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ABSTRACT 

Visualizing multidimensional spatial data is an essential visual analysis strategy, it helps us 

interpret and communicate how different variables correlate to geographical information. In this 

study, we proposed an abstract contextual visualization that encodes data on the boundaries of 

spatial distributions and developed a new algorithm, AuroraMap. AuroraMap projects the spatial 

data to the boundaries of the distributions and color-encodes the densities continuously.  We 

further conducted the user experiments, and the results show users can detect the relative 

locations and scopes of the clusters. Furthermore, users can quantitatively determine the peak 

value of each cluster’s density. The method provides three contributions: (1) freeing up and 

saving the graphical visualization space; (2) assisting the users to quantitatively estimate the 

clusters inside distributions; (3) facilitating the visual comparisons for multiple and multivariate 

spatial distributions. In the end, we demonstrated two applications with real-world religious 

infrastructural data by AuroraMap to visualize geospatial data within complex boundaries and 

compare multiple variables in one graph. 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

The growing amount of spatial data enables us to capture sufficient geospatial 

information effortlessly, but impedes obtaining a flexible scope for data interpreting tasks. This 

places a huge challenge for decision-makers who analyze spatial data in a particular 2D space 

and its surrounding area simultaneously. For example, the task is to identify areas with densest 

spatial points in a small county while keeping track of its surrounding counties. A flexible scope 

restrains the amount of data users perceive at a time, as well as the geographical range to prevent 

overwhelming visual information.  

Existing research has led to techniques and systems to visualize aggregated spatial data, 

including raw data aggregation over groups, clustering data in the map, presenting summative 

statistical data along with geographical information, and developing abstract visualization. For 

example, SungYe Kim et al. proposed a data encoding scheme called Bristle Map to support 

multi-attribute event aggregation within a specific space. However, the user can be cognitively 

overloaded if they need to compare spatial distributions at different geographical levels. 

Willmott et al. presented a geographic box plot that computes a spatially weighted diagram to 

describe a wide range of geographic variables and associates the spatial elements’ area to the box 

plot’s area. It enables a broad view of the overall spatial distribution pattern, whereas, it loses 

geographical correlation to the raw data significantly. 

The limitations of these related works inspire us to propose a simple abstract 

visualization in this domain - AuroraMap. AuroraMap focuses on presenting the density and 

centroid of spatial distribution clusters (an area with distinct gathering points) on a flexible 
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geographical scope and enables spatial distribution encoding upon any sophisticated geographic 

typology. 

1.2 Research significance 

In the context of the enormous growth of spatial data, efficient visualization methods are 

expected to deal with the request of displaying multiple distributions and multivariate 

distributions. Since boundaries and centroids are the core features of localizing spatial 

distributions, we present a novel contextual-based approach in this domain. 

We derived visualization design from Phoenixmap, which is an abstract visualization 

technique that encodes densities as varying thicknesses across the distributions’ boundaries. This 

work has proven that users can effortlessly understand and quantitatively estimate the density of 

spatio-temporal distribution through distributions’ boundaries. Utilizing boundaries to visualize 

spatial data could fundamentally alleviate the difficulty of visualizing multiple 2D spatial 

distributions in one graph by only overlapping multiple Phoenixmaps in different colors. 

We validated our design based on a quantitative evaluation with human subjects. The 

results of this study indicate that our design effectively facilitates users interpretation and 

decision-making process on 2D spatial data. Based on the results, we did discover that 

abstracting the distribution on the boundary could result in the information loss, which is the 

change of densities from the centroid to the boundary inside the distribution.  

Nevertheless, Phoenixmap retains a reasonably better quantitatively estimable trait to 

observers compared to conventional heatmaps and dot maps assisted by additional legends. To 

avoid the discouragement of losing details while maintaining the advantages of Phoenixmap like 

space-saving and data-abstracting, we adapted the algorithm and developed a color-based 
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visualization, AuroraMap, which uses the area offset from the boundary to display the 

distribution.  

We further designed and conducted experiments to test the usability of AuroraMap and 

the users' capability of localizing the original clusters given AuroraMaps. The user test has 

directly examined the AuroraMap visualizations created from the real-world dataset, which 

consists of the geospatial data of religious infrastructures like Buddhist temples and Christian 

churches, located in different provinces of China. Observing given AuroraMaps, the participants 

were asked to draw the boundary in free-hand and estimate the peak value of each cluster within 

the distribution. The statistical results suggest that the participants were able to address the 

relative locations and scopes of the clusters for the given spatial distribution produced by 

AuroraMap. Additionally, the results also show the accuracy of users' estimations about the peak 

values for clusters. The number and locations of the clusters in users' answers correlated to the 

truths computed by a density-based clustering method, Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN) and confirmed by a hierarchical clustering method, 

Chameleon. This test reveals the fact that the hierarchical relationship of the density distributions 

could be gained by the observers accurately. The application further shows the capability of 

applying AuroraMap to visual analysis tasks comparing between multiple variables for the same 

base-map and for resolving off-screen visualization. 

This method can be conceptually considered equivalent to tearing, compressing, and 

projecting a conventional heatmap to the boundary of a spatial distribution, similar to 

homography. Therefore, the patterns encoded in the AuroraMap remain the transformed shapes 

of clusters and the colors indicate the density changes. The main contributions of this 

visualization method are: (1) freeing up the display properties for other uses, like overlapping the 
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base-maps for references, (2) allowing the observers to quantitatively estimate the clusters or 

subsets of data and determine their relative locations and shapes, (3) enabling the visualization of 

multivariate data on one single map.   

 
Figure 1: AuroraMap visualizes the spatial distributions of religious infrastructures in different 
provinces (Simplified provincial boundaries; Data source: Online Spiritual Atlas of China. The 

colors on the map encode the densities of the regions along the normal vectors of vertices on the 
boundary (black line)). The graph on the right shows the congruent relationship of plotting the 

distribution as a dot map and the AuroraMap. 

 

1.3 Statement of Purpose 

The purpose of the research is to address challenges in visualizing spatial distributions by 

proposing a novel visualization technique with the following characteristics: 1) reveals essential 

spatial distribution properties, including: the density and centroid of point clusters with the color-

encoding method, 2) enables flexible geographical scope, with the ability to project density 

changes in spatial distributions on an arbitrary boundary, potential boundaries to use for 

encoding including a concave/convex hull outline of spatial points or any level of a political 

boundary, 3) resolves computation difficulties to encode distribution information with a variety 

of colors on a sophisticated boundary shape. We presented an algorithm to simplify, abstract and 

aggregate spatial data that works efficiently on most boundary typology types, including 

polygon, Bezier curve, etc. The research validates the efficiency of AuroraMap by conducting 
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human subject tests. The results prove that AuroraMaps are a competitive alternative to 

traditional spatial distribution analysis techniques.  

1.4 Research Questions and Hypothesis 

The human subject study is conducted following the above three questions: 

1. Does AuroraMap effectively reveal key spatial distribution properties, including: density 

and centroid of a point cluster? 

2. How well can users perceive Auroramp in tasks in terms of accuracy? 

3. Is AuroraMap a competitive visualization technique compared to ground truth 

visualizations, including: dot distribution map and heatmap? 

