI DAQ systems do not only receive signals but can also send electrical signals to 

necessary components. The pump displacement is controlled by commanding a certain swashplate 

reference position, comparing the reference command to the measured swashplate position, and 

then sending that comparison through a PI controller in LabVIEW. The appropriate command is 

sent to the pump control valve, Figure 4.7, through an NI 9263 analog output card. The wiring 

diagram for the stationary test-rig can be found in Figure 4.8. 

 

 

Figure 4.7: Parker D1FP pump control valve. 
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Figure 4.8: Stationary test-rig wiring diagram. 
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4.3 Duty Cycles 

Another important aspect to the stationary test-rig that needs to be discussed is the duty cycles or 

operating conditions in which the measurements will be acquired. The purpose of the steady-state 

operating conditions is to see if the faulty pump valve plates can be detected in the most stable and 

controlled environment as possible. The next step before implementing the condition monitoring 

algorithm on the mobile excavator is to see if the same faults are detectable under a dynamic duty 

cycle performed in a controlled environment. 

4.3.1 Steady-State 

Table 4.2 lists the steady-state operating conditions under which measurements are taken. 

Measurements are taken at three different pressure differentials: 100 bar, 150 bar, and 200 bar. At 

each pressure range, measurements are taken at two different pump displacements. All 

measurements are taken at a constant shaft speed of 2000 RPM, and a pump inlet temperature of 

52℃.  

Table 4.2: Steady-state operating conditions 

Operating 

Condition 

N 

[RPM] 

β 

[-] 

Tsupply           

[C] 

Δp 

[bar] 

OpCon_1 

2000 1 52 

100 

OpCon_2 150 

OpCon_3 200 

 

An inlet, supply, temperature of approximately 52℃ is chosen because the viscosity of the ISO 

32 oil used in the tests is 10 centistokes (cSt), as can be seen in Figure 4.9. Additionally, the 

same viscosity of 10 cSt is obtained at a temperature of about 64℃ in ISO 46 hydraulic oil, 

which is often used in mobile equipment. 
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Figure 4.9: Viscosity – Temperature diagram for Shell Tellus S2 VX oil. 

4.3.2 Dynamic Cycle 

As mentioned previously, the dynamic cycle’s purpose is to see if faults are observable or 

detectable once they can be observed under steady-state conditions. A simple method for 

generating a repeatable dynamic cycle under controlled conditions is done by varying the outlet 

flow of the pump and sending that flow through a fixed orifice diameter. The pump displacement 

is commanded from a β of 0.5 to 1.0 and back to 0.5. This is repeated several times to capture the 

dynamic changes in the operating conditions. The pressure in the system is then determined by the 

flow through the fixed orifice, which can be seen in Equation (4.1). Figure 4.10 illustrates how the 

pressure is related to the displacement of the pump. It is to be noted that the speed of the unit is 

fixed at 2000 rpm. 

 

𝑄 = 𝐶𝑓Ω√
2Δ𝑝

𝜌
 (4.1) 
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Figure 4.10: Dynamic duty cycle. 

4.4 Data Structure 

The data is structured in matrices to make data manipulation and postprocessing easier. Matrices 

are also the required format the data needs to be in to be entered the machine learning algorithms 

used in MATLAB. An example of the data structure can be seen in Table 4.3, where the rows of 

the matrix are each time step and the columns are the different sensor signals, or features in 

machine learning. 

 

Table 4.3: Data structure example. 
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A generalized matrix of the data can be seen below in Figure 4.11, where the rows represent time 

steps or measurement points, and the columns represent the measured sensor signals or feature. 

Each matrix represents the measurements taken during a specific operating condition and valve 

plate condition. These matrices can be combined to include data from healthy and all unhealthy, 

faulty, pumps for each operating condition. 

 

 

Figure 4.11: Generalized data structure. 

4.5 Measurement Process 

Several operating conditions and faulty components can make the measurement process 

inconsistent and arduous if a measurement plan is not put in place before measurements begin. 

Below is the measurement process used for consistency and to maximize time efficiency. 

 

1. Select Healthy valve plate 

2. Install Healthy valve plate into pump 

3. Heat oil to a pump inlet temperature of 52℃ 

4. Set displacement and pressures for OpCon_1 

5. Wait for drain temperatures to stabilize 

6. Take measurements for 10 seconds 

7. Repeat steps 4-6 for Operating Conditions 2-3. 

8. Run the dynamic operating condition  

a. 𝛽 = 0.5  

b. Increase β to 1.0 

c. Decrease β to 0.5 

d. Repeat a-c four times 

9. Shutdown test-rig 

10. Allow oil to cool to ambient temperature (approximately 22℃) 

11. Repeat steps 1-10 for the five other selected valve plates. 
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Additional measurements are taken to test the repeatability of the experiments. The experiments 

show good repeatability if the measurements exhibit similar characteristics between the different 

measurements. If good repeatability is achieved, then the experiments are valid, and the different 

fault cases can be successfully compared to one another. Repeatability measurements are taken 

only using the healthy valve plate, to reduce the amount of time and data storage. Steps 1-10 in the 

previously discussed measurement process are repeated until a total of five separate “healthy” 

measurements exist. These five measurements are compared to one another to assess the 

experiment’s repeatability. The results from the repeatability measurements will be discuss in the 

next chapter. 
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 MEASUREMENT OBSERVATIONS 

While machine learning algorithms used in condition monitoring are often a black box method and 

determine whether the fault is detectable, it is valuable for a human to observe the differences in 

pump behavior between the different states of health on the pump. First, measurement repeatability 

will be introduced. Then observations between healthy and unhealthy valve plate measurements 

will be discussed. 

5.1 Notable Repeatability Observations 

As mentioned in the previous chapter, measurements that achieve good repeatability indicates that 

the measurements are valid and can be compared to other conditions. This section shows notable 

observations on the repeatability of the experiment. Five measurements are conducted using the 

healthy valve plate to establish repeatability results. The inlet and drain temperatures will first be 

discussed. Then, the drain flow, drain pressure, and the pump outlet transient pressure will then be 

shown. Not all parameters are shown in this document for repeatability purposes. However, it can 

be noted that the engine speed, pump displacement, and outlet pressure have incredibly repeatable 

measurements. 

5.1.1 Temperatures 

The repeatability results of the steady-state temperatures for the inlet and drain ports show results 

that could lead to misclassifications from a machine learning algorithm. Figure 5.1 and Figure 5.2 

shows the inlet and drain temperatures of the five different healthy measurements taken under 

steady-state conditions, respectively. The inlet temperatures vary by about one degree. However, 

the drain temperatures have some measurements that vary by almost ten degrees. To ensure this 

drain temperature difference is not caused by a difference in ambient air temperature, the 

temperature difference between ambient and drain conditions can be seen in Figure 5.3. The 

temperatures still vary by about ten degrees. 

 

Several factors may cause the inconsistencies in the temperatures. First, while the outlet pressures 

are very similar, they are slightly different. This would cause slight differences in drain 
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temperatures due to small variations in leakages. Second, the inlet temperatures vary by about a 

degree, which would influence the drain temperature. The inlet temperature is controlled by 

regulating an oil cooler on the Maha power supply. Lastly, the variations in temperature are likely 

caused by human error by not letting the system truly get to thermally stable conditions before 

measurements are taken. It is very difficult to have precise consistency in oil temperatures because 

of the many factors that influence temperatures. 

 

 

Figure 5.1: Steady-state repeatability measurements of health valve plate inlet temperatures. 

 

 

Figure 5.2: Steady-state repeatability measurements of health valve plate drain temperatures. 
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Figure 5.3: Steady-state measurements of the difference between drain and ambient temperatures 

for healthy valve plate conditions. 

5.1.2 Drain Flow and Pressure 

The next notable parameters to observe for repeatability are the drain flow and drain pressure. 

Figure 5.4 shows the drain flow of the five healthy measurements and demonstrates the 

repeatability. The drain flow is between 0.93-1.03 L/min. The drain pressure, Figure 5.5, has very 

repeatable measurements with pressures between 0.81-0.83 bar. The contrast between the healthy 

drain port conditions and those of the unhealthy will show drastic difference and will be discussed 

in the next section of this chapter. 

 

 

Figure 5.4: Repeatability measurements of drain flow for healthy valve plate conditions. 
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Figure 5.5: Repeatability measurements of drain pressure for healthy valve plate conditions. 

5.1.3 Outlet Transient Pressure 

The next method to observe repeatability is to check the frequency domain of the pressure 

transients at the pump outlet, Figure 5.6, which has characteristics at higher frequencies than the 

flow rate. The major spikes in pressure occur at the 9 th, 18th, 36th, etc. harmonics. This is logical 

since the axial piston pump contains nine pistons, so the spikes in magnitude would be at harmonic 

multiples of nine. Taking a close look at the 9th harmonic in Figure 5.7 the measurements are 

exceptionally repeatable.  

 

 

Figure 5.6: FFT of outlet transient pressure repeatability analysis. 
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Figure 5.7: FFT of outlet transient pressure zoomed to see 9th harmonic. 

5.2 Observable Wear/Damage 

Now that repeatability has be shown, it is now necessary to observe the differences between the 

healthy pump and the unhealthy states. If a notable difference is observed, then it is likely a 

machine learning algorithm would be able to successfully detect valve plate fault. Several 

parameters will be observed to show comparison. Drain temperature, drain flow, outlet transient 

pressure, and volumetric efficiency are among those parameters to be observed. 

5.2.1 Temperatures 

The temperatures presented in this section show all the healthy valve plate measurements in black 

with the four faulty valve plate in color. Figure 5.8 shows the drain temperatures, and Figure 5.9 

and Figure 5.10 show the temperature difference between drain oil and ambient conditions for 

steady-state and dynamic conditions, respectively. 

 

The most important thing to be discussed at this time is the clear stratification of temperatures 

between all the different measurement, including the five healthy measurements. This stratification 

gives clear differences between the different measurements, and a machine learning algorithm 

trained with these temperature measurements would easily be able to classify the data with near 

100% accuracy. However, the inconsistencies in the temperatures and the non-repeatable nature 

of them makes temperatures not ideal for a condition monitoring system on axial piston pumps 

with valve plate faults.  
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Another reason temperature may not be enough to use in a condition monitoring system like the 

one in this work is because of the slow response of the temperature. Figure 5.10 shows the 

difference between the drain and ambient temperatures during the dynamic duty cycle. Figure 4.10 

shows the dynamic behavior of the pump displacement and outlet pressure throughout the cycle. 

These variable operating conditions result in a dynamic behavior of the pump. However, the oil 

temperature does not capture these transients. In fact, the oil temperature remains nearly constant. 

