
ACCELERATING PARALLEL TASKS BY OPTIMIZING

GPU HARDWARE RESOURCE UTILIZATION

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Tsung Tai Yeh

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2020

Purdue University

West Lafayette, Indiana



ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Timony R. Rogers, Chair

School of Computer and Engineering

Dr. Rudolf Eigenmann

School of School of Computer and Engineering

Dr. Samuel P. Midkiff

School of School of Computer and Engineering

Dr. T. N. Vijaykumar

School of School of Computer and Engineering

Approved by:

Dr. Timony R. Rogers

Head of the School Graduate Program



iii

ACKNOWLEDGMENTS

I feel so grateful that I have had such a great opportunity over the past eight

years to conduct my research work and turn it into my Ph.D. dissertation. I have to

admit the path to the Ph.D. was full of challenges. Without the help of many people

including my advisor, colleagues, friends, and family, this dream would never come

true.

First, I want to appreciate each member of my dissertation committee that con-

tinuously cultivate me research skills and courage as I begin my graduate student

life. Timothy G. Rogers, my Ph.D. advisor, demonstrates the value of seeking the

root-cause of research problems and focusing intensely on pursuing solutions. Rudolf

Eigenmann embodies professional effectiveness that inspires me to convey the research

work succinctly and effectively. Samuel Midkiff and T. N. Vijaykumar are my role

model for how to be a wonderful mentor to young graduate students.

I would also like to thank the colleagues who directly helped me on my research

projects and life. They are all talented, hardworking and generous to share their

ideas and thoughts. Their kindly sharing always scatters me the light when I was

trapped by some difficulties. Here is everyone listed in alphabetical order: Roland

Green, Akshay Jain, Mahmoud Khairy, Amit Sabne, Putt Sakdhnagool, and Mengchi

Zhang.

I am also deeply appreciative of my internship supervisors at AMD research,

Bradford M. Beckmann and Matt Sinclair. I feel so fortunate to have such wonderful

mentors to give me guidance on designing practical micro-architectures. Their great

jobs enrich my internship life and broaden my knowledge on the GPU architecture

design. Larry Bihel was my supervisor at research computing center, Purdue Uni-

versity. I cherish his patience to direct me to understand insights of remote-sensing

image analysis.



iv

My work would not nearly be meaningful without unwavering supports from my

friends and family. Thank for their accompany to help me go through this adventure.



v

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 GPU Underutilization on Latency-sensitive Applications . . . . . . . . 2

1.1.1 Narrow Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Prior Work to Overcome GPU Underutilization . . . . . . . . . 3

1.1.3 Challenges in Designing a GPU Runtime System for Narrow Tasks 4

1.1.4 Pagoda GPU Runtime System for Narrow Tasks . . . . . . . . . 5

1.2 Latency-sensitive GPU Applications with Deadline Constraints . . . . . 5

1.2.1 Constraints of GPUs on Latency-sensitive Applications . . . . . 6

1.2.2 Prior Work to Improve QoS of Latency-sensitive GPU Applications 8

1.2.3 LAX: Laxity-aware GPU Job Scheduler . . . . . . . . . . . . . . 12

1.3 Redundancy on GPU SIMT Instructions . . . . . . . . . . . . . . . . . 13

1.3.1 Threadblock-wide Redundancy on GPU SIMT Instructions . . . 14

1.3.2 Previous Work on Removing GPU SIMT Redundant Instructions 15

1.3.3 Challenges on Eliminating GPU SIMT Redundant Instructions . 16

1.3.4 DARSIE GPU SIMT Redundant Instruction Skipper . . . . . . 16

1.4 Contributions of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 BACKGROUND and RELATED WORK . . . . . . . . . . . . . . . . . . . . 20

2.1 GPU Architecture and Programming . . . . . . . . . . . . . . . . . . . 20

2.2 GPU Micro-architectural Model . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Processing Narrow Tasks on Domain-specific Accelerators . . . . . . . . 23



vi

Page

2.3.1 Static Software Approaches . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Dynamic Runtime Solutions . . . . . . . . . . . . . . . . . . . . 24

2.3.3 Preemptive Hardware Scheduler and Virtualization . . . . . . . 25

2.4 Improving Application Latency on Accelerators . . . . . . . . . . . . . 25

2.4.1 QoS-Aware Scheduling Policies . . . . . . . . . . . . . . . . . . 26

2.4.2 Real-Time Scheduling . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Solutions on the GPU Redundancy Removal . . . . . . . . . . . . . . . 27

2.5.1 Hardware Redundant Instruction Skipper . . . . . . . . . . . . . 27

2.5.2 Compiler-Assisted Approaches . . . . . . . . . . . . . . . . . . . 28

3 LATENCY-SENSITIVE GPU APPLICATIONS . . . . . . . . . . . . . . . . 29

3.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . 29

3.1.2 Network Packet Processing . . . . . . . . . . . . . . . . . . . . . 30

3.1.3 Intelligent Personal Assistants . . . . . . . . . . . . . . . . . . . 30

3.2 Small Data-Parallel Kernels on Latency-sensitive Applications . . . . . 30

3.3 Impact of Job Arrival Rate . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Problems of Mixed Task and Data Parallel Applications . . . . . . . . . 33

4 A TAXONOMY OF GPU REDUNDANCY . . . . . . . . . . . . . . . . . . 35

5 PAGODA: FINE-GRAINED GPU RESOURCE VIRTUALIZATION FOR
NARROW TASKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1 Pagoda Programming APIs . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Pagoda Runtime System . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2.1 GPU Resource Virtualization . . . . . . . . . . . . . . . . . . . 41

5.2.2 Continuous Task Spawning . . . . . . . . . . . . . . . . . . . . . 43

5.2.3 Concurrent Task Scheduling . . . . . . . . . . . . . . . . . . . . 47

5.3 Supporting Native CUDA Functionality . . . . . . . . . . . . . . . . . . 51

5.3.1 Shared Memory Management . . . . . . . . . . . . . . . . . . . 52

5.3.2 Sub-Thread Block Synchronization . . . . . . . . . . . . . . . . 54



vii

Page

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4.2 Runtime Performance . . . . . . . . . . . . . . . . . . . . . . . . 55

5.4.3 Pagoda Performance Scalability . . . . . . . . . . . . . . . . . . 58

5.4.4 Sensivity Analysis for Task Load Imbalance . . . . . . . . . . . 59

5.4.5 Task Latency Analysis . . . . . . . . . . . . . . . . . . . . . . . 61

5.4.6 Lock Step Communication Overhead . . . . . . . . . . . . . . . 61

5.4.7 Pagoda Task Scheduling Overlead Analysis . . . . . . . . . . . . 62

5.4.8 Pagoda Shared Memory Analysis . . . . . . . . . . . . . . . . . 64

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6 LAX: DEADLINE-AWARE JOB SCHEDULING ON THE GPU . . . . . . . 66

6.1 LAX System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2 Job Remaining and Laxity Time Estimates . . . . . . . . . . . . . . . . 67

6.3 Preventing Oversubscription with Queuing Delay Estimation . . . . . . 70

6.4 Laxity-Aware Job Scheduling Algorithm . . . . . . . . . . . . . . . . . 70

6.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.5.1 Evaluated Compute Queue Scheduling Policies . . . . . . . . . . 72

6.5.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.5.3 Job Arrival Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.6 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.6.1 Completing Jobs by Their Deadlines . . . . . . . . . . . . . . . 76

6.6.2 Scheduling Effectiveness . . . . . . . . . . . . . . . . . . . . . . 82

6.6.3 Execution Time Prediction and Priority Over Time . . . . . . . 83

6.6.4 Energy Consumption . . . . . . . . . . . . . . . . . . . . . . . . 85

6.6.5 Throughput and 99-percentile Tail Latency . . . . . . . . . . . . 85

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7 DARSIE:DIMENSIONALITY-AWARE REDUNDANT SIMT INSTRUC-
TION ELIMINATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



viii

Page

7.1 High Level Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2 Compiler Annotations . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.3 DARSIE microarchitecture . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.3.1 Remapping Registers . . . . . . . . . . . . . . . . . . . . . . . 93

7.3.2 PC Skip Table . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.3.3 Achieving the Illusion of Lockstep Execution . . . . . . . . . . 96

7.3.4 PC Coalescer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.3.5 Instruction Skipping Flow . . . . . . . . . . . . . . . . . . . . . 96

7.4 Skipping Load Instructions . . . . . . . . . . . . . . . . . . . . . . . . 98

7.5 Handling SIMD Divergence . . . . . . . . . . . . . . . . . . . . . . . . 99

7.6 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.7.1 Performance and Energy . . . . . . . . . . . . . . . . . . . . 101

7.7.2 Saving Memory Bandwidth . . . . . . . . . . . . . . . . . . . 105

7.7.3 Effect of Synchronization . . . . . . . . . . . . . . . . . . . . 107

7.7.4 Area Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . 110

8.1 GPU Virtualization on the Cloud . . . . . . . . . . . . . . . . . . . . 110

8.2 Memory Model for GPU Concurrency . . . . . . . . . . . . . . . . . . 111

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



ix

LIST OF TABLES

Table Page

3.1 Summary of kernels in latency-sensitive benchmarks . . . . . . . . . . . . . 31

5.1 Pagoda Programming API . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.2 WarpTable entry fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 Benchmark Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.4 Benchmark Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.5 Compute performance comparison of tasks run in Pagoda with and with-
out shared memory allocation: Each version runs 32K tasks. DCT tasks
have 64 threads, MM tasks contain 256 threads. Only the compute time
is compared. The shared memory usage offers considerable benefits. . . . . 64

6.1 Key simulated system parameters . . . . . . . . . . . . . . . . . . . . . . . 71

6.2 Scheduling Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.3 LAX Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4 Energy rate (consumed energy over the number of successful jobs) (mJ)) . 84

6.5 The Successful Job Throughput (the number of successful jobs per second) 85

6.6 99-percentile job latency(millisecond)) . . . . . . . . . . . . . . . . . . . . 86

7.1 Applications studied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.2 Baseline GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



x

LIST OF FIGURES

Figure Page

1.1 Characteristics of many-kernel latency-sensitive jobs versus few-kernel
latency-sensitive jobs, listed in Table 6.3 . . . . . . . . . . . . . . . . . . . 6

1.2 Comparison of Round Robin and Laxity-aware Schedulers for a GPU that
can simultaneously execute 2 jobs . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 GPU Queue Scheduler Architecture . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Redundant instructions in each GPU thread grouping level across different
applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 GPU Architecture: The number of GPU cores is dependant with different
GPU generations and the scratchpad cache is shared with L1D cache. . . . 20

2.2 GPU micro-architectural model . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Comparing response times with varying job arrival rates, normalized to
batch size 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Fraction of dynamically executed TB-redundant instructions. Instructions
executed in diverged control flow are considered non-redundant. . . . . . . 36

4.2 Pseudo-assembly code to read from an integer array with a base address
of 10 using tid.x as the index with 1D and 2D TBs. Values in output
registers for each instruction are classified based on the pattern they make
across the TB. 1D TBs create affine values that are not redundant, while
2D TBs create both affine and unstructured redundant values. . . . . . . 37

5.1 Pagoda runtime system overview: The source task kernel and CPU code re-
quire few changes to an equivalent CUDA code. The MasterKernel design
is shown for Nvidia Pascal Titan X GPU. The 56 MasterKernel thread-
blocks (MTBs) have 1024 threads each. TaskTable is mirrored on both the
CPU and GPU. The CPU threads spawn tasks into the CPU TaskTable,
which are then sent to the GPU counterpart. Scheduler warps inside each
MTB find free executor warps to launch tasks on. The WarpTable per-
forms bookkeeping for each executor warp. . . . . . . . . . . . . . . . . . . 42



xi

Figure Page

5.2 TaskTable State Diagram : The CPU only touches TaskTable entries with
reset ready fields, when a task gets scheduled to warps. and the GPU
only touches TaskTable entries with non-zero ready fields, allowing for
simultaneous TaskTable updates from the CPU and GPU. The sched flag
determines when the task gets scheduled on GPU warps. . . . . . . . . . . 44

5.3 Example execution of task TA : TA gets scheduled only after TB is
spawned. Our design allows for the CPU and GPU TaskTable entries
to contain mis-matching values. . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4 Allocating 8K of shared memory in Pagoda: The value in each node rep-
resents the size of the shared memory block. Note that not all levels of
the tree are shown here. The white nodes are free blocks and the shaded
nodes are allocated blocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5 Deallocating 4K of shared memory in Pagoda: Ancestors of the current
node are marked free only if the sibling is free. . . . . . . . . . . . . . . . . 53

5.6 Overall Performance Comparison: All applications of this experiment
were run on Nvidia Pascal GPU. The number of tasks in each benchmark
is constant (32K), except SLUD, which contains 273K tasks. Each GPU
task uses 128 threads. The measurement of execution time contains both
data copy and compute times. Pagoda significantly outperforms CUDA-
HyperQ(1.76x), 20-core PThreads(5.52x), and GeMTC(1.44x) because of
the high GPU utilization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.7 Pagoda Performance Scalability: CUDA-Maxwell and CUDA-Pascal in-
dicates CUDA-HyperQ applications are run on Nvidia Maxwell and Pascal
Titan X GPU. Pagoda achieves 2.4X speedup compared to CUDA-Maxwell
by running benchmarks on Nvidia Pascal GPU. . . . . . . . . . . . . . . . 59

5.8 Performance Comparison of Statis Fusion, CUDA-HyperQ and Pagoda
with irregular tasks: Dynamic task spawning mechanism in Pagoda ob-
tains high performance even with irregular workloads. . . . . . . . . . . . . 60

5.9 Average Latency of Tasks Pagoda achieves much lower latency compared
to static fusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.10 Benefit of Pagoda Continuous Spawning and Concurrent, Pipelined Task
Processing Pagoda performs both continuous task spawning and concur-
rent, pipelined task processing. Pagoda-batching only performs task pro-
cessing. GeMTC performs neither. Pagoda outperms GeMTC in all cases. 63



xii

Figure Page

5.11 Effects of varying threads per task for different input size For small
threads, Pagoda outperms HyperQ in all input sizes. For large thread
counts, Pagoda may still outperform HyerQ because its finer grain of
scheduling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.1 LAX procedure and system overview . . . . . . . . . . . . . . . . . . . . . 66

6.2 Jobs completed by their deadlines for CPU-side schedulers, RR, and LAX,
normalized to RR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3 Jobs completed by their deadlines at the high job arrival rate, for sched-
ulers that extend the CP, normalized to RR . . . . . . . . . . . . . . . . . 78

6.4 Jobs completed by their deadlines over different laxity-aware implementa-
tions, normalized to LAX-SW . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.5 Percentage of completed WGs from jobs that meet their dead-lines at the
high job arrival rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.6 LAX’s Job Time and Priority Prediction in LSTM. P0 is the highest pri-
ority. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.1 DARSIE’s Instruction Skipping Flow: Branch instructions always force a
TB-wide barrier to determine what the majority-path is. In this example,
TBs are three warps wide. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.2 Example of compiler marking TB-redundant instructions for matrix mul-
tiply kernel. DR:Definitely Redundant, CR:Conditionally Redundant . . . 91

7.3 Detailed breakdown of DARSIE uarch operation. . . . . . . . . . . . . . . 95

7.4 Performance of DARSIE against prior work. Speedup is normalized to the
baseline GPU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.5 Percent reduction in 1D benchmark instructions versus the baseline . . . 103

7.6 Percent reduction in 2D benchamrk instructions versus the baseline . . . 103

7.7 Percent Energy Reduction versus the baseline . . . . . . . . . . . . . . . 104

7.8 Effects of Synchronization. . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.9 Instruction Reduction of 1D-benchmarks . . . . . . . . . . . . . . . . . . 106

7.10 Instruction Reduction of 2D-benchmarks . . . . . . . . . . . . . . . . . . 107



xiii

ABSTRACT

Tsung Tai Yeh Ph.D., Purdue University, May 2020. Accelerating Parallel Tasks By
Optimizing GPU Hardware Resource Utilization. Major Professor: Timothy G.
Rogers.

Efficient GPU applications rely on programmers carefully structure their codes to

fully utilize the GPU resources. In general, programmers spend a significant amount

of time optimizing their applications to run efficiently on domain-specific architec-

tures. To reduce the burden on programmers to utilize GPUs fully, I create several

hardware and software solutions that improve the resource utilization on parallel

processors without significant programmer intervention.

Recently, GPUs are increasingly being deployed in data centers to accelerate

latency-driven applications, which exhibit a modest amount of data parallelism. The

synchronous kernel execution on these applications cannot fully utilize the entire

GPU. Thus, a GPU contains multiple hardware queues to improve its throughput by

executing multiple kernels on a single device simultaneously when there are sufficient

hardware resources. However, a GPU faces severe underutilization when the space in

these queues has been exhausted, and the performance benefit vanishes with the de-

creased parallelism. As a result, I proposed a GPU runtime system – Pagoda, which

virtualizes the GPU hardware resources by using an OS-like daemon kernel called

MasterKernel. Tasks (kernels) are spawned from the CPU onto Pagoda as they be-

come available, and are scheduled by the MasterKernel at the warp granularity to

increase the GPU throughput for latency-driven applications. This work invents sev-

eral programming APIs to handle task spawning and synchronization and includes

parallel tasks and warp scheduling policies to reduce runtime overhead.
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Latency-driven applications have both high throughput demands and response

time constraints. These applications may launch many kernels that do not fully utilize

the GPU unless grouped with large batch sizes. However, batching forces jobs to wait,

which increases their latency. This wait time can be unacceptable when considering

real-world arrival times of jobs. However, the round-robin GPU kernel scheduler

is oblivious to application deadlines. This deadline-blind scheduling policy makes it

harder to ensure that kernels meet their QoS deadlines. To enhance the responsiveness

of the GPU, I also proposed LAX, including an execution time estimate for jobs with

one or many kernels. Moreover, LAX adjusts priorities of kernels dynamically based

on their slack time to increase the number of jobs that complete by their real-time

deadlines. LAX improves the responsiveness and throughput of GPUs.

It is well-known that grouping threads into warps can create redundancy across

scalar values in GPU vector registers. However, I also found that the layout of thread

indices in multi-dimensional threadblocks (TBs) creates redundancy in the registers

storing thread IDs. This redundancy propagates into dependent instructions that

can be traced and identified statically. To remove GPU redundant instructions, I

proposed DARSIE that uses a per-kernel compiler finalization check that uses TB

dimensions to determine which instructions are redundant. Once identified, DARSIE

hardware skips TB-redundant instructions before they are fetched. DARSIE uses a

new multithreaded register renaming and instruction synchronization technique to

share the values from redundant instructions among warps in each TB. Altogether,

DARSIE decreases the number of executed instructions to improve GPU performance

and energy.
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1. INTRODUCTION

Programmers spend a significant amount of time optimizing their applications to run

efficiently on domain-specific architectures. However, variants of hardware compo-

nents in these domain-specific accelerators increase the burden on programmers to

utilize these accelerators fully. Graphic Processing Units (GPUs) consist of many

computing units to enhance the throughput of parallel execution and provide pro-

grammable scratchpad cache memory and vector registers to reduce the data access

latency. To increase the scope of GPU applications, GPUs also enable multi-tasking

by executing multiple kernels simultaneously on a single device. However, these con-

current applications with difference resource usage and quality-of-service (QoS) con-

straints exhibit new challenges on GPU computing.

GPUs are increasingly being considered for latency-sensitive applications in data

centers. Examples include deep learning inference, network packet, and natural lan-

guage processing. These data parallel applications exhibit a modest amount of data

parallelism with high throughput demands and real-time deadline constraints. Fur-

thermore, these applications may launch many kernels that do not fully utilize the

GPU unless grouped with large batch sizes. However, batching forces jobs to wait,

which increases their latency.

To reduce the latency on large batch, contemporary GPUs support the execution

of multiple kernels on a single device simultaneously when there are sufficient hard-

ware resources. In general, a GPU contains multiple hardware queues to support

this type of execution. Thus, programmers can use GPU streams to execute these

latency-driven kernels concurrently. However, the GPU concurrent kernel execution

exposes several problems on latency-sensitive applications. First, GPUs faces severe

underutilization when the space in these queues has been exhausted, and the perfor-

mance benefit vanishes with the decreased parallelism. Second, the round-robin GPU
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kernel scheduler is oblivious to application deadlines. This deadline-blind scheduling

policy makes it harder to ensure that kernels meet QoS deadlines. This thesis will

present hardware and software solutions for problems when executing GPU kernels

concurrently.

Additionally, GPUs achieve high throughput by grouping multiple threads into

warps to hide long latency operations with fine-grained Single Instruction Multiple

Thread (SIMT) execution. However, the layout of thread indices in multi-dimensional

threadblocks creates redundancy in the registers storing thread IDs. For instance,

each matrix can be chunked into multiple tiling blocks that are loaded in the GPU

shared memory with 2D thread in matrix multiplication program. We can observe

many repetitive memory load in each row and column of two matrices in a tiling block

and present the redundancy across different warps in a threadblock. I run through

multiple applications and found over 30% SIMT redundant instructions derived from

their operand values. This thesis also focuses on removing these SIMT redundant

instructions, Finally, this thesis will also present a hybrid software and hardware

solution to reduce the waste of hardware resources on SIMT redundant instructions.

This chapter begins with the discussion of GPU underutilization problems in the

presence of latency-sensitive applications. We follow with a close look at the kernel

scheduling issues when executing latency-driven applications composed of multiple

kernels simultaneously and the redundancy shown in the SIMT executions. At last,

I will present several open challenges when increasing GPU resource utilization and

reducing the number of redundant SIMT instructions.

1.1 GPU Underutilization on Latency-sensitive Applications

This section addresses the GPU underutilization problem in the presence of

latency-sensitive applications and challenges to overcome such an obstacle on con-

temporary GPUs.
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1.1.1 Narrow Task

GPGPU computing has demonstrated an ability to accelerate a substantial class

of compute-intensive applications [1, 2]. These applications have a high degree of

parallelism, where iterations of large parallel loops are executed on the GPU. The

programs see significant performance benefits because they can fully utilize the GPU’s

hardware resources by launching enough concurrent threads.

The GPU’s performance benefits start to diminish as the degree of parallelism

lessens. Conventionally, large parallel loops are offloaded to the GPU, while retaining

the execution of smaller ones on the CPU. Applications should benefit from using the

GPU, provided that the involved task (or CUDA kernel) count is sufficiently high.

Each such task, called a narrow task, has limited parallelism (< 500 data parallel

threads in practice).

Narrow tasks emerge in a number of scenarios. One set of such applications com-

prises latency-driven, real-time workloads. For example, online sensors that generate

small inputs, resulting in tasks with low parallelism. Online sensors can generate

many tasks in quick succession and require immediate processing. These workloads

have been characterized as having mixed task and data parallelism [3, 4]. Secondly,

irregular applications can exhibit narrow tasks. These applications often contain

varying amounts of computation among different threads, and/or among loop itera-

tions. To reduce load imbalance, these applications are often represented using many

tasks with low degrees of parallelism [5]. Irregular workloads may also arise in multi-

programmed environments. Different applications with low degrees of parallelism can

be co-executed on a node to exploit all the computing resources.