We made the hypothesis on each questions respectively: 

1. The AuroraMap effectively presents spatial distribution properties with color encoding 

method 

2. Users performs well understanding AuroraMap in task-based evaluations 

3. AuroraMap is a competitive visualization to abstract and present spatial data properly 

compared to dot distribution map and heatmap. 

For the listed research hypothesis, we designed a human subject test that asked users to perform 

a series of tasks using AuroraMap. We validated whether users are able to interpret centroid of 

point a cluster by asking them to draw the clusters with the maximum density above a particular 

range; we tested if users can perceive density variation from AuroraMap by asking them to 

estimate the maximum density of each cluster they drew. 

1.5 Assumptions and Limitations 

We admit the following limitations in this research: 
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1. All participants are from Purdue University, and the number of participants is not 

significantly large. Therefore, they may not fully represent all users for AuroraMap 

2. As an abstract visualization, the visualization omits detail about each exact location of 

spatial points; however, the users can implement interaction technique such as focus-

plus-context to enhance detail exploration 

3. AuroraMap encodes spatial distribution with a continuous projection function using 

relative densities. Hence, it has limitations in capturing significantly small density 

variations, as the color for those variations are less evident for human eyes 

4. It introduces the possibility of visualization clutter in visualizing multi-categories data.  

We admit the following limitations in this research: 

1. All participants are from Purdue University, and the number of participants are is not 

significantly large. Therefore, they may not fully represent all users for AuroraMap 

2. As an abstract contextual visualization, AuroraMap omits details about each exact 

location of spatial points; however, the users can implement interaction technique such as 

focus-plus-context to enhance detail exploration 

3. AuroraMap encodes spatial distribution with a continuous projection function using 

relative densities. Hence, it has limitations in capturing significantly small density 

variations, as the color for those variations are less evident for human eyes 

4. It introduces the possibility of visualization clutter in visualizing multi-categories data 

1.6 Delimitations 

We present the following delimitations in this research:  
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1. The study uses a Blue-Red sequential color scale to encode spatial distribution properties, 

and does not provide other color options 

2. AuroraMap provides an abstract visualization approach and uses simplified boundary for 

visual encoding, and does not offer a solution for boundaries with over complexity 
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CHAPTER 2. LITERATURE REVIEW 

Spatial distribution data is widely used in census data, bioinformatics, and urban 

planning, to name a few. However, visualizing distribution data can be challenging due to the 

requirement to analyze and compare various spatial situations and gain an understanding of 

temporal changes.  

The spatial distribution data sets can be characterized as multidimensional data, which 

refers to the spatial attributes of the raw data (eg., 0D that represents individual “dot,” 1D, 2D, 

3D), it may also include other dimensions such as time variation. If the data present only at an 

individual “dot,” the visualization can be relatively straightforward using statistical approaches, 

such as box plots or bar charts. Box plot is a standardized visualization method of representing 

data distribution and can be used to visualize geographic or spatial variables. Willmott’s 

Geographic box plot [1] computes a spatially weighted diagram to describe a wide range of 

geographic variables and associates the spatial elements’ area to the box plot’s area. Another 

alternative method of traditional box plot in visualizing spatial statistics is the “Oriented Spatial 

Box Plot,” introduced by Laurent et al. [2] that extends the classical one-dimensional box plot in 

2D point clusters summarizing and visualizing. The accuracy of box plots in displaying statistical 

patterns makes it easy and straightforward to understand spatial distribution density, pattern, etc. 

However, it often fails to represent multidimensional data or display complex geographical 

shape. 

There is much research that has been done to visualize spatial distribution data — mainly 

utilizing map-based visualizations for spatial information transferring. A thematic map 

visualization represents the distribution of a specific phenomenon with visual components; it 

contains information found in a normal topographic map. A visualization system is created by 
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distinguishing six basic visual variables: size, value, texture, color, and shape to identify the 

proper symbology for a thematic map visualization, which is used widely in representing data 

attributes with cartographic components. Examples including proportional symbol grid maps that 

include symbols that vary in size based on the value they represent, using either absolute scale or 

apparent magnitude scale to visualize data. Another widely used visualization method is grid 

choropleth, it abstract regions on a map into a series of shapes; the shapes allow for the inclusion 

of different sort of data displaying visualizations. Dang et al. introduced Dynamaps [3] as a 

generalized map-based visual analysis tool for dynamic queries and brushing on choropleth 

maps. However, as relatively abstract data representations, some of these solutions lack of good 

data representations for distribution details. We further conducted literature reviews in the 

following aspects: 1) Off-screen Visualization, 2) Perceptual Color Theories for Effective 

Density Visualizations and 3) Multivariate Data Visualization. 

2.1 Perceptual Color Theories for Effective Density Visualizations 

It is prevalent to use color to convey categorical and quantitative differences in geospatial 

visualization. A discrete color map defines discrete data items, and a continuous color map is 

used to present a continuous data range. Color has three perceptual dimensions – hue, saturation, 

and lightness. Variations in the three channels can encode differences in the data. Hue, which 

represents the color name, is more appropriate to show the nominal or categorical differences. 

On the other hand, lightness, the brightness of the color, and saturation, the vividness of the 

color, is more suited to visualize the ordinal differences [14][15]. Depending on the design, data 

can be comprehended in a better or worse way. A well-designed color scheme can provide good 

insight into the data, while an ill-designed color scheme can cause confusion and mistake. 
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Color perception has been studied extensively in the visualization community [16] [17] 

[18]. Silva et al. [16], Bernard et al. [17] and Zhou & Hansen [18] review the most advanced 

work in colormap design and color perception and further provide guidelines about which color 

scale or colormap to select or create concerning to the type of data and analysis tasks to be 

performed. ColorBrewer.org [19] is an excellent tool to select and generate color scales for 

cartographic visualization based on users’ specific mapping needs. Inspired by the ColorBrewer 

tool, Dykes and Brunsdon [15] propose a series of geographically weighted interactive maps and 

use both sequential and diverging color schemes to show the variations of spatial patterns. 

Similarly, Lampe and Hauser [20] adopt the concept of kernel density estimation to visualize 

streaming data of maritime trajectories and commercial air traffic. A sequential colormap is 

designed to help explore the variations in the continuous spatial domain and compare different 

trajectory regions. 

Although there have been numerous research studies conducted to generate effective 

color mapping techniques, it is still a difficult task to design effective colors that provide good 

discrimination between data values. One of the most important tasks in spatial data analysis is to 

detect the degree of similarity among global and local spatial distributions [21]. As one of the 

most popular visualizations, a geospatial heatmap is useful to represent an overview of the 

spatial distribution on a map as well as estimate the difference across maps. A warm-to-cool 

spectrum is widely adapted by researchers to colorize the density data in a heatmap [22]. 

Following the convention, “Dark equals more” [19], regions with higher densities are colored 

darker compared with those with lower densities. 