Additionally, oil temperature is often influenced by the many components within a hydraulic 

system and not necessarily the pump itself. For the reasons prescribed above, it is not 

recommended to use temperatures for detecting valve plate faults in axial piston pumps and is, 

therefore, eliminated from further investigation in this work. 

 

 

Figure 5.8: Drain temperature comparison between healthy and unhealthy valve plates operating 

under steady-state conditions. 

 

 

Figure 5.9: Difference between ambient and drain temperatures for comparing healthy and 

unhealthy valve plates operating under steady-state conditions. 
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Figure 5.10: Difference between ambient and drain temperatures for comparing healthy and 

unhealthy valve plates operating under dynamic conditions. 

5.2.2 Drain Flow 

Logically, the drain flow is a natural place to compare between healthy and faulty valve plates. 

Figure 5.16 shows the differences between healthy and faulty conditions, excluding the extreme 

damaged valve plate. Notice only a single healthy measurement is used here for comparison 

purposes. Each of the faulty valve plate conditions exhibit more drain flow than any of the healthy 

measurements. There is an obvious increase in drain flow for each of the faulty valve plates.  

 

 

Figure 5.11: Drain flow comparison between healthy and unhealthy valve plates, excluding 

extreme damage. 

 

Figure 5.12 demonstrates the impact a valve plate with extreme damage can have on the pump 

performance. The Extreme Damage (ED) valve plate experiences about 2.4 L/min of drain flow 



 

 

69 

while the other valve plates see around 1 or 1.1 L/min. This increase in drain flow will significantly 

decrease the volumetric efficiency of the pump, which will be shown later in this chapter. The 

extreme damage will not be included in a machine learning study on the stationary test-rig for the 

obvious discrepancy in pump performance. This study will focus on more subtle valve plate faults 

are detectable. However, the extreme damage valve plate will be used for machine learning studies 

on the excavator, as the minor damages may be more difficult to detect.   

 

 

Figure 5.12: Drain flow comparison of healthy and unhealthy valve plates, including extreme 

damage. 

 

5.2.3 Outlet Transient Pressure 

The frequency domain of the transient pressures at the outlet port of each of the valve plate 

conditions can be seen in Figure 5.13. The repeatability between the healthy measurements showed 

nearly an exact match but differences can be seen between the healthy and faulty pump conditions. 

Looking at the 9th harmonic, see Figure 5.14 and Figure 5.15, a clear difference in shape and 

magnitude exist between the different pump conditions.  

 

The shape of the healthy pump is significantly narrower than that of the other conditions. It is also 

interesting that the different faulty conditions each have a similar shape and magnitude. The reason 

for this result is not known at this time. However, if one is trying to observe a difference between 

a healthy pump and a pump with a faulty valve plate, then the frequency domain of the pressure 

transients successfully shows that difference. 
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Figure 5.13: FFT of outlet transient pressure comparing faulty valve plates. 

 

 

Figure 5.14: FFT of outlet pressure comparing faulty valve plates, zoomed between 260-320 Hz. 

 

 

Figure 5.15: FFT of outlet pressure comparing faulty valve plates, zoomed at 9 th harmonic. 
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5.2.4 Volumetric Efficiencies 

It is to be expected that the faulty valve plates result in low volumetric efficiencies. Two different 

methods to observe volumetric efficiency are discussed. First, it can be beneficial to observe the 

outlet flow with respect to differential pressures. Figure 5.16 shows the outlet flow of each pump 

condition operating at the three differential pressures. From this plot the healthy pump has higher 

outlet flow rates, suggesting less leakage. This increased leakage from the faulty pumps is likely 

due to the worn or damaged valve plates. Figure 5.17 shows the significant difference in the outlet 

flow of the Extreme Damage (ED) valve plate compared to the other valve plate conditions. The 

outlet flow is lower because the ED valve plate exhibits higher case drain flows. Therefore, the 

outlet flow will be lower than the other valve plates. 

 

 

Figure 5.16: Outlet flow with respect to differential pressure at a fixed speed and displacement. 

 

 

Figure 5.17: Outlet flow with respect to differential pressure at a fixed speed and displacement, 

including Extreme Damage. 
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Next, the measured volumetric efficiencies of the different pump conditions can be seen in Figure 

5.18. The faulty valve plates lower volumetric efficiency, in these cases the volumetric efficiency 

is reduced by approximately 1%, from 96% to 95%. This slight decrease in efficiency may not be 

noticeable to the operator or detrimental to the functioning of the machine, but it does indicate 

wear is occurring. The level of volumetric efficiency at which a pump is rendered ineffective would 

need to be determined by pump and machine manufacturers. 

 

Figure 5.19 compares the volumetric efficiencies of the healthy and each unhealthy valve plate, 

including the Extreme Damage (ED) case. The extreme damage valve plate significantly drops the 

pump volumetric performance by approximately 11%. The volumetric efficiency of the pump with 

the extreme damage valve plate is 84%. This difference is obvious to the naked eye and does not 

require a machine learning algorithm to determine if a fault is present in a stationary test-rig setting 

under steady-state operating conditions. However, it may be more difficult to detect faults on a 

mobile application. Therefore, the extreme damage case will be used on the mini excavator for 

condition monitoring purposes. 

 

 

Figure 5.18: Volumetric efficiency comparison between healthy and unhealthy valve plates. 
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Figure 5.19: Volumetric efficiency comparison between healthy and unhealthy valve plates, 

including Extreme Damage. 

5.3 Summary 

The machine learning algorithms will see differences and make connections that the human brain 

cannot make. However, it is still beneficial to know that repeatability is achieved between 

measurements and that a clear difference between healthy and unhealthy pumps can be seen with 

the human eye.  

 

This chapter has demonstrated the repeatability of the measurements in the drain pressure, drain 

flow, and outlet transient pressure measurements. It has been determined that measurement 

repeatability is agreeable, which means the healthy pump can be successfully compared to the 

pumps with the faulty valve plates. However, repeatability in oil temperatures was not achieved. 

This lack of repeatability is likely attributed to several factors, including human error. It is 

considerably difficult for oil temperatures to be the same. 

 

Observable differences between the healthy and faulty pumps have been seen in the drain flow, 

outlet transient pressure, and volumetric efficiency. Also, a clear difference has been observed 

between the outlet flows of the different pump states, suggesting the healthy pump has less 

leakages. During the comparison observations, it was determined that temperatures would not be 

good candidates for a condition monitoring system for faulty valve plates because of the slow 

response time of the temperatures, and the inherent lack of repeatability. However, the goal has 
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been achieved to determine if a difference between the healthy and unhealthy pumps can be 

observed.  
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 FEATURE SELECTION/SENSOR REDUCTION 

Dimensionality reduction, or feature selection in condition monitoring, is the process of reducing 

the number of features or dimensions of the data. This, in turn, can possibly reduce the number of 

sensors required for condition monitoring purposes.  

 

This chapter focuses on the process of reducing the number of features, and in turn sensors, that 

are required for successful machine learning classification algorithms. First, an investigation on 

the accelerometer location is discussed to determine if redundant accelerometers are used. The 

chapter concludes with the backward elimination feature selection method utilizing a fine decision 

tree classifier and the justifications and reasoning behind which features are eliminated.(Bishop, 

2006)  

6.1 Feature Selection Background 

The complexity of machine learning algorithms determines the number of input dimensions, or 

features, and the sample size, which determine computation costs and memory usage (Alpaydin, 

2010). Dimensionality reduction not only reduces the computation costs and memory usage, but it 

also generate simpler models that are robust and more protected against overfitting (Webb, 2002; 

Alpaydin, 2010; Tang, Alelyani and Liu, 2014). Overfitting is when the model fits the data too 

closely and includes noise, which makes model generalization more difficult and less reliable 

(Kenton, 2019).  

 

Dimensionality reduction can be summarized into two main categories: Feature extraction, and 

feature selection (Webb, 2002; Alpaydin, 2010; Tang, Alelyani and Liu, 2014). Feature extraction 

focuses on generating a new set of features by combining features from the original dataset. 

Common methods include: Principal Component Analysis (PCA) and Linear Discriminate 

Analysis (LDA). Detailed descriptions of PCA can be found from various sources, as it is a 

commonly understood dimensionality reduction method (Pearson, 1901; Belsley, 1991; Tipping 

and Bishop, 1999; Webb, 2002). The major disadvantage of the feature extraction methods is that 

it ignores the effects of the selected features on the performance of the algorithm (Kohavi and 
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John, 1997; Hall and Smith, 1999; Tang, Alelyani and Liu, 2014). This means feature extraction 

methods do not determine which original features are most influential based on the performance 

of the algorithm, which can lead to less predictive accuracy (Kohavi and John, 1997; Liu and 

Motoda, 2012; Tang, Alelyani and Liu, 2014). 

 

Feature selection generates a new subset by selecting a certain number of features from the original 

dataset without combining features, unlike the feature extraction method. The goal is to select the 

relevant features and generate a small subset to reduce the complexity of the data. Irrelevant or 

redundant features add little to no benefit to the performance of the machine learning algorithm 

(Dash and Liu, 1997). Eliminating irrelevant or redundant features can mean a reduction in sensors 

required in the experimental measurements. However, feature selection can be computationally 

expensive since it requires several algorithm iterations to determine the “best” features. The two 

methods of feature selection are forward selection and backward elimination. 

 

Forward selection begins with the machine learning algorithm starting with no features and adding 

features as the subset grows in complexity. During each step of feature addition, the performance 

of the algorithm is evaluated to see if the prediction accuracy of the machine learning algorithm 

has increased, decreased, or remained the same. If the prediction accuracy decreases or even 

remains the same, then the feature can be considered irrelevant. 

 

Backward elimination is like the forward selection method but starts with the maximum number 

of features and eliminates one feature at a time until a simplified subset is generated that results in 

high accuracy and algorithm performance.  

 

The backward elimination method is selected for the work presented in this dissertation because 

of its robustness against overfitting, ease of use, and wide acceptability (Tang, Alelyani and Liu, 

2014). Many other feature selection methods exist that vary in complexity and reliability (Dash 

and Liu, 1997; Kwak and Choi, 2002; Webb, 2002; Alpaydin, 2010).  
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6.2 Accelerometer Location Comparison 

Previous work has shown that only the amplitudes of the accelerations different from one 

accelerometer location to another without a difference in the frequencies of the signals (Ramden, 

Weddfelt and Palmberg, 1993; Ramden, 1998). To compare the different accelerometers, the 

authors observed the spectrum and backstrum of the signals. The magnitude spectrum of the signal 

is found using the well-known fast Fourier transform or FFT. If the accelerometer location only 

affects the magnitude and not the frequency content of the signals, then it is possible to only have 

a single accelerometer for condition monitoring purposes. More details of the method used can be 

found in Chapter CHAPTER 2. 