1.1.2 Prior Work to Overcome GPU Underutilization

Prior work has identified the issue of GPU underutilization [6–9]. One approach

to solve this problem is to statically fuse multiple smaller tasks [6,7] to accumulate a

large kernel. Advanced approaches [8, 10] use a concurrent kernel mechanism, moni-
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toring and time-slicing their execution at runtime to obtain fair sharing. These static

approaches require the programmer to fuse tasks manually and none of them have

been shown to work beyond ten concurrent tasks.

These mechanisms also require static knowledge of the kernels to be fused, which

is not always possible in multi-programmed or real-time environments. Addition-

ally, individual tasks in a fused tasks receive the same on-chip resource allocation,

e.g., shared memory and registers, thereby limiting occupancy based on the resource

requirements of the largest task.

Dynamic (runtime) solutions can mitigate the above issues of static fusion.

NVIDIA’s current-generation GPUs employ HyperQ [11], which allows 32 kernels

(tasks) to concurrently execute on the GPU. However, I show that narrow tasks can

still cause underutilization, as 32 such tasks may not occupy the entire GPU. I argue

that software mechanisms are needed to achieve flexible kernel concurrency. Prior

work, GPU enabled Many-Task Computing (GeMTC) [9], presents a runtime task

scheduling mechanism, where a task executes as a single threadblock. Threadblocks

are sets of threads constituting the GPU kernel. Because GPU architectures limit

the concurrent threadblock count, executing narrow tasks in GeMTC may result in

poor utilization. In addition, GeMTC uses batch-based task execution, which results

in delayed task launching and load imbalance since the completion time of a batch is

determined by its longest running task.

1.1.3 Challenges in Designing a GPU Runtime System for Narrow Tasks

There are three key challenges that must be addressed when attempting to launch

and run thousands of short-running tasks on a GPU.

First, CPU-GPU communication overhead must be minimized, while allowing the

GPU to asynchronously schedule new tasks on each Streaming Multiprocessor (SM).

Launching thousands of short-running tasks increases the importance of minimizing

the time it takes for each task to begin execution on the GPU. Since the CPU and
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GPU must coordinate task spawning and scheduling over the PCIe bus, which cur-

rently has no support for atomic operations, the handshaking required is expensive or

impossible if a traditional data structure, such as a queue [12], is used. Previous work

that required OS-like co-ordination over PCIe [13,14] solved consistency issues using

a producer-consumer model but did not have to optimize the system for many, short

running tasks. The second challenge is to keep the overheads involved in task spawn-

ing and scheduling low. Minimizing both the copying of task parameters and the

search for free GPU resources is important when task execution times are short. The

third issue is supporting native CUDA functionality such as shared memory usage

and efficient threadblock synchronization.

1.1.4 Pagoda GPU Runtime System for Narrow Tasks

I proposed Pagoda – a GPU runtime system and is designed to increase the number

of concurrent tasks (kernels) on a single GPU. The programmer replaces certain

CUDA API calls with equivalent Pagoda calls in the host and device codes, retaining

the functionality of the CUDA programming model. Unlike static solutions, the

programmer does not have to tediously fuse the available tasks. Pagoda achieves

high utilization by continually running a MasterKernel, which controls the execution

of all GPU warps in software. In Pagoda, tasks are spawned by the CPU as soon

as they become available, without batching. On the GPU side, the MasterKernel

virtualizes the GPU’s resource allocation and threadblock scheduling mechanism to

allow individual warps to make progress as soon as resources are available.

1.2 Latency-sensitive GPU Applications with Deadline Constraints

This section addresses problems when executing latency-sensitive applications

with real-time deadline constraints simultaneously on a single GPU and previous

work that improve QoS of GPU latency-sensitive applications.
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Fig. 1.1.: Characteristics of many-kernel latency-sensitive jobs versus few-kernel

latency-sensitive jobs, listed in Table 6.3

1.2.1 Constraints of GPUs on Latency-sensitive Applications

GPUs are the programmable accelerator of choice for massively data-parallel ap-

plications that do not have strict latency requirements. However, there is a growing

class of latency-sensitive, data-parallel workloads that can benefit from the GPU’s

throughput. Examples include machine learning (ML) inference for RNNs [15–20],

network packet processing [21–23] , and natural language processing (NLP) in In-

telligent Personal Assistants (IPAs) [24]. These latency-sensitive applications have

become a staple of contemporary datacenters and have response time constraints.

For instance, Google TPU [25] paper raises RNN inference applications have 7 mil-

liseconds response time constraint. These latency-sensitive applications have become

a staple of contemporary data centers, which increasing include GPUs and other

high-throughput accelerators. Given the availability of GPUs in the data center, and

the data-parallel nature of the applications, there is significant potential to offload

work from overburdened CPUs to an accelerator. However, contemporary GPUs are
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deadline-blind and have no mechanism to predict which work can be offloaded and

completed in time.

Many deadline-driven applications exhibit a middling amount of data-parallelism

[26]. Enough to justify GPU acceleration, but not enough to fully utilize the GPU’s

resources [24,27]. As a result, executing one job on the GPU at a time causes severe

underutilization. To alleviate this issue, programmers batch similar jobs together [19],

greatly improving throughput and utilization at the expense of additional latency.

This increase in latency is usually unacceptable for tasks with tight deadlines [25],

especially when realistic job arrival rates are considered. GPU programs can avoid

batching, while still executing multiple jobs at once with streams. Streams allow

kernels from independent jobs to be scheduled concurrently on multiple command

queues located between the CPU and GPU [11, 28]. However, software cannot effi-

ciently manage the relative priority of these queues at short time scales, which makes

it difficult to efficiently re-prioritize jobs with different deadlines as contention in the

GPU changes.

State-of-the-art GPU solutions for managing latency-sensitive tasks are restricted

to varying priorities at a coarse granularity on the host CPU [29–31], and thus

do not fully utilize the GPU’s integrated queue scheduling logic. Consequently,

the precision of information available to these CPU-side mechanisms is limited.

Dynamic, microsecond-scale information about GPU-side contention, which some

latency-sensitive applications require, is difficult to track from host-side software.

As a result, these software-only techniques are less effective when scheduling many

latency-sensitive jobs and primarily focus on mixing latency-insensitive and latency-

sensitive work. In contrast, we target a common situation in many data centers where

many homogeneous, latency-sensitive jobs are executing in parallel [32].

Figure 1.1 demonstrates how quickly scheduling decisions must be made when

executing concurrent latency-sensitive jobs. To better understand their demands,

we subdivide our latency-sensitive applications into two categories: many-kernel and

few-kernel. The many-kernel applications we study, which come from ML inference,
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are composed of a number of relatively small, short kernels and typically have dead-

lines on the order of milliseconds. The few-kernel applications, which come from

network packet processing and IPAs, execute a single, much longer kernel, but have

more aggressive deadlines (usually < 1 ms). To efficiently manage both many-kernel

and few-kernel applications, per-kernel scheduling decisions must be made at the

microsecond timescale.

We argue that dynamic, integrated stream scheduling is necessary to meet the

low-latency scheduling demands of these workloads. An analogy can be made to

the memory hierarchy in modern CPUs. At the lower-levels of the CPU memory

hierarchy, the operating system is responsible for managing the replacement of rela-

tively large pages in physical memory from the relatively high-latency disk. However,

smaller cache blocks, which require nanosecond-scale response times, are managed

by hardware. In throughput-oriented GPUs, scheduling relatively few, millisecond-

or second-scale kernels in soft-ware is acceptable. However, managing many short-

running kernels competing for GPU resources to meet sub-millisecond or millisecond-

scale deadlines requires hardware support.

1.2.2 Prior Work to Improve QoS of Latency-sensitive GPU Applications

Contemporary GPUs [11, 28, 33] contain multiple queues to manage independent

work submitted asynchronously with streams. This parallel work can be executed

concurrently on a GPU when resources are available. In this section, we describe the

work to schedule multiple kernels on a GPU.

Preemptive GPUs

Prior work on GPU kernel preemption or re-execution [34–37] are alternative

mechanisms that can be used in combination with better stream scheduling. How-

ever, for latency-sensitive workloads, the overheads associated with preempting GPU

kernel contexts, whose aggregate registers and scratchpad size can be 100s of KBs
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Fig. 1.2.: Comparison of Round Robin and Laxity-aware Schedulers for a GPU that

can simultaneously execute 2 jobs

Table 3.1, may be prohibitive. Additionally, the benefits of preemption are muted for

short running kernels that finish long before the cost of preemption and rescheduling

can be amortized. Specifically, Table 3.1 indicates that the vast majority of ker-

nels in our evaluated latency-sensitive workloads complete within 10 us. Recently

proposed preemption-based techniques, such as PREMA, are effective at intelligently

preempting and scheduling relatively coarse-grained tasks [38].

GPU Stream Scheduling

The Command Processor (CP) is an integrated microprocessor within a GPU,

which parses the kernel contexts and schedules streams. In Figure1.3, each stream is

mapped to a queue and each queue can hold multiple kernels from a single stream.

Inter-kernel dependencies between kernels in the same stream are maintained, but

GPUs can execute kernels from different streams simultaneously. Each queue entry
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describes a separate kernel and includes details such as the kernel’s thread dimen-

sions, register usage, and local data store (LDS) size. We assume the CP can parse

four different streams in parallel every 2 microseconds in this work. Afterward, a

work-group (WG) scheduler reads these fields to dispatch work groups to compute

units (CUs). Generally, GPU work group schedulers issue all work groups from one

kernel before switching to issuing work groups from a different kernel. Despite this

restriction, work groups from kernels in different queues often interleave execution.

Normally, the CP schedules kernels within these queues in a Round Robin (RR)

manner [48]. This deadline-blind scheduling policy makes it harder to complete jobs

by their real-time deadlines. The top half of Figure 1.2 illustrates the problem with

RR. In this example, the GPU is running three jobs with varying arrival times such

that the deadline of each job varies. Each job contains two kernels with different

execution times. For simplicity, assume that at most two kernels can be concurrently

executed. RR will schedule kernel 1 from job 1 (J1:K1) and kernel 1 from job 2
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(J2:K1) first because they arrive before job 3. When job 3 arrives, its first kernel is

scheduled after J1:K1, and then J3 is not scheduled again until both J1:K2 and J2:K2

have executed. Since J3 is the longest job, if it had been prioritized over J1 and J2,

all the jobs could have made their deadlines. However, since RR is unaware of this,

J3 misses its deadline.

Priority-based GPU Programming

At the application level, programmers can specify the priority value of streams.

However, the limited number of priority levels (e.g., high and low) in GPU program-

ming languages [39] is insufficient. First, the priority level submitted by programmers

does not give any information about when the kernel must be completed, only the

kernel’s relative importance. Second, priorities assigned to individual streams do not

provide the GPU a global view of when to complete a chain of dependent kernels. As

a result, programmers conservatively set a job’s priority to ensure that its deadline is

met. Finally, jobs can have different amounts of work despite potentially having the

same static priority level.

Laxity-based Scheduling on GPUs

Laxity-based scheduling [40] leverages the laxity which tells us how close to the

deadline of a job is predicted to finish. The dynamic laxity value is a job priority in

the laxity-based scheduling. Jobs with less laxity have higher priority. Laxity-based

scheduling was used in the real-time applications to ensure jobs to be completed by

their deadlines. Also, laxity-based scheduling relies on accurate job execution time

prediction to adjust jobs’ priorities dynamically. However, GPU occupancy and job

arrival rates cause the completion time of each job and their associated kernel(s) to

vary. These dynamically varying parameters make static predictions of job completion

time extremely difficult.
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I propose to dynamically adjust the priorities of each job (and its associated queue)

based on the estimated execution time of each job’s kernels. By adjusting the priori-

ties, kernel launches are re-ordered to increase the number of jobs completed by their

deadlines. The bottom half of Figure 1.2 demonstrates that with reasonably accurate

execution time estimates, a deadline-aware scheduler can optimize the scheduling of

deadline-sensitive jobs (similar to prior work for CPUs [74][75]). The bottom example

begins like the top example, with the GPU scheduling job 1 and job 2 first, because

they arrive earlier than job 3. However, the LAX scheduler is aware of the deadlines

and durations of all 3 jobs, so it prioritizes J3 when it arrives since it will miss its

deadline if not immediately scheduled (i.e., it has a zero laxity). As a result, all three

jobs completed by the deadlines.

1.2.3 LAX: Laxity-aware GPU Job Scheduler

An effective deadline-aware scheduler must: (1) be aware of each job’s deadline,

(2) estimate the remaining execution time for each job, and (3) frequently adjust

job priority as time progresses and the level of contention in the GPU changes. We

propose an integrated laxity-aware stream scheduler (LAX) that achieves all three of

these requirements.

LAX leverages the idea that stream-based GPU applications enqueue all their

kernels in quick succession. In the many-kernel jobs, although each kernel launch

is dependent on the data output by the previous kernel, all the kernels associated

with a particular job are known before the GPU begins execution. As a result,

LAX uses the GPU’s queue scheduler (or command processor (CP)), to perform

a novel stream inspection technique that reads the contents of parallel hardware

streams and generates an estimate of how much work exists in each job. LAX’s

scheduling algorithm then combines this information with the job’s deadline and

fine-grain information about the current per-kernel work completion-rate to generate

an accurate estimate of how much laxity the job has. A job’s laxity is an estimate of
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how much earlier than its deadline it will finish, given current conditions [40]. Based

on each job’s estimated laxity, our scheduler re-prioritizes jobs to complete as many

as possible by their respective deadlines. With the rich, fine-grained information

available to GPU stream schedulers, LAX also prevents job oversubscription by using

a Little’s Law-based queuing delay estimate [41, 42] to reject work that is predicted

to miss its deadline. My proposed stream inspection, per-kernel work completion

monitoring, and job rejection mechanisms make real-time scheduling possible and

practical in GPUs

1.3 Redundancy on GPU SIMT Instructions

This section illustrates the redundancy embedded in GPU SIMT instructions, pre-

vious work, and challenges to improve the performance and energy of GPUs through

the elimination of SIMT redundant instructions.
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1.3.1 Threadblock-wide Redundancy on GPU SIMT Instructions

Graphics Processing Units (GPUs) run thousands of concurrent scalar threads

based on programmer-defined parallelism. Programmers define a three dimensional

grid of threadblocks (TBs) for each kernel. TBs are three-dimensional arrangements

of scalar threads, grouped into warps behind the scenes for Single Instruction Multiple

Thread (SIMT) execution. Although the programming model for GPUs is SIMT, the

underlying datapath is Single Instruction Multiple Data (SIMD). Each warp has a set

of private vector registers from a vector register file storing per-thread scalar values in

each vector lane. For example, each lane in every warp of the TB contains the same

scalar value such as the shared constants and TB dimensions [43–45]. Furthermore,

affine redundancy occurs when vector registers in different warps have the same value,

which can be represented as (base, strand) pair. This redundancy occurs naturally

in multi-dimensional TBs where consecutive lanes have consecutive threadId values,

replicated in the private register space of each warp in the TB. Unstructured redun-

dancy occurs when registers have the same vector values in each warp of the TB,

but those values have no discernible pattern. However, little work exists on stati-

cally identifying and removing all three types of redundancy that can exist on GPU

programming model.

To help understand this redundancy, Figure 1.4 shows the results of a limit-study

measuring the fraction of redundantly executed instructions at the grid, TB, and

warp level.Instructions are classified as redundant at the grid-level when all the grid’s

warp instructions operate on the same vector operands, implying it need only be

executed once for the entire grid. Similarly, Figure 1.4 plots redundant instructions

for TBs if all warp instructions within a TB use the same vector operands. Warp-wide

redundancy occurs if all scalar threads in a warp operate on the same scalar value.

We find that the greatest opportunity for redundancy elimination exists at the TB

level, where on average 33% of instructions need only be executed once per TB.
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GPU languages like CUDA and OpenCL express parallelism defined along multi-

ple (x, y and z) axes, which helps programmers naturally map multi-dimensional data

to multi-dimensional thread grids. However, this dimensionality can have a signifi-

cant impact on redundancy. While opportunities exist for redundancy elimination at

the warp granularity (through scalar instructions), eliminating vector instructions at

the TB and grid levels improves both performance and energy efficiency without the

addition of functional units or register files. Unlike warp-wide redundant operations

that are local to one vector instruction, TB- and grid-wide redundant instructions

occur across different vector instruction, each of which occupies space in the instruc-

tion pipeline. Elimination of these vector instructions frees space in the pipeline, and

reduces pressure on the memory system if the instruction is a memory operation. In

practice, grid-wide redundancy is both difficult to eliminate and less common than

TB-wide redundancy. I therefore focus this thesis on the elimination of TB-wide

redundant instructions to improve both performance and energy efficiency.

1.3.2 Previous Work on Removing GPU SIMT Redundant Instructions

Contemporary GPUs from NVIDIA and AMD use a scalar functional unit and

register file to perform operations on warp-wide redundant data identified by the

compiler [46, 47]. Research has also sought to address warp-level redundancy by

masking off lanes in the vector pipeline and skipping partial warp instructions when

the SIMD width is less than the warp size [43–45]. Other work has proposed adding

expensive value comparison hardware to the pipeline to remove redundancy at the

issue stage, or reduce register file space via compression [48,49]. I use insights gained

from creating a redundancy taxonomy for TBs to identify both new opportunities

for instruction skipping that are unexplored in these works, and ways to offload

redundancy identification to the compiler. This allows my proposed work to both

avoid expensive value comparisons in hardware, and improve performance by skipping

entire vector instructions before they are fetched in the frontend of the pipeline.
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1.3.3 Challenges on Eliminating GPU SIMT Redundant Instructions

Value sharing and instruction elimination is difficult to solve solely in the compiler

or hardware. Alone, the compiler is not able to efficiently coordinate value sharing

and instruction skipping between parallel warps. Likewise, it is difficult for a solely

hardware implementation to detect redundancy in warp-wide vector registers, and

a reactive mechanism to detect redundancy in register file accesses and forward PC

values marked as redundant to the frontend of the pipeline is complex. My proposed

work therefore uses a combined compiler and hardware approach to avoid these prob-

lems.

1.3.4 DARSIE GPU SIMT Redundant Instruction Skipper

In this thesis, I examine the root-causes of TB-wide redundancy, and find that

many conditionally redundant instructions at the TB level that can be identified

during static compilation. We observe that the layout of thread indices in multi-

dimensional TBs creates redundancy in the registers storing thread IDs. This redun-

dancy propagates into dependent instructions that can also be traced and identified

statically. A per-kernel runtime check of a TB’s dimensions can be used to determine

if conditionally redundant instructions are actually redundant. This avoids perform-

ing expensive vector register comparisons at runtime. Based on these observations, I

propose Dimensionality-Aware Redundant SIMT Instruction Elimination (DARSIE),

a TB-centric instruction skipping mechanism that statically identifies TB-redundant

instructions using a combination of compiler markings and runtime TB-sizing infor-

mation. Once identified, TB-redundant instructions are skipped by the hardware

before they are fetched. DARSIE uses a novel multithreaded register renaming and

instruction synchronization technique to share the values from redundant instructions

among warps in each TB. This differs from CPU register renaming that is used to

remove false dependencies in single-threaded pipelines.



17

Contemporary GPUs are designed to perform well when executing regular kernels

with limited control-flow divergence. As a result, these regular applications are the

most commonly run in the field today [50]. Although these applications can be

computationally-dense, we demonstrate that they also operate a significant number

of redundant operations. In contrast to the body of orthogonal work on improving

GPUs in the presence of irregular, cache- and scheduling-sensitive workloads [51–

55], DARSIE is designed to target common contemporary workloads which prior

work has demonstrated are insensitive to locality-optimizing techniques that focus on

scheduling [51].

To demonstrate how common multi-dimensional redundancy is, we conducted a

survey of 133 applications [56–67] running on a commodity NVIDIA Volta GPU. Over

33% of the applications surveyed demonstrated the multi-dimensional TB character-

istics that create implicit redundancy. Interestingly, we find that this characteris-

tic is more pervasive in applications that make use of optimized libraries (CUDNN,

CUBLAS, etc.), where 60% met DARSIE’s conditional redundancy requirements.

Furthermore, in the apps that had at least one kernel that met the sizing require-

ments, an average of 71% of the application’s execution time is spent in those kernels.

1.4 Contributions of This Thesis

In this thesis, I demonstrate the hardware and software designs to improve the

GPU utilization and response time on latency-sensitive applications. The main con-

tributions are as follows:

• A GPU runtime system virtualizing the hardware resources. To in-

crease GPU throughput in the presence of narrow tasks, I present a software

mechanism – Pagoda to schedule multiple tasks on the GPU in parallel, and

describes a pipelining scheme to overlap several task processing stages. Pagoda

includes new APIs to handle the operation of task processing and software so-

lutions for dynamic shared memory management and sub-threadblock synchro-
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nization. Furthermore, Pagoda introduces a continuous task spawning mecha-

nism to reduce CPU-GPU synchronizations to obtain a high task spawn rate.

• A deadline-aware GPU kernel scheduler for real-time applications

with deadline constraints. Contemporary GPUs supports the concurrent

kernel execution, but its round-robin kernel scheduling policy does not satisfy

QoS requirements in latency-driven applications. Thus, I propose a laxity-aware

algorithm (LAX), which is used in combination with a dynamic, per-kernel work

completion rate to generate an accurate estimate of work and time remaining.

LAX dynamically varies job priorities to improve throughput while attempting

to meet real-time latency requirements.

• The elimination of GPU redundant SIMT instructions . I introduce

a new taxonomy of redundancy for GPUs, focusing on the TB granularity.

I show that the composition of TB-wide redundancy is highly dependent on

the dimensions of the TB, and that thread index layouts in multi-dimensional

TBs create ample implicit redundancy. Therefore, I propose DARSIE, which

combines our redundancy identification software with novel instruction skipping

hardware to ensure that redundant instructions are fetched an executed only

once per-TB. DARSIE leverages multithreaded register renaming and selective

warp synchronization to share vector registers between warps in a TB, allowing

TB-redundant instructions to be skipped in the fetch stage of the pipeline.

1.5 Thesis Overview

The following sections present the work that improves 1) the GPU resource uti-

lization in the presence of narrow tasks. 2) the number of concurrent latency-sensitive

jobs completed by their real-time deadlines. 3) the waste of GPU hardware resource

caused by redundant SIMT instructions. Chapter 2 illustrates background and related

work. Chapter 5 presents Pagoda GPU runtime system. Chapter 4 illustrates a tax-

onomy of GPU redundancy. Chapter 6 describes the work of deadline-aware LAX job
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scheduler. Chapter 7 demonstrates DARSIE that eliminates redundant GPU SIMT

redundant instructions. The conclusion and future work are placed on Chapter 8.
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2. BACKGROUND AND RELATED WORK

In this chapter, I describe the GPU architecture, constructions of GPU programming

languages, and GPU microarchitectural model. Then, I examine the prior solutions to

helping the GPU utilization and QoS requirements on domain-specific architectures.

At last, I also discuss the taxonomy of GPU redundancy and the previous work in

removing GPU redundant SIMT instructions.
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Fig. 2.1.: GPU Architecture: The number of GPU cores is dependant with different

GPU generations and the scratchpad cache is shared with L1D cache.