Despite the popularity of the rainbow color scheme, research has shown several 

weaknesses and criticized the rainbow color scheme through its lack of perceptual ordering, has 
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a difficulty of distinguishing small saturation variations, falsely segments data, and hinders 

accurate reading of data due to banding effects at hue boundaries [23][24][25]. To provide 

guidelines and designs for quantitative color encoding, researchers have conducted a series of 

comparative analyses of different colormap types. Liu and Heer (2018) [26] analyzed the speed 

and accuracy of four single-hue and five multi-hue colormaps in which participants judged 

similarity across varying scale locations and value spans. They proposed that multi-hue 

colormaps may be preferable to single-hue in heatmaps because multi-hue colormaps can 

provide improved resolution. Reda, Nalawade, and Ansah-Koi (2018) [27] conducted three 

crowdsourced experiments to measure participants’ ability to estimate quantities and perceive 

longitudinal patterns in nine commonly-used colormaps. They found that the rainbow color 

scheme is the most accurate colormap for quantity estimation irrespective of spatial complexity, 

while divergent colormaps excel in tasks requiring the gradient perception of high-frequency 

patterns. ColorBrewer [19] also proposes that the diverging color scales could effectively 

highlight the contrasting luminance at high and low extremes. It is more suitable to emphasize a 

critical data class or break point for scalar fields. 

All of the previous work on color perception and color mapping provides a deeper 

understanding of the nature of data and tasks as well as how to create aesthetically pleasing yet 

effective colormaps. Given the advantages of the multi-hue color scheme as well as its popularity 

and similarity in the information visualization community, we decided to implement the multi-

hued color scheme to encode the distribution and variance of spatial data in AuroraMap. 

2.2 Off-screen Visualization 

As a data-driven approach, the general idea of off-screen visualization is to preserve 

overview while maintaining the information about the data topology and characteristics. 
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According to Cockburn, Karlson, and Bederson [6], “Cue-based techniques […] modify how 

objects are rendered and can introduce proxies for objects that might not be expected to appear in 

the display at all.” The off-screen visualization techniques provide visual cues located at the 

display border to indicate the position and the distance of elements clipped from the viewport. 

Aligned arrows[7][8] have been applied to map visualizations, while it only encodes the 

direction, not distance. Halo [9] uses translucent arcs on the border of the display window to 

indicate the location of off-screen elements. The arc length encodes the distance from the 

viewing space. Although Halo successfully uses the orthographic strategy to visualize off-screen 

objects, it suffers from visual clutter at the border of the screen when showing a large number of 

off-screen objects. To overcome some of the limitations of Halo, Hopping [10] is designed to 

quickly and easily navigate to an interesting area in a large-scale context. It combines oval halos 

with a “laser beam” to show proxies of off-screen targets and a teleportation mechanism to 

navigate to the target location and context. However, Gustafson et al. [11] further find the oval 

approach is not sufficiently accurate to locate off-screen objects. Wedge uses an overlap-

avoidance algorithm to reduce the amount of overlap, maximize the location accuracy, and 

provide sound distance cues. The Wedge layout algorithm offers significant improvements over 

Halo and shows substantial accuracy advantages. Some techniques improve Halo by preserving 

topology and overcome clutter through aggregation [11][12]. HaloDot [12] aggregates points-of-

interest with color and transparency to represent the relevance and the distance of each object. 

The objects with warmer and more visible colors represent more relevant ones, while the less 

relevant ones are represented with colder and less visible colors. Ambient Grids [13] proposes a 

grid coloring approach to project and visualize the point and shape data in the border region. 

Points and shapes are rasterized using the grid and then projected to the border region. Ambient 
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Grids also assigns a radial cell-based color gradient to the cells mapped within the eight border 

regions. 

Although these off-screen solutions aim to aggregate an overview of off-screen objects, 

there is a high potential for applying the approach to in-screen data items. Jӓckle, Kwon, and 

Keim [14] propose the area of off-screen visualization as a pioneering approach and uncover the 

potential of off-screen visualization through general applications. One of the most critical 

challenges is to preserve the overall topology of objects through the appropriate design of visual 

proxies. Inspired by the projection method and visual proxy design in off-screen visualizations, 

AuroraMap projects the spatial data to the geometric boundaries of the distributions and uses 

colors to encode the density of the distributions. This makes it feasible for researchers to 

maintain the overall topology of data items, while still being able to use the inside screen real 

estate for more important information. 

2.3 Multivariate Data Visualization 

Multivariate data analysis involves examining patterns and relations in three or more data 

variables. Various visual mapping techniques have been presented to convey the high-

dimensional information to the user through pixel-oriented techniques, glyphs, geometric 

projections, hierarchy-based techniques, and animation [29]. All of these techniques try to reduce 

dimensionality while preserving the main structure visually. However, Chan [30] have shown 

that each approach has its advantages and disadvantages. One of the limitations is that it may 

result in a cluttered representation for more massive data sets, which can impede the user’s 

perception capabilities. A straightforward approach is to apply aggregation in visualization to 

reduce clutter. The binned aggregation has been employed to reduce the data record and query 

processing time. For example, imMens [31], Nanocubes [32], and Hashedcubes [33] design data 
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cubes to explore and analyzes large multidimensional spatial datasets. Although these systems 

successfully solve the scalability problem, the structures only support heatmaps. Heatmaps are 

effective in presenting the overall spatial distribution patterns. However, they are hard to detect 

the locations of data values in each cluster precisely, and a high-density area may be indicated 

where there are actually few data points. 

Compared to existing heatmaps or binned plots, a cluster-based data cube has been 

utilized to support interactive visualization of large-scale multidimensional spatial data [34]. Li 

et al.[35] propose ConcaveCubes to apply a novel concave hull construction method for 

boundary-based cluster map visualization. The color of the concave hull represents an 

aggregated value of properties in each cluster. The experimental evaluation of ConcaveCubes 

shows that the boundary-based cluster maps present more precise geographical information with 

semantic meanings and are suitable to visualize geographical points on a map. TopoGroups [35] 

applies a boundary distortion algorithm to enable effective context-preserving navigation and 

identify different spatial distribution patterns at varying scales. The design space of different 

visual encodings for the boundaries are fully explored. Color, transparency, shading, and shapes 

can be used to convey the hierarchical information of the clusters across multiple scales. 

Phoenixmap [36] uses a similar approach to visualize multiple spatial distribution datasets. This 

approach adapts the concave-convex hull algorithm to divide the outline into many segments 

with various widths to convey the range and density information on a map. It frees up the space 

inside the boundary and can overlap many Phoenixmaps as needed on the map to visualize 

multiple spatial distributions. However, Phoenixmap is hard to precisely the shape of each 

cluster within the distribution. We further adapt the algorithm and develop Aurormap to preserve 

the contextual information as colored areas mapped to the border region. 
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CHAPTER 3. VISUALIZATION ALGORITHMS 

In this chapter, we proposed a novel algorithm to tackle the challenges in visualizing 

spatial data, including 1) traditional methods like heatmap and dot distribution map required 

multiple visual representations for multidimensional spatial data, 2) numerous graphs cause 

difficulties for user perception tasks such as lookup, comparison, and relation seeking, 3) 

existing contextual-based algorithms such as Bristle Map, Ambient Grid have limitations in 

providing a flexible geographical range.  

Our visualization algorithms address the above challenges, in terms of 1) proposing an 

abstract visualization method that aims at presenting two essential properties, density and 

centroid of points clusters in spatial distribution data, 2) free up space for potential overlapping 

and introduces contour layers to present multiple category spatial data at one time to prevent 

graph clutter, 3) projecting spatial distribution information on a geographical boundary and 

enables easy comparison for different geographical range, 4) using smoothed boundary and color 

range to provide a beautiful visualization solution. 