 

The first accelerometers that are compared are mounted on the pump case at the drain port, roller 

bearings, end case, or the swashplate pivot. For a reminder of the accelerometer locations see 

Figure 4.3. Figure 6.1 shows the different accelerometer signals in the frequency domain. The 

different accelerometers share the same frequency content but experience different acceleration 

magnitudes. The roller bearings dominate most of the frequencies among these sensor locations. 

A zoomed look in Figure 6.1(c) gives a better picture of how the frequency content of the signals 

remains the same despite the sensor location, but the magnitudes differ. 

 

 

Figure 6.1: Accelerometer FFT location comparison of drain port, roller bearings, end case, and 

swashplate pivot. 
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The backstrum of the drain port, roller bearing, end case, and swashplate positions shows similar 

trends as in the frequency domain. It is clearly seen in Figure 6.2(b) and Figure 6.2(c) where the 

signals experience only a difference in magnitudes.  

 

 

Figure 6.2: Accelerometer backstrum location comparison of drain port, roller bearings, end 

case, and swashplate pivot. 

 

The roller bearings experienced the highest accelerations when comparing to the drain port, end 

case, and the swashplate pivot. Therefore, the roller bearing signal is kept as a reference for the 

remaining accelerometer locations. Figure 6.3 and Figure 6.4 show much of the same story but 

compare the roller bearings with the inlet port, outlet port, and the end case (near shaft) 

accelerometer locations. The roller bearings continue to dominate the majority of frequencies, 

especially around 600 Hz. However, the higher frequencies are dominated by the accelerations at 

the inlet and outlet ports. Although, it is interesting that the roller bearing always have higher 

magnitudes in the backstrum than the other locations, see Figure 6.4. 
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Figure 6.3: Accelerometer FFT location comparison of roller bearings, inlet port, outlet port, and 

the end case near the shaft. 

 

 

Figure 6.4: Accelerometer backstrum location comparison of roller bearings, inlet port, outlet 

port, and the end case near the shaft. 

 

The final accelerometer location comparisons to make are those between the roller bearings, 

nameplate, and the control port. Among all the locations, the roller bearing, nameplate, and control 
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port have greater magnitudes and experience larger vibrations than the other locations, see Figure 

6.5. The control port dominates at frequencies near 500 Hz. The roller bearings continue to 

dominate in accelerations near 600 Hz, and the control port dominates at frequencies between 

about 700 to 1000 Hz. However, it is clear that only the magnitudes of the signal change, Figure 

6.5(b) and Figure 6.5(c). This is also confirmed in the backstrum signal, Figure 6.6. 

 

 

Figure 6.5: Accelerometer FFT location comparison of roller bearings, nameplate, and control 

port. 
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Figure 6.6: Accelerometer backstrum location comparison of roller bearings, nameplate, and 

control port. 

6.3 Backward Feature Elimination Method Using a Fine Decision Tree 

The backward elimination feature process that was discussed previously is used in conjunction 

with a fine decision tree classification algorithm included in the Statistics and Machine Learning 

Toolbox in MATLAB to reduce the dimensionality of the dataset (MathWorks, 2019e). More 

details about the classification algorithms will be discussed in a coming chapter, but the concept 

is to demonstrate how the feature selection process is implemented. It can be difficult to decide 

which feature to eliminate throughout the backward elimination process, but three main metrics 

are used to assist in the decision. A metric that is not discussed in detail is if the feature is viable 

under dynamic conditions. For example, the frequency spectrum or backstrum of the accelerometer 

signals are not valid over the course of a dynamic cycle. The first metric is performing a correlation 

study between the features. Next, the cost of the sensor is considered. Finally, observing the affects 

the feature has on the performance of the machine learning algorithm. 

6.3.1 Correlation Study 

A correlation study is the investigation of determining how closely related variables are to one 

another, and is a common practice in statistics (Kutner et al., 2005; Navidi, 2008). Plotting two 
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variables against one another is a method to visualize the correlation between the two variables. 

Adding, a trendline to the plot and calculating the correlation coefficient, R, gives a better 

understanding of how closely the two variables are linearly correlated. An R value at zero indicates 

no linear correlation, but as R approaches -1 or 1 the linear correlation becomes stronger. A -1 or 

1 indicates a perfect linear correlation. The sign on the correlation coefficient only indicates the 

slope of the trendline. Typically, variables with a correlation coefficient greater than 0.5 are 

considered to have a moderate linear correlation, but variables with a coefficient greater than 0.7 

have a strong linear correlation.  

 

It is useful to show the redundancy of implementing certain features in a condition monitoring 

algorithm. For instance, pump hydro-mechanical and volumetric efficiencies exhibit a strong linear 

correlation to torque and pump outlet flow, respectively. This is obvious as the hydro-mechanical, 

volumetric, and total efficiencies are calculated as shown below in Equations (6.1, (6.2, and (6.3. 

 

𝜂ℎ𝑚 =
𝑀𝑡ℎ

𝑀𝑒

 

 

(6.1) 

 

𝜂𝑣 =
𝑄𝑒

𝑄𝑡ℎ
 

 

(6.2) 

 

𝜂𝑡𝑜𝑡 = 𝜂ℎ𝑚 ∗ 𝜂𝑣 

 
(6.3) 

 

 

Other examples of redundancy of features are the differential pressure across the pump, Δp. The 

differential pressure and pump outlet pressure have a near perfect linear correlation with a 

coefficient of 0.998, see Figure 6.7. The lesson here is that machine learning algorithms do not 

necessarily require features that have been calculated from other features. This adds unnecessary 

complexity to the algorithm. Δp calculations are shown below in Equation (6.4. 

 



 

 

83 

Δ𝑝 = 𝑝𝑜𝑢𝑡𝑙𝑒𝑡 − 𝑝𝑖𝑛𝑙𝑒𝑡 

 
(6.4) 

 

 

Figure 6.7: Correlation between differential pressure and outlet pressure. 

 

Among the many features that are a result of the many sensors on the stationary test-rig that has 

been developed for this work, only two features are linearly correlated to one another. Those 

features are the pump displacement, β, and the pump outlet flow, QA. The correlation coefficient 

between these two features is 0.88. This correlation is logical since the pump outlet flow is 

determined by the pump displacement, as shown below in Equation (6.5. 

 

𝑄𝐴 = 𝛽 ∗ 𝑛 ∗ 𝑉 

 
(6.5) 

6.3.2 Cost of Sensor 

Another metric to consider in feature selection is the cost of the sensors. The reason the cost of the 

sensors is taken into consideration is because the intent is for manufacturers to implement 

condition monitoring on mobile equipment. Adding expensive sensors ultimately adds to the cost 

of the machine. Table 6.1 contains the approximate cost for the sensors that are equipped on the 

stationary test-rig that has been discussed in Chapter CHAPTER 4 of this document. It would be 

best if the torque meter with the integrated speed sensor, piezoelectric pressure transducer, and 

flow meters can be eliminate. Eliminating these sensors would greatly reduce the cost of 

implementation on a mobile machine.  
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Sensor robustness and geometric footprint are additional considerations to make. Torque sensors 

and accurate gear type flow meters have a decent size geometric footprint. This is important to 

consider since space on mobile equipment is constrained. These two sensors are also not known 

for robustness, meaning they are sensitive to operating outside of the conditions they are designed 

for. Conditions on mobile equipment can be extreme and unpredictable. 

 

Table 6.1: Approximate cost of sensors. 

 

 

6.3.3 Increase Performance of Supervised Learning Algorithm 

The final metric used to determine which features to eliminate is how the feature in question affects 

the performance of the machine learning algorithm. The performance of the algorithm/model can 

be evaluated by observing the model training time, prediction speed, and the model accuracy.  

 

The model training time is the total time required to fully train the model with the specified 

machine learning algorithm. Longer training time results in greater computational requirements. 

Prediction speed is how many observations, or rows in the previously discussed data structure in 

Figure 4.11, the model can classify or predict in one second. The final performance metric 

observed is the overall classification model accuracy. The higher the accuracy then the lower the 

misclassified datapoints. A low accuracy indicates a high number of misclassifications. 

6.3.4 Backward Elimination Results 

To perform a feature selection using the backward elimination method, the Classification Learner 

App in MATLAB is used to input the data into a supervised learning Fine Decision Tree 
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classification algorithm (MathWorks, 2019a). The description of the different machine learning 

algorithms used in this work will be discussed in the next chapter. However, it is important to keep 

in mind that the same algorithm is used for each iteration of the feature selection process. Only the 

detailed results from the first operating condition (OpCon_1) will be shown, but a summary of the 

results for the other operating conditions will be given. 

 

Table 6.2 contains the results from the backward elimination feature selection for OpCon_1, see 

Table 4.2 for reminder. Table 6.2 includes the number of features included in the model, the model 

training time, accuracy, features that were removed with the corresponding reasons for removing 

that feature, and a list of the selected features.  

 

The feature selection began with training a model with 17 features, see Table 6.3 for descriptions 

of the feature abbreviations that are listed in Table 6.2. Temperatures have been eliminated due to 

the inconsistencies in repeatability, lack of dynamic response, and stratification inherent in 

temperature measurements. Other features not included are any efficiency calculations, due to 

correlation with measured parameters. Only two accelerometers are used for this study since it was 

determined only one or two accelerometers would be needed for condition monitoring purposes. 

 

The model trained with 17 of 17 features have a training time of 101.73 seconds, a prediction speed 

of 1.7 million observations per second, and a 100% model prediction accuracy. This serves as the 

benchmark for the rest of the feature selection process. 

 

The next features that are eliminated are sensors with high cost, such as flow meters, torque meters, 

and piezoelectric pressure transducers. Eliminating drain flow (QD), control flow (QC), outlet 

flow (QA), shaft torque (M), and the outlet transient pressure (pA1) slightly reduced the accuracy 

from 100% to 99.7%. This slight decrease in accuracy is almost negligible, but the training time 

dropped to 27.623 seconds while the prediction speed increased to 2.1 million observations per 

second. Eliminating these sensors would greatly reduce the cost of the condition monitoring 

system without sacrificing accuracy and performance.  
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Table 6.2: Results of the backward elimination feature selection method for OpCon_1. 

 

 

Table 6.3: List of features with their corresponding abbreviations. 