2.1 GPU Architecture and Programming

The GPU hardware typically consists of multiple GPU cores within Streaming

Multiprocessors (SMs) on NVIDIA GPUs [67] and Compute Units (CUs) on AMD

GPUs [68]. Each GPU core has its private L1 data cache and one on-chip programmer
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managed cache, known as shared memory and a number of 32-bit registers. L2 cache

and I-cache are shared across different GPU cores. GPU scalar threads typically

share register files and the shared memory space in each SM and CU. Within a

SM and CU, the SIMD unit contains hundreds of SIMD lanes for parallel thread

arithmetic-logic unit (ALU) executions. In NVIDIA GPUs, the Warp is the basic

Single Instruction, Multiple Thread (SIMT) work unit, which comprises 32 threads

that march in lockstep, executing the same instruction. In AMD GPUs, a wavefront

is like the warp and composed of 64 threads. Each SM has multiple warp slots and

warp schedulers. The warp scheduler can concurrently schedule up to 64 warps and

issues ready warps to SIMD unit for the execution.

In the CUDA programming model, the programmer organizes parallel work in

kernels. Threads of a kernel are grouped into threadblocks. Multiple threadblocks can

reside on each SM, the maximum number being 32. The threadblock size is limited

to 1024 threads, or 32 warps. Each SM can hold up to 2048 concurrent threads [67].

Both the shared memory and registers of an SM are partitioned among the executing

threadblocks. There is no CUDA primitive for global, kernel-wide synchronization;

however, threads in a threadblock can use the syncthreads() function as a barrier.

A way of measuring the GPU utilization is occupancy. Occupancy is the ratio of

the total number of resident GPU warps divided by the maximum number of warps

that can co-exist in the GPU (i.e. 64 × the number of SMs in the GPU). The kernel

occupancy is affected by three factors, namely, i) size of threadblocks, ii) kernel’s reg-

ister count, and iii) size of the requested shared memory. Balancing these three factors

requires programmer expertise, making high occupancy often difficult to achieve. For

exampke, NVIDIA Volta V100 GPU [69] has 80 SMs. Consider a scenario of narrow

tasks, where one task has 256 threads, or 8 warps. If only one task is executed at a

time, the occupancy would be (8/(64×80))×100% = 0.156%. With HyperQ [11], 32

kernels may co-execute, meaning that 32 narrow tasks can run simultaneously. The

achieved occupancy then would still be low, i.e. (8×32/(64×80))×100% = 5%.
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2.2 GPU Micro-architectural Model

Figure 2.2 presents the GPU microarchitectural model. Each cycle, a fetch sched-

uler ( 1 in Figure 2.2) in the frontend of the pipeline initiates a fetch for one of the

warps assigned to the core. This scheduler uses loose-round-robin (LRR) prioriti-

zation, and initiates instruction cache (I-cache) fetches based on which warps have

empty instruction buffer (I-Buffer 2 ) entries. Each warp has a two-entry I-buffer that

is used to decouple the SIMT frontend (which fetches one PC for an entire 32-thread

warp) from the SIMD backend. Each cycle, multiple issue schedulers select at most

two instructions from one warp each for execution. Warps are statically partitioned

among these issue schedulers.

Once selected to issue, instructions must read their source operands (32-element

vector registers with 32-bit elements) from a highly banked register file ( 4 ). To

avoid excessive bank conflicts and facilitate high bandwidth, an operand collector [70]

schedules register file reads in a way that limits stalls. These operand collectors are the

inputs to the execution stage of the pipeline. The mapping between <named vector

register, warp ID> pairs and physical vector register contents is programmable, and

based on a mapping table initialized when a Threadblock (TB) is launched on an SM.
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This is necessary since each warp can be assigned a different number of registers at

compile time.

There is little documentation on how this register mapping is achieved, so we

make the assumption that blocks of registers are assigned to warps using a simple

base register + length mapping table. This avoids storing a unique <named vector

register, warp> pair for each physical vector register. We also assume this mapping

is done in the operand collection phase. Contemporary GPUs (like the Pascal card

we model) do not have scoreboard logic embedded in the core, but rather encode

dependencies in their instruction stream. Variable-cycle memory instructions are

controlled via depbar instructions that ensure source registers read by instructions

have received responses to their memory requests before a dependent instruction is

issued.

2.3 Processing Narrow Tasks on Domain-specific Accelerators

Task-based models [71,72] employ a runtime system which governs task executions

on various engines, such as CPUs and GPUs. These systems, however, always execute

narrow tasks on CPUs, believing that their low parallelism degree cannot overcome

the overhead of memory copies. This section indicates the work that aims to increase

the GPU utilization on workloads composed of narrow tasks.

2.3.1 Static Software Approaches

Static task fusion is the preliminary approach to deal with GPU underutiliza-

tion. Wang et. al. [6] present a mechanism where such fusion achieves higher uti-

lization, resulting in energy benefits. KernelMerge [7] statically fuses kernels, and

explores round-robin and fair-partitioned execution schemes for these kernels. The

GPU programming models, such as CUDA and OpenCL, allocate same resources to

each thread. Therefore, the resource usage in static fusion schemes gets limited by

the requirements of the most resource-hungry task. A more sophisticated approach
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is therefore to perform fusion at the runtime. Two approaches [8, 10] perform ker-

nel consolidation leveraging concurrent GPU kernel execution. They launch multiple

concurrent kernels, where resources not being used by one kernel can be yielded to

another. The first approach [10] relies on a threadblock-level launching scheme. The

second approach [8] presents a compiler scheme that transforms kernels so that they

can automatically support any threadblock configuration. This ability helps in find-

ing the best sharing configuration for different kernels. Zhong et. al. [73] present

an approach where a large kernel is split into independent smaller kernels that co-

execute to achieve better utilization. Kato et al. [74] propose a software scheduler at

the device driver layer to prevent interference among concurrently running GPU ap-

plications, trading off response latency for throughput. However, all these approaches

are restricted by the 32 kernel limit imposed by CUDA-HyperQ, and fail to efficiently

execute narrow tasks.

2.3.2 Dynamic Runtime Solutions

Runtime systems that virtualize GPU resources can naturally overcome the

hardware-imposed kernel limit. Additionally, they offer low execution latencies com-

pared to static fusion. Closest to our Pagoda work is GeMTC [9]. Like the Mas-

terKernel in Pagoda, GeMTC runs a SuperKernel that virtualizes GPU resources.

The use of large dameon-like kernels is similar to persistent threading [75]. Unlike

the MasterKernel, the SuperKernel does not guarantee an occupancy of 100%, and

therefore may face underutilization. Secondly, the GeMTC design uses a single FIFO

queue for its batch-based task launching scheme, resulting in significant task schedul-

ing overhead. Third, GPU-specific functionalities, such as the shared memory and

threadblock-level synchronization remain unsupported.

GPU researchers have exploited pipelining [76] to overlap data transfers with ker-

nel computations. The distinguishing factor in the Pagoda pipelined task processing

is that it overlaps spawning, which comprises the CPU finding a free task entry and
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performing a data copy, with GPU scheduling, which is only a sub-part of the overall

task processing. Yang et. al. [77] showed that fusing cross-kernel threadblocks can

obtain better shared memory performance. Pagoda’s shared memory management

schedules threadblocks as long as shared memory is found at runtime.

2.3.3 Preemptive Hardware Scheduler and Virtualization

Prior research has explored preemptive hardware techniques to improve GPU

utilization in the presence of concurrent low occupancy kernels [78–80]. In contrast

to these works, which require hardware changes, Pagoda provides a software only

solution that runs on contemporary GPU hardware and could be applied to any

future GPU hardware that supports the CUDA programming model.

Virtualizing GPU resources has also been explored to improve GPU utilization

via multi-tenancy in cloud computing. Sengupta et al. [81] focus on virtualizing the

GPU as a whole in a cloud with multiple GPUs. Becchi et al. [82] study a virtual

memory system that isolates the memory spaces of concurrent kernels and allows

kernels whose aggregate memory footprint exceeds the GPU’s memory capacity to

execute concurrently. By contrast, Pagoda virtualizes the compute resources of a

single GPU at the granularity of a warp.

2.4 Improving Application Latency on Accelerators

Recent work has optimized GPUs and accelerators for latency-sensitive applica-

tions, especially machine learning algorithms. At the architecture level, these opti-

mizations include distributing and pipelining RNNs across FPGAs [83], compressing

weights [84], increasing batch size and adding special purpose functional units [25] and

redesigning algorithms to move shared weights on-chip [16–18, 37]. At the software

and system levels, optimizations include preemptively scheduling kernels [22], increas-

ing data reuse [85], dynamically combining same-sized RNN cells at runtime [19], and

persistence [26].
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2.4.1 QoS-Aware Scheduling Policies

Recent work has also applied QoS concepts to GPUs. The most relevant related

work is Baymax [30] and Prophet [29]. Baymax uses pre-trained regression models to

predict the execution time of jobs, then uses its predictions to adjust job priorities to

prevent latency-sensitive jobs from missing their QoS targets. Similarly, Prophet [29]

leverages offline profiling and prediction models to co-locate kernels and improve

GPU utilization and QoS. Wang, et al. [86] measure the GPU’s IPC to properly

provision GPU resources and enable kernels to be completed by their QoS targets.

This prior work provides some of LAX’s features, but relies on software-only, CPU-side

schedulers, whereas LAX extends the GPU’s command processor to better respond

to dynamic changes in behavior and avoid host-device overheads. Other orthogonal

work adds QoS support at the memory controller [87,88].

2.4.2 Real-Time Scheduling

Embedded and real-time systems have also utilized laxity, and prior solutions that

use laxity have been deployed on CPUs [89–94] and GPUs [74, 95–98] for real-time

applications. For instance, TimeGraph [74] uses the driver to assign kernel priorities

based on the GPU resource usage. Other work preempts lower priority kernels in order

to execute higher priority kernels [34, 37]. However, preemption schemes are usually

guided by the operating system and have high overhead on GPUs due to their amount

of context state [34,35,37]. Furthermore, the communication latency between the OS

and the GPU makes fine-grained updates difficult. In comparison, LAX dynamically

adjusts the job’s priorities. Prior CPU-side work such as backfilling also exploits

similar ideas [94]. Subsequent work extended backfilling to predict job runtime based

on the runtime of different jobs [93]. More generally, although these CPU-side ideas

utilize similar underlying concepts, they suffer from the same inefficiencies as other

CPU-centric solutions.
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2.5 Solutions on the GPU Redundancy Removal

This section addresses the hardware and software methods to eliminate GPU

SIMT redundant instructions.

2.5.1 Hardware Redundant Instruction Skipper

Instructions operating on identical data has long been observed in CPUs [99–104].

Recent GPU work [43–45, 105–109] has targeted the removal of GPU instructions.

Recent work by Wang and Lin [109] proposes Decoupled Affine Computation (DAC)

that uses the compiler to identify and isolate an affine instruction stream that is

run on a separate pipeline from the SIMT instruction stream. DAC captures the

run-ahead effect of Decoupled Access Execution [110] as well as achieves a reduc-

tion in SIMT instructions by computing affine base + stride values only as needed

in the affine stream. In contrast, DARSIE exploits redundant instructions, which

are fundamentally different than affine instructions. The unstructured redundancy

eliminated by DARSIE cannot be eliminated with affine function units. Xiang et

al. [45] identified inter-warp uniform values in the decode stage, and skips selective,

uniformly redundant instructions using an instruction reuse buffer [100]. Unlike Xian

et al.’s design, DARSIE skips redundant instructions before they are fetched, based

on the pre-emptive detection of TB-level redundancy. Kim et al. [44] presents a

fine-grain(FG-SIMT) execution engine to tackle instructions composed of affine and

uniform value structures. This FG-SIMT architecture aims to improve performance

and energy efficiency for irregular kernels, focusing primarily on scalar instructions.

Lee et al. [49] proposes compressing GPU vector registers to save energy. Esfeden

et al. [111] proposes a register packing mechanism using renaming to that helps save

energy and increase performance by combining reads to multiple registers into a single

access.

Recent approximate computing research [112, 113] concentrates on removing the

execution of similar value structures to reduce energy consumption. Daniel et al. [113]
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observed operand value similarity within a warp. Their approximating warp micro-

architecture [113] can both detect value similarity, and reduce the execution of iden-

tical data across SIMT lanes. G-scalar [114] found that 45% of divergent instructions

are eligible for scalarization. G-scalar [114] compares values of the registers and

compresses them to reduce the usage of the register file. Concurrent work on Warp

Instruction Resuse (WIR) [48] saves energy by reusing registers with identical operand

values across warps through a signature-based renaming mechanism. Unlike DAR-

SIE, WIR relies on a complex, hardware-based redundancy detection mechanism, and

is still bottlenecked on fetch/issue bandwidth.

2.5.2 Compiler-Assisted Approaches

GPU compiler work on scalarization [106,115–117] discovers invariant instructions,

and re-allocates registers to improve performance. Lee et al. [115] exploited conver-

gence and variance analysis to recognize scalar instructions of data parallel programs

statically. This compiler analysis transformed invariant values within a loop to a

scalar instruction. a loop accessed by each threads become a scalar instruction. The

scalarization compiler can pick out these replicated instructions and provide hints for

hardware to skip scalar operations.
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3. LATENCY-SENSITIVE GPU APPLICATIONS

We study a wide group of latency-sensitive GPU applications that represent different

use cases and access patterns to understand how they perform on contemporary

GPUs.

3.1 Applications

This section addresses latency-sensitive GPU applications in machine learning,

network packet processing and speech recognition domains.

3.1.1 Recurrent Neural Networks

RNNs are well suited for domains such as language translation [118, 119] and

speech recognition [10][11] where prior events persist and influence subsequent ones.

RNNs contain loops that allow this information to persist across multiple iterations (or

time steps). The number of times the loop is un-rolled represents the RNN’s sequence

length, which varies across jobs and determines the length of the recurrent step. As

a result, RNNs behave very differently than Convolutional Neural Networks (CNNs)

[120–123]. The hidden state (the memory) is calculated by looking at the previous

hidden state and the input at the current step. RNN models such as Long-Short-

Term-Memory (LSTM) [124] and Gated Recurrent Unit (GRU) [125] add memory

cells to improve accuracy.

Each RNN time step contains multiple kernels with varying degrees of parallelism

and execution time. As shown in Table 3.1, a single-batched LSTM with a sequence

length is 13 consists of 6 unique kernels and each kernel is called multiple times (we

only show LSTM due to space constraints, Vanilla and GRU are similar). In contrast
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to the training phase where latency is less critical [126–128], RNN inference jobs have

real-time constraints [19, 25, 27, 85, 129]. It is challenging to fully utilize the GPU

while minimizing the end-to-end latency of RNN inference applications.

3.1.2 Network Packet Processing

Network packet processing increasingly utilizes GPUs to take advantage of their

massive parallelism. For example, IPV6 performs a Longest Prefix Matching compu-

tation used in IPV6 network packet table lookups and has a stringent 40 microseconds

deadline [21,130]. Similarly, Cuckoo must complete cuckoo hash table lookups to map

MAC address to output ports within 600 microseconds [21][66]. Unlike RNNs, these

networking applications are composed of a single kernel, and their input sizes are de-

termined by the speed of the network. In Table 1, the input size of 8K represents the

number of network packets that arrived per 100 microseconds in 40 Gbps networks.

3.1.3 Intelligent Personal Assistants

IPAs also have significant real-time constraints. Although prior work explores

a series of algorithms used in an Automat-ic Speech Recognition (ASR) pipeline

by IPAs, we focus on Gaussian Mixture Model (GMM) and Stemmer (STEM), two

single kernel pieces that consume the most time in IPAs and thus present the biggest

challenge [24]. GMM maps input feature vectors to multi-dimensional space and

consumes 85% of ASR’s computational time [24]. STEM reduces inflected words to a

certain word stem and takes up to 85% of the remaining time in the ASR pipeline [24].

3.2 Small Data-Parallel Kernels on Latency-sensitive Applications

Table 3.1 characterizes each kernel in a single HIP [131]RNN LSTM inference job

where its batch size is 1 and its hidden layer is 128. Both LSTM and GRU use 5

unique MIOpen kernels [132] and one rocBLAS [133] GEMM kernel that are called
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Table 3.1.: Summary of kernels in latency-sensitive benchmarks

Applications Kernel Name # of calls Execution time Threads Context size

LSTM TensorKernel 1 3 3.96 us 16384 397 KB

TensorKernel 2 5 1.79 us 128 3.1 KB

TensorKernel 3 2 4.45 us 2048 106.8 KB

TensorKernel 4 40 4.74 us 64 9.1 KB

ActivationKernel 5 39 8.87 us 128 11.1 KB

rocBLASGEMMKernel 1 13 127.48 us 1024 562.4 KB

IPV6 IPV6Kernel 1 25 us 8192 329 KB

CUCKOO cuckooKernel 1 300 us 8192 566 KB

GMM GMMKernel 1 1500 us 2048 195.5 KB

STEM STEMKernel 1 150 us 4096 317 KB

multiple times in an RNN forward pass. The MIOpen kernels perform tensor and

activation operations. Each kernel has a varying number of threads. However, most

kernels have few threads, and do not occupy the entire GPU.

The number of threads, registers, and LDS size of kernels determine the GPU

utilization. In an AMD Radeon RX 580 GPU with 36 CUs based on the GCN

architecture [134], each CU can concurrently execute 2560 threads, has 256 KB 32-

bit vector registers, and has 64 KB of LDS. However, LSTM’s GEMM kernel only

uses 1.11% of thread contexts, 1.26% of registers, and 2.78% of the LDS space. The

other LSTM kernels similarly use relatively few resources. Hence, a single RNN job

significantly under-utilizes the GPU, as prior work has also shown for other sequence

lengths, hidden sizes, and batch size combinations [18,27]. Moreover, although IPV6,

Cuckoo, GMM, and STEM are single ker-nel applications, they also complete very

quickly and have narrow kernels with few threads that also under-utilize the GPU.

3.3 Impact of Job Arrival Rate

In a real system, the GPU receives job requests from different users or processes

with varying arrival rates. Batching improves GPU utilization and throughput when
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Fig. 3.1.: Comparing response times with varying job arrival rates, normalized to

batch size 1.

requests arrive at the same time. However, it will delay individual jobs when requests

arrive at varying rates. Streams alleviate this aspect of batching by allowing work to

begin as soon as it arrives.

Figure 3.1 measures our application’s response time on an AMD Radeon RX 580

GPU. We use streams to launch 32K jobs for the networking and IPA benchmarks and

512 jobs for the RNN benchmarks based on our GPU’s maximum memory space. For

the RNNs, we also show data for Hybrid RNNs composed of different RNN models.

In this experiment, all streams use the same static priority. We issue 10000 short

execution time jobs per second (IPV6, CUCKOO, and STEM) and other applications

(RNNs and GMM) at 1000 jobs per second with an exponential arrival rate. Each

RNN job may have a different sequence length. We add padding as needed and

additional waiting time for the arrival of all jobs in a batch when the batch size is

greater than 1.

In general, the high degree of parallelism within large batches increases resource

contention and job execution time. For example, the response time of applications

where the batch size is 128 can be 20-293X slower than the single-batched job due
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to the overhead of waiting for additional jobs to arrive. Additionally, for larger

batch sizes, applications such as STEM and GMM require more work groups than

the GPU can concurrently schedule, which causes additional delays that further hurt

performance. Thus, larger batch sizes may improve utilization for these applications,

but this often comes at the cost of not meeting the deadline for the application. In

contrast, using multiple streams reduces normalized runtime and allows the GPU

to process multiple jobs simultaneously. However, closer inspection of these results

reveals that individual job execution times vary tremendously. For example, RNN

jobs with long sequence lengths complete much slower than RNN jobs with shorter

sequence lengths. The observation exposes an opportunity for a more advanced GPU

scheduler to prioritize longer running jobs and allow more overall jobs to meet a given

deadline without wasting resources executing jobs that cannot meet the deadline.

3.4 Problems of Mixed Task and Data Parallel Applications

Mixed task and data parallel applications are often shown in many domains [135],

[136]. Each independent task has a modest amount of data parallelism. The par-

allel processors can enhance the throughput and latency of these concurrent tasks.

However, there are some performance issues when serving these tasks on parallel

processors.

Remote communication overhead: In stream processing applications, tasks consist

of a sequence of data sets. These tasks are often delivered over physical and wireless

network channels. As a result, the streaming programming requires to manipulate

these high volumes of tasks in a timely fashion [137]. Each independent streaming

task often has a modest amount of data parallelism, and does not have long execution

time. The communication overhead increase the latency of these tiny streaming tasks

in distributing to remote machines. As a result, I demonstrate to execute multiple

tasks simultaneously on a single GPU to reduce the remote communication overhead

in this thesis.
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Parallel programming overhead: Embarrassingly parallel tasks [138] and sparse

matrix computation [139] exhibit the following problems in the parallel computation.

These tasks often lead to load-imbalance because each converge stage yields the dif-

ferent number of tasks. Furthermore, the thread creation of OpenMP programming

increases a significant overhead for task-parallel applications with small data paral-

lelism [140]. Hence, it is required the runtime system to relieve the latency when

serving these mixed task and data parallel applications.
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4. A TAXONOMY OF GPU REDUNDANCY

To help understand why redundancy occurs across vector registers in the same TB,

I introduce a new taxonomy of GPU redundancy. I claim that TB-wide redundancy

has three classes: uniform redundancy, affine redundancy and unstructured redun-

dancy. Uniform redundancy occurs when every lane in every warp of the TB contains

the same scalar value for a particular named register. This typically occurs with

shared constants and TB-invariant registers, like TB IDs and dimensions. Affine re-

dundancy occurs when vector registers in different warps have the same value, which

can also be represented as a (base,stride) pair. This redundancy occurs naturally

in multi-dimensional TBs where consecutive lanes have consecutive threadId values,

replicated in the private register space of each warp in the TB. Unstructured redun-

dancy occurs when registers have the same vector values in each warp of the TB, but

those values have no discernible pattern. In this paper, I show that all three types

of redundancy can be non-speculatively identified at kernel launch time and can be

eliminated without expensive runtime comparison hardware.

Figure 4.1 plots the breakdown of TB-redundant instructions under our new tax-

onomy for a set of benchmarks using either 1 or 2 dimensional TBs. Instructions

are classified based on the type of redundancy in their source registers, and applica-

tions are subdivided by their TB dimensionality. Figure 4.1 shows that both affine

and unstructured redundancy is pervasive in 2D TBs, but largely absent in 1D. The

non-uniform redundancy in 2D TBs stems from the layout of the tid.x register. Con-

secutive threads within a warp are assigned consecutive tid.x values. When the TB’s

x dimension is <= the warp size, the per-lane values in the tid.x register repeat. For

example, with a warp size of 4, and a TB with dimensions 4 × 4, the value in each

of the 4 warp’s tid.x register is (0,1,2,3). Furthermore, accesses to memory based

on affine redundant addresses create unstructured redundancy. I observe that both
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Fig. 4.1.: Fraction of dynamically executed TB-redundant instructions. Instructions

executed in diverged control flow are considered non-redundant.

affine and unstructured instructions can be marked conditionally redundant during

static compilation, and definitely redundant when the TB’s dimensions are known at

kernel launch time.

Uniform redundancy is simple and can typically be traced back to a collection of

known constant and intrinsic variables. These values are often TB invariant, such as

TB IDs, and TB dimensions. I observe that most uniform redundancy is definitely

redundant, and common in both apps with 1D and 2D TBs, as seen in Figure 4.1.