For example, given a set of 2D spatial points presented in any particular region, we 

define the region boundary that encloses all target objects, then we simplify and round the edges 

before assigning an offset width to the outline which provides space for spatial density 

projection; then, we transform and compress the position of the points in the area to the offset 

space using a segmentation technique, we segment the offset space into segments for color 

filling; lastly, we smooth and average the color value in each cell with a continuous projection 

function. Our approach offers an overview of the density properties within any geographical 

range and helps users to conduct quantitative estimation on density values accurately. 
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3.1 Boundary and Offset Acquisition 

The first step on spatial data aggregation is to define a boundary that encloses the 

investigated points on a map. There are two typical boundary types, including 1) a pre-defined 

boundary, such as political province outline (province, state, nation), and natural geographical 

outline (rivers, mountain, lanes, etc.), 2) a computational spatial boundary, mainly derived from 

data processing domain (such as a concave hull that embraces all the points but with minimal 

area.) For our AuroraMap algorithms, we choose to use a pre-defined boundary as a restricted 

border for the investigated. Our raw spatial data records spatial points as pairs of longitude and 

latitude in a map within a Euclidean coordinate; each pair of data describes a unique point 

location without duplication. For computational consistency, we describe the outline as a group 

of points that locates on the outline to embrace all spatial points. There are, on average, hundreds 

of points since sufficient adjacent points can determine the geometry shape as polygon 

accurately. We use GeoJSON for encoding the boundary geographical data structure.  

In AuroraMap visualization, we intend to use a simplified outline shape to provide an 

abstract overview of spatial distribution properties. Therefore, we introduce polygon 

simplification algorithms: Douglas-Peuker and Radial Distance algorithms as a combination to 

reduce the number of points. We implemented the polygon simplification and decreased 80% 

additional points while retaining its shape by keeping track of simplified tolerance. There are 

averagely 60 points to define the adjusted geographical boundary without losing shape details. 
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Figure 2: Different Simplified factors applied to the same boundary: 0, 0.15, 0.3 and 0.4 from 

left to right 
 

Based on the simplification results, we computed an outline abstraction by connecting 

outline points with Bezier Curve. We chose to use the Bezier curve algorithm because it 

produces curves with reasonably smooth at all scales and passes through all the control points on 

the outline. The Bezier curve also provides a better aesthetical representation of any geometry 

shapes. Afterward, we rounded up the edges to prevent sharp corners appearing on each Bezier 

Curve outline due to drastic changes in each segment of the curve, causing difficulties in 

segmentation (our second step), which we will elaborate on in the following chapter. 

To offer space to color encoding spatial densities, we offset the Bezier Curve as an outer 

boundary and intended to produce a “parallel” outline as an inner boundary using quadratic 

bezier offsetting with selective subdivision. The outer boundary and inner boundary provides a 

“stroke” naturally where we put color information to present density variation and cluster 

position. We set the “stroke-width” with a practical value that prevents lines from self-

intersection while providing enough space for color information. The values vary from different 

geometrical typology based on the complexity of the shape. 
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Figure 3: Different “stroke-width” value options 
 

 
Figure 4: Geometry abstraction and boundary offsetting process 

3.2 Segmentation and Density Computation 

AuroraMap uses a range of colors to encode density variation within a particular region. 

In the real-world scenario, spatial distribution densities vary in different locations in the region. 

Therefore, we segment the regional geometry shape into multiple minor pieces, calculate the 

density in each segment, and transform density information as color variants to be filled in the 

offset stroke. There are various geometric segmentation algorithms in computer graphics that 

attempt to segment a 2D surface (typically closed area) into meaningful pieces as expected from 

human observers. Medial axis transformation [37] and Voronoi diagram [38] of a closed 

bounded area are basic entities associated with the natural properties of that area. The medial 
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axis is a set of points of maximum-radius circles (bounded by the area in at least two points), and 

the medial axis transformation technique is frequently used in geometry area segmentation. The 

Voronoi diagram describes a series of curve segments such that each point constrained in a 

particular region is at least as close to its nearby boundary segment as to other segments. 

In our visualization, we intend to segment a given domain as well as its corresponding 

boundary stroke and transform spatial properties enclosed in the domain to stroke spaces and 

inspired by Phoenixmap, which breaks the outline into multiple segments and assigns a different 

thickness to encode density information. We chose to segment the region denoted as S with the 

maximum circle sampling method introduced as a part of Phoenixmap algorithm. We first break 

the outline denoted as C into n segments by interpolating points on the Bezier curve outline, each 

sampling points have an average distance between each other to ensure an even segmentation. 

For any line segment ci ∈ C, we defined a segment ri ∈ R to measure density variation. On any 

line segment ci, we extracted two adjacent points as a pair denoted as (pi, pi+1). Then we 

calculated a maximum inscribed circle (bounded by the outline) for each point to get two circle 

centers denoted as (oi, oi+1). We constructed a quadrangle region denoted as Ri from (pi, pi+1, 

oi, oi+1) sequentially until reaching the last point pn-1 on C. Since we use a closed geometry-

shape to encode spatial data, we extracted the last point pn-1 and the first point p1 as (pn-1, p1) 

to compute the last segment. This method provides an approximation segmentation solution with 

the same mechanism of medial axis transformation. It is mathematically provable that i=1nRi S. 

Moreover, the maximum circle method avoids segmenting irregular polygons other than a 

quadrangle, which decreases algorithm complexity significantly. In our algorithm, we used 

n=5000 as an empirical number of segments according to the region geometry entities such as 

perimeter, complexity. 
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Figure 5: Maximum circle segmentation method.The adjacent dashed max-inscribed circles with 

respect to division knots on the boundary define the region for computing the densities. The 
diagram shows all essential elements. 

 
Aiming to measure the distribution in either vertical (one can imagine a vector 

represented by a directed line segment on the outline) or perpendicular (another vector 

perpendicular to the vertical vector), we differentiated the domain segments into n sub-segments 

averagely. Given a quadrangle segment Ri which is constructed by four points (pi, pi+1, oi, 

oi+1), we segmented two lines defined by two pairs of points (pi, o1) and (pi+1, oi+1) into m sub 

line segments, and constructed perpendicular a set of sub-segments denoted as {(oi, oi+1, opi, 

opi+1), (op1i, op1i+1, op2i, op2i+1), … (opmi, opmi+1, pi, pi+1)}. We named the vertical sub-

segment as a region cell as an easier reference for the next step.  
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To encode density variation into the "stroke" that we computed from the step of 

"boundary and offset acquisition," we differentiated the stoke into sub-segment following the 

above region segmentation process. We divided the "stroke" into a set of cells sequentially, the 

cell is small enough, and each fits in less than one pixel, we further fulfill color information into 

each cell to present the density variation in its corresponding domain segments. We named the 

stoke cell as a stroke cell as a more natural reference for the next step. 

  

Figure 6: (a) flow diagram shows how to divide and encode the subdivision densities 
accordingly; dots of original distribution in blue region (b) are homographically projected to the 

red region in (c). In this example, distribution has been divided into 20 slices along normal 
direction. 