 

Abbreviation Description

TA Outlet temperature

TS Supply or inlet temperature

TD Drain temperature

TAMB Ambient air temperature

pA2 Outlet pressure

pS Supply or inlet pressure

pD Drain pressure

QA Outlet flow

QC Control flow

QD Drain flow

M Shaft torque

N Pump rotational speed

Beta Pump displacement

Qs Volumetric losses

dp Differential pressure (pA2-pS)

eff_v Volumetric efficiency

eff_hm Hydro-mechanical efficiency

eff_tot Total efficiency

c_684 Outlet port accelerations

c_680 Drain port accelerations

pA1 Outlet transient pressure

FFT_684 Spectrum of outlet accelerations

FFT_680 Spectrum of drain accelerations

FFT_pA1 Spectrum of transient pressures

Back_684 Backstrum of outlet accelerations

Back_680 Backstrum of drain accelerations
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The backstrum and FFT signals of the accelerometers are eliminated because these signals are not 

feasible for dynamic cycles. Since the intent is to implement a condition monitoring system on a 

mobile device that primarily operates under dynamic conditions, it does not seem beneficial to 

include these signals. Eliminating these features did not affect the accuracy or prediction speed of 

the algorithm. The outlet port accelerometer (c_684) is also eliminated due to a sensor redundancy.  

 

At this point, only six of the 17 features are being utilized. These features are the outlet port 

pressure (pA2), drain pressure (pD), inlet port pressure (pS), pump displacement (Beta), engine 

speed (N), and drain port accelerations (c_680). At this point it becomes a trial and error game to 

find the best combination of features to most accurately and quickly classify the data as healthy or 

unhealthy.  

 

Table 6.2 shows several runs where only a single feature is selected to observe the contribution 

that feature gives to the accuracy of the algorithm. Several features that had previously been 

eliminated are run by themselves to see if the cost could possibly justify the use of the sensor. For 

example, observe the run that only contains the drain flow (QD). The drain flow is able to predict 

a faulty valve plate condition with an accuracy of 97.6%. This is exceptional accuracy for only a 

single sensor and logically makes sense that it can predict valve plate faults. 

 

However, using two less expensive sensors can give better accuracy than the single flow meter, 

drain pressure (pD) and pump displacement (Beta). These two features can give an accuracy of 

99.2% and a prediction speed of 2.3 million observations per second. These two sensors are also 

more robust than a flow meter and would likely be excellent candidates for a condition monitoring 

system mounted on a mobile machine. 

 

It may seem like a machine learning algorithm is unnecessary when a single sensor or a few sensors 

can be used to detect the faulty condition of the valve plate, and a simpler method can be used. If 

a machine learning algorithm is not used, then a lookup table of data that includes the operating 

conditions of the pump and measured data of the parameter under observation must be constructed. 

It would likely take more computational expense to develop and use the lookup table than running 
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a simple machine learning algorithm to accomplish the same task. Therefore, a machine learning 

algorithm can still be the most efficient method for detecting faults on a machine. 

 

Table 6.4 gives a summary of the feature combinations with the highest accuracies for each 

operating condition. Each of the steady-state operating conditions have similar results to one 

another and achieve accuracies of near 100%. However, the dynamic cycle accuracies are lower, 

which is to be expected. The accuracies of the dynamic cycle are in the upper 80%. It is still likely, 

however, that a different machine learning algorithm will give better results. This will be discussed 

in the next chapter, Algorithm Selection.  

 

Table 6.4: Feature selection summary of each operating condition. 

 

 

Considering the lengthy feature selection process for several operating conditions, the sensors that 

would be good to include on a mobile machine study would be the outlet, inlet and drain pressures. 

Additionally, pump displacement and engine speed would be beneficial. 
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A brief summary of the results of a feature selection that includes temperatures will be noted at 

this time to illustrate caution when developing a condition monitoring system. If temperatures are 

included in the feature selection, then it becomes possible to achieve a 100% accuracy using only 

a single temperature signal, such as drain temperature. However, using any single temperature 

signal gives the same results.  

 

In Chapter CHAPTER 5, a concern was raised that the lack of temperature repeatability, inability 

for temperatures to react to transients, and the stratification of the data could potentially trick the 

machine learning system into producing false high accuracies. This has been made apparent when 

only a single thermocouple can detect valve plate faults with perfect accuracy when a drain flow 

meter is not capable of reaching the same level of accuracy. If any single signal can achieve near 

perfect accuracy, caution and further investigation must be utilized if that signal is to be used.  

6.4 Summary 

In summary, it was verified that accelerometer location does not change the frequency content but 

only the magnitudes of the spectrum and backstrum vary. Therefore, it is possible to include only 

a single accelerometer on the pump for condition monitoring purposes. Different feature selection 

methods were introduced, and the backward elimination method was selected and applied to 

reduce the dimensionality or sensors of the machine learning algorithm. It was determined that 

inlet pressure, outlet pressure, drain pressure, pump displacement, and pump speed would be 

excellent candidates to further an investigation on implementing a condition monitoring system on 

a mobile machine. Additionally, caution was given to using temperature signals or signals that can 

achieve near perfect prediction accuracy,  
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 ALGORITHM SELECTION 

A condition monitoring system requires the best combination of sensors and machine learning 

algorithm to provide an accurate determination of the condition of the pump. The number of 

sensors required to accurately classify a healthy and unhealthy pump has been narrowed down to 

a few different combinations of sensors. With this reduced number of sensor combinations the 

algorithm selection process will require fewer iterations to find a suitable algorithm and sensor 

combination. This section discusses what software is used to perform the algorithm selection, as 

well as a brief background on a K-Nearest Neighbor and decision tree algorithms. Additionally, a 

supervised pattern recognition neural network and an unsupervised clustering neural network are 

introduced. Finally, the algorithm selection results from the steady-state and dynamic duty cycles 

will be presented. 

 

Only a few classification algorithms will be discussed in this work because the presented 

algorithms showed the best results. The algorithms have been implemented using MATLAB’s 

machine learning toolboxes and have not been developed by the author of this work.  

7.1 K-Nearest Neighbor (KNN), Supervised Learning 

K-Nearest Neighbor (KNN) is a non-parametric and one of the best-known classification and 

regression machine learning algorithms (Altman, 1992; Jain, 2010). The basic principle of KNN 

is that it assigns an unclassified data point to the classification of the nearest set of previously 

classified points. In other words, the unclassified data point takes on the classification of its 

“nearest neighbor.” 

 

Figure 7.1 shows a binary classification scheme, a classification of blue circles and red “X.” The 

unclassified point is shown as a green triangle. This example compares the unclassified data point 

to the nearest of three classified points, corresponding to k = 3. The unclassified data point is 

closest to one blue circle and two red “X” and would then be classified as an “X” because majority 

rules.  
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Many techniques can be employed when developing KNN algorithms. However, a few 

considerations should be noted to achieve optimum performance when choosing the value of 

nearest neighbors, k. For a binary or two class problem, k should be an odd number to avoid ties 

that could arise in the algorithm (Duda, Hart and Stork, 2000). Additionally, k should not be a 

multiple of the number of classes to avoid ties. One of the most common techniques in determining 

the nearest neighbors is using the Euclidean distance method. This and other techniques are 

explained in more detail in other works (Grimson, Guttag and Bell, 2016). 

 

Figure 7.1: K-Nearest Neighbor (KNN) example (Keller et al., 2019). 

 

MATLAB’s classification learner contains several different KNN classification algorithms and 

many have been used in the investigation of which machine learning algorithm is best to use for 

this work. Five different KNN algorithms have been investigated: Fine, medium, coarse, and 

weighted. These will be briefly discussed in the following subsections. Each of the algorithms 

involved a validation of 25% of the dataset, while the remaining 75% of the data is used for training 

the classification model. The results from the KNN algorithms are discussed in the results 

summary section of this chapter. 

7.2 Decision Tree, Supervised Learning 

Decision trees are another type of classification algorithm that can be used for nonlinear mapping 

from input variable to a set of output variables. A decision tree is a decision making method that 

provides each of the possible choices a probability according to a decision system (Magerman, 

1995). Decision trees break up the complex decision-making process into several simpler and 
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smaller decisions. Trees are easy to interpret and can provided needed insight into the data (Webb, 

2002). 

 

The decision process starts at the root and continues through nodes and branches until the leaf 

node is reached, see Figure 7.2. The root is at the top of the tree, while the lead nodes are the 

bottom portions of the tree that do not continue to split. Leaf nodes represent the output (Alpaydin, 

2010). A large tree is first constructed and then pruned to minimize the complexity and cost of the 

algorithm (Webb, 2002). Several stopping rules and pruning methods have been proposed in 

literature. In 1984, Breiman et al. proposed a method to successively grow and selectively prune 

the tree, using cross-validation to choose the subtree with the lowest estimate misclassification rate 

(Breiman et al., 1984). More detailed explanations of decision trees can be found in literature 

(Webb, 2002; Alpaydin, 2010). 

 

MATLAB contains three different decision tree algorithms in the Classification Learner toolbox: 

Fine, medium, and coarse decision trees. Decision trees in MATLAB’s classification learner are 

categorized by the maximum number of splits, or branches, the algorithm can contain. These three 

decision tree algorithms are used to investigate the “best” classification algorithm for the work that 

has been presented in this presentation. The results from the decision tree algorithms are discussed 

in the results summary section of this chapter. 

 

 

Figure 7.2: Simple or coarse decision tree (Webb, 2002). 
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7.3 Pattern Recognition Neural Network, Supervised Learning 

 MATLAB’s pattern recognition neural network is considered a shallow neural network, meaning 

it only contains one hidden layer. This algorithm in MATLAB takes the input vectors, drain and 

ambient air temperature, and feeds them into a hidden layer of the neural network. The hidden 

layer contains 10 nodes. The outputs of the hidden layer then sent to a single output layer that has 

an s-shape sigmoid function to limit the output to the maximum and minimum values of the target 

data. The output is a single vector with each element being either a zero or one, healthy or 

unhealthy.  

 

However, the pattern recognition neural network implemented in MATLAB contains an output 

layer that is also known as the Softmax layer. This layer adds insurance that each output from the 

hidden layer is between zero and one, and the components will add up to one. This is a redundant 

feature when doing a binary classification. However, when multi-class classification is used then 

the Softmax layer makes the output components normalized and must sum to one. The algorithm 

would not converge on a solution using the pattern recognition neural network. Therefore, this 

algorithm is eliminated from this investigation. 

 

 

Figure 7.3: Neural pattern recognition network structure. 

7.4 Clustering Neural Network, Unsupervised Learning 

Clustering is supposed to group data by similarity based on how the neural network interprets the 

data without knowing the target outputs. Therefore, clustering is considered unsupervised learning. 