Affine and unstructured redundancy is more subtle and stems primarily from

the GPU’s threadId register values. Furthermore, they are directly related to the

dimensions of an application’s TBs. As Figure 4.1 shows, apps with 1D TBs have

little to no affine or unstructured redundancy. However, it accounts for a significant

portion of total instructions executed for apps with 2D TBs.

To understand how the TB dimensions affect redundancy, consider Figure 4.2.

This pseudo-assembly code reads an integer value from an array with base address 10

and is indexed by each thread’s tid.x value. I use a warp size of 4 with this example
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Instructions Output Register Value

MUL R1, tid.x, 4

ADD R2, R1, #10

LD  R3, MEM[R2]

Output
Reg. Type

Affine Red.

Unstructured 
Red.

Output Register Value

[0,4,8,12]    [16,20,24,28]TB-Affine

Output 
Reg. Type

[0,4,8,12]    [0,4,8,12]
Warp 0 Warp 1

TB-Affine

Unrelated

[10,14,18,22] [26,30,34,38] [10,14,18,22] [10,14,18,22]

Warp 0 Warp 1

Affine Red.

[7,3,0,90]    [7,3,0,90][7,3,0,90]    [55,8,22,1]

(a) 1D threadblock (xdim=8,ydim=1) (b) 2D threadblock (xdim=4,ydim=2)

tid.x=[0,1,2,3]  tid.x=[4,5,6,7]

Warp 0           Warp 1

tid.x=[0,1,2,3]  tid.x=[0,1,2,3]

Warp 0           Warp 1

Memory
Address: [10,14,18,22,26,30,34,38]
Value:   [7 , 3, 0,90,55, 8,22,1 ]

Fig. 4.2.: Pseudo-assembly code to read from an integer array with a base address

of 10 using tid.x as the index with 1D and 2D TBs. Values in output registers for

each instruction are classified based on the pattern they make across the TB. 1D

TBs create affine values that are not redundant, while 2D TBs create both affine and

unstructured redundant values.

as well. Figure 4.2 (a) details the output register values for each instruction in a 1D

threadblock with two warps. Each output register is classified based on the pattern it

creates across all warps in the TB. In 1D TBs, the tid.x register is laid out sequentially

across warps. This creates register values that are affine across the TB (TB-affine),

but not redundant between warps. The two instructions that compute the address

for the array lookup are also affine and not redundant because they are based on a

1D tid.x. The load instruction reads from the affine address, and the value loaded

into R3 is input data-dependent. R3 is neither redundant nor affine in the TB.

Figure 4.2 (b) illustrates what happens to the same code when the TB is 2D

(x=4,y=2). In multi-dimensional TBs, threadIds are assigned to warps by varying the

x dimension first, and consecutive threads in a warp will be assigned consecutive tid.x

IDs. Both warp 0 and warp 1 have tid.x registers that are affine within the warp, and

redundant between warps (affine redundant) in this example. The resulting values

computed for R1 and R2 are, therefore, also affine redundant. Since the address

computed is redundant between the two warps in the TB, both instructions that load
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R3 will produce the same value. R3 is an example of unstructured redundancy. Each

warp has an identical value, but there is no clear pattern in the values themselves

since they are input data-dependent. In this paper, I classify patterns that cannot be

represented with a single <base,stride> pair as unstructured redundancy.

Although Figure 4.2 is a simple example, the conditions under which affine and

unstructured redundancy occurs can be generalized. For 2D TBs, each warp’s tid.x

register will be redundant if the x-dimension is <= the warp size and a power of 2. I

refer to this as conditional redundancy, since it depends on TB’s dimensions that are

known at kernel launch time. While this redundancy starts at the threadId registers,

it propagates throughout the program through register dependencies. Furthermore,

memory instructions that load values from definitely or conditionally redundant ad-

dresses will take on the redundancy characteristics of the address they load. These

observations also apply to 3D TBs, where both the tid.x and tid.y registers can be

conditionally redundant. This is the first work to observe that this redundancy can

be identified prior to execution and optimized out by hardware at runtime.
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5. PAGODA: FINE-GRAINED GPU RESOURCE

VIRTUALIZATION FOR NARROW TASKS

Pagoda [26, 141] is a GPU runtime system, which breaks the hardware constraints

and increases the GPU throughput on latency-sensitive applications. Pagoda issues

tasks(kernels) via its specific API and reschedules warps and the shared memory

within each task in its virtualization layer. Pagoda continuously passes tasks to the

GPU until the full of the GPU. Thus, Pagoda increases the number of concurrent

tasks and removes the limitation of the hardware queues. This section presents the

composition of Pagoda and its specific programming APIs.

5.1 Pagoda Programming APIs

Programmers use Pagoda API functions in their applications to access the Pagoda

runtime system. Pagoda supports the CUDA programming model, where-by the

Pagoda API functions shown in Table 5.1 override the corresponding CUDA functions.

The Pagoda API functions belong to the following two categories:

CPU-side API: The taskSpawn function launches a task from the CPU onto

Pagoda. The programmer specifies the number of threads per threadblock, and the

number of threadblocks as arguments. The programmer also specifies the kernel

to execute, along with the parameters. The size of the shared memory needed per

threadblock in bytes may be specified. The sync flag indicates if threadblock-level

synchronization is necessary for the task. TaskSpawn is a non-blocking function. The

CPU can synchronize with the spawned task(s) using wait and waitAll functions, or

can check the task status with check function. One difference in functionality with

respect to CUDA is that Pagoda returns a taskID for each task. The taskIDs are

essential to use functions such as wait.
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GPU-side API: Since Pagoda virtualizes the GPU resources, the CUDA-based

shared memory allocation and threadblock synchronization cannot be directly used.

Pagoda allocates shared memory and barriers for each threadblock when it gets sched-

uled, and the API provides functions that allow the threadblock to obtain a pointer

to its shared memory, and to perform barrier synchronizations. Pagoda also offers a

function to obtain the threadId of the current thread.

Figure 5.1a shows a possible implementation of Pagoda host code, while Figure 5.1

shows the corresponding device code for FilterBank. The two CPU threads spawn

tasks and wait for their completion. Calling wait() in a nested task allows the CPU

thread to progress, without getting blocked. One key distinction from CUDA is that

the task kernels are written as device functions, instead of global .

Table 5.1.: Pagoda Programming API

CUDA Function Pagoda

Function

Caller Return Value Arguments Description

kernel<<<>>> taskSpawn CPU taskId #threads,

#threadblocks,

shared memory,

sync flag, kernel

pointer, kernel

args

Spawn a task from

CPU onto Pagoda

cudaEventSynchronize wait CPU taskId Wait until the speci-

fied task is over

cudaEventQuery check CPU true if the task

is done, else

false

taskId Returns the status of

the task

cudaDeviceSynchronize waitAll CPU Wait until all tasks in

Pagoda are over

threadIdx getTid GPU thread Id Get the thread Id of

this thread

syncthreads syncBlock GPU Synchronize all

threads in the block

shared char *arr getSMPtr GPU 32-byte aligned

char pointer

Get shared mem

pointer for the

threadblock
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5.2 Pagoda Runtime System

This section introduces the composition of Pagoda runtime system and first de-

scribes the design of MasterKernel that achieves GPU resource virtualization. Next,

the Pagoda task spawning mechanism is described in Section 5.2.2. Pagoda task

spawning mechanism employs TaskTable, a novel data structure that allows simulta-

neous updates from both the CPU and GPU, and is mirrored in both their memories.

TaskTable drastically reduces the CPU-GPU handshaking communication by allow-

ing lazy aggregate updates. Lastly, the section presents Pagoda’s GPU scheduling

mechanism that parallelizes the scheduling process, and overlaps various task pro-

cessing stages.

5.2.1 GPU Resource Virtualization

The MasterKernel continually executes on the GPU as a CUDA kernel. It acquires

all GPU resources, namely warps, shared memory, and registers. The MasterKernel

is launched at the start of Pagoda runtime system. The kernels of tasks are translated

into device functions within the MasterKernel. Later, The MasterKernel allocates

its own resources to these tasks dynamically in Pagoda.

Figure 5.1b describes our MasterKernel design on the NVIDIA Pascal Titan X

GPU. The MasterKernel acquires all warps of each SM (64) by launching two, 32-

warp threadblocks, called MTBs (Master Kernel Threadblocks). Each MTB statically

allocates 32KB shared memory, which later gets assigned to different tasks. The Mas-

terKernel uses the remaining shared memory of the SM to store some of the schedul-

ing data structures. The register count of each thread is capped at 32 (using NVCC

compiler option -maxrregcount) to ensure 100% occupancy for the MasterKernel.

The first warp of each MTB is called a scheduler warp, while the rest of the 31

warps are known as executor warps. The scheduler warp is responsible for scheduling

tasks on the executor warps in the MTB. It also manages shared memory alloca-

tions and barriers. The MasterKernel contains two scheduling data structures. The
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MasterKernel treats Task Kernels as subroutines

//create 2CPU  threads #pragma omp parallel num_threads(2) {while (1) { //keep polling to fetch new tasks#pragma omp task { //each task runs asynchronouslyint status = check_signal();if (status == READY) {cudaMalloc(in_dev); //allocate GPU data for inputcudaMalloc(op_dev); //allocate GPU data for outputcudaMemcpy(in_dev, in, hostToDevice); //copy input//Num. of threads/block: 256, Num. of threadblock: 1//the size of shared memory: 0, Syncflag: True
int taskId = taskSpawn(256, 1, 0, True, &gpufilter,in_dev...);
#pragma omp task { //nested task runs // asynchronouslywait(taskId); //copy output datacudaMemcpy(op, op_dev, DeviceToHost);   cudaFree(in_dev);  //free GPU datacudaFree(op_dev);  //free GPU data}}if (status == TERMINATE)break;}}}#pragma omp barrier //ensure all tasks are done

__device__ gpufilter(float *r_dev, float*H_dev, float *Vect_H, float *Vect_Dn, float *Vect_Up, float *Vect_F, float *F) {int tid = getTid();if(tid < N_sim) //convolve Hfor(int k=0; k < N_col; k++)if((tid-k) > 0)Vect_H[tid] += r[tid-k]*H[k];syncBlock();//Down samplingif(tid < (N_sim/N_samp))Vect_Up[tid] = Vect_Dn[tid];syncBlock();//Up Samplingif(tid < (N_sim/N_samp))Vect_Up[tid] = Vect_Dn[tid];syncBlock();if(tid < N_sim)  //convolving Ffor(int k=0; k< N_col; k++)if((tid-k) > 0)Vect_F[tid] += F[k]*Vect_Up[tid-k];}

Task Kernel Code
CPU Code to use Pagoda CPU SpawnerThreads

CPU TaskTableCopy
Task Entry Structure

exec

eNum
WarpID

SMIndex
barId

WarpTable Slot Structure

PCI Bus Task Entry 0Task Entry 1
Task Entry 30Task Entry 31

Task Entry 0Task Entry 1
Task Entry 30Task Entry 31

Task Entry 0Task Entry 1
Task Entry 30Task Entry 31

Column 0 Column 1 Column 55

GPU TaskTable – Placed in the Device Memory

MasterKernel
SM 0 SM 27SM 1 SM 22

Ready
Sched

Kernel Arguments

SM Size
Sync

Threads
Threadblocks
Kernel Pointer

MTB 1

Slot 1

Scheduler Warp

32KB Shared Mem for Tasks

Executor Warp 0
Executor Warp30

MTB 0

Slot 0Slot 1

Slot 30
Warp Table is placed in the shared memory

MTB 55

Slot 1

Scheduler Warp

32KB Shared Mem for Tasks

Executor Warp 0
Executor Warp30

MTB 54

Slot 0Slot 1

Slot 30

Warp Table 54

......
Warp Table 0

(a) (b) (c)

Fig. 5.1.: Pagoda runtime system overview: The source task kernel and CPU code

require few changes to an equivalent CUDA code. The MasterKernel design is shown

for Nvidia Pascal Titan X GPU. The 56 MasterKernel threadblocks (MTBs) have 1024

threads each. TaskTable is mirrored on both the CPU and GPU. The CPU threads

spawn tasks into the CPU TaskTable, which are then sent to the GPU counterpart.

Scheduler warps inside each MTB find free executor warps to launch tasks on. The

WarpTable performs bookkeeping for each executor warp.

first one, called TaskTable, is mirrored on the CPU and GPU, and is used for task

spawning. Each entry in the TaskTable holds a task. The GPU TaskTable receives

online updates from the CPU TaskTable, and is therefore placed in the GPU device

memory. The second data structure is called WarpTable. Each MTB contains its

own WarpTable, which is placed in the shared memory. Every WarpTable contains

31 slots to maintain the status of each executor warp.
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5.2.2 Continuous Task Spawning

Scheduling algorithms often involve queues that accumulate tasks, where process-

ing elements pull tasks from the queue [14]. To simultaneously schedule several tasks,

multiple pulls must take place in a synchronous/atomic manner, which has long been

recognized as a critical source of overhead [12]. Performing global synchronizations

or atomic operations on GPUs is extremely expensive. Therefore, to reduce this con-

tention, one solution would be to use multiple queues, and only let a smaller set of

GPU threads pull from each queue. Even this solution is impractical. As the CPU-

GPU memories are discrete, before the CPU could spawn a task on a GPU queue,

it must gather the queue head and tail pointers from the GPU. Such handshaking is

expensive because it requires data copies over the PCIe bus. Another way to spawn

tasks is to use a batch-based mechanism [9], where CPU sends a batch of tasks to the

GPU. However, such mechanisms are susceptible to load imbalance across tasks.

The Pagoda design therefore employs TaskTable, a data structure that as we will

show, drastically reduces the amount of CPU-GPU handshaking. Each TaskTable

entry contains the following fields describing the task: 1) number of threadblocks, 2)

number of threads in a threadblock, 3) task kernel pointer, 4) size in bytes of the

shared memory allocation required per threadblock, 5) a flag indicating whether the

task needs thread-block-level synchronization, 6) task inputs, 7) ready field, and 8)

sched flag. Each TaskTable column corresponds to an MTB; The scheduler warp in

that MTB schedules tasks in the column’s entries onto the executor warps of that

MTB. Having multiple rows in the TaskTable allows for high availability of tasks to

schedule. Pagoda uses 32 TaskTable rows per MTB.

TaskTable Operation

When a task is launched via the Pagoda API (a call to taskSpawn), the tasks’s

parameters must be copied into an entry in the CPU TaskTable, then the entry

must be copied to the GPU for scheduling. Since this copy has to occur while the
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State : (Ready field, Sched flag)

taskId, 0

-1, 0

1, 0

Task Spawn: Copy the task entry from the CPU to GPU, with taskId representing the task with ready parameters

GPU is beginning task schedulingTask Return:  Copy task  entryfrom the GPU to CPU

Set taskId’s state to (1, 1)

1, 1

After next task is received

taskId > 1

0, 0
Mark the task done

Performed by CPUPerformed by GPU scheduler warp
Performed by GPU executor warp

Fig. 5.2.: TaskTable State Diagram : The CPU only touches TaskTable entries with

reset ready fields, when a task gets scheduled to warps. and the GPU only touches

TaskTable entries with non-zero ready fields, allowing for simultaneous TaskTable

updates from the CPU and GPU. The sched flag determines when the task gets

scheduled on GPU warps.

MasterKernel is in flight, a ready field is necessary to indicate the finishing of the copy

to the GPU. A straightforward way of implementing this, where the task’s parameter

data and the ready flag are copied in one cudamemcopy transaction, cannot work

because the PCIe bus does not guarantee that the parameters will arrive in the GPU

memory before the ready flag. One solution would be to simply split it into two

cudamemcopy transactions, one for the parameters, and another for the ready flag.

However, this doubles the parameter copying overhead, significantly reducing Pagoda

performance. To solve this issue, we pipeline the launching of tasks. The launch of

a task prompts a copy of its parameters to the GPU, as well as a pointer indicating

which task had its parameters copied in the previous cudamemcopy transaction. In

the steady-state, we achieve 1 cudamemcopy per task table entry and the CUDA

streams API guarantees that the parameters are copied before the task is scheduled.
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TB (-1,0)

TA (-1,0)
TB (TA,0)

TA (1,0)
TB (-1,0)

TA (1,0)
TB (-1,0)

TA (0,0)
TB (-1,0)

TA (0,0)
TB (-1,0)

TA (0,0)
TB (-1,0)

CPU TaskTable

GPU TaskTable

New task (TA) spawned. Task parameters are copied from the call API into TA

TA copied to GPU
New task (TB) is spawned TB copied to GPU S2 enabled TA and changed TB’s state

1

2 S1 schedulesTA
waitAll() call copied TaskTable from GPU to CPU. Next, S1 marked finishing of TA

waitAll() call copied TaskTable from GPU to CPU. CPU starts seeing TA as available.

S1 : Scheduler Warp of the TaskTable Column corresponding to TAS2 : Scheduler Warp of the TaskTable Column corresponding to TB

Fig. 5.3.: Example execution of task TA : TA gets scheduled only after TB is spawned.

Our design allows for the CPU and GPU TaskTable entries to contain mis-matching

values.

Task Spawning Example

Each task’s state comprises its ready field and sched flag. The ready field of each

TaskTable entry can be in one of four states: 0 meaning the task is not ready, -1

meaning the task’s parameters have been copied to the task table, 1 meaning the

task is being considered for scheduling on the GPU, or it can be a taskID which

is an integer > 1. The taskID provides the necessary indirection to implement the

pipelining, indicating which task has already had its parameters copied to the GPU.

The sched flag has two states: 1, indicating that the task is ready to begin scheduling

on an MTB, and 0 meaning otherwise. Figure 5.2 presents a task’s state diagram.

Figure 5.3 presents an example execution of task A (TA). When the taskSpawn

function is executed by the CPU, Pagoda finds a TaskTable entry with a cleared

ready field and copies the task’s parameters into the entry. Since TA is the first task,

the CPU sets the ready field to -1. For all subsequent tasks, it sets the taskId of

the last spawned task, e.g., during task B (TB) spawn, TA is set as the ready field.

The taskIds generated by Pagoda are references to entries in the TaskTable. Next,
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the CPU clears the sched flag, and copies the entry to the GPU. If the ready field is

a taskID, i.e, > 1, the continually polling scheduler warp for the TaskTable column

(S2) sets the state of the previous task (TA) to (1, 1). Next, S2 sets the state of

the current task to (-1, 0) (see Algo. 1, lines 5-11). S2 waits for the state of TA to

be (-1, 0) before changing it to (1, 1). This is achieved through polling orchestrated

with CUDA threadfence calls. Now, S1, the scheduler warp for TA, finds that TA

has a set sched flag, and hence schedules TA. To do so, S1 first clears the sched flag

and then finds executor warps for the task. Once the task execution is finished, the

last finishing executor warp for the task sets the ready field to 0, marking the end of

the task’s execution, and freeing up the task entry TA. If the CPU spawner thread

observes no new tasks come in, it copies back the status of the last task, i.e. TB, and

if it is (-1, 0), then sets it to (1, 1) and copies it to the GPU, ensuring the successful

execution of the last task.

Lazy Aggregate TaskTable Updates: The above mechanism allows both the

CPU and GPU to simultaneously update the TaskTable. As the CPU only spawns a

task if the ready field is reset, the CPU can keep spawning as long as it finds an entry

with a cleared ready field. Similarly, since the GPU only edits TaskTable entries with

non-zero ready fields, it can keep scheduling as long as it finds a task entry with a set

sched flag.

This laziness greatly reduces the number of handshaking communication calls.

Furthermore, aggregated (bulk) copying achieves better data transfer bandwidth on

the PCIe bus. The wait and waitAll functions return only when the ready field(s) of

the corresponding task(s) in the TaskTable is/are reset. The laziness of TaskTable

updates may block these functions if the CPU is not spawning more tasks; these

functions therefore use a timeout, after which they enforce a copy-back of the involved

TaskTable entries.

Because the CPU overwrites the TaskTable while the MasterKernel is in flight,

coherence issues may arise. We therefore marked the TaskTable as volatile, and

performed extensive micro-benchmarking to ascertain that the in-flight writes by the
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CPU to the TaskTable are visible to the GPU and vice-versa on two GPU archi-

tectures, Tesla K40 and Pascal Titan X. This behavior is also confirmed by other

researchers [13,14].

5.2.3 Concurrent Task Scheduling

Task scheduling in Pagoda involves finding free resources (warps, shared memory)

on which to execute a task. All warps of a given task execute in the same MTB. This

design stems from the fact that narrow tasks need less threads than those available

in an MTB.

We found that task spawning and scheduling are high-overhead operations, espe-

cially for narrow tasks, which can be short running. To mitigate this issue, Pagoda

overlaps the three task processing stages, namely, spawning, scheduling, and exe-

cution. Secondly, multiple scheduler warps across different MTBs schedule tasks

concurrently, lowering the time to execution for each task.

Two Pagoda data structures facilitate task spawning and scheduling in parallel:

the multi-row TaskTable and the per-MTB WarpTable. While the CPU is spawning

tasks on a TaskTable row, scheduler warp(s) on the GPU may schedule tasks from

the remaining rows. The status of each executor warp is stored in a WarpTable entry,

whose fields are described in Table 5.2.

Table 5.2.: WarpTable entry fields

warpId maintains the warp ID of the warp, for the current task. It is

used to generate the threadID in the getTid() function.

eNum refers to the task entry in the TaskTable, which is being executed

by the warp. This reference allows each warp to obtain the task

kernel arguments.

SMindex indicates the shared memory starting location for the corre-

sponding threadblock.

barId maintains the barrier ID that the warp should synchronize on. It

is only valid for tasks that request threadblock synchronization.

exec acts as a flag for the warp to begin task execution. It is also

used to query the warp status.
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Algorithm 1 describes the operation of the scheduler and executor warps. The

scheduler warp (Lines 2-24) scans the corresponding column in the TaskTable, and

when it finds an entry with a set sched flag (Line 12), it attempts to schedule the

task. It begins by resetting the sched flag. If the task requires shared memory or

synchronization, then the scheduler first allocates shared memory/barrier (Lines 17-

20) for them (Section 5.3.1) and performs scheduling for each individual threadblock

of the task. If neither shared memory nor synchronization are required, then execution

is based solely on available warp slots (Line 24).

The executor warps remain idle until the exec flag in their WarpTable slot is set.

Once this flag is set, they execute the task (Line 30). Afterwards, they release the

shared memory and the synchronization barriers (Lines 33-36). Lastly, they reset

the ready flag in the corresponding TaskTable entry, and reset the exec flag in the

WarpTable element, marking the warp to be free (Lines 38-40). In order for this

mechanism to work, the scheduler and executor warps must have a consistent view

of the WarpTable, which is achieved by the threadfences. The scheduler warp does

not explicitly monitor the end of a task execution. Hence, it cannot free the shared

memory used by the task’s threadblocks immediately after they finish execution. The

executor warps cannot themselves deallocate the shared memory, since it may lead to

inconsistencies if the scheduler warp is simultaneously allocating the shared memory.

To overcome this issue, the last executing warp of each threadblock requesting shared

memory marks the shared memory region to be freed, and before performing any fu-

ture shared memory allocation, the scheduler warp first deallocates all memory blocks

marked for freeing (Line 19). The allocation/deallocation mechanism is described in

Section 5.3.1.