 
Lastly, we transformed the density of the spatial points in each region cell to its 

corresponding stroke cell. One can imagine a scenario that all points enclosed by a region 

boundary are compressed into the stroke. For each region cell, we counted the number of the dots 

and divided it by region cell area to calculate the absolute density value. We stored the absolute 

density value in a dictionary, each with a unique "key" value that represents which region cell it 

is calculated from. In the program, we looped through the dictionary and calculated the absolute 

density range. To alleviate the drastic change in adjacent region cell, we averaged and smoothed 
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the absolute density values to relative density values by two means: 1) for a set of region cell 

densities that derived from an identical vertical segment, we defined a step k and weighted 

factors to average adjacent cell densities. The weighted factors are presented as float numbers in 

an array A0 with a length of k. For each region cell, we extracted the cells forward and backward 

with k/2 steps and stored their density values sequentially in another array A1. By traversing 

through A0 and A1 in the same time, we calculated the weighted arithmetic mean(WAM) for the 

cell; 2) for a set of region cell densities that derived from an identical perpendicular index, we 

calculated the weighted arithmetic mean for each cell as the relative density value. 

3.3 Color Encoding and Smoothing 

The algorithm accurately calculates the relative density values for each region segments 

and presents a continuous density variation in its geographical context. We used color to encode 

spatial distribution properties within the minor region pieces without losing details. In the 

previous step, we calculated the absolute density values for all region cells, and projected region 

cell densities to stroke cell spaces. According to the testing, most users can imagine the scenario 

that spatial points are transformed and compressed into the stroke area. After this transformation, 

we averaged the density value for each cell according to its neighboring segments to convert the 

discrete density variation into a continuous weighted value. We use a sliding window m = 50 and 

a step m’ = 7 or vertical and perpendicular segments, respectively. 
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Figure 7: AuroraMap algorithm pseudocode 
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There are numerous color encoding scheme options in data visualization including 1) 

Categorical color scheme which is frequently used to present discrete data, 2) Diverging color 

schemes as continuous color interpolator and as discrete schemes, 3) Sequential, single-hue color 

schemes which use hue and shade to present value as continuous interpolators. In the research 

early phase, we chose single-hue red color ranges to show the density variation. The color 

encoding is straightforward and intuitive that darker colors present higher density among their 

corresponding areas than lighter colors. We later transferred to a Red/Blue multi-hued color 

scheme as it captures density that changes slightly in different places better. 

 

Figure 8: Single-hue color scheme we used for early research phase and the Blue/Red scheme 
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CHAPTER 4. EXPERIMENTS 

We performed a human subject experiment to investigate how users perceive 2D density 

distributions with AuroraMap. We choose heatmap and dot distribution map as the benchmark 

visualizations and provide a summative comparison among the heatmap, dot distribution map, 

and AuroraMap. In the experiment, we investigated the effectiveness of AuroraMap by asking 

users to perform a series of evaluation tasks.   

Firstly, we recorded users’ demographic information and educational background. 

However, we did not record any identifiable information; secondly, we offered a training session 

to introduce the basic computational algorithm about AuroraMap as area projection, followed by 

multiple visualization examples of typical distributions constrained within conventional 

geometric boundaries (circles and rectangular), and one visualization demonstration of a 

geographical outline visualizing a set of real-world data. Lastly, the users were asked to identify 

the position and mark the peak density values of circled clusters in the distribution for two given 

AuroraMaps.  

4.1 Participants 

We recruited 42 participants with an average age of 23, who were undergraduate students 

or graduate students at Purdue University. There are 18 female and 24 male participants. The 

study protocol is approved by the Purdue University IRB Human Research Protection Program. 

All participants have a normal color vision and are able to perceive color information 

confidentially (listed as a requirement in the study consent form). All these participants have 

essential prior knowledge of computer graphics and visualization.   
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4.2 Color scale and displays  

Color is utilized in AuroraMap visualization design in order to convey the attributes of 

2D distribution: density values, cluster patterns, and sample locations. We generated heatmap 

and AuroraMap with a Red-Blue diverging color scheme with continuous interpolators, since it 

is a widely accepted color encoding scheme method to represent low to high values, and is 

commonly used in mainstream visualization software including Tableau, d3 in JavaScript, 

matplotlib in Python, etc. A heatmap in a multi-hued color scale is proven to be more effective in 

task-driven visualization [60]. 

In our experiment, we implemented the visualizations for the purpose of training and 

testing on the participants in a web-based graphical rendering environment. We utilized SVG 

(Scalable Vector Graphics) as the visual representation format. D3 in JavaScript provides access 

to a variety of practical color schema options that are derived from ColorBrewer by Cynthia et 

al. In our experiment, there are two types of visualization trials: 1) six regular geometric 

boundaries, in which a set of AuroraMap with over 100 points randomly distributed and 

visualized, 2) three geographical boundaries, in which the religious facilities spatial distribution 

data (three provinces) are visualized with AuroraMaps. The testing aims at investigating whether 

users are able to localize the position of point clusters and estimate the maximum density value 

accordingly. Each visualization trial consists of two parts: 1) Visual representation of 

AuroraMap, regular geometric boundary visualization was a 3× 3 grid; 2) Color legend with two 

types of illustrations in a fixed height, one displayed as a set of color blocks with 9 typical values 

and colors, the other used constant color gradient without value label.     

We conducted a pilot study before the formal experiment process to determine a better 

display method for our experiment. We recruited two participants from Purdue Intelligent 

Visualization and Interaction lab; both users have normal color perceiving capacity.  
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4.3 Training  

In our experiment, we conducted a training session after collecting participants’ basic 

information and before the testing procedure, as an essential part of the experimental design. Due 

to the fact that heatmap and dot distribution is widely accepted by the public as an efficient 

method to present spatial distribution data, some users have prior knowledge in interpreting 

visualizations such as heatmap and dot distribution. Considering AuroraMap might be new to 

users, we introduced a training session to help participants understand how AuroraMap works in 

presenting distribution data within any geographical boundary.   

The training session mainly aims at delivering the projection mechanism and color-to-

density perception methods in 2D distribution pattern recognition using AuroraMap. There are 

two major parts in the training sessions, including maximum circle projection demonstration and 

three visualization perception tasks. We extracted and simplified a geographical outline based on 

a typical provincial boundary of China, and selected 5 points on the outline with average 

distance. The users were asked to draw the maximum circles which start at the points 

individually after users draw on each trial, an experimenter explained to the users 

how AuroraMap algorithm projects spatial points to the outline spaces, and the grand truth result 

for the maximum circle was displayed to the users for the betterment of their learning process.   
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Figure 9: Single Maximum circle projection  

 

Afterward, the participants saw three visualizations, sampled from different data sets, and 

with varying types of the boundary, they were asked to perform tasks with each visualization 

trial. We generated distribution density changes inside two types of regular geometric outlines: 

circle and rectangle. The spatial dots are produced with a normal distribution pattern but 

randomly using Geopandas in Python. There are three different distribution patterns presented 

for the first and second visualizations, and we overlapped a dot map with the AuroraMap 

accordingly. The users can perceive the grand truth visualization together with AuroraMap to 

help decision-making in the training session. In the third visualization, we chose an irregular 

geometric outline as a sophisticated example. 
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Figure 10: Regular geometric outlines and an irregular geometric outline as a part of training 
materials  

 
The training process took 30 minutes on an average per user and involved 42 participants. 

92% users have significant improvement throughout each training phase; we determined the 
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success of a training session based on each participant’s performance over the last training task. 

We filtered three results due to significant errors made during the training session, collected and 

analyzed 37 test data. 