MATLAB’s clustering neural network application uses a Self-Organizing MAP (SOM) as the 

clustering algorithm but arranged the neurons of the neural net into a 2D topology. This allows for 

a 2D approximation of the dataset, which is easier to interpret.  
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Figure 7.4 shows the neural network structure with drain temperature and ambient air temperature 

as inputs from OpCon_2 (Table 4.2). Previously, it was cautioned and advised not to use the 

temperatures as inputs to the machine learning system. However, the temperatures are used in this 

case to show that the clustering neural network is not suitable for this investigation. This neural 

network contains 4 neurons arranged in a 2 by 2 topographical structure. Therefore, four output 

vectors exist. 

 

 

Figure 7.4: Clustering neural network structure 

The clustering neural network has a training time of 166 seconds, and it is clear that the neural 

network believes two clusters exist because of the hits plotted on the SOM topology graph, Figure 

7.5. The network believes 2,135,551 datapoints or samples belong to one group of data while 

1,542,653 samples belong to another. However, the network finding two clusters does not mean it 

is accurate. 
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Figure 7.5: Sample hits from clustering algorithm. 

 

The next step in determining the accuracy of the SOM is to observe the confusion matrix.  

Table 7.1 is a generalized confusion matrix of the two categories of interest, healthy and unhealthy. 

The columns correspond to the algorithm’s clustering of the datapoints into healthy or unhealthy 

groups. The rows represent the true label for the data points, whether they are truly healthy or 

unhealthy.   

 

A 4x4 confusion matrix consists of four categories: True Positive (TP), False Positive (FP), False 

Negative (FN), and True Negative (TN). True positive is when the algorithm predicts the datapoint, 

or sample, is from a healthy pump when the datapoint truly does belong to the healthy category. 

TN is when the algorithm predicts the datapoint to be from a faulty, or unhealthy, pump, and the 

datapoint truly belongs to the unhealthy category. FP is when the algorithm predicts the sample 

belongs to the healthy group but is a datapoint from an unhealthy pump condition. A false positive 

is known as a “Type I” error. FN is when the algorithm predicts the sample belongs to the 

unhealthy group, but really belongs to the healthy pump. A false negative is known as a “Type II” 

error. 
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Table 7.1: General confusion matrix. 

 

 

Table 7.2(a) is the confusion matrix that contains the number of samples or datapoints from the 

neural network clustering algorithm. The Healthy column sums to 2,135,551, which is the number 

of samples in the cluster on the bottom right of the topology graph in Figure 7.5. This column 

shows that only 54.4% of the 2,135,551 data points that have been predicted as healthy are 

correctly labeled by the SOM, see Table 7.2(b). The Unhealthy column sums to 1,542,653, but 

only 569,853, or 36.9%, of those datapoints are correctly labeled as unhealthy, see Table 7.2(b). 

The sum of all the values in Table 7.2(a) equal the total number of samples used as inputs to the 

neural network. In this case it is 3,678,204, which corresponds to an extremely large dataset. 

 

Table 7.2: Clustering network confusion matrices. 

 

 

The information contained in the confusion matrix in Table 7.2(a) allows for the calculation of the 

overall accuracy of the clustering neural network. The accuracy is calculated by dividing the sum 

of TP and TN by the total number of samples in the dataset. This results in an algorithm accuracy 

of 47.1%. It is to be expected that an unsupervised learning algorithm is to have less accuracy than 

a supervised learning algorithm because it does not know what the correct outputs, or labels, to the 

data are during the training process. The calculation of accuracy and error rate are shown in 

Equations (7.1 and (7.2. 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑜𝑡𝑎𝑙
=

1,162,751 + 569,853

3,678,204
= 47.1% 

 

(7.1) 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 = 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 − 0.471 = 52.9% (7.2) 

 

Even using the temperature data that should be able to detect a faulty valve plate with 100% 

accuracy the unsupervised clustering network is incapable of achieving accuracies acceptable for 

a condition monitoring system. Therefore, the unsupervised clustering network is eliminated from 

this investigation and deemed unsuitable for this work. 

7.5 Results Summary 

In summary, several classification algorithms have been considered, and a brief investigation to 

an unsupervised clustering algorithm has been conducted which has proven unsuitable for this 

work. The types of algorithms that are best suited for this work are decision trees and KNN 

algorithms.   
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Table 7.3 shows a summary of the algorithm performances for the steady-state operating condition 

OpCon_2, and   
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Table 7.4 shows the algorithm selection results for the dynamic cycle. Each of the three steady-

state conditions have similar algorithm selection results, so only the results from OpCon_1 will be 

shown and discussed. 

 

Both   
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Table 7.3 and   
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Table 7.4 are composed of four separate tables that contain the algorithm selection results for four 

of the best performing feature combinations. These feature combinations are as follows: (a) pA2, 

pS, pD, and Beta; (b) pD, QD, and Beta; (c) pA2, pD, and N; and (d) pA2, pS, pD, N, and Beta. 

 

Observing each of the conditions in   
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Table 7.3, it can be seen that the decision trees give slightly lower accuracies than those of the 

KNN algorithm class. However, the decision trees have significantly higher prediction speeds. For 

the steady-state conditions, the KNN algorithms would be recommended for use in a condition 

monitoring system, particularly the Fine KNN algorithm. 
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Table 7.3: Summary of results from classification algorithm comparison under the steady-state 

operating condition OpCon_2. 

 

 

The difference between decision trees and KNN algorithms is significantly more drastic when 

looking at the results from the dynamic cycle in   
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Table 7.4. The accuracy of the decision trees is at best 86.4%, when the KNN algorithms are 

capable of near 100% accuracies. Therefore, the KNN algorithms will likely be best suited for 

mobile applications. 

 

Each of the four feature combinations perform similarly to one another when utilizing the same 

algorithm. This suggests that each of the four feature combinations are good candidates to use on 

a mobile machine investigation. However, based on the stationary measurements, the best feature 

and algorithm combination would be the Fine KNN algorithm utilizing data from the outlet 

pressure drain pressure pump speed, and pump displacement. This combination is the most robust 

and cost effective of the four different feature selection combinations. 
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Table 7.4: Summary of results from classification algorithm comparisons under the dynamic 

operating condition. 
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 EXCAVATOR INSTRUMENTATION 

8.1 Test-Rig Purpose 

The main goal of instrumenting a mini excavator is to demonstrate a process for implementing a 

condition monitoring algorithm for an axial piston pump on mobile equipment. The sub-goals for 

this excavator are the same as the those for the stationary test-rig: perform fault detectability, 

sensor/dimensionality reduction, and machine learning algorithm development. The excavator 

test-rig can be seen in Figure 8.1 

 

 

 

Figure 8.1: Maha Bobcat 435 DC prototype mini excavator. 

 

The Bobcat 435 mini excavator at Maha Fluid Power Lab at Purdue University is a displacement 

controlled (DC) prototype machine, which concept was first conceived by (Rahmfeld and 

Ivantysynova, 1998). Several different efficiency and control studies have been performed on this 

machine in previous years (Williamson, 2010; Zimmerman, 2012; Busquets, 2016).  

8.2 Schematic, Hardware, and Data Acquisition 

This machine has already been instrumented with a data acquisition system and contains the same 

pumps, Parker P1, that have been used earlier in this work on the stationary test-rig. Therefore, 
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this machine makes an excellent testbed to perform condition monitoring on mobile equipment. 

Only minor additions, such as an accelerometer and drain line pressure, needed to be made to equip 

this test-rig for a condition monitoring investigation. 

8.2.1 Hydraulic Schematic 

The current hydraulic schematic of the excavator can be seen in Figure 8.2. This architecture is the 

novel pump switching design for DC systems. For more information, reference (Busquets, 2016). 

Only one of the pumps will be used for this investigation, Unit 3. Unit 3 provides flow to the swing 

and right track motors. The pumps in this excavator are 18 cc/rev Parker P1 units equipped with 

MOOG servo valves. 

 

It is important to briefly describe the function of Unit 3 as it pertains to whether the machine is 

using the right track or utilizing the swing function to rotate the cab. If the right track is operating, 

then Unit 3 controls the speed of the right track motor through Displacement Control (DC) and 

behaves as a hydrostatic transmission. However, if the swing motor is activated to rotate the cabin 

of the machine, then the circuit incorporating Unit 3 changes from a DC circuit to a secondary 

controlled system. This means Unit 3 is no longer flow controlled but, instead, is pressure 

controlled. Unit 3’s task is to maintain a pressure setting in the hydraulic hybrid accumulator. The 

duty cycles where measurements are made on this machine will be discussed later in this chapter, 

but Unit3 will not be running the right track motor. Unit 3 will exclusively be used to maintain the 

pressure in the hybrid swing drive system. 

 



 

 

108 

 

Figure 8.2: Hydraulic schematic of excavator (Busquets, 2016). 

8.2.2 Sensors 

The results of the stationary test-rig indicated that several sensors are not required for the 

successful detection of faulty pumps, such as thermocouples, torque sensors, and flow meters. 

However, many sensors will still be instrumented on the excavator to hopefully confirm what the 

stationary test-rig experiments determined. 

The pump under investigation, Unit 3, is equipped with several different sensors. The pressure 

sensors monitor the pressure in the outlet, inlet, and drain ports. A single axis accelerometer is 

mounted on the case of the pump to measure case vibrations. Finally, the pump displacement, or 

swashplate angle, is measured using a Hall effect sensor. Additional parameters such as engine 

speed and oil temperatures are also measured. The different sensors mounted on the pump can be 

seen in  

Table 8.1. 

 

In total, 15 parameters are measured with respect to time on the excavator test-rig. Figure 8.3 

shows a summary of what parameters are measured. It is noticeable that flow, torque, and pressure 

ripple are not parameters that are being measured. This is because the investigation on the 

stationary test-rig indicated the machine learning algorithms perform better without the use of 
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torque or flow, and the results using the pressure ripple is comparable to using a single 

accelerometer. Other reasons of not including these sensors is because of cost and the difficulty of 

implementation. Thermocouples are instrumented on this machine solely for the operator to view 

the temperatures. It was determined from the stationary test-rig experiments that oil temperatures 

may not be a reliable parameter to measure for condition monitoring purposes. The intent of the 

investigation is to keep in mind OEMs of mobile equipment and try to reduce cost and complexity 

as much as possible. 

 

Table 8.1: Sensors equipped on pump. 

 

 

 

 

Figure 8.3: Measured parameters on excavator. 
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8.2.3 Data Acquisition 

Only slight modifications have been made to the data acquisition system from the work done in 

(Busquets, 2016) to include accelerometer signals. All sensor signals are acquired on a National 

Instruments (NI) cRIO-9036 at a sampling frequency of 500 Hz, except for the accelerometers. 

The accelerometer needs to be sampled at a much faster frequency, so an NI USB-9162 is used to 

sample the accelerometer signals at 50 kHz. 