Scheduling is performed by the threads of the scheduler warp in parallel, through

the PSched function (Algorithm 2). Note that the scheduler warps across different

MTBs operate concurrently. The threads in the scheduler warp find free executor

warps for a given task by checking their exec flags. If a free warp is found, a counter

holding the number of warps that are yet to be scheduled is decremented atomically.
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ALGORITHM 1: Pagoda Task Scheduling : Each MTB Executes this Algorithm

Input: gTaskPool - column of task entries in the TaskTable belonging to the given

MTB, numEntriesPerPool - #rows in the TaskTable, ctr[numEntriesPerPool]

and doneCtr[numEntriesPerPool ] - counters allocated in shared memory, tid -

threadID

1 while (1) do

2 if tid < warpSize then // scheduler warp does this

3 for (i = 0; i < numEntriesPerPool; i++) do

4 entry ← gTaskPool[i]

5 taskId = entry.ready

6 if taskId > 0 then

7 threadfence()

8 continue

9 else

10 prevEntry.ready ← 1

11 prevEntry.sched ← 1

12 if entry.sched then // check if sched flag is set

13 entry.sched ← 0

14 doneCtr[i] ← ctr[i] ← getNumWarps(entry)

15 if entry.SMSize > 0 ∨ entry.sync then // schedule warps per

threadblock

16 for (j = 0; j < entry.numTB; j++) do

17 if (entry.sync) then barId ← getBarId()

18 if (entry.SMSize > 0) then

19 (retVal == false)deallocMarkedSM() // avoids deadlocking

20 retVal ← allocSM(entry.SMSize, &index)

21 ctr[i]← getNumWarpsPerTB(entry)

22 pSched(ctr[i]×j, i, index, barId, &ctr[i])

23 else // schedule all warps

24 pSched(0, i, 0, 0, &ctr[i])

25
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26 else // executor warps do this

27 if (warpTable[warpId].exec) then

28 entryId ← warpTable[warpId].eNum;

29 tEntry ← gTaskPool[entryId];

30 *(tEntry.funcPtr))(tEntry.args) // warp executes the task

31 if (laneId == 0) then

32 if lastWarpInBlock() then // only 1 thread per threadblock

performs this

33 if (tEntry.SMSize > 0) then // dealloc SM

34 markSMForDealloc(warpTable[warpId].SMindex)

35 if (tEntry.sync) then

36 releaseBarId[tEntry.barId];

37 threadfence block();

38 if (atomicDec(&doneCtr[entryId]))) then

39 tEntry.ready ← 0; // free the task entry

40 warpTable[warpId].exec ← 0 // warp is free now

If the result is positive, then the corresponding warp is scheduled (Lines 6-13). This

counter resides in the GPU shared memory, speeding up the atomic operations. Note

that both branches on lines 6 and 7 are divergent, i.e, different threads may have

different branch outcomes. The threads with a false branch outcome may repeatedly

execute the outer while loop, in spite of the other threads finding free warps. To

remedy this problem, all threads in the scheduler warp must be synchronized after

each iteration of the while loop. We achieve this using all(), a CUDA warp-level

vote function, as opposed to the usual CUDA API for synchronization, syncthreads()

which will synchronizes all MTB threads.
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5.3 Supporting Native CUDA Functionality

As tasks in Pagoda are launched by the MasterKernel, native CUDA shared mem-

ory and synchronization management cannot be used. This section describes how

Pagoda supports these functionalities.

ALGORITHM 2: Parallel Warp Schedule Function

Input: tid - thread number, baseWarpId - base warp number getting scheduled,

eNum - number of the TaskTable column entry, index - starting address of the

shared memory for the threadblock, barId - barrier Id for the threadblock,

warpCtr - count of the number of warps to be scheduled

1 pSched (baseWarpId, eNum, index, barId, warpCtr) threadDone ← 1 // private per

thread

2 i ← tid; // private per thread

3 while (1) do

4 if (i < numEntriesPerPool) then

5 threadDone ← 0;

6 if (!warpTable[tid].exec) then

7 if (id ← (atomicDec(warpCtr)) >= 0) then

8 warpTable[i].warpId ← id + baseWarpId;

9 warpTable[i].eNum ← eNum;

10 warpTable[i].SMindex ← index;

11 warpTable[i].barId ← barId;

12 threadfence block();

13 warpTable[i].exec ← 1;

14 if (*warpCtr <= 0) then threadDone ← 1 ;

15 if ( all(threadDone == 1) = true) then // Synchronize threads in the

scheduler warp

16 break;

17 i ← i + 32;

18 if (i > numEntriesPerPool) then i ← tid ;
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5.3.1 Shared Memory Management

CUDA lacks support for software-driven dynamic shared memory allocation once

a kernel has been launched. Tasks in Pagoda piggyback on the MasterKernel, and

hence cannot directly use the shared memory. A need therefore arises for software

management of the shared memory. Each MTB reserves shared memory when it

starts execution, and allocates this memory to threadblocks of one or more tasks, and

frees it after the tasks finish execution.

Our software allocator/deallocator manages small, contiguous regions of shared

memory with low overhead. Unlike many general-purpose allocators that rely on

freelists [142], Pagoda’s algorithm is motivated by the buddy system mechanism [143]

to reduce overhead. Threads of the scheduler warp in the MTB are responsible for

performing the allocations and deallocations.

16K
8K 8K

4K 4K 4K 4K

2K 2K 2K 2K 2K 2K 2K 2K

16K
8K 8K

4K 4K 4K 4K

2K 2K 2K 2K 2K 2K 2K 2K

Allocate 8KShared MemoryBlock

Fig. 5.4.: Allocating 8K of shared memory in Pagoda: The value in each node rep-

resents the size of the shared memory block. Note that not all levels of the tree are

shown here. The white nodes are free blocks and the shaded nodes are allocated

blocks.

Data Structure: The memory blocks are represented as nodes in a tree, as shown

in Figure 5.4. This tree is arranged as an array in the shared memory itself, allowing

fast access. Each level in the tree corresponds to memory blocks of a given size. The
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Free 4KShared MemoryBlock

Fig. 5.5.: Deallocating 4K of shared memory in Pagoda: Ancestors of the current

node are marked free only if the sibling is free.

lowest node in the tree represents 512 bytes of memory, which is the smallest allocation

granularity in our mechanism. The parent of a given node represents a memory block

twice as large. Thus, the total number of nodes in the tree is 128, small enough to fit

in the shared memory. A marked node means the block is allocated, otherwise, it is

free. An invariant of this data structure is that if a node is marked, then its parent

must be marked as well.

Allocation: Figure 5.4 shows a case where a completely free tree receives an 8K

allocation request. The first step is to find the tree level at which node sizes are

no smaller than the request. The static mapping of blocks allows our mechanism to

search for a free node on such a level of the tree, an operation which is performed in

parallel by the threads of the scheduler warp. One of these threads that finds such a

free node marks it. The next operation is to mark all descendants and ancestors of

this node. Since the tree contains only 128 nodes, threads of the scheduler warp each

check four nodes, and mark them if they are either the descendants or ancestors of

the allocated node.

Deallocation: Figure 5.5 shows an example where a block of 4K needs to be freed.

First, the threads of the scheduler warp work in parallel to unmark all descendants of

this node. Next, the first thread of the scheduler warp unmarks the node itself, and

keeps going up the tree unmarking the parent as long as the sibling node is unmarked
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as well. Recall that both allocation and deallocation are carried out only by the

scheduler warp, and hence no locking is necessary while performing them.

5.3.2 Sub-Thread Block Synchronization

CUDA syncthreads() synchronizes threads within a threadblock. If this function

is used directly within the Pagoda kernel code, the synchronization may lead to

undefined behavior. This would occur because the MTB may be running two different

threadblocks simultaneously, and hence all threads in the MTB may not reach the

syncthreads() barrier.

A naive solution to this issue would force all threadblocks running on the MTB to

reach the same barrier. However, this would lead to excessive wait times in thread-

blocks that do not require synchronization. Pagoda presents a sub-threadblock bar-

rier, where only the threads of a given threadblock can synchronize. Pagoda achieves

this using named barriers (using bar.sync instruction) in the PTX programming

model [144]. Each threadblock of a task that annotates the synchronization require-

ment in the TaskTable entry is provided a unique barrier ID during the schedul-

ing of the threadblock (Algorithm 1, Line 17). When a threadblock encounters the

syncBlock() function, this barrier ID is used for synchronization. The PTX model

allows for only 16 such barriers. The Pagoda design therefore needs to recycle these

IDs once the threadblock is finished.

5.4 Evaluation

The following subsections detail our experimental setup and results.

5.4.1 Experimental Setup

The GPU experiments are run on a node with an NVIDIA Pascal Titan X

GPU, which contains 3584 1471MHz GPU cores with 12GB RAM. The machine runs
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Ubuntu 16.04, with 24GB RAM and an Intel core-i7 4.0GHz quad-core CPU. All ex-

periments were run on Nvidia Pascal Titan X GPU except Section 5.4.3. We enabled

32 concurrent kernels in the HyperQ by setting the CUDA DEVICE MAX CON-

NECTIONS environment variable to 32. All CUDA and Pagoda benchmarks are

compiled using nvcc from CUDA 9.0, with -O3 option. The MasterKernel, along

with all task kernels, are forced to use at most 32 registers in the Pagoda versions.

The PThreads and sequential programs are compiled with gcc -O3 and are executed

on two hyperthreaded Intel Xeon E5-2660 CPUs each having 10 cores running at

2.6GHz.

Table 7.1 details the applications used in this study. We chose benchmarks from

various application domains, such as signal and image processing, network security,

and scientific computing where narrow tasks arise often. Table 5.4 shows the workload

characteristics of the benchmarks.

5.4.2 Runtime Performance

Figure 5.6 compares the performance of narrow task applications on different

CPU (pThread), and GPU runtime systems (CUDA-HyperQ, GeMTC, and Pagoda).

Pagoda achieves geometric mean speedup of 1.76X over CUDA HyperQ programs,

1.44X over GeMTC, and 5.52X over the pThread benchmarks. The performance

metric in Figure 5.6 is calculated over the entire execution time, including the time

of both compute and data copy in the GPU benchmarks. We injected 32K narrow

tasks in each application in Figure 5.6, except SLUD (273K). Each task is composed

by 128 parallel threads in the GPU benchmarks. The small number of narrow tasks

does not fully utilize GPU resources. Increasing the concurrent task counts is helpful

for the computational throughtput of narrow tasks. Therefore, the key reason why

Pagoda can outperform other runtime systems is the high GPU utilization. GeMTC

increases the GPU utilization by launching work in batches and tasks are run within

its SuperKernel. We could not implement SLUD in GeMTC; GeMTC needs the
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Table 5.3.: Benchmark Description

MB Mandelbrot sets are used in fractal analysis [?]. Each pixel value of the image is calculated in

parallel; however, the required computation per pixel is highly irregular. Therefore, computation

over each pixel is represented as a task that has low degree of parallelism.

MM This is a standard matrix multiplication implementation, refactored from the NVIDIA SDK

samples. We used small matrix sizes, with each multiplication running as a task to simulate the

behaviour seen in an earthquake engineering simulator [?]. The behaviour arises from concurrent

simulation of various structures, each of which is represented by different but small matrix sizes.

FB Filterbank is a signal processing algorithm that separates input signals into multiple sub-signals

with a set of filters. Multiple radios generate signals, processing each of them represents a task.

Each task contains small amount of parallelizable computation.

BF Beam former is a signal processing method used to control the direction of signal reception

and transmission. Many independent signal beams receive inputs asynchronously. Processing

individual inputs generate a narrow task.

SLUD This is a sparse matrix solver using multi-frontal method [139]. A matrix is divided into multiple

regular sub-matrices. Sparse LUD is represented as a task-based application owing to the

irregularity in the computation size among different iterations of a parallel loop.

3DES It is used to encrypt electronic data [145]. Network routers encrypt multiple packets as they

arrive, each of which is represented as a narrow task. We use NetBench [?] to generate varied

sizes of network packets that 3DES encrypts.

DCT The Discrete Cosine Transform (DCT) [146] is commonly used for compression, e.g, JPEG

(image), MP3 (audio), and MPEG (video) use it. Online surveillance systems gather image

streams from multiple cameras, and operate on images from different streams in parallel [?].

Processing each image represents a narrow task.

CONV Convolution filters [147] are used in blur and edge detection mechanisms in image processing.

Each filter operation represents a task, which operates in parallel across pixels.

MPE Pagoda is able to run multi-programmed workloads, where multiple applications generate nar-

row tasks asynchronously. To evaluate such a setup, we built a multi-programmed benchmark

of our own. Multi-programmed environments often encounter heterogeneity in workloads. To

simulate that, we chose 1) 3DES and Mandelbrot, which contain irregular computations, 2) Fil-

terbank, which requires threadblock-level synchronization, and 3) Matrix multiplication, which

uses shared memory. Each of the benchmarks contained 8K tasks, totalling 32K tasks.

number of tasks to be pre-defined, which is not the case in SLUD. Both GeMTC

and Pagoda can reach 100% GPU occupancy. However, the average performance of

GeMTC is 18% less than Pagoda. The reason is due to the complex task queuing and

lock-step communication of GeMTC. GeMTC performs worse than CUDA-HyperQ

in MB, MPE, and 3DES becuase these applications contain irregular workloads. For

a fair comparison with a CPU execution, we have tried to make use of Python-based
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Table 5.4.: Benchmark Characteristics

Benchmark Source Task

Type

Input

Set per

Task(each

task is

one

image,

signal,

matrix

or net-

work

packet)

Num.

of

Tasks

%

Time

spent

in

data

copy

(CUDA-

HyperQ)

%

Time

spent

in

com-

pu-

tation

(CUDA-

HyperQ)

May

ben-

efit

from

Shared

Mem-

ory

Requires

thread-

block

syn-

chro-

niza-

tion

Default

Reg-

ister

Count

Mandelbrot(MB) Quinn [148] Irregular 64 × 64

images

32K 24 76 7 7 28

FilterBank(FB) StreamIt [149] Regular Signals of

width 2K

32K 35 65 7 3 21

BeamFormer(BF) StreamIt [149] Regular Signals of

width 2K

32K 13 87 7 7 34

Image Convolu-

tion(CONV)

CUDA

SDK [147]

Regular 128 × 128

images

32K 30 70 7 7 25

DCT8x8(DCT) CUDA

SDK [146]

Regular 128 × 128

images

32K 81 19 3 3 33

MatrixMul(MM) CUDA

SDK [?]

Regular 64 × 64

matrix

32K 51 49 3 3 30

Sparse LU

Decomposi-

tion(SLUD)

OpenMP

Task

Suite [140]

Irregular 32 × 32

matrix

273K 3 97 7 7 17

3DES NIST [145] Irregular Network

packets

sized

2K-64K

32K 74 26 7 7 26

thread pooling, OpenMP for data parallelism, pThreads-based task parallelism. We

found the pThreads implementation obtained the best results, which are included in

Figure 5.6.
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Fig. 5.6.: Overall Performance Comparison: All applications of this experiment

were run on Nvidia Pascal GPU. The number of tasks in each benchmark is constant

(32K), except SLUD, which contains 273K tasks. Each GPU task uses 128 threads.

The measurement of execution time contains both data copy and compute times.

Pagoda significantly outperforms CUDA-HyperQ(1.76x), 20-core PThreads(5.52x),

and GeMTC(1.44x) because of the high GPU utilization.

5.4.3 Pagoda Performance Scalability

Pagoda is able to run on different types of GPUs after changing the number of SMs

in its system configuration. Figure 5.7 presents the performance results of Pagoda

on Nvidia Maxwell and Pascal Titan X GPU. This section aims to figure out the

performance scalability of Pagoda from Nvidia Maxwell to Pascal GPU. Each appli-

cation in Figure 5.7 includes 32K tasks, 128 threads in one task and the execution

time calcuation does not count the time of data copy in. The number of cores on

Nvidia Pascal Titan X GPU is 16% more than on the Maxwell architecture. Addi-

tionally, its compute frequency is 53% higher than on the Maxwell GPU. The average

performance speedup of Pagoda-Pascal is 2.39X and Pagoda-Maxwell achieves 1.64X

speedup compared to CUDA-Maxwell in Figure 5.7. The growth of compute cores

and speed on Pascal GPU results in this performance improvement. CUDA HyperQ

programs attach tasks in different CUDA streams and these tasks are executed when

there are available GPU resources. However, the limited number of task queues on
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the GPU constraints the degree of task concurrency. As a result, most of the per-

formance benefit of the CUDA-Pascal applications only comes from the higher GPU

speed and is 30% faster than on the Maxwell GPU.
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Fig. 5.7.: Pagoda Performance Scalability: CUDA-Maxwell and CUDA-Pascal in-

dicates CUDA-HyperQ applications are run on Nvidia Maxwell and Pascal Titan X

GPU. Pagoda achieves 2.4X speedup compared to CUDA-Maxwell by running bench-

marks on Nvidia Pascal GPU.

5.4.4 Sensivity Analysis for Task Load Imbalance

Task load imbalance impacts the performance and response time of the individual

tasks. This section presents the performance results of tasks composed of various

computations in static task fusion, CUDA-HyperQ and Pagoda. Static task fustion

combines multiple tasks into a monolithic large task [6, 7]. This method is good

for tasks consisting of the same computational work, since the task fusion method

can decrease the CPU-GPU communication overhead and increases the degree of

parallelism within one fused task (kernel). However, this regular workload is not

always seen in the real world. In this experiment, we created tasks comprising various

input sizes and thread counts by using a pseudo-random geneator. Each application

contains 32K tasks. The threadblock size was fixed in the fused kernel, and the
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threadblock size is 256 in this experiment. We chose this number heuristically, since

selecting the best thread count per task is infeasible in static fusion. The threadblock

size in some sub-tasks in a fused kernel are smaller than 256, and this waste is

unavoidable. The SLUD application cannot be fused because the number of tasks

is not known statically.

Figure 5.8 demonstrates the speedup of static task fusion and Pagoda compared

to CUDA-HyperQ. Pagoda gains 1.8X speedup and the static task fusion method

is about 10% slower than CUDA-HyperQ applications. There are two reasons for

the slowdown shown in the static task fusion benchmarks. First, the longest task

in a fused kernel dominates the execution time. This situation is often shown in

compute-intensive applications such as MB, FB and CONV in Figure 5.8. Secondly,

the underutilization is shown in a fused kernel because the threadblock size of each

sub-tasks can be different. In contrast to the static fusion method, Pagoda launches

tasks in quick succession without combining tasks in a batch. Additionally, Pagoda

follows the availability of the GPU hardware resources to allocate tasks. Pagoda’s task

allocation mechanism can fully utilize the GPU and satifsy dynamic task workloads.
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Fig. 5.8.: Performance Comparison of Statis Fusion, CUDA-HyperQ and Pagoda

with irregular tasks: Dynamic task spawning mechanism in Pagoda obtains high

performance even with irregular workloads.
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5.4.5 Task Latency Analysis

Figure 5.9 compares the normalized average response time between Pagoda and

static fusion applications. The average response time of static fusion benchmarks is

40% and 440% longer than Pagoda shown in Figure 5.9. The batch size in Figure 5.9

means the number of threadblocks in one fused kernels. The average response time

measures the total task execution time over the number of injected tasks. Each

benchmark in this experiment contains 16K irregular tasks with various threadlblocks

and input sizes. Each task in a statically fused kernel and in a batch-based system

such as GeMTC, is completed until all tasks in the fused kernel or batch have done

the work. Thus, their response time increases with the the number of tasks per batch.

In Figure 5.9, the average response time of BF-Fusion decreases with growing

batch size. The reason is that the large batch size increases the degree of parallelism

in the fused kernel. The parallelism helps the performance of the fused kernel and

response time. However, this growth trend does not always increase linearly and

slows down when the batch size is over 256 in FB-Fusion in Figure 5.9. Threadblocks

specified in the fused kernel can be over the pre-defined threadblock counts on GPUs.

Over-subscribing threadblocks in the fused kernel increases the contention of resources

and slows down the performance speedup. Instead of batching tasks to increase

parallelism, Pagoda launches tasks successively on the GPU. Pagoda allocates tasks

to the GPU dynamically based on the availability of hardware resources and decreases

the resource contention.

5.4.6 Lock Step Communication Overhead

To understand the benefit of continuous task spawning, this experiment creates

a Pagoda version that spawns tasks in batches. This batch Pagoda version does not

spawn tasks untill all tasks in the previous batch are done. Figure 5.10 compares

the performance of Pagoda, Pagoda-batch and GeMTC. Each applications in Fig-

ure 5.10 contains 32K tasks and their threadblock size is 128. In Figure 5.10, Pagoda
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Fig. 5.9.: Average Latency of Tasks Pagoda achieves much lower latency compared

to static fusion.

gains 2.53X speedup compared to GeMTC. This performance improvement comes

from the concurrent task scheduling in Pagoda. GeMTC’s complicate task queue

method hindered the task concurrency within its batch. In addition, on average,

the Pagoda-batch implementation incurs 29% overhead because of its lock-step task

launch mechanism. Pagoda overlaps the task spawning and execution to achieve this

speedup compared to the Pagoda-batch alternative. In Figure 5.10, CONV only gets

5% performance benefit from continuous task spawning becuase its regular, extremely

short running task. However, MPE demonstrates the exceptionally high benefit in

the presence of unbalanced tasks.

5.4.7 Pagoda Task Scheduling Overlead Analysis

Figure 5.11 shows the overhead of Pagoda task scheduling for various threadblock

and input size. In Figure 5.11, the threadblock size of the HyperQ applications is 256,

and both benchmarks contain 32K tasks. In the CUDA-HyperQ programs, the GPU

hardware distributes threadblocks of one task (kernel) to other SMs. However, Pagoda

only uses 31 executor warps from the MasterKernel ThreadBlock (MTB) to feed the
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Fig. 5.10.: Benefit of Pagoda Continuous Spawning and Concurrent, Pipelined Task

Processing Pagoda performs both continuous task spawning and concurrent, pipelined

task processing. Pagoda-batching only performs task processing. GeMTC performs

neither. Pagoda outperms GeMTC in all cases.

request of one task. Hence, some warps in one task must wait for executor warps to

finish. This case occurs in the big task comprising a large number of threadblocks in

Pagoda. As shown in Figure 5.11, Pagoda obtains 3% runtime overhead in MM task

as its input size is 256 × 256 and 32K threads. The speedup of HyperQ programs

increases linearly with increasing of threadblock size from 32 to 512. The increase

of parallelism in one task facilitates this speedup in HyperQ applications. However,

the speedup of HyperQ does not improve beyond their threadblock size of 1024,

as the GPU is fully utilized. On the other hand, the performance of Pagoda does

not fluctuate with changing threadblock size, since Pagoda increases the number of

concurrent tasks in small threadblock size configurations. Furthermore, 256 × 256

input size and 64K threads of CONV, the speedup of Pagoda improves again. We

attribute this behavior to the warp-level scheduling in Pagoda versus the threadblock-

level scheduling in CUDA. CUDA prevents a new threadblock from launching until

all warps of the previous threadblock finish, where as Pagoda can schedule a warp

from a new threadblock as soon as another warp completes.



64

0
1
2
3

Spe
edu

p ov
er H

ype
rQ MM

32 threads 64 threads 128 threads 256 threads512 threads 1024 threads 2048 threads 4096 threads8192 threads 16384 threads 32768 threads 65536 threads

0
2
4
6
8 CONV

Input Size
162 322 642 1282 2562 162 322 642 1282 2562

Fig. 5.11.: Effects of varying threads per task for different input size For small

threads, Pagoda outperms HyperQ in all input sizes. For large thread counts, Pagoda

may still outperform HyerQ because its finer grain of scheduling.