4.4 Experiment  

In the experiment, we designed two representative scenarios that used different 

geographical boundaries, which enclosed spatial dots sampled from a real-world dataset. We 

provided two visualizations trials in the experiment procedure, Trial A and Trial B. Each trial 

presents as an SVG that consists of two parts: 1) an AuroraMap, 2) color legend with two types 

of illustrations in a fixed height, one displayed as a set of color blocks with 9 typical values, the 

other used constant color gradient without value labels.   

We generated two different distributions with the religious facilities distribution data and 

China geographic data. We chose two typical provinces in China: Hunan and Yunnan, both 

contain over 500 religious sites to avoid sparse distribution without regular and identifiable 

distribution pattern. We then extracted the geolocation of each religious site constrained by two 

different provinces’ political boundaries separately and transformed each site latitude and 

longitude into a pair of value presented in the SVG space. By simplifying the boundary 

accordingly to the algorithm discussed in the previous chapter, we generated the contextual 

visualization with 2D spatial distribution encoded adequately. 
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Figure 11: Single Experiment materials   
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 The experiment aims at investigating whether users can identify spatial distribution 

pattern (density, the centroid of a point cluster, etc.) at different locations, and how densities vary 

at a particular area (such as points distribute from sparse to dense). The users can imagine a 

scenario that investigated items (which are religious sites in our experiment) are enclosed in a 

fixed area where the densities change in different spaces. The participants saw two AuroraMap 

in a sequence, which is “Hunan” first and “Yunnan” second, due to Hunan has less spatial 

distribution peak clusters, but Yunnan has more clusters that is harder to perceive. There are two 

tasks for each scenario, 1) identifying several peak point clusters with maximum density higher 

than a specific value within the given boundary, 2) estimating the maximum value for each peak 

point cluster according to the legend. After each trial, we presented the dot distribution map as 

ground truth visualization, which the participants could refer to in their decision-making process 

for the second trial. By observing the AuroraMap and legend provided for each visualization 

trial, the users draw outlines with least perimeters that enclosed several clusters that have a 

maximum density higher than a specific value. Our experiment also tested the effectiveness of 

AuroraMap in representing quantitative data. Therefore, we asked our participants to estimate the 

maximum density as a value according to the legend with value labels.   

The experiment process took 15 minutes on an average per user and involved 42 

participants. We removed 5 participant's results from analysis due to their extreme error. It seems 

they do not understand our method correctly. We made a summative comparison about heatmap 

and AuroraMap, to investigate their performance in revealing spatial distribution patterns by 

analyzing the position and area of each cluster that users draw and the maximum estimation 

result. 
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Figure 12: Participants working on two experiment trials  

4.5 Experiment Data Analysis 

As the aforementioned procedures of the experiments, we collected 42 participants' 

responses in total.  We filtered 5 participants’ data due to extreme error they made during 

training session, thus, we believed they did not understand AuroraMap visualization. In the 

experiment session, the participants were asked to determine (free-hand drawing) the clusters 

inside the distributions, which were visualized by AuroraMaps. Two different AuroraMaps 

("Hunan" and "Yunnan") were given to each participant. Considering the boundary of "Yunnan" 

is more complicated than "Hunan" that could cause more perceptual and cognitive load, all 

participants were tested on "Hunan" first, then "Yunnan." After testing on each graph, the 

participants were allowed to check the dot maps overlapping on top of the AuroraMaps for the 

corresponding distributions. It aims to improve their understanding of AuroraMap. Therefore, the 

users are expected to perform better on "Yunnan" than "Hunan."  

The participants were also required to mark down the peak density values of each clusters 

circled by the users according to the given color legends. The tests are designated to test whether 

the users are able to determine two crucial features of the clusters: (1) relative location of each 

cluster inside the boundary, (2) peak density value of each cluster. There are six clusters for each 

map and the peak density values are rounded to integers upon the computational results from the 
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algorithm.  We used a density-based clustering method, Density-Based Spatial Clustering of 

Applications with Noise (DB-SCAN) [1], to automatically identify the clusters’ positions and 

outlined the boundary for each cluster.  

In Fig. 2, we overlapped the users' drawn areas (highlighting in black) with the 

algorithm-detected clusters (highlighting in green) and the original dataset (orange dots). 

Visually judging by the intensity of the darkness, we can comprehend that the users were able to 

detect the important clusters, especially for those clusters with clear separations. Comparing 

Fig.2a to Fig.2b, even though "Yunnan" has a fairly more complicated boundary, the users 

performed better. It may be because the users tested "Hunan" first and gained more experience 

and a more profound understanding of AuroraMap. 

We counted how many clusters are successfully covered by the enclosed curves drawn by 

each user and their valid rate (covered number versus total clusters, ranging from 0 to 1). As the 

table shows in 1, participants are able to detect the clusters with fairly precise localization 

(0.831±0.182). The result also suggests that "Yunnan," which was tested later, performed slightly 

better. Additionally, we conducted a Pearson correlation [6] to calculate the correlation between 

user estimations and the correct peak density values for the detected clusters.  This statistical 

method tests the linear correlation between user estimations and the right answers, which ranges 

from -1 to 1 (1 means positive relationship, vice versa). 

In table 2, we can see most of the users can estimate the answers correctly. Notice p-

value is more as a reference since our sample size is less than 500. However, if we observed the 

coefficient values and set 0.75 as a threshold to filter the data, we can summarize that most of the 

users (29 and 37 respectively out of 37 in total) can estimate the peak density values accurately 

with legends provided. 
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Table 1: Featured Statistical Results for Cluster-Detected Valid Rate 

 Hunan Yunnan Total 

Mean 0.779 0.883 0.831 

STD 0.192 0.156 0.182 

 
 

Table 2: Results for Spearman Correlation Test 

 Hunan Yunnan 

P-value (<0.05) 14/37 35/37 

Correlation coefficient (>0.75) 29/37 37/37 
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(a) Hunan Province 

 
(b) Yunnan Province 

Figure 13: Overlapping Dot Density Map with User Inputs 
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CHAPTER 5. CONCLUSION 

5.1 Summary 

In this thesis, we present a highly versatile abstract visualization technique: AuroraMap 

for 2D spatial distribution data. Our technique uses a pre-defined boundary to segment a region, 

count densities in each segment area, and apply a variety to colors to encode density variations. 

We offset the boundary that yields a certain width that generates a “stroke-width” and later 

segments the stroke-width into cells that provide spaces for color encoding. In AuroraMap 

visualization, we utilized a multi-hued color scheme to present density values. Hence, the higher 

the density among a segment, the darker the cell is. The visualization reveals two essential 

distribution attributes: 1) density, 2) centroid of density peak clusters. 