 

Since the NI USB-9162 is separate from the cRIO-9036, a trigger signal is used to correctly align 

the accelerometer data with the data collected by the cRIO. A voltage signal is sent from the cRIO 

to the NI 9234 analog input Integrated Electronics Piezoelectric (IEPE) card mounted in the NI 

USB-9162 chassis. This voltage signal will be read by the USB-9162 to indicate when the 

measurement process begins. With the proper instrumentation of the excavator, experiments are 

ready to begin. 

8.3 Duty Cycles 

Machine learning algorithms are only reliable within the parameters they are trained, and this 

makes finding repetitive duty cycles crucial when developing condition monitoring systems. Some 

mobile equipment has a function or cycle that is performed each time it is used. As an example, 

folding cranes must unfold each time they are used, see Figure 8.4. This unfolding operation would 

be an ideal sequence to run diagnostics with a condition monitoring system since the loads and 

motion are consistent.  

 

Finding these consistently repetitive cycles is more difficult for other mobile machines, such as an 

excavator. In fact, some machines do not have as repetitive and consistent of a cycle as the truck 

crane unfolding. Therefore, this means taking larger sums of data to train the algorithms or develop 

a cycle that can be easily repeatable. 

 

This section discusses the duty cycles of the excavator that are employed for the training and 

testing of the machine learning algorithms. A controlled cycle is developed to check for algorithm 

efficacy under repeatable conditions, while a digging cycle is used to more accurately capture the 
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working conditions of the machine. Finally, the digging cycle is repeated but with a different 

operator to test the robustness of the condition monitoring system when a different operator is 

used. 

 

 

Figure 8.4: Folding crane (Atlas GMBH, 2020). 

8.3.1 Controlled 

The controlled cycle is perhaps the most repeatable cycle for the excavator and is a great candidate 

to determine if the valve plate vaults are detectable on the mobile machine. The controlled cycle 

is an artificial cycle where only the cabin of the machine is rotated left approximately 90 degrees 

from center, swing back to the starting position, and then repeated. Figure 8.5 shows a simple 

illustration of the motion of the controlled cycle, and Figure 8.6 shows the speed of the cab during 

the progression of the cycle. No other functions (i.e. arm, boom, tracks, blade, bucket, etc.) are 

used throughout this controlled duty cycle, and the machine is placed in the same orientation and 

location for each test. The machine is running at a constant engine speed of approximately 2670 

rpm. 

 

This cycle eliminates operator variability by implementing a simple proportional controller to 

command a predetermined displacement setting for the swing motor, thus consistently rotating the 

cab of the swing in a repeatable and cyclical manner. Therefore, this cycle is automated. As 



 

 

112 

mentioned previously, Unit 3 is used to maintain a set pressure level in the hybrid accumulator 

when the swing is under operation. As the swing rotates, Unit 3’s displacement varies to attempt 

to maintain a set pressure setting for the swing drive. This pressure setting is about 225 bar. 

 

Figure 8.5: Controlled duty cycle illustration. 

 

Figure 8.6: Cabin speed for the controlled duty cycle. 

8.3.2 Digging 

The next chosen duty cycle is that of an excavator digging in a pile of dirt and rotating 

approximately 180 degrees to unload the bucket, see Figure 8.7. This cycle introduces a real 

operator and realistic working conditions. The pile of soil has a consistency of loose and dry clay 

for better repeatability among measurements. The reason a pile of loose soil is selected is to avoid 

the variability that is inherent when actively digging into the earth. 

 

It may be possible to detect damaged valve plates using a condition monitoring system that is 

trained under the controlled duty cycle. However, if this is not the case, then a machine learning 
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algorithm will be trained using the data collected from the digging cycle to determine fault 

detectability. 

 

Figure 8.7: Digging cycle illustration. 

 

8.3.3 Different Operator 

The final duty cycle is that same as the digging cycle, Figure 8.7, but implements a different 

operator. The purpose of this cycle is to determine if operator variability influences the validity of 

the condition monitoring system. It is possible that a condition monitoring system that is trained 

under one operator will give different results with a different operator. This duty cycle is for 

comparison purposes, and the data obtained in this cycle will not be used to train any machine 

learning model. However, the data will be used to test and compare results from models trained 

under the controlled and digging duty cycles. 
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 EXCAVATOR MEASUREMENT OBSERVATIONS 

As done with data taken on the stationary test-rig, it is important to observe the data to see ensure 

data fed into the machine learning algorithms is acceptable. To ensure acceptability, one must 

observe the repeatability of the measurements and see if trends exist between the different levels 

of pump health. This chapter will focus on the observations of the data from the controlled cycle 

on the excavator. First, repeatability of the healthy measurements will be observed, and then the 

healthy measurements will be compared to the different states of pump health. Signals such as the 

cab speed, engine speed, and port pressures are examined.  

 

A few important caveats need to be addressed at this time. First, the observations plots shown in 

this chapter show filtered data only for the purpose to examine trends within the data. The filtered 

or smoothed data is not used in the algorithm training because of the inherent information lost in 

the filtering. Second, the mini excavator is a functioning mobile machine with an internal 

combustion diesel engine. Some variation in operating conditions and parameters are to be 

expected as it is a real-world experimental setup. 

9.1 Excavator Repeatability Observations 

As discussed during the stationary test-rig observations, it is important to examine the data for 

repeatability. If repeatability is achieved, then the data is valid and can be used for machine 

learning purposes with higher levels of confidence. 

9.1.1 Cab Speed 

The first parameter to observe is the rotational speed of the cabin. Only slight deviation between 

the five separate healthy measurements can be seen in Figure 9.1, and this deviation is caused by 

the proportional controller that controls the hybrid swing motor. Figure 9.2 shows only a single 

cycle of the cab rotation and some deviation can be seen. However, repeatability of the cab speed 

is achieved. 
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Figure 9.1: Excavator cab rotation speed of repeatability analysis of the controlled cycle. 

 

Figure 9.2: Zoomed view of cab speed rotation repeatability. 

9.1.2 Engine Speed 

The engine speed of the different healthy measurements can be seen in Figure 9.3. The most the 

engine speed varying from one measurement to the next is approximately 15 RPM. The engine is 

set to maintain a constant maximum speed and the controller does a fairly repeatable job reaching 

the same engine speed. 
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Figure 9.3: Engine speed of repeatability analysis of the controlled cycle. 

9.2 Pressure Ports 

Since the right track and only the swing is operating, Unit 3 is tasked with maintaining a set 

pressure in the hybrid swing accumulator, as discussed in a previous chapter. This means the 

pressure port, Port A, is always the low-pressure port  the swing is under operation. Here, Figure 

9.4, the low-pressure in the system is very consistent and repeatable. The low-pressure is 

maintained around 29 bar. 

 

 

Figure 9.4: Port A pressure of repeatability analysis of the controlled cycle. 

 

The pressure port, Port B, is the outlet to Unit 3 and is connected to the hybrid accumulator and 

swing motor. The controller of Unit 3 is set to maintain a pressure around 225 bar. It can be seen 

in Figure 9.5 that some variation does exist, but it is important to remember that this plot is highly 

filtered to observe trends. The variation comes from the gains used in the controller. This variation 
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will be address more when compared to the other measurement cycles where damaged pumps were 

tested but is not significant enough to be considered unrepeatable.  

 

 

Figure 9.5: Port B pressure of repeatability analysis of the controlled cycle. 

9.2.1 Drain Line Pressure 

Figure 9.6 shows the high repeatability of the drain pressure between the different healthy 

measurements. To further explain that the variation of pB, Figure 9.5, is not critical consider the 

magenta line, Healthy_2. This has the highest pB pressure but is one of the lowest drain pressures; 

while the blue, Healthy_4, pressure port pB has the third highest pressure and the highest drain 

pressure. This shows that the slight variation in the high-pressure port does not necessarily greatly 

influence the drain pressure. It is true that the as the pressure port, pB, increases then the leakages 

would increase. This would, in turn, increase the pressure in the drain line. However, the minor 

variation in the high-pressure port does not translate into a significant enough variation in the drain 

pressure, especially since the unfiltered data is fed into the machine learning algorithm.  
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Figure 9.6: Drain port pressure of repeatability analysis of the controlled cycle. 

9.3 Observable Wear/Damage 

In addition to repeatability, it is important to examine the differences between the different states 

of pump health. This section will show the healthy pump measurements in black and the unhealthy 

measurement in color. 

9.3.1 Cab Speed 

As shown in Figure 9.7, the cab speed for the healthy and unhealthy pumps are nearly identical. 

Only a single healthy measurement is used to compare the various unhealthy pump conditions 

since it has been previously established that the cab speed under the different healthy conditions 

is repeatable. If the pump can provide sufficient flow to maintain a set pressure in the accumulator, 

then the cab speed can be met with the secondary controlled implemented on the excavator for the 

swing drive. 
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Figure 9.7: Comparison of cab speed between healthy and unhealthy pump states. 

9.3.2 Engine Speed 

The range of the engine speed is a little more varied among the different unhealthy pumps when 

compared to the healthy measurement, see Figure 9.8. This could lead to a clear bias in the machine 

learning algorithms. The machine learning algorithm could see these stratifications of engine speed 

and solely use those to classify the pump as healthy or unhealthy. If the machine learning 

algorithms see data from a new measurement set, then it could incorrectly classify the pump as 

healthy or vice versa. However, it is key to capture the operating conditions of the pump to 

correctly classify the health of the pump. Therefore, it may be possible to keep the engine speed 

as a viable parameter in the machine learning algorithm, but caution must be taken. 

 

Figure 9.8: Comparison of engine speed between healthy and unhealthy pump states. 
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9.3.3 Pressure Ports 

The low-pressures setting is maintained around 29 bar regardless of the state of the pump, Figure 

9.9. The low-pressure setting is not expected to noticeably vary from the different valve plate 

conditions. 

 

 

Figure 9.9: Comparison of pA between healthy and unhealthy pump states. 

 

The high-pressure port, pB, is another parameter that defines the operating condition of the pump, 

similar to engine speed. Figure 9.10 shows the Port B pressure of the different measurements of 

the pump under the controlled cycle on the excavator. It can be seen that the pressure settings vary 

from about 215-235 bar. This variation is caused by the controller that sets and maintains a constant 

pressure setting for the swing accumulator. However, all the healthy cycles cover the majority of 

the variation range. pB is likely a viable parameter to help define the operating condition of the 

pump if the data is trained with all healthy sets of measurements. 
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Figure 9.10: Comparison of pB between healthy and unhealthy pump states. 