Table 5.5.: Compute performance comparison of tasks run in Pagoda with and with-

out shared memory allocation: Each version runs 32K tasks. DCT tasks have 64

threads, MM tasks contain 256 threads. Only the compute time is compared. The

shared memory usage offers considerable benefits.

Benchmark Pagoda with

Shared Memory

Pagoda without

Shared Memory

Speedup

over HyperQ

using Shared

memory

Achieved

Occu-

pancy

Speedup

over HyperQ

using Shared

memory

Achieved

Occu-

pancy

DCT 1.13x 25% 1.02x 97%

MM 1.47x 97% 1.32x 97%

5.4.8 Pagoda Shared Memory Analysis

Pagoda performs software management of the GPU shared memory, as described

in Section 5.3.1. To compare the obtainable performance benefits from the use of
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shared memory, we show performance results on the DCT and MM benchmarks.

These two codes can potentially benefit from the use of shared memory. We created

two versions for each: with and without using shared memory. Table 5.5 compares

the speedups achieved by these versions over the CUDA-HyperQ versions, which also

use the shared memory. The shared memory requirement may reduce the achieved

occupancy; yet, Pagoda shared memory versions achieve performance benefits. None

of the other static-fusion or runtime batching solution offer shared memory utilization,

and miss out on such benefits.

5.5 Summary

This chapter presents Pagoda, a GPU runtime system that overcomes under-

utilization in the presence of narrow tasks. Pagoda virtualizes GPU resources via

MasterKernel, a continually executing daemon on the GPU. Pagoda launches tasks

on the GPU as long as some free warps are available. Unlike previous work, Pagoda

supports most functionality of the native CUDA model. A key distinction in Pagoda

is the task spawning and scheduling mechanism. It contains a novel data structure,

called TaskTable, that greatly reduces CPU-GPU handshaking during task spawning.

Pagoda achieves concurrent task scheduling, and overlaps task spawning, scheduling,

and execution through pipelining. The experimental evaluation showed that Pagoda

achieves a geometric mean speedup of 1.76x over CUDA- HyperQ, 1.44x over GeMTC,

and 5.52x over 20-core CPU PThreads. The evaluation also showed that Pagoda can

outperform static fusion schemes by 1.79x, and achieves much lower latency per task.

We believe that the Pagoda design makes it easy to exploit GPUs for applications ex-

hibiting narrow tasks, and will encourage porting of many non-traditional workloads

to GPUs.
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6. LAX: DEADLINE-AWARE JOB SCHEDULING ON

THE GPU

LAX is a deadline-aware GPU job scheduler. LAX dynamically adjusts kernel pri-

orities, allowing more jobs to meet their deadlines. LAX has three key components:

a mechanism to estimate the time remaining in each job (Section 6.2), a method for

estimating the queuing delay of incoming jobs to prevent oversubscription (Section

6.3), and a laxity-aware scheduling algorithm that changes jobs’ priorities based on

estimated laxity (Section 6.4).
[AMD Official Use Only - Internal Distribution Only]
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Fig. 6.1.: LAX procedure and system overview

6.1 LAX System Overview

Figure 6.1 presents an overview of our LAX framework. In multi-job GPU ap-

plications, all kernels associated with a single job are enqueued on the same stream

or underlying GPU compute queue. Before running a job, LAX performs stream

inspection to look ahead, parsing all the kernels in a queue to determine their names

and associated number of WGs. To store this information, LAX introduces a Job Ta-
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ble that stores information about the work remaining in each compute queue. After

parsing the WG information for every kernel in a queue, this information is added

to the corresponding WGList for the queue. To compute the estimated time remain-

ing in each job, LAX uses the number of WGs from the WGList and a per-kernel

work completion rate stored in a Kernel Profiling Table. Given the estimated time

remaining in the job and a programmer-specified deadline (passed when initializing

the job on the GPU stream), LAX computes the laxity of each job using Equation

6.1. The LaxityTime tells us how close to its deadline a job is predicted to finish.

Comparing each job’s LaxityTime effectively tells LAX their relative priority. Jobs

with less laxity have higher priority.

LaxityT ime = Deadline− (TimeRemaining + DurationT ime) (6.1)

Similar to prior work, LAX uses a pull-based model for offloading work from a CPU

server [29, 30]. LAX successfully offloads as many jobs as possible. However, unlike

prior work, LAX uses its per-job completion time estimates to generate a queuing

delay estimate for new jobs entering the system. Based on current contention, if

LAX estimates that the new job will not meet its deadline, it will not attempt to

offload the job to the GPU.

6.2 Job Remaining and Laxity Time Estimates

In order to estimate the laxity of currently executing jobs and the queuing delay

encountered by incoming jobs, LAX must generate an estimate of the time remaining

in each job. To generate this estimate, LAX makes use of an in-memory Job Table.

As illustrated in Figure 5, each entry in the table contains the following fields: 1)

QueueID (QID); 2) Priority (used by the CP to make scheduling decisions); 3) WGList

(the list of kernels that comprise the job and the number of WGs that need to be

executed for each kernel); 4) Deadline (provided by the programmer); 5) StartTime;

and 6) State (either init, ready, or running). In addition to the Job Table, LAX stores
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ALGORITHM 3: LAX Queuing Delay Calculation

1 totRemTime = 0

2 // new jobs are pushed to the end of the queue

3 for i = JobQ.begin() to JobQ.end() do

4 holdJobTime = 0

5 durTime = curTick() – JobQ[i].startTime

6 for j = 0; j < JobQ[i].WGList.size; j++ do

7 kernelID = JobQ[i].WGList[j].kernelID

8 if JobQ[i].state != init then

9 /* sum the total remaining time of jobs */ totRemTime +=

JobQ[i].WGList[j].numWG / kernelTable[kernelID].WGCompRate

10 /* initialize new job’s estimate */

11 else

12 holdJobTime += (JobQ[i].WGList[j].numWG /

kernelTable[kernelID].WGCompRate)

13 if (totRemTime + (holdJobTime + durTime) < JobQ[i].Deadline) then

14 JobQ[i].state = readyState

15 totRemTime += holdJobTime

16 /* Cannot complete job in time, tell CPU */

17 else

18 rejectJob()

the per-kernel WG completion rates in a Kernel Profiling Table which is periodically

updated (empirically set at 100 microseconds) to reflect contention conditions in the

GPU. Overall, LAX re-quires only 4240 bytes of memory to store this information for

a 128-compute queue system.

To predict a job’s remaining time, LAX scans the WGList to generate an estimate

for how long each kernel in the job will take. For each entry in the list, LAX looks

up the current WG completion rate for this particular kernel in the Kernel Profiling

Table. By dividing the number of WGs in each kernel by the current WG completion
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rate for that kernel type, LAX generates a time estimate for the kernel. Since the

kernels in a job have sequential dependencies and thus must be executed sequentially,

LAX simply sums the estimated execution time of each kernel to generate the per-job

estimate. As WGs complete, the WGCount entry in the Job Table is decremented

to reflect the fact that the job has less work remaining. LAX combines the job’s

remaining time estimate with the user-specified Deadline and the job’s StartTime to

generate the estimated LaxityTime. We describe the State and Priority fields in more

detail in Sections 6.3 and 6.4.

ALGORITHM 4: LAX: Laxity-aware Scheduling

1 for i = JobQ.begin() to JobQ.end() do

2 JobQ[i].RemTime = 0

3 for j = 0; j < JobQ[i].WGList.size; j++ do

4 kernelID = JobQ[i].WGList[j].kernelID

5 JobQ[i].RemTime += JobQ[i].WGList[j].numWG /

kernelTable[kernelID].WGCompRate

6 JobQ[i].durTime = curTick() – JobQ[i].startTime

7 ComplTime = JobQ[i].RemTime + JobQ[i].durTime if JobQ[i].deadline >

ComplTime then

8 /*laxityTime = deadline – ComplTime*/

9 JobQ[i].prior = JobQ[i].deadline – ComplTime

10 else

11 JobQ[i].prior = ComplTime

12 /*deprioritize job if LAX cannot make deadline */

13 if JobQ[i].durTime > JobQ[i].deadline then

14 JobQueue[i].prior = INF
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6.3 Preventing Oversubscription with Queuing Delay Estimation

When designing a GPU to accept multiple jobs, each of which has a tight deadline,

preventing oversubscription is critical. As discussed in Section 6.1, LAX only accepts

jobs predicted to complete before their deadlines. To make this prediction, LAX

must: (1) estimate how long a job J will take on the GPU under current conditions

and (2) estimate how long J may be delayed behind other jobs already sent to the

GPU, i.e. its queuing delay. Using each job’s time remaining estimate from Section

6.2, LAX first computes how long J should take, given current completion rates.

Estimating J’s queuing delay is more challenging, because the deadlines and arrival

rates of latency-sensitive jobs vary significantly. However, Little’s Law works well

independent of arrival rate [41,42]. Thus, LAX uses Little’s Law to model the queuing

delay of the jobs running on the GPU. Accordingly, Algorithm 3 uses Little’s Law to

sum up the predicted remaining time of all jobs currently execution in the system,

including jobs that are ready but not running. Combining this estimate with the

runtime estimate, if LAX predicts J will complete by its deadline, it accepts J and

changes its state from init to ready, informing the CP that J’s first kernel is ready to

be executed on the GPU.

6.4 Laxity-Aware Job Scheduling Algorithm

Next LAX needs to determine which job(s) should be run next. A job’s laxity

determines its priority in the laxity-aware job scheduler. The scheduler assigns each

queue (job) a priority level and may adjust it over time. The job with the smallest

current laxity is assigned the highest priority.

Algorithm 4 describes LAX’s priority update mechanism, where priority zero is

the highest priority level. Every 100 microseconds, the priorities are updated, as

we empirically found this gave the best performance. Since we want to prioritize

jobs with the least laxity, any job that is predicted to complete by its deadline is

assigned its laxity value as its priority (Line 9, Algorithm 4). LAX decreases a
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job’s priority when it predicts the job will not reach the deadline. When a job is

predicted to miss a deadline, its completionTime (remainingTime + durationTime,

where durationTime is the amount of time since this job was enqueued) is greater

than the deadline. To achieve de-prioritization, LAX sets the job’s priority to be

equal to the completionTime (Line 11, Algorithm 4), because it is greater than the

deadline, guarantees that the job has a lower priority than any other job that still

has positive laxity. Once it has adjusted the priority for all jobs, the laxity-aware

queue scheduler issues all WGs from the highest priority job. If additional WG slots

are available, it will then move on to the next highest priority ready job, and so on

until all WG slots are filled. When all WGs are issued, LAX updates the associated

job’s status to running.

Table 6.1.: Key simulated system parameters

GPU Clock 1500 MHz

The number of CUs 8

Number of SIMD units per CU 4

Max wavefronts per SIMD unit 10

Vector register size per CU 256 KB

The number of compute queues 128

CPU Clock 4000 MHz

# CPUs 2

GPU L1-D$ per CU 16 KB, 64B line

GPU L1-I$ per 2 CUs 32KB, 64B line, 16 way

GPU L2 cache per 64 CUs 4MB, 64B line

Main Memory 16 GB HBM2, 16 channels, 16 banks/channel, 1000 MHz

6.5 Methodology

I use the gem5 simulator [150, 151], which offers native GPU ISA support [47,

150] and a cycle-level GPU microarchitecture model to evaluate the latency-driven

applications. Prior work has shown that gem5’s GPU model provides high correlation
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with modern GPUs [151]. The simulated system assumes the CPU and GPU share

a single unified cache coherent address space and do not require explicit copies [152].

By default, the original codes in our benchmarks assume discrete memory spaces

between the CPU and GPU and use device copies. Thus, we modified the evaluated

all our bench-marks to remove the device copies wherever possible. We analyze energy

consumption with per-instruction energies [84].

Table 6.1 presents the simulated parameters we used in gem5. The gem5 simulator

provides the sophisticated GPU front-end model which allows us to faithful simulate

all memory operations associated with asynchronous streams and queue management.

Additionally, the modeled WG scheduler assigns WGs in an oldest-first manner.

6.5.1 Evaluated Compute Queue Scheduling Policies

To determine how our laxity-based scheduler compares to prior work, we compare

it against eight other queue scheduling policies, which are detailed in Table 6.2. These

schedulers leverage various policies with the static and dynamic information to sched-

ule kernels and can be broken into three groups: state-of-the-art CPU-side schedulers

[28][53][54], GPU approaches that extend the CP, and variants of our laxity-based

scheduler that vary the amount of required changes. We implemented all of these

schedulers in gem5.

CPU-side scheduling mechanisms such as BAT [19], BAY [30], and PRO [29]

improve throughput without requiring hardware changes. However, BAT, BAY, and

PRO incur overheads for communicating between the CPU and GPU. For a tightly

coupled GPU like the one in our system, this adds 4 microseconds of host-device

communication overhead per kernel in a job. Similarly, we added 50 microseconds of

overhead to BAY for calls to its regression model, based on reported data [30].

Modern GPUs perform deadline-blind RR scheduling, but since the CP is pro-

grammable (although no API has been disclosed by GPU vendors), it is possible to

extend it for other widely used scheduling approaches such as LJF, MLFQ, SJF, and
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Table 6.2.: Scheduling Policies

Scheduler Description

CPU-Side Scheduling

BatchMaker (BAT) [19] A dynamic batching technique where each stream can have a different

batch size.

Baymax (BAY) [30] Uses pre-trained models to predict a jobs execution time and re-orders

the priorities of jobs based on their QoS headroom.

Prophet (PRO) [29] Uses offline profiling to choose which concurrent jobs to issue in order

to fully utilize the GPU and improve QoS.

GPU Command Processor Scheduling

Round-Robin (RR) The baseline scheduler that processes compute queues in a cyclic man-

ner.

Multi-Level Feedback Queue

(MLFQ) [153]

Moves jobs between two priority queues based on their runtime and uses

RR to schedule jobs in the high priority queue.

Shortest-Job First (SJF) A static scheduling policy that schedules kernels with the shortest job

first.

Shortest Remaining Time Job

First (SRF)

A dynamic policy that uses LAX’s remaining execution time estima-

tor to assign job priorities. It then assigns the job with the shortest

estimated remaining time the highest priority.

Longest-Job First (LJF) A static scheduling policy that schedules kernels from the longest jobs

first.

PREMA [38] A multi-task scheduler for heterogeneous systems that predicts job pri-

orities and preempts lower priority jobs

LAX Our laxity-aware scheduling policy

Laxity-Aware Scheduling Variants

LAX-SW A variant of LAX that uses CPU-side scheduling.

LAX-CPU A variant of LAX that does CPU-side scheduling but changes the API

to allow rapid changing of the priority of the jobs.

SRF. Like LAX, SJF, SRF, and LJF utilize predicted runtime information for each

job to determine what to schedule; however, they do not model queuing delay or laxity

of jobs. Finally, for MLFQ we found that it per-formed best with two priority levels,

demoted jobs to the lower priority level [153] when its runtime exceeded one-third of
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the jobs’ deadline, and promoted the job back to the higher priority when its runtime

exceeded 2/3 of its deadline.

Finally, we also examine three variants of our laxity-aware scheduler: LAX, which

extends the CP; LAX-SW, which performs CPU-side scheduling (and incurs over-

heads for host-device communication); and LAX-CPU, which also does CPU-side

scheduling, but changes the API to allow dynamic job priority changes from user-

level software. To do this, the API writes the updated priorities to memory-mapped

registers that control the priorities of each queue [151].

Table 6.3.: LAX Benchmarks

Benchmark Deadline Input / hid-

den layer size

Input / hidden

layer sizeHigh

Job Arrival Rate

(jobs/s)

Medium Job

Arrival Rate

(jobs/s)

Low Job Arrival

Rate (jobs/s)

Many Kernel

LSTM [154,155] 7 ms 128 8000 5000 3000

GRU [154,155] 7 ms 128 8000 5000 3000

VAN [154,155] 7 ms 128 8000 5000 3000

HYBRID [154,

155]

7 ms 128/256 8000 5000 3000

Few Kernel

IPV6 [130] 40 us 8192 64000 32000 16000

CUCKOO [130] 600 us 8192 8000 5000 3000

GMM [156] 3 ms 2048 32000 16000 8000

STEM [156] 300 us 4096 64000 32000 16000

6.5.2 Benchmarks

To evaluate these schedulers, we use the eight latency-sensitive benchmarks. Ta-

ble 6.3presents the input size, deadline, and arrival rates for each benchmark. To

determine the appropriate deadlines for each benchmark, we used deadlines from re-

cent work where available: 7 ms for RNNs [25], 40 microseconds for IPV6 [21, 23],
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and 600 microseconds for Cuckoo [21]. For the IPA benchmarks, we used the same

methodology as the authors: we ran each benchmark in isolation, then doubled the

worst case latency [29,30].

To demonstrate how GPUs can simultaneously execute kernels with different de-

grees of parallelism, we also include a Hybrid RNN benchmark that includes the two

most popular RNN variants, LSTM and GRU, with a mixed hidden layer size of 128

and 256, respectively. The input for all RNNs is based on the WMT ’15 language

translation trace [157] , which has an average sequence length of 16. Furthermore,

we share weight data across RNN inference jobs with the same hidden size [19, 84].

Although our technique is applicable to any data width, we use DeepBench’s provided

precision for the RNNs. Additionally, our schedulers do not affect the RNN inference

accuracy since they do not change the underlying algorithms.

6.5.3 Job Arrival Rate

I simulate 128 jobs per benchmark with different arrival times and map one job

to one GPU stream in our simulator. Real world system continually receives requests

with varying arrival rates. As with determining the proper deadlines, wherever pos-

sible we used the same arrival rates as previous work on these benchmarks. For

CUCKOO, GMM, and STEM, we modified these rates to account for the difference

in system size. Moreover, we sweep multiple levels of contention (high, medium, and

low arrival rates) for each benchmark to evaluate the effect of contention on the GPU

schedulers. For each arrival rate, we randomly generate the arrival time of a specific

job based on an exponential distribution.

6.6 Experimental Results

Overall, LAX successfully offloads more jobs than prior approaches. At the highest

arrival rate LAX completes a geometric mean (geomean) of 2.7X – 4.8X and 1.7X

– 5.0X more jobs by their deadlines than CPU-side schedulers and schedulers that
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extend the CP, respectively. Moreover, CPU-side laxity-aware scheduling outperforms

other CPU-side schedulers but requires CP extensions to obtain the full benefits of

laxity. Finally, LAX wastes less work, accurately predicts job laxity, provides a

better combination of energy consumption and performance, and provides a better

combination of throughput and 99-percentile latency.

6.6.1 Completing Jobs by Their Deadlines

CPU-Side Schedulers

Figure 6.2 plots the number of jobs completed by their dead-lines for each arrival

rate, normalized to RR, for the CPU-side schedulers, RR, and LAX. In general, most

schedulers do well for the lower arrival rates, where contention is low. At the high

job arrival rate, contention increases, and all schedulers start missing more deadlines.

RR: As expected, RR does not do very well because it schedules jobs in deadline-

blind fashion. However, for the single-kernel benchmarks (IPV6, CUCKOO, GMM,

and STEM), which also have equal job sizes, RR does better, especially at higher

arrival rates, because a new job will some-times be chosen to run soon by RR if RR is

near the end of the queue when the job is added, reducing queuing delay. Although

this also occurs for the multi-kernel jobs, since these jobs may have long sequence

lengths, the benefit is smaller.

BAT: BAT dynamically combines kernels in a batch. When jobs arrive simul-

taneously, and are executing the same kernel, this significantly improves efficiency.

However, BAT executes these kernels in a lock-step manner and is not aware of the

job’s deadlines. As a result, BAT performs poorly for many of these latency-sensitive

workloads, especially as contention increases. Overall, BAT completes a geomean of

23% fewer jobs than RR by their deadlines.

BAY: BAY generally outperforms deadline-blind schedulers like RR and BAT by

effectively predicting the execution time of jobs and using its QoS headroom calcula-

tions to control the number of concurrent jobs. However, BAY’s prediction overhead
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(b) Medium job arrival rate
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(c) Low job arrival rate

Fig. 6.2.: Jobs completed by their deadlines for CPU-side schedulers, RR, and LAX,

normalized to RR

prevents it from completing any IPV6 jobs by their 40 microsecond deadlines, which

significantly decreases BAY’s overall performance such that RR and BAY complete

the same number of jobs by deadline by geomean. Otherwise, BAY is the best CPU-
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side scheduler for latency-sensitive workloads. Compared to LAX, the host-device

and prediction overheads hamper BAY’s ability to dynamically respond, especially

at the high arrival rate for applications with multiple kernels, where LAX’s accurate

queuing delay estimate and faster responsiveness help it complete a geomean 2.7X

more jobs than BAY by their deadlines.

PRO: PRO leverages offline profiling to infer the QoS of kernels, which reduces

prediction overhead compared to BAY. However, since PRO focuses on co-scheduling

memory- and compute-intensive workloads, it suffers with the purely latency-sensitive

workloads we are studying. As a result, it only completes a geomean of 1.02X more

jobs by their deadlines than RR. As contention increases, PRO especially suffers for

LSTM, GRU, and GMM, where the increased contention exacerbates its focus on

co-scheduling.
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Fig. 6.3.: Jobs completed by their deadlines at the high job arrival rate, for schedulers

that extend the CP, normalized to RR

LAX: LAX completes a geomean of 1.7X, 3.1X, and 4.2X more jobs by their

deadlines compared to RR, respectively, for the low, medium, and high arrival rates.

Unlike other schedulers, LAX utilizes the laxity of jobs, which increases the number

of medium and large size jobs it can complete by their deadlines, especially as con-

tention increases. Additionally, extending the CP helps LAX adjust more quickly and

accurately to dynamically changing conditions. Finally, LAX’s accurate queuing de-
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lay model helps it avoid oversubscription. Thus, the combination of accurate queuing

delay modeling, rapid, accurate responsiveness, and laxity allow LAX to significantly

outperform the CPU-side schedulers.

Overall, LAX significantly outperforms state-of-the-art CPU-side schedulers for

both many- and few-kernel workloads. Although some of these schedulers also model

job runtime or utilize QoS calculations to avoid oversubscription, LAX’s combination

of laxity, rapid responsiveness, and accurate queuing delay modeling help it success-

fully offload more jobs, especially those with deadlines < 1ms. Since the high arrival

rate magnifies the differences between the schedulers, we focus on it due to space

constraints.

Extending the Command Processor Schedulers

Figure 6.3 compares the number of jobs completed by their deadlines for each

scheduler that extends the CP and utilizes hardware information. Overall, we find

that other CP schedulers obtain some of benefits of LAX, but without accurate queu-

ing delay estimations and laxity estimates, they are unable to complete some jobs

that LAX can.