To validate the effectiveness of AuroraMap, we conducted human subject experiments to 

investigate whether users can perform well on tasks. The test was approved by the Purdue 

University Human Research Protect Program; we recruited 42 participants from Purdue 

University who have normal color perception ability. We started from a training session to help 

participants understand the fundamental visualization mechanism and filtered 37 participants’ 

data due to the extreme error they made. We involved 37 participants in the testing phase; they 

were asked to locate, draw the density peak points within two given regions, and estimate the 

maximum density value with density value legends given aside. To evaluate the accuracy of the 

cluster localization, we implemented ground truth visualization using a density-based clustering 

method DB-SCAN. The DB-SCAN provides a valid reference to determine the accuracy of user-

draw clusters centroid and area. We overlapped the area of ground truth visualization clusters 

and user-draw clusters and calculated a valid rate determined by whether the user-draw area 

covers the ground truth visualization clusters (ranging from 0-1). To evaluate user estimate 
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density values, we conducted a Spearman correlation by analyzing the p-value and correlation 

coefficient. From the experiment, we can tell the users can easily perceive and interpret the 

geographical boundary of the distribution and can accurately estimate the position and 

orientation of each peak clusters within the region. According to the hypothesis and assumptions 

we made previously, the AuroraMap effectively presents spatial distribution properties, since 

92% users are able to localize and estimate the distribution peak points using AuroraMap; the 

summative comparisons indicate that AuroraMap is a competitive visualization to traditional 

visualization including dot distribution map and heatmap. 

5.2 Application of Work   

AuroraMap is designed for two major visualization issues, multivariate and multiple 2D 

spatial visualization in one graph. This implementation enables the visual comparison for the 

users. They could easily perceive the difference between different variables or different 

distributions. Here we introduce two applications, in which AuroraMap demonstrates its 

advantages. Additionally, we also demonstrated how to implement AuroraMap for off-screen 

visualization 

problem. 

Since data is getting more and more accessible, one data entry could contain multiple 

variables or attributes other than geospatial information. Therefore, visualizing multi-variate 

distribution is always demanded. Analyzers expect to get more insights from the visual 

comparison. In Figure14. we created two offset areas, inside the boundary and outside the 

boundary respectively for visualizing both Buddhist (inside) and Non-Buddhist (outside) 

infrastructure locations in Hunan Province. Considering there are a larger amount of Buddhists in 

China, it is not surprising that we can observe that there are more colors projected to the inner 
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offset area than the outer offset. However, one may realize that at the right side of the 

AuroraMap, there are more non-Buddhist facilities than the Buddhists'. We can locate it back to 

the original map and check the specific city. We can even read the legend and get the density 

difference. Notice the legend could be scaled down to the reasonable domain to represent 

infrastructure numbers. The users can adjust the legend according to the usage and the data 

types. 

 
Figure 14: Apply AuroraMap to Visually Compare Two Religions; Two offset areas are 

visualizing Buddhist and Non-Buddhist infrastructure locations in Hunan Province. Same 
technique could be applied to resolve off-screen visualization, where the outer offset area 
visualizes off-screen objects and the inner area shows the samples inside the boundary. 
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Figure 15: Apply AuroraMap to Visualize Religious Data of Three Adjacent Provinces; Three 

adjacent boundaries are visualized by AuroraMap. The observers are able to compare the 
densities between subregions. Top: Hubei; Bottom-Left:Hunan; Bottom-Right: Jiangxi. 

 
Another handful application is visualizing multiple distributions simultaneously. In 

Figure 15. we applied AuroraMap to a case that three provinces are adjacent. Observing the 

AuroraMap combination, the users can easily find out the different amount and relative locations 

of the clusters inside each province. The hues also reveal the peak density values for the clusters. 

Tracking the sharing boundaries of different provinces, we can realize there are very few 

religious infrastructures along the provincial boundaries. We can also see the increasing trend 

from left to right, geographically from west to east. AuroraMap could relief the overplotting 

issue compared to dot-map. With the legend introduced, the users can easily quantify the relative 

densities' difference between different clusters, instead of misleading by the overlapping dots. 

Due to the restriction of the availability of the digital display property, visualizing off-

screen objects and allowing the comparison between inbound objects and off-screen ones are 

difficult to accomplish. Utilizing the boundary of the distribution, AuroraMap provides a basis 

where to project off-screen objects to the visible area. In Figure14, assuming that the outer offset 



 

50 

area is reserved for the off-screen samples, the inner area can still display the distribution. Here, 

we suggest a simple method to transfer off-screen samples to the offset area. Similar to the real-

world scenario, the users firstly define a scope for spatial visualization. Assuming we take a 

constant distance away from the boundary, one can see green circumscribed circles in Figure14. 

in the same diameters. However, the diameters of the circumscribed circles would change while 

the circles are approaching concave polygons. Like the red circles show, the circles would 

gradually become smaller till vanishing. For each dividing node on the boundary, we have 

constructed an associated circumscribed circle. Therefore, we can apply a similar algorithm to 

compute the densities for sub-regions assembled by two circumscribed circle centers and two 

dividing nodes on the boundary. Ultimately, the outer offset area can visualize AuroraMap for 

the off-screen (off-boundary) objects. The users can flexibly adjust the initial diameter of the 

circumscribed circle so that the considering scope can be redifined. 

5.3 Contributions 

AuroraMap provides an abstract visualization solution that is highly applicable to 

visualizing 2D spatial points dataset in the geographical context. This technique has several 

advantages: 1) yield space compared to other visualization and enables multidimensional data 

representation. For example, overlaps dot distribution map to the AuroraMap, each presents 

different raw data to enhance geospatial information, 2) enables users to quantitatively estimate 

the position, orientation, and relative maximum density value for each peak cluster in raw spatial 

data, 3) provide more flexible scope for users to view data that presents in different geographical 

context. For example, users can compare data aggregated inside, and outside a region, and in 

different geographical levels, such as a nation, state, province, etc. 
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Except for these following advantages, the visualization algorithm resolves the problem 

in projecting density values to a sophisticated typology without omitting distribution details. We 

provided computational methods to color encode spatial data, including 1) extract, simplify and 

round up a given geographic boundary, 2) implement offset acquisition to yield place for color 

encoding, 3) region segmentation using maximum circle computation, 4) diverging color scheme 

encoding on a set of boundary segments. 

Compared to other visualization. Phoenixmap encodes density as the width (thickness) of 

the outlines.The width ensures that users ideally can have a better quantitativeestimation using 

Phoenixmap compared to color-based methods.However, Phoenixmap is lack of sensitivity to the 

distribution de-tails, which makes it hard to be implemented for certain tasks likelocalizing the 

clusters inside the distribution. Heatmap is a density-based method, which could fairly reflect the 

accurate locations, sizesand densities for a given distribution. However, heatmap requires 

tooccupy a lot display properties, which restricts heatmap to a singleusage. The users can not 

engage heatmap visualization with otherprocesses or methods. 

In light of a large spatial distribution dataset, AuroraMap allows users to compare distribution 

patterns in different areas of a region without much effort, and to discern changes in various of 

geographical scope easily. 

5.4 Limitations  

Even though the benefits of carrying out Auroramap for 2D spatial distribution 

visualization, Auroramap is a concise color-based visualization technique. It means that for 

earning the advantages like saving space, some details are abstracted. It leaves some limitations 

of Auroramap.  
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Boundary is a critical base for generating Auroramap. However, when we scale and 

project a real-world boundary to the display area, often the projected boundary is complex with 

lots of geometry variations. Computed on the complex boundary, Auroramap may be break into 

multiple small pieces overlapping together. One way could mitigate negative effect like this is 

increasing the dividing number of the boundary. In other word, the more divisions we create, the 

smaller each fan-shaped region and the variation would be, which could reduce the inequality. 