9.3.4 Drain Pressure 

Perhaps the clearest differences between the unhealthy and healthy valve plates can be observed 

in the drain pressure, Figure 9.11. The Minor Wear Severe Damage (MinW_SD) case has very 

similar drain pressure as the healthy cases. However, more pressure oscillations are present. The 

Moderate Wear Minor Damage (ModW_MinD) and Severe Wear No Damage (SW_ND) cases 

have noticeably higher drain pressure levels than the healthy condition. Finally, the Extreme 

Damage (ED) valve plate case exhibits the highest drain pressure with a pressure near 1.4 bar. The 

drain pressure seems to be a good indicator of valve plate condition and pump health.  

 

 

Figure 9.11: Comparison of drain pressures between healthy and unhealthy pump states. 
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 EXCAVATOR MACHINE LEARNING RESULTS 

While some trends can be observed by the human eye, others need to be interpreted by machine 

learning algorithms. This chapter focuses on the results from implementing the data gathered from 

the different duty cycles previously mentioned into several machine learning algorithms and 

selecting which sensors contribute the most to a successful condition monitoring system. First, the 

feature selection results will be discussed with models trained using the controlled and digging 

duty cycles. Next, the results from the investigation on algorithm selection will be discussed. 

Finally, it is necessary to see how a model trained from a certain duty cycle behaves when the 

model is fed with data from another cycle. 

10.1 Feature Selection 

The purpose of the feature selection is to determine the minimum number of sensors required to 

accurately and effectively detect valve plate faults for condition monitoring systems. The feature 

selection method employed on the excavator is different than what was used on the stationary test-

rig. First, each of the features under investigation is used singly to determine the magnitude that 

feature contributes to the accuracy of the machine learning algorithm. Next, a forward selection 

process is used because of the few numbers of features/sensors under consideration. The features 

under investigation are inlet pressure (pA), outlet pressure (pB), drain pressure (pD), pump 

displacement (Beta), pump case vibrations (Accel), and engine speed (N).  Feature selection results 

will be shared of both the controlled and digging cycles.  

10.1.1 Controlled Cycle 

First, each of the six features is used as the sole input to the Fine Decision Tree machine learning 

algorithm to examine how each feature influences the algorithm training time, accuracy, and 

prediction speed. Table 10.1 shows the entirety of the feature selection results for the controlled 

cycle. It can be observed that the engine speed (N) does indeed give the highest accuracy of 

determining if the data is classified as healthy or unhealthy, 96.8%. As noted in the observations 

of the excavator measurements, the engine speed could provide a false accuracy number due to the 

stratification of the data seen in Figure 9.8. While it may be possible the machine learning 
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algorithm is using this stratified data to make its predictions, the engine speed may still be 

necessary to define the operating conditions for the condition monitoring system to best classify 

the data as healthy or unhealthy. 

 

Other parameters, such as the case accelerations (Accel), 58.1%, and the pump inlet pressure (pA), 

64% show to produce the least accurate results of the six features that have been evaluated 

individually. Pump displacement (Beta) and outlet pressure (pB) give comparable accuracies of 

72.7% and 73.3%, respectively. The drain pressure (pD) shows to be a promising parameter to 

monitor for the detection of valve plate wear with an accuracy of 83.2%.  

 

Table 10.1: Feature selection results of the controlled cycle using a fine decision tree algorithm. 

 

 

When combining features together the accuracy greatly increases. For example, combining outlet 

pressure (pB) and drain pressure (pD) the accuracy increases to nearly 90%. Engine speed (N), 

outlet pressure (pB) and drain pressure (pD) give an accuracy of 99.8%, while using all six features 

give a marginal improved accuracy of 99.9%. Considering only the controlled cycle indicates that 

drain pressure, outlet pressure, and engine speed are among the most important signals for 

determining valve plate fault. The case accelerations seem to not contribute additional information 

that the other signals do not contain. Therefore, it could be determined that accelerometers are not 

necessary to detect valve plate wear. 

Features

Training 

Time 

[sec]

Accuracy 

[%]

Prediciton 

Speed         

[M obs/sec]

Selected Features

1/6 83.578 64 3.6 pA

1/6 49.786 73.3 3.7 pB

1/6 63.51 83.2 3.8 pD

1/6 46.475 72.7 3.8 Beta

1/6 36.516 96.8 3.7 N

1/6 137.93 58.1 3.2 Accel

2/6 66.216 89.5 3.7 pB, pD

3/6 64.545 99.8 3.6 pB, pD, N

2/6 55.889 99.3 3.7 pD, N

2/6 62.362 88.4 3.7 pD, Beta

6/6 118 99.9 3.7 pA, pB, pD, Beta, N, Accel
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10.1.2 Digging Cycle 

Unsurprisingly, the accuracies from the feature selection process using the digging cycle data are 

significantly lower than those from the controlled cycle. Table 10.2 shows the results from the 

feature selection process utilizing data from the digging cycle. It is to be noted that accelerations 

are not included with this data because they were deemed negligible under controlled conditions. 

It is interesting to see the engine speed (N) does not contribute nearly as significantly to the 

accuracy of the classification algorithm as it does with the controlled cycle, 55.8% to 96.8%. This 

discrepancy in accuracy is likely because the stratification of the engine speed for the controlled 

cycle. The engine speed is not stratified in the digging cycle, which is more realistic. This confirms 

that the engine speed does not significantly contribute to the identification of valve plate fault on 

the excavator pump. However, it could still be useful in defining the operating condition of the 

pump. 

 

Outlet pressure (pB), drain pressure (pD) and pump displacement (Beta) give a result of 69.6%, 

which is second best to using all five features which gives an accuracy of 71.8%. This shows that 

it would be best to include all five sensors when running a condition monitoring system on an 

excavator during a digging cycle. 

 

Table 10.2: Feature selection results of the digging cycle using a fine decision tree algorithm. 

 

Features

Training 

Time 

[sec]

Accuracy 

[%]

Prediciton 

Speed         

[M obs/sec]

Selected Features

1/5 2.3211 53.1 3 pA

1/5 1.8833 61.7 3.2 pB

1/5 1.8675 60.9 3.6 pD

1/5 1.8899 62.9 3.7 Beta

1/5 1.9358 55.8 3.6 N

2/5 2.2774 66.9 3.6 pB, pD

3/5 2.5882 67.6 3.3 pB, pD, N

2/5 2.2801 63 3.7 pD, N

2/5 2.2574 67.7 3.6 pD, Beta

3/5 2.4922 69.6 3.6 pB, pD, Beta

5/5 3.4512 71.8 3.5 pA, pB, pD, Beta, N
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10.2 Algorithm Selection 

The feature selection process gives the condition monitoring system designer an idea of which 

sensors contribute the most to accurately detecting faults, and the algorithm selection process takes 

those key features and selects machine learning algorithms that are best suited for the application. 

The algorithms investigated have already been discussed in this dissertation. However, the two 

primary algorithms used are decision trees and K-Nearest Neighbors (KNNs). Variations of these 

two primary algorithms will be used in this work. The results from the algorithm selection will be 

discussed from both the controlled and digging duty cycles.  

10.2.1 Controlled Cycle 

A summary of the best results from the algorithm selection for the controlled data can be seen in 

Figure 10.1. Here several combinations of features work well for the accurate detection of valve 

plate faults, but only two algorithms give the best results, Fine Tree and Fine KNN. Notice that 

any feature combination that contains engine speed gives near perfect accuracies, but this could be 

due to the stratification of the engine speeds. However, looking at the two feature combinations of 

outlet pressure with drain pressure and drain pressure with pump displacement, they give high 

accuracies of 96.2% and 96.3%, respectively. These two could potentially be more reliable than 

the feature combinations with engine speed. Between the two, the outlet pressure and drain 

pressure feature combination could be the better option as the outlet pressure helps define the 

operating condition of the pump. For a complete view of the algorithm selection results please see 

Figure 12.1 in the Appendix. 
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Figure 10.1: Algorithm selection summary for controlled cycle. 

10.2.2 Digging Cycle 

The Fine Decision Tree is not the best algorithm for the digging cycle, but it is the KNN algorithms 

that prove to be decent at classifying the healthy and unhealthy pump conditions. Figure 10.2 

shows the summary of the algorithm selection for the digging duty cycle. As discussed in the 

feature selection section, all five features give the best results. The best algorithm with the 

combined five features is the Fine KNN algorithm and gives an accuracy of 93.6%. If only the 

outlet pressure (pB), drain pressure (pD), and the engine speed (N) are used, then the best algorithm 

to use is the Weighted KNN. However, this only gives an accuracy of 75%, which is not reliable 

enough to detect valve plate faults. It is, therefore, recommended to use the five features and a 

Fine KNN algorithm for the digging cycle. For the complete set of results for the algorithm 

selection process of the digging cycle see Figure 12.2 in the Appendix. 
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Figure 10.2: Algorithm selection summary for digging cycle. 

10.3 Trained Model Results 

While observing how different features and algorithms behave under a single operating condition 

is important, it is also critical to see how using a model trained under the controlled duty cycle 

behaves using data from the digging and different operator cycles. The Fine KNN algorithm 

proved to be best suited for the controlled duty cycle and is, therefore, selected as the algorithm to 

use for the remainder of this study. However, different feature combinations are still used for 

comparison. 
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Table 10.3 shows the results from using data from the digging and different operator cycles that 

have been entered a classification model that has been trained using a Fine KNN algorithm under 

the controlled cycle. Using data from either of the other two cycles does not give strong accuracy 

results when using a model trained on the controlled cycle data. At best, the digging cycle has an 

accuracy of 59.2% to detect valve plate faults. 
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Table 10.3: Trained Fine KNN model of controlled cycle using data from different operating 

conditions. 

 

 

The controlled cycle is quite different from the digging and different operator cycles. Therefore, 

this leads to the investigation of the cross-compatibility between the digging and different operator 

cycles, since these two cycles are very similar. Table 10.4 shows the results from using data from 

the controlled and different operator cycles that have been entered a classification model that has 

been trained using a Fine KNN algorithm under the digging duty cycle. Notice the lack of 

detectability in the different operator cycle, 58%, even though the two cycles are very similar. 

These results glaringly tell of the importance of a repeatable cycle to accurately and reliable 

perform a condition monitoring function for the system. 

 

Table 10.4: Trained Fine KNN model of digging cycle using data from different operating 

conditions. 