SJF and SRF: SJF and SRF greedily schedule kernels from the shortest jobs

(e.g., RNN jobs with the shortest sequence lengths). As a result, SJF and SRF

complete 2.46X and 2.54X more jobs by geomean, respectively, over RR at the highest

job arrival rate. However, SJF and SRF do not work very well for the single-kernel

benchmarks because all jobs have the same input size. This causes SJF and SRF to

default to scheduling jobs in First-Come-First-Serve (FCFS) order, so queuing delay

dominates the SJF and SRF’s response time for these applications. Nevertheless,

exploiting runtime information is still useful, as it allows SJF and SRF to complete

more jobs than any other schedulers beside LAX. Moreover, compared to the CPU-

side schedulers, extending the CP al-lows SJF and SRF’s to improve performance

over BAY, the best CPU-side scheduler, by 1.6X at the highest arrival rate.
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MLFQ: In theory, MLFQ multiple priority levels should help it perform well.

However, MLFQ often performs poorly – by geomean only 0.85X jobs complete by

their deadlines compared to RR. For the RNNs and the networking processing ap-

plications, MLFQ completes relatively few jobs because once long-running jobs get

promoted back to the higher priority queue, they take up high priority resources even

after their deadline has passed [67]. However, for GMM and STEM, deprioritizing

jobs long running jobs (e.g., from queuing delay), allows newer jobs can be scheduled

sooner.
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Fig. 6.4.: Jobs completed by their deadlines over different laxity-aware implementa-

tions, normalized to LAX-SW

LJF: Compared to RR, LJF completes 1.24X more jobs by their deadlines because

it reorders jobs and schedules the longest jobs (e.g., RNN jobs with long sequence

lengths) first. Although this allows some longer jobs to complete by the deadline, in

general LJF does not perform well because it sacrifices the smaller jobs to complete

these longer ones (for jobs like the RNNs with different sized jobs). LJF works the

same as SJF and SRF for benchmarks composed of a single kernel and has a consistent

performance number.

PREMA: PREMA’s user-defined priorities and slowdown calculations help it

complete geomean 2.2X more jobs than RR. PREMA performs particularly well for
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STEM, which completes around 250 us. However, overall LAX completes geomean

1.9X more jobs than PREMA because LAX makes finer-grained decisions and does

not need to preempt.

Overall, extending the CP can significantly improve the number of jobs that meet

their real-time deadlines versus CPU-side schedulers, especially for CP schedulers

that are able to predict the remaining runtime. However, these advantages alone are

insufficient: LAX completes a geomean of 1.7X more jobs by their deadlines than SJF

and SRF (the next best CP schedulers) because it also utilizes laxity and an accurate

queuing delay model to better schedule the jobs.

LAX Scheduler Variants

LAX significantly outperformed both CPU-side schedulers and schedulers that

extend the GPU’s CP. However, since LAX utilizes multiple components , we also

evaluate the three LAX variants to identify if laxity-aware scheduling could provide

the same benefits without extending the CP. Figure 6.4 compares the number of jobs

completed by their deadlines for these three laxity-aware schedulers.

LAX-SW shows how well laxity-aware scheduling can perform as a CPU-side

scheduler, like BAT, BAY, and PRO. Although LAX-SW suffers from the same host-

device overheads and is neither able to obtain nor rapidly respond to information

about the GPU’s current conditions as quickly as the CP schedulers, it still performs

well. BAY, the best CPU-side scheduler (not shown in Figure6.4 ), outperforms LAX-

SW for benchmarks with deadlines > 1 ms (GMM and the RNNs) by a geomean of

27%. However, for the benchmarks with tight deadlines < 1 ms (IPV6, CUCKOO,

and STEM), LAX-SW completes many more jobs by their deadline due to its more

accurate queuing delay model. Overall, LAX-SW completes a geomean of 1.8X more

jobs by their deadlines than BAY. Thus, laxity-aware scheduling can improve on the

state-of-the-art, even without hardware support.
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However, LAX-CPU and LAX complete a geomean of 1.6X and 1.7X more jobs

by their deadlines, respectively, than LAX-SW. This shows that CPU-side scheduling

alone is not sufficient to fully exploit the benefits of laxity-aware scheduling, especially

when contention is high. Interestingly, LAX-CPU, which only requires changing the

API to allow user-level software to dynamically vary the priority of jobs, provides

the majority of the benefits of LAX, which requires extending the CP. Overall, LAX

completes a geomean of 1.1X more jobs than LAX-CPU, because it can respond

more rapidly than LAX-CPU and has access to higher fidelity information about the

system. Thus, to obtain all the benefits of laxity-aware scheduling, extending the

CP is necessary. However, changing the API can provide most of LAX’s benefits.

Nevertheless, since LAX provides the best performance, we focus on LAX in the

remaining results.

6.6.2 Scheduling Effectiveness

To measure how efficiently the schedulers utilized GPU resources, Figure 6.5 plots

the percentage of the WGs completed that are part of jobs that meet the deadline.

This metric shows how effective the schedulers were at identifying and performing

useful work in general. Unsurprisingly, the deadline-blind schedulers (RR, BAT)

waste a geomean of 67% - 71% of their resources on jobs that will not make the

deadline. BAY utilizes its QoS prediction model to reduce contention and waste

fewer compute resources (27% geomean). Finally, PRO wastes geomean 65% of its

effort on jobs that cannot make their deadlines. In particular, PRO struggles with

the RNNs. We believe this is because PRO has conservative QoS estimates that do

not consider over-lapping many kernels.

Since SJF and SRF always issue small jobs first, they waste less work than

deadline-blind schedulers (only 41% and 38%, respectively). Intuitively, since LJF

always schedules large jobs first, which are less likely to be completed, LJF wastes

more work (56% at the highest job arrival rate). In comparison, LAX’s queuing delay
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(b) Schedulers that extend CP 
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Fig. 6.5.: Percentage of completed WGs from jobs that meet their dead-lines at the

high job arrival rate.

model helps it waste the least work of all schedulers – a geomean of 23% of compute

resources. Overall, LAX again outperforms the other schedulers, and makes better

decisions about which jobs to work on.

6.6.3 Execution Time Prediction and Priority Over Time

To examine how well LAX’s execution time predictions track over time, Figure

6.6 plots the predicted execution time and the priority of a sample job for the LSTM

RNN. (i.e., time the job is in the running state, where its work groups were actively
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Fig. 6.6.: LAX’s Job Time and Priority Prediction in LSTM. P0 is the highest priority.

being executed). The x-axis indicates the duration time of the job and the endpoint

of the x-axis shows the job’s actual completion time (i.e., time in ready and running).

Initially, the LSTM job’s priority stays relatively steady until its laxity starts to

decrease. This shows that LAX correctly deprioritizes this job while it has plenty of

laxity and prioritizes it once its laxity is small. Additionally, LAX’s execution time

prediction tracks very closely to its actual time in the running state. Overall, LAX

effectively varies the dynamic priority and tracks the laxity effectively.

Table 6.4.: Energy rate (consumed energy over the number of successful jobs) (mJ))

RR MLFQ BAT BAY PRO LJF SJF SRF PREMA LAX

LSTM 5.52 7.36 6.03 0.37 0.30 9.47 1.05 1.02 2.37 0.36

GRU 2.47 3.30 2.91 0.30 0.24 1.60 0.66 0.67 0.92 0.29

VAN 1.81 2.42 2.27 0.18 0.20 3.30 0.55 0.53 1.10 0.21

IPV6 0.21 0.23 0.21 0.00 0.22 0.21 0.21 0.21 0.21 0.13

CUCKOO 5.97 5.97 7.96 0.35 0.34 5.97 5.97 5.97 5.97 0.97

GMM 1.49 1.02 1.77 0.12 0.13 1.62 1.62 1.62 1.76 0.14

STEM 1.36 1.36 1.82 0.09 0.10 0.91 0.91 0.92 0.22 0.10

HYBRID 38.63 77.30 38.63 0.63 0.82 4.53 2.48 1.98 6.44 0.45
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6.6.4 Energy Consumption

Table 6.4 compares the schedulers in terms of their normalized energy consumption

per successful job. In general, LAX provides comparable or better energy consump-

tion relative to most CPU-side schemes (0.85X – 12.1X geomean less energy) and

schedulers that extend the CP (4.1X – 12.3X geomean less energy). LAX outper-

forms all schedulers in this regard except for BAY and PRO (15% and 5% less energy

per job than LAX, respectively). However, BAY and PRO are overly conservative

and do not accept larger jobs that consume more energy, whereas LAX completes

many more jobs that are both small and large.

Table 6.5.: The Successful Job Throughput (the number of successful jobs per second)

RR MLFQ BAT BAY PRO LJF SJF SRF PREMA LAX

LSTM 511 419 458 2651 465 372 2883 3069 1302 3348

GRU 912 700 775 2828 775 1551 3466 3558 2463 3877

VAN 729 515 750 2574 987 472 2832 2960 1416 3346

IPV6 13158 13816 11842 0 13816 13158 13158 13158 12500 20120

CUCKOO 289 276 651 295 289 289 289 289 289 868

GMM 2242 2841 2242 2446 2242 2242 2242 2242 1921 4484

STEM 3937 3937 2624 1969 2624 3937 3937 3937 23622 18207

HYBRID 85 43 85 1147 85 766 1277 1702 511 1702

6.6.5 Throughput and 99-percentile Tail Latency

Table 6.5 and Table 6.6 also shows the scheduler’s throughput and 99-percentile

tail latency. Overall, LAX provides a better blend of throughput and tail latency.

LAX has better or comparable tail latency than all CPU-side schemes (0.8X-6.8X

geomean faster) and has geomean 1.7X-4.9X better throughput. Moreover, LAX’s

throughput is 1.3X-5.4X better than the CP schedulers and has 5.3X–6.8X better tail

latency. BAY and PRO are the most competitive schedulers in terms of throughput

and tail latency – their queuing models help them avoid offloading jobs that are
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Table 6.6.: 99-percentile job latency(millisecond))

RR MLFQ BAT BAY PRO LJF SJF SRF PREMA LAX

LSTM 47.7 38.2 51.9 21.4 6.7 50.1 46.4 46.3 43.2 5.6

GRU 35.1 25.6 37.9 20.4 6.5 36.9 33.7 33.4 27.6 5.7

VAN 43.9 34.2 38.7 9.4 7.0 47.0 43.6 42.9 38.7 7.0

IPV6 0.2 0.2 0.2 0 0.4 0.2 0.2 0.2 0.2 0.1

CUCKOO 9.7 9.0 9.2 1.0 1.3 9.2 9.2 9.2 9.4 4.4

GMM 41.5 42.3 42.2 3.3 1.8 42.2 42.2 42.2 40.2 2.7

STEM 3.1 3.1 3.2 0.3 0.3 3.1 3.1 3.1 4.8 0.5

HYBRID 84.5 75.7 88.4 20.9 2.4 85.7 81.9 83.9 83.7 6.9

unlikely to be completed by their deadlines. However, PRO and BAY complete far

fewer jobs by their deadlines than LAX.

6.7 Summary

Although GPUs have traditionally been used for through-put-oriented workloads,

latency-sensitive workloads are of increasing importance. Traditional solutions such as

batching are less effective for these workloads, especially once realistic arrival times

are considered, since batching actively harms their performance by forcing jobs to

wait for additional work to arrive. GPU streams help address this issue and permit

multiple streams to execute concurrently. However, these streams only have static

information on relative priority making it a challenge to meet real-time deadlines.

To address this inefficiency, we propose a new GPU queue scheduler, LAX, that

significantly improves the throughput and latency of latency-sensitive GPU appli-

cations. By tracking the WG completion rates and monitoring the queuing delay,

LAX accurately estimates the overall execution of individual latency-sensitive jobs.

Our results show that LAX completes a geomean of 1.7X-5.0X more jobs by their

deadlines compared to eight GPU queue schedulers.
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7. DARSIE:DIMENSIONALITY-AWARE REDUNDANT

SIMT INSTRUCTION ELIMINATION

DARSIE [158] ensures that TB-redundant instructions are fetched and executed only

once in each TB. As all instructions are 64-bits in length, redundant ones can be

skipped in the frontend of the pipeline by simply adding eight to the program counter.

However, detecting and marking redundancy, sharing values of skipped instructions,

properly handling redundant load instructions, and handling branches with the poten-

tial for divergence requires more care. Therefore, we start by presenting DARSIE’s

operation at a high level in Section 7.1. Here, we introduce our extensions to the

compiler that marks instructions as either redundant, conditionally redundant, or

non-redundant. This is explained in full detail in Section 7.2. We next describe our

changes to the microarchitecture, explained fully in Section 7.3. We additionally de-

scribe how DARSIE handles the skipping of load instructions, and its operation in the

presence of divergence. These are explained fully in Sections 7.4 and 7.5 respectively.

7.1 High Level Operation

DARSIE operates by first declaring PCs as skippable. Using a novel compiler pass,

we detect when values are conditionally-redundant across a TB. At kernel-launch

time, every static PC in the program is marked at as either TB-redundant or not.

The hardware itself treats uniform, affine redundant, and unstructured redundant

instructions the same. Section 7.2 details these compiler markings. The compiler

analysis also assumes that warps in a TB are executed in lock-step, such that there is

only one version of each TB-redundant instruction at any given time. There are two

options in hardware to ensure that warps read the correct version of a TB-redundant

register without enforcing costly lock-step execution on every instruction: (1) Syn-
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Warp 0                                       Warp 1                                      Warp 2

PC0: LD R1(v1), tx

T3

T5

PC0: LD R1(v1), tx
T1

T4

Legend

Issued Instruction Skipped Instruction

T6

Time

T2

PC1: ADD R2 R1(v1), ty

PC2: ADD R1(v2), R1(v1), 4

PC3: BRA R1.ne 4

PC1: ADD R2 R1(v1), ty

PC2: ADD R1(v2), R1(v1), 4

PC3: BRA R1.ne 4

PC0: LD R1(v1), tx

PC1: ADD R2 R1(v1), ty

PC2: ADD R1(v2), R1(v1), 4

PC3: BRA R1.ne 4

Barrier Barrier Release

R1: TB-redundant register tx: TB-redundant register

Fig. 7.1.: DARSIE’s Instruction Skipping Flow: Branch instructions always force a

TB-wide barrier to determine what the majority-path is. In this example, TBs are

three warps wide.

chronize the warps in the TB when any warp writes to a TB-redundant register.

This ensures there is only ever one live version of a particular TB-redundant register.

(2) Store multiple versions of each TB-redundant register such that each warp can

progress at a different pace. As long as warps are executing on the same control-flow

path (hence executing the same instructions in the same order), the correct register

version for each warp can be attained by keeping track of writes to the register. When

warps in the TB take different control flow paths, DARSIE continues operating on the

path taken by the majority of warps. To avoid excessive synchronization, DARSIE

adopts solution (2).
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In hardware, DARSIE elects a single warp from a TB to execute a redundant

instruction, and share the result with other warps in the TB. We call the warp that

executes the instruction the leader warp. Warps that skip the instruction and read the

value are referred to as follower warps. Subsequent instructions in follower warps that

are dependent on the result of an eliminated instruction access the leader warp’s values

through a multithreaded register renaming mechanism. The existing programmable

GPU register mapping mechanism helps facilitate this process, as each warp has a

configurable number of physical registers based on the per-thread register demands

of an application. Our updates to this mechanism are described in Section 7.3.1.

Figure 7.1 provides a visual overview of DARSIE’s operation. In Figure 7.1, warp

0 becomes the leader for instruction PC0 at T1 because it arrives first. Warp 0

executes the instruction and stores the result as R1(v1), since this is the first write

to R1. At time T2, warp 1 skips PC0, updating its register mapping table to point

to R1(v1) which warp 0 just produced. Warp 1 then executes PC1, which is a true

vector instruction (since ty is not TB-redundant). Warp 0 does the same. At time

T3, warp 0 writes to R1 again. Each time a redundant register is written, we create

a new version of the register tagged with the number of times it has been written

by this TB. At this point, there are now 2 active versions of R1 across this TB. At

T4, warp 2 finally reaches PC0, skips the instruction then executes PC1 using the

old (v1) version of R1. Warp 2 uses R1(v1) for its source operand because there has

only been 1 write to R1 in warp 2’s instruction stream. Warp 2 then skips PC2,

and increments the number of writes the warp has seen to R1. At T5, warp 1 skips

PC2. Since all the warps in the TB are done with R1(v1), it can be released. Warp 1

executes the branch instruction, then waits for all other warps in the TB to reach this

branch. Synchronization at branches is necessary to ensure that all warps skipping

instructions in a TB execute on the same control-flow path. Warps that diverge off

the majority control-flow path are no longer considered for skipping. Similarly, warps

with intra-warp control-flow divergence do not participate in instruction skipping.

Note that, except at branch instructions, the warp scheduling order in DARSIE is
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not prescribed. The scheduler will still make throughput-oriented decisions. The

ordering in this example is therefore one of many that are possible.

7.2 Compiler Annotations

DARSIE’s static compilation phase detects both definitely and conditionally re-

dundant registers and instructions. In relation to our taxonomy described in Section 4,

uniform redundant values are always definitely redundant. Affine and unstructured

redundant values are conditionally redundant. The compiler starts by identifying all

the intrinsic values known to be uniform across a TB. The values we consider in this

work are: blockIdx, blockDim, scalar constants, global kernel input parameters and

the base value of shared memory. These values are all marked as definitely redundant.

Next, the compiler marks intrinsic registers that are conditionally redundant. Based

on our observations in Section 4, both the threadIdx.x and threadIdx.y registers are

conditionally redundant and depend on the TB dimensions known at runtime. All

studied applications use 2D TBs at most, as is typical for GPU workloads. We there-

fore limit the analysis to only threadIdx.x. All other registers are considered true

vector registers. The compiler then creates the program-dependence graph and it-

eratively propagates our redundancy information through registers and instructions.

Unlike previous works that focus exclusively on finding affine and uniform instruc-

tions [44, 105, 109], we introduce and exploit conditional redundancy as well. The

conditionally redundant instructions comprise a significant portion of total executed

instructions for applications with 2D TBs. Load instructions that access redundant

or conditionally redundant addresses (and their corresponding output registers) are

also marked. If more than one of our three redundancy definitions (redundant, con-

ditionally redundant or vector) reaches a source operand of an instruction, we assign

the weakest of the definitions.

This analysis assumes that warps within the TB proceed through the program in

lock-step. Since enforcing this requirement can be expensive (or impossible if warps
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 // Loading Parameters and thread ID    PC  DR 0x000      cvt.u32.u16 $r2, %ctaid.y;  ...  CR 0x068  cvt.u32.u16 $r4, $r0.lo // $r0.lo: tid.x  ...  CR 0x0f0  add.u32 $10, $r4, 0x0000040c  ...  CR 0x108  shl.b32 $ofs3, $r10, 0x00000007  ...  // Start of loop  V 0x150  l0x00000150: ld.global.u32 $11, [$r1]   // Unrolled Loop  CR 0x178  mov.u32 $r0, s[$ofs3+0x0000];  CR 0x180  add.u32 $ofs4, $ofs3, 0x00000080;  V 0x188  mad.f32 $r10, s[$ofs2+0x0000], $r0, $r10;  CR 0x190  mov.u32 $r0, s[$ofs4+0x0000];  CR 0x198  add.u32 $ofs4, $ofs3, 0x00000100;  V 0x200  mad.f32 $r10, s[$ofs2+0x0004], $r0, $r10;    ...   V    0x480  set.le.s32.s32 $p0/$o127, $r8, $r9;  V 0x488  add.u32 $r1, $r1, 0x00000080;   V 0x490  add.u32 $1, $1, 0x0000080;  V 0x498  add.u32 $r5, $r6, $r5  V 0x500  @$p0.ne bra 10x00000150;    // End of loop  ... 
Fig. 7.2.: Example of compiler marking TB-redundant instructions for matrix multi-

ply kernel. DR:Definitely Redundant, CR:Conditionally Redundant

traverse different control-flow paths), we rely on hardware to create the illusion that

warps leveraging DARSIE are proceeding in lockstep (described in Section 7.3.3) with

respect to TB-redundant operations.

Promoting conditionally redundant registers to definitely redundant requires run-

time information about a TB’s dimensions. For example, if the there are 32 threads

in the x-dimension, then the tid.x value per warp will vary from [0 to 31]. Likewise,

if there are 16 threads in the x-dimension, each warp will have tid.x IDs [0 to 16].
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In both cases, values based on tid.x will be redundant across the TB, and repeat for

every warp. Conditionally redundant instructions are evaluated at kernel launch time

based on the kernel’s specified TB size, and are static for the duration of the kernel.

This marking could either be implemented in the GPU driver’s JIT-ing finalization

pass, or determined with a minor hardware modification that compares conditionally

redundant instructions to the launched TB size. Supporting CUDA dynamic par-

allelism, where the GPU launches kernels to itself is possible with latter option, as

the code does not need to be recompiled. In either case, the check simply tests if

the kernel has 2D TBs, and that the width of the x-dimension is a power of 2, and

less than or equal to the warp size. If so, conditionally redundant instructions are

marked as definitely redundant, or are otherwise marked as true vector instructions.

We note that the majority of multi-dimensional GPU applications meet the above

x-dimension criteria. Of the 128 unique 2D kernels from the application surveyed in

Section 1.3.4, only one fails to meet this requirement.

Figure 7.2 illustrates the compiler annotations made for the matrix multiply ker-

nel. Note that this code is register-allocated PTXPlus code, which is used for all our

experiments. As shown in Figure 7.2, the value threadIdx.x propagates to the regis-

ter $ofs3. Thus, the unrolled loop in the program contains 2 redundant instructions

and one true vector operation. This highlights the granularity at which redundancy

elimination takes place using DARSIE.

The compiler can only mark static instructions as being skippable based on an

analysis that assumes that threads in a TB are executing in lock-step. It is up

to the hardware fetch scheduler to ensure that all warps in the TB skip the same

version of the redundant instruction. For example, if a redundant instruction is in a

loop, all threads skipping the instruction must be on the same iteration of the loop.

This ensures that dependencies between loop iterations are maintained for each warp.

Ordering is enforced using either register-versioning or forcing the hardware to barrier

when TB-redundant registers are written.
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We note that the compiler changes in DARSIE do not change the instruction

stream in any way, other than adding hints about redundancy. This is dissimilar

to techniques like DAC [109] that completely transform the compiled code into a

format requiring hardware support for affine and non-affine instruction streams. If

the hardware does not support DARSIE, the markings are simply ignored. Likewise,

the hardware does not require the compiler to support DARSIE. Binaries compiled

without DARSIE markings will run seamlessly on DARSIE hardware, but without

instruction skipping.

We encode the three-state <vector, conditionally redundant, redundant> classifi-

cation in two bits of the GPU’s virtual ISA (PTX in NVIDIA) that is produced by the

static compiler. GPUs employ a two-step compilation process where the virtual ISA

in the binary is transformed into the real machine instruction set (known as SASS)

when the kernel is launched. Although the encoding of SASS is proprietary, reverse

engineering efforts indicate that there are many unused bits in this 64-bit RISC-like

ISA [159]. We use one of these extra bits to encode if an instruction is TB-redundant

or not, which is known when the SASS is loaded into the GPU. Two bits would be

required to maintain the three states of redundancy if the decision is delayed until

after the code is JIT compiled.

7.3 DARSIE microarchitecture

Figure 7.3 shows the changes to the microarchitecture needed to support DARSIE.

We add the instruction skipping hardware in the fetch stage, consisting of a PC

coalescer ( A in Figure 7.3), a PC Skip Table ( B ) and fixed-size adders to allow each

PC to be incremented by 8 ( C ).