On the other hand, for those interior angles sunken towards the centroids, we optimally rounded 

the angles to convert a sharp corner to a small arc because the folding corner could make a 

sudden color change. The side effect of rounding the corner is that some samples may happen to 

locate at the corner exactly. In this case, the algorithm has to remove the missing sample points 

back to the curve, which locate in the center of the curvature.  

Additionally, a cluster, whose center locates around the centroids of the distribution, may 

be break down into multiple projections on the offset area. This requires an advanced 

understanding and degree of proficiency of implementing Auroramap. The users need to 

combine them together in use of space imagination. In our user tests, a small batch of the users 

who volunteered to experience more testing graphs (after experiments) performed very well on 

assembling the cluster. 

Moreover, when applying Auroramap to multi-variate visualization task, the method is 

limited by the computation and the number of the most allowed offsets. Technically, the offset 

could be generated layer after layer. However, the mismatch would occur when the offset area 

steps deeply away from the boundary. Also, the simplification of the boundary will be 

dramatically increased for deeper offset area, which basically lose the original shape of the 

distribution.  
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Judging from the user experiment on Hunan Auroramap, the new users were lack of 

accuracy about localizing multiple clusters in the same normal direction. This could be alleviated 

after enough training and understanding about Auroramap. Additionally, if necessary, the users 

can also utilize interaction like toggle to display the skeleton/centroids of the distribution or the 

centers of the max-inscribed circles to assist themselves in localizing the clusters.  
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APPENDIX 

RESEARCH PARTICIPANT CONSENT FORM 
Enhancing Contour based Visualization for Massive spatial Distribution Data with Color 

Encoding 
 

Principle Investigator: Yingjie Victor Chen 
Researcher: Guojun Han 

 
Computer Graphic Technology  

Purdue University 
 

KEY INFORMATION 
Please take time to review this information carefully. This is a research study. Your participation 
in this study is voluntary which means that you may choose not to participate at any time without 
penalty or loss of benefits to which you are otherwise entitled.  You may ask questions to the 
researchers about the study whenever you would like. If you decide to take part in the study, you 
will be asked to sign this form, be sure you understand what you will do and any possible risks or 
benefits. 
 

• The study is about investigating the efficiency of a new data visualization approach. The 
new approach aims at revealing dot density within a given region, and uses different 
colors to represent different dot density levels.  

• For example, regions with higher dot density has darker color, while those with lower dot 
density have lighter color.  

• The total duration for the research study will be 30 minutes, on February 25th. 
 
What is the purpose of this study? 

• The purpose of this research study is to measure the efficiency of a new data visualization 
method, which uses different color ranges to represent dot density in an area.  

• To be more specific, we separate an area into multiple pieces and calculate total amount 
of dots per piece, then use color to represent different dot amounts. For example, a piece 
with a higher dot amount has a darker color.  

• We would enroll 30 participants in this study. 
 

WHAT WILL I DO IF I CHOOSE TO BE IN THIS STUDY?  
• The whole study will take you 30 minutes to accomplish.  
• Your demographic information and education background will be recorded. However, we 

will not record any of your identifiable information.  
• For your reference, the experiment has a user survey, 2 experimental sessions, followed 

by a short interview. 
1. First, you will fill a brief user survey about your gender, familiarity with data 

visualization, frequency of using web-based software; 



 

60 

2. Second, you will be briefed about the three types of visualization that are designed to 
show distribution patterns.  
The three visualization types are: dot distribution map, contour visualization and our 
visualization approach, please check the form below as reference. 
 

  Dot distribution map Contour visualization Our visualization 
approach 

Definition A dot distribution map, or 
dot density map, is a map 
type that uses a dot symbol 
to show the presence of a 
feature or a phenomenon. 

Contour map is used to 
determine elevations and 
are lines on a map that are 
produced from connecting 
points of equal elevation. 

Our visualization 
approach uses color 
to encode spatial 
distribution patterns 
within a given 
boundary.  

Example 

 

 

 

 

3. Then, we set up the software environment for you. A computer monitor and a mouse will 
be provided, you will need to implement the experimental session in this setting.  
4. After that, you will complete two experimental sessions: You will be provided with one 
contour based visualization that encoded spatial information with color, you will need to circle 
the area enclosed by the contour that shows certain distribution pattern. Your input and 
completion time will be recorded; You will be provided with multiple graphs, you will need to 
compare the distribution density level. Your input and completion time will be recorded. 
5. After the two experiment sessions, you will be interviewed about your experience with 
the contour based visualization.  

Interview:  
Interview Questions: 
 

1. In the below visualization, identify the position of area which has most dot density; 
2. In the below visualization, identify the position of area which has least dot density; 
3. In the below visualization, identify the potential pattern you discovered; 
4. In the below regions, identify the potential patterns you discovered; 
5. In the below regions, identify the region that has most dot density; 
6. In the below regions, identify the region that has least dot density. 
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HOW LONG WILL I BE IN THE STUDY?  
• The study will be completed in one session sequentially. 
• To estimate completion time for you will be 30 minutes. 

 
WHAT ARE THE POSSIBLE RISKS OR DISCOMFORTS? 

THIS STUDY WILL NOT BE ANY DISCOMFORTS OR RISKS FOR USERS TO 
INTERPRET STATIC VISUALIZATION. 

 
ARE THERE ANY POTENTIAL BENEFITS?  

YOU WILL BE PROVIDED WITH INSIGHTS ON HOW TO UNDERSTAND COLOR-
BASED VISUALIZATION. 

 
Will I receive payment or other incentive? 
You will be compensated $10.  
 
Are there costs to me for participation? 
 
No cost is required for you in this study. 
 

WILL INFORMATION ABOUT ME AND MY PARTICIPATION BE KEPT 
CONFIDENTIAL?   

• Your research records collected for research purposes will be labeled with unique ID and 
will be stored for 3 years.  No Personal or identifiable information will be collected.  

• Research results will be stored electronically and analyzed at Purdue University will be 
kept in a secured area in PI’s Office.  

• In the event of any publication or presentation resulting from the research, no personally 
identifiable information will be shared.  

• Only the research team will have access to identifiable research records, data, and the 
purpose of that access.  

 
WHAT ARE MY RIGHTS IF I TAKE PART IN THIS STUDY? 

• You do not have to participate in this research project.   
• If you agree to participate, you may withdraw your participation at any time without 

penalty.  
• To opt out of participation or withdraw your consent please notify. 

   
Who can I contact if I have questions about the study? 
To report anonymously via Purdue’s Hotline see www.purdue.edu/hotline  
 
If you have questions about your rights while taking part in the study or have concerns about the 
treatment of research participants, please call the Human Research Protection Program at (765) 
494-5942, email (irb@purdue.edu) or write to:  
Human Research Protection Program - Purdue University  
Ernest C. Young Hall, Room 1032  
155 S. Grant St.  
West Lafayette, IN 47907-2114  
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Documentation of Informed Consent 
I have had the opportunity to read this consent form and have the research study explained.  I 
have had the opportunity to ask questions about the research study, and my questions have been 
answered.  I am prepared to participate in the research study described above.  I will be offered a 
copy of this consent form after I sign it.   
 

__________________________________________                           ______________________
___ 
              Participant’s Signature                                                                                  Date 
  
__________________________________________                           
              Participant’s Name 
 
__________________________________________                          _______________________
____ 
              Researcher’s Signature                                                                                  Date 

 

 

 

 

 