 

 

At this point it has become apparent to see how each of the levels of valve plate faults influenced 

the detection accuracy using data from a different cycle. The different levels of valve plate fault 

have been discussed in previous chapters, but as a review they are: Healthy, Minor Wear Severe 

Damage (MinW_SD), Moderate Wear Minor Damage (ModW_MinD), Severe Wear No Damage 

(SW_ND), and Extreme Damage (ED). It is interesting how well the model can detect the various 

levels of valve plate health. The model trained with outlet pressure (pB), drain pressure (pD), and 

engine speed (N) under the controlled cycle is used for this investigation.  
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Figure 10.3 gives the breakdown of each valve plate condition under the digging operation using 

a trained Fine KNN model of the controlled cycle, a cross-compatibility condition. All conditions 

combined give an accuracy of 56.5%, which can also be seen in   
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Table 10.3. A likely reason as to why the accuracy for the healthy condition is so low is because 

most the faulty valve plate conditions are too similar one another. Meaning, the Minor Wear Severe 

Damage, Moderate Wear Minor Damage, and Severe Wear No Damage cases have similar pump 

performance characteristics that the machine learning algorithm has difficulty detecting the faults 

on a mobile machine under cross-compatibility conditions. However, the algorithm can more 

accurately classify the Extreme Damage (ED) case with an accuracy of 86.1% than the other cases. 

Although the accuracy of 86.1% is not exceptional, it does suggest that the more severe the damage 

or wear of the valve plate becomes then the detectability accuracy increases for cross-compatibility 

scenarios. Therefore, cross-compatibility of condition monitoring model may be possible if only 

extreme cases are to be detected. 

 

Although cross-compatibility does not give significantly positive results in this work, it does not 

mean condition monitoring cannot be implemented on a machine like an excavator. These results 

glaringly illustrate the importance of a repeatable cycle to accurately and reliable perform a 

condition monitoring function for the system. Therefore, repeatable and controlled conditions must 

be used for condition monitoring of incremental faults on a mobile machine. However, if only 

severe damage cases where pump performance is severely impacted, then cross-compatibility 

between different operating conditions may be possible. 
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Figure 10.3: Breakdown of each valve plate condition under the digging operation using a 

trained Fine KNN model of the controlled cycle. 

10.4 Summary 

In summary, a feature selection process to determine the most critical sensors for faulty valve 

plates was performed for both the controlled and digging duty cycles. This process discovered that 

accelerometers are not necessary for valve plate fault detection, but other signals such as drain 

pressure, outlet pressure, and engine speed are important to achieve higher fault detectability. A 

potential issue with using the engine speed was addressed for the controlled condition because of 

obvious stratifications found in the measurements. However, it was determined that keeping 

engine speed would be beneficial to defining the pump operating condition that the machine 

learning algorithm can then use. The feature selection process for the digging duty cycle showed 

that using outlet pressure, inlet pressure, drain pressure, engine speed, and pump displacement are 

useful. 

 

Next, the algorithm selection was discussed and showed that the Fine K-Nearest Neighbor (KNN) 

seems to give the best results for both the controlled and digging duty cycles. Using the Fine KNN 

algorithm results in detection accuracies near 100% in the controlled cycle if engine speed is 

included. Without engine speed, fault detection accuracy falls slightly to about 96%, which could 

still be acceptable for a condition monitoring system. Fault detection accuracy during the digging 
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cycle significantly increased using a Fine KNN algorithm that includes inlet pressure, outlet 

pressure, drain pressure, engine speed, and pump displacement. The fault detection accuracy 

increased from 71.8% using a Fine Decision Tree to 93.6% implementing the Fine KNN machine 

learning algorithm.  

 

Finally, an investigation was completed which explored the cross-compatibility between a model 

trained under one cycle and using data from another cycle as an input into the model. This study 

showed that a model trained under the controlled duty cycle does not give reliable and accurate 

fault detectability for data run in a digging cycle, below 60% accuracies. The same is true for a 

model trained using the digging cycle with data run in a controlled cycle, even if the machine is in 

similar operating conditions but with a different operator. 

 

The investigation in this work has shown the importance of controlled and repeatable conditions 

for a successful and effective condition monitoring system on mobile hydraulics. It is 

incomprehensible and unrealistic to design a condition monitoring system that can successfully 

detect incremental faults for every conceivable operating condition for mobile machines. For this 

reason, it is recommended to have a program built into the machine to perform a diagnostic check 

or only be interested in faults where pump performance is severely impacted, i.e. pump drain 

pressure increases significantly to 3 bar. An example of a diagnostic check on a mobile machine 

is when an operator would press a button to perform a series of motions on an excavator to do a 

system check. The data collected in this system check would then be fed into an algorithm that has 

been trained on that exact cycle, such as the controlled cycle performed in this work. 
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 CONCLUSION 

The aim of this work was to develop a process of implementing a condition monitoring system for 

a swashplate type axial piston pump on a mobile machine that could determine if the pump is 

healthy or unhealthy. The output of the condition monitoring system was to be binary, healthy or 

unhealthy, and the goal was not to determine which component is faulty or give the Remaining 

Useful Life (RUL) of the pump. 

 

A successful step-by-step process was developed to show how to implement a condition 

monitoring strategy onto a mobile machine. Firstly, it was the axial piston pump was shown and 

how each of the components interact with one another. This activity and an extensive literature 

review led to the selection of the valve plate as a good case study for pump failure. Varying degrees 

of valve plate wear and damage were obtained and documented using an optical profilometer.  

 

Second, an experimental stationary test-rig was developed. This test-rig was used to test condition 

monitoring methods in a controlled and stable environment before it was to be implemented on a 

mobile machine. The following list states the purposes/achievements of the stationary test-rig: 

 

1. Performed fault detectability under steady-state and dynamic operating conditions. 

a. A difference in drain flow, outlet pressure transients, and volumetric efficiencies 

were observed between the healthy and unhealthy conditions of the pump. 

2. Tested for repeatability under measurements. 

a. Excellent repeatability between measurements was demonstrated and proved. 

3. Performed a dimensionality/sensor reduction to minimize the number of sensors required 

for successful condition monitoring of axial piston pumps. 

a. It was determined that pump outlet pressure, drain pressure, speed, and 

displacement were enough to efficiently and accurately detect the faulty pump 

conditions. 

4. Compared and selected several different machine learning algorithms that accurately 

detected faulty pumps with minimum computational expenses. 
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a. Supervised learning K-Nearest Neighbor (KNN) algorithms were found to be the 

“best” machine learning algorithms investigated and gave excellent results. 

 

Next, a Bobcat 435 mini excavator was instrumented to perform experiments for implementing a 

condition monitoring system on a mobile machine. This machine has been instrumented with fewer 

sensors than the stationary test-rig because of the results and observations made from the stationary 

test-rig data. The excavator does not have flow meters, torque meters, or transient pressure 

transducers because of the sensor cost, difficulty of implementing the sensor on a mobile machine, 

and because the sensors do not add relevant information to the machine learning algorithm to 

successfully detect a faulty pump. 

 

Three relevant duty cycles were developed to conduct condition monitoring measurements on the 

mini excavator. A controlled duty cycle was developed to eliminate any operator and load 

variability to give as repeatable of a cycle as possible. Next, cycle where the excavator is digging 

in a lose pile of soil and unloading was used to represent realistic operating conditions. The final 

cycle was the same as the digging cycle but with a different operator. 

 

A similar process that was performed on the stationary test-rig was then implemented on the 

excavator to develop a condition monitoring system. Measurement repeatability was demonstrated 

and noticeable observations in the drain pressure were seen between the different valve plate faults 

under the controlled duty cycle. 

 

The feature selection process that determined the most critical sensors for faulty valve plate 

detection and algorithm selection process were then performed. The feature selection process 

discovered that accelerometers were not necessary for valve plate fault detection, but other signals 

such as outlet pressure, inlet pressure, drain pressure, engine speed, and pump displacement are 

important to achieve higher fault detectability. The algorithm selection was discussed and showed 

that the Fine K-Nearest Neighbor (KNN) seems to give the best results for both the controlled and 

digging duty cycles. 
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Finally, an investigation in the cross-compatibility between a model trained under one cycle and 

using data from another cycle as an input into the model. The investigation showed that a model 

trained under the controlled duty cycle does not accurately detect valve plate faults when data from 

the digging cycle is used. Also, a model trained with the digging cycle data does not give 

acceptable results when a different operator is used. However, positive results are shown that the 

cross-compatibility of condition monitoring models may be possible if the faults are more extreme 

and severe. 

 

In conclusion, the research done in this work has shown how vast amounts of experimental 

measurements must be conducted to develop accurate condition monitoring systems for mobile 

hydraulics. This investigation has also shown the importance of controlled and repeatable 

conditions for a successful and effective condition monitoring system on mobile hydraulics. It is 

incomprehensible and unrealistic to design a condition monitoring system that can successfully 

detect faults for every conceivable operating condition for mobile machines, which would need to 

be done to ensure reliable detectability. Therefore, it is recommended to have a program built into 

the machine to perform a diagnostic check. However, this work is only a step into the future of 

condition monitoring of mobile hydraulic machines. 
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 FUTURE WORK 

The work for condition monitoring of hydraulic systems on mobile equipment is far from complete 

with the conclusion of this work. Ultimately, an accurate prediction of RUL on a machine and 

specify which component is failing is the end goal. However, current machines on the market do 

not even have a monitoring system that indicates the pump is in the process of failing, a binary 

health condition.  

 

The high nonlinearity and randomness involved with the wear of hydraulic systems makes 

predicting RUL extremely difficult without large amounts of machine data recorded by the 

manufacturers. Something industry is working on is gathering and collecting more data from their 

machines. With this data, a better understanding of how the hydraulic systems fail can be turned 

into practice in developing condition monitoring systems. 

 

Additional work can be conducted on determining the specific components within the pump that 

are failing. This could be done by observing distinct signal characteristics of the different faulty 

components. This has been done on roller bearings for rotating machinery. 

 

The process in this work can also be implemented to gather more wear information and how the 

wear of different components affects the performance of hydraulic systems. Varying degrees of 

wear and many more components can be investigated and analyzed to build the knowledge base 

of how hydraulic systems wear and how that wear can be detected. 

 

If a condition monitoring system aimed at detecting valve plate failure is desired for an axial piston 

pump on mobile machines, then it is recommended to measure the engine speed, pump 

displacement, inlet pressure, and the outlet pressure of the pump. These measurements will give 

the machine learning algorithm knowledge on the operating conditions of the pump. Finally, the 

drain pressure should be monitored to detect changes to leakage due to valve plate fault.
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APPENDIX 

 

Figure 12.1: Algorithm selection results of controlled cycle using a 25% hold-out validation with 

the following features: (a) pD only, (b) pB and pD, (c) pD and N, (d) pB, pD, and N, (e) pD and 

Beta. 
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Figure 12.2: Algorithm selection results of digging cycle using a 25% hold-out validation with 

the following features: (a) pD only, (b) pB and pD, (c) pD and N, (d) pB, pD, and N, (e) pD and 

Beta, (f) pB, pD, Beta, (g) pA, pB, pD, Beta, N. 
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