7.3.1 Remapping Registers

To enable dynamic remapping of vector registers, we add a register renaming

table that is probed prior to looking up the register in the baseline’s linear register
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renaming table ( D ). This allows follower warps to read register values produced

by leader warps. Registers in contemporary GPUs are not mapped on a per-thread

basis, but rather on a per-warp basis. There is a 1:1 correspondence between vector

lanes and threads within the warp, and cross-lane communication is generally not

supported outside of special instructions. DARSIE does not change this assumption

and remaps whole vector registers. Our register renaming table contains one entry

for every currently renamed register in each warp. The register rename table, version

table, and physical register freelist implement the versioning detailed in Figure 7.1.

The register rename table maps <warp,reg#> pairs to this warp’s

<reg#,version#> pair. A separate version table ( E ) stores the <reg#,version#>

to physical register mapping. Both the version and rename table are banked on a

per-TB basis. When a kernel with TB redundancy is launched, we allocate a por-

tion of the physical register file space for renaming. Many GPU applications are not

limited by the register file size, so this allocation will not typically affect occupancy.

How much register space to consume could be made on an application basis. In this

work, we allow DARSIE to consume up to 32 vector registers per TB for renaming.

DARSIE uses as many registers as it can before affecting occupancy when registers

are limited.

We allocate our renamed register space in a strided fashion across the vector

RF banks at kernel launch and maintain a physical register freelist ( F ). Physical

registers are freed when a register version number is no longer in flight for the TB.

When the freelist empties, synchronization must be performed to ensure all required

versions of a register are available. Our evaluation accounts for the increase in register

bank conflicts that occur when all follower warps attempt to read from the renamed

register’s space.
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Fig. 7.3.: Detailed breakdown of DARSIE uarch operation.

7.3.2 PC Skip Table

DARSIE skips instructions in the front of the pipeline before the I-cache is probed.

To achieve this, we add hardware that acts in parallel with the fetch scheduler, to

skip some instructions while initiating a fetch for another. This effectively increases

our throughput at fetch without increasing the width of any of existing structures

like the fetch scheduler and I-cache. The instruction skipper relies on our compiler

annotations to decide which instructions should be skipped, and the PC Skip table

( B ) controls the skipping logic. Each entry in the Skip PC table contains five fields:

1. PC : The program counter that should be skipped

2. Warps waiting bitmask : A mask that indicates which warps are waiting at

this PC to skip it. Required if synchronizing between warps.

3. Majority-path bitmask: A mask with 1-bit per warp in a TB that indicates

which warps are executing on the majority-path.

4. IsLoad: A bit that is 1 if this instruction is a load instruction. This is necessary

since load instructions must be removed from the Skip PC Table if a store is

executed, or if global atomics/synchronization events occur.
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5. LeaderWB: A bit that is 1 if the leader warp has written back the redundant-

register value. To ensure correct operation, follower warps must wait for the

leader to writeback before they can leave the skippable instruction.

7.3.3 Achieving the Illusion of Lockstep Execution

Our skipping mechanism is dependent on all warps having the same branch history

as the leader warp (i.e., all warps following the same control-flow path). To ensure this

condition, we synchronize TBs at branch instructions. The path with the majority

of warps will continue skipping. Warps on any other path will not. We store 1-bit

per warp to indicate if it is on the TB-majority path. When warps deviate from the

path, their bit is cleared. These bits are all set back to one upon the execution of

syncthreads instructions which require the entire TB to be in sync.

7.3.4 PC Coalescer

A PC coalescer is used to minimize the skip table read port requirements ( A ).

The PC coalescer acts like the global memory coalescer in the load/store unit, except

instead of coalescing global memory addresses to cache lines, it coalesces PCs based

on exact matches. This helps limit the number of accesses made to the Skip PC Table

each cycle. The PC skip table contains one entry for each PC currently being skipped.

We experimentally determine that the PC coalescer reduces the port requirement on

the PC skip table to 2, while providing both reasonable throughput and minimal area

and energy overheads.

7.3.5 Instruction Skipping Flow

After TB-redundant instructions are decoded, the PC skip table is probed to see if

they are currently being skipped. If there is no PC skip table entry and the accessing

warp is on the majority-path, it becomes the leader warp. Upon the creation of a
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new leader warp, an entry is created in the PC skip table, a new physical register is

taken from the freelist and allocated in the version table, the LeaderWB bit is cleared,

and the leader updates its register’s version number in the register renaming table.

If there are no other entries in the freelist, the warps waiting bitmask is updated to

indicate that this instruction will act as a synchronization point.

Only warps on the majority control-flow path can skip instructions. When the

leader writes back a TB-redundant value, it updates the LeaderWB bit.

When another warp in the TB gets to the PC being skipped, the PC skip table

is probed, and an entry is found. If the warps waiting bitmask is empty, and the

leaderWB bit is set, this follower warp is able to skip the instruction. If the warps

waiting bitmask has a non-zero value, it is updated to indicate that the new warp

is now waiting for all other warps in the TB to reach the TB-skippable instruction.

The follower warp then updates its version number in the register renaming table to

reflect the fact that it needs to read a newer version of this register. If this was the

last warp in the TB using a particular register version number, the physical register

is returned to the freelist. The PC of the skipping warp is then incremented by 8

( C ). If synchronization is necessary, the warp is removed from the fetch scheduler.

As more warps from the same TB reach the PC to be skipped, their PCs are

incremented, and their registers’ versions updated. If synchronization is necessary,

we determine if all the warps on the majority control-flow path have arrived at the

instruction to be skipped by matching the warps waiting bitmask with the majority-

path bitmask for this TB. Once all follower warps in the TB have skipped the in-

struction, it is removed from the PC Skip Table.

When warps leave the majority path, they copy their redundant register values

into their warp-private space, and clear their state in the register renaming and ver-

sion table. We also note that the execution of warps is different than execution of

individual scalar threads, in that a warp may proceed in both branch directions using

the SIMT stack. Our technique is not applied in the presence of SIMD divergence
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(see Section 7.5). If SIMD divergence is encountered on a branch, the warp is no

longer considered for skipping and is removed from the majority path.

7.4 Skipping Load Instructions

Skipping load instructions presents a unique challenge since memory dependence

information is not embedded in the decoded instruction. Without complex and po-

tentially expensive memory dependence tracking hardware, we cannot guarantee that

a store instruction does not update memory at the location a skipping load instruc-

tion reads. To simplify the design, complexity and size of our proposed hardware,

DARSIE avoids the memory dependence problem by removing load PCs from the

skip table when one of two events happens: (1) This TB executes any store

instruction: Stores are relatively infrequent, so we conservatively assume that any

store can update memory referenced by any load instruction to be skipped. (2) Any

global communication primitives are executed: Our baseline GPU does not

guarantee any particular memory ordering between TBs executing on different SMs,

or TBs on the same SM, unless global communication primitives are used. When we

detect that an SM executes any instruction used to perform global communication,

such as global atomic instructions, we remove all global load PCs from the skip table.

In our benchmarks, and the in the bulk of contemporary GPU workloads, these global

communication primatives are not used.

To disable skipping load instruction is a simple solution when DARSIE can stati-

cally identify any global communication in the program. A dynamic mechanism could

take advantage of the fact. For instrance, there are no inter-threadblock communi-

cation guarantees unless the local core uses special instructions that imply global

communication in CUDA [160]. Supporting the current GPU memory model with

DARSIE only requires us to examine the local core’s instructions and would not in-

troduce any inter-core mechanisms. Note that the vast majority of GPU workloads

(including the ones we evaluate) do not use inter-threadblock communication.
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7.5 Handling SIMD Divergence

DARSIE specifically targets highly regular code that does not exhibit large levels

of SIMD divergence. This is the common case for GPU applications. We therefore

simplify our design by not skipping instructions with inactive threads in its active

mask. While we note that divergent workloads exist, prior work from industry has

shown them to be a minority of contemporary applications run by GPU customers [?].

We evaluated the effects of allowing diverged instructions to be considered redundant,

but found that it provided minimal returns. We note that warp-level control-flow

divergence is different from SIMD divergence. Warp-level divergence indicates that

the entire warp took a different execution path, and not just some threads within

a warp. If warp-level divergence occurs, instruction skipping is still possible among

warps that traverse the majority control-flow path.

7.6 Methodology

Table 7.1.: Applications studied

Name Abbr. TB dim Name Abbr. TB dim

binomial-

Option [67]

BIN (256,1) ImageDenois-

ingNLM [67]

INLM (16,16)

pathfinder [57] PT (1024,1) Backprop [57] BP (16,16)

fastWalsh-

Transform [67]

FW (256,1) DCT8x8 [67] DCT (8,8)

SRADV1 [57] SR1 (512,1) Floyd-

Warshall [56]

FWS (16,16)

LIB [59] LIB (256,1) HotSpot [57] HS (16,16)

CP [59] CP (16,8)

convolution-

Texture [67]

CONVTEX (16,16)

MatrixMul [67] MM (32,32)

C: CUDA SDK [67], P: Parboil benchmark [58], R: Rodinia benchmark suite [57], I: GPGPU-sim distri-

bution benchmark [59]. P: Pannotia benchmark [56]
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We use GPGPU-sim v4.0 [161] and GPUWattch [162] to estimate the performance

and energy consumption of DARSIE respectively. We simulate our applications us-

ing PTXPlus, and extension of NVIDIA’s virtual ISA PTX that is converted from

the native machine ISA SASS. We use the NVIDIA GTX-1080Ti Pascal GPU as our

baseline. Table 7.2 describes our baseline, and is verified to have a 90% correlation

to the real card. We swept different warp schedulers and observed that these regular

applications are insensitive to scheduler choice, with GTO being the best perform-

ing option. We implement DARSIE’s compiler pass inside GPGPU-Sim on register-

allocated PTXPlus code, similar to the methodology used by Wang et al. [109]. We

use Cacti 7.0 [163] to model the energy and area overhead of DARSIE’s additional

hardware components. The PC skip table has 2 read ports, 1 write port and 1 entry

per TB. Each SM also contains a register rename table, which has 32 entries per TB,

based on the maximum number of registers renamed in our applications. We compare

DARSIE as described in Section 7 with two previously proposed techniques:

Table 7.2.: Baseline GPU

Parameters Values

GPU Pascal (GTX1080Ti), 28 SMs, 64 warps/SM

32 thread blocks/SM

SM 32 SIMD Width, 2K vector registers per SM

Scheduler 4 warp scheduler/SM, GTO scheduling

L1 96KB shared memory/SM

Register 14.2pJ/read 25.9pJ/write [162]

Uniform Vector (UV): UV [45] is a recently proposed technique to remove redun-

dant inter-warp instructions. UV makes use of an instruction reuse buffer [100] to

eliminate instructions that read uniform scalar register values. UV prevents instruc-

tions from executing at the issue stage of the pipeline after being loaded into the

instruction buffer. It does not consider non-uniform redundant vectors, and does not

skip memory operations. We choose this technique to compare against because it is
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the only related work to remove redundancy without major pipeline modification. A

more detailed description of UV is located in Section 2.5.1.

Idealized Decoupled Affine Computation (DAC): DAC-IDEAL [109] proposes a

compiler and hardware mechanism that detects affine (not necessarily redundant) op-

erations. The DAC compiler separates instructions into affine and non-affine streams,

and synchronizes the two when the vector stream reads values from the affine stream.

We model an idealized version of DAC by detecting affine instructions at runtime, and

assuming that all affine instructions (both redundant and otherwise) will be executed

only once. We also assume there is no synchronization cost between affine and non-

affine instruction streams. This implementation was validated to be as good or better

at instruction reduction compared to the original results in [109]. We choose DAC-

IDEAL to compare against because it covers both uniform and affine redundancy,

and is the most recently proposed technique.

7.7 Experimental Results

The following subsections evaluate the performance and energy-efficiency of DAR-

SIE, the effects of synchronization and provide an area estimate.

7.7.1 Performance and Energy

Figure 7.4 compares the speedup of UV [45], DAC-IDEAL [109], and DARSIE

over our baseline GPU. DARSIE achieves a geometric mean speedup of 1.3, signifi-

cantly better than UV (1.02) and DAC-IDEAL (1.11) for benchmarks with 2D TBs.

DARSIE-IGNORE-STORE doesn’t reset the skip table in the occurrence of store

instructions. DARSIE significantly outperforms the two alternatives because of the

elimination of the unstructured redundancy in 2D benchmarks. As mentioned in Sec-

tion 4, neither UV nor DAC-IDEAL remove unstructured redundancy. UV is typically

limited by fetch throughput since it can only remove uniform redundancy at the issue

stage. DARSIE has significantly higher instruction skipping bandwidth because it can
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Fig. 7.4.: Performance of DARSIE against prior work. Speedup is normalized to the

baseline GPU.

skip multiple instructions in a single fetch cycle with only an increment of the PC.

DAC-IDEAL’s performance with 1D TB applications is roughly equal to DARSIE’s

since it is similarly able to remove all uniform and affine-redundant instructions.

To evaluate the effect store instructions have on performance, DARSIE-IGNORE-

STORE doesn’t reset the skip table when store instructions occur and demonstrates

that the performance impact is minimal. Further investigation reveals that stores

usually occur at the end of the register-use chain. Therefore; the value in the regis-

ter is typically not used again after the store, so clearing it’s redundancy data has

little effect on DARSIE’s performance. Since DARSIE remaps follower warps to the

same register bank, it does cause additional register file bank conflicts. However, we

find that artificially removing all DARSIE-induced bank conflicts results in just a 1%

performance improvement.
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The performance gain of DARSIE is not always proportional to the number of

instructions eliminated. Some memory-bound applications have a high number of

redundant compute operations, but few redundant memory accesses. For example,
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DARSIE improves the performance of FWS by 13%, despite the fact that 21% of

its instructions are skipped. This is because memory operations dominate the appli-

cation runtime but are not redundant. Conversely, MM has a significant number of

unstructured-redundant accesses to shared memory. MM tiling causes multiple warps

in one TB to access the same shared memory blocks with affine memory addresses.

This results results in excessive affine and unstructured redundancy.
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Figures 7.5 and 7.6 plot the number of instructions eliminated by DARSIE and

prior work. In Figure 7.6, DARSIE decreases instructions by a geometric mean of 17%

in 2D TB benchmarks. UV [45] is able to remove uniform redundant instructions,

but doesn’t improve performance. UV removes instructions in the execute stage of

the pipeline, requiring them to still be fetched and decoded. In applications like LIB,

the fetch bandwidth becomes the bottleneck. Since both DARSIE and DAC eliminate

instructions before they are fetched, they are able to see significant performance gains

in LIB. DAC-IDEAL [109] eliminates redundant instructions by a geometric mean of

11%. We make the idealized assumption that DAC-IDEAL is able to remove all affine
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values in both 2D and 1D applications, but is not able to remove the unstructured

redundancy we identify in this paper. We also assume that DAC-IDEAL is able to

remove non-redundant affine values that occur in 1D applications for example, tidx.x

in Figure 4.2(a). Only DARSIE removes unstructured redundant instructions, which

accounts for the improvements over UV and DAC-IDEAL in 2D TB benchmarks. As a

result, DARSIE is able to match the performance of DAC-IDEAL on 1D benchmarks,

while outperforming DAC in 2D applications.

Figure 7.7 shows the total energy consumption of UA, DAC-IDEAL and DARSIE

is normalized to the baseline GPU. DARSIE reduces energy by a geometric mean

25%, while UV and DAC-IDEAL reduce energy by a geometric mean of 7% and

20% respectively. This improvement can be traced back to our microarchitecture

preventing redundant instructions from even probing the I-cache and saves energy

throughout the pipeline. The overhead of DARSIE is only 0.95% of the dynamic

energy consumption. Most of the overhead comes from accessing the PC Skip Table,

majority path mask and register rename table. This minimal energy overhead stems

from the small size of the added hardware (roughly 82 bytes for the majority path

mask, and 84 bytes per TB bank).

7.7.2 Saving Memory Bandwidth

Figure 7.9 and Figure 7.10 compare the reduction of each type of instruction in

1D and 2D benchmarks that is normalized to the baseline. DARSIE can save 45%-

90% shared memory bandwidth over the baseline in 2D benchmarks by eliminating

redundant memory accesses in 2D threadblock constructs. In particular, DARSIE

removes over 90% shared memory LD instructions in MM, since its repetitive memory

accesses within each tiling block. DARSIE also reduces over 98% global memory LD

instructions in LIB benchmark, most of them are uniform redundant instructions.

Also, DARSIE can save execution bandwidth. For instance, DARSIE removes 12%

to 19% ALU redundant instructions in 2D benchmarks. Uniform and affine redundant
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instructions and some unstructured instructions composed of half warp size (16, 16)

contribute this improvement.
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7.7.3 Effect of Synchronization

Figure 7.8 presents the performance of an idealized DARSIE, DARSIE-NO-CF-

SYNC, that has no DARSIE-related synchronization.

To measure the effect of DARSIE’s synchronization overhead, without any of

DARSIE’s benefits, on a real machine, we instrumented the applications with

syncthreads() calls at basic-block boundaries and measured their performance.

SILICON-SYNC in Figure 7.8 plots the effect synchronization has on performance

on a silicon NVIDIA Pascal Titan X GPU. The overhead in most applications is

small. Interestingly, many of the 2D applications already had syncthread() op-

erations at basic block boundaries, limiting DARSIE’s synchronization effects. On

LIB, there is a 50% performance reduction becasue the baseline application contains

no sycthreads(). However, the 75% instruction reduction DARSIE provides (Fig-

ure 7.6) on LIB makes up for the overhead.
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7.7.4 Area Estimation

The three major sources of area in DARSIE are the PC Skip Table, majority

path mask and register renaming/version tables. One PC Skip Table entry includes

a PC value, the warp waiting bitmask (which consists of one bit for each warp that

can be allocated on one TB), a bit to indicate if this instruction is a memory load

(IsLoad) and a bit to indicate if the leader warp’s output register has been written

back (LeaderWB). One TB is allocated 8 PC skip table entries that are replaced

dynamically. These fields consume 82 bits: 48 bits for the PC + 32 bits for the warp

mask (since there are at most 32 warps can be allocated by one thread block) + 1 bit

for the IsLoad flag + 1 bit for LeaderWB. The PC Skip Table is 256 entries based

on their being at most 32 TBs in one SM, and consumes 20092 bits (2624 bytes).

DARSIE allocates one majority path mask entry for one TB in one SM. These fields

cost 32 bits for the warp bitmask. The total size of majority path mask is 32 × 32

= 1024 bits (128 bytes). We conservatively estimate that each entry in the register

rename and version table consists of 21 bits: 8 bits for the named register (CUDA

allows 255 potential named registers per thread) + 8 bits for physical register tag +

5 bits for the version numbers. DARSIE allocates 32 entries for one TB, based on

the max register usage of our workloads (32). These entries therefore consume: 21

× 32 (entries per TB) × 32 (TBs in one SM) = 21504 bits (2688 bytes). Altogether,

the additional structures consume an additional 5.31 kB (2.1% of the Pascal GPU

register file size).

7.8 Summary

In DARSIE, I detail the root cause of massively multithreaded redundancy at

the programming language level, and quantitatively explore how much redundancy

exists at the grid, threadblock and warp levels. I show that a significant portion of

redundancy in GPU applications is TB-wide. Moreover, I observe that much of the

seemingly unstructured redundancy that occurs at runtime can be non-speculatively
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identified based on TB sizing information known at kernel launch time. Using a novel

compiler pass for conditional redundancy and an aggressive instruction-skipping mi-

croarchitecture that skips instructions in fetch, our proposed DARSIE design both

increases performance and decreases energy consumption by 30% and 25% respec-

tively.

DARSIE is a vertical solution that delegates each aspect of complexity to the

appropriate system level. Static compilation techniques are first leveraged to prop-

agate our newly observed conditionally redundant registers, then simple TB sizing

information available at kernel launch time finalizes the static compiler’s incomplete

picture. My light-weight hardware modifications then provides what the compilation

system cannot: the illusion of TB-wide lockstep execution, efficient access to warp-

private registers and the ability to skip instructions from multiple warps before they

are fetched.
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8. CONCLUSION AND FUTURE WORK

As the increase of parallel cores within a GPU, GPUs become increasingly attractive

to accelerate applications composed of massive parallelism. It is also possible to exe-

cute multiple kernels with a modest parallelism simultaneously within a single device

to increase the GPU utilization. Thus, GPUs are increasingly being considered for

latency-sensitive applications in data centers. These applications often demand both

high throughput and real-time constraints. It is challenging to schedule these con-

current kernels with different resource usages while fulfilling their QoS requirements

and fully utilizing the GPU.

This thesis addresses the problem of GPU resource underutilization shown in

latency-sensitive applications and the GPU SIMT redundant instructions. The work

focus on the scheduling parallel kernels and threads on the runtime system and the in-

tegrated command processor in the GPU. The fundamental idea behind the approach

is the virtualization that increases resource utilization and real-time scheduling pol-

icy with the job execution time estimate. These approaches ensure the demand for

latency-sensitive applications on the high throughput and real-time deadline. Addi-

tionally, this thesis also proposes a compiler-architecture co-design solution for recog-

nizing and skipping GPU SIMT redundant instructions. This work avoids the waste

of hardware resources to save GPU energy and improve performance. In the following

sections, I discuss the future work based on the work within this thesis.

8.1 GPU Virtualization on the Cloud

Streaming applications include video frames from the surveillance cameras, time-

series data from the internet of things (IoT) sensor devices, and speech recognition

in deep learning inference. Each data stream request is often delivered over network
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protocols with varying arrival times. These streaming applications often have high

throughput and real-time deadline demand. The container and virtual machine can

serve each data stream applications and provide security protection through the iso-

lation. The server engine of the container and virtual machine often distributes each

instance across accelerators to increase the utilization of accelerators. However, the

existing virtual machine and container server engine cannot map applications based

on their resource usage and the responsiveness of accelerators and can increase the

tail latency of applications significantly. In general, the container and virtual machine

server can obtain the global view of resource usage and estimate the job execution

time in each accelerator. An intelligent job scheduler can use this information to dis-

tribute jobs properly across accelerators and reduces the tail latency of applications.

8.2 Memory Model for GPU Concurrency

Lock-free applications were tailored for shared-memory multiprocessor machines.

These applications often leverage atomic operations and cache coherence protocols

for conflict detection among concurrent transactions. For instance, the backpropaga-

tion operation in Convolutional Neural Network (CNN) atomically adds the product

of gradient inputs and outputs in each convolutional layer to update weights. Fine-

grained locking enables the high concurrency in applications but requires program-

mers to ensure the deadlock-free and the performance scalability of atomic operations,

especially when running tens of thousands of threads concurrently on a GPU.

Contrary to CPUs, GPUs are designed to quickly switch between concurrent

threads on SIMT cores to hide long-latency operations. Threads within single TB

can communicate efficiently through scratchpad memory local to each SIMT core, and

threads in different blocks must communicate through global memory. Contempo-

rary GPUs provide atomic operations that can be used for inter-block communication.

GPUs have an L1 cache that is local to a SIMT core and is not coherent. To ensure

the correctness of atomic operations, GPUs evict L1 cache data back to the shared L2
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cache in each atomic operation [67] and increase the memory access latency. KILO

TM [164] exhibits the GPU hardware transactional memory but introduces additional

overhead when applications have many concurrent transactions with high contention.

With new support for fine-grained locking and blocking algorithms on GPUs, it is

worth rethinking which applications we map to massively parallel accelerators and

how we map them.
